151
|
Pavel ME, Sers C. WOMEN IN CANCER THEMATIC REVIEW: Systemic therapies in neuroendocrine tumors and novel approaches toward personalized medicine. Endocr Relat Cancer 2016; 23:T135-T154. [PMID: 27649723 DOI: 10.1530/erc-16-0370] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 09/20/2016] [Indexed: 12/19/2022]
Abstract
Neuroendocrine tumors (NETs) are a group of heterogenous neoplasms. Evidence-based treatment options for antiproliferative therapy include somatostatin analogues, the mTOR inhibitor everolimus, the multiple tyrosine kinase inhibitor sunitinib and peptide receptor radionuclide therapy with 177-Lu-octreotate. In the absence of definite predictive markers, therapeutic decision making follows clinical and pathological criteria. As objective response rates with targeted drugs are rather low, and response duration is limited in most patients, numerous combination therapies targeting multiple pathways have been explored in the field. Upfront combination of drugs, however, is associated with increasing toxicity and has shown little benefit. Major advancements in the molecular understanding of NET based on genomic, epigenomic and transcriptomic analysis have been achieved with prognostic and therapeutic impact. New insight into molecular alterations has paved the way to biomarker-driven clinical trials and may facilitate treatment stratification toward personalized medicine in the near future. However, an improved understanding of the complexity of pathway interactions is required for successful treatment. A systems biology approach is one of the tools that may help to achieve this endeavor.
Collapse
Affiliation(s)
- Marianne E Pavel
- Medical DepartmentDivision of Hepatology and Gastroenterology including Metabolic Diseases, Campus Virchow Klinikum, Charité University Medicine, Berlin, Germany
| | - Christine Sers
- Institute of PathologyCharité University Medicine, Berlin, Germany
| |
Collapse
|
152
|
Kim SM, Roy SG, Chen B, Nguyen TM, McMonigle RJ, McCracken AN, Zhang Y, Kofuji S, Hou J, Selwan E, Finicle BT, Nguyen TT, Ravi A, Ramirez MU, Wiher T, Guenther GG, Kono M, Sasaki AT, Weisman LS, Potma EO, Tromberg BJ, Edwards RA, Hanessian S, Edinger AL. Targeting cancer metabolism by simultaneously disrupting parallel nutrient access pathways. J Clin Invest 2016; 126:4088-4102. [PMID: 27669461 PMCID: PMC5096903 DOI: 10.1172/jci87148] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 08/16/2016] [Indexed: 12/23/2022] Open
Abstract
Oncogenic mutations drive anabolic metabolism, creating a dependency on nutrient influx through transporters, receptors, and macropinocytosis. While sphingolipids suppress tumor growth by downregulating nutrient transporters, macropinocytosis and autophagy still provide cancer cells with fuel. Therapeutics that simultaneously disrupt these parallel nutrient access pathways have potential as powerful starvation agents. Here, we describe a water-soluble, orally bioavailable synthetic sphingolipid, SH-BC-893, that triggers nutrient transporter internalization and also blocks lysosome-dependent nutrient generation pathways. SH-BC-893 activated protein phosphatase 2A (PP2A), leading to mislocalization of the lipid kinase PIKfyve. The concomitant mislocalization of the PIKfyve product PI(3,5)P2 triggered cytosolic vacuolation and blocked lysosomal fusion reactions essential for LDL, autophagosome, and macropinosome degradation. By simultaneously limiting access to both extracellular and intracellular nutrients, SH-BC-893 selectively killed cells expressing an activated form of the anabolic oncogene Ras in vitro and in vivo. However, slower-growing, autochthonous PTEN-deficient prostate tumors that did not exhibit a classic Warburg phenotype were equally sensitive. Remarkably, normal proliferative tissues were unaffected by doses of SH-BC-893 that profoundly inhibited tumor growth. These studies demonstrate that simultaneously blocking parallel nutrient access pathways with sphingolipid-based drugs is broadly effective and cancer selective, suggesting a potential strategy for overcoming the resistance conferred by tumor heterogeneity.
Collapse
Affiliation(s)
- Seong M. Kim
- Department of Developmental and Cell Biology, University of California Irvine (UCI), Irvine, California, USA
| | - Saurabh G. Roy
- Department of Developmental and Cell Biology, University of California Irvine (UCI), Irvine, California, USA
| | - Bin Chen
- Department of Chemistry, Université de Montréal, Montréal, Québec, Canada
| | - Tiffany M. Nguyen
- Department of Developmental and Cell Biology, University of California Irvine (UCI), Irvine, California, USA
| | - Ryan J. McMonigle
- Department of Developmental and Cell Biology, University of California Irvine (UCI), Irvine, California, USA
| | - Alison N. McCracken
- Department of Developmental and Cell Biology, University of California Irvine (UCI), Irvine, California, USA
| | - Yanling Zhang
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Satoshi Kofuji
- Departments of Internal Medicine, Neurosurgery, and Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Jue Hou
- Department of Biomedical Engineering, UCI, Irvine, California, USA
| | - Elizabeth Selwan
- Department of Developmental and Cell Biology, University of California Irvine (UCI), Irvine, California, USA
| | - Brendan T. Finicle
- Department of Developmental and Cell Biology, University of California Irvine (UCI), Irvine, California, USA
| | - Tricia T. Nguyen
- Department of Developmental and Cell Biology, University of California Irvine (UCI), Irvine, California, USA
| | - Archna Ravi
- Department of Developmental and Cell Biology, University of California Irvine (UCI), Irvine, California, USA
| | - Manuel U. Ramirez
- Department of Developmental and Cell Biology, University of California Irvine (UCI), Irvine, California, USA
| | - Tim Wiher
- Department of Developmental and Cell Biology, University of California Irvine (UCI), Irvine, California, USA
| | - Garret G. Guenther
- Department of Developmental and Cell Biology, University of California Irvine (UCI), Irvine, California, USA
| | - Mari Kono
- National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), Bethesda, Maryland, USA
| | - Atsuo T. Sasaki
- Departments of Internal Medicine, Neurosurgery, and Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Lois S. Weisman
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Eric O. Potma
- Department of Biomedical Engineering, UCI, Irvine, California, USA
| | | | - Robert A. Edwards
- Department of Pathology, University of California Irvine School of Medicine, Irvine, California, USA
| | - Stephen Hanessian
- Department of Chemistry, Université de Montréal, Montréal, Québec, Canada
- Department of Pharmaceutical Sciences, UCI, Irvine, California, USA
| | - Aimee L. Edinger
- Department of Developmental and Cell Biology, University of California Irvine (UCI), Irvine, California, USA
| |
Collapse
|
153
|
Abstract
The phosphatase and tensin homolog gene PTEN is one of the most frequently mutated tumor suppressor genes in human cancer. Loss of PTEN function occurs in a variety of human cancers via its mutation, deletion, transcriptional silencing, or protein instability. PTEN deficiency in cancer has been associated with advanced disease, chemotherapy resistance, and poor survival. Impaired PTEN function, which antagonizes phosphoinositide 3-kinase (PI3K) signaling, causes the accumulation of phosphatidylinositol (3,4,5)-triphosphate and thereby the suppression of downstream components of the PI3K pathway, including the protein kinase B and mammalian target of rapamycin kinases. In addition to having lipid phosphorylation activity, PTEN has critical roles in the regulation of genomic instability, DNA repair, stem cell self-renewal, cellular senescence, and cell migration. Although PTEN deficiency in solid tumors has been studied extensively, rare studies have investigated PTEN alteration in lymphoid malignancies. However, genomic or epigenomic aberrations of PTEN and dysregulated signaling are likely critical in lymphoma pathogenesis and progression. This review provides updated summary on the role of PTEN deficiency in human cancers, specifically in lymphoid malignancies; the molecular mechanisms of PTEN regulation; and the distinct functions of nuclear PTEN. Therapeutic strategies for rescuing PTEN deficiency in human cancers are proposed.
Collapse
Affiliation(s)
- Xiaoxiao Wang
- Department of Hematopathology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77230, USA.,Department of Medical Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Huiqiang Huang
- Department of Medical Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Ken H Young
- Department of Hematopathology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77230, USA.,The University of Texas Graduate School of Biomedical Science, Houston, TX 77230, USA
| |
Collapse
|
154
|
Falasca M, Hamilton JR, Selvadurai M, Sundaram K, Adamska A, Thompson PE. Class II Phosphoinositide 3-Kinases as Novel Drug Targets. J Med Chem 2016; 60:47-65. [DOI: 10.1021/acs.jmedchem.6b00963] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Marco Falasca
- Metabolic
Signalling Group, School of Biomedical Sciences, CHIRI Biosciences, Curtin University, Perth, Western Australia 6845, Australia
| | - Justin R. Hamilton
- Australian
Centre for Blood Diseases and Department of Clinical Haematology, Monash University, 99 Commercial Road, Melbourne, Victoria 3004, Australia
| | - Maria Selvadurai
- Australian
Centre for Blood Diseases and Department of Clinical Haematology, Monash University, 99 Commercial Road, Melbourne, Victoria 3004, Australia
| | - Krithika Sundaram
- Medicinal
Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Aleksandra Adamska
- Metabolic
Signalling Group, School of Biomedical Sciences, CHIRI Biosciences, Curtin University, Perth, Western Australia 6845, Australia
| | - Philip E. Thompson
- Medicinal
Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, Victoria 3052, Australia
| |
Collapse
|
155
|
Spratt DE, Zumsteg ZS, Feng FY, Tomlins SA. Translational and clinical implications of the genetic landscape of prostate cancer. Nat Rev Clin Oncol 2016; 13:597-610. [PMID: 27245282 PMCID: PMC5030163 DOI: 10.1038/nrclinonc.2016.76] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Over the past several years, analyses of data from high-throughput studies have elucidated many fundamental insights into prostate cancer biology. These insights include the identification of molecular alterations and subtypes that drive tumour progression, recurrent aberrations in signalling pathways, the existence of substantial intertumoural and intratumoural heterogeneity, Darwinian evolution in response to therapeutic pressures and the complicated multidirectional patterns of spread between primary tumours and metastatic sites. However, these concepts have not yet been fully translated into clinical tools to improve prognostication, prediction and personalization of treatment of patients with prostate cancer. The current and future clinical implications of 'omics' level knowledge is not only revolutionizing our understanding of prostate cancer biology, but is also shaping ongoing, and future clinical investigations and practice. In this Review, we summarize these advances, and the remaining challenges surrounding tumour heterogeneity and the ability to overcome treatment resistance are also described.
Collapse
Affiliation(s)
- Daniel E Spratt
- Department of Radiation Oncology, University of Michigan Medical School, 1500 East Medical Center Drive, Ann Arbor, Michigan 48109, USA
| | - Zachary S Zumsteg
- Department of Radiation Oncology, Cedars Sinai Medical Center, 8700 Beverly Blvd, West Hollywood, CA 90048, USA
| | - Felix Y Feng
- Department of Radiation Oncology, University of Michigan Medical School, 1500 East Medical Center Drive, Ann Arbor, Michigan 48109, USA
- Michigan Center for Translational Pathology, University of Michigan Medical School, 1524 BSRB, 109 Zina Pitcher Place, Ann Arbor, Michigan 48109-2200, Ann Arbor, Michigan, USA
| | - Scott A Tomlins
- Department of Pathology, University of Michigan Medical School, 1500 East Medical Center Drive, Ann Arbor, Michigan 48109, USA
- Department of Urology, University of Michigan Medical School, 1500 East Medical Center Drive, Ann Arbor, Michigan 48109, USA
- Michigan Center for Translational Pathology, University of Michigan Medical School, 1524 BSRB, 109 Zina Pitcher Place, Ann Arbor, Michigan 48109-2200, Ann Arbor, Michigan, USA
| |
Collapse
|
156
|
Okkenhaug K, Graupera M, Vanhaesebroeck B. Targeting PI3K in Cancer: Impact on Tumor Cells, Their Protective Stroma, Angiogenesis, and Immunotherapy. Cancer Discov 2016; 6:1090-1105. [PMID: 27655435 PMCID: PMC5293166 DOI: 10.1158/2159-8290.cd-16-0716] [Citation(s) in RCA: 197] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 08/02/2016] [Indexed: 12/28/2022]
Abstract
The PI3K pathway is hyperactivated in most cancers, yet the capacity of PI3K inhibitors to induce tumor cell death is limited. The efficacy of PI3K inhibition can also derive from interference with the cancer cells' ability to respond to stromal signals, as illustrated by the approved PI3Kδ inhibitor idelalisib in B-cell malignancies. Inhibition of the leukocyte-enriched PI3Kδ or PI3Kγ may unleash antitumor T-cell responses by inhibiting regulatory T cells and immune-suppressive myeloid cells. Moreover, tumor angiogenesis may be targeted by PI3K inhibitors to enhance cancer therapy. Future work should therefore also explore the effects of PI3K inhibitors on the tumor stroma, in addition to their cancer cell-intrinsic impact. SIGNIFICANCE The PI3K pathway extends beyond the direct regulation of cancer cell proliferation and survival. In B-cell malignancies, targeting PI3K purges the tumor cells from their protective microenvironment. Moreover, we propose that PI3K isoform-selective inhibitors may be exploited in the context of cancer immunotherapy and by targeting angiogenesis to improve drug and immune cell delivery. Cancer Discov; 6(10); 1090-105. ©2016 AACR.
Collapse
Affiliation(s)
- Klaus Okkenhaug
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Babraham Research Campus, Cambridge, United Kingdom.
| | - Mariona Graupera
- Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain.
| | | |
Collapse
|
157
|
Matthews GM, de Matos Simoes R, Dhimolea E, Sheffer M, Gandolfi S, Dashevsky O, Sorrell JD, Mitsiades CS. NF-κB dysregulation in multiple myeloma. Semin Cancer Biol 2016; 39:68-76. [PMID: 27544796 DOI: 10.1016/j.semcancer.2016.08.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 08/16/2016] [Indexed: 12/29/2022]
Abstract
The nuclear factor-κB (NF-κB) transcription factor family plays critical roles in the pathophysiology of hematologic neoplasias, including multiple myeloma. The current review examines the roles that this transcription factor system plays in multiple myeloma cells and the nonmalignant accessory cells of the local microenvironment; as well as the evidence indicating that a large proportion of myeloma patients harbor genomic lesions which perturb diverse genes regulating the activity of NF-κB. This article also discusses the therapeutic targeting of the NF-κB pathway using proteasome inhibitors, a pharmacological class that has become a cornerstone in the therapeutic management of myeloma; and reviews some of the future challenges and opportunities for NF-κB-related research in myeloma.
Collapse
Affiliation(s)
- Geoffrey M Matthews
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, United States
| | - Ricardo de Matos Simoes
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, United States
| | - Eugen Dhimolea
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, United States
| | - Michal Sheffer
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, United States
| | - Sara Gandolfi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, United States
| | - Olga Dashevsky
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, United States
| | - Jeffrey D Sorrell
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, United States
| | - Constantine S Mitsiades
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, United States.
| |
Collapse
|
158
|
Houslay DM, Anderson KE, Chessa T, Kulkarni S, Fritsch R, Downward J, Backer JM, Stephens LR, Hawkins PT. Coincident signals from GPCRs and receptor tyrosine kinases are uniquely transduced by PI3Kβ in myeloid cells. Sci Signal 2016; 9:ra82. [PMID: 27531651 PMCID: PMC5417692 DOI: 10.1126/scisignal.aae0453] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Class I phosphoinositide 3-kinases (PI3Ks) catalyze production of the lipid messenger phosphatidylinositol 3,4,5-trisphosphate (PIP3), which plays a central role in a complex signaling network regulating cell growth, survival, and movement. This network is overactivated in cancer and inflammation, and there is interest in determining the PI3K catalytic subunit (p110α, p110β, p110γ, or p110δ) that should be targeted in different therapeutic contexts. Previous studies have defined unique regulatory inputs for p110β, including direct interaction with Gβγ subunits, Rac, and Rab5. We generated mice with knock-in mutations of p110β that selectively blocked the interaction with Gβγ and investigated its contribution to the PI3K isoform dependency of receptor tyrosine kinase (RTK) and G protein (heterotrimeric guanine nucleotide-binding protein)-coupled receptor (GPCR) responses in primary macrophages and neutrophils. We discovered a unique role for p110β in supporting synergistic PIP3 formation in response to the coactivation of macrophages by macrophage colony-stimulating factor (M-CSF) and the complement protein C5a. In contrast, we found partially redundant roles for p110α, p110β, and p110δ downstream of M-CSF alone and a nonredundant role for p110γ downstream of C5a alone. This role for p110β completely depended on direct interaction with Gβγ, suggesting that p110β transduces GPCR signals in the context of coincident activation by an RTK. The p110β-Gβγ interaction was also required for neutrophils to generate reactive oxygen species in response to the Fcγ receptor-dependent recognition of immune complexes and for their β2 integrin-mediated adhesion to fibrinogen or poly-RGD+, directly implicating heterotrimeric G proteins in these two responses.
Collapse
Affiliation(s)
- Daniel M Houslay
- Inositide Laboratory, Babraham Institute, Babraham Research Campus, Babraham, Cambridge CB223AT, UK
| | - Karen E Anderson
- Inositide Laboratory, Babraham Institute, Babraham Research Campus, Babraham, Cambridge CB223AT, UK
| | - Tamara Chessa
- Inositide Laboratory, Babraham Institute, Babraham Research Campus, Babraham, Cambridge CB223AT, UK
| | - Suhasini Kulkarni
- Inositide Laboratory, Babraham Institute, Babraham Research Campus, Babraham, Cambridge CB223AT, UK
| | - Ralph Fritsch
- Department of Hematology and Oncology, Freiburg University Medical Centre, Albert-Ludwigs-Universität, Freiburg, Hugstetter Str. 55 79106, Germany
| | - Julian Downward
- Signal Transduction Laboratory, Francis Crick Institute, Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Jonathan M Backer
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Forchheimer 230, Bronx, NY 10461, USA
| | - Len R Stephens
- Inositide Laboratory, Babraham Institute, Babraham Research Campus, Babraham, Cambridge CB223AT, UK.
| | - Phillip T Hawkins
- Inositide Laboratory, Babraham Institute, Babraham Research Campus, Babraham, Cambridge CB223AT, UK.
| |
Collapse
|
159
|
Gámez B, Rodríguez-Carballo E, Graupera M, Rosa JL, Ventura F. Class I PI-3-Kinase Signaling Is Critical for Bone Formation Through Regulation of SMAD1 Activity in Osteoblasts. J Bone Miner Res 2016; 31:1617-30. [PMID: 26896753 DOI: 10.1002/jbmr.2819] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 02/16/2016] [Accepted: 02/18/2016] [Indexed: 12/21/2022]
Abstract
Bone formation and homeostasis is carried out by osteoblasts, whose differentiation and activity are regulated by osteogenic signaling networks. A central mediator of these inputs is the lipid kinase phosphatidylinositol 3-kinase (PI3K). However, at present, there are no data on the specific role of distinct class IA PI3K isoforms in bone biology. Here, we performed osteoblast-specific deletion in mice to show that both p110α and p110β isoforms are required for survival and differentiation and function of osteoblasts and thereby control bone formation and postnatal homeostasis. Impaired osteogenesis arises from increased GSK3 activity and a depletion of SMAD1 protein levels in PI3K-deficient osteoblasts. Accordingly, pharmacological inhibition of GSK3 activity or ectopic expression of SMAD1 or SMAD5 normalizes bone morphogenetic protein (BMP) transduction and osteoblast differentiation. Together, these results identify the PI3K-GSK3-SMAD1 axis as a central node integrating multiple signaling networks that govern bone formation and homeostasis. © 2016 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Beatriz Gámez
- Departament de Ciències Fisiològiques II, Universitat de Barcelona, IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Edgardo Rodríguez-Carballo
- Departament de Ciències Fisiològiques II, Universitat de Barcelona, IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Mariona Graupera
- Vascular Signaling Laboratory, Catalan Institute of Oncology, IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| | - José Luis Rosa
- Departament de Ciències Fisiològiques II, Universitat de Barcelona, IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Francesc Ventura
- Departament de Ciències Fisiològiques II, Universitat de Barcelona, IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| |
Collapse
|
160
|
Murphy CG, Dickler MN. Endocrine resistance in hormone-responsive breast cancer: mechanisms and therapeutic strategies. Endocr Relat Cancer 2016; 23:R337-52. [PMID: 27406875 DOI: 10.1530/erc-16-0121] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 06/24/2016] [Indexed: 12/15/2022]
Abstract
The majority of breast cancers may be considered hormone responsive due to expression of hormone receptors (HR+). Although endocrine therapy is always considered for advanced HR+ breast cancer, the emergence of resistance is inevitable over time and is present from the start in a proportion of patients. In this review, we explore the mechanisms underlying de novo and acquired resistance to endocrine therapy. We comprehensively review newly approved and emerging therapies that have been developed to counteract specific mechanisms of resistance. We discuss the challenges pertinent to this therapeutic arena including the potential relief of negative regulatory feedback inhibition with compensatory pathway activation and the evolution of molecular changes in HR+ breast cancers during treatment. We discuss strategies to address these challenges in order to develop rational therapy approaches for patients with advanced HR+ breast cancer.
Collapse
Affiliation(s)
- Conleth G Murphy
- Bons Secours Hospital CorkMedical Oncology, Cork, Ireland University College CorkMedicine, Cork, Ireland
| | - Maura N Dickler
- Memorial Sloan-Kettering Cancer CenterBreast Medicine Service, New York, New York, USA Joan and Sanford I Weill Medical College of Cornell UniversityMedicine, New York, New York, USA
| |
Collapse
|
161
|
Yap TA, Smith AD, Ferraldeschi R, Al-Lazikani B, Workman P, de Bono JS. Drug discovery in advanced prostate cancer: translating biology into therapy. Nat Rev Drug Discov 2016; 15:699-718. [DOI: 10.1038/nrd.2016.120] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
162
|
Aoun F, Rassy EE, Assi T, Kattan J. Personalized treatment of prostate cancer: better knowledge of the patient, the disease and the medicine. Future Oncol 2016; 12:2359-61. [PMID: 27424848 DOI: 10.2217/fon-2016-0292] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- Fouad Aoun
- Department of Urology, Jules Bordet Institute, Université Libre de Bruxelles, Belgium.,Hotel Dieu de France University Hospital, Faculty of Medicine, Saint Joseph University, Lebanon
| | - Elie El Rassy
- Department of Oncology, Hotel Dieu de France University Hospital, Faculty of Medicine, Saint Joseph University, Lebanon
| | - Tarek Assi
- Department of Oncology, Hotel Dieu de France University Hospital, Faculty of Medicine, Saint Joseph University, Lebanon
| | - Joseph Kattan
- Department of Oncology, Hotel Dieu de France University Hospital, Faculty of Medicine, Saint Joseph University, Lebanon
| |
Collapse
|
163
|
Wicki A, Mandalà M, Massi D, Taverna D, Tang H, Hemmings BA, Xue G. Acquired Resistance to Clinical Cancer Therapy: A Twist in Physiological Signaling. Physiol Rev 2016; 96:805-29. [DOI: 10.1152/physrev.00024.2015] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Although modern therapeutic strategies have brought significant progress to cancer care in the last 30 years, drug resistance to targeted monotherapies has emerged as a major challenge. Aberrant regulation of multiple physiological signaling pathways indispensable for developmental and metabolic homeostasis, such as hyperactivation of pro-survival signaling axes, loss of suppressive regulations, and impaired functionalities of the immune system, have been extensively investigated aiming to understand the diversity of molecular mechanisms that underlie cancer development and progression. In this review, we intend to discuss the molecular mechanisms of how conventional physiological signal transduction confers to acquired drug resistance in cancer patients. We will particularly focus on protooncogenic receptor kinase inhibition-elicited tumor cell adaptation through two major core downstream signaling cascades, the PI3K/Akt and MAPK pathways. These pathways are crucial for cell growth and differentiation and are frequently hyperactivated during tumorigenesis. In addition, we also emphasize the emerging roles of the deregulated host immune system that may actively promote cancer progression and attenuate immunosurveillance in cancer therapies. Understanding these mechanisms may help to develop more effective therapeutic strategies that are able to keep the tumor in check and even possibly turn cancer into a chronic disease.
Collapse
Affiliation(s)
- Andreas Wicki
- Department of Biomedicine, University Hospital Basel, Basel, Switzerland; Department of Oncology and Hematology, Papa Giovanni XXIII Hospital, Bergamo, Italy; Department of Surgery and Translational Medicine, University of Florence, Florence, Italy; Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, Italy; Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, China; and Department of Mechanisms of Cancer, Friedrich Miescher Institute for
| | - Mario Mandalà
- Department of Biomedicine, University Hospital Basel, Basel, Switzerland; Department of Oncology and Hematology, Papa Giovanni XXIII Hospital, Bergamo, Italy; Department of Surgery and Translational Medicine, University of Florence, Florence, Italy; Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, Italy; Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, China; and Department of Mechanisms of Cancer, Friedrich Miescher Institute for
| | - Daniela Massi
- Department of Biomedicine, University Hospital Basel, Basel, Switzerland; Department of Oncology and Hematology, Papa Giovanni XXIII Hospital, Bergamo, Italy; Department of Surgery and Translational Medicine, University of Florence, Florence, Italy; Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, Italy; Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, China; and Department of Mechanisms of Cancer, Friedrich Miescher Institute for
| | - Daniela Taverna
- Department of Biomedicine, University Hospital Basel, Basel, Switzerland; Department of Oncology and Hematology, Papa Giovanni XXIII Hospital, Bergamo, Italy; Department of Surgery and Translational Medicine, University of Florence, Florence, Italy; Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, Italy; Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, China; and Department of Mechanisms of Cancer, Friedrich Miescher Institute for
| | - Huifang Tang
- Department of Biomedicine, University Hospital Basel, Basel, Switzerland; Department of Oncology and Hematology, Papa Giovanni XXIII Hospital, Bergamo, Italy; Department of Surgery and Translational Medicine, University of Florence, Florence, Italy; Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, Italy; Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, China; and Department of Mechanisms of Cancer, Friedrich Miescher Institute for
| | - Brian A. Hemmings
- Department of Biomedicine, University Hospital Basel, Basel, Switzerland; Department of Oncology and Hematology, Papa Giovanni XXIII Hospital, Bergamo, Italy; Department of Surgery and Translational Medicine, University of Florence, Florence, Italy; Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, Italy; Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, China; and Department of Mechanisms of Cancer, Friedrich Miescher Institute for
| | - Gongda Xue
- Department of Biomedicine, University Hospital Basel, Basel, Switzerland; Department of Oncology and Hematology, Papa Giovanni XXIII Hospital, Bergamo, Italy; Department of Surgery and Translational Medicine, University of Florence, Florence, Italy; Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, Italy; Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, China; and Department of Mechanisms of Cancer, Friedrich Miescher Institute for
| |
Collapse
|
164
|
Bell JB, Eckerdt FD, Alley K, Magnusson LP, Hussain H, Bi Y, Arslan AD, Clymer J, Alvarez AA, Goldman S, Cheng SY, Nakano I, Horbinski C, Davuluri RV, James CD, Platanias LC. MNK Inhibition Disrupts Mesenchymal Glioma Stem Cells and Prolongs Survival in a Mouse Model of Glioblastoma. Mol Cancer Res 2016; 14:984-993. [PMID: 27364770 DOI: 10.1158/1541-7786.mcr-16-0172] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 06/11/2016] [Indexed: 12/18/2022]
Abstract
Glioblastoma multiforme remains the deadliest malignant brain tumor, with glioma stem cells (GSC) contributing to treatment resistance and tumor recurrence. We have identified MAPK-interacting kinases (MNK) as potential targets for the GSC population in glioblastoma multiforme. Isoform-level subtyping using The Cancer Genome Atlas revealed that both MNK genes (MKNK1 and MKNK2) are upregulated in mesenchymal glioblastoma multiforme as compared with other subtypes. Expression of MKNK1 is associated with increased glioma grade and correlated with the mesenchymal GSC marker, CD44, and coexpression of MKNK1 and CD44 predicts poor survival in glioblastoma multiforme. In established and patient-derived cell lines, pharmacologic MNK inhibition using LY2801653 (merestinib) inhibited phosphorylation of the eukaryotic translation initiation factor 4E, a crucial effector for MNK-induced mRNA translation in cancer cells and a marker of transformation. Importantly, merestinib inhibited growth of GSCs grown as neurospheres as determined by extreme limiting dilution analysis. When the effects of merestinib were assessed in vivo using an intracranial xenograft mouse model, improved overall survival was observed in merestinib-treated mice. Taken together, these data provide strong preclinical evidence that pharmacologic MNK inhibition targets mesenchymal glioblastoma multiforme and its GSC population. IMPLICATIONS These findings raise the possibility of MNK inhibition as a viable therapeutic approach to target the mesenchymal subtype of glioblastoma multiforme. Mol Cancer Res; 14(10); 984-93. ©2016 AACR.
Collapse
Affiliation(s)
- Jonathan B Bell
- Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Frank D Eckerdt
- Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois. Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Kristen Alley
- Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Lisa P Magnusson
- Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois. Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Hridi Hussain
- Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois. Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Yingtao Bi
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Ahmet Dirim Arslan
- Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois. Division of Hematology/Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Jessica Clymer
- Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois. Division of Hematology/Oncology/Stem Cell Transplantation, Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois
| | - Angel A Alvarez
- Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Stewart Goldman
- Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois. Division of Hematology/Oncology/Stem Cell Transplantation, Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois
| | - Shi-Yuan Cheng
- Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Ichiro Nakano
- Department of Neurosurgery and Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Craig Horbinski
- Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois. Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois. Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Ramana V Davuluri
- Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois. Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - C David James
- Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois. Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Leonidas C Platanias
- Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois. Division of Hematology/Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois. Department of Medicine, Jesse Brown VA Medical Center, Chicago, Illinois.
| |
Collapse
|
165
|
Ma P, Fu Y, Chen M, Jing Y, Wu J, Li K, Shen Y, Gao JX, Wang M, Zhao X, Zhuang G. Adaptive and Acquired Resistance to EGFR Inhibitors Converge on the MAPK Pathway. Am J Cancer Res 2016; 6:1232-43. [PMID: 27279914 PMCID: PMC4893648 DOI: 10.7150/thno.14409] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 04/18/2016] [Indexed: 12/11/2022] Open
Abstract
Both adaptive and acquired resistance significantly limits the efficacy of the epidermal growth factor receptor (EGFR) kinase inhibitors. However, the distinct or common mechanisms of adaptive and acquired resistance have not been fully characterized. Here, through systematic modeling of erlotinib resistance in lung cancer, we found that feedback reactivation of MAPK signaling following erlotinib treatment, which was dependent on the MET receptor, contributed to the adaptive resistance of EGFR inhibitors. Interestingly, acquired resistance to erlotinib was also associated with the MAPK pathway activation as a result of CRAF or NRAS amplification. Consequently, combined inhibition of EGFR and MAPK impeded the development of both adaptive and acquired resistance. These observations demonstrate that adaptive and acquired resistance to EGFR inhibitors can converge on the same pathway and credential cotargeting EGFR and MAPK as a promising therapeutic approach in EGFR mutant tumors.
Collapse
|
166
|
Bonnevaux H, Lemaitre O, Vincent L, Levit MN, Windenberger F, Halley F, Delorme C, Lengauer C, Garcia-Echeverria C, Virone-Oddos A. Concomitant Inhibition of PI3Kβ and BRAF or MEK in PTEN-Deficient/BRAF-Mutant Melanoma Treatment: Preclinical Assessment of SAR260301 Oral PI3Kβ-Selective Inhibitor. Mol Cancer Ther 2016; 15:1460-71. [DOI: 10.1158/1535-7163.mct-15-0496] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 04/15/2016] [Indexed: 11/16/2022]
|
167
|
Jones NM, Rowe MR, Shepherd PR, McConnell MJ. Targeted inhibition of dominant PI3-kinase catalytic isoforms increase expression of stem cell genes in glioblastoma cancer stem cell models. Int J Oncol 2016; 49:207-16. [PMID: 27176780 DOI: 10.3892/ijo.2016.3510] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 03/02/2016] [Indexed: 11/05/2022] Open
Abstract
Cancer stem cells (CSC) exhibit therapy resistance and drive self-renewal of the tumour, making cancer stem cells an important target for therapy. The PI3K signalling pathway has been the focus of considerable research effort, including in glioblastoma (GBM), a cancer that is notoriously resistant to conventional therapy. Different isoforms of the catalytic sub-unit have been associated with proliferation, migration and differentiation in stem cells and cancer stem cells. Blocking these processes in CSC would improve patient outcome. We examined the effect of isoform specific PI3K inhibitors in two models of GBM CSC, an established GBM stem cell line 08/04 and a neurosphere formation model. We identified the dominant catalytic PI3K isoform for each model, and inhibition of the dominant isoform blocked AKT phosphorylation, as did pan-PI3K/mTOR inhibition. Analysis of SOX2, OCT4 and MSI1 expression revealed that inhibition of the dominant p110 subunit increased expression of cancer stem cell genes, while pan-PI3K/mTOR inhibition caused a similar, though not identical, increase in cancer stem cell gene expression. This suggested that PI3K inhibition enhanced, rather than blocked, CSC activity. Careful analysis of the response to specific isoform inhibition will be necessary before specific subunit inhibitors can be successfully deployed against GBM CSC.
Collapse
Affiliation(s)
- Nicole M Jones
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Matthew R Rowe
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Peter R Shepherd
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Melanie J McConnell
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| |
Collapse
|
168
|
Inherited PTEN mutations and the prediction of phenotype. Semin Cell Dev Biol 2016; 52:30-8. [DOI: 10.1016/j.semcdb.2016.01.030] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 12/21/2015] [Accepted: 01/21/2016] [Indexed: 12/19/2022]
|
169
|
Lonetti A, Cappellini A, Spartà AM, Chiarini F, Buontempo F, Evangelisti C, Evangelisti C, Orsini E, McCubrey JA, Martelli AM. PI3K pan-inhibition impairs more efficiently proliferation and survival of T-cell acute lymphoblastic leukemia cell lines when compared to isoform-selective PI3K inhibitors. Oncotarget 2016; 6:10399-414. [PMID: 25871383 PMCID: PMC4496363 DOI: 10.18632/oncotarget.3295] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 02/06/2015] [Indexed: 11/25/2022] Open
Abstract
Class I phosphatidylinositol 3-kinases (PI3Ks) are frequently activated in T-cell acute lymphoblastic leukemia (T-ALL), mainly due to the loss of PTEN function. Therefore, targeting PI3Ks is a promising innovative approach for T-ALL treatment, however at present no definitive evidence indicated which is the better therapeutic strategy between pan or selective isoform inhibition, as all the four catalytic subunits might participate in leukemogenesis. Here, we demonstrated that in both PTEN deleted and PTEN non deleted T-ALL cell lines, PI3K pan-inhibition exerted the highest cytotoxic effects when compared to both selective isoform inhibition or dual p110γ/δ inhibition. Intriguingly, the dual p110γ/δ inhibitor IPI-145 was effective in Loucy cells, which are representative of early T-precursor (ETP)-ALL, a T-ALL subtype associated with a poor outcome. PTEN gene deletion did not confer a peculiar reliance of T-ALL cells on PI3K activity for their proliferation/survival, as PTEN was inactivated in PTEN non deleted cells, due to posttranslational mechanisms. PI3K pan-inhibition suppressed Akt activation and induced caspase-independent apoptosis. We further demonstrated that in some T-ALL cell lines, autophagy could exert a protective role against PI3K inhibition. Our findings strongly support clinical application of class I PI3K pan-inhibitors in T-ALL treatment, with the possible exception of ETP-ALL cases.
Collapse
Affiliation(s)
- Annalisa Lonetti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Alessandra Cappellini
- Department of Human, Social and Health Sciences, University of Cassino, Cassino, Italy
| | - Antonino Maria Spartà
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Francesca Chiarini
- Muscoloskeletal Cell Biology Laboratory, IOR, Bologna, Italy.,Institute of Molecular Genetics, National Research Council-Rizzoli Orthopedic Institute, Bologna, Italy
| | - Francesca Buontempo
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Camilla Evangelisti
- Muscoloskeletal Cell Biology Laboratory, IOR, Bologna, Italy.,Institute of Molecular Genetics, National Research Council-Rizzoli Orthopedic Institute, Bologna, Italy
| | - Cecilia Evangelisti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Ester Orsini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | | |
Collapse
|
170
|
Schrötter S, Leondaritis G, Eickholt BJ. Capillary Isoelectric Focusing of Akt Isoforms Identifies Highly Dynamic Phosphorylation in Neuronal Cells and Brain Tissue. J Biol Chem 2016; 291:10239-51. [PMID: 26945062 PMCID: PMC4858973 DOI: 10.1074/jbc.m115.700138] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Indexed: 02/03/2023] Open
Abstract
The PI3K/PTEN/Akt pathway has been established as a core signaling pathway that is crucial for the integration of neurons into neuronal circuits and the maintenance of the architecture and function of neurons in the adult brain. Akt1–3 kinases are specifically activated by two phosphorylation events on residues Thr308 and Ser473 upon growth factor signaling, which subsequently phosphorylate a vast cohort of downstream targets. However, we still lack a clear understanding of the complexity and regulation of isoform specificity within the PI3K/PTEN/Akt pathway. We utilized a capillary-based isoelectric focusing method to study dynamics of Akt phosphorylation in neuronal cells and the developing brain and identify previously undescribed features of Akt phosphorylation and activation. First, we show that the accumulation of multiple phosphorylation events on Akt forms occur concurrently with Ser473 and Thr308 phosphorylation upon acute PI3K activation and provide evidence for uncoupling of Ser473 and Thr308 phosphorylation, as well as differential sensitivities of Akt1 forms upon PI3K inhibition. Second, we detect a transient shift in Akt isoform phosphorylation and activation pattern during early postnatal brain development, at stages corresponding to synapse development and maturation. Third, we show differential sensitivities of Ser473-Akt species to PTEN deletion in mature neurons, which suggests inherent differences in the Akt pools that are accessible to growth factors as compared with the pools that are controlled by PTEN. Our study demonstrates the presence of complex phosphorylation events of Akt in a time- and signal-dependent manner in neurons.
Collapse
Affiliation(s)
- Sandra Schrötter
- From the Charité-Universitätsmedizin Berlin, Cluster of Excellence NeuroCure and Institute of Biochemistry, Berlin 10117, Germany
| | - George Leondaritis
- From the Charité-Universitätsmedizin Berlin, Cluster of Excellence NeuroCure and Institute of Biochemistry, Berlin 10117, Germany
| | - Britta J Eickholt
- From the Charité-Universitätsmedizin Berlin, Cluster of Excellence NeuroCure and Institute of Biochemistry, Berlin 10117, Germany
| |
Collapse
|
171
|
Nakanishi Y, Walter K, Spoerke JM, O'Brien C, Huw LY, Hampton GM, Lackner MR. Activating Mutations in PIK3CB Confer Resistance to PI3K Inhibition and Define a Novel Oncogenic Role for p110β. Cancer Res 2016; 76:1193-203. [PMID: 26759240 DOI: 10.1158/0008-5472.can-15-2201] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 12/02/2015] [Indexed: 11/16/2022]
Abstract
Activation of the PI3K pathway occurs commonly in a wide variety of cancers. Experience with other successful targeted agents suggests that clinical resistance is likely to arise and may reduce the durability of clinical benefit. Here, we sought to understand mechanisms underlying resistance to PI3K inhibition in PTEN-deficient cancers. We generated cell lines resistant to the pan-PI3K inhibitor GDC-0941 from parental PTEN-null breast cancer cell lines and identified a novel PIK3CB D1067Y mutation in both cell lines that was recurrent in cancer patients. Stable expression of mutant PIK3CB variants conferred resistance to PI3K inhibition that could be overcome by downstream AKT or mTORC1/2 inhibitors. Furthermore, we show that the p110β D1067Y mutant was highly activated and induced PIP3 levels at the cell membrane, subsequently promoting the localization and activation of AKT and PDK1 at the membrane and driving PI3K signaling to a level that could withstand treatment with proximal inhibitors. Finally, we demonstrate that the PIK3CB D1067Y mutant behaved as an oncogene and transformed normal cells, an activity that was enhanced by PTEN depletion. Collectively, these novel preclinical and clinical findings implicate the acquisition of activating PIK3CB D1067 mutations as an important event underlying the resistance of cancer cells to selective PI3K inhibitors.
Collapse
Affiliation(s)
- Yoshito Nakanishi
- Department of Oncology Biomarker Development, Genentech, Inc., South San Francisco, California
| | - Kimberly Walter
- Department of Oncology Biomarker Development, Genentech, Inc., South San Francisco, California
| | - Jill M Spoerke
- Department of Oncology Biomarker Development, Genentech, Inc., South San Francisco, California
| | - Carol O'Brien
- Department of Oncology Biomarker Development, Genentech, Inc., South San Francisco, California
| | - Ling Y Huw
- Department of Oncology Biomarker Development, Genentech, Inc., South San Francisco, California
| | - Garret M Hampton
- Department of Oncology Biomarker Development, Genentech, Inc., South San Francisco, California
| | - Mark R Lackner
- Department of Oncology Biomarker Development, Genentech, Inc., South San Francisco, California.
| |
Collapse
|
172
|
Vanhaesebroeck B, Whitehead MA, Piñeiro R. Molecules in medicine mini-review: isoforms of PI3K in biology and disease. J Mol Med (Berl) 2016; 94:5-11. [PMID: 26658520 DOI: 10.1007/s00109-015-1352-5] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 09/21/2015] [Accepted: 09/24/2015] [Indexed: 01/10/2023]
Abstract
The PI3K lipid kinases are involved in signal transduction and intracellular vesicular traffic, endowing these enzymes with multiple cellular functions and important roles in normal physiology and disease. In this mini-review, we aim to distill from the vast PI3K literature the key relevant concepts for successful targeting of this pathway in disease. Of the eight isoforms of PI3K, the class I PI3Ks have been implicated in the aetiology and maintenance of various diseases, most prominently cancer, overgrowth syndromes, inflammation and autoimmunity, with emerging potential roles in metabolic and cardiovascular disorders. The development of class I PI3K inhibitors, mainly for use in cancer and inflammation, is a very active area of drug development. In 2014, an inhibitor of the p110δ isoform of PI3K was approved for the treatment of specific human B cell malignancies. The key therapeutic indications of targeting each class I PI3K isoform are summarized and discussed.
Collapse
Affiliation(s)
- Bart Vanhaesebroeck
- UCL Cancer Institute, University College London, 72 Huntley Street, London, WC1E 6BT, UK.
| | - Maria A Whitehead
- UCL Cancer Institute, University College London, 72 Huntley Street, London, WC1E 6BT, UK
| | - Roberto Piñeiro
- UCL Cancer Institute, University College London, 72 Huntley Street, London, WC1E 6BT, UK
| |
Collapse
|
173
|
Kato M, Banuelos CA, Imamura Y, Leung JK, Caley DP, Wang J, Mawji NR, Sadar MD. Cotargeting Androgen Receptor Splice Variants and mTOR Signaling Pathway for the Treatment of Castration-Resistant Prostate Cancer. Clin Cancer Res 2015; 22:2744-54. [PMID: 26712685 DOI: 10.1158/1078-0432.ccr-15-2119] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Accepted: 12/13/2015] [Indexed: 11/16/2022]
Abstract
PURPOSE The PI3K/Akt/mTOR pathway is activated in most castration-resistant prostate cancers (CRPC). Transcriptionally active androgen receptor (AR) plays a role in the majority of CRPCs. Therefore, cotargeting full-length (FL) AR and PI3K/Akt/mTOR signaling has been proposed as a possible, more effective therapeutic approach for CRPC. However, truncated AR-splice variants (AR-V) that are constitutively active and dominant over FL-AR are associated with tumor progression and resistance mechanisms in CRPC. It is currently unknown how blocking the PI3K/Akt/mTOR pathway impacts prostate cancer driven by AR-Vs. Here, we evaluated the efficacy and mechanism of combination therapy to block mTOR activity together with EPI-002, an AR N-terminal domain (NTD) antagonist that blocks the transcriptional activities of FL-AR and AR-Vs in models of CRPC. EXPERIMENTAL DESIGN To determine the functional roles of FL-AR, AR-Vs, and PI3K/Akt/mTOR pathways, we employed EPI-002 or enzalutamide and BEZ235 (low dose) or everolimus in human prostate cancer cells that express FL-AR or FL-AR and AR-Vs (LNCaP95). Gene expression and efficacy were examined in vitro and in vivo RESULTS EPI-002 had antitumor activity in enzalutamide-resistant LNCaP95 cells that was associated with decreased expression of AR-V target genes (e.g., UBE2C). Inhibition of mTOR provided additional blockade of UBE2C expression. A combination of EPI-002 and BEZ235 decreased the growth of LNCaP95 cells in vitro and in vivo CONCLUSIONS Cotargeting mTOR and AR-NTD to block transcriptional activities of FL-AR and AR-Vs provided maximum antitumor efficacy in PTEN-null, enzalutamide-resistant CRPC. Clin Cancer Res; 22(11); 2744-54. ©2015 AACR.
Collapse
Affiliation(s)
- Minoru Kato
- Department of Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Carmen A Banuelos
- Department of Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Yusuke Imamura
- Department of Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Jacky K Leung
- Department of Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Daniel P Caley
- Department of Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Jun Wang
- Department of Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Nasrin R Mawji
- Department of Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Marianne D Sadar
- Department of Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada.
| |
Collapse
|
174
|
Watson PA, Arora VK, Sawyers CL. Emerging mechanisms of resistance to androgen receptor inhibitors in prostate cancer. Nat Rev Cancer 2015; 15:701-11. [PMID: 26563462 PMCID: PMC4771416 DOI: 10.1038/nrc4016] [Citation(s) in RCA: 1030] [Impact Index Per Article: 103.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
During the past 10 years, preclinical studies implicating sustained androgen receptor (AR) signalling as the primary driver of castration-resistant prostate cancer (CRPC) have led to the development of novel agents targeting the AR pathway that are now in widespread clinical use. These drugs prolong the survival of patients with late-stage prostate cancer but are not curative. In this Review, we highlight emerging mechanisms of acquired resistance to these contemporary therapies, which fall into the three broad categories of restored AR signalling, AR bypass signalling and complete AR independence. This diverse range of resistance mechanisms presents new challenges for long-term disease control, which may be addressable through early use of combination therapies guided by recent insights from genomic landscape studies of CRPC.
Collapse
Affiliation(s)
- Philip A Watson
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Vivek K Arora
- Division of Medical Oncology, Washington University School of Medicine, St Louis, Missouri 63130, USA
| | - Charles L Sawyers
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA
| |
Collapse
|
175
|
González-Cao M, Rodón J, Karachaliou N, Sánchez J, Santarpia M, Viteri S, Pilotto S, Teixidó C, Riso A, Rosell R. Other targeted drugs in melanoma. ANNALS OF TRANSLATIONAL MEDICINE 2015; 3:266. [PMID: 26605312 DOI: 10.3978/j.issn.2305-5839.2015.08.12] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Targeted therapy drugs are developed against specific molecular alterations on cancer cells. Because they are "targeted" to the tumor, these therapies are more effective and better tolerated than conventional therapies such as chemotherapy. In the last decade, great advances have been made in understanding of melanoma biology and identification of molecular mechanisms involved in malignant transformation of cells. The identification of oncogenic mutated kinases involved in this process provides an opportunity for development of new target therapies. The dependence of melanoma on BRAF-mutant kinase has provided an opportunity for development of mutation-specific inhibitors with high activity and excellent tolerance that are now being used in clinical practice. This marked a new era in the treatment of metastatic melanoma and much research is now ongoing to identify other "druggable" kinases and transduction signaling networking. It is expected that in the near future the spectrum of target drugs for melanoma treatment will increase. Herein, we review the most relevant potential novel drugs for melanoma treatment based on preclinical data and the results of early clinical trials.
Collapse
Affiliation(s)
- María González-Cao
- 1 Translational Cancer Research Unit, Instituto Oncológico Dr Rosell, Quirón Dexeus University Hospital, Barcelona, Spain ; 2 Vall D'Hebron Institute of Oncology and Universitat Autonoma de Barcelona, Barcelona, Spain ; 3 Immunology Department, CNICV, Madrid, Spain ; 4 Medical Oncology Unit, Human Pathology Department, University of Messina, Messina, Italy ; 5 Department of Medical Oncology, University of Verona, Azienda Ospedaliera Universitaria Integrata, Verona, Italy ; 6 Pangaea Biotech S.L, Barcelona, Spain ; 7 Cancer Biology and Precision Medicine Program, Catalan Institute of Oncology, Germans Trias i Pujol Health Sciences Institute and Hospital, Campus Can Ruti, Badalona, Barcelona, Spain ; 8 Fundación Molecular Oncology Research, Barcelona, Spain
| | - Jordi Rodón
- 1 Translational Cancer Research Unit, Instituto Oncológico Dr Rosell, Quirón Dexeus University Hospital, Barcelona, Spain ; 2 Vall D'Hebron Institute of Oncology and Universitat Autonoma de Barcelona, Barcelona, Spain ; 3 Immunology Department, CNICV, Madrid, Spain ; 4 Medical Oncology Unit, Human Pathology Department, University of Messina, Messina, Italy ; 5 Department of Medical Oncology, University of Verona, Azienda Ospedaliera Universitaria Integrata, Verona, Italy ; 6 Pangaea Biotech S.L, Barcelona, Spain ; 7 Cancer Biology and Precision Medicine Program, Catalan Institute of Oncology, Germans Trias i Pujol Health Sciences Institute and Hospital, Campus Can Ruti, Badalona, Barcelona, Spain ; 8 Fundación Molecular Oncology Research, Barcelona, Spain
| | - Niki Karachaliou
- 1 Translational Cancer Research Unit, Instituto Oncológico Dr Rosell, Quirón Dexeus University Hospital, Barcelona, Spain ; 2 Vall D'Hebron Institute of Oncology and Universitat Autonoma de Barcelona, Barcelona, Spain ; 3 Immunology Department, CNICV, Madrid, Spain ; 4 Medical Oncology Unit, Human Pathology Department, University of Messina, Messina, Italy ; 5 Department of Medical Oncology, University of Verona, Azienda Ospedaliera Universitaria Integrata, Verona, Italy ; 6 Pangaea Biotech S.L, Barcelona, Spain ; 7 Cancer Biology and Precision Medicine Program, Catalan Institute of Oncology, Germans Trias i Pujol Health Sciences Institute and Hospital, Campus Can Ruti, Badalona, Barcelona, Spain ; 8 Fundación Molecular Oncology Research, Barcelona, Spain
| | - Jesús Sánchez
- 1 Translational Cancer Research Unit, Instituto Oncológico Dr Rosell, Quirón Dexeus University Hospital, Barcelona, Spain ; 2 Vall D'Hebron Institute of Oncology and Universitat Autonoma de Barcelona, Barcelona, Spain ; 3 Immunology Department, CNICV, Madrid, Spain ; 4 Medical Oncology Unit, Human Pathology Department, University of Messina, Messina, Italy ; 5 Department of Medical Oncology, University of Verona, Azienda Ospedaliera Universitaria Integrata, Verona, Italy ; 6 Pangaea Biotech S.L, Barcelona, Spain ; 7 Cancer Biology and Precision Medicine Program, Catalan Institute of Oncology, Germans Trias i Pujol Health Sciences Institute and Hospital, Campus Can Ruti, Badalona, Barcelona, Spain ; 8 Fundación Molecular Oncology Research, Barcelona, Spain
| | - Mariacarmela Santarpia
- 1 Translational Cancer Research Unit, Instituto Oncológico Dr Rosell, Quirón Dexeus University Hospital, Barcelona, Spain ; 2 Vall D'Hebron Institute of Oncology and Universitat Autonoma de Barcelona, Barcelona, Spain ; 3 Immunology Department, CNICV, Madrid, Spain ; 4 Medical Oncology Unit, Human Pathology Department, University of Messina, Messina, Italy ; 5 Department of Medical Oncology, University of Verona, Azienda Ospedaliera Universitaria Integrata, Verona, Italy ; 6 Pangaea Biotech S.L, Barcelona, Spain ; 7 Cancer Biology and Precision Medicine Program, Catalan Institute of Oncology, Germans Trias i Pujol Health Sciences Institute and Hospital, Campus Can Ruti, Badalona, Barcelona, Spain ; 8 Fundación Molecular Oncology Research, Barcelona, Spain
| | - Santiago Viteri
- 1 Translational Cancer Research Unit, Instituto Oncológico Dr Rosell, Quirón Dexeus University Hospital, Barcelona, Spain ; 2 Vall D'Hebron Institute of Oncology and Universitat Autonoma de Barcelona, Barcelona, Spain ; 3 Immunology Department, CNICV, Madrid, Spain ; 4 Medical Oncology Unit, Human Pathology Department, University of Messina, Messina, Italy ; 5 Department of Medical Oncology, University of Verona, Azienda Ospedaliera Universitaria Integrata, Verona, Italy ; 6 Pangaea Biotech S.L, Barcelona, Spain ; 7 Cancer Biology and Precision Medicine Program, Catalan Institute of Oncology, Germans Trias i Pujol Health Sciences Institute and Hospital, Campus Can Ruti, Badalona, Barcelona, Spain ; 8 Fundación Molecular Oncology Research, Barcelona, Spain
| | - Sara Pilotto
- 1 Translational Cancer Research Unit, Instituto Oncológico Dr Rosell, Quirón Dexeus University Hospital, Barcelona, Spain ; 2 Vall D'Hebron Institute of Oncology and Universitat Autonoma de Barcelona, Barcelona, Spain ; 3 Immunology Department, CNICV, Madrid, Spain ; 4 Medical Oncology Unit, Human Pathology Department, University of Messina, Messina, Italy ; 5 Department of Medical Oncology, University of Verona, Azienda Ospedaliera Universitaria Integrata, Verona, Italy ; 6 Pangaea Biotech S.L, Barcelona, Spain ; 7 Cancer Biology and Precision Medicine Program, Catalan Institute of Oncology, Germans Trias i Pujol Health Sciences Institute and Hospital, Campus Can Ruti, Badalona, Barcelona, Spain ; 8 Fundación Molecular Oncology Research, Barcelona, Spain
| | - Cristina Teixidó
- 1 Translational Cancer Research Unit, Instituto Oncológico Dr Rosell, Quirón Dexeus University Hospital, Barcelona, Spain ; 2 Vall D'Hebron Institute of Oncology and Universitat Autonoma de Barcelona, Barcelona, Spain ; 3 Immunology Department, CNICV, Madrid, Spain ; 4 Medical Oncology Unit, Human Pathology Department, University of Messina, Messina, Italy ; 5 Department of Medical Oncology, University of Verona, Azienda Ospedaliera Universitaria Integrata, Verona, Italy ; 6 Pangaea Biotech S.L, Barcelona, Spain ; 7 Cancer Biology and Precision Medicine Program, Catalan Institute of Oncology, Germans Trias i Pujol Health Sciences Institute and Hospital, Campus Can Ruti, Badalona, Barcelona, Spain ; 8 Fundación Molecular Oncology Research, Barcelona, Spain
| | - Aldo Riso
- 1 Translational Cancer Research Unit, Instituto Oncológico Dr Rosell, Quirón Dexeus University Hospital, Barcelona, Spain ; 2 Vall D'Hebron Institute of Oncology and Universitat Autonoma de Barcelona, Barcelona, Spain ; 3 Immunology Department, CNICV, Madrid, Spain ; 4 Medical Oncology Unit, Human Pathology Department, University of Messina, Messina, Italy ; 5 Department of Medical Oncology, University of Verona, Azienda Ospedaliera Universitaria Integrata, Verona, Italy ; 6 Pangaea Biotech S.L, Barcelona, Spain ; 7 Cancer Biology and Precision Medicine Program, Catalan Institute of Oncology, Germans Trias i Pujol Health Sciences Institute and Hospital, Campus Can Ruti, Badalona, Barcelona, Spain ; 8 Fundación Molecular Oncology Research, Barcelona, Spain
| | - Rafael Rosell
- 1 Translational Cancer Research Unit, Instituto Oncológico Dr Rosell, Quirón Dexeus University Hospital, Barcelona, Spain ; 2 Vall D'Hebron Institute of Oncology and Universitat Autonoma de Barcelona, Barcelona, Spain ; 3 Immunology Department, CNICV, Madrid, Spain ; 4 Medical Oncology Unit, Human Pathology Department, University of Messina, Messina, Italy ; 5 Department of Medical Oncology, University of Verona, Azienda Ospedaliera Universitaria Integrata, Verona, Italy ; 6 Pangaea Biotech S.L, Barcelona, Spain ; 7 Cancer Biology and Precision Medicine Program, Catalan Institute of Oncology, Germans Trias i Pujol Health Sciences Institute and Hospital, Campus Can Ruti, Badalona, Barcelona, Spain ; 8 Fundación Molecular Oncology Research, Barcelona, Spain
| |
Collapse
|
176
|
Zumsteg ZS, Morse N, Krigsfeld G, Gupta G, Higginson DS, Lee NY, Morris L, Ganly I, Shiao SL, Powell SN, Chung CH, Scaltriti M, Baselga J. Taselisib (GDC-0032), a Potent β-Sparing Small Molecule Inhibitor of PI3K, Radiosensitizes Head and Neck Squamous Carcinomas Containing Activating PIK3CA Alterations. Clin Cancer Res 2015; 22:2009-19. [PMID: 26589432 DOI: 10.1158/1078-0432.ccr-15-2245] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 11/11/2015] [Indexed: 12/31/2022]
Abstract
PURPOSE ActivatingPIK3CAgenomic alterations are frequent in head and neck squamous cell carcinoma (HNSCC), and there is an association between phosphoinositide 3-kinase (PI3K) signaling and radioresistance. Hence, we investigated the therapeutic efficacy of inhibiting PI3K with GDC-0032, a PI3K inhibitor with potent activity against p110α, in combination with radiation in HNSCC. EXPERIMENTAL DESIGN The efficacy of GDC-0032 was assessedin vitroin 26 HNSCC cell lines with crystal violet proliferation assays, and changes in PI3K signaling were measured by Western blot analysis. Cytotoxicity and radiosensitization were assessed with Annexin V staining via flow cytometry and clonogenic survival assays, respectively. DNA damage repair was assessed with immunofluorescence for γH2AX foci, and cell cycle analysis was performed with flow cytometry.In vivoefficacy of GDC-0032 and radiation was assessed in xenografts implanted into nude mice. RESULTS GDC-0032 inhibited potently PI3K signaling and displayed greater antiproliferative activity in HNSCC cell lines withPIK3CAmutations or amplification, whereas cell lines withPTENalterations were relatively resistant to its effects. Pretreatment with GDC-0032 radiosensitizedPIK3CA-mutant HNSCC cells, enhanced radiation-induced apoptosis, impaired DNA damage repair, and prolonged G2-M arrest following irradiation. Furthermore, combined GDC-0032 and radiation was more effective than either treatment alonein vivoin subcutaneous xenograft models. CONCLUSIONS GDC-0032 has increased potency in HNSCC cell lines harboringPIK3CA-activating aberrations. Further, combined GDC-0032 and radiotherapy was more efficacious than either treatment alone inPIK3CA-altered HNSCCin vitroandin vivo This strategy warrants further clinical investigation.
Collapse
Affiliation(s)
- Zachary S Zumsteg
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York. Memorial Sloan Kettering Cancer Center, Human Oncology and Pathogenesis Program, New York, New York. Department of Radiation Oncology, Cedars-Sinai Medical Center, Los Angeles, California
| | - Natasha Morse
- Memorial Sloan Kettering Cancer Center, Human Oncology and Pathogenesis Program, New York, New York
| | - Gabriel Krigsfeld
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Gaorav Gupta
- Department of Radiation Oncology, University of North Carolina, Chapel Hill, North Carolina
| | - Daniel S Higginson
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Nancy Y Lee
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Luc Morris
- Memorial Sloan Kettering Cancer Center, Human Oncology and Pathogenesis Program, New York, New York
| | - Ian Ganly
- Memorial Sloan Kettering Cancer Center, Human Oncology and Pathogenesis Program, New York, New York
| | - Stephan L Shiao
- Department of Radiation Oncology, Cedars-Sinai Medical Center, Los Angeles, California
| | - Simon N Powell
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Christine H Chung
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Maurizio Scaltriti
- Memorial Sloan Kettering Cancer Center, Human Oncology and Pathogenesis Program, New York, New York
| | - José Baselga
- Memorial Sloan Kettering Cancer Center, Human Oncology and Pathogenesis Program, New York, New York. Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.
| |
Collapse
|
177
|
Herkert B, Kauffmann A, Mollé S, Schnell C, Ferrat T, Voshol H, Juengert J, Erasimus H, Marszalek G, Kazic-Legueux M, Billy E, Ruddy D, Stump M, Guthy D, Ristov M, Calkins K, Maira SM, Sellers WR, Hofmann F, Hall MN, Brachmann SM. Maximizing the Efficacy of MAPK-Targeted Treatment in PTENLOF/BRAFMUT Melanoma through PI3K and IGF1R Inhibition. Cancer Res 2015; 76:390-402. [PMID: 26577700 DOI: 10.1158/0008-5472.can-14-3358] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 10/28/2015] [Indexed: 11/16/2022]
Abstract
The introduction of MAPK pathway inhibitors paved the road for significant advancements in the treatment of BRAF-mutant (BRAF(MUT)) melanoma. However, even BRAF/MEK inhibitor combination therapy has failed to offer a curative treatment option, most likely because these pathways constitute a codependent signaling network. Concomitant PTEN loss of function (PTEN(LOF)) occurs in approximately 40% of BRAF(MUT) melanomas. In this study, we sought to identify the nodes of the PTEN/PI3K pathway that would be amenable to combined therapy with MAPK pathway inhibitors for the treatment of PTEN(LOF)/BRAF(MUT) melanoma. Large-scale compound sensitivity profiling revealed that PTEN(LOF) melanoma cell lines were sensitive to PI3Kβ inhibitors, albeit only partially. An unbiased shRNA screen (7,500 genes and 20 shRNAs/genes) across 11 cell lines in the presence of a PI3Kβ inhibitor identified an adaptive response involving the IGF1R-PI3Kα axis. Combined inhibition of the MAPK pathway, PI3Kβ, and PI3Kα or insulin-like growth factor receptor 1 (IGF1R) synergistically sustained pathway blockade, induced apoptosis, and inhibited tumor growth in PTEN(LOF)/BRAF(MUT) melanoma models. Notably, combined treatment with the IGF1R inhibitor, but not the PI3Kα inhibitor, failed to elevate glucose or insulin signaling. Taken together, our findings provide a strong rationale for testing combinations of panPI3K, PI3Kβ + IGF1R, and MAPK pathway inhibitors in PTEN(LOF)/BRAF(MUT) melanoma patients to achieve maximal response.
Collapse
Affiliation(s)
- Barbara Herkert
- Novartis Institutes for Biomedical Research (NIBR), Disease Area Oncology, Basel, Switzerland
| | - Audrey Kauffmann
- Novartis Institutes for Biomedical Research (NIBR), Disease Area Oncology, Basel, Switzerland
| | - Sandra Mollé
- Novartis Institutes for Biomedical Research (NIBR), Disease Area Oncology, Basel, Switzerland
| | - Christian Schnell
- Novartis Institutes for Biomedical Research (NIBR), Disease Area Oncology, Basel, Switzerland
| | - Thomas Ferrat
- Novartis Institutes for Biomedical Research (NIBR), Disease Area Oncology, Basel, Switzerland
| | - Hans Voshol
- NIBR, Analytical Sciences and Imaging, Basel, Switzerland
| | - Janina Juengert
- Novartis Institutes for Biomedical Research (NIBR), Disease Area Oncology, Basel, Switzerland
| | - Hélène Erasimus
- Novartis Institutes for Biomedical Research (NIBR), Disease Area Oncology, Basel, Switzerland
| | - Grégory Marszalek
- Novartis Institutes for Biomedical Research (NIBR), Disease Area Oncology, Basel, Switzerland
| | - Malika Kazic-Legueux
- Novartis Institutes for Biomedical Research (NIBR), Disease Area Oncology, Basel, Switzerland
| | - Eric Billy
- Novartis Institutes for Biomedical Research (NIBR), Disease Area Oncology, Basel, Switzerland
| | - David Ruddy
- Novartis Pharma, OTM Translational Research, Cambridge, Massachusetts
| | - Mark Stump
- NIBR, Disease Area Oncology, Cambridge, Massachusetts
| | - Daniel Guthy
- Novartis Institutes for Biomedical Research (NIBR), Disease Area Oncology, Basel, Switzerland
| | - Mitko Ristov
- Novartis Institutes for Biomedical Research (NIBR), Disease Area Oncology, Basel, Switzerland
| | - Keith Calkins
- Novartis Institutes for Biomedical Research (NIBR), Disease Area Oncology, Basel, Switzerland
| | - Sauveur-Michel Maira
- Novartis Institutes for Biomedical Research (NIBR), Disease Area Oncology, Basel, Switzerland
| | | | - Francesco Hofmann
- Novartis Institutes for Biomedical Research (NIBR), Disease Area Oncology, Basel, Switzerland
| | | | - Saskia M Brachmann
- Novartis Institutes for Biomedical Research (NIBR), Disease Area Oncology, Basel, Switzerland.
| |
Collapse
|
178
|
The Molecular Taxonomy of Primary Prostate Cancer. Cell 2015; 163:1011-25. [PMID: 26544944 PMCID: PMC4695400 DOI: 10.1016/j.cell.2015.10.025] [Citation(s) in RCA: 2231] [Impact Index Per Article: 223.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 08/14/2015] [Accepted: 10/06/2015] [Indexed: 12/12/2022]
Abstract
There is substantial heterogeneity among primary prostate cancers, evident in the spectrum of molecular abnormalities and its variable clinical course. As part of The Cancer Genome Atlas (TCGA), we present a comprehensive molecular analysis of 333 primary prostate carcinomas. Our results revealed a molecular taxonomy in which 74% of these tumors fell into one of seven subtypes defined by specific gene fusions (ERG, ETV1/4, and FLI1) or mutations (SPOP, FOXA1, and IDH1). Epigenetic profiles showed substantial heterogeneity, including an IDH1 mutant subset with a methylator phenotype. Androgen receptor (AR) activity varied widely and in a subtype-specific manner, with SPOP and FOXA1 mutant tumors having the highest levels of AR-induced transcripts. 25% of the prostate cancers had a presumed actionable lesion in the PI3K or MAPK signaling pathways, and DNA repair genes were inactivated in 19%. Our analysis reveals molecular heterogeneity among primary prostate cancers, as well as potentially actionable molecular defects.
Collapse
|
179
|
PI3K-p110α mediates resistance to HER2-targeted therapy in HER2+, PTEN-deficient breast cancers. Oncogene 2015; 35:3607-12. [PMID: 26500061 DOI: 10.1038/onc.2015.406] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 09/11/2015] [Accepted: 09/18/2015] [Indexed: 12/16/2022]
Abstract
Human epidermal growth factor receptor-2 (HER2) amplification/overexpression (HER2+) frequently co-occurs with PI3K pathway activation in breast tumors. PI3K signaling is most often activated by PIK3CA mutation or PTEN loss, which frequently results in sensitivity to p110α or p110β inhibitors, respectively. To examine the p110 isoform dependence in HER2+, PTEN-deficient tumors, we generated genetic mouse models of breast tumors driven by concurrent Her2 activation and Pten loss coupled with deletion of p110α or p110β. Ablation of p110α, but not p110β, significantly impaired the development of Her2+/Pten-null tumors in mice. We further show that p110α primarily mediates oncogenic signaling in HER2+/PTEN-deficient human cancers while p110β conditionally mediates PI3K/AKT signaling only upon HER2 inhibition. Combined HER2 and p110α inhibition effectively reduced PI3K/AKT signaling and growth of cancer cells both in vitro and in vivo. Addition of the p110β inhibitor to dual HER2 and p110α inhibition induced tumor regression in a xenograft model of HER2+/PTEN-deficient human cancers. Together, our data suggest that combined inhibition of HER2 and p110α/β may serve as a potent and durable therapeutic regimen for the treatment of HER2+, PTEN-deficient breast tumors.
Collapse
|
180
|
A PI3K p110β-Rac signalling loop mediates Pten-loss-induced perturbation of haematopoiesis and leukaemogenesis. Nat Commun 2015; 6:8501. [PMID: 26442967 PMCID: PMC4598950 DOI: 10.1038/ncomms9501] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 08/28/2015] [Indexed: 02/07/2023] Open
Abstract
The tumour suppressor PTEN, which antagonizes PI3K signalling, is frequently inactivated in haematologic malignancies. In mice, deletion of PTEN in haematopoietic stem cells (HSCs) causes perturbed haematopoiesis, myeloproliferative neoplasia (MPN) and leukaemia. Although the roles of the PI3K isoforms have been studied in PTEN-deficient tumours, their individual roles in PTEN-deficient HSCs are unknown. Here we show that when we delete PTEN in HSCs using the Mx1–Cre system, p110β ablation prevents MPN, improves HSC function and suppresses leukaemia initiation. Pharmacologic inhibition of p110β in PTEN-deficient mice recapitulates these genetic findings, but suggests involvement of both Akt-dependent and -independent pathways. Further investigation reveals that a p110β–Rac signalling loop plays a critical role in PTEN-deficient HSCs. Together, these data suggest that myeloid neoplasia driven by PTEN loss is dependent on p110β via p110β–Rac-positive-feedback loop, and that disruption of this loop may offer a new and effective therapeutic strategy for PTEN-deficient leukaemia. The tumor suppressor PTEN antagonizes the PI3K signalling pathway and is frequently inactivated in haematological malignancies. Here, the authors unravel the main contribution of the PI3K isoform p110ß to leukemic transformation driven by PTEN-loss.
Collapse
|
181
|
PI3K isoform-selective inhibitors: next-generation targeted cancer therapies. Acta Pharmacol Sin 2015; 36:1170-6. [PMID: 26364801 DOI: 10.1038/aps.2015.71] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 07/12/2015] [Indexed: 12/17/2022] Open
Abstract
The pivotal roles of phosphatidylinositol 3-kinases (PI3Ks) in human cancers have inspired active development of small molecules to inhibit these lipid kinases. However, the first-generation pan-PI3K and dual-PI3K/mTOR inhibitors have encountered problems in clinical trials, with limited efficacies as a monotherapeutic agent as well as a relatively high rate of side effects. It is increasingly recognized that different PI3K isoforms play non-redundant roles in particular tumor types, which has prompted the development of isoform-selective inhibitors for pre-selected patients with the aim for improving efficacy while decreasing undesirable side effects. The success of PI3K isoform-selective inhibitors is represented by CAL101 (Idelalisib), a first-in-class PI3Kδ-selective small-molecule inhibitor that has been approved by the FDA for the treatment of chronic lymphocytic leukemia, indolent B-cell non-Hodgkin's lymphoma and relapsed small lymphocytic lymphoma. Inhibitors targeting other PI3K isoforms are also being extensively developed. This review focuses on the recent progress in development of PI3K isoform-selective inhibitors for cancer therapy. A deeper understanding of the action modes of novel PI3K isoform-selective inhibitors will provide valuable information to further validate the concept of targeting specific PI3K isoforms, while the identification of biomarkers to stratify patients who are likely to benefit from the therapy will be essential for the success of these agents.
Collapse
|
182
|
Faes S, Dormond O. PI3K and AKT: Unfaithful Partners in Cancer. Int J Mol Sci 2015; 16:21138-52. [PMID: 26404259 PMCID: PMC4613246 DOI: 10.3390/ijms160921138] [Citation(s) in RCA: 186] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Revised: 08/28/2015] [Accepted: 09/01/2015] [Indexed: 02/07/2023] Open
Abstract
The phosphatidylinositol 3-kinase (PI3K)/AKT signaling pathway regulates multiple cellular processes. An overactivation of the pathway is frequently present in human malignancies and plays a key role in cancer progression. Hence, its inhibition has become a promising approach in cancer therapy. However, the development of resistances, such as the abrogation of negative feedback mechanisms or the activation of other proliferative signaling pathways, has considerably limited the anticancer efficacy of PI3K/AKT inhibitors. In addition, emerging evidence points out that although AKT is acknowledged as the major downstream effector of PI3K, both PI3K and AKT can operate independently of each other in cancer, revealing another level of complexity in this pathway. Here, we highlight the complex relationship between PI3K and AKT in cancer and further discuss the consequences of this relationship for cancer therapy.
Collapse
Affiliation(s)
- Seraina Faes
- Department of Visceral Surgery, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Pavillon 4, Av. de Beaumont, Lausanne 1011, Switzerland.
| | - Olivier Dormond
- Department of Visceral Surgery, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Pavillon 4, Av. de Beaumont, Lausanne 1011, Switzerland.
| |
Collapse
|
183
|
Lan F, Yu H, Hu M, Xia T, Yue X. miR-144-3p exerts anti-tumor effects in glioblastoma by targeting c-Met. J Neurochem 2015; 135:274-86. [PMID: 26250785 DOI: 10.1111/jnc.13272] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Revised: 07/22/2015] [Accepted: 07/23/2015] [Indexed: 01/12/2023]
Abstract
The study aimed to explore the specific function and mechanism of miR-144-3p in glioblastoma (GBM) cells with different phosphatase and tensin homolog (PTEN) phenotypes. We demonstrated that the miR-144-3p level was significantly down-regulated in glioma compared with the non-neoplastic brain tissues, and decreased with ascending grades. The loss of miR-144-3p effectively predicted the decreased overall survival in glioma patients. Interestingly, the expression of MET was up-regulated and inversely associated with miR-144-3p level in glioma tissues. Next, we certified that miR-144-3p specifically bound to MET 3'-untranslated region (3' UTR) and inhibited its expression. miR-144-3p potently repressed GBM cell proliferation and invasion via suppressing MET in vitro and in vivo. In addition, our results showed no difference in malignancy inhibition induced by miR-144-3p in GBM cells with different PTEN phenotypes. miR-144-3p inhibited several survival signaling pathways by targeting MET independent of PTEN status in GBM cells. Over-expression of miR-144-3p inhibited survival capability and increased apoptosis, resulting in enhancement of radiation and temozolomide sensitivity. Our data provide new insights into the potential application of miR-144-3p in GBM therapy by targeting MET and then inhibiting the downstream signaling.
Collapse
Affiliation(s)
- Fengming Lan
- Department of Radiation Oncology, Tianjin Hospital, Tianjin, China
| | - Huiming Yu
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Radiotherapy, Peking University Cancer Hospital & Institute, Beijing, China
| | - Man Hu
- Department of Radiation Oncology, Shandong Cancer Hospital, Shandong Academy of Medical Sciences, Jinan, China
| | - Tingyi Xia
- Department of Radiation Oncology, PLA Airforce General Hospital, Beijing, China
| | - Xiao Yue
- Tianjin Huanhu Hospital, Tianjin, China
| |
Collapse
|
184
|
Drugging PI3K in cancer: refining targets and therapeutic strategies. Curr Opin Pharmacol 2015; 23:98-107. [PMID: 26117819 PMCID: PMC4728196 DOI: 10.1016/j.coph.2015.05.016] [Citation(s) in RCA: 170] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 05/22/2015] [Indexed: 01/22/2023]
Abstract
PI3K is an important target for innovative anticancer drug development and precision medicine. Over 30 small molecule PI3K inhibitors are currently in clinical trial testing. These drugs include dual PI3K/mTOR, pan-Class I PI3K and isoform-selective PI3K inhibitors. The PI3Kδ inhibitor idelalisib has received FDA approval for the treatment of B-cell malignancies. Drug resistance, patient selection and development of targeted combinations remain challenges.
The phosphatidylinositol-3 kinase (PI3K) pathway is one of the most frequently activated pathogenic signalling routes in human cancers, making it a rational and important target for innovative anticancer drug development and precision medicine. The three main classes of PI3K inhibitors currently in clinical testing comprise dual pan-Class I PI3K/mTOR inhibitors, pan-Class I PI3K inhibitors lacking significant mTOR activity and isoform-selective PI3K inhibitors. A major step forward in recent years is the progression of over 30 small molecule PI3K inhibitors into clinical trials and the first regulatory approval of the PI3Kδ inhibitor idelalisib for multiple B-cell malignancies. This review article focuses on the progress made in the discovery and development of novel PI3K inhibitors, with an emphasis on antitumour activity and tolerability profiles for agents that have entered clinical trials. We also discuss the key issues of drug resistance, patient selection approaches and rational targeted combinations. Finally, we envision the future development and use of PI3K inhibitors for the treatment of patients with a range of malignancies.
Collapse
|
185
|
Stratikopoulos EE, Dendy M, Szabolcs M, Khaykin AJ, Lefebvre C, Zhou MM, Parsons R. Kinase and BET Inhibitors Together Clamp Inhibition of PI3K Signaling and Overcome Resistance to Therapy. Cancer Cell 2015; 27:837-51. [PMID: 26058079 PMCID: PMC4918409 DOI: 10.1016/j.ccell.2015.05.006] [Citation(s) in RCA: 199] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 04/14/2015] [Accepted: 05/07/2015] [Indexed: 12/14/2022]
Abstract
Unsustained enzyme inhibition is a barrier to targeted therapy for cancer. Here, resistance to a class I PI3K inhibitor in a model of metastatic breast cancer driven by PI3K and MYC was associated with feedback activation of tyrosine kinase receptors (RTKs), AKT, mTOR, and MYC. Inhibitors of bromodomain and extra terminal domain (BET) proteins also failed to affect tumor growth. Interestingly, BET inhibitors lowered PI3K signaling and dissociated BRD4 from chromatin at regulatory regions of insulin receptor and EGFR family RTKs to reduce their expression. Combined PI3K and BET inhibition induced cell death, tumor regression, and clamped inhibition of PI3K signaling in a broad range of tumor cell lines to provide a strategy to overcome resistance to kinase inhibitor therapy.
Collapse
Affiliation(s)
- Elias E Stratikopoulos
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY 10029, USA
| | - Meaghan Dendy
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY 10029, USA
| | - Matthias Szabolcs
- Department of Pathology, Columbia University Medical Center, New York, NY 10032, USA
| | - Alan J Khaykin
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY 10029, USA
| | - Celine Lefebvre
- Inserm U981, Institut Gustave Roussy, 94805 Villejuif, France
| | - Ming-Ming Zhou
- Department of Structural and Chemical Biology, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY 10029, USA
| | - Ramon Parsons
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY 10029, USA.
| |
Collapse
|
186
|
Robinson D, Van Allen EM, Wu YM, Schultz N, Lonigro RJ, Mosquera JM, Montgomery B, Taplin ME, Pritchard CC, Attard G, Beltran H, Abida W, Bradley RK, Vinson J, Cao X, Vats P, Kunju LP, Hussain M, Feng FY, Tomlins SA, Cooney KA, Smith DC, Brennan C, Siddiqui J, Mehra R, Chen Y, Rathkopf DE, Morris MJ, Solomon SB, Durack JC, Reuter VE, Gopalan A, Gao J, Loda M, Lis RT, Bowden M, Balk SP, Gaviola G, Sougnez C, Gupta M, Yu EY, Mostaghel EA, Cheng HH, Mulcahy H, True LD, Plymate SR, Dvinge H, Ferraldeschi R, Flohr P, Miranda S, Zafeiriou Z, Tunariu N, Mateo J, Perez-Lopez R, Demichelis F, Robinson BD, Schiffman M, Nanus DM, Tagawa ST, Sigaras A, Eng KW, Elemento O, Sboner A, Heath EI, Scher HI, Pienta KJ, Kantoff P, de Bono JS, Rubin MA, Nelson PS, Garraway LA, Sawyers CL, Chinnaiyan AM. Integrative clinical genomics of advanced prostate cancer. Cell 2015; 161:1215-1228. [PMID: 26000489 PMCID: PMC4484602 DOI: 10.1016/j.cell.2015.05.001] [Citation(s) in RCA: 2421] [Impact Index Per Article: 242.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 04/06/2015] [Accepted: 04/27/2015] [Indexed: 12/15/2022]
Abstract
Toward development of a precision medicine framework for metastatic, castration-resistant prostate cancer (mCRPC), we established a multi-institutional clinical sequencing infrastructure to conduct prospective whole-exome and transcriptome sequencing of bone or soft tissue tumor biopsies from a cohort of 150 mCRPC affected individuals. Aberrations of AR, ETS genes, TP53, and PTEN were frequent (40%-60% of cases), with TP53 and AR alterations enriched in mCRPC compared to primary prostate cancer. We identified new genomic alterations in PIK3CA/B, R-spondin, BRAF/RAF1, APC, β-catenin, and ZBTB16/PLZF. Moreover, aberrations of BRCA2, BRCA1, and ATM were observed at substantially higher frequencies (19.3% overall) compared to those in primary prostate cancers. 89% of affected individuals harbored a clinically actionable aberration, including 62.7% with aberrations in AR, 65% in other cancer-related genes, and 8% with actionable pathogenic germline alterations. This cohort study provides clinically actionable information that could impact treatment decisions for these affected individuals.
Collapse
Affiliation(s)
- Dan Robinson
- Michigan Center for Translational Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Eliezer M Van Allen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Yi-Mi Wu
- Michigan Center for Translational Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Nikolaus Schultz
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Robert J Lonigro
- Michigan Center for Translational Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Juan-Miguel Mosquera
- Department of Pathology and Laboratory Medicine, Weill Medical College of Cornell University, New York, NY 10021, USA; Institute for Precision Medicine, Weill Medical College of Cornell University, New York, NY 10021, USA; New York Presbyterian Hospital, New York, NY 10021, USA; Meyer Cancer, Weill Medical College of Cornell University, New York, NY 10021, USA
| | - Bruce Montgomery
- Computational Biology Program, Public Health Sciences Division and Basic Science Division, Fred Hutchinson Cancer Center, University of Washington, Seattle, WA 98109, USA; Department of Medicine and VAPSHCS, University of Washington, Seattle, WA 98109, USA
| | - Mary-Ellen Taplin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Colin C Pritchard
- Department of Laboratory Medicine, University of Washington, Seattle, WA 98195, USA
| | - Gerhardt Attard
- Cancer Biomarkers Team, Division of Clinical Studies, The Institute of Cancer Research, London SM2 5NG, UK; Prostate Cancer Targeted Therapy Group and Drug Development Unit, The Royal Marsden NHS Foundation Trust, London SM2 5NG, UK
| | - Himisha Beltran
- Institute for Precision Medicine, Weill Medical College of Cornell University, New York, NY 10021, USA; New York Presbyterian Hospital, New York, NY 10021, USA; Department of Medicine, Weill Medical College of Cornell University, New York, NY 10021, USA; Meyer Cancer, Weill Medical College of Cornell University, New York, NY 10021, USA
| | - Wassim Abida
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Genitourinary Oncology Service, Department of Medicine, Sidney Kimmel Center for Prostate and Urologic Cancers, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Robert K Bradley
- Computational Biology Program, Public Health Sciences Division and Basic Science Division, Fred Hutchinson Cancer Center, University of Washington, Seattle, WA 98109, USA
| | - Jake Vinson
- Prostate Cancer Clinical Trials Consortium, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Xuhong Cao
- Michigan Center for Translational Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Pankaj Vats
- Michigan Center for Translational Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Lakshmi P Kunju
- Michigan Center for Translational Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Maha Hussain
- Department of Internal Medicine, Division of Hematology Oncology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Urology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Felix Y Feng
- Michigan Center for Translational Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Scott A Tomlins
- Michigan Center for Translational Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Urology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Kathleen A Cooney
- Department of Internal Medicine, Division of Hematology Oncology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Urology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - David C Smith
- Department of Internal Medicine, Division of Hematology Oncology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Urology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Christine Brennan
- Michigan Center for Translational Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Javed Siddiqui
- Michigan Center for Translational Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Rohit Mehra
- Michigan Center for Translational Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Yu Chen
- Department of Medicine, Weill Medical College of Cornell University, New York, NY 10021, USA; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Genitourinary Oncology Service, Department of Medicine, Sidney Kimmel Center for Prostate and Urologic Cancers, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Dana E Rathkopf
- Department of Medicine, Weill Medical College of Cornell University, New York, NY 10021, USA; Genitourinary Oncology Service, Department of Medicine, Sidney Kimmel Center for Prostate and Urologic Cancers, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Michael J Morris
- Department of Medicine, Weill Medical College of Cornell University, New York, NY 10021, USA; Genitourinary Oncology Service, Department of Medicine, Sidney Kimmel Center for Prostate and Urologic Cancers, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Stephen B Solomon
- Interventional Radiology, Department of Radiology Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Jeremy C Durack
- Interventional Radiology, Department of Radiology Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Victor E Reuter
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Anuradha Gopalan
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Jianjiong Gao
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Massimo Loda
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA; Center for Molecular Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Pathology, Brigham & Women's Hospital, Boston, MA 02115, USA
| | - Rosina T Lis
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Center for Molecular Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Michaela Bowden
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Center for Molecular Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Pathology, Brigham & Women's Hospital, Boston, MA 02115, USA
| | - Stephen P Balk
- Division of Hematology-Oncology, Department of Medicine, Beth Israel Deaconess Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Glenn Gaviola
- Department of Musculoskeletal Radiology, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Carrie Sougnez
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Manaswi Gupta
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Evan Y Yu
- Department of Medicine and VAPSHCS, University of Washington, Seattle, WA 98109, USA
| | - Elahe A Mostaghel
- Computational Biology Program, Public Health Sciences Division and Basic Science Division, Fred Hutchinson Cancer Center, University of Washington, Seattle, WA 98109, USA; Department of Medicine and VAPSHCS, University of Washington, Seattle, WA 98109, USA
| | - Heather H Cheng
- Computational Biology Program, Public Health Sciences Division and Basic Science Division, Fred Hutchinson Cancer Center, University of Washington, Seattle, WA 98109, USA; Department of Medicine and VAPSHCS, University of Washington, Seattle, WA 98109, USA
| | - Hyojeong Mulcahy
- Department of Radiology, University of Washington, Seattle, WA 98109, USA
| | - Lawrence D True
- Department of Pathology, University of Washington Medical Center, Seattle, WA 98109, USA
| | - Stephen R Plymate
- Department of Medicine and VAPSHCS, University of Washington, Seattle, WA 98109, USA
| | - Heidi Dvinge
- Computational Biology Program, Public Health Sciences Division and Basic Science Division, Fred Hutchinson Cancer Center, University of Washington, Seattle, WA 98109, USA
| | - Roberta Ferraldeschi
- Cancer Biomarkers Team, Division of Clinical Studies, The Institute of Cancer Research, London SM2 5NG, UK; Prostate Cancer Targeted Therapy Group and Drug Development Unit, The Royal Marsden NHS Foundation Trust, London SM2 5NG, UK
| | - Penny Flohr
- Cancer Biomarkers Team, Division of Clinical Studies, The Institute of Cancer Research, London SM2 5NG, UK; Prostate Cancer Targeted Therapy Group and Drug Development Unit, The Royal Marsden NHS Foundation Trust, London SM2 5NG, UK
| | - Susana Miranda
- Cancer Biomarkers Team, Division of Clinical Studies, The Institute of Cancer Research, London SM2 5NG, UK; Prostate Cancer Targeted Therapy Group and Drug Development Unit, The Royal Marsden NHS Foundation Trust, London SM2 5NG, UK
| | - Zafeiris Zafeiriou
- Cancer Biomarkers Team, Division of Clinical Studies, The Institute of Cancer Research, London SM2 5NG, UK; Prostate Cancer Targeted Therapy Group and Drug Development Unit, The Royal Marsden NHS Foundation Trust, London SM2 5NG, UK
| | - Nina Tunariu
- Cancer Biomarkers Team, Division of Clinical Studies, The Institute of Cancer Research, London SM2 5NG, UK; Prostate Cancer Targeted Therapy Group and Drug Development Unit, The Royal Marsden NHS Foundation Trust, London SM2 5NG, UK
| | - Joaquin Mateo
- Cancer Biomarkers Team, Division of Clinical Studies, The Institute of Cancer Research, London SM2 5NG, UK; Prostate Cancer Targeted Therapy Group and Drug Development Unit, The Royal Marsden NHS Foundation Trust, London SM2 5NG, UK
| | - Raquel Perez-Lopez
- Cancer Biomarkers Team, Division of Clinical Studies, The Institute of Cancer Research, London SM2 5NG, UK; Prostate Cancer Targeted Therapy Group and Drug Development Unit, The Royal Marsden NHS Foundation Trust, London SM2 5NG, UK
| | - Francesca Demichelis
- Institute for Precision Medicine, Weill Medical College of Cornell University, New York, NY 10021, USA; Laboratory of Computational Oncology, CIBIO, Centre for Integrative Biology, University of Trento, 38123 Mattarello TN, Italy
| | - Brian D Robinson
- Department of Pathology and Laboratory Medicine, Weill Medical College of Cornell University, New York, NY 10021, USA; Institute for Precision Medicine, Weill Medical College of Cornell University, New York, NY 10021, USA; New York Presbyterian Hospital, New York, NY 10021, USA; Meyer Cancer, Weill Medical College of Cornell University, New York, NY 10021, USA
| | - Marc Schiffman
- Institute for Precision Medicine, Weill Medical College of Cornell University, New York, NY 10021, USA; Division of Interventional Radiology, Department of Radiology, New York-Presbyterian Hospital/Weill Cornell Medical Center, New York, NY 10021, USA; Meyer Cancer, Weill Medical College of Cornell University, New York, NY 10021, USA
| | - David M Nanus
- Institute for Precision Medicine, Weill Medical College of Cornell University, New York, NY 10021, USA; New York Presbyterian Hospital, New York, NY 10021, USA; Department of Medicine, Weill Medical College of Cornell University, New York, NY 10021, USA; Meyer Cancer, Weill Medical College of Cornell University, New York, NY 10021, USA
| | - Scott T Tagawa
- Institute for Precision Medicine, Weill Medical College of Cornell University, New York, NY 10021, USA; New York Presbyterian Hospital, New York, NY 10021, USA; Department of Medicine, Weill Medical College of Cornell University, New York, NY 10021, USA; Meyer Cancer, Weill Medical College of Cornell University, New York, NY 10021, USA
| | - Alexandros Sigaras
- Institute for Precision Medicine, Weill Medical College of Cornell University, New York, NY 10021, USA; Institute for Computational Biomedicine, Department of Physiology and Biophysics, Weill Medical College of Cornell University, New York, NY 10021, USA; Department of Physiology & Biophysics, Weill Medical College of Cornell University, New York, NY 10021, USA
| | - Kenneth W Eng
- Institute for Precision Medicine, Weill Medical College of Cornell University, New York, NY 10021, USA; Institute for Computational Biomedicine, Department of Physiology and Biophysics, Weill Medical College of Cornell University, New York, NY 10021, USA; Department of Physiology & Biophysics, Weill Medical College of Cornell University, New York, NY 10021, USA
| | - Olivier Elemento
- Institute for Computational Biomedicine, Department of Physiology and Biophysics, Weill Medical College of Cornell University, New York, NY 10021, USA
| | - Andrea Sboner
- Department of Pathology and Laboratory Medicine, Weill Medical College of Cornell University, New York, NY 10021, USA; Institute for Precision Medicine, Weill Medical College of Cornell University, New York, NY 10021, USA; Institute for Computational Biomedicine, Department of Physiology and Biophysics, Weill Medical College of Cornell University, New York, NY 10021, USA; Meyer Cancer, Weill Medical College of Cornell University, New York, NY 10021, USA
| | - Elisabeth I Heath
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA; Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, MI 48201, USA
| | - Howard I Scher
- Department of Medicine, Weill Medical College of Cornell University, New York, NY 10021, USA; Genitourinary Oncology Service, Department of Medicine, Sidney Kimmel Center for Prostate and Urologic Cancers, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Kenneth J Pienta
- The James Buchanan Brady Urological Institute and Department of Urology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Philip Kantoff
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Johann S de Bono
- Cancer Biomarkers Team, Division of Clinical Studies, The Institute of Cancer Research, London SM2 5NG, UK; Prostate Cancer Targeted Therapy Group and Drug Development Unit, The Royal Marsden NHS Foundation Trust, London SM2 5NG, UK
| | - Mark A Rubin
- Department of Pathology and Laboratory Medicine, Weill Medical College of Cornell University, New York, NY 10021, USA; Institute for Precision Medicine, Weill Medical College of Cornell University, New York, NY 10021, USA; New York Presbyterian Hospital, New York, NY 10021, USA; Meyer Cancer, Weill Medical College of Cornell University, New York, NY 10021, USA
| | - Peter S Nelson
- Department of Medicine and VAPSHCS, University of Washington, Seattle, WA 98109, USA; Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Meyer Cancer, Weill Medical College of Cornell University, New York, NY 10021, USA
| | - Levi A Garraway
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Charles L Sawyers
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| | - Arul M Chinnaiyan
- Michigan Center for Translational Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Urology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
187
|
In Vitro and In Vivo Antitumor Effects of n-Butanol Extracts of Pterocephalus hookeri on Hep3B Cancer Cell. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:159132. [PMID: 26089933 PMCID: PMC4452348 DOI: 10.1155/2015/159132] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 04/18/2015] [Accepted: 04/25/2015] [Indexed: 12/16/2022]
Abstract
Pterocephalus hookeri is a widely applied Tibetan medicinal prescription for treatment of diseases such as flu, rheumatoid arthritis, and enteritis in China. It has been reported that Pterocephalus hookeri has anti-inflammatory and analgesic actions. However, the antitumor activity of Pterocephalus hookeri remains unknown. In the present study, we demonstrate that n-butanol extracts of Pterocephalus hookeri (YSC-ZDC) has a strong antitumor activity against hepatoma carcinoma cell in vitro and in vivo. YSC-ZDC inhibited proliferation of all cancer cell lines and significantly inhibited Hep3B cells proliferation in a dose- and time-dependant manner. Transmission electron microscopy, hoechst 33258 staining, and flow cytometry analysis revealed that YSC-ZDC induced apoptosis in Hep3B cells. YSC-ZDC treatment dramatically inhibited PDK1 and Akt phosphorylation in Hep3B cells. Moreover, YSC-ZDC increased Bax expression and inhibited Bcl-2 expression. In addition, YSC-ZDC inhibited growth hepatoma xenografts in vivo with no effect on body weight and spleen index. Consistent with results in vitro, YSC-ZDC increased Bax expression and inhibited Bcl-2 expression in tumor tissue. Taken together, this study shows YSC-ZDC with an antitumor activity both in vitro and in vivo. Its mechanism underlying is related to blocking of the Akt pathway and regulation of Bcl-2 family proteins expression.
Collapse
|
188
|
FDA-approved small-molecule kinase inhibitors. Trends Pharmacol Sci 2015; 36:422-39. [PMID: 25975227 DOI: 10.1016/j.tips.2015.04.005] [Citation(s) in RCA: 728] [Impact Index Per Article: 72.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2015] [Revised: 04/02/2015] [Accepted: 04/08/2015] [Indexed: 02/07/2023]
Abstract
Kinases have emerged as one of the most intensively pursued targets in current pharmacological research, especially for cancer, due to their critical roles in cellular signaling. To date, the US FDA has approved 28 small-molecule kinase inhibitors, half of which were approved in the past 3 years. While the clinical data of these approved molecules are widely presented and structure-activity relationship (SAR) has been reported for individual molecules, an updated review that analyzes all approved molecules and summarizes current achievements and trends in the field has yet to be found. Here we present all approved small-molecule kinase inhibitors with an emphasis on binding mechanism and structural features, summarize current challenges, and discuss future directions in this field.
Collapse
|
189
|
Davis WJ, Lehmann PZ, Li W. Nuclear PI3K signaling in cell growth and tumorigenesis. Front Cell Dev Biol 2015; 3:24. [PMID: 25918701 PMCID: PMC4394695 DOI: 10.3389/fcell.2015.00024] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Accepted: 03/27/2015] [Indexed: 12/12/2022] Open
Abstract
The PI3K/Akt signaling pathway is a major driving force in a variety of cellular functions. Dysregulation of this pathway has been implicated in many human diseases including cancer. While the activity of the cytoplasmic PI3K/Akt pathway has been extensively studied, the functions of these molecules and their effector proteins within the nucleus are poorly understood. Harboring key cellular processes such as DNA replication and repair as well as nascent messenger RNA transcription, the nucleus provides a unique compartmental environment for protein–protein and protein–DNA/RNA interactions required for cell survival, growth, and proliferation. Here we summarize recent advances made toward elucidating the nuclear PI3K/Akt signaling cascade and its key components within the nucleus as they pertain to cell growth and tumorigenesis. This review covers the spatial and temporal localization of the major nuclear kinases having PI3K activities and the counteracting phosphatases as well as the role of nuclear PI3K/Akt signaling in mRNA processing and exportation, DNA replication and repair, ribosome biogenesis, cell survival, and tumorigenesis.
Collapse
Affiliation(s)
- William J Davis
- College of Medical Sciences, Washington State University Spokane, WA, USA
| | - Peter Z Lehmann
- College of Medical Sciences, Washington State University Spokane, WA, USA
| | - Weimin Li
- College of Medical Sciences, Washington State University Spokane, WA, USA
| |
Collapse
|
190
|
Costa C, Ebi H, Martini M, Beausoleil SA, Faber AC, Jakubik CT, Huang A, Wang Y, Nishtala M, Hall B, Rikova K, Zhao J, Hirsch E, Benes CH, Engelman JA. Measurement of PIP3 levels reveals an unexpected role for p110β in early adaptive responses to p110α-specific inhibitors in luminal breast cancer. Cancer Cell 2015; 27:97-108. [PMID: 25544637 PMCID: PMC4745884 DOI: 10.1016/j.ccell.2014.11.007] [Citation(s) in RCA: 154] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Revised: 09/22/2014] [Accepted: 11/08/2014] [Indexed: 02/07/2023]
Abstract
BYL719, which selectively inhibits the alpha isoform of the phosphatidylinositol 3-kinase (PI3K) catalytic subunit (p110a), is currently in clinical trials for the treatment of solid tumors, especially luminal breast cancers with PIK3CA mutations and/or HER2 amplification. This study reveals that, even among these sensitive cancers, the initial efficacy of p110α inhibition is mitigated by rapid re-accumulation of the PI3K product PIP3 produced by the p110β isoform. Importantly, the reactivation of PI3K mediated by p110β does not invariably restore AKT phosphorylation, demonstrating the limitations of using phospho-AKT as a surrogate to measure PI3K activation. Consistently, we show that the addition of the p110β inhibitor to BYL719 prevents the PIP3 rebound and induces greater antitumor efficacy in HER2-amplified and PIK3CA mutant cancers.
Collapse
Affiliation(s)
- Carlotta Costa
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | - Hiromichi Ebi
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | - Miriam Martini
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy
| | | | - Anthony C Faber
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | - Charles T Jakubik
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | - Alan Huang
- Novartis Institutes for BioMedical Research, Cambridge, MA 02139, USA
| | - Youzhen Wang
- Novartis Institutes for BioMedical Research, Cambridge, MA 02139, USA
| | - Madhuri Nishtala
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | - Ben Hall
- Cell Signaling Technology, Inc., Danvers, MA 01923, USA
| | | | - Jean Zhao
- Department of Cancer Biology, Dana-Farber Cancer Institute, and Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02215, USA
| | - Emilio Hirsch
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy
| | - Cyril H Benes
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | - Jeffrey A Engelman
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA.
| |
Collapse
|
191
|
Abstract
In this issue of Cancer Cell, Schwartz and colleagues and Costa and colleagues demonstrate that inhibition of PI3Kα or PI3Kβ in cancer cells with hyperactivated PI3Kα or PI3Kβ, respectively, activates the other isoform, leading to a "rebound" of the PI3K activity through different compensation mechanisms.
Collapse
Affiliation(s)
- David W Cescon
- Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre/University Health Network, Toronto, ON M5T 2M9, Canada; Medical Oncology and Hematology, Princess Margaret Cancer Centre/University Health Network and University of Toronto, ON M5T 2M9, Canada
| | - Chiara Gorrini
- Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre/University Health Network, Toronto, ON M5T 2M9, Canada
| | - Tak W Mak
- Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre/University Health Network, Toronto, ON M5T 2M9, Canada.
| |
Collapse
|