151
|
Ma Q, Wang Y, Zhang H, Wang F. miR-1290 Contributes to Colorectal Cancer Cell Proliferation by Targeting INPP4B. Oncol Res 2017; 26:1167-1174. [PMID: 28915933 PMCID: PMC7844673 DOI: 10.3727/096504017x15051741798389] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common oncological conditions worldwide, to date. MicroRNA-1290 (miR-1290) has been demonstrated to regulate its progression. We studied the role of miR-1290 in CRC progression. The gene was upregulated in CRC tissues and cells. Its overexpression promoted CRC cell proliferation analyzed by MTT assay, colony formation assay, and soft agar growth assay. In addition, miR-1290 knockdown inhibited CRC cell proliferation. We also found that miR-1290 overexpression reduced the p27 level and increased cyclin D1 at both the mRNA and protein levels, whereas miR-1290 knockdown increased p27 and reduced cyclin D1, confirming miR-1290 promoted CRC cell proliferation. Inositol polyphosphate 4-phosphatase B (INPP4B) was the target of miR-1290. Luciferase reporter assay revealed that miR-1290 directly bound to the 3′-UTR of INPP4B; the mutated seed sites in miR-1290 abrogated this effect. Double knockdown of INPP4B and miR-1290 promoted CRC cell proliferation, suggesting miR-1290 promoted CRC cell proliferation by targeting INPP4B.
Collapse
Affiliation(s)
- Qingzhu Ma
- Department of Gastroenterology, Liaocheng People's Hospital, Liaocheng, P.R. China
| | - Yan Wang
- Department of Respiratory Medicine, Liaocheng People's Hospital, Liaocheng, P.R. China
| | - Hualing Zhang
- Department of Gastroenterology, Liaocheng People's Hospital, Liaocheng, P.R. China
| | - Fengqiang Wang
- Department of Respiratory Medicine, Liaocheng People's Hospital, Liaocheng, P.R. China
| |
Collapse
|
152
|
Zhang A, Lakshmanan J, Motameni A, Harbrecht BG. MicroRNA-203 suppresses proliferation in liver cancer associated with PIK3CA, p38 MAPK, c-Jun, and GSK3 signaling. Mol Cell Biochem 2017; 441:89-98. [PMID: 28887744 DOI: 10.1007/s11010-017-3176-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 09/01/2017] [Indexed: 12/16/2022]
Abstract
Primary liver cancer (hepatocellular carcinoma, HCC) is a leading cause of cancer-related deaths, and alternative ways to treat this disease are urgently needed. In recent years, novel approaches to cancer treatment have been based on microRNAs, small non-coding RNA molecules that play a crucial role in cancer progression by regulating gene expression. Overexpression of some microRNAs has shown therapeutic potential, but whether or not this was the case for microRNA-203 (miR-203) in liver cancer was unknown. Therefore, the aim of this study was to investigate the effect of miR-203 overexpression in liver cancer and explore the related mechanisms. Liver cancer cells from the HepG2 and Hep3B cell lines were transfected with either miR-203 mimics or negative control RNA, and then the cells were subjected to cell viability, cell proliferation, and Western blotting assays. As a result of microRNA-203 overexpression, HepG2 and Hep3B cell viability and cell proliferation significantly declined. Furthermore, microRNA-203 overexpression led to inhibited expression of phosphatidylinositol-4,5-bisphosphate 3-kinase (PIK3)/protein kinase B (Akt), c-Jun, and p38 mitogen-activated protein kinases (p38 MAPK), and restored glycogen synthase kinase 3 (GSK 3) activity in HepG2 cells. Our results suggest that c-Jun, p38 MAPK, PIK3CA/Akt, and GSK3 signaling involved in the effect of miR-203 on the proliferation of HCC cells.
Collapse
Affiliation(s)
- Annie Zhang
- Price Institute of Surgical Research and Department of Surgery, University of Louisville, Louisville, KY, 40202, USA
| | - Jaganathan Lakshmanan
- Price Institute of Surgical Research and Department of Surgery, University of Louisville, Louisville, KY, 40202, USA.
| | - Amirreza Motameni
- Price Institute of Surgical Research and Department of Surgery, University of Louisville, Louisville, KY, 40202, USA
| | - Brian G Harbrecht
- Price Institute of Surgical Research and Department of Surgery, University of Louisville, Louisville, KY, 40202, USA
| |
Collapse
|
153
|
Liu B, Liu Y, Zhao L, Pan Y, Shan Y, Li Y, Jia L. Upregulation of microRNA-135b and microRNA-182 promotes chemoresistance of colorectal cancer by targeting ST6GALNAC2 via PI3K/AKT pathway. Mol Carcinog 2017; 56:2669-2680. [PMID: 28767179 DOI: 10.1002/mc.22710] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 07/23/2017] [Accepted: 07/28/2017] [Indexed: 12/17/2022]
Abstract
MicroRNAs (miRNAs) are increasingly involved in the development of drug resistance, including 5-fluorouracil (5-FU) resistance in colorectal cancer (CRC). Aberrant sialylation is correlated with human CRC. The study was to explore whether miR-135b and miR-182 modulated 5-FU chemoresistance of CRC by targeting ST6GALNAC2 via PI3K/AKT pathway. MiR-135b and miR-182 were found to be up-regulated in CRC tissues and 5-FU resistant CRC cell lines. Forced miR-135b and miR-182 expression also affected ST6GALNAC2 levels. Using reporter-gene assay, ST6GALNAC2 was identified as direct target of miR-135b and miR-182, while ST6GALNAC2 expression exhibited patterns opposite to that of miR-135b and miR-182 in CRC samples and cell lines. Interestingly, up-regulation of miR-135b or miR-182 increased drug resistance and proliferation, but decreased apoptosis in 5-FU resistant CRC cell lines. Suppression of these miRNAs implicated an inverse function, while altered expression of ST6GALNAC2 mediated CRC progression upon transfection with miR-135b/-182 mimic or inhibitor. Furthermore, miR-135b and miR-182 were clarified to regulate the activity of phosphoinositide-3 kinase (PI3K)/AKT pathway. Inhibition of the PI3K/AKT pathway enhanced the chemosensitivity to 5-FU in HCT-8/5-FU and LoVo/5-FU. Taken together, miR-135b and miR-182 may reverse the resistance to 5-FU in CRC cells by targeting ST6GALNAC2 via PI3K/AKT pathway, which render potential chemotherapy targets for the treatment of CRC.
Collapse
Affiliation(s)
- Bing Liu
- College of Laboratory Medicine, Dalian Medical University, Dalian, Liaoning Province, China
| | - Yanfeng Liu
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Lifen Zhao
- College of Laboratory Medicine, Dalian Medical University, Dalian, Liaoning Province, China
| | - Yue Pan
- College of Laboratory Medicine, Dalian Medical University, Dalian, Liaoning Province, China
| | - Yujia Shan
- College of Laboratory Medicine, Dalian Medical University, Dalian, Liaoning Province, China
| | - Yang Li
- College of Laboratory Medicine, Dalian Medical University, Dalian, Liaoning Province, China
| | - Li Jia
- College of Laboratory Medicine, Dalian Medical University, Dalian, Liaoning Province, China
| |
Collapse
|
154
|
Dacosta C, Bao Y. The Role of MicroRNAs in the Chemopreventive Activity of Sulforaphane from Cruciferous Vegetables. Nutrients 2017; 9:nu9080902. [PMID: 28825609 PMCID: PMC5579695 DOI: 10.3390/nu9080902] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 08/14/2017] [Accepted: 08/15/2017] [Indexed: 12/15/2022] Open
Abstract
Colorectal cancer is an increasingly significant cause of mortality whose risk is linked to diet and inversely correlated with cruciferous vegetable consumption. This is likely to be partly attributable to the isothiocyanates derived from eating these vegetables, such as sulforaphane, which is extensively characterised for cytoprotective and tumour-suppressing activities. However, its bioactivities are likely to extend in complexity beyond those currently known; further insight into these bioactivities could aid the development of sulforaphane-based chemopreventive or chemotherapeutic strategies. Evidence suggests that sulforaphane modulates the expression of microRNAs, many of which are known to regulate genes involved at various stages of colorectal carcinogenesis. Based upon existing knowledge, there exist many plausible mechanisms by which sulforaphane may regulate microRNAs. Thus, there is a strong case for the further investigation of the roles of microRNAs in the anti-cancer effects of sulforaphane. There are several different types of approach to the wide-scale profiling of microRNA differential expression. Array-based methods may involve the use of RT-qPCR or complementary hybridisation probe chips, and tend to be relatively fast and economical. Cloning and deep sequencing approaches are more expensive and labour-intensive, but are worth considering where viable, for their greater sensitivity and ability to detect novel microRNAs.
Collapse
Affiliation(s)
| | - Yongping Bao
- Norwich Medical School, University of East Anglia, Norwich NR4 7UQ, UK. .
| |
Collapse
|
155
|
Lin J, Chuang CC, Zuo L. Potential roles of microRNAs and ROS in colorectal cancer: diagnostic biomarkers and therapeutic targets. Oncotarget 2017; 8:17328-17346. [PMID: 28061475 PMCID: PMC5370044 DOI: 10.18632/oncotarget.14461] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 12/16/2016] [Indexed: 02/06/2023] Open
Abstract
As one of the most commonly diagnosed cancers worldwide, colorectal adenocarcinoma often occurs sporadically in individuals aged 50 or above and there is an increase among younger patients under 50. Routine screenings are recommended for this age group to improve early detection. The multifactorial etiology of colorectal cancer consists of both genetic and epigenetic factors. Recently, studies have shown that the development and progression of colorectal cancer can be attributed to aberrant expression of microRNA. Reactive oxygen species (ROS) that play a key role in cancer cell survival, can also lead to carcinogenesis and cancer exacerbations. Given the rapid accumulating knowledge in the field, an updated review regarding microRNA and ROS in colorectal cancer is necessary. An extensive literature search has been conducted in PubMed/Medline databases to review the roles of microRNAs and ROS in colorectal cancer. Unique microRNA expression in tumor tissue, peripheral blood, and fecal samples from patients with colorectal cancer is outlined. Therapeutic approaches focusing on microRNA and ROS in colorectal cancer treatment is also delineated. This review aims to summarize the newest knowledge on the pathogenesis of colorectal cancer in the hopes of discovering novel diagnostic biomarkers and therapeutic techniques.
Collapse
Affiliation(s)
- Jingmei Lin
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Chia-Chen Chuang
- Radiologic Sciences and Respiratory Therapy Division, School of Health and Rehabilitation Sciences, The Ohio State University College of Medicine, Columbus, OH, USA.,Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, OH, USA
| | - Li Zuo
- Radiologic Sciences and Respiratory Therapy Division, School of Health and Rehabilitation Sciences, The Ohio State University College of Medicine, Columbus, OH, USA.,Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
156
|
Yang Y, Du Y, Liu X, Cho WC. Involvement of Non-coding RNAs in the Signaling Pathways of Colorectal Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 937:19-51. [PMID: 27573893 DOI: 10.1007/978-3-319-42059-2_2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Colorectal cancer (CRC) is one of the most common diagnosed cancers worldwide. The metastasis and development of resistance to anti-cancer treatment are major challenges in the treatment of CRC. Understanding mechanisms underpinning the pathogenesis is therefore critical in developing novel agents for CRC treatments. A large number of evidence has demonstrated that non-coding RNAs (ncRNAs), including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs have functional roles in both the physiological and pathological processes by regulating the expression of their target genes. These molecules are engaged in the pathobiology of neoplastic diseases and are targets for the diagnosis, prognosis and therapy of a variety of cancers, including CRC. In this regard, ncRNAs have emerged as one of the hallmarks of CRC pathogenesis and they also play key roles in metastasis, drug resistance and the stemness of CRC stem cell by regulating various signaling networks. Therefore, a better understanding the ncRNAs involved in the signaling pathways of CRC may lead to the development of novel strategy for diagnosis, prognosis and treatment of CRC. In this chapter, we summarize the latest findings on ncRNAs, with a focus on miRNAs and lncRNAs involving in signaling networks and in the regulation of pathogenic signaling pathways in CRC.
Collapse
Affiliation(s)
- Yinxue Yang
- The General Hospital, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Yong Du
- The General Hospital, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Xiaoming Liu
- The General Hospital, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong, China.
| |
Collapse
|
157
|
MicroRNAs as Therapeutic Targets and Colorectal Cancer Therapeutics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 937:239-47. [PMID: 27573904 DOI: 10.1007/978-3-319-42059-2_13] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The diagnosis and treatment of colorectal cancer (CRC) have improved greatly over recent years; however, CRC is still one of the most common cancers and a major cause of cancer death worldwide. Several recently developed drugs and treatment strategies are currently in clinical trials; however, there is still a compelling need for novel, highly efficacious therapies. MicroRNAs (miRNAs) are short non-coding RNAs consisting of 20-25 nucleotides that regulate post-transcriptional gene expression by binding to the 3'-untranslated region of mRNAs. miRNAs are known to regulate cancer pathways and to be expressed aberrantly in cancer. Since their initial discovery, a large number of miRNAs have been identified as oncogenes, whereas others function as tumor suppressors. Furthermore, signaling pathways that are important in CRC (e.g. the WNT, MAPK, TGF-β, TP53 and PI3K pathways) are regulated by miRNAs. A single miRNA can simultaneously regulate several target genes and pathways, indicating the therapeutic potential of miRNAs in CRC. However, significant obstacles remain to be overcome, such as an efficient miRNA delivery system, and the assessment of safety and side effects. Thus, miRNA therapy is still developing and possesses great potential for the treatment of CRC. In this chapter, we focus on miRNAs related to CRC and summarize previous studies that emphasize the therapeutic aspects of miRNAs in CRC.
Collapse
|
158
|
Han X, Saiyin H, Zhao J, Fang Y, Rong Y, Shi C, Lou W, Kuang T. Overexpression of miR-135b-5p promotes unfavorable clinical characteristics and poor prognosis via the repression of SFRP4 in pancreatic cancer. Oncotarget 2017; 8:62195-62207. [PMID: 28977937 PMCID: PMC5617497 DOI: 10.18632/oncotarget.19150] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 06/01/2017] [Indexed: 12/12/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive and malignant neoplasm. The aberrant expression of miR-135b-5p and secreted frizzled-related protein 4 (SFRP4) has been revealed to be involved in various cancers. However, the clinical significance of miR-135b-5p and that of its potential target SFRP4 in PDAC remain to be elucidated. Here, we found that miR-135b-5p was markedly upregulated in pancreatic cancer tissue compared with corresponding adjacent normal tissue, whereas SFRP4 was significantly downregulated. The expression of miR-135b-5p was negatively correlated with the expression of SFRP4. PDAC patients with regional lymph node metastases, vascular invasion, tumor microthrombus and higher PET-CT SUVmax values had significantly higher expression of miR-135b-5p. Immunoblotting revealed that regional lymph node metastases were correlated with expressive states of SFRP4. Negative SFRP4 expression was significantly associated with old age, larger tumor size, regional lymph node metastasis and poor differentiation. Survival analyses demonstrated that miR-135b-5p and SFRP4 could predict outcomes and that miR-135b-5p was an independent predictor. In vitro, the overexpression of miR-135b-5p promoted the migration and proliferation of PANC-1 and MiaPaCa-2 cells, while immunoblotting demonstrated the downregulation of SFRP4 and the upregulation of beta-catenin. Inhibition of miR-135b-5p suppressed migration, induced apoptosis of PANC-1 and AsPC-1 cells, and reduced the expression of beta-catenin. A luciferase reporter assay confirmed that miR-135b-5p repressed the expression of SFRP4 via the direct targeting of its 3’-untranslated regions. In conclusion, the overexpression of miR-135b-5p and the downregulation of SFRP4 were associated with unfavorable clinical characteristics and poor prognosis, and SFRP4 was shown to be a direct downstream target of miR-135b-5p. Thus, the mechanism that underlies the miR-135b-5p-SFRP4-Wnt/beta-catenin axis represents a potential target for PDAC diagnosis and therapy.
Collapse
Affiliation(s)
- Xu Han
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hexige Saiyin
- The State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Junjie Zhao
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yuan Fang
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yefei Rong
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chenye Shi
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wenhui Lou
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Tiantao Kuang
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
159
|
Carotenuto P, Fassan M, Pandolfo R, Lampis A, Vicentini C, Cascione L, Paulus-Hock V, Boulter L, Guest R, Quagliata L, Hahne JC, Ridgway R, Jamieson T, Athineos D, Veronese A, Visone R, Murgia C, Ferrari G, Guzzardo V, Evans TRJ, MacLeod M, Feng GJ, Dale T, Negrini M, Forbes SJ, Terracciano L, Scarpa A, Patel T, Valeri N, Workman P, Sansom O, Braconi C. Wnt signalling modulates transcribed-ultraconserved regions in hepatobiliary cancers. Gut 2017; 66:1268-1277. [PMID: 27618837 PMCID: PMC5530482 DOI: 10.1136/gutjnl-2016-312278] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 08/05/2016] [Accepted: 08/17/2016] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Transcribed-ultraconserved regions (T-UCR) are long non-coding RNAs which are conserved across species and are involved in carcinogenesis. We studied T-UCRs downstream of the Wnt/β-catenin pathway in liver cancer. DESIGN Hypomorphic Apc mice (Apcfl/fl) and thiocetamide (TAA)-treated rats developed Wnt/β-catenin dependent hepatocarcinoma (HCC) and cholangiocarcinoma (CCA), respectively. T-UCR expression was assessed by microarray, real-time PCR and in situ hybridisation. RESULTS Overexpression of the T-UCR uc.158- could differentiate Wnt/β-catenin dependent HCC from normal liver and from β-catenin negative diethylnitrosamine (DEN)-induced HCC. uc.158- was overexpressed in human HepG2 versus Huh7 cells in line with activation of the Wnt pathway. In vitro modulation of β-catenin altered uc.158- expression in human malignant hepatocytes. uc.158- expression was increased in CTNNB1-mutated human HCCs compared with non-mutated human HCCs, and in human HCC with nuclear localisation of β-catenin. uc.158- was increased in TAA rat CCA and reduced after treatment with Wnt/β-catenin inhibitors. uc.158- expression was negative in human normal liver and biliary epithelia, while it was increased in human CCA in two different cohorts. Locked nucleic acid-mediated inhibition of uc.158- reduced anchorage cell growth, 3D-spheroid formation and spheroid-based cell migration, and increased apoptosis in HepG2 and SW1 cells. miR-193b was predicted to have binding sites within the uc.158- sequence. Modulation of uc.158- changed miR-193b expression in human malignant hepatocytes. Co-transfection of uc.158- inhibitor and anti-miR-193b rescued the effect of uc.158- inhibition on cell viability. CONCLUSIONS We showed that uc.158- is activated by the Wnt pathway in liver cancers and drives their growth. Thus, it may represent a promising target for the development of novel therapeutics.
Collapse
Affiliation(s)
| | - Matteo Fassan
- Department of Medicine, University of Padua, Padua, Italy
- ARC-NET Research Centre, University of Verona, Verona, Italy
| | | | | | | | | | | | - Luke Boulter
- MRC Human Genetics Unit, University of Edinburgh, Edinburgh, UK
| | - Rachel Guest
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| | - Luca Quagliata
- Molecular Pathology Division, Institute of Pathology, University of Basel, Basel, Switzerland
| | | | - Rachel Ridgway
- Cancer Research UK Beatson Institute for Cancer Research, Glasgow, UK
| | - Tam Jamieson
- Cancer Research UK Beatson Institute for Cancer Research, Glasgow, UK
| | - Dimitris Athineos
- Cancer Research UK Beatson Institute for Cancer Research, Glasgow, UK
| | - Angelo Veronese
- Department of Medical, Oral and Biotechnological Sciences, G. d'Annunzio University, Chieti, Italy
| | - Rosa Visone
- Department of Medical, Oral and Biotechnological Sciences, G. d'Annunzio University, Chieti, Italy
| | - Claudio Murgia
- Cancer Research UK Beatson Institute for Cancer Research, Glasgow, UK
| | | | | | | | - Martin MacLeod
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Gui Ji Feng
- School of Biosciences, Cardiff University, Cardiff, UK
| | - Trevor Dale
- School of Biosciences, Cardiff University, Cardiff, UK
| | | | - Stuart J Forbes
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| | - Luigi Terracciano
- Molecular Pathology Division, Institute of Pathology, University of Basel, Basel, Switzerland
| | - Aldo Scarpa
- ARC-NET Research Centre, University of Verona, Verona, Italy
| | | | - Nicola Valeri
- The Institute of Cancer Research, London, UK
- The Royal Marsden NHS Foundation Trust, London and Surrey, UK
| | | | - Owen Sansom
- Cancer Research UK Beatson Institute for Cancer Research, Glasgow, UK
| | - Chiara Braconi
- The Institute of Cancer Research, London, UK
- The Royal Marsden NHS Foundation Trust, London and Surrey, UK
| |
Collapse
|
160
|
Jin H, Luo S, Wang Y, Liu C, Piao Z, Xu M, Guan W, Li Q, Zou H, Tan QY, Yang ZZ, Wang Y, Wang D, Xu CX. miR-135b Stimulates Osteosarcoma Recurrence and Lung Metastasis via Notch and Wnt/β-Catenin Signaling. MOLECULAR THERAPY. NUCLEIC ACIDS 2017; 8:111-122. [PMID: 28918013 PMCID: PMC5493819 DOI: 10.1016/j.omtn.2017.06.008] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 06/11/2017] [Accepted: 06/12/2017] [Indexed: 01/06/2023]
Abstract
Cancer stem cells (CSCs) play an important role in osteosarcoma (OS) metastasis and recurrence, and both Wnt/β-catenin and Notch signaling are essential for the development of the biological traits of CSCs. However, the mechanism that underlies the simultaneous hyperactivation of both Wnt/β-catenin and Notch signaling in OS remains unclear. Here, we report that expression of miR-135b correlates with the overall and recurrence-free survival of OS patients, and that miR-135b has an activating effect on both Wnt/β-catenin and Notch signaling. The overexpression of miR-135b simultaneously targets multiple negative regulators of the Wnt/β-catenin and Notch signaling pathways, including glycogen synthase kinase-3 beta (GSK3β), casein kinase 1a (CK1α), and ten-eleven translocation 3 (TET3). Therefore, upregulated miR-135b promotes CSC traits, lung metastasis, and tumor recurrence in OS. Notably, antagonizing miR-135b potently inhibits OS lung metastasis, cancer cell stemness, CSC-induced tumor formation, and recurrence in xenograft animal models. These findings suggest that miR-135b mediates the constitutive activation of Wnt/β-catenin and Notch signaling, and that the inhibition of miR-135b is a novel strategy to inhibit tumor metastasis and prevent CSC-induced recurrence in OS.
Collapse
Affiliation(s)
- Hua Jin
- Department of Thoracic Surgery, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing 400042, China
| | - Song Luo
- Department of Orthopaedics, The General Hospital of Chinese People's Liberation Army, Beijing 100853, China
| | - Yun Wang
- Department of Pathology, The General Hospital of Chinese People's Liberation Army, Beijing 100853, China
| | - Chang Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Zhenghao Piao
- Department of Basic Medical Science, School of Medicine, Hangzhou Normal University, Hangzhou 310036, China
| | - Meng Xu
- Department of Orthopaedics, The General Hospital of Chinese People's Liberation Army, Beijing 100853, China
| | - Wei Guan
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing 400042, China
| | - Qing Li
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing 400042, China
| | - Hua Zou
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing 400042, China
| | - Qun-You Tan
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing 400042, China
| | - Zhen-Zhou Yang
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing 400042, China
| | - Yan Wang
- Department of Orthopaedics, The General Hospital of Chinese People's Liberation Army, Beijing 100853, China
| | - Dong Wang
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing 400042, China
| | - Cheng-Xiong Xu
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing 400042, China.
| |
Collapse
|
161
|
Abstract
The accuracy and efficiency of tumor treatment depends mainly on early and precise diagnosis. Although histopathology is always the gold standard for cancer diagnosis, noninvasive biomarkers represent an opportunity for early detection and molecular staging of cancer. Besides the classical tumor markers, noncoding RNAs (ncRNAs) emerge to be a novel category of biomarker for cancer diagnosis since the dysregulation of ncRNAs is closely associated with the development and progression of human cancers such as liver, lung, breast, gastric, and other kinds of cancers. In this chapter, we will summarize the different types of ncRNAs in the diagnosis of major human cancers. In addition, we will introduce the recent advances in the detection and applications of circulating serum or plasma ncRNAs and non-blood fluid ncRNAs because the noninvasive body fluid-based assays are easy to examine for cancer diagnosis and monitoring.
Collapse
|
162
|
Liu W, Qian K, Wei X, Deng H, Zhao B, Chen Q, Zhang J, Liu H. miR‑27a promotes proliferation, migration, and invasion of colorectal cancer by targeting FAM172A and acts as a diagnostic and prognostic biomarker. Oncol Rep 2017; 37:3554-3564. [PMID: 28440497 DOI: 10.3892/or.2017.5592] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 04/10/2017] [Indexed: 11/06/2022] Open
Abstract
Accumulating evidence shows that mircroRNAs (miRNAs) play a crucial role in the development of colorectal cancer. In our previous study, FAM172A was demonstrated to be a novel tumor suppressor gene in CRC. Therefore, the aim of the present study was to identify whether the miR‑27a could be a diagnostic and prognostic marker and the regulatory relationships between miR‑27a and FAM172A. We demonstrated high levels of miR‑27a expression in tissues of patients with CRC as well as in CRC cell lines. There was a positive correlation between the levels of miR‑27a and the poor overall survival of patients with CRC. Furthermore, elevated levels of miR‑27a expression were associated with TNM stage and distant metastasis. Increased expression or inhibition of miR‑27a promoted or inhibited the metastasis of CRC cell lines, respectively. Moreover, we showed that miR‑27a directly targets the 3'-untranslated region of FAM172A mRNA by using a dual-luciferase assay. Increased or decreased expression of FAM172A expression was observed when miR‑27a expression was inhibited or elevated in the CRC cells, respectively. In summary, our study showed that miR‑27a expression is a diagnostic and prognostic marker and correlates with overall survival of patients with CRC. Therefore, it may be a therapeutic approach for preventing metastasis of CRC to inhibit expression of miR‑27a or increase expression of FAM172A.
Collapse
Affiliation(s)
- Wenjun Liu
- Department of Vascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Kai Qian
- Department of Vascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Xing Wei
- The First Clinical Medical College, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Haijun Deng
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Bei Zhao
- Department of Vascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Qing Chen
- Department of Vascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Jinqian Zhang
- Department of Laboratory Medicine, The Second People's Hospital of Guangdong Province, Guangzhou, Guangdong 510317, P.R. China
| | - Hao Liu
- Department of Vascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| |
Collapse
|
163
|
Floch P, Capdevielle C, Staedel C, Izotte J, Sifré E, Laur AM, Giese A, Korolik V, Dubus P, Mégraud F, Lehours P. Deregulation of MicroRNAs in Gastric Lymphomagenesis Induced in the d3Tx Mouse Model of Helicobacter pylori Infection. Front Cell Infect Microbiol 2017; 7:185. [PMID: 28560185 PMCID: PMC5432547 DOI: 10.3389/fcimb.2017.00185] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 04/27/2017] [Indexed: 12/12/2022] Open
Abstract
Helicobacter pylori infection is considered as an excellent model of chronic inflammation-induced tumor development. Our project focuses on gastric MALT lymphoma (GML) related to H. pylori infection and mediated by the chronic inflammatory process initiated by the infection. Recently, microRNAs (miRNAs) have emerged as a new class of gene regulators, which play key roles in inflammation and carcinogenesis acting as oncogenes or tumor suppressors. Their precise characterization in the development of inflammation and their contribution in regulating host cells responses to infection by H. pylori have been little explored. Our goal was to analyze the changes in miRNAs in a GML mouse model using BALB/c mice thymectomized at day 3 post-birth (d3Tx model) and to clarify their implication in GML pathogenesis. PCR array followed by RT-qPCR identified five miRNAs (miR-21a, miR-135b, miR-142a, miR-150, miR-155) overexpressed in the stomachs of GML-developing d3Tx mice infected by H. pylori. The analysis of their putative targets allowed us to identify TP53INP1, an anti-proliferative and pro-apoptotic protein, as a common target of 4 of the 5 up-regulated miRNAs. We postulate that these miRNAs may act in synergy to promote the development of GML. miR-142a was also overexpressed in mouse sera samples and therefore could serve as a diagnostic marker. In situ hybridization on gastric samples with miR-142a revealed a global up-regulation of this miRNA by the tumor microenvironment at the lymphoma stage. Dysregulation of miR-21a, miR-135b, miR-142a, miR-150, miR-155 could play a critical role in the pathogenesis of GML and might offer potential applications as therapeutic targets and novel biomarkers for this disease.
Collapse
Affiliation(s)
- Pauline Floch
- UMR1053 Bordeaux Research in Translational Oncology, Institut National de la Santé et de la Recherche Médicale, University of BordeauxBordeaux, France
| | - Caroline Capdevielle
- UMR1053 Bordeaux Research in Translational Oncology, Institut National de la Santé et de la Recherche Médicale, University of BordeauxBordeaux, France
| | - Cathy Staedel
- ARNA Laboratory, Institut National de la Santé et de la Recherche Médicale U1212, Université de BordeauxBordeaux, France
| | - Julien Izotte
- UMR1053 Bordeaux Research in Translational Oncology, Institut National de la Santé et de la Recherche Médicale, University of BordeauxBordeaux, France
| | - Elodie Sifré
- UMR1053 Bordeaux Research in Translational Oncology, Institut National de la Santé et de la Recherche Médicale, University of BordeauxBordeaux, France
| | - Amandine M Laur
- UMR1053 Bordeaux Research in Translational Oncology, Institut National de la Santé et de la Recherche Médicale, University of BordeauxBordeaux, France
| | - Alban Giese
- UMR1053 Bordeaux Research in Translational Oncology, Institut National de la Santé et de la Recherche Médicale, University of BordeauxBordeaux, France
| | - Victoria Korolik
- Institute for Glycomics, Griffith UniversityGold Coast, QLD, Australia
| | - Pierre Dubus
- UMR1053 Bordeaux Research in Translational Oncology, Institut National de la Santé et de la Recherche Médicale, University of BordeauxBordeaux, France
| | - Francis Mégraud
- UMR1053 Bordeaux Research in Translational Oncology, Institut National de la Santé et de la Recherche Médicale, University of BordeauxBordeaux, France
| | - Philippe Lehours
- UMR1053 Bordeaux Research in Translational Oncology, Institut National de la Santé et de la Recherche Médicale, University of BordeauxBordeaux, France
| |
Collapse
|
164
|
Colorectal Cancer: From the Genetic Model to Posttranscriptional Regulation by Noncoding RNAs. BIOMED RESEARCH INTERNATIONAL 2017; 2017:7354260. [PMID: 28573140 PMCID: PMC5442347 DOI: 10.1155/2017/7354260] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 02/16/2017] [Indexed: 12/11/2022]
Abstract
Colorectal cancer is the third most common form of cancer in developed countries and, despite the improvements achieved in its treatment options, remains as one of the main causes of cancer-related death. In this review, we first focus on colorectal carcinogenesis and on the genetic and epigenetic alterations involved. In addition, noncoding RNAs have been shown to be important regulators of gene expression. We present a general overview of what is known about these molecules and their role and dysregulation in cancer, with a special focus on the biogenesis, characteristics, and function of microRNAs. These molecules are important regulators of carcinogenesis, progression, invasion, angiogenesis, and metastases in cancer, including colorectal cancer. For this reason, miRNAs can be used as potential biomarkers for diagnosis, prognosis, and efficacy of chemotherapeutic treatments, or even as therapeutic agents, or as targets by themselves. Thus, this review highlights the importance of miRNAs in the development, progression, diagnosis, and therapy of colorectal cancer and summarizes current therapeutic approaches for the treatment of colorectal cancer.
Collapse
|
165
|
Shen H, Xing C, Cui K, Li Y, Zhang J, Du R, Zhang X, Li Y. MicroRNA-30a attenuates mutant KRAS-driven colorectal tumorigenesis via direct suppression of ME1. Cell Death Differ 2017; 24:1253-1262. [PMID: 28475173 DOI: 10.1038/cdd.2017.63] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 03/25/2017] [Accepted: 04/03/2017] [Indexed: 12/17/2022] Open
Abstract
Frequent KRAS mutations contribute to multiple cancers including ~40% of human colorectal cancers (CRCs). Systematic screening of 1255 microRNAs (miRNAs) identified miR-30a as a synthetic lethal in KRAS-mutant CRC cells. miR-30a was downregulated in CRCs and repressed by P65. miR-30a directly targeted malic enzyme 1 (ME1) and KRAS, and inhibited anchorage-independent growth and in vivo tumorigenesis by KRAS-mutant CRC cells. ME1 was significantly upregulated in KRAS-mutant CRCs. Eliminating ME1 by short hairpin RNA (shRNA) resulted in obviously decreased NADPH production, levels of triglyceride and fatty acid, and an inhibition of tumorigenicity of KRAS-mutant CRCs. miR-30a overexpression and ME1 suppression attenuated AOM/DSS-induced colorectal tumorigenesis. The critical roles of miR-30a and ME1 in the development of KRAS-mutant CRCs indicate therapy potentials for this subtype of cancer.
Collapse
Affiliation(s)
- Hongxing Shen
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China.,Medical Research Institute, School of Medicine, Wuhan University, Wuhan 430071, China
| | - Chuan Xing
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China.,Medical Research Institute, School of Medicine, Wuhan University, Wuhan 430071, China
| | - Kaisa Cui
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China.,Medical Research Institute, School of Medicine, Wuhan University, Wuhan 430071, China
| | - Yunxiao Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China.,Medical Research Institute, School of Medicine, Wuhan University, Wuhan 430071, China
| | - Jinxiang Zhang
- Department of Surgery, Wuhan Union Hospital, Wuhan 430022, China
| | - Runlei Du
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Xiaodong Zhang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Youjun Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China.,Medical Research Institute, School of Medicine, Wuhan University, Wuhan 430071, China
| |
Collapse
|
166
|
Rahmani F, Avan A, Hashemy SI, Hassanian SM. Role of Wnt/β‐catenin signaling regulatory microRNAs in the pathogenesis of colorectal cancer. J Cell Physiol 2017; 233:811-817. [DOI: 10.1002/jcp.25897] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 03/06/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Farzad Rahmani
- Department of Medical BiochemistrySchool of MedicineMashhad University of Medical SciencesMashhadIran
| | - Amir Avan
- Department of Modern Sciences and TechnologiesSchool of MedicineMashhad University of Medical SciencesMashhadIran
- Cancer Research CenterSchool of MedicineMashhad University of Medical SciencesMashhadIran
| | - Seyed Isaac Hashemy
- Surgical Oncology Research CenterMashhad University of Medical SciencesMashhadIran
| | - Seyed Mahdi Hassanian
- Department of Medical BiochemistrySchool of MedicineMashhad University of Medical SciencesMashhadIran
- Metabolic Syndrome Research CenterMashhad University of Medical SciencesMashhadIran
- Microanatomy Research CenterMashhad University of Medical SciencesMashhadIran
| |
Collapse
|
167
|
Regulatory miRNAs in Colorectal Carcinogenesis and Metastasis. Int J Mol Sci 2017; 18:ijms18040890. [PMID: 28441730 PMCID: PMC5412469 DOI: 10.3390/ijms18040890] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 04/15/2017] [Accepted: 04/20/2017] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer is one of the most common malignancies and is the second-leading cause of cancer-related death world-wide, which is linked to genetic mutations, epigenetic alterations, and oncogenic signaling activation. MicroRNAs, one of the categories of epigenetics, have been demonstrated significant roles in carcinogenesis and progression through regulating of oncogenic signaling pathways, stem cells, epithelial-mesenchymal transition, and metastasis. This review summarizes the roles of microRNAs in the regulating of Wnt, Ras, TGF-β, and inflammatory signaling pathways, stemness, and epithelial-mesenchymal transition, for carcinogenesis and metastasis in colorectal cancer. Improving our understanding of the mechanisms of regulatory interactions of microRNAs with signaling pathways in colorectal cancer formation and progression will aid in determining the genes responsible for colorectal cancer initiation, progression, metastasis, and recurrence and, finally, in developing personalized approaches for cancer prevention and therapy.
Collapse
|
168
|
Saraggi D, Fassan M, Mescoli C, Scarpa M, Valeri N, Michielan A, D'Incá R, Rugge M. The molecular landscape of colitis-associated carcinogenesis. Dig Liver Dis 2017; 49:326-330. [PMID: 28089111 DOI: 10.1016/j.dld.2016.12.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 12/07/2016] [Accepted: 12/09/2016] [Indexed: 12/11/2022]
Abstract
In spite of the well-established histopathological phenotyping of IBD-associated preneoplastic and neoplastic lesions, their molecular landscape remains to be fully elucidated. Several studies have pinpointed the initiating role of longstanding/relapsing inflammatory insult on the intestinal mucosa, with the activation of different pro-inflammatory cytokines (TNF-α, IL-6, IL-10, IFN-γ), chemokines and metabolites of arachidonic acid resulting in the activation of key transcription factors such as NF-κB. Longstanding inflammation may also modify the intestinal microbiota, prompting the overgrowth of genotoxic microorganisms, which may act as further cancer promoters. Most of the molecular dysregulation occurring in sporadic colorectal carcinogenesis is documented in colitis-associated adenocarcinoma too, but marked differences have been established in both their timing and prevalence. Unlike sporadic cancers, TP53 alterations occur early in IBD-related carcinogenesis, while APC dysregulation emerges mainly in the most advanced stages of the oncogenic cascade. From the therapeutic standpoint, colitis-associated cancers are associated with a lower prevalence of KRAS mutations than the sporadic variant. Epigenetic changes, including DNA methylation, histone modifications, chromatin remodeling, and non-coding RNAs, are significantly involved in colitis-associated cancer development and progression. The focus now is on identifying diagnostic and prognostic biomarkers, with a view to ultimately designing patient-tailored therapies.
Collapse
Affiliation(s)
- Deborah Saraggi
- Department of Medicine (DIMED), Surgical Pathology & Cytopathology Unit, University of Padua, Padua, Italy
| | - Matteo Fassan
- Department of Medicine (DIMED), Surgical Pathology & Cytopathology Unit, University of Padua, Padua, Italy
| | - Claudia Mescoli
- Department of Surgical Oncology and Gastroenterology (DiSCOG), Gastroenterology Unit, University of Padua, Padua, Italy
| | - Marco Scarpa
- Istituto Oncologico Veneto, IOV-IRCCS, Surgical Oncology Unit, Padua, Italy
| | - Nicola Valeri
- Department of Molecular Pathology, The Institute of Cancer Research, London, UK; Department of Medicine, The Royal Marsden NHS Trust, London, UK
| | - Andrea Michielan
- Department of Surgical Oncology and Gastroenterology (DiSCOG), Gastroenterology Unit, University of Padua, Padua, Italy
| | - Renata D'Incá
- Department of Surgical Oncology and Gastroenterology (DiSCOG), Gastroenterology Unit, University of Padua, Padua, Italy
| | - Massimo Rugge
- Department of Medicine (DIMED), Surgical Pathology & Cytopathology Unit, University of Padua, Padua, Italy.
| |
Collapse
|
169
|
|
170
|
Shi ZM, Wang L, Shen H, Jiang CF, Ge X, Li DM, Wen YY, Sun HR, Pan MH, Li W, Shu YQ, Liu LZ, Peiper SC, He J, Jiang BH. Downregulation of miR-218 contributes to epithelial-mesenchymal transition and tumor metastasis in lung cancer by targeting Slug/ZEB2 signaling. Oncogene 2017; 36:2577-2588. [PMID: 28192397 PMCID: PMC5422710 DOI: 10.1038/onc.2016.414] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 08/03/2016] [Accepted: 09/02/2016] [Indexed: 12/15/2022]
Abstract
Epithelial–mesenchymal transition (EMT) has been recognized as a key element of cell migration and invasion in lung cancer; however, the underlying mechanisms are not fully elucidated. Recently, emerging evidence suggest that miRNAs have crucial roles in control of EMT and EMT-associated traits such as migration, invasion and chemoresistance. Here, we found that miR-218 expression levels were significantly downregulated in lung cancer tissues compared with adjacent non-cancerous tissues, and the levels of miR-218 were significantly associated with histological grades and lymph node metastasis. Overexpression of miR-218 inhibited cell migration and invasion as well as the EMT process. Of particular importance, miR-218 was involved in the metastatic process of lung cancer cells in vivo by suppressing local invasion and distant colonization. We identified Slug and ZEB2 as direct functional targets of miR-218. Inverse correlations were observed between miR-218 levels and Slug/ZEB2 levels in cancer tissue samples. In addition, overexpression of miR-218 in H1299 increased chemosensitivity of cells to cisplatin treatment through suppression of Slug and ZEB2. These findings highlight an important role of miR-218 in the regulation of EMT-related traits and metastasis of lung cancer in part by modulation of Slug/ZEB2 signaling, and provide a potential therapeutic strategy by targeting miR-218 in NSCLC.
Collapse
Affiliation(s)
- Z-M Shi
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,State Key Lab of Reproductive Medicine, Key Laboratory of Human Functional Genomics of Jiangsu Province, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention, and Treatment, Cancer Center, Department of Pathology, Nanjing Medical University, Nanjing, China
| | - L Wang
- State Key Lab of Reproductive Medicine, Key Laboratory of Human Functional Genomics of Jiangsu Province, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention, and Treatment, Cancer Center, Department of Pathology, Nanjing Medical University, Nanjing, China
| | - H Shen
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - C-F Jiang
- State Key Lab of Reproductive Medicine, Key Laboratory of Human Functional Genomics of Jiangsu Province, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention, and Treatment, Cancer Center, Department of Pathology, Nanjing Medical University, Nanjing, China
| | - X Ge
- State Key Lab of Reproductive Medicine, Key Laboratory of Human Functional Genomics of Jiangsu Province, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention, and Treatment, Cancer Center, Department of Pathology, Nanjing Medical University, Nanjing, China
| | - D-M Li
- State Key Lab of Reproductive Medicine, Key Laboratory of Human Functional Genomics of Jiangsu Province, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention, and Treatment, Cancer Center, Department of Pathology, Nanjing Medical University, Nanjing, China
| | - Y-Y Wen
- State Key Lab of Reproductive Medicine, Key Laboratory of Human Functional Genomics of Jiangsu Province, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention, and Treatment, Cancer Center, Department of Pathology, Nanjing Medical University, Nanjing, China
| | - H-R Sun
- State Key Lab of Reproductive Medicine, Key Laboratory of Human Functional Genomics of Jiangsu Province, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention, and Treatment, Cancer Center, Department of Pathology, Nanjing Medical University, Nanjing, China
| | - M-H Pan
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - W Li
- Department of Pathology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Y-Q Shu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - L-Z Liu
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - S C Peiper
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - J He
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - B-H Jiang
- State Key Lab of Reproductive Medicine, Key Laboratory of Human Functional Genomics of Jiangsu Province, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention, and Treatment, Cancer Center, Department of Pathology, Nanjing Medical University, Nanjing, China.,Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
171
|
Ortiz-Quintero B. Cell-free microRNAs in blood and other body fluids, as cancer biomarkers. Cell Prolif 2017; 49:281-303. [PMID: 27218664 DOI: 10.1111/cpr.12262] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Accepted: 04/07/2016] [Indexed: 12/17/2022] Open
Abstract
The discovery of cell-free microRNAs (miRNAs) in serum, plasma and other body fluids has yielded an invaluable potential source of non-invasive biomarkers for cancer and other non-malignant diseases. miRNAs in the blood and other body fluids are highly stable in biological samples and are resistant to environmental conditions, such as freezing, thawing or enzymatic degradation, which makes them convenient as potential biomarkers. In addition, they are more easily sampled than tissue miRNAs. Altered levels of cell-free miRNAs have been found in every type of cancer analysed, and increasing evidence indicates that they may participate in carcinogenesis by acting as cell-to-cell signalling molecules. This review summarizes the biological characteristics and mechanisms of release of cell-free miRNAs that make them promising candidates as non-invasive biomarkers of cancer.
Collapse
Affiliation(s)
- Blanca Ortiz-Quintero
- Research Unit, Instituto Nacional de Enfermedades Respiratorias, Ismael Cosio Villegas, 14080, Mexico City, Mexico
| |
Collapse
|
172
|
Leichter AL, Sullivan MJ, Eccles MR, Chatterjee A. MicroRNA expression patterns and signalling pathways in the development and progression of childhood solid tumours. Mol Cancer 2017; 16:15. [PMID: 28103887 PMCID: PMC5248531 DOI: 10.1186/s12943-017-0584-0] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 01/04/2017] [Indexed: 12/18/2022] Open
Abstract
The development of childhood solid tumours is tied to early developmental processes. These tumours may be complex and heterogeneous, and elucidating the aberrant mechanisms that alter the early embryonic environment and lead to disease is essential to our understanding of how these tumours function. MicroRNAs (miRNAs) are vital regulators of gene expression at all stages of development, and their crosstalk via developmental signalling pathways is essential for orchestrating regulatory control in processes such as proliferation, differentiation and apoptosis of cells. Oncogenesis, from aberrant miRNA expression, can occur through amplification and overexpression of oncogenic miRNAs (oncomiRs), genetic loss of tumour suppressor miRNAs, and global miRNA reduction from genetic and epigenetic alterations in the components regulating miRNA biogenesis. While few driver mutations have been identified in many of these types of tumours, abnormal miRNA expression has been found in a number of childhood solid tumours compared to normal tissue. An exploration of the network of key developmental pathways and interacting miRNAs may provide insight into the development of childhood solid malignancies and how key regulators are affected. Here we present a comprehensive introduction to the roles and implications of miRNAs in normal early development and childhood solid tumours, highlighting several tumours in depth, including embryonal brain tumours, neuroblastoma, osteosarcoma, Wilms tumour, and hepatoblastoma. In light of recent literature describing newer classifications and subtyping of tumours based on miRNA profiling, we discuss commonly identified miRNAs, clusters or families associated with several solid tumours and future directions for improving therapeutic approaches.
Collapse
Affiliation(s)
- Anna L Leichter
- Department of Pathology, Dunedin School of Medicine, University of Otago, 56 Hanover Street, P.O. Box 913, Dunedin, 9016, New Zealand
| | | | - Michael R Eccles
- Department of Pathology, Dunedin School of Medicine, University of Otago, 56 Hanover Street, P.O. Box 913, Dunedin, 9016, New Zealand. .,Maurice Wilkins Centre for Molecular Biodiscovery, Level 2, 3A Symonds Street, Auckland, New Zealand.
| | - Aniruddha Chatterjee
- Department of Pathology, Dunedin School of Medicine, University of Otago, 56 Hanover Street, P.O. Box 913, Dunedin, 9016, New Zealand. .,Maurice Wilkins Centre for Molecular Biodiscovery, Level 2, 3A Symonds Street, Auckland, New Zealand.
| |
Collapse
|
173
|
Zhu M, Xu Y, Chen Y, Yan F. Circular BANP, an upregulated circular RNA that modulates cell proliferation in colorectal cancer. Biomed Pharmacother 2017; 88:138-144. [PMID: 28103507 DOI: 10.1016/j.biopha.2016.12.097] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 12/19/2016] [Accepted: 12/22/2016] [Indexed: 12/21/2022] Open
Abstract
Circular RNAs (circRNAs) are recently identified as widespread and diverse endogenous noncoding RNAs that may harbor vital functions in human and animals. However, the role of circRNAs in the process of tumorigenesis and development of colorectal cancer (CRC) remains vague. Here we characterized the circRNA expression profile from three paired CRC cancerous and adjacent normal tissues by human circRNA array, and identified 136 significantly overexpressed circRNAs and 243 downregulated circRNAs in CRC cancerous tissues (>2-fold changes). We further validated one circRNA generated from Exon 5-11 of BANP gene, termed circ-BANP. In addition, RT-PCR result showed that circ-BANP was overexpressed in 35 CRC cancerous tissues. Knockdown of circ-BANP with siRNA significantly attenuate the proliferation of CRC cells. In summary, our findings demonstrated that dysregulated circ-BANP appears to have an important role in CRC cells and could serve as a prognostic and therapeutic marker for CRC.
Collapse
Affiliation(s)
- Mingchen Zhu
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China; Department of Clinical Laboratory, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing 210009, China
| | - Yijun Xu
- Department of Gastroenterology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Yun Chen
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China.
| | - Feng Yan
- Department of Clinical Laboratory, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing 210009, China.
| |
Collapse
|
174
|
Wang F, Ma Y, Wang H, Qin H. Reciprocal regulation between microRNAs and epigenetic machinery in colorectal cancer. Oncol Lett 2017; 13:1048-1057. [PMID: 28454212 DOI: 10.3892/ol.2017.5593] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 02/24/2016] [Indexed: 12/23/2022] Open
Abstract
Epigenetics encompasses changes in DNA methylation, histone and chromatin structure, and non-coding RNAs, specifically microRNA (miRNA) expression. Recent advances in the rapidly evolving field of colorectal cancer (CRC) epigenetics have revealed a complicated network of reciprocal interconnections between miRNAs and other epigenetic machinery. On the one hand, miRNA expression may be regulated by epigenetic mechanisms including DNA methylation and histone modifications. However, miRNAs may affect the epigenetic machinery by directly targeting its enzymatic components. In this study, we focus on the colorectal miRNA expression profile and further illustrate the reciprocal regulation in CRC, with the aim of offering new insights into the strategies of combatting the disease.
Collapse
Affiliation(s)
- Feng Wang
- Department of Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai 200072, P.R. China
| | - Yanlei Ma
- Department of Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai 200072, P.R. China
| | - Huamin Wang
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Huanlong Qin
- Department of Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai 200072, P.R. China
| |
Collapse
|
175
|
Role of Akt2 in regulation of metastasis suppressor 1 expression and colorectal cancer metastasis. Oncogene 2017; 36:3104-3118. [PMID: 28068324 DOI: 10.1038/onc.2016.460] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 10/27/2016] [Accepted: 10/31/2016] [Indexed: 12/15/2022]
Abstract
Survival signaling is critical for the metastatic program of cancer cells. The current study investigated the role of Akt survival proteins in colorectal cancer (CRC) metastasis and explored potential mechanisms of Akt-mediated metastasis regulation. Using an orthotopic implantation model in mice, which uniquely recapitulates the entire multistep process of CRC metastasis, combined with an inducible system of short hairpin RNA-mediated Akt isoform knockdown in human CRC cells, our studies confirm a role of Akt2 in CRC cell dissemination to distant organs in vivo. Akt2 deficiency profoundly inhibited the development of liver lesions in mice, whereas Akt1 had no effect under the experimental conditions used in the study. Array analysis of human metastatic genes identified the scaffolding protein metastasis suppressor 1 (MTSS1) as a novel Akt2-regulated gene. Inducible loss of Akt2 in CRC cells robustly upregulated MTSS1 at the messenger RNA and protein level, and the accumulated protein was functionally active as shown by its ability to engage an MTSS1-Src-cortactin inhibitory axis. MTSS1 expression led to a marked reduction in levels of functional cortacin (pcortactin Y421), an actin nucleation-promoting factor that has a crucial role in cancer cell invasion and metastasis. MTSS1 was also shown to mediate suppressive effects of Akt2 deficiency on CRC cell viability, survival, migration and actin polymerization in vitro. The relevance of these findings to human CRC is supported by analysis of The Cancer Genome Atlas (TCGA) and NCBI GEO data sets, which demonstrated inverse changes in expression of Akt2 and MTSS1 during CRC progression. Taken together, the data identify MTSS1 as a new Akt2-regulated gene, and point to suppression of MTSS1 as a key step in the metastasis-promoting effects of Akt2 in CRC cells.
Collapse
|
176
|
Mi Y, Zhang D, Jiang W, Weng J, Zhou C, Huang K, Tang H, Yu Y, Liu X, Cui W, Zhang M, Sun X, Zhou Z, Peng Z, Zhao S, Wen Y. miR-181a-5p promotes the progression of gastric cancer via RASSF6-mediated MAPK signalling activation. Cancer Lett 2016; 389:11-22. [PMID: 28043911 DOI: 10.1016/j.canlet.2016.12.033] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 12/21/2016] [Accepted: 12/22/2016] [Indexed: 02/05/2023]
Abstract
We previously discovered that Ras association domain family member 6 (RASSF6) was downregulated and predicted poor prognosis in GC patients. However, the mechanisms of the down regulation of RASSF6 in GC remained unclear. Increasing evidence indicates that dysregulation of microRNAs promotes the progression of cancer through the repression of tumour suppressors. Here, we identified miR-181a-5p as a novel regulator of RASSF6 in GC. Functionally, ectopic expression or silencing of miR-181a-5p, respectively, promoted or inhibited GC cell proliferation, colony formation and cell cycle transition, as well as enhanced or prevented the invasion, metastasis of GC cells and epithelial to mesenchymal transition of GC cells in vitro and in vivo. Molecularly, miR-181a-5p functioned as an onco-miRNA by activating the RASSF6-regulated MAKP pathway. Overexpression or silencing of RASSF6 could partially reverse the effects of the overexpression or repression of miR-181a-5p on GC progress caused by activation of the MAKP pathway in vitro and in vivo. Clinically, high miR-181a-5p expression predicted poor survival in GC patients, especially combined with low RASSF6 expression. Collectively, we identified miR-181a-5p as an onco-miRNA, which acts by directly repressing RASSF6 in GC.
Collapse
Affiliation(s)
- Yushuai Mi
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Dongyuan Zhang
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Weiliang Jiang
- Department of Gastroenterology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Junyong Weng
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Chongzhi Zhou
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Kejian Huang
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Huamei Tang
- Department of Pathology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Yang Yu
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Xisheng Liu
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Weiyingqi Cui
- Department of Oncology, Linköping University, Linköping, Sweden; Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden.
| | - Meng Zhang
- Department of Pathology, Shanghai Cancer Center, Fudan University, Shanghai, China.
| | - Xiaofeng Sun
- Department of Oncology, Linköping University, Linköping, Sweden; Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden.
| | - Zongguang Zhou
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Zhihai Peng
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Senlin Zhao
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Yugang Wen
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
177
|
Tsang HF, Xue VW, Koh SP, Chiu YM, Ng LPW, Wong SCC. NanoString, a novel digital color-coded barcode technology: current and future applications in molecular diagnostics. Expert Rev Mol Diagn 2016; 17:95-103. [DOI: 10.1080/14737159.2017.1268533] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Hin-Fung Tsang
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Vivian Weiwen Xue
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Su-Pin Koh
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Ya-Ming Chiu
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Lawrence Po-Wah Ng
- Department of Pathology, Queen Elizabeth Hospital, Hospital Authority, Hong Kong Special Administrative Region, China
| | - Sze-Chuen Cesar Wong
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| |
Collapse
|
178
|
Trevisani F, Ghidini M, Larcher A, Lampis A, Lote H, Manunta P, Alibrandi MTS, Zagato L, Citterio L, Dell'Antonio G, Carenzi C, Capasso G, Rugge M, Rigotti P, Bertini R, Cascione L, Briganti A, Salonia A, Benigni F, Braconi C, Fassan M, Hahne JC, Montorsi F, Valeri N. MicroRNA 193b-3p as a predictive biomarker of chronic kidney disease in patients undergoing radical nephrectomy for renal cell carcinoma. Br J Cancer 2016; 115:1343-1350. [PMID: 27802451 PMCID: PMC5129818 DOI: 10.1038/bjc.2016.329] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 09/22/2016] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND A significant proportion of patients undergoing radical nephrectomy (RN) for clear-cell renal cell carcinoma (RCC) develop chronic kidney disease (CKD) within a few years following surgery. Chronic kidney disease has important health, social and economic impact and no predictive biomarkers are currently available. MicroRNAs (miRs) are small non-coding RNAs implicated in several pathological processes. METHODS Primary objective of our study was to define miRs whose deregulation is predictive of CKD in patients treated with RN. Ribonucleic acid from formalin-fixed paraffin embedded renal parenchyma (cortex and medulla isolated separately) situated >3 cm from the matching RCC was tested for miR expression using nCounter NanoString technology in 71 consecutive patients treated with RN for RCC. Validation was performed by RT-PCR and in situ hybridisation. End point was post-RN CKD measured 12 months post-operatively. Multivariable logistic regression and decision curve analysis were used to test the statistical and clinical impact of predictors of CKD. RESULTS The overexpression of miR-193b-3p was associated with high risk of developing CKD in patients undergoing RN for RCC and emerged as an independent predictor of CKD. The addition of miR-193b-3p to a predictive model based on clinical variables (including sex and estimated glomerular filtration rate) increased the sensitivity of the predictive model from 81 to 88%. In situ hybridisation showed that miR-193b-3p overexpression was associated with tubule-interstitial inflammation and fibrosis in patients with no clinical or biochemical evidence of pre-RN nephropathy. CONCLUSIONS miR-193b-3p might represent a useful biomarker to tailor and implement surveillance strategies for patients at high risk of developing CKD following RN.
Collapse
Affiliation(s)
- Francesco Trevisani
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
- Department of Urology, San Raffaele Scientific Institute, Milan, Italy
- Division of Oncology/Unit of Urology; IRCCS Ospedale San Raffaele, Milan, Italy
| | - Michele Ghidini
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| | - Alessandro Larcher
- Department of Urology, San Raffaele Scientific Institute, Milan, Italy
- Division of Oncology/Unit of Urology; IRCCS Ospedale San Raffaele, Milan, Italy
| | - Andrea Lampis
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| | - Hazel Lote
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| | - Paolo Manunta
- Division of Nephrology and Dialysis, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Genomics of Renal Disease and Hypertension Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Laura Zagato
- Genomics of Renal Disease and Hypertension Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Lorena Citterio
- Genomics of Renal Disease and Hypertension Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Cristina Carenzi
- Department of Urology, San Raffaele Scientific Institute, Milan, Italy
- Division of Oncology/Unit of Urology; IRCCS Ospedale San Raffaele, Milan, Italy
| | | | - Massimo Rugge
- Department of Medicine, Surgical Pathology & Cytopathology Unit, University of Padua, Padua, Italy
| | - Paolo Rigotti
- Department of Surgical, Oncological and Gastroenterological Sciences, Kidney and Pancreas Transplantation Unit, University of Padua, Padua, Italy
| | - Roberto Bertini
- Department of Urology, San Raffaele Scientific Institute, Milan, Italy
- Division of Oncology/Unit of Urology; IRCCS Ospedale San Raffaele, Milan, Italy
| | - Luciano Cascione
- Bioinformatics Core Unit, Institute of Oncology Research, Bellinzona, Switzerland
| | - Alberto Briganti
- Department of Urology, San Raffaele Scientific Institute, Milan, Italy
- Division of Oncology/Unit of Urology; IRCCS Ospedale San Raffaele, Milan, Italy
| | - Andrea Salonia
- Department of Urology, San Raffaele Scientific Institute, Milan, Italy
- Division of Oncology/Unit of Urology; IRCCS Ospedale San Raffaele, Milan, Italy
| | - Fabio Benigni
- Department of Urology, San Raffaele Scientific Institute, Milan, Italy
- Division of Oncology/Unit of Urology; IRCCS Ospedale San Raffaele, Milan, Italy
| | - Chiara Braconi
- Division of Cancer Therapeutics, The Institute of Cancer Research, London, UK
- Department of Medicine, The Royal Marsden NHS Trust, London, UK
| | - Matteo Fassan
- Department of Medicine, Surgical Pathology & Cytopathology Unit, University of Padua, Padua, Italy
| | - Jens Claus Hahne
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| | - Francesco Montorsi
- Department of Urology, San Raffaele Scientific Institute, Milan, Italy
- Division of Oncology/Unit of Urology; IRCCS Ospedale San Raffaele, Milan, Italy
| | - Nicola Valeri
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
- Department of Medicine, The Royal Marsden NHS Trust, London, UK
| |
Collapse
|
179
|
Fu Q, Cheng J, Zhang J, Zhang Y, Chen X, Luo S, Xie J. miR-20b reduces 5-FU resistance by suppressing the ADAM9/EGFR signaling pathway in colon cancer. Oncol Rep 2016; 37:123-130. [PMID: 27878272 DOI: 10.3892/or.2016.5259] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 06/29/2016] [Indexed: 12/14/2022] Open
Abstract
Chemoresistance is a major obstacle to cancer therapy including that of colon cancer (CC). Although the dysregulation of many miRNAs has been implicated in 5-fluorouracil (5-FU) resistance in CC cells, the specific role of miR-20b in chemoresistance has not been documented. In the present study, we first determined the expression of miR-20b by RT-PCR and the levels of a disintegrin and metalloprotease 9 (ADAM9) and epidermal growth factor receptor (EGFR) by western blotting in CC and adjacent non-cancerous tissues from 5-FU-sensitive or -resistant CC patients. Subsequently, 5-FU-sensitive (HCT116) and -resistant (HCT116-R) cells were obtained, and the levels of miR-20b, ADAM9 and EGFR were detected. Meanwhile, the 5-FU resistance of the cells was examined by assessing cell viability (by MTT assay) and apoptosis (by flow cytometry). After transfection of miR-20b into HCT116-R cells, drug resistance was reexamined. We then confirmed the relationship between miR-20b and ADAM9 by luciferase reporter assay. Finally, 5-FU resistance in HCT116 and HCT116-R cells was compared after transfection with miR-20b. Our results showed that miR-20b was expressed at lower levels in the 5-FU-resistant tissues and cells than in the 5-FU-sensitive tissues and cells. The opposite was the case for expression of ADAM9 and EGFR. In addition, we demonstrated that ADAM9 is a direct target of miR-20b and that miR-20b decreased the 5-FU resistance of HCT116-R cells. Our findings suggest that miR-20b reduces 5-FU resistance to induce apoptosis in vitro by suppressing ADAM9/EGFR in CC cells.
Collapse
Affiliation(s)
- Qiang Fu
- Department of Gastrointestinal Surgery Center, Henan Cancer Hospital, Zhengzhou, Henan 450008, P.R. China
| | - Jing Cheng
- Department of Medical Oncology, Zhengzhou Central Hospital, Zhengzhou, Henan 450007, P.R. China
| | - Jindai Zhang
- Department of Gastrointestinal Surgery Center, Henan Cancer Hospital, Zhengzhou, Henan 450008, P.R. China
| | - Yonglei Zhang
- Department of Gastrointestinal Surgery Center, Henan Cancer Hospital, Zhengzhou, Henan 450008, P.R. China
| | - Xiaobing Chen
- Department of Digestion and Medical Oncology, Henan Cancer Hospital, Zhengzhou, Henan 450008, P.R. China
| | - Suxia Luo
- Department of Digestion and Medical Oncology, Henan Cancer Hospital, Zhengzhou, Henan 450008, P.R. China
| | - Jianguo Xie
- Department of Gastrointestinal Surgery Center, Henan Cancer Hospital, Zhengzhou, Henan 450008, P.R. China
| |
Collapse
|
180
|
Cava C, Colaprico A, Bertoli G, Bontempi G, Mauri G, Castiglioni I. How interacting pathways are regulated by miRNAs in breast cancer subtypes. BMC Bioinformatics 2016; 17:348. [PMID: 28185585 PMCID: PMC5123339 DOI: 10.1186/s12859-016-1196-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND An important challenge in cancer biology is to understand the complex aspects of the disease. It is increasingly evident that genes are not isolated from each other and the comprehension of how different genes are related to each other could explain biological mechanisms causing diseases. Biological pathways are important tools to reveal gene interaction and reduce the large number of genes to be studied by partitioning it into smaller paths. Furthermore, recent scientific evidence has proven that a combination of pathways, instead than a single element of the pathway or a single pathway, could be responsible for pathological changes in a cell. RESULTS In this paper we develop a new method that can reveal miRNAs able to regulate, in a coordinated way, networks of gene pathways. We applied the method to subtypes of breast cancer. The basic idea is the identification of pathways significantly enriched with differentially expressed genes among the different breast cancer subtypes and normal tissue. Looking at the pairs of pathways that were found to be functionally related, we created a network of dependent pathways and we focused on identifying miRNAs that could act as miRNA drivers in a coordinated regulation process. CONCLUSIONS Our approach enables miRNAs identification that could have an important role in the development of breast cancer.
Collapse
Affiliation(s)
- Claudia Cava
- Institute of Molecular Bioimaging and Physiology (IBFM), National Research Council (CNR), Milan, Italy
| | - Antonio Colaprico
- Interuniversity Institute of Bioinformatics in Brussels (IB), Brussels, Belgium
- Machine Learning Group, ULB, Brussels, Belgium
| | - Gloria Bertoli
- Institute of Molecular Bioimaging and Physiology (IBFM), National Research Council (CNR), Milan, Italy
| | - Gianluca Bontempi
- Interuniversity Institute of Bioinformatics in Brussels (IB), Brussels, Belgium
- Machine Learning Group, ULB, Brussels, Belgium
| | - Giancarlo Mauri
- Department of Informatics, Systems and Communications, University of Milan–Bicocca, Milan, Italy
| | - Isabella Castiglioni
- Institute of Molecular Bioimaging and Physiology (IBFM), National Research Council (CNR), Milan, Italy
| |
Collapse
|
181
|
Pei YF, Lei Y, Liu XQ. MiR-29a promotes cell proliferation and EMT in breast cancer by targeting ten eleven translocation 1. Biochim Biophys Acta Mol Basis Dis 2016; 1862:2177-2185. [DOI: 10.1016/j.bbadis.2016.08.014] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 08/11/2016] [Accepted: 08/17/2016] [Indexed: 01/07/2023]
|
182
|
Mohammadi A, Mansoori B, Baradaran B. The role of microRNAs in colorectal cancer. Biomed Pharmacother 2016; 84:705-713. [PMID: 27701052 DOI: 10.1016/j.biopha.2016.09.099] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 09/25/2016] [Accepted: 09/26/2016] [Indexed: 01/30/2023] Open
Abstract
Colorectal cancer (CRC) is still the third most common cancer in the world. Mechanism of CRC tumorigenesis has been widely studied at the molecular levels, and has been recently entered the area of microRNAs. MicroRNAs are small 19 to 22 nucleotides of RNA that engage in the regulation of cell differentiation, apoptosis, and cell cycle progression. MicroRNAs are similar to small interfering RNA (siRNA), that post-transcriptionally regulate gene expression and control various cellular mechanisms. They are important factors in the carcinogenesis of CRC, one of the most important factors includes microRNA. MicroRNAs have been linked to CRC development, and these molecules have been recently studied as new potential biomarkers in diagnosis and treatment of CRC. Specific microRNA expression patterns help distinguish CRC from other colon related disease, and may be used as a prognostication factor in patients after treatment with different chemotherapy drugs. More over the newest molecular therapy via tumor suppressor micro RNA replacement can be new insight in molecular therapy of CRC. This review summarizes the potential roles of microRNAs as potential biomarkers for CRC diagnosis, and treatment.
Collapse
Affiliation(s)
- Ali Mohammadi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Mansoori
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
183
|
Strub GM, Kirsh AL, Whipple ME, Kuo WP, Keller RB, Kapur RP, Majesky MW, Perkins JA. Endothelial and circulating C19MC microRNAs are biomarkers of infantile hemangioma. JCI Insight 2016; 1:e88856. [PMID: 27660822 DOI: 10.1172/jci.insight.88856] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Infantile hemangioma (IH) is the most common vascular tumor of infancy, and it uniquely regresses in response to oral propranolol. MicroRNAs (miRNAs) have emerged as key regulators of vascular development and are dysregulated in many disease processes, but the role of miRNAs in IH growth has not been investigated. We report expression of C19MC, a primate-specific megacluster of miRNAs expressed in placenta with rare expression in postnatal tissues, in glucose transporter 1-expressing (GLUT-1-expressing) IH endothelial cells and in the plasma of children with IH. Tissue or circulating C19MC miRNAs were not detectable in patients having 9 other types of vascular anomalies or unaffected children, identifying C19MC miRNAs as the first circulating biomarkers of IH. Levels of circulating C19MC miRNAs correlated with IH tumor size and propranolol treatment response, and IH tissue from children treated with propranolol or from children with partially involuted tumors contained lower levels of C19MC miRNAs than untreated, proliferative tumors, implicating C19MC miRNAs as potential drivers of IH pathogenesis. Detection of C19MC miRNAs in the circulation of infants with IH may provide a specific and noninvasive means of IH diagnosis and identification of candidates for propranolol therapy as well as a means to monitor treatment response.
Collapse
Affiliation(s)
- Graham M Strub
- Department of Otolaryngology - Head and Neck Surgery, University of Washington, Seattle, Washington, USA
| | - Andrew L Kirsh
- Center for Clinical and Translational Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Mark E Whipple
- Department of Otolaryngology - Head and Neck Surgery, University of Washington, Seattle, Washington, USA
| | - Winston P Kuo
- Laboratory for Innovative Translational Technologies, Harvard Medical School, Boston, Massachusetts, USA.,Predicine Inc., Hayward, California, USA
| | - Rachel B Keller
- Department of Pathology, University of Washington, Seattle, Washington, USA
| | - Raj P Kapur
- Department of Laboratories, Seattle Children's Hospital (SCH), Seattle, Washington, USA
| | - Mark W Majesky
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Jonathan A Perkins
- Department of Otolaryngology - Head and Neck Surgery, University of Washington, Seattle, Washington, USA.,Center for Clinical and Translational Research, Seattle Children's Research Institute, Seattle, Washington, USA
| |
Collapse
|
184
|
Lulli V, Buccarelli M, Martini M, Signore M, Biffoni M, Giannetti S, Morgante L, Marziali G, Ilari R, Pagliuca A, Larocca LM, De Maria R, Pallini R, Ricci-Vitiani L. miR-135b suppresses tumorigenesis in glioblastoma stem-like cells impairing proliferation, migration and self-renewal. Oncotarget 2016; 6:37241-56. [PMID: 26437223 PMCID: PMC4741927 DOI: 10.18632/oncotarget.5925] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 09/17/2015] [Indexed: 01/16/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most common and fatal malignant adult primary brain tumor. Currently, the overall prognosis for GBM patients remains poor despite advances in neurosurgery and adjuvant treatments. MicroRNAs (miRNAs) contribute to the pathogenesis of various types of tumor, including GBM. In this study we analyzed the expression of a panel of miRNAs, which are known to be differentially expressed by the brain and GBM tumor, in a collection of patient-derived GBM stem-like cells (GSCs). Notably, the average expression level of miR-135b, was the most downregulated compared to its normal counterpart, suggesting a potential role as anti-oncogene. Restoration of miR-135b in GSCs significantly decreased proliferation, migration and clonogenic abilities. More importantly, miR-135b restoration was able to significantly reduce brain infiltration in mouse models of GBM obtained by intracerebral injection of GSC lines. We identified ADAM12 and confirmed SMAD5 and GSK3β as miR-135b targets and potential mediators of its effects. The whole transcriptome analysis ascertained that the expression of miR-135b downmodulated additional genes driving key pathways in GBM survival and infiltration capabilities. Our results identify a critical role of miR-135b in the regulation of GBM development, suggesting that miR-135b might act as a tumor-suppressor factor and thus providing a potential candidate for the treatment of GBM patients.
Collapse
Affiliation(s)
- Valentina Lulli
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Mariachiara Buccarelli
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Maurizio Martini
- Institute of Anatomic Pathology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Michele Signore
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Mauro Biffoni
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Stefano Giannetti
- Institute of Human Anatomy, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Liliana Morgante
- Institute of Human Anatomy, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giovanna Marziali
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Ramona Ilari
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Alfredo Pagliuca
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Luigi Maria Larocca
- Institute of Anatomic Pathology, Università Cattolica del Sacro Cuore, Rome, Italy
| | | | - Roberto Pallini
- Institute of Neurosurgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Lucia Ricci-Vitiani
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
185
|
Qian L, Lin L, Du Y, Hao X, Zhao Y, Liu X. MicroRNA-588 suppresses tumor cell migration and invasion by targeting GRN in lung squamous cell carcinoma. Mol Med Rep 2016; 14:3021-8. [PMID: 27571908 PMCID: PMC5042737 DOI: 10.3892/mmr.2016.5643] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 08/03/2016] [Indexed: 11/17/2022] Open
Abstract
MicroRNAs (miRNAs) have been demonstrated to be critical in regulating tumor development and progression. The present study investigated the expression of miR-588 using reverse transcription-quantitative polymerase chain reaction analysis in 85 cases of lung squamous cell carcinoma (SCC), and observed the correlation between the expression of miR-588 with clinical pathologic features. The results indicated that the expression of miR-588 was predominantly lower in the tumor samples, compared with non-tumorous samples, and was negatively associated with tumor stages and lymph node invasion. The present study also examined the significance of the expression of miR-588 in SCC using gain- and loss-of-function analyses. It was found that miR-588 inhibited tumor cell migration and invasion. In addition, it was revealed that the overexpression of miR-588 in SCC cells reduced the mRNA and protein levels of progranulin (GRN), whereas miR-588 silencing increased the expression of GRN. A luciferase activity assay showed that miR-588 was able to directly bind to the 3′untranslated region of GRN and regulate its expression. Furthermore, it was found that the expression of GRN was inversely correlated with the expression of miR-588 in 85 paired SCC samples. These results indicated that GRN was involved in the miR-588-mediated suppressive functions in the progression of SCC.
Collapse
Affiliation(s)
- Li Qian
- Department of Geriatrics, First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Longlong Lin
- Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, P.R. China
| | - Yufeng Du
- Department of Geriatrics, First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Xiaoyan Hao
- Department of Geriatrics, First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Yuze Zhao
- Department of Geriatrics, First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Xuejun Liu
- Department of Geriatrics, First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| |
Collapse
|
186
|
Xu H, Zhu J, Hu C, Song H, Li Y. Inhibition of microRNA-181a may suppress proliferation and invasion and promote apoptosis of cervical cancer cells through the PTEN/Akt/FOXO1 pathway. J Physiol Biochem 2016; 72:721-732. [PMID: 27534652 DOI: 10.1007/s13105-016-0511-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 08/01/2016] [Indexed: 02/06/2023]
Abstract
MicroRNAs (miRNAs) are endogenous, non-coding, small RNAs, which play a critical role in regulating varieties of the biological and pathologic processes. miR-181a has been reported to participate in tumorigenic progression. However, the roles of miR-181a in cervical cancer (CC) are still unknown. The aim of this research was to explore the effects and molecular mechanism of miR-181a in CC cells. In this paper, the levels of miR-181a in CC cell lines were determined by real-time PCR. We found that the levels of miR-181a were evidently enhanced in CC cell lines compared with normal cervical epithelium cells. Then, the miR-181a inhibitor was transiently transfected into HeLa and CaSKi cells using Lipofectamine 2000 reagent. Subsequently, the Cell Counting Kit-8 (CCK-8) and BrdU-ELISA results showed that down-regulation of miR-181a inhibited the cell viability and proliferation. Our data also demonstrated that miR-181a inhibitor arrested cell cycle progression of HeLa and CaSKi cells by up-regulation of p21 and p27 expressions. In addition, inhibition of miR-181a promoted apoptosis of HeLa and CaSKi cells due to increasing Bax expression and decreasing Bcl-2 expression. Ultimately, the effect of miR-181a inhibitor on the PTEN/Akt/FOXO1 signaling pathway was investigated by Western blot. From our results, down-regulation of miR-181a increased the expression of PTEN and decreased phosphorylation of Akt and FOXO1. Altogether, miR-181a might be an oncogene in CC cells. The potential mechanism was that inhibition of miR-181a might suppress proliferation and invasion and promote apoptosis of HeLa and CaSKi cells by modulating the PTEN/Akt/FOXO1 signaling pathway.
Collapse
Affiliation(s)
- Hongmei Xu
- Department of Obstetrics, the First Hospital of Jilin University, Changchun, 130021, China
| | - Jihong Zhu
- Section I, Department of General Gynecology, the First Hospital of Jilin University, No. 71, Xinmin Street, Changchun, 130021, China
| | - Cong Hu
- Reproductive Center, the First Hospital of Jilin University, Changchun, 130021, China
| | - Hua Song
- Department of Gynecology and Obstetrics, Qianwei Hospital of Jilin Province, Changchun, 130012, China
| | - Yiyang Li
- Section I, Department of General Gynecology, the First Hospital of Jilin University, No. 71, Xinmin Street, Changchun, 130021, China.
| |
Collapse
|
187
|
Ho TT, He X, Mo YY, Beck WT. Transient resistance to DNA damaging agents is associated with expression of microRNAs-135b and -196b in human leukemia cell lines. INTERNATIONAL JOURNAL OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2016; 7:27-47. [PMID: 27570640 PMCID: PMC4981649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 07/22/2016] [Indexed: 06/06/2023]
Abstract
The acquisition of resistance to anticancer drugs is widely viewed as a key obstacle to successful cancer therapy. However, detailed knowledge of the initial molecular events in the response of cancer cells to these chemotherapeutic and stress responses, and how these lead to the development of chemoresistance, remains incompletely understood. Using microRNA array and washout and rechallenge experiments, we found that short term treatment of leukemia cells with etoposide led a few days later to transient resistance that was associated with a corresponding transient increase in expression of ABCB1 mRNA, as well as microRNA (miR)-135b and miR-196b. This phenomenon was associated with short-term exposure to genotoxic agents, such as etoposide, topotecan, doxorubicin and ionizing radiation, but not agents that do not directly damage DNA. Further, this appeared to be histiotype-specific, and was seen in leukemic cells, but not in cell lines derived from solid tumors. Treatment of leukemic cells with either 5-aza-deoxycytidine or tricostatin A produced similar increased expression of ABCB1, miR-135b, and miR-196b, suggesting a role for epigenetic regulation of this phenomenon. Bioinformatics analyses revealed that CACNA1E, ARHGEF2, PTK2, SIAH1, ARHGAP6, and NME4 may be involved in the initial events in the development of drug resistance following the upregulation of ABCB1, miR-135b and miR-196b. In summary, we report herein that short-term exposure of cells to DNA damaging agents leads to transient drug resistance, which is associated with elevations in ABCB1, miR-135b and miR-196b, and suggests novel components that may be involved in the development of anticancer drug resistance.
Collapse
Affiliation(s)
- Tsui-Ting Ho
- Department of Biopharmaceutical Sciences, College of Pharmacy, University of Illinois at ChicagoChicago 60612, IL, USA
- Cancer Institute, University of Mississippi Medical CenterJackson, 39216, MS, USA
- Department of Radiation Oncology, University of Mississippi Medical CenterJackson, 39216, MS, USA
| | - Xiaolong He
- Department of Biopharmaceutical Sciences, College of Pharmacy, University of Illinois at ChicagoChicago 60612, IL, USA
- Cancer Center, University of Illinois at ChicagoChicago 60612, IL, USA
| | - Yin-Yuan Mo
- Cancer Institute, University of Mississippi Medical CenterJackson, 39216, MS, USA
- Department of Pharmacology and Toxicology, University of Mississippi Medical CenterJackson, 39216, MS, USA
| | - William T Beck
- Department of Biopharmaceutical Sciences, College of Pharmacy, University of Illinois at ChicagoChicago 60612, IL, USA
- Cancer Center, University of Illinois at ChicagoChicago 60612, IL, USA
| |
Collapse
|
188
|
Bobowicz M, Skrzypski M, Czapiewski P, Marczyk M, Maciejewska A, Jankowski M, Szulgo-Paczkowska A, Zegarski W, Pawłowski R, Polańska J, Biernat W, Jaśkiewicz J, Jassem J. Prognostic value of 5-microRNA based signature in T2-T3N0 colon cancer. Clin Exp Metastasis 2016; 33:765-773. [PMID: 27485175 PMCID: PMC5110606 DOI: 10.1007/s10585-016-9810-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 07/06/2016] [Indexed: 01/07/2023]
Abstract
The role of adjuvant chemotherapy in stage T2-T3N0 colon cancer (CC) is controversial and there are currently no reliable factors allowing for individual selection of patients with high risk of relapse for such therapy. We searched for microRNA-based signature with prognostic significance in this group. We assessed by qRT-PCR expression of 754 microRNAs (miRNAs) in tumour samples from 85 stage pT2-3N0 CC patients treated with surgery alone. MiRNA expression was compared between two groups of patients: 40 and 45 patients who did and did not develop distant metastases after resection, respectively. Additionally, miRNA expression was compared between CC and normal colon mucosa samples and between the mismatch repair (MMR) competent and deficient tumours. Low expression of miR-1300 and miR-939 was significantly correlated with shorter distant metastasis-free survival (DMFS) in Cox univariate analysis (p.adjusted = 0.049). The expression signature of five miRNAs (miR-1296, miR-135b, miR-539, miR-572 and miR-185) was found to be prognostic [p = 1.28E−07, HR 8.4 (95 % CI: 3.81–18.52)] for DMFS and cross-validated in a leave-one-out analysis, with the sensitivity and specificity of 74 and 78 %, respectively. The expression of miR-592 was significantly associated with the MMR status (p.adjusted <0.01). The expression of several novel miRNAs were found to be tumour specific, e.g. miR-888, miR-523, miR-18b, miR-302a, miR-423-5p, miR-582-3p (p < 0.05). We developed a miRNA expression signature that may be predictive for the risk of distant relapse in early stage CC and confirmed previously reported association between miR-592 expression and MMR status.
Collapse
Affiliation(s)
- Maciej Bobowicz
- Department of Surgical Oncology, Medical University of Gdansk, Gdansk, Poland
| | - Marcin Skrzypski
- Department of Oncology and Radiotherapy, Medical University of Gdansk, 7 Dębinki St., 80-211, Gdańsk, Poland.
| | - Piotr Czapiewski
- Department of Pathomorfology, Medical University of Gdansk, Gdańsk, Poland
| | - Michał Marczyk
- Institute of Automatic Control, Data Mining Group, Silesian University of Technology, Gliwice, Poland
| | | | - Michał Jankowski
- Department and Clinic of Oncologic Surgery, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | | | - Wojciech Zegarski
- Department and Clinic of Oncologic Surgery, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Ryszard Pawłowski
- Institute of Forensic Medicine, Medical University of Gdansk, Gdańsk, Poland
| | - Joanna Polańska
- Institute of Automatic Control, Data Mining Group, Silesian University of Technology, Gliwice, Poland
| | - Wojciech Biernat
- Department of Pathomorfology, Medical University of Gdansk, Gdańsk, Poland
| | - Janusz Jaśkiewicz
- Department of Surgical Oncology, Medical University of Gdansk, Gdansk, Poland
| | - Jacek Jassem
- Department of Oncology and Radiotherapy, Medical University of Gdansk, 7 Dębinki St., 80-211, Gdańsk, Poland
| |
Collapse
|
189
|
Bi D, Ning H, Liu S, Que X, Ding K. miR-1301 promotes prostate cancer proliferation through directly targeting PPP2R2C. Biomed Pharmacother 2016; 81:25-30. [DOI: 10.1016/j.biopha.2016.03.043] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 03/28/2016] [Accepted: 03/28/2016] [Indexed: 01/02/2023] Open
|
190
|
Elbediwy A, Vincent-Mistiaen ZI, Spencer-Dene B, Stone RK, Boeing S, Wculek SK, Cordero J, Tan EH, Ridgway R, Brunton VG, Sahai E, Gerhardt H, Behrens A, Malanchi I, Sansom OJ, Thompson BJ. Integrin signalling regulates YAP and TAZ to control skin homeostasis. Development 2016; 143:1674-87. [PMID: 26989177 PMCID: PMC4874484 DOI: 10.1242/dev.133728] [Citation(s) in RCA: 199] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 03/09/2016] [Indexed: 12/14/2022]
Abstract
The skin is a squamous epithelium that is continuously renewed by a population of basal layer stem/progenitor cells and can heal wounds. Here, we show that the transcription regulators YAP and TAZ localise to the nucleus in the basal layer of skin and are elevated upon wound healing. Skin-specific deletion of both YAP and TAZ in adult mice slows proliferation of basal layer cells, leads to hair loss and impairs regeneration after wounding. Contact with the basal extracellular matrix and consequent integrin-Src signalling is a key determinant of the nuclear localisation of YAP/TAZ in basal layer cells and in skin tumours. Contact with the basement membrane is lost in differentiating daughter cells, where YAP and TAZ become mostly cytoplasmic. In other types of squamous epithelia and squamous cell carcinomas, a similar control mechanism is present. By contrast, columnar epithelia differentiate an apical domain that recruits CRB3, Merlin (also known as NF2), KIBRA (also known as WWC1) and SAV1 to induce Hippo signalling and retain YAP/TAZ in the cytoplasm despite contact with the basal layer extracellular matrix. When columnar epithelial tumours lose their apical domain and become invasive, YAP/TAZ becomes nuclear and tumour growth becomes sensitive to the Src inhibitor Dasatinib.
Collapse
Affiliation(s)
- Ahmed Elbediwy
- The Francis Crick Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | | | | | - Richard K Stone
- The Francis Crick Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Stefan Boeing
- The Francis Crick Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Stefanie K Wculek
- The Francis Crick Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Julia Cordero
- The Beatson Institute, Switchback Rd, Bearsden, Glasgow G61 1BD, UK
| | - Ee H Tan
- The Beatson Institute, Switchback Rd, Bearsden, Glasgow G61 1BD, UK
| | - Rachel Ridgway
- Edinburgh Cancer Research Centre, University of Edinburgh, Western General Hospital, Crewe Road South, Edinburgh EH4 2XR, UK
| | - Val G Brunton
- Edinburgh Cancer Research Centre, University of Edinburgh, Western General Hospital, Crewe Road South, Edinburgh EH4 2XR, UK
| | - Erik Sahai
- The Francis Crick Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Holger Gerhardt
- The Francis Crick Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Axel Behrens
- The Francis Crick Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Ilaria Malanchi
- The Francis Crick Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Owen J Sansom
- The Beatson Institute, Switchback Rd, Bearsden, Glasgow G61 1BD, UK
| | - Barry J Thompson
- The Francis Crick Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| |
Collapse
|
191
|
Azizian A, Gruber J, Ghadimi BM, Gaedcke J. MicroRNA in rectal cancer. World J Gastrointest Oncol 2016; 8:416-426. [PMID: 27190581 PMCID: PMC4865709 DOI: 10.4251/wjgo.v8.i5.416] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Revised: 12/01/2015] [Accepted: 03/09/2016] [Indexed: 02/05/2023] Open
Abstract
In rectal cancer, one of the most common cancers worldwide, the proper staging of the disease determines the subsequent therapy. For those with locally advanced rectal cancer, a neoadjuvant chemoradiotherapy (CRT) is recommended before any surgery. However, response to CRT ranges from complete response (responders) to complete resistance (non-responders). To date we are not able to separate in advance the first group from the second, due to the absence of a valid biomarker. Therefore all patients receive the same therapy regardless of whether they reap benefits. On the other hand almost all patients receive a surgical resection after the CRT, although a watch-and-wait procedure or an endoscopic resection might be sufficient for those who responded well to the CRT. Being highly conserved regulators of gene expression, microRNAs (miRNAs) seem to be promising candidates for biomarkers. Many studies have been analyzing the miRNAs expressed in rectal cancer tissue to determine a specific miRNA profile for the ailment. Unfortunately, there is only a small overlap of identified miRNAs between different studies, posing the question as to whether different methods or differences in tissue storage may contribute to that fact or if the results simply are not reproducible, due to unknown factors with undetected influences on miRNA expression. Other studies sought to find miRNAs which correlate to clinical parameters (tumor grade, nodal stage, metastasis, survival) and therapy response. Although several miRNAs seem to have an impact on the response to CRT or might predict nodal stage, there is still only little overlap between different studies. We here aimed to summarize the current literature on rectal cancer and miRNA expression with respect to the different relevant clinical parameters.
Collapse
|
192
|
miR-135b, a key regulator of malignancy, is linked to poor prognosis in human myxoid liposarcoma. Oncogene 2016; 35:6177-6188. [PMID: 27157622 PMCID: PMC5143367 DOI: 10.1038/onc.2016.157] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 03/03/2016] [Accepted: 03/25/2016] [Indexed: 12/12/2022]
Abstract
Myxoid/round cell (RC) liposarcomas (MLS) were originally classified into two distinct populations based on histological differences; a myxoid component and a RC component. It is notable that, depending on an increase of the RC component, the prognosis significantly differs. Hence, the RC component is associated with metastasis and poor prognosis. However, the molecular mechanisms that contribute to the malignancy of the RC component still remain largely unknown. Here, we report microRNA-135b (miR-135b), a key regulator of the malignancy, highly expressed in the RC component and promoting MLS cell invasion in vitro and metastasis in vivo through the direct suppression of thrombospondin 2 (THBS2). Decreased THBS2 expression by miR-135b increases the total amount of matrix metalloproteinase 2 (MMP2) and influences cellular density and an extracellular matrix structure, thereby resulting in morphological change in tumor. The expression levels of miR-135b and THBS2 significantly correlated with a poor prognosis in MLS patients. Overall, our study reveals that the miR-135b/THBS2/MMP2 axis is tightly related to MLS pathophysiology and has an important clinical implication. This work provides noteworthy evidence for overcoming metastasis and improving patient outcomes, and sheds light on miR-135b and THBS2 as novel molecular targets for diagnosis and therapy in MLS.
Collapse
|
193
|
Abstract
Colorectal cancer (CRC) is the second most common cancer in women and the third most common in men globally. CRC arises from one or a combination of chromosomal instability, CpG island methylator phenotype, and microsatellite instability. Genetic instability is usually caused by aneuploidy and loss of heterozygosity. Mutations in the tumor suppressor or cell cycle genes may also lead to cellular transformation. Similarly, epigenetic and/or genetic alterations resulting in impaired cellular pathways, such as DNA repair mechanism, may lead to microsatellite instability and mutator phenotype. Non-coding RNAs, more importantly microRNAs and long non-coding RNAs have also been implicated at various CRC stages. Understanding the specific mechanisms of tumorigenesis and the underlying genetic and epigenetic traits is critical in comprehending the disease phenotype. This paper reviews these mechanisms along with the roles of various non-coding RNAs in CRCs.
Collapse
Affiliation(s)
- Kanwal Tariq
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi 74800, Pakistan
| | - Kulsoom Ghias
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi 74800, Pakistan
| |
Collapse
|
194
|
Abstract
Colorectal cancer (CRC) is the second most common cancer in women and the third most common in men globally. CRC arises from one or a combination of chromosomal instability, CpG island methylator phenotype, and microsatellite instability. Genetic instability is usually caused by aneuploidy and loss of heterozygosity. Mutations in the tumor suppressor or cell cycle genes may also lead to cellular transformation. Similarly, epigenetic and/or genetic alterations resulting in impaired cellular pathways, such as DNA repair mechanism, may lead to microsatellite instability and mutator phenotype. Non-coding RNAs, more importantly microRNAs and long non-coding RNAs have also been implicated at various CRC stages. Understanding the specific mechanisms of tumorigenesis and the underlying genetic and epigenetic traits is critical in comprehending the disease phenotype. This paper reviews these mechanisms along with the roles of various non-coding RNAs in CRCs.
Collapse
Affiliation(s)
- Kanwal Tariq
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi 74800, Pakistan
| | - Kulsoom Ghias
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi 74800, Pakistan
| |
Collapse
|
195
|
Zhao S, Tang H, Yan D, Fan J, Sun H, Wen Y, Yu F, Cui F, Zhang D, Xue Y, Liu C, Yue B, Chen J, Wang J, Wang X, Zhang M, Yu Y, Jiang W, Liu X, Mi Y, Zhou Z, Qin X, Peng Z. DDA1 promotes stage IIB-IIC colon cancer progression by activating NFκB/CSN2/GSK-3β signaling. Oncotarget 2016; 7:19794-812. [PMID: 26942699 PMCID: PMC4991419 DOI: 10.18632/oncotarget.7847] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 02/06/2016] [Indexed: 02/05/2023] Open
Abstract
Conventional high-recurrence risk factors are not sufficient to predict post-operative risk of tumor recurrence or sensitivity to 5-fluorouracil (5-FU)-based chemotherapy for stage II colon cancer. DDA1, an evolutionarily conserved gene located at 19p13.11, may be involved in the activation of nuclear factor kappaB (NFκB). This study aimed to investigate whether DDA1 contributes to tumorigenesis and progression of stage II colon cancer via activation of the NFκB pathway. We found that positive expression of DDA1 alone or in combination with p65 nuclear translocation correlated with increased risk of tumor recurrence in patients with stage IIB-IIC colon cancer. DDA1 overexpression in colon cancer lines promoted cell proliferation, facilitated cell cycle progression, inhibited 5-FU-induced apoptosis, enhanced invasion, and induced the epithelial-mesenchymal transition. Suppression of DDA1 inhibited tumor progression, and reduced tumor growth in vivo. We also demonstrated that DDA1-mediated tumor progression is associated with the activation of the NFκB/COP9 signalosome 2(CSN2)/glycogen synthase kinase3β (GSK3β) pathway. These results indicate that DDA1 promotes colon cancer progression through activation of NFκB/CSN2/GSK3β signaling. DDA1, together with NFκB activation status, may serve as a sensitive biomarker for tumor recurrence risk and prognosis in patients with stage IIB-IIC colon cancers.
Collapse
Affiliation(s)
- Senlin Zhao
- Department of General Surgery, Shanghai First People's Hospital, Affiliated to Shanghai Jiao Tong University, Shanghai, China
| | - Huamei Tang
- Department of Pathology, Shanghai First People's Hospital, Affiliated to Shanghai Jiao Tong University, Shanghai, China
| | - Dongwang Yan
- Department of General Surgery, Shanghai First People's Hospital, Affiliated to Shanghai Jiao Tong University, Shanghai, China
| | - Junwei Fan
- Department of General Surgery, Shanghai First People's Hospital, Affiliated to Shanghai Jiao Tong University, Shanghai, China
| | - Hongcheng Sun
- Department of General Surgery, Shanghai First People's Hospital, Affiliated to Shanghai Jiao Tong University, Shanghai, China
| | - Yugang Wen
- Department of General Surgery, Shanghai First People's Hospital, Affiliated to Shanghai Jiao Tong University, Shanghai, China
| | - Fudong Yu
- Department of General Surgery, Shanghai First People's Hospital, Affiliated to Shanghai Jiao Tong University, Shanghai, China
| | - Feifei Cui
- Department of General Surgery, Shanghai First People's Hospital, Affiliated to Shanghai Jiao Tong University, Shanghai, China
| | - Dongyuan Zhang
- Department of General Surgery, Shanghai First People's Hospital, Affiliated to Shanghai Jiao Tong University, Shanghai, China
| | - Yingming Xue
- Department of General Surgery, Shanghai First People's Hospital, Affiliated to Shanghai Jiao Tong University, Shanghai, China
| | - Chenchen Liu
- Department of General Surgery, Shanghai First People's Hospital, Affiliated to Shanghai Jiao Tong University, Shanghai, China
| | - Ben Yue
- Department of General Surgery, Shanghai First People's Hospital, Affiliated to Shanghai Jiao Tong University, Shanghai, China
| | - Jian Chen
- Department of General Surgery, Shanghai First People's Hospital, Affiliated to Shanghai Jiao Tong University, Shanghai, China
| | - Jingtao Wang
- Department of General Surgery, Shanghai First People's Hospital, Affiliated to Shanghai Jiao Tong University, Shanghai, China
| | - Xiao Wang
- Department of General Surgery, Shanghai First People's Hospital, Affiliated to Shanghai Jiao Tong University, Shanghai, China
| | - Meng Zhang
- Department of Pathology, Fudan University Affiliated Shanghai Cancer Center, Shanghai, China
| | - Yang Yu
- Department of General Surgery, Shanghai First People's Hospital, Affiliated to Shanghai Jiao Tong University, Shanghai, China
| | - Weiliang Jiang
- Department of Gastroenterology, Shanghai First People's Hospital, Affiliated to Shanghai Jiaotong University, Shanghai, China
| | - Xisheng Liu
- Department of General Surgery, Shanghai First People's Hospital, Affiliated to Shanghai Jiao Tong University, Shanghai, China
| | - Yushuai Mi
- Department of General Surgery, Shanghai First People's Hospital, Affiliated to Shanghai Jiao Tong University, Shanghai, China
| | - Zongguang Zhou
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Xuebin Qin
- Department of Neuroscience, Temple University School of Medicine, Philadelphia, PA, USA
| | - Zhihai Peng
- Department of General Surgery, Shanghai First People's Hospital, Affiliated to Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
196
|
Zheng K, Zhou X, Yu J, Li Q, Wang H, Li M, Shao Z, Zhang F, Luo Y, Shen Z, Chen F, Shi F, Cui C, Zhao D, Lin Z, Zheng W, Zou Z, Huang Z, Zhao L. Epigenetic silencing of miR-490-3p promotes development of an aggressive colorectal cancer phenotype through activation of the Wnt/β-catenin signaling pathway. Cancer Lett 2016; 376:178-87. [PMID: 27037061 DOI: 10.1016/j.canlet.2016.03.024] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 02/29/2016] [Accepted: 03/12/2016] [Indexed: 02/08/2023]
Abstract
The Wnt/β-catenin pathway is known to contribute to colorectal cancer (CRC) progression, although little is known about the contribution of β-catenin on this process. We investigated the role of miR-490-3p, which was recently reported to suppress tumorigenesis through its effect on Wnt/β-catenin signaling. We found that hypermethylation of the miR-490-3p promoter down-regulates miR-490-3p expression in CRC tissue. Gain- and loss-of-function assays in vitro and in vivo reveal that miR-490-3p suppresses cancer cell proliferation by inducing apoptosis and inhibits cell invasiveness by repressing the initiation of epithelial-to-mesenchymal transition (EMT), a key mechanism in cancer cell invasiveness and metastasis. The frequently rearranged in advanced T-cell lymphomas (FRAT1) protein was identified as a direct target of miR-490-3p and contributes to its tumor-suppressing effects. miR-490-3p appears to have an inhibitory effect on β-catenin expression in nuclear fractions of CRC cells, whereas FRAT1 expression is associated with the accumulation of β-catenin in the nucleus of cells, which could be weakened by transfection with miR-490-3p. Our findings suggest that the miR-490-3p/FRAT1/β-catenin axis is important in CRC progression and provides new insight into the molecular mechanisms underlying CRC. They may help to confirm the pathway driving CRC aggressiveness and serve for the development of a novel miRNA-targeting anticancer therapy.
Collapse
Affiliation(s)
- Kehong Zheng
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xinying Zhou
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jinlong Yu
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Qiang Li
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Hui Wang
- Department of Medical Oncology, Affiliated Tumor Hospital of Guangzhou Medical University, Guangzhou, China
| | - Mingyi Li
- Radiotherapy Department, Affiliated Tumor Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ziyun Shao
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Feifei Zhang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yuhao Luo
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zetao Shen
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Fei Chen
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Fujun Shi
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Chunhui Cui
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Dachuan Zhao
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Zhiqun Lin
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Wei Zheng
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Zhaowei Zou
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Zonghai Huang
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| | - Liang Zhao
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
| |
Collapse
|
197
|
Chi Y, Zhou D. MicroRNAs in colorectal carcinoma--from pathogenesis to therapy. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2016; 35:43. [PMID: 26964533 PMCID: PMC4787051 DOI: 10.1186/s13046-016-0320-4] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 03/07/2016] [Indexed: 12/12/2022]
Abstract
Background Acting as inflammatory mediators, tumor oncogenes or suppressors, microRNAs are involved in cell survival, death, epithelial–mesenchymal transition and metastasis, etc. Investigating the communication between microRNAs and tumorigenesis is critical to our understanding of the pathogenesis of multiple disease states. Main body Currently, colorectal carcinoma (CRC), one of the most common malignancies worldwide, has a poor prognosis due to lack of an effective therapeutic option. Increasing evidence has identified altered profiles and regulatory potential of microRNAs in conditions related to environmentally-caused colorectal inflammation and colitis-associated cancer. Many studies have shed light on a more thorough understanding of the function and distribution of microRNAs in CRC initiation and emergence. However, the molecular mechanisms by which microRNAs modulate cellular processes still need to be further elucidated and may offer a foundation for evaluating microRNA-based therapeutic potential for CRC in both animal models and clinical trials. Conclusion In this review, the roles and mechanisms of microRNAs involved in CRC from pathogenesis to therapy are summarized and discussed, which may provide more useful hints for CRC prevention and therapy.
Collapse
Affiliation(s)
- Yudan Chi
- Vaccine Research Center, Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Dongming Zhou
- Vaccine Research Center, Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
198
|
Hua K, Jin J, Zhao J, Song J, Song H, Li D, Maskey N, Zhao B, Wu C, Xu H, Fang L. miR-135b, upregulated in breast cancer, promotes cell growth and disrupts the cell cycle by regulating LATS2. Int J Oncol 2016; 48:1997-2006. [PMID: 26934863 DOI: 10.3892/ijo.2016.3405] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 01/27/2016] [Indexed: 11/05/2022] Open
Abstract
Dysregulation of microRNAs (miRNAs) plays a critical role in cancer progression. They can act as either oncogenes or tumor suppressor genes in human cancer. The purpose of this study was to investigate the crucial role of miR-135b in breast cancer and to validate whether miR-135b could regulate proliferation of breast cancer cells by effecting specific targets in the Hippo pathway. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) was carried out to quantify the expression levels of miR-135b in both breast cancer tissues and cell lines. To characterize the function of miR-135b, MTT assays, colony formation assays, cell migration assays, cell invasion assays, and cell cycle assays were used. Luciferase reporter assays were performed to validate the regulation of a putative target of miR-135b, in corroboration with western blot assays. Finally, we verified the changes of cellular function after transfection of LATS2-siRNA. Our experiments indicate that expression of miR-135b was commonly upregulated in breast cancer specimens and breast cancer cells when compared with that in adjacent normal tissues and non-malignant breast epithelial cells. Enforced expression of miR-135b can regulate cellular proliferation, migration and invasion as well as disrupt the cell cycle of breast cancer cells. Luciferase assays revealed that miR-135b directly bound to the 3'-untranslated region (3'-UTR) of LATS2 (large tumor suppressor kinase 2), a critical gene in the Hippo pathway. Western blot analysis verified that miR-135b regulated the expression of LATS2 at protein levels. Further study demonstrated that the downstream gene of LATS2 in the Hippo pathway, such as cyclin-dependent kinase 2 (CDK2) and Phospho-Yes-associated protein (p-YAP), can also be regulated by miR-135b and LATS2 axis. Knockdown of endogenous LATS2 can mimic the result of miR-135b up-regulation in breast cancer. Taken together, our findings reveal that the miR-135b and LATS2 axis may be a potential therapeutic target for breast cancer in the future.
Collapse
Affiliation(s)
- Kaiyao Hua
- Department of Breast and Thyroid Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Jiali Jin
- Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Junyong Zhao
- Department of Breast and Thyroid Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Jialu Song
- Department of Breast and Thyroid Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Hongming Song
- Department of Breast and Thyroid Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Dengfeng Li
- Department of Breast and Thyroid Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Niraj Maskey
- Department of Breast and Thyroid Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Bingkun Zhao
- Department of Breast and Thyroid Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Chenyang Wu
- Department of Breast and Thyroid Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Hui Xu
- Department of Breast and Thyroid Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Lin Fang
- Department of Breast and Thyroid Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| |
Collapse
|
199
|
miR-92b regulates glioma cells proliferation, migration, invasion, and apoptosis via PTEN/Akt signaling pathway. J Physiol Biochem 2016; 72:201-11. [PMID: 26893028 DOI: 10.1007/s13105-016-0470-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Accepted: 02/03/2016] [Indexed: 01/15/2023]
Abstract
Glioblastoma (GBM) is a highly invasive malignant primary brain tumor with neoplastic growth. Despite the progresses made in surgery, chemotherapy, and radiation in recent decade, the prognosis of patients with gliomas remains poor and the average survival time of patients suffering from glioblastoma is still short. As a potential therapy strategy, microRNAs have been considered as new targets for possible cancer treatment. In this study, we found that the miR-92b inhibitors (miR-92b-I) could inhibit the proliferation, migration, invasion, and promote the apoptosis of glioma cells. As a predicted target of miR-92b, phosphatase and tensin homolog (PTEN), also elevated at both mRNA and protein levels. Moreover, the Akt phosphorylation was consistently inhibited. The rescue experiment with miR-92b and PTEN double knockdown resulted in partial reversion of miR-92b-I-induced phenotypes. Taken together, our findings indicated that miR-92b-I could restrain the proliferation, invasion, migration, and stimulate apoptosis of glioma cells by targeting PTEN/Akt signaling pathway. Further investigations will focus on antitumor effect of miR‑92b-I in glioma treatment.
Collapse
|
200
|
Geng J, Liu Y, Jin Y, Tai J, Zhang J, Xiao X, Chu P, Yu Y, Wang SC, Lu J, Han S, Shi J, Guo Y, Ni X. MicroRNA-365a-3p promotes tumor growth and metastasis in laryngeal squamous cell carcinoma. Oncol Rep 2016; 35:2017-26. [PMID: 26883008 DOI: 10.3892/or.2016.4617] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 11/10/2015] [Indexed: 11/06/2022] Open
Abstract
MicroRNAs (miRNAs) are increasingly recognized as oncogenes or tumor suppressors in laryngeal squamous cell carcinoma (LSCC). In this study, we analyzed the roles of miR-365a-3p, miR-143-5p, and miR-494-3p in LSCC using Annexin V/propidium iodide double staining and flow cyto-metry, along with a Transwell migration and invasion assay. The results showed that miR-365a-3p inhibitor significantly facilitated cell apoptosis and suppressed cell cycle progression, migration, and invasion in Hep-2 cells. However, miR-143-5p and miR-494-3p had no such influences. We then investigated the role of miR-365a-3p in LSCC in vivo and found that miR-365a-3p inhibitor suppressed LSCC xenograft tumor growth and metastasis in xenograft mouse models. Moreover, miR-365a-3p inhibitor significantly decreased the expression of p-AKT (Ser473), which indicated that miR-365a-3p can mediate PI3K/AKT signaling pathway transduction via p-AKT (Ser473) in LSCC. The data suggest that miR-365a-3p may act as an oncomiR and may promote growth and metastasis in LSCC via the PI3K/AKT signaling pathway, and thus miR‑365a-3p may be a potential therapeutic target for treatment of LSCC.
Collapse
Affiliation(s)
- Jiangqiao Geng
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing 100045, P.R. China
| | - Yuanhu Liu
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing 100045, P.R. China
| | - Yaqiong Jin
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing 100045, P.R. China
| | - Jun Tai
- Department of Otolaryngology, Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, Beijing 100045, P.R. China
| | - Jie Zhang
- Department of Otolaryngology, Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, Beijing 100045, P.R. China
| | - Xiao Xiao
- Department of Otolaryngology, Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, Beijing 100045, P.R. China
| | - Ping Chu
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing 100045, P.R. China
| | - Yongbo Yu
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing 100045, P.R. China
| | - Sheng Cai Wang
- Department of Otolaryngology, Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, Beijing 100045, P.R. China
| | - Jie Lu
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing 100045, P.R. China
| | - Shujing Han
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing 100045, P.R. China
| | - Jin Shi
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing 100045, P.R. China
| | - Yongli Guo
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing 100045, P.R. China
| | - Xin Ni
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing 100045, P.R. China
| |
Collapse
|