151
|
Qiu X, Liang X, Li H, Sun R. LPS-induced vein endothelial cell injury and acute lung injury have Btk and Orai 1 to regulate SOC-mediated calcium influx. Int Immunopharmacol 2021; 90:107039. [PMID: 33127334 DOI: 10.1016/j.intimp.2020.107039] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 09/06/2020] [Accepted: 09/21/2020] [Indexed: 12/25/2022]
Abstract
Patients with sepsis and sepsis-related complications have a high mortality. Endothelial cell dysfunction plays a central role in sepsis pathophysiological process. In sepsis patients, endothelial cell apoptosis is associated with intracellular calcium overload. Multiple functions in the apoptotic process have been found to be regulated by calcium signaling. Our previous work had proved that LPS-induced cell injury was associated with store-operated calcium (SOC) entry mediated by stromal interaction molecule-1 (STIM 1) in Human umbilical vein endothelial cells (HUVEC), but the underlying molecular mechanism has not been adequately defined. Here we report that the LPS-induced cell injury is related to the calcium overload in HUVEC. SOC entry mediated by calcium release-activated calcium modulator (Orai) 1 and transient receptor potential canonical (TRPC) 1 was associated with LPS-induced calcium overload and cell apoptosis. Bruton's tyrosine kinase (Btk)/Phospholipase C(PLC) γ/inositol 1,4,5-triphosphate receptor (IP3R) played a major role in regulating calcium overload in LPS-induced HUVEC. Knockdown of Btk markedly inhibited the expressions of Orai 1 and its downstream molecule IP3R but not that of TRPC1 in LPS-induced HUVEC. In mice, knockdown of Btk and Orai 1 inhibited LPS-induced calcium overload, pulmonary vascular endothelial cell (VEC) injury and acute lung injury. These findings demonstrated that Btk acts as a regulator of calcium-dependent signaling, especially in the Orai 1-mediated SOC entry of the LPS-induced VEC.
Collapse
Affiliation(s)
- Xiaochen Qiu
- Department of General Surgery, the Eighth Medical Center, Chinese PLA (People's Liberation Army) General Hospital, Beijing 100091, China
| | - Xiaobo Liang
- Department of Dermatology, the Eighth Medical Center, Chinese PLA (People's Liberation Army) General Hospital, Beijing 100091, China
| | - Hengyu Li
- Department of Breast and Thyroid Surgery, Changhai Hospital, the Second Military Medical University, Shanghai 200433, China
| | - Rongju Sun
- Department of Emergency, the First Medical Center, Chinese PLA (People's Liberation Army) General Hospital, Beijing 100853, China.
| |
Collapse
|
152
|
Carrington J, Andersen MK, Brzezinski K, MacMillan HA. Hyperkalaemia, not apoptosis, accurately predicts insect chilling injury. Proc Biol Sci 2020; 287:20201663. [PMID: 33323084 DOI: 10.1098/rspb.2020.1663] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
There is a growing appreciation that insect distribution and abundance are associated with the limits of thermal tolerance, but the physiology underlying thermal tolerance remains poorly understood. Many insects, like the migratory locust (Locusta migratoria), suffer a loss of ion and water balance leading to hyperkalaemia (high extracellular [K+]) in the cold that indirectly causes cell death. Cells can die in several ways under stress, and how they die is of critical importance to identifying and understanding the nature of thermal adaptation. Whether apoptotic or necrotic cell death pathways are responsible for low-temperature injury is unclear. Here, we use a caspase-3 specific assay to indirectly quantify apoptotic cell death in three locust tissues (muscle, nerves and midgut) following prolonged chilling and recovery from an injury-inducing cold exposure. Furthermore, we obtain matching measurements of injury, extracellular [K+] and muscle caspase-3 activity in individual locusts to gain further insight into the mechanistic nature of chilling injury. We found a significant increase in muscle caspase-3 activity, but no such increase was observed in either nervous or gut tissue from the same animals, suggesting that chill injury primarily relates to muscle cell death. Levels of chilling injury measured at the whole animal level, however, were strongly correlated with the degree of haemolymph hyperkalaemia, and not apoptosis. These results support the notion that cold-induced ion balance disruption triggers cell death but also that apoptosis is not the main form of cell damage driving low-temperature injury.
Collapse
|
153
|
Abstract
Despite being regarded as an extracellular bacterium, the pathogen Staphylococcus aureus can invade and survive within human cells. The intracellular niche is considered a hideout from the host immune system and antibiotic treatment and allows bacterial proliferation. The opportunistic human pathogen Staphylococcus aureus causes serious infectious diseases that range from superficial skin and soft tissue infections to necrotizing pneumonia and sepsis. While classically regarded as an extracellular pathogen, S. aureus is able to invade and survive within human cells. Host cell exit is associated with cell death, tissue destruction, and the spread of infection. The exact molecular mechanism employed by S. aureus to escape the host cell is still unclear. In this study, we performed a genome-wide small hairpin RNA (shRNA) screen and identified the calcium signaling pathway as being involved in intracellular infection. S. aureus induced a massive cytosolic Ca2+ increase in epithelial host cells after invasion and intracellular replication of the pathogen. This was paralleled by a decrease in endoplasmic reticulum Ca2+ concentration. Additionally, calcium ions from the extracellular space contributed to the cytosolic Ca2+ increase. As a consequence, we observed that the cytoplasmic Ca2+ rise led to an increase in mitochondrial Ca2+ concentration, the activation of calpains and caspases, and eventually to cell lysis of S. aureus-infected cells. Our study therefore suggests that intracellular S. aureus disturbs the host cell Ca2+ homeostasis and induces cytoplasmic Ca2+ overload, which results in both apoptotic and necrotic cell death in parallel or succession.
Collapse
|
154
|
Pore-forming proteins: From defense factors to endogenous executors of cell death. Chem Phys Lipids 2020; 234:105026. [PMID: 33309552 DOI: 10.1016/j.chemphyslip.2020.105026] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 12/07/2020] [Accepted: 12/07/2020] [Indexed: 02/06/2023]
Abstract
Pore-forming proteins (PFPs) and small antimicrobial peptides (AMPs) represent a large family of molecules with the common ability to punch holes in cell membranes to alter their permeability. They play a fundamental role as infectious bacteria's defensive tools against host's immune system and as executors of endogenous machineries of regulated cell death in eukaryotic cells. Despite being highly divergent in primary sequence and 3D structure, specific folds of pore-forming domains have been conserved. In fact, pore formation is considered an ancient mechanism that takes place through a general multistep process involving: membrane partitioning and insertion, oligomerization and pore formation. However, different PFPs and AMPs assemble and form pores following different mechanisms that could end up either in the formation of protein-lined or protein-lipid pores. In this review, we analyze the current findings in the mechanism of action of different PFPs and AMPs that support a wide role of membrane pore formation in nature. We also provide the newest insights into the development of state-of-art techniques that have facilitated the characterization of membrane pores. To understand the physiological role of these peptides/proteins or develop clinical applications, it is essential to uncover the molecular mechanism of how they perforate membranes.
Collapse
|
155
|
Atale N, Yadav D, Rani V, Jin JO. Pathophysiology, Clinical Characteristics of Diabetic Cardiomyopathy: Therapeutic Potential of Natural Polyphenols. Front Nutr 2020; 7:564352. [PMID: 33344490 PMCID: PMC7744342 DOI: 10.3389/fnut.2020.564352] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 10/27/2020] [Indexed: 12/20/2022] Open
Abstract
Diabetic cardiomyopathy (DCM) is an outcome of disturbances in metabolic activities through oxidative stress, local inflammation, and fibrosis, as well as a prime cause of fatality worldwide. Cardiovascular disorders in diabetic individuals have become a challenge in diagnosis and formulation of treatment prototype. It is necessary to have a better understanding of cellular pathophysiology that reveal the therapeutic targets and prevent the progression of cardiovascular diseases due to hyperglycemia. Critical changes in levels of collagen and integrin have been observed in the extracellular matrix of heart, which was responsible for cardiac remodeling in diabetic patients. This review explored the understanding of the mechanisms of how the phytochemicals provide cardioprotection under diabetes along with the caveats and provide future perspectives on these agents as prototypes for the development of drugs for managing DCM. Thus, here we summarized the effect of various plant extracts and natural polyphenols tested in preclinical and cell culture models of diabetic cardiomyopathy. Further, the potential use of selected polyphenols that improved the therapeutic efficacy against diabetic cardiomyopathy is also illustrated.
Collapse
Affiliation(s)
- Neha Atale
- Jaypee Institute of Information Technology, Noida, India
| | - Dhananjay Yadav
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
| | - Vibha Rani
- Jaypee Institute of Information Technology, Noida, India
| | - Jun-O Jin
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, South Korea
| |
Collapse
|
156
|
Kiełbik A, Szlasa W, Michel O, Szewczyk A, Tarek M, Saczko J, Kulbacka J. In Vitro Study of Calcium Microsecond Electroporation of Prostate Adenocarcinoma Cells. Molecules 2020; 25:E5406. [PMID: 33227916 PMCID: PMC7699241 DOI: 10.3390/molecules25225406] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/11/2020] [Accepted: 11/14/2020] [Indexed: 02/08/2023] Open
Abstract
Electroporation, applied as a non-thermal ablation method has proven to be effective for focal prostate treatment. In this study, we performed pre-clinical research, which aims at exploring the specific impact of this so-called calcium electroporation on prostate cancer. First, in an in-vitro study of DU 145 cell lines, microsecond electroporation (μsEP) parameters were optimized. We determined hence the voltage that provides both high permeability and viability of these prostate cancer cells. Subsequently, we compared the effect of μsEP on cells' viability with and without calcium administration. For high-voltage pulses, the cell death's mechanism was evaluated using flow-cytometry and confocal laser microscopy. For lower-voltage pulses, the influence of electroporation on prostate cancer cell mobility was studied using scratch assays. Additionally, we applied calcium-binding fluorescence dye (Fluo-8) to observe the calcium uptake dynamic with the fluorescence microscopy. Moreover, the molecular dynamics simulation visualized the process of calcium ions inflow during μsEP. According to our results calcium electroporation significantly decreases the cells viability by promoting apoptosis. Furthermore, our data shows that the application of pulsed electric fields disassembles the actin cytoskeleton and influences the prostate cancer cells' mobility.
Collapse
Affiliation(s)
- Aleksander Kiełbik
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (A.K.); (W.S.)
| | - Wojciech Szlasa
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (A.K.); (W.S.)
| | - Olga Michel
- Department of Molecular and Cellular Biology, Wroclaw Medical University, 50-556 Wroclaw, Poland; (O.M.); (A.S.); (J.S.)
| | - Anna Szewczyk
- Department of Molecular and Cellular Biology, Wroclaw Medical University, 50-556 Wroclaw, Poland; (O.M.); (A.S.); (J.S.)
- Department of Animal Developmental Biology, Institute of Experimental Biology, University of Wroclaw, 50-328 Wroclaw, Poland
| | - Mounir Tarek
- Université de Lorraine, CNRS, LPCT, F-54000 Nancy, France;
| | - Jolanta Saczko
- Department of Molecular and Cellular Biology, Wroclaw Medical University, 50-556 Wroclaw, Poland; (O.M.); (A.S.); (J.S.)
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Wroclaw Medical University, 50-556 Wroclaw, Poland; (O.M.); (A.S.); (J.S.)
| |
Collapse
|
157
|
Fuentes-Baile M, García-Morales P, Pérez-Valenciano E, Ventero MP, Sanz JM, Romero CDJ, Barberá VM, Alenda C, Saceda M. Cell Death Mechanisms Induced by CLytA-DAAO Chimeric Enzyme in Human Tumor Cell Lines. Int J Mol Sci 2020; 21:ijms21228522. [PMID: 33198289 PMCID: PMC7697521 DOI: 10.3390/ijms21228522] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/06/2020] [Accepted: 11/10/2020] [Indexed: 12/19/2022] Open
Abstract
The combination of the choline binding domain of the amidase N-acetylmuramoyl-L-alanine (CLytA)-D-amino acid oxidase (DAAO) (CLytA-DAAO) and D-Alanine induces cell death in several pancreatic and colorectal carcinoma and glioblastoma cell lines. In glioblastoma cell lines, CLytA-DAAO-induced cell death was inhibited by a pan-caspase inhibitor, suggesting a classical apoptotic cell death. Meanwhile, the cell death induced in pancreatic and colon carcinoma cell lines is some type of programmed necrosis. In this article, we studied the mechanisms that trigger CLytA-DAAO-induced cell death in pancreatic and colorectal carcinoma and glioblastoma cell lines and we acquire a further insight into the necrotic cell death induced in pancreatic and colorectal carcinoma cell lines. We have analyzed the intracellular calcium mobilization, mitochondrial membrane potential, PARP-1 participation and AIF translocation. Although the mitochondrial membrane depolarization plays a crucial role, our results suggest that CLytA-DAAO-induced cell death is context dependent. We have previously detected pancreatic and colorectal carcinoma cell lines (Hs766T and HT-29, respectively) that were resistant to CLytA-DAAO-induced cell death. In this study, we have examined the putative mechanism underlying the resistance in these cell lines, evaluating both detoxification mechanisms and the inflammatory and survival responses. Overall, our results provide a better understanding on the cell death mechanism induced by CLytA-DAAO, a promising therapy against cancer.
Collapse
Affiliation(s)
- María Fuentes-Baile
- Unidad de Investigación, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana (FISABIO), Hospital General Universitario de Elche, Camí de l’Almazara, 11, 03203 Elche (Alicante), Spain; (M.F.-B.); (C.d.J.R.); (V.M.B.)
| | - Pilar García-Morales
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, Avda. Universidad s/n, Ed. Torregaitán, 03202 Elche (Alicante), Spain; (P.G.-M.); (E.P.-V.)
| | - Elizabeth Pérez-Valenciano
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, Avda. Universidad s/n, Ed. Torregaitán, 03202 Elche (Alicante), Spain; (P.G.-M.); (E.P.-V.)
| | - María P. Ventero
- Unidad de Investigación, Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Hospital General Universitario de Alicante, C/Maestro Alonso, 10, 03010 Alicante, Spain; (M.P.V.); (C.A.)
| | - Jesús M. Sanz
- Centro de Investigaciones Biológicas Margarita Salas (Consejo Superior de Investigaciones Científicas) and Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), C/Ramiro de Maeztu, 9, 28040 Madrid, Spain;
| | - Camino de Juan Romero
- Unidad de Investigación, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana (FISABIO), Hospital General Universitario de Elche, Camí de l’Almazara, 11, 03203 Elche (Alicante), Spain; (M.F.-B.); (C.d.J.R.); (V.M.B.)
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, Avda. Universidad s/n, Ed. Torregaitán, 03202 Elche (Alicante), Spain; (P.G.-M.); (E.P.-V.)
| | - Víctor M. Barberá
- Unidad de Investigación, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana (FISABIO), Hospital General Universitario de Elche, Camí de l’Almazara, 11, 03203 Elche (Alicante), Spain; (M.F.-B.); (C.d.J.R.); (V.M.B.)
- Unidad de Genética Molecular, Hospital General Universitario de Elche, Camí de l’Almazara, 11, 03203 Elche (Alicante), Spain
| | - Cristina Alenda
- Unidad de Investigación, Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Hospital General Universitario de Alicante, C/Maestro Alonso, 10, 03010 Alicante, Spain; (M.P.V.); (C.A.)
| | - Miguel Saceda
- Unidad de Investigación, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana (FISABIO), Hospital General Universitario de Elche, Camí de l’Almazara, 11, 03203 Elche (Alicante), Spain; (M.F.-B.); (C.d.J.R.); (V.M.B.)
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, Avda. Universidad s/n, Ed. Torregaitán, 03202 Elche (Alicante), Spain; (P.G.-M.); (E.P.-V.)
- Correspondence: ; Tel.: +34-966658432
| |
Collapse
|
158
|
Xu YR, Jia Z, Liu YJ, Wang XZ. Novel dibenzoxanthenes compounds inhibit human gastric cancer SGC-7901 cell growth by apoptosis. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128588] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
159
|
Chandrasekaran A, Lee MY, Zhang X, Hasan S, Desta H, Tenenbaum SA, Melendez JA. Redox and mTOR-dependent regulation of plasma lamellar calcium influx controls the senescence-associated secretory phenotype. Exp Biol Med (Maywood) 2020; 245:1560-1570. [PMID: 32686475 PMCID: PMC7787549 DOI: 10.1177/1535370220943122] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 06/27/2020] [Indexed: 12/18/2022] Open
Abstract
IMPACT STATEMENT Through its ability to evoke responses from cells in a paracrine fashion, the senescence-associated secretory phenotype (SASP) has been linked to numerous age-associated disease pathologies including tumor invasion, cardiovascular dysfunction, neuroinflammation, osteoarthritis, and renal disease. Strategies which limit the amplitude and duration of SASP serve to delay age-related degenerative decline. Here we demonstrate that the SASP regulation is linked to shifts in intracellular Ca2+ homeostasis and strategies which rescue redox-dependent calcium entry including enzymatic H2O2 scavenging, TRP modulation, or mTOR inhibition block SASP and TRPC6 gene expression. As Ca2+ is indispensable for secretion from both secretory and non-secretory cells, it is exciting to speculate that the expression of plasma lamellar TRP channels critical for the maintenance of intracellular Ca2+ homeostasis may be coordinately regulated with the SASP.
Collapse
Affiliation(s)
- Akshaya Chandrasekaran
- SUNY Polytechnic Institute, Colleges of Nanoscale Science and Engineering, Albany, NY 12203, USA
| | - May Y Lee
- SUNY Polytechnic Institute, Colleges of Nanoscale Science and Engineering, Albany, NY 12203, USA
| | - Xuexin Zhang
- College of Medicine, Penn State University, Hershey, PA 17033, USA
| | - Shaheen Hasan
- SUNY Polytechnic Institute, Colleges of Nanoscale Science and Engineering, Albany, NY 12203, USA
| | - Habben Desta
- SUNY Polytechnic Institute, Colleges of Nanoscale Science and Engineering, Albany, NY 12203, USA
| | - Scott A Tenenbaum
- SUNY Polytechnic Institute, Colleges of Nanoscale Science and Engineering, Albany, NY 12203, USA
| | - J Andrés Melendez
- SUNY Polytechnic Institute, Colleges of Nanoscale Science and Engineering, Albany, NY 12203, USA
| |
Collapse
|
160
|
Eustace NJ, Anderson JC, Warram JM, Widden HN, Pedersen RT, Alrefai H, Patel Z, Hicks PH, Placzek WJ, Gillespie GY, Hjelmeland AB, Willey CD. A cell-penetrating MARCKS mimetic selectively triggers cytolytic death in glioblastoma. Oncogene 2020; 39:6961-6974. [PMID: 33077834 PMCID: PMC7885995 DOI: 10.1038/s41388-020-01511-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 09/22/2020] [Accepted: 10/05/2020] [Indexed: 02/07/2023]
Abstract
Glioblastoma (GBM) is an aggressive malignancy with limited effectiveness of standard of care therapies including surgery, radiation, and temozolomide chemotherapy necessitating novel therapeutics. Unfortunately, GBMs also harbor several signaling alterations that protect them from traditional therapies that rely on apoptotic programmed cell death. Because almost all GBM tumors have dysregulated phosphoinositide signaling as part of that process, we hypothesized that peptide mimetics derived from the phospholipid binding domain of Myristoylated alanine-rich C-kinase substrate (MARCKS) could serve as a novel GBM therapeutic. Using molecularly classified patient-derived xenograft (PDX) lines, cultured in stem-cell conditions, we demonstrate that cell permeable MARCKS effector domain (ED) peptides potently target all GBM molecular classes while sparing normal human astrocytes. Cell death mechanistic testing revealed that these peptides produce rapid cytotoxicity in GBM that overcomes caspase inhibition. Moreover, we identify a GBM-selective cytolytic death mechanism involving plasma membrane targeting and intracellular calcium accumulation. Despite limited relative partitioning to the brain, tail-vein peptide injection revealed tumor targeting in intracranially implanted GBM PDX. These results indicate that MARCKS ED peptide therapeutics may overcome traditional GBM resistance mechanisms, supporting further development of similar agents.
Collapse
Affiliation(s)
- Nicholas J Eustace
- Department of Radiation Oncology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Joshua C Anderson
- Department of Radiation Oncology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jason M Warram
- Department of Otolaryngology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Hayley N Widden
- Department of Biochemistry and Molecular Genetics, The University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Hasan Alrefai
- Department of Radiation Oncology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Zeel Patel
- Department of Radiation Oncology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Patricia H Hicks
- Department of Radiation Oncology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - William J Placzek
- Department of Biochemistry and Molecular Genetics, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - G Yancey Gillespie
- Department of Neurosurgery, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Anita B Hjelmeland
- Department of Cell, Developmental and Integrative Biology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Christopher D Willey
- Department of Radiation Oncology, The University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
161
|
Luanpitpong S, Rodboon N, Samart P, Vinayanuwattikun C, Klamkhlai S, Chanvorachote P, Rojanasakul Y, Issaragrisil S. A novel TRPM7/O-GlcNAc axis mediates tumour cell motility and metastasis by stabilising c-Myc and caveolin-1 in lung carcinoma. Br J Cancer 2020; 123:1289-1301. [PMID: 32684624 PMCID: PMC7555538 DOI: 10.1038/s41416-020-0991-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 06/01/2020] [Accepted: 07/01/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Calcium is an essential signal transduction element that has been associated with aggressive behaviours in several cancers. Cell motility is a prerequisite for metastasis, the major cause of lung cancer death, yet its association with calcium signalling and underlying regulatory axis remains an unexplored area. METHODS Bioinformatics database analyses were employed to assess correlations between calcium influx channels and clinical outcomes in non-small cell lung cancer (NSCLC). Functional and regulatory roles of influx channels in cell migration and invasion were conducted and experimental lung metastasis was examined using in vivo live imaging. RESULTS High expression of TRPM7 channel correlates well with the low survival rate of patients and high metastatic potential. Inhibition of TRPM7 suppresses cell motility in various NSCLC cell lines and patient-derived primary cells and attenuates experimental lung metastases. Mechanistically, TRPM7 acts upstream of O-GlcNAcylation, a post-translational modification and a crucial sensor for metabolic changes. We reveal for the first time that caveolin-1 and c-Myc are favourable molecular targets of TRPM7/O-GlcNAc that regulates NSCLC motility. O-GlcNAcylation of caveolin-1 and c-Myc promotes protein stability by interfering with their ubiquitination and proteasomal degradation. CONCLUSIONS TRPM7/O-GlcNAc axis represents a potential novel target for lung cancer therapy that may overcome metastasis.
Collapse
Affiliation(s)
- Sudjit Luanpitpong
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
| | - Napachai Rodboon
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Parinya Samart
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Chanida Vinayanuwattikun
- Department of Medicine, Division of Medical Oncology, Faculty of Medicine, Chulalongkorn University and The King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Siwaporn Klamkhlai
- Department of Pathology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Pithi Chanvorachote
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Yon Rojanasakul
- WVU Cancer Institute and Department of Pharmaceutical Sciences, West Virginia University, Morgantown, WV, USA
| | - Surapol Issaragrisil
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Department of Medicine, Division of Hematology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Bangkok Hematology Center, Wattanosoth Hospital, BDMS Center of Excellence for Cancer, Bangkok, Thailand
| |
Collapse
|
162
|
Kim E, Hwang I, Lee S, Oh J, Chung H, Jin M, Kim SH, Yu KS. Pharmacokinetics and Tolerability of LC28-0126, a Novel Necrosis Inhibitor, After Multiple Ascending Doses: A Phase I Randomized, Double-blind, Placebo-controlled Study in Healthy Male Subjects. Clin Ther 2020; 42:1946-1954.e2. [PMID: 32980184 DOI: 10.1016/j.clinthera.2020.08.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/06/2020] [Accepted: 08/09/2020] [Indexed: 11/27/2022]
Abstract
PURPOSE LC28-0126 is a reactive oxygen species scavenger being developed for the treatment of various conditions caused by oxidative stress, such as oral mucositis, graft-versus-host disease, and lethal reperfusion injury in acute myocardial infarction. The aim of this study was to assess the tolerability and pharmacokinetic properties of LC28-0126 with multiple IV administrations in healthy male subjects. METHODS A dose-block-randomized, double-blind, placebo-controlled, multiple ascending-dose study was conducted. Subjects received 3-, 10-, 20-, or 30-mg doses of LC28-0126 or inactive control vehicle, infused over 30 min, once daily for 7 days. Blood and urine samples were collected for pharmacokinetics assessment. Tolerability was assessed by the documentation of adverse events, including abnormal findings on physical examination, vital sign measurements, blood oxygen saturation monitoring, 12-lead ECG, continuous ECG monitoring, and clinical laboratory testing. FINDINGS A total of 32 subjects completed the study. After multiple dosing, the plasma concentration of LC28-0126 showed a steep decrease after infusion, followed by slow elimination. Systemic exposure of LC28-0126 was increased proportionally to doses ranging from 3 to 30 mg. The accumulation ratios were 2.58-2.79 on multiple dosing. The fractions excreted unchanged in urine were found to be <5%. All reported drug-related adverse events were injection-site reactions, and no serious adverse events were reported. IMPLICATIONS Multiple administrations of LC28-0126 exhibited a dose-proportional pharmacokinetic profile and were well tolerated at a dose range of 3-30 mg. ClinicalTrials.gov identifier: NCT03196804.
Collapse
Affiliation(s)
- Eunwoo Kim
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Republic of Korea
| | - Inyoung Hwang
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Republic of Korea
| | - SeungHwan Lee
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Republic of Korea; Clinical Trials Center, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jaeseong Oh
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Republic of Korea
| | - Hyewon Chung
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Republic of Korea; Department of Clinical Pharmacology and Toxicology, Korea University Guro Hospital, Seoul, Republic of Korea
| | - Myungwon Jin
- Life Sciences Research and Development, LG Chem Ltd, Seoul, Republic of Korea
| | - Soon Ha Kim
- Life Sciences Research and Development, LG Chem Ltd, Seoul, Republic of Korea
| | - Kyung-Sang Yu
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Republic of Korea.
| |
Collapse
|
163
|
Jadidi A, Salahinejad E, Sharifi E, Tayebi L. Drug-delivery Ca-Mg silicate scaffolds encapsulated in PLGA. Int J Pharm 2020; 589:119855. [PMID: 32911045 DOI: 10.1016/j.ijpharm.2020.119855] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 12/23/2022]
Abstract
The aim of this work is to develop dual-functional scaffolds for bone tissue regeneration and local antibiotic delivery applications. In this respect, bioresorbable bredigite (Ca7MgSi4O16) porous scaffolds were fabricated by a foam replica method, loaded with vancomycin hydrochloride and encapsulated in poly lactic-co-glycolic acid (PLGA) coatings. Field emission scanning electron microscopy, Archimedes porosimetry and Fourier-transform infrared spectroscopy were used to characterize the structure of the scaffolds. The drug delivery kinetics and cytocompatibility of the prepared scaffolds were also studied in vitro. The bare sample exhibited a burst release of vancomycin and low biocompatibility with respect to dental pulp stem cells based on the MTT assay due to the fast bioresorption of bredigite. While keeping the desirable characteristics of pores for tissue engineering, the biodegradable PLGA coatings modified the drug release kinetics, buffered physiological pH and hence improved the cell viability of the vancomycin-loaded scaffolds considerably.
Collapse
Affiliation(s)
- A Jadidi
- Faculty of Materials Science and Engineering, K. N. Toosi University of Technology, Tehran, Iran
| | - E Salahinejad
- Faculty of Materials Science and Engineering, K. N. Toosi University of Technology, Tehran, Iran.
| | - E Sharifi
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran
| | - L Tayebi
- Department of Developmental Sciences, Marquette University School of Dentistry, Milwaukee, WI 53233, USA
| |
Collapse
|
164
|
Calcium signaling and epigenetics: A key point to understand carcinogenesis. Cell Calcium 2020; 91:102285. [PMID: 32942140 DOI: 10.1016/j.ceca.2020.102285] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 08/22/2020] [Accepted: 08/26/2020] [Indexed: 02/07/2023]
Abstract
Calcium (Ca2+) signaling controls a wide range of cellular processes, including the hallmarks of cancer. The Ca2+ signaling system encompasses several types of proteins, such as receptors, channels, pumps, exchangers, buffers, and sensors, of which several are mutated or with altered expression in cancer cells. Since epigenetic mechanisms are disrupted in all stages of carcinogenesis, and reversibly regulate gene expression, they have been studied by different research groups to understand their role in Ca2+ signaling remodeling in cancer cells and the carcinogenic process. In this review, we link Ca2+ signaling, cancer, and epigenetics fields to generate a comprehensive landscape of this complex group of diseases.
Collapse
|
165
|
Intracranial calcifications in childhood: Part 1. Pediatr Radiol 2020; 50:1424-1447. [PMID: 32734340 DOI: 10.1007/s00247-020-04721-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/03/2020] [Accepted: 05/12/2020] [Indexed: 12/30/2022]
Abstract
This article is the first of a two-part series on intracranial calcification in childhood. Intracranial calcification can be either physiological or pathological. Physiological intracranial calcification is not an expected neuroimaging finding in the neonatal or infantile period but occurs, as children grow older, in the pineal gland, habenula, choroid plexus and occasionally the dura mater. Pathological intracranial calcification can be broadly divided into infectious, congenital, endocrine/metabolic, vascular and neoplastic. The main goals in Part 1 are to discuss the chief differences between physiological and pathological intracranial calcification, to discuss the histological characteristics of intracranial calcification and how intracranial calcification can be detected across neuroimaging modalities, to emphasize the importance of age at presentation and intracranial calcification location, and to propose a comprehensive neuroimaging approach toward the differential diagnosis of the causes of intracranial calcification. Finally, in Part 1 the authors discuss the most common causes of infectious intracranial calcification, especially in the neonatal period, and congenital causes of intracranial calcification. Various neuroimaging modalities have distinct utilities and sensitivities in the depiction of intracranial calcification. Age at presentation, intracranial calcification location, and associated neuroimaging findings are useful information to help narrow the differential diagnosis of intracranial calcification. Intracranial calcification can occur in isolation or in association with other neuroimaging features. Intracranial calcification in congenital infections has been associated with clastic changes, hydrocephalus, chorioretinitis, white matter abnormalities, skull changes and malformations of cortical development. Infections are common causes of intracranial calcification, especially neonatal TORCH (toxoplasmosis, other [syphilis, varicella-zoster, parvovirus B19], rubella, cytomegalovirus and herpes) infections.
Collapse
|
166
|
Berger T, Lee H, Young AH, Aarsland D, Thuret S. Adult Hippocampal Neurogenesis in Major Depressive Disorder and Alzheimer's Disease. Trends Mol Med 2020; 26:803-818. [PMID: 32418723 DOI: 10.1016/j.molmed.2020.03.010] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/16/2020] [Accepted: 03/31/2020] [Indexed: 12/25/2022]
Abstract
Depression and dementia are major public health problems. Major depressive disorder (MDD) and Alzheimer's disease (AD) reciprocally elevate the risk for one another. No effective drug is available to treat AD and about one-third of depressive patients show treatment resistance. The biological connection between MDD and AD is still unclear. Uncovering this link might open novel ways of treatment and prevention to improve patient healthcare. Here, we discuss recent studies specifically on the role of human adult hippocampal neurogenesis (AHN) in MDD and AD. We compare diverse approaches to analyse the effect of MDD and AD on human AHN and analyse different studies implicating the role of human AHN as a potential converging mechanism in MDD and AD.
Collapse
Affiliation(s)
- Thomas Berger
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Hyunah Lee
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Allan H Young
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London and South London and Maudsley NHS Foundation Trust, Bethlem Royal Hospital, Monks Orchard Road, Beckenham, Kent, UK
| | - Dag Aarsland
- Department of Old Age Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Centre for Age-Related Medicine, Stavanger University Hospital, Stavanger, Norway
| | - Sandrine Thuret
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Department of Neurology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
167
|
Co-targeting Mitochondrial Ca 2+ Homeostasis and Autophagy Enhances Cancer Cells' Chemosensitivity. iScience 2020; 23:101263. [PMID: 32585596 PMCID: PMC7322071 DOI: 10.1016/j.isci.2020.101263] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/17/2020] [Accepted: 06/08/2020] [Indexed: 12/22/2022] Open
Abstract
Mitochondria are important cell death checkpoints, and mitochondrial Ca2+ overload is considered as a potent apoptotic intrinsic pathway inducer. Here, we report that this Ca2+ apoptosis link is largely ineffective in inducing cell-death just by itself and required a concomitant inhibition of autophagy to counteract its pro-survival action. In such condition, an acute mitochondrial stress revealed by a DRP1-mediated mitochondrial dynamic remodeling is observed concomitantly with mitochondrial depolarization, release of cytochrome c, and efficient apoptosis induction. We also uncover that mitochondrial Ca2+ status modulates the function of autophagy as a sensitizer for chemotherapies. This priming mediated by mitochondrial Ca2+ overload and inhibition of autophagy sensitizes many cancer cells types to different chemotherapies with independent mechanisms of action. Collectively, our results redefine an important cell signaling pathway, uncovering new combined therapies for the treatment of diseases associated with mitochondrial Ca2+ homeostasis disorders such as cancer.
Collapse
|
168
|
Michalska P, Mayo P, Fernández-Mendívil C, Tenti G, Duarte P, Buendia I, Ramos MT, López MG, Menéndez JC, León R. Antioxidant, Anti-inflammatory and Neuroprotective Profiles of Novel 1,4-Dihydropyridine Derivatives for the Treatment of Alzheimer's Disease. Antioxidants (Basel) 2020; 9:antiox9080650. [PMID: 32708053 PMCID: PMC7463999 DOI: 10.3390/antiox9080650] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/17/2020] [Accepted: 07/18/2020] [Indexed: 12/21/2022] Open
Abstract
Alzheimer’s disease is a chronic and irreversible pathological process that has become the most prevalent neurodegenerative disease. Currently, it is considered a multifactorial disease where oxidative stress and chronic neuroinflammation play a crucial role in its onset and development. Its characteristic neuronal loss has been related to the formation of neurofibrillary tangles mainly composed by hyperphosphorylated tau protein. Hyperphosphorylation of tau protein is related to the over-activity of GSK-3β, a kinase that participates in several pathological mechanisms including neuroinflammation. Neuronal loss is also related to cytosolic Ca2+ homeostasis dysregulation that triggers apoptosis and free radicals production, contributing to oxidative damage and, finally, neuronal death. Under these premises, we have obtained a new family of 4,7-dihydro-2H-pyrazolo[3–b]pyridines as multitarget directed ligands showing potent antioxidant properties and able to scavenge both oxygen and nitrogen radical species, and also, with anti-inflammatory properties. Further characterization has demonstrated their capacity to inhibit GSK-3β and to block L-type voltage dependent calcium channels. Novel derivatives have also demonstrated an interesting neuroprotective profile on in vitro models of neurodegeneration. Finally, compound 4g revokes cellular death induced by tau hyperphosphorylation in hippocampal slices by blocking reactive oxygen species (ROS) production. In conclusion, the multitarget profile exhibited by these compounds is a novel therapeutic strategy of potential interest in the search of novel treatments for Alzheimer’s disease.
Collapse
Affiliation(s)
- Patrycja Michalska
- Instituto Teófilo Hernando y Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, 28029 Madrid, Spain; (P.M.); (P.M.); (C.F.-M.); (P.D.); (I.B.); (M.G.L.)
- Instituto de Investigación Sanitaria, Servicio de Farmacología Clínica, Hospital Universitario de la Princesa, 28006 Madrid, Spain
| | - Paloma Mayo
- Instituto Teófilo Hernando y Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, 28029 Madrid, Spain; (P.M.); (P.M.); (C.F.-M.); (P.D.); (I.B.); (M.G.L.)
- Instituto de Investigación Sanitaria, Servicio de Farmacología Clínica, Hospital Universitario de la Princesa, 28006 Madrid, Spain
| | - Cristina Fernández-Mendívil
- Instituto Teófilo Hernando y Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, 28029 Madrid, Spain; (P.M.); (P.M.); (C.F.-M.); (P.D.); (I.B.); (M.G.L.)
- Instituto de Investigación Sanitaria, Servicio de Farmacología Clínica, Hospital Universitario de la Princesa, 28006 Madrid, Spain
| | - Giammarco Tenti
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, 28040 Madrid, Spain; (G.T.); (M.T.R.); (J.C.M.)
| | - Pablo Duarte
- Instituto Teófilo Hernando y Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, 28029 Madrid, Spain; (P.M.); (P.M.); (C.F.-M.); (P.D.); (I.B.); (M.G.L.)
- Instituto de Investigación Sanitaria, Servicio de Farmacología Clínica, Hospital Universitario de la Princesa, 28006 Madrid, Spain
| | - Izaskun Buendia
- Instituto Teófilo Hernando y Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, 28029 Madrid, Spain; (P.M.); (P.M.); (C.F.-M.); (P.D.); (I.B.); (M.G.L.)
- Instituto de Investigación Sanitaria, Servicio de Farmacología Clínica, Hospital Universitario de la Princesa, 28006 Madrid, Spain
| | - María Teresa Ramos
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, 28040 Madrid, Spain; (G.T.); (M.T.R.); (J.C.M.)
| | - Manuela G. López
- Instituto Teófilo Hernando y Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, 28029 Madrid, Spain; (P.M.); (P.M.); (C.F.-M.); (P.D.); (I.B.); (M.G.L.)
- Instituto de Investigación Sanitaria, Servicio de Farmacología Clínica, Hospital Universitario de la Princesa, 28006 Madrid, Spain
| | - J. Carlos Menéndez
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, 28040 Madrid, Spain; (G.T.); (M.T.R.); (J.C.M.)
| | - Rafael León
- Instituto Teófilo Hernando y Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, 28029 Madrid, Spain; (P.M.); (P.M.); (C.F.-M.); (P.D.); (I.B.); (M.G.L.)
- Instituto de Investigación Sanitaria, Servicio de Farmacología Clínica, Hospital Universitario de la Princesa, 28006 Madrid, Spain
- Correspondence: ; Tel.: +34-914-972-766
| |
Collapse
|
169
|
Jubran R, Saar-Ray M, Wawruszak A, Ziporen L, Donin N, Bairey O, Fishelson Z. Mortalin peptides exert antitumor activities and act as adjuvants to antibody-mediated complement-dependent cytotoxicity. Int J Oncol 2020; 57:1013-1026. [PMID: 32700755 DOI: 10.3892/ijo.2020.5101] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 06/09/2020] [Indexed: 11/06/2022] Open
Abstract
Cancer cells have developed numerous strategies to maintain their proliferative capacity and to withstand different kinds of stress. The mitochondrial stress‑70 protein named glucose regulated protein 75 (GRP75), also known as mortalin, is an intriguing cancer pro‑survival factor. It is constitutively expressed in normal tissues but is upregulated in many tumors, and was shown to be a cancer prognostic biomarker. Mortalin is an inhibitor of complement‑dependent cytotoxicity (CDC) and may therefore protect cells from antibody‑based immunotherapy. To target mortalin for cancer therapy, our laboratory designed several mortalin mimetic peptides with sequences predicted to be involved in mortalin binding to its client proteins. The peptides were synthesized with a C‑terminal transactivator of transcription sequence. By using cell death methodologies, the mechanism of action of the mortalin mimetic peptides on cancer cells was studied. Two peptides in particular, Mot‑P2 and Mot‑P7, were found to be highly toxic to lymphoma and ovarian, breast and prostate carcinoma cells. The analysis of their mode of action revealed that they may induce, within minutes, plasma membrane perturbations and mitochondrial stress. Furthermore, Mot‑P2 and Mot‑P7 activated necrotic cell death, leading to plasma membrane perforation, mitochondrial inner membrane depolarization and decrease in ATP level. In addition, Mot‑P7, but not Mot‑P2, required extracellular calcium ions to fully mediate cell death and was partially inhibited by plasma membrane cholesterol. At sub‑toxic concentrations, the two peptides moderately inhibited cancer cell proliferation and blocked cell cycle at G2/M. Both peptides may bind intracellularly to mortalin and/or a mortalin‑binding protein, hence knocking down mortalin expression reduced cell death. Combining treatment with Mot‑P2 or Mot‑P7 and CDC resulted in increased cell death. This study identified highly cytotoxic mortalin mimetic peptides that may be used as monotherapy or combined with complement‑activating antibody therapy to target mortalin for precision cancer therapy.
Collapse
Affiliation(s)
- Ritta Jubran
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Moran Saar-Ray
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Anna Wawruszak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin 20-093, Poland
| | - Lea Ziporen
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Natalie Donin
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Osnat Bairey
- Institute of Hematology, Davidoff Cancer Center, Rabin Medical Center - Beilinson Hospital, Petach Tikva 49100, and the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Zvi Fishelson
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
170
|
Identification of Potential Inhibitors of Calcium/Calmodulin-Dependent Protein Kinase IV from Bioactive Phytoconstituents. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:2094635. [PMID: 32724490 PMCID: PMC7382742 DOI: 10.1155/2020/2094635] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/14/2020] [Accepted: 06/24/2020] [Indexed: 01/27/2023]
Abstract
Calcium/calmodulin-dependent protein kinase IV (CaMKIV) is an upstream regulator of CaMKK-CaMKIV signaling cascade that activates various transcription factors, thereby regulating several cellular activities including, neuronal communication and immune response. Owing to the abnormal expression in cancer and neurodegenerative diseases, the CaMKIV has been considered a potential drug target. In the present study, we checked the binding affinity of plant-derived natural compounds viz., quercetin, ellagic acid (EA), simvastatin, capsaicin, ursolic acid, DL-α-tocopherol acetate, and limonin towards CaMKIV. Molecular docking and fluorescence binding studies showed that EA and quercetin bind to the CaMKIV with a considerable affinity in comparison to other compounds. Enzyme inhibition assay revealed that both EA and quercetin inhibit CaMKIV activity with their IC50 values in the micromolar range. To get atomistic insights into the mode of interactions, inhibition mechanism, and the stability of the CaMKIV-ligand complex, a 100 ns MD simulation analysis was performed. Both EA and quercetin bind to the catalytically important residues of active site pocket of CaMKIV forming enough stabilizing interactions presumably inhibiting enzyme activity. Moreover, no significant structural change in the CaMKIV was observed upon binding of EA and quercetin. In conclusion, this study illustrates the application of phytoconstituents in the development of therapeutic molecules targeting CaMKIV having implications in cancer and neurodegenerative diseases after in vivo validation.
Collapse
|
171
|
Szewczyk A, Saczko J, Kulbacka J. Apoptosis as the main type of cell death induced by calcium electroporation in rhabdomyosarcoma cells. Bioelectrochemistry 2020; 136:107592. [PMID: 32674006 DOI: 10.1016/j.bioelechem.2020.107592] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 06/26/2020] [Accepted: 06/26/2020] [Indexed: 02/07/2023]
Abstract
Calcium electroporation (CaEP) has been previously reported as an effective method of rhabdomyosarcoma cells reduction. CaEP causes temporary cell membrane permeabilization with simultaneous calcium ions influx. A rapid influx of calcium ions leads to mitochondrial overload by Ca2+, loss of mitochondrial membrane potential causing cytochrome c release, caspase cascade activation and, as a consequence, cell death. This study was conducted on two cell lines: normal muscle cells (C2C12) and rhabdomyosarcoma cells (RD), which showed different cellular responses to CaEP. Our study defined apoptosis as the main cell death type occurring after CaEP in RD cells. Increased activity of caspase 3/7, Parp-1 and cleaved Parp-1 were proven in the case of RD cells. RD cells compartment rearrangement was observed in the time-lapse by holotomographic microscopy (HTM). C2C12 cells were less sensitive to electroporation and increased Ca2+ concentration, and viability was maintained at the level of control cells, only slight changes in pro-apoptotic factors were observed. The results reveal CaEP as a promising therapeutic approach in cancers which develop from muscle tissue.
Collapse
Affiliation(s)
- Anna Szewczyk
- Faculty of Pharmacy, Department of Molecular and Cellular Biology, Wroclaw Medical University, Poland; Department of Animal Developmental Biology, Institute of Experimental Biology, University of Wroclaw, Wroclaw, Poland.
| | - Jolanta Saczko
- Faculty of Pharmacy, Department of Molecular and Cellular Biology, Wroclaw Medical University, Poland
| | - Julita Kulbacka
- Faculty of Pharmacy, Department of Molecular and Cellular Biology, Wroclaw Medical University, Poland.
| |
Collapse
|
172
|
Jang E, Kim IY, Kim H, Lee DM, Seo DY, Lee JA, Choi KS, Kim E. Quercetin and chloroquine synergistically kill glioma cells by inducing organelle stress and disrupting Ca 2+ homeostasis. Biochem Pharmacol 2020; 178:114098. [PMID: 32540484 DOI: 10.1016/j.bcp.2020.114098] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/26/2020] [Accepted: 06/10/2020] [Indexed: 12/21/2022]
Abstract
Glioblastoma (GBM) remains one of the most uncompromising cancers, with a median survival of 15 months among those receiving maximal therapy. Therefore, new effective approaches are urgently required for the treatment of GBM. In this study, we show that combined treatments with the flavonoid quercetin and chloroquine (CQ), which is a lysosomotropic agent with antimalarial activity, synergistically induce caspase-independent cell death in malignant glioma cells. The combination of quercetin and CQ triggered excessive expansion of autolysosomes and lysosomes due to overloading with undigested cellular components and protein aggregates, leading to cell death, whereas quercetin alone increased autophagic flux. These results suggest that CQ-mediated lysosomal inhibition prolongs quercetin-mediated autophagic flux, resulting in autophagic catastrophe and severe endoplasmic reticulum (ER) stress. Additionally, we found that 1,4,5-triphosphate receptor (IP3R)-mediated Ca2+ release from the ER and the following mitochondrial uniporter (MCU)-mediated Ca2+ influx into mitochondria as well as ROS generation are critically involved in the cytotoxicity by this combination. Collectively, the lysosomal defects induced by quercetin plus CQ may trigger the stress to both the ER and mitochondria and consequently their functional defects, contributing to glioma cell death. The combination of quercetin and CQ may be an effective therapeutic option for GBM.
Collapse
Affiliation(s)
- Eunjung Jang
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - In Young Kim
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon 16499, Republic of Korea
| | - Heeyeon Kim
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Dong Min Lee
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon 16499, Republic of Korea
| | - Dong Young Seo
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon 16499, Republic of Korea
| | - Ju Ahn Lee
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon 16499, Republic of Korea
| | - Kyeong Sook Choi
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon 16499, Republic of Korea; Department of Biochemistry and Molecular Biology, Ajou University, Suwon 16499, Republic of Korea.
| | - Eunhee Kim
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea.
| |
Collapse
|
173
|
Gaidin SG, Zinchenko VP, Sergeev AI, Teplov IY, Mal'tseva VN, Kosenkov AM. Activation of alpha‐2 adrenergic receptors stimulates GABA release by astrocytes. Glia 2020; 68:1114-1130. [DOI: 10.1002/glia.23763] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 11/26/2019] [Accepted: 12/03/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Sergei G. Gaidin
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences” Pushchino Russia
| | - Valery P. Zinchenko
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences” Pushchino Russia
| | - Alexander I. Sergeev
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences” Pushchino Russia
| | - Ilia Y. Teplov
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences” Pushchino Russia
| | - Valentina N. Mal'tseva
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences” Pushchino Russia
| | - Artem M. Kosenkov
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences” Pushchino Russia
| |
Collapse
|
174
|
Ghasemi R, Sharifi R, Ghaderian SM. Studying the roles of calcium and magnesium in cell death in the serpentine native plant Alyssum inflatum NYÁRÁDY through cell suspension culture technique. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 151:362-368. [PMID: 32272354 DOI: 10.1016/j.plaphy.2020.03.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 02/20/2020] [Accepted: 03/23/2020] [Indexed: 06/11/2023]
Abstract
Calcium is an essential element for plants' survival and ability to deal with environmental stresses. However, it can cause cell death due to cellular disequilibrium. Serpentine plants are sensitive to high concentrations of Ca2+, which induces lethal symptoms, especially under environmental stress. In this study, the direct effects of Ca2+ on cell death were investigated in cell cultures of Alyssum inflatum, a serpentine plant native to Western Iran, and results were compared to a non-serpentinitic congeneric species A. saxatile. The results were also compared to the effects of Mg2+ treatments in both species, as another determinative factor in serpentinite soil is high Mg2+ content. Plasma membrane permeability, reactive oxygen species (ROS), and malondialdehyde (MDA) production were measured as physiological cell injury indices. In A. inflatum higher levels of ROS and MDA were observed in Ca2+-treated cells (5 mM or more), while in A. saxatile they were measured in Mg2+-treated cells (5 mM or more). In serpentine species, results indicated that cell death by Ca2+ was more intensive than the cell death by Mg2+, which were observed with less intensity in non-serpentine plants. Microscopic studies showed that cell death occurred via apoptosis-like programmed cell death (AL-PCD). Therefore, Ca2+ sensitivity and AL-PCD as mechanistic reasons for their non-serpentine intolerance would be a crucial consideration in cellular researches concerning serpentine plants, which could be employed in green technologies such as phytoremediation.
Collapse
Affiliation(s)
- Rasoul Ghasemi
- Department of Biology, Faculty of Sciences, Payam Noor University, Tehran, Iran.
| | - Roza Sharifi
- Department of Biology, Faculty of Sciences, Payam Noor University, Center of Isfahan, Iran
| | - Seyed Majid Ghaderian
- Department of Plant and Animal Biology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, 81746-73441, Iran
| |
Collapse
|
175
|
Hwang JH, Chung ML, Lim YJ. Incidence and risk factors of subclinical umbilical catheter-related thrombosis in neonates. Thromb Res 2020; 194:21-25. [PMID: 32563060 DOI: 10.1016/j.thromres.2020.05.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 05/15/2020] [Accepted: 05/22/2020] [Indexed: 12/25/2022]
Abstract
INTRODUCTION This study aimed to determine the risk factors for subclinical umbilical catheter-related thrombosis (UCRT) and its association with clinical morbidities. MATERIALS AND METHODS In infants without any symptoms associated with umbilical catheterization, the presence of thrombosis was monitored using abdominal ultrasonography within 1 week after umbilical catheter removal. The association between UCRT and the clinical variables was analyzed by comparing the groups with and without UCRT. RESULTS UCRT occurred in 26 (19.0%) of 137 infants. The relative incidence rate of thrombosis was 12.3% at the umbilical artery and 21.7% at the umbilical vein. However, the type of umbilical vessels with a catheter was not associated with thrombosis (P = 0.095). Subclinical UCRT was associated with high serum calcium concentration in the multivariate analysis (95% confidence interval, 1.26-15.32; P = 0.020). UCRT was resolved within 3 weeks in 13 infants (50.0%), although the thrombosis persisted for up to 2 months in 2 infants (7.7%). We found no significant association between the subclinical UCRT and the neonatal morbidities in preterm infants. CONCLUSIONS Though a rare cause of thrombosis, hypercalcemia should be considered in the assessment of infants with subclinical UCRT, and calcium levels should be routinely checked in infants with umbilical catheters.
Collapse
Affiliation(s)
- Ji Hye Hwang
- Department of Pediatrics, Haeundae Paik Hospital, Inje University College of Medicine, Pusan, Republic of Korea
| | - Mi Lim Chung
- Department of Pediatrics, Haeundae Paik Hospital, Inje University College of Medicine, Pusan, Republic of Korea.
| | - Yun Jung Lim
- Department of Radiology, Haeundae Paik Hospital, Inje University College of Medicine, Pusan, Republic of Korea
| |
Collapse
|
176
|
Afzal M, Kren BT, Naveed AK, Trembley JH, Ahmed K. Protein kinase CK2 impact on intracellular calcium homeostasis in prostate cancer. Mol Cell Biochem 2020; 470:131-143. [PMID: 32436081 DOI: 10.1007/s11010-020-03752-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 05/08/2020] [Indexed: 01/06/2023]
Abstract
Protein kinase CK2 plays multiple roles in cell function in normal and disease states. CK2 is elevated in numerous types of cancer cells, and CK2 suppression of apoptosis represents a key link to the cancer cell phenotype. CK2 regulation of cell survival and death involves diverse processes, and our previous work suggested that mitochondrial machinery is a key locus of this function. One of the earliest responses of prostate cells to inhibition of CK2 is a change in mitochondrial membrane potential, possibly associated with Ca2+ signaling. Thus, in the present work, we investigated early impact of CK2 on intracellular Ca2+ dynamics. Three prostate cancer (PCa) cell lines, PC3-LN4, C4-2B, and 22Rv1, were studied. PCa cells were treated with the CK2 small molecule inhibitors 4,5,6,7-tetrabrombenzotriazole and CX-4945 followed by analysis of Ca2+ levels in various cellular compartments over time. The results showed dose-dependent loss in cytosolic Ca2+ levels starting within 2 min and reaching maximal loss within 5-10 min. There was a concomitant increase in Ca2+ in the endoplasmic reticulum (ER) and mitochondrial compartments. The results suggest that inhibition of CK2 activity results in a rapid movement of Ca2+ out of the cytosol and into the ER and mitochondria, which may be among the earliest contributory factors for induction of apoptosis in cells subjected to inhibition of CK2. In cells with death-inducing levels of CK2 inhibition, total cellular Ca2+ levels dropped at 2 h post-treatment. These novel observations represent a potential mechanism underlying regulation of cell survival and death by CK2 activity.
Collapse
Affiliation(s)
- Muhammad Afzal
- Research Service, Minneapolis VA Health Care System, Minneapolis, MN, 55417, USA
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, 55455, USA
- Department of Biochemistry, Riphah International University, Islamabad, Pakistan
| | - Betsy T Kren
- Research Service, Minneapolis VA Health Care System, Minneapolis, MN, 55417, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, 55455, USA
| | - A Khaliq Naveed
- Department of Biochemistry, Riphah International University, Islamabad, Pakistan
| | - Janeen H Trembley
- Research Service, Minneapolis VA Health Care System, Minneapolis, MN, 55417, USA
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Khalil Ahmed
- Research Service, Minneapolis VA Health Care System, Minneapolis, MN, 55417, USA.
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, 55455, USA.
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, 55455, USA.
- Department of Urology, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
177
|
Giovinazzo JA, Thomson RP, Khalizova N, Zager PJ, Malani N, Rodriguez-Boulan E, Raper J, Schreiner R. Apolipoprotein L-1 renal risk variants form active channels at the plasma membrane driving cytotoxicity. eLife 2020; 9:51185. [PMID: 32427098 PMCID: PMC7292663 DOI: 10.7554/elife.51185] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 05/14/2020] [Indexed: 12/25/2022] Open
Abstract
Recently evolved alleles of Apolipoprotein L-1 (APOL1) provide increased protection against African trypanosome parasites while also significantly increasing the risk of developing kidney disease in humans. APOL1 protects against trypanosome infections by forming ion channels within the parasite, causing lysis. While the correlation to kidney disease is robust, there is little consensus concerning the underlying disease mechanism. We show in human cells that the APOL1 renal risk variants have a population of active channels at the plasma membrane, which results in an influx of both Na+ and Ca2+. We propose a model wherein APOL1 channel activity is the upstream event causing cell death, and that the activate-state, plasma membrane-localized channel represents the ideal drug target to combat APOL1-mediated kidney disease.
Collapse
Affiliation(s)
- Joseph A Giovinazzo
- Department of Biological Sciences, Hunter College at City University of New York, New York, United States
| | - Russell P Thomson
- Department of Biological Sciences, Hunter College at City University of New York, New York, United States
| | - Nailya Khalizova
- Department of Biological Sciences, Hunter College at City University of New York, New York, United States
| | - Patrick J Zager
- Department of Ophthalmology, Margaret Dyson Vision Research Institute, Weill Cornell Medicine, New York, United States
| | | | - Enrique Rodriguez-Boulan
- Department of Ophthalmology, Margaret Dyson Vision Research Institute, Weill Cornell Medicine, New York, United States
| | - Jayne Raper
- Department of Biological Sciences, Hunter College at City University of New York, New York, United States
| | - Ryan Schreiner
- Department of Ophthalmology, Margaret Dyson Vision Research Institute, Weill Cornell Medicine, New York, United States
| |
Collapse
|
178
|
Zhao H, Yan G, Zheng L, Zhou Y, Sheng H, Wu L, Zhang Q, Lei J, Zhang J, Xin R, Jiang L, Zhang X, Chen Y, Wang J, Xu Y, Li D, Li Y. STIM1 is a metabolic checkpoint regulating the invasion and metastasis of hepatocellular carcinoma. Theranostics 2020; 10:6483-6499. [PMID: 32483465 PMCID: PMC7255033 DOI: 10.7150/thno.44025] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 04/21/2020] [Indexed: 02/06/2023] Open
Abstract
Background: Cancer cells undergoing invasion and metastasis possess a phenotype with attenuated glycolysis, but enhanced fatty acid oxidation (FAO). Calcium (Ca2+)-mediated signaling pathways are implicated in tumor metastasis and metabolism regulation. Stromal-interaction molecule 1 (STIM1) triggered store-operated Ca2+ entry (SOCE) is the major route of Ca2+ influx for non-excitable cells including hepatocellular carcinoma (HCC) cells. However, whether and how STIM1 regulates the invasion and metastasis of HCC via metabolic reprogramming is unclear. Methods: The expressions of STIM1 and Snail1 in the HCC tissues and cells were measured by immunohistochemistry, Western-blotting and quantitative PCR. STIM1 knockout-HCC cells were generated by CRISPR-Cas9, and gene-overexpression was mediated via lentivirus transfection. Besides, the invasive and metastatic activities of HCC cells were assessed by transwell assay, anoikis rate in vitro and lung metastasis in vivo. Seahorse energy analysis and micro-array were used to evaluate the glucose and lipid metabolism. Results: STIM1 was down-regulated in metastatic HCC cells rather than in proliferating HCC cells, and low STIM1 levels were associated with poor outcome of HCC patients. During tumor growth, STIM1 stabilized Snail1 protein by activating the CaMKII/AKT/GSK-3β pathway. Subsequently, the upregulated Snail1 suppressed STIM1/SOCE during metastasis. STIM1 restoration significantly diminished anoikis-resistance and metastasis induced by Snail1. Mechanistically, the downregulated STIM1 shifted the anabolic/catabolic balance, i.e., from aerobic glycolysis towards AMPK-activated fatty acid oxidation (FAO), which contributed to Snail1-driven metastasis and anoikis-resistance. Conclusions: Our data provide the molecular basis that STIM1 orchestrates invasion and metastasis via reprogramming HCC metabolism.
Collapse
|
179
|
Scorpion Toxins and Ion Channels: Potential Applications in Cancer Therapy. Toxins (Basel) 2020; 12:toxins12050326. [PMID: 32429050 PMCID: PMC7290751 DOI: 10.3390/toxins12050326] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/14/2020] [Accepted: 04/15/2020] [Indexed: 12/24/2022] Open
Abstract
Apoptosis, a genetically directed process of cell death, has been studied for many years, and the biochemical mechanisms that surround it are well known and described. There are at least three pathways by which apoptosis occurs, and each pathway depends on extra or intracellular processes for activation. Apoptosis is a vital process, but disturbances in proliferation and cell death rates can lead to the development of diseases like cancer. Several compounds, isolated from scorpion venoms, exhibit inhibitory effects on different cancer cells. Indeed, some of these compounds can differentiate between healthy and cancer cells within the same tissue. During the carcinogenic process, morphological, biochemical, and biological changes occur that enable these compounds to modulate cancer but not healthy cells. This review highlights cancer cell features that enable modulation by scorpion neurotoxins. The properties of the isolated scorpion neurotoxins in cancer cells and the potential uses of these compounds as alternative treatments for cancer are discussed.
Collapse
|
180
|
Murphy MT, Qin X, Kaul S, Barrientos G, Zou Z, Mathias CB, Thomas D, Bose DD. The polyphenol ellagic acid exerts anti-inflammatory actions via disruption of store-operated calcium entry (SOCE) pathway activators and coupling mediators. Eur J Pharmacol 2020; 875:173036. [PMID: 32101765 DOI: 10.1016/j.ejphar.2020.173036] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 01/28/2020] [Accepted: 02/21/2020] [Indexed: 12/24/2022]
Abstract
Ellagic acid, a naturally occurring phenol found in a variety of fruits and nuts has been shown to possess anti-inflammatory properties. However, the mechanism of action behind its anti-inflammatory action is unclear. Using human Jurkat T cells, our study examined the effects of ellagic acid (EA) on Ca2+ handling, in particular, store-operated Ca2+ entry (SOCE), a process critical to proper T cell function. We observed that the acute addition of EA-induced Ca2+ release with an EC50 of 63 μM. The Ca2+ release was significantly attenuated by Xestospongin C, a known inhibitor of the Inositol 1,4,5-trisphosphate receptor (IP3R) channel and was unaffected by the phospholipase C (PLC) inhibitor, U73122. Furthermore, chronic incubation of Jurkat T cells with EA not only decreased the ATP-induced Ca2+ release but also diminished the SOCE-mediated Ca2+ influx in a dose-dependent manner. This inhibition was confirmed by reduced Mn2+ entry rates in the EA-treated cells. The ATP-induced Ca2+ entry was also attenuated in EA-treated HEK293 cells transiently transfected with SOCE channel Orai1-myc and ER-sensor stromal interaction molecule (STIM1) (HEKSTIM/Orai). Moreover, EA treatment interfered with the Orai1 and STIM1 coupling by disrupting STIM1 puncta formation in the HEKSTIM/Orai cells. We observed that EA treatment reduced cytokine secretion and nuclear factor of activated T-cell transcriptional activity in stimulated T cells. Hence, by inhibiting SOCE mediated Ca2+ influx, EA decreased downstream activation of pro-inflammatory mediators. These results suggest a novel target for EA-mediated effects and provide insight into the mechanisms underlying EA-mediated anti-inflammatory effects.
Collapse
Affiliation(s)
- Matthew T Murphy
- Department of Pharmaceutical and Administrative Sciences, College of Pharmacy and Health Sciences, Western New England University, Springfield, MA, 01119, USA.
| | - Xia Qin
- Department of Pharmacy, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Shashank Kaul
- Department of Pharmaceutical and Administrative Sciences, College of Pharmacy and Health Sciences, Western New England University, Springfield, MA, 01119, USA
| | - Genaro Barrientos
- Physiology and Biophysics Program, ICBM, Faculty of Medicine, Universidad de Chile, Santiago, Chile.
| | - Zhen Zou
- Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, China.
| | - Clinton B Mathias
- Department of Pharmaceutical and Administrative Sciences, College of Pharmacy and Health Sciences, Western New England University, Springfield, MA, 01119, USA.
| | - David Thomas
- Department of Pharmacology, Thomas J Long School of Pharmacy, University of the Pacific, Stockton, CA, USA.
| | - Diptiman D Bose
- Department of Pharmaceutical and Administrative Sciences, College of Pharmacy and Health Sciences, Western New England University, Springfield, MA, 01119, USA.
| |
Collapse
|
181
|
Fan L, Li L, Yu X, Liang Z, Cai T, Chen Y, Xu Y, Hu T, Wu L, Lin L. Jianpiyifei II Granules Suppress Apoptosis of Bronchial Epithelial Cells in Chronic Obstructive Pulmonary Disease via Inhibition of the Reactive Oxygen Species-Endoplasmic Reticulum Stress-Ca 2+ Signaling Pathway. Front Pharmacol 2020; 11:581. [PMID: 32425799 PMCID: PMC7204496 DOI: 10.3389/fphar.2020.00581] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 04/15/2020] [Indexed: 12/15/2022] Open
Abstract
Jianpiyifei II granules (JPYF II), a herbal formula, are used for the treatment of chronic obstructive pulmonary disease (COPD) in Guangdong Provincial Hospital of Chinese Medicine. The protective effects of JPYF II against bronchial epithelial cell apoptosis in mice exposed to cigarette smoke (CS) and apoptosis of human bronchial epithelial cell lines (BEAS-2B and 16-HBE) stimulated with cigarette smoke extract (CSE) were investigated. Mice were exposed to CS generated from four cigarettes/day for 30 days and administered a dose of JPYF II (0.75, 1.5, and 3 g/kg/d) from the 3rd week of CS exposure. In mice exposed to CS, JPYF II significantly inhibited CS-induced apoptosis and overexpression of endoplasmic reticulum (ER) stress-related markers in bronchial epithelial cells of the lung tissues. In CSE-stimulated BEAS-2B and 16-HBE cells, JPYF II attenuated apoptosis and cell cycle arrest in the G0/G1 phase. Mechanistically, CSE initially induced intracellular reactive oxygen species (ROS) production, which then triggered ER stress, leading to the release of Ca2+ from ER inositol trisphosphate receptor (IP3R)-mediated stores and finally cell death. Treatment with JPYF II resulted in a significant reduction in CSE-induced apoptosis through interruption of the ROS-ER stress-Ca2+ signaling pathway. Therefore, the results of this study have revealed the underlying mechanism of action of JPYF II in the treatment of COPD.
Collapse
Affiliation(s)
- Long Fan
- Guangdong Provincial Key Laboratory of Research on Emergency in TCM, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Leng Li
- Guangdong Provincial Key Laboratory of Research on Emergency in TCM, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xuhua Yu
- Guangdong Provincial Key Laboratory of Research on Emergency in TCM, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ziyao Liang
- Guangdong Provincial Key Laboratory of Research on Emergency in TCM, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Tiantian Cai
- Guangdong Provincial Key Laboratory of Research on Emergency in TCM, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuanbin Chen
- Guangdong Provincial Key Laboratory of Research on Emergency in TCM, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yinji Xu
- Guangdong Provincial Key Laboratory of Research on Emergency in TCM, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Tao Hu
- Guangdong Provincial Key Laboratory of Research on Emergency in TCM, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lei Wu
- Guangdong Provincial Key Laboratory of Research on Emergency in TCM, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lin Lin
- Guangdong Provincial Key Laboratory of Research on Emergency in TCM, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
182
|
Puro DG. How goblet cells respond to dry eye: adaptive and pathological roles of voltage-gated calcium channels and P2X 7 purinoceptors. Am J Physiol Cell Physiol 2020; 318:C1305-C1315. [PMID: 32348177 DOI: 10.1152/ajpcell.00086.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Dry eye is a common sight-impairing, painful disorder characterized by disruption of the preocular tear film, whose integrity is required for ~70% of the eye's refractive power. A universal feature of clinical dry eye is hyperosmolarity of the tears resulting from their accelerated evaporation due to dysfunction of tear- and oil-producing ocular glands. A key adaptive response to dryness/hyperosmolarity is release of tear-stabilizing mucin by conjunctival goblet cells. Yet the mechanisms mediating this response to hyperosmolarity remain poorly understood. In this study of freshly excised rat conjunctiva, perforated-patch recordings revealed that during sustained hyperosmolarity, the development of a nonspecific cation (NSC) conductance depolarizes the goblet cells to a near-optimal voltage for the tonic activation of their voltage-gated calcium channels (VGCCs). In turn, as demonstrated by high-resolution membrane capacitance measurements, VGCC activation boosts the exocytotic response of conjunctival goblet cells to neural input. However, over time, VGCC activation also increases the vulnerability of these cells to the lethality of hyperosmolarity. Viability assays further revealed that hyperosmotic-induced goblet cell death is critically dependent on P2X7 receptor channels. Similar to the yin-yang impact of VGCCs on goblet cell physiology and pathobiology, P2X7 activation not only compromises goblet cell viability but also enhances exocytotic activity. Thus, the NSC/VGCC and P2X7 purinoceptor pathways are components of a previously unappreciated high-gain/high-risk adaptive strategy to combat ocular dryness. These pathways boost release of tear-stabilizing mucin at the risk of jeopardizing the viability of the conjunctival goblet cells, whose loss is a histopathological hallmark of irreversible mucin-deficient dry eye.
Collapse
Affiliation(s)
- Donald G Puro
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, Michigan.,Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
183
|
Bendix PM, Simonsen AC, Florentsen CD, Häger SC, Mularski A, Zanjani AAH, Moreno-Pescador G, Klenow MB, Sønder SL, Danielsen HM, Arastoo MR, Heitmann AS, Pandey MP, Lund FW, Dias C, Khandelia H, Nylandsted J. Interdisciplinary Synergy to Reveal Mechanisms of Annexin-Mediated Plasma Membrane Shaping and Repair. Cells 2020; 9:E1029. [PMID: 32326222 PMCID: PMC7226303 DOI: 10.3390/cells9041029] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/16/2020] [Accepted: 04/19/2020] [Indexed: 12/22/2022] Open
Abstract
The plasma membrane surrounds every single cell and essentially shapes cell life by separating the interior from the external environment. Thus, maintenance of cell membrane integrity is essential to prevent death caused by disruption of the plasma membrane. To counteract plasma membrane injuries, eukaryotic cells have developed efficient repair tools that depend on Ca2+- and phospholipid-binding annexin proteins. Upon membrane damage, annexin family members are activated by a Ca2+ influx, enabling them to quickly bind at the damaged membrane and facilitate wound healing. Our recent studies, based on interdisciplinary research synergy across molecular cell biology, experimental membrane physics, and computational simulations show that annexins have additional biophysical functions in the repair response besides enabling membrane fusion. Annexins possess different membrane-shaping properties, allowing for a tailored response that involves rapid bending, constriction, and fusion of membrane edges for resealing. Moreover, some annexins have high affinity for highly curved membranes that appear at free edges near rupture sites, a property that might accelerate their recruitment for rapid repair. Here, we discuss the mechanisms of annexin-mediated membrane shaping and curvature sensing in the light of our interdisciplinary approach to study plasma membrane repair.
Collapse
Affiliation(s)
- Poul Martin Bendix
- Niels Bohr Institute, University of Copenhagen, DK-2100 Copenhagen, Denmark; (C.D.F.); (G.M.-P.); (H.M.D.); (M.R.A.)
| | - Adam Cohen Simonsen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, DK-5230 Odense, Denmark; (A.M.); (A.A.H.Z.); (M.B.K.); (M.P.P.); (F.W.L.)
| | - Christoffer D. Florentsen
- Niels Bohr Institute, University of Copenhagen, DK-2100 Copenhagen, Denmark; (C.D.F.); (G.M.-P.); (H.M.D.); (M.R.A.)
| | - Swantje Christin Häger
- Membrane Integrity, Cell Death and Metabolism Unit, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, DK-2100 Copenhagen, Denmark; (S.C.H.); (S.L.S.); (A.S.H.); (C.D.)
| | - Anna Mularski
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, DK-5230 Odense, Denmark; (A.M.); (A.A.H.Z.); (M.B.K.); (M.P.P.); (F.W.L.)
| | - Ali Asghar Hakami Zanjani
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, DK-5230 Odense, Denmark; (A.M.); (A.A.H.Z.); (M.B.K.); (M.P.P.); (F.W.L.)
| | - Guillermo Moreno-Pescador
- Niels Bohr Institute, University of Copenhagen, DK-2100 Copenhagen, Denmark; (C.D.F.); (G.M.-P.); (H.M.D.); (M.R.A.)
| | - Martin Berg Klenow
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, DK-5230 Odense, Denmark; (A.M.); (A.A.H.Z.); (M.B.K.); (M.P.P.); (F.W.L.)
| | - Stine Lauritzen Sønder
- Membrane Integrity, Cell Death and Metabolism Unit, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, DK-2100 Copenhagen, Denmark; (S.C.H.); (S.L.S.); (A.S.H.); (C.D.)
| | - Helena M. Danielsen
- Niels Bohr Institute, University of Copenhagen, DK-2100 Copenhagen, Denmark; (C.D.F.); (G.M.-P.); (H.M.D.); (M.R.A.)
| | - Mohammad Reza Arastoo
- Niels Bohr Institute, University of Copenhagen, DK-2100 Copenhagen, Denmark; (C.D.F.); (G.M.-P.); (H.M.D.); (M.R.A.)
| | - Anne Sofie Heitmann
- Membrane Integrity, Cell Death and Metabolism Unit, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, DK-2100 Copenhagen, Denmark; (S.C.H.); (S.L.S.); (A.S.H.); (C.D.)
| | - Mayank Prakash Pandey
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, DK-5230 Odense, Denmark; (A.M.); (A.A.H.Z.); (M.B.K.); (M.P.P.); (F.W.L.)
| | - Frederik Wendelboe Lund
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, DK-5230 Odense, Denmark; (A.M.); (A.A.H.Z.); (M.B.K.); (M.P.P.); (F.W.L.)
| | - Catarina Dias
- Membrane Integrity, Cell Death and Metabolism Unit, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, DK-2100 Copenhagen, Denmark; (S.C.H.); (S.L.S.); (A.S.H.); (C.D.)
| | - Himanshu Khandelia
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, DK-5230 Odense, Denmark; (A.M.); (A.A.H.Z.); (M.B.K.); (M.P.P.); (F.W.L.)
| | - Jesper Nylandsted
- Membrane Integrity, Cell Death and Metabolism Unit, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, DK-2100 Copenhagen, Denmark; (S.C.H.); (S.L.S.); (A.S.H.); (C.D.)
- Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| |
Collapse
|
184
|
Dorn GW. Mitofusins as mitochondrial anchors and tethers. J Mol Cell Cardiol 2020; 142:146-153. [PMID: 32304672 DOI: 10.1016/j.yjmcc.2020.04.016] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 02/24/2020] [Accepted: 04/11/2020] [Indexed: 12/18/2022]
Abstract
Mitochondria have their own genomes and their own agendas. Like their primitive bacterial ancestors, mitochondria interact with their environment and organelle colleagues at their physical interfaces, the outer mitochondrial membrane. Among outer membrane proteins, mitofusins (MFN) are increasingly recognized for their roles as arbiters of mitochondria-mitochondria and mitochondria-reticular interactions. This review examines the roles of MFN1 and MFN2 in the heart and other organs as proteins that tether mitochondria to each other or to other organelles, and as mitochondrial anchoring proteins for various macromolecular complexes. The consequences of MFN-mediated tethering and anchoring on mitochondrial fusion, motility, mitophagy, and mitochondria-ER calcium cross-talk are reviewed. Pathophysiological implications are explored from the perspective of mitofusin common functioning as tethering and anchoring proteins, rather than as mediators of individual processes. Finally, some informed speculation is provided for why mouse MFN knockout studies show severe multi-system phenotypes whereas rare human diseases linked to MFN mutations are limited in scope.
Collapse
Affiliation(s)
- Gerald W Dorn
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
185
|
Ivanova H, Vervliet T, Monaco G, Terry LE, Rosa N, Baker MR, Parys JB, Serysheva II, Yule DI, Bultynck G. Bcl-2-Protein Family as Modulators of IP 3 Receptors and Other Organellar Ca 2+ Channels. Cold Spring Harb Perspect Biol 2020; 12:cshperspect.a035089. [PMID: 31501195 DOI: 10.1101/cshperspect.a035089] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The pro- and antiapoptotic proteins belonging to the B-cell lymphoma-2 (Bcl-2) family exert a critical control over cell-death processes by enabling or counteracting mitochondrial outer membrane permeabilization. Beyond this mitochondrial function, several Bcl-2 family members have emerged as critical modulators of intracellular Ca2+ homeostasis and dynamics, showing proapoptotic and antiapoptotic functions. Bcl-2 family proteins specifically target several intracellular Ca2+-transport systems, including organellar Ca2+ channels: inositol 1,4,5-trisphosphate receptors (IP3Rs) and ryanodine receptors (RyRs), Ca2+-release channels mediating Ca2+ flux from the endoplasmic reticulum, as well as voltage-dependent anion channels (VDACs), which mediate Ca2+ flux across the mitochondrial outer membrane into the mitochondria. Although the formation of protein complexes between Bcl-2 proteins and these channels has been extensively studied, a major advance during recent years has been elucidating the complex interaction of Bcl-2 proteins with IP3Rs. Distinct interaction sites for different Bcl-2 family members were identified in the primary structure of IP3Rs. The unique molecular profiles of these Bcl-2 proteins may account for their distinct functional outcomes when bound to IP3Rs. Furthermore, Bcl-2 inhibitors used in cancer therapy may affect IP3R function as part of their proapoptotic effect and/or as an adverse effect in healthy cells.
Collapse
Affiliation(s)
- Hristina Ivanova
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, KU Leuven, B-3000 Leuven, Belgium
| | - Tim Vervliet
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, KU Leuven, B-3000 Leuven, Belgium
| | - Giovanni Monaco
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, KU Leuven, B-3000 Leuven, Belgium
| | - Lara E Terry
- Department of Pharmacology and Physiology, School of Medicine and Dentistry, University of Rochester, Rochester, New York 14642
| | - Nicolas Rosa
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, KU Leuven, B-3000 Leuven, Belgium
| | - Mariah R Baker
- Department of Biochemistry and Molecular Biology, McGovern Medical School at The University of Texas Health Science Center at Houston, Structural Biology Imaging Center, Houston, Texas 77030
| | - Jan B Parys
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, KU Leuven, B-3000 Leuven, Belgium
| | - Irina I Serysheva
- Department of Biochemistry and Molecular Biology, McGovern Medical School at The University of Texas Health Science Center at Houston, Structural Biology Imaging Center, Houston, Texas 77030
| | - David I Yule
- Department of Pharmacology and Physiology, School of Medicine and Dentistry, University of Rochester, Rochester, New York 14642
| | - Geert Bultynck
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, KU Leuven, B-3000 Leuven, Belgium
| |
Collapse
|
186
|
Yang C, Song G, Lim W. Methiothepin mesylate causes apoptosis of human prostate cancer cells by mediating oxidative stress and mitochondrial dysfunction. Free Radic Biol Med 2020; 150:12-22. [PMID: 32035100 DOI: 10.1016/j.freeradbiomed.2020.01.187] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/30/2020] [Accepted: 01/31/2020] [Indexed: 12/27/2022]
Abstract
Prostate cancer is difficult to treat if it metastasizes to other organs. The development of prostate cancer independent of androgen is closely related to the action of neuroendocrine products. Serotonin promotes cell growth in various cancers, and antagonists for serotonin receptors are known to inhibit proliferation and induce cell death in various carcinomas. However, little is known about how antagonists for serotonin receptor function in prostate cancer. We verified apoptotic cell death in prostate cancer cell lines after treatment with methiothepin mesylate (MET), an antagonist for serotonin receptor 5-HT1. MET induced hydrogen peroxide (H2O2) production and mitochondrial Ca2+ overload. Moreover, MET induced changes in the expression of proteins associated with endoplasmic reticulum stress, autophagy, and mitochondrial membrane potential. MET also promoted phosphorylation of JNK, which induced cell death mediated by oxidant production, as evidenced by the JNK inhibitor and oxidant scavenger. Finally, MET has the potential to prevent metastasis by inhibiting the migration of prostate cancer cells. Thus, we show that MET is a potentially novel anticancer agent that can suppress the development of prostate cancer caused by neuroendocrine differentiation.
Collapse
Affiliation(s)
- Changwon Yang
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea.
| | - Whasun Lim
- Department of Food and Nutrition, Kookmin University, Seoul, 02707, Republic of Korea.
| |
Collapse
|
187
|
Yokoi K, Balachandran C, Umezawa M, Tsuchiya K, Mitrić A, Aoki S. Amphiphilic Cationic Triscyclometalated Iridium(III) Complex-Peptide Hybrids Induce Paraptosis-like Cell Death of Cancer Cells via an Intracellular Ca 2+-Dependent Pathway. ACS OMEGA 2020; 5:6983-7001. [PMID: 32258934 PMCID: PMC7114882 DOI: 10.1021/acsomega.0c00337] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 02/27/2020] [Indexed: 06/11/2023]
Abstract
We report on the design and synthesis of a green-emitting iridium complex-peptide hybrid (IPH) 4, which has an electron-donating hydroxyacetic acid (glycolic acid) moiety between the Ir core and the peptide part. It was found that 4 is selectively cytotoxic against cancer cells, and the dead cells showed a green emission. Mechanistic studies of cell death indicate that 4 induces a paraptosis-like cell death through the increase in mitochondrial Ca2+ concentrations via direct Ca2+ transfer from ER to mitochondria, the loss of mitochondrial membrane potential (ΔΨm), and the vacuolization of cytoplasm and intracellular organelle. Although typical paraptosis and/or autophagy markers were upregulated by 4 through the mitogen-activated protein kinase (MAPK) signaling pathway, as confirmed by Western blot analysis, autophagy is not the main pathway in 4-induced cell death. The degradation of actin, which consists of a cytoskeleton, is also induced by high concentrations of Ca2+, as evidenced by costaining experiments using a specific probe. These results will be presented and discussed.
Collapse
Affiliation(s)
- Kenta Yokoi
- Faculty of Pharmaceutical
Sciences, Tokyo University of Science, 2641 Yamazaki,
Noda, Chiba 278-8510, Japan
| | - Chandrasekar Balachandran
- Faculty of Pharmaceutical
Sciences, Tokyo University of Science, 2641 Yamazaki,
Noda, Chiba 278-8510, Japan
| | - Masakazu Umezawa
- Research Institute for Science and Technology (RIST), Tokyo University of Science, 2641 Yamazaki,
Noda, Chiba 278-8510, Japan
| | - Koji Tsuchiya
- Research Institute for Science and Technology (RIST), Tokyo University of Science, 2641 Yamazaki,
Noda, Chiba 278-8510, Japan
| | - Aleksandra Mitrić
- Faculty of Pharmaceutical
Sciences, Tokyo University of Science, 2641 Yamazaki,
Noda, Chiba 278-8510, Japan
- Faculty of Technology and Metallurgy, University of Belgrade, 4 Karnegijeva Street, Belgrade 11000, Serbia
| | - Shin Aoki
- Faculty of Pharmaceutical
Sciences, Tokyo University of Science, 2641 Yamazaki,
Noda, Chiba 278-8510, Japan
- Research Institute for Science and Technology (RIST), Tokyo University of Science, 2641 Yamazaki,
Noda, Chiba 278-8510, Japan
| |
Collapse
|
188
|
Li X, Spelat R, Bartolini A, Cesselli D, Ius T, Skrap M, Caponnetto F, Manini I, Yang Y, Torre V. Mechanisms of malignancy in glioblastoma cells are linked to mitochondrial Ca 2 + uniporter upregulation and higher intracellular Ca 2+ levels. J Cell Sci 2020; 133:jcs.237503. [PMID: 32051286 DOI: 10.1242/jcs.237503] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 01/28/2020] [Indexed: 01/13/2023] Open
Abstract
Glioblastoma (GBM) is one of the most malignant brain tumours and, despite advances in treatment modalities, it remains largely incurable. Ca2+ regulation and dynamics play crucial roles in different aspects of cancer, but they have never been investigated in detail in GBM. Here, we report that spontaneous Ca2+ waves in GBM cells cause unusual intracellular Ca2+ ([Ca2+]i) elevations (>1 μM), often propagating through tumour microtubes (TMs) connecting adjacent cells. This unusual [Ca2+]i elevation is not associated with the induction of cell death and is concomitant with overexpression of mitochondrial Ca2+ uniporter (MCU). We show that MCU silencing decreases proliferation and alters [Ca2+]i dynamics in U87 GBM cells, while MCU overexpression increases [Ca2+]i elevation in human astrocytes (HAs). These results suggest that changes in the expression level of MCU, a protein involved in intracellular Ca2+ regulation, influences GBM cell proliferation, contributing to GBM malignancy.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Xiaoyun Li
- Neurobiology Sector, International School for Advanced Studies (SISSA), 34136 Trieste, Italy
| | - Renza Spelat
- Neurobiology Sector, International School for Advanced Studies (SISSA), 34136 Trieste, Italy
| | - Anna Bartolini
- Institute of Pathology, University Hospital of Udine, 33100 Udine, Italy
| | - Daniela Cesselli
- Institute of Pathology, University Hospital of Udine, 33100 Udine, Italy.,Department of Medicine, University of Udine, 33100 Udine, Italy
| | - Tamara Ius
- Neurosurgery Unit, Department of Neurosciences, University Hospital of Udine, 33100 Udine, Italy
| | - Miran Skrap
- Neurosurgery Unit, Department of Neurosciences, University Hospital of Udine, 33100 Udine, Italy
| | | | - Ivana Manini
- Department of Medicine, University of Udine, 33100 Udine, Italy
| | - Yili Yang
- Joint SISSA-ISM Laboratory, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences, 215000 Suzhou, Jiangsu, China
| | - Vincent Torre
- Neurobiology Sector, International School for Advanced Studies (SISSA), 34136 Trieste, Italy .,Joint SISSA-ISM Laboratory, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences, 215000 Suzhou, Jiangsu, China
| |
Collapse
|
189
|
Gajek A, Poczta A, Łukawska M, Cecuda-Adamczewska V, Tobiasz J, Marczak A. Chemical modification of melphalan as a key to improving treatment of haematological malignancies. Sci Rep 2020; 10:4479. [PMID: 32161295 PMCID: PMC7066245 DOI: 10.1038/s41598-020-61436-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 02/24/2020] [Indexed: 01/18/2023] Open
Abstract
Chemical modification of known, effective drugs is one method to improve chemotherapy. Thus, the object of this study was to generate melphalan derivatives with improved cytotoxic activity in human cancer cells (RPMI8226, HL60 and THP1). Several melphalan derivatives were synthesised, modified in their two important functional groups. Nine analogues were tested, including melphalan compounds modified: only at the amino group, by replacing the amine with an amidine group containing a morpholine ring (MOR-MEL) or with an amidino group and dipropyl chain (DIPR-MEL); only at the carboxyl group to form methyl and ethyl esters of melphalan (EM-MEL, EE-MEL); and in a similar manner at both functional groups (EM-MOR-MEL, EE-MOR-MEL, EM-DIPR-MEL, EE-DIPR-MEL). Melphalan derivatives were evaluated for cytotoxicity (resazurin viability assay), genotoxicity (comet assay) and the ability to induce apoptosis (terminal deoxynucleotidyl transferase dUTP nick end labelling, TUNEL, phosphatidylserine externalisation, chromatin condensation, activity of caspases 3/7, 8 and 9 and intracellular concentration of calcium ions) in comparison with the parent drug. Almost all derivatives, with the exception of MOR-MEL and DIPR-MEL, were found to be more toxic than melphalan in all cell lines evaluated. Treatment of cultures with the derivatives generated a significant higher level of DNA breaks compared to those treated with melphalan, especially after longer incubation times. In addition, all the melphalan derivatives demonstrated a high apoptosis-inducing ability in acute monocytic and promyelocytic leukemia cells. This study showed that the mechanism of action of the tested compounds differed depending on the cell line, and allowed the selection of the most active compounds for further, more detailed investigations.
Collapse
Affiliation(s)
- Arkadiusz Gajek
- Department of Medical Biophysics, Institute of Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236, Lodz, Poland.
| | - Anastazja Poczta
- Department of Medical Biophysics, Institute of Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236, Lodz, Poland
| | - Małgorzata Łukawska
- ŁUKASIEWICZ Research Network-Institute of Biotechnology and Antibiotics, 5 Staroscinska St., 02-516, Warsaw, Poland
| | - Violetta Cecuda-Adamczewska
- ŁUKASIEWICZ Research Network-Institute of Biotechnology and Antibiotics, 5 Staroscinska St., 02-516, Warsaw, Poland
| | - Joanna Tobiasz
- ŁUKASIEWICZ Research Network-Institute of Biotechnology and Antibiotics, 5 Staroscinska St., 02-516, Warsaw, Poland
| | - Agnieszka Marczak
- Department of Medical Biophysics, Institute of Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236, Lodz, Poland
| |
Collapse
|
190
|
Abstract
Ferlins are multiple-C2-domain proteins involved in Ca2+-triggered membrane dynamics within the secretory, endocytic and lysosomal pathways. In bony vertebrates there are six ferlin genes encoding, in humans, dysferlin, otoferlin, myoferlin, Fer1L5 and 6 and the long noncoding RNA Fer1L4. Mutations in DYSF (dysferlin) can cause a range of muscle diseases with various clinical manifestations collectively known as dysferlinopathies, including limb-girdle muscular dystrophy type 2B (LGMD2B) and Miyoshi myopathy. A mutation in MYOF (myoferlin) was linked to a muscular dystrophy accompanied by cardiomyopathy. Mutations in OTOF (otoferlin) can be the cause of nonsyndromic deafness DFNB9. Dysregulated expression of any human ferlin may be associated with development of cancer. This review provides a detailed description of functions of the vertebrate ferlins with a focus on muscle ferlins and discusses the mechanisms leading to disease development.
Collapse
|
191
|
Melatonin induces mitochondrial apoptosis in osteoblasts by regulating the STIM1/cytosolic calcium elevation/ERK pathway. Life Sci 2020; 248:117455. [PMID: 32088216 DOI: 10.1016/j.lfs.2020.117455] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 02/04/2020] [Accepted: 02/19/2020] [Indexed: 02/06/2023]
Abstract
AIMS Idiopathic scoliosis is a common deformity of the spine that has an especially high incidence rate in adolescents. Some studies have demonstrated a close relationship between idiopathic scoliosis and melatonin deficiency. Our team's previous research showed that melatonin can inhibit the proliferation of osteoblasts, but the mechanism remains unclear. This study aimed to determine the mechanism by which melatonin inhibits the proliferation of osteoblasts. MAIN METHODS Cell viability experiment, DNA fragment detection and alkaline phosphatase (ALP) activity assays were performed to determine the effects of melatonin on the proliferation, apoptosis and differentiation of osteoblasts. We used immunofluorescence to detect the expression of STIM1 in melatonin-treated osteoblasts. STIM1 interference was achieved using a specific siRNA, and a TRPC inhibitor was used to block the influx of Ca2+. The mRNA expression was determined by RT-qPCR, and protein levels were measured by Western blot. KEY FINDINGS In this study, we found that melatonin inhibited the proliferation, differentiation and apoptosis of osteoblasts in a concentration-dependent manner. Additional studies showed that melatonin elevated cytosolic calcium levels by upregulation of STIM1, leading to osteoblast apoptosis via the mitochondrial pathway. Finally, we demonstrated that the STIM1-mediated increase in cytosolic calcium levels induced apoptosis through the ERK pathway. SIGNIFICANCE Melatonin induces mitochondrial apoptosis in osteoblasts by regulating the STIM1/cytosolic calcium elevation/ERK pathway. These basic findings provide a basis for further clinical studies on melatonin as a drug therapeutic for idiopathic scoliosis.
Collapse
|
192
|
Non-secretory renin reduces oxidative stress and increases cardiomyoblast survival during glucose and oxygen deprivation. Sci Rep 2020; 10:2329. [PMID: 32047214 PMCID: PMC7012910 DOI: 10.1038/s41598-020-59216-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 01/27/2020] [Indexed: 12/16/2022] Open
Abstract
Although the renin-angiotensin system usually promotes oxidative stress and cell death, renin transcripts have been discovered, whose transcription product may be cardioprotective. These transcripts encode a non-secretory renin isoform that is localized in the cytosol and within mitochondria. Here we tested the hypotheses that cytosolic renin [ren(2-9)] expression promotes cell survival under hypoxia and glucose depletion by preserving the mitochondrial membrane potential (∆Ψm) and mitigating the accumulation of ROS. To simulate ischemic insults, we exposed H9c2 cells to glucose deprivation, anoxia or to combined oxygen-glucose deprivation (OGD) for 24 hours and determined renin expression. Furthermore, H9c2 cells transfected with the empty pIRES vector (pIRES cells) or ren(2-9) cDNA-containing vector [ren(2-9) cells] were analyzed for cell death, ∆Ψm, ATP levels, accumulation of ROS, and cytosolic Ca2+ content. In pIRES cells, expression of ren(1A-9) was stimulated under all three ischemia-related conditions. After OGD, the cells lost their ∆Ψm and exhibited enhanced ROS accumulation, increased cytosolic Ca2+ levels, decreased ATP levels as well as increased cell death. In contrast, ren(2-9) cells were markedly protected from these effects. Ren(2-9) appears to represent a protective response to OGD by reducing ROS generation and preserving mitochondrial functions. Therefore, it is a promising new target for the prevention of ischemia-induced myocardial damage.
Collapse
|
193
|
A Comprehensive Review of Calcium Electroporation -A Novel Cancer Treatment Modality. Cancers (Basel) 2020; 12:cancers12020290. [PMID: 31991784 PMCID: PMC7073222 DOI: 10.3390/cancers12020290] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/17/2020] [Accepted: 01/19/2020] [Indexed: 12/21/2022] Open
Abstract
Calcium electroporation is a potential novel anti-cancer treatment where high calcium concentrations are introduced into cells by electroporation, a method where short, high voltage pulses induce transient permeabilisation of the plasma membrane allowing passage of molecules into the cytosol. Calcium is a tightly regulated, ubiquitous second messenger involved in many cellular processes including cell death. Electroporation increases calcium uptake leading to acute and severe ATP depletion associated with cancer cell death. This comprehensive review describes published data about calcium electroporation applied in vitro, in vivo, and clinically from the first publication in 2012. Calcium electroporation has been shown to be a safe and efficient anti-cancer treatment in clinical studies with cutaneous metastases and recurrent head and neck cancer. Normal cells have been shown to be less affected by calcium electroporation than cancer cells and this difference might be partly induced by differences in membrane repair, expression of calcium transporters, and cellular structural changes. Interestingly, both clinical data and preclinical studies have indicated a systemic immune response induced by calcium electroporation. New cancer treatments are needed, and calcium electroporation represents an inexpensive and efficient treatment with few side effects, that could potentially be used worldwide and for different tumor types.
Collapse
|
194
|
Chen L, Choi CSW, Sanchez-Arias JC, Arbour LT, Swayne LA. Ankyrin-B p.S646F undergoes increased proteasome degradation and reduces cell viability in the H9c2 rat ventricular cardiomyoblast cell line. Biochem Cell Biol 2020; 98:299-306. [PMID: 31965814 DOI: 10.1139/bcb-2019-0082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Ankyrin-B (AnkB) is scaffolding protein that anchors integral membrane proteins to the cardiomyocyte cytoskeleton. We recently identified an AnkB variant, AnkB p.S646F (ANK2 c.1937 C>T) associated with a phenotype ranging from predisposition for cardiac arrhythmia to cardiomyopathy. AnkB p.S646F exhibited reduced expression levels in the H9c2 rat ventricular-derived cardiomyoblast cell line relative to wildtype AnkB. Here, we demonstrate that AnkB is regulated by proteasomal degradation and proteasome inhibition rescues AnkB p.S646F expression levels in H9c2 cells, although this effect is not conserved with differentiation. We also compared the impact of wildtype AnkB and AnkB p.S646F on cell viability and proliferation. AnkB p.S646F expression resulted in decreased cell viability at 30 h after transfection, whereas we observed a greater proportion of cycling, Ki67-positive cells at 48 h after transfection. Notably, the number of GFP-positive cells was low and was consistent between wildtype AnkB and AnkB p.S646F expressing cells, suggesting that AnkB and AnkB p.S646F affected paracrine communication between H9c2 cells differentially. This work reveals that AnkB levels are regulated by the proteasome and that AnkB p.S646F compromises cell viability. Together, these findings provide key new insights into the putative cellular and molecular mechanisms of AnkB-related cardiac disease.
Collapse
Affiliation(s)
- Lena Chen
- Divison of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Catherine S W Choi
- Divison of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | | | - Laura T Arbour
- Divison of Medical Sciences, University of Victoria, Victoria, BC, Canada.,Island Medical Program, University of British Columbia, Victoria, BC, Canada.,Department of Medical Genetics, University of British Columbia, Victoria, BC, Canada
| | - Leigh Anne Swayne
- Divison of Medical Sciences, University of Victoria, Victoria, BC, Canada.,Island Medical Program, University of British Columbia, Victoria, BC, Canada
| |
Collapse
|
195
|
Alsharif MA, Khan D, Ahmed N, Mukhtar S, Khan P, Hassan MI, Almalki ASA, Obaid RJ. Pharmacological Activities of Novel Chromene Derivatives as Calcium/Calmodulin Dependent Protein Kinase IV (CAMKIV) Inhibitors. ChemistrySelect 2020. [DOI: 10.1002/slct.201904096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Meshari A. Alsharif
- Department of Chemistry Faculty of Science University of Tabuk Tabuk- 71491 Saudi Arabia
| | - Danish Khan
- Department of Chemistry Indian Institute of Technology Roorkee,Roorkee- 247 667 Uttarakhand India
| | - Naseem Ahmed
- Department of Chemistry Indian Institute of Technology Roorkee,Roorkee- 247 667 Uttarakhand India
| | - Sayeed Mukhtar
- Department of Chemistry Faculty of Science University of Tabuk Tabuk- 71491 Saudi Arabia
| | - Parvez Khan
- Centre for Interdisciplinary research in Basic Sciences, Jamia Millia Islamia New Delhi- 110025 India
| | - Md. Imtaiyaz Hassan
- Centre for Interdisciplinary research in Basic Sciences, Jamia Millia Islamia New Delhi- 110025 India
| | | | - Rami J. Obaid
- Chemistry Department, Faculty of Applied Science Umm Al-Qura University Makkah- 21955 Saudi Arabia
| |
Collapse
|
196
|
Supasorn O, Tongtawe P, Srimanote P, Rattanakomol P, Thanongsaksrikul J. A nonstructural 2B protein of enterovirus A71 increases cytosolic Ca 2+ and induces apoptosis in human neuroblastoma SH-SY5Y cells. J Neurovirol 2020; 26:201-213. [PMID: 31933192 DOI: 10.1007/s13365-019-00824-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 11/22/2019] [Accepted: 12/16/2019] [Indexed: 11/29/2022]
Abstract
Enterovirus A71 (EV-A71) is one of the causative agents causing the hand-foot-mouth disease which associated with fatal neurological complications. Several sporadic outbreaks of EV-A71 infections have been recently reported from Asia-Pacific regions and potentially established endemicity in the area. Currently, there is no effective vaccine or antiviral drug for EV-A71 available. This may be attributable to the limited information about its pathogenesis. In this study, the recombinant nonstructural 2B protein of EV-A71 was successfully produced in human neuroblastoma SH-SY5Y cells and evaluated for its effects on induction of the cell apoptosis and the pathway involved. The EV-A71 2B-transfected SH-SY5Y cells showed significantly higher difference in the cell growth inhibition than the mock and the irrelevant protein controls. The transfected SH-SY5Y cells underwent apoptosis and showed the significant upregulation of caspase-9 (CASP9) and caspase-12 (CASP12) genes at 3- and 24-h post-transfection, respectively. Interestingly, the level of cytosolic Ca2+ was significantly elevated in the transfected SH-SY5Y cells at 6- and 12-h post-transfection. The caspase-9 is activated by mitochondrial signaling pathway while the caspase-12 is activated by ER signaling pathway. The results suggested that EV-A71 2B protein triggered transient increase of the cytosolic Ca2+ level and associated with ER-mitochondrial interactions that drive the caspase-dependent apoptosis pathways. The detailed mechanisms warrant further studies for understanding the implication of EV-A71 infection in neuropathogenesis. The gained knowledge is essential for the development of the effective therapeutics and antiviral drugs.
Collapse
Affiliation(s)
- Oratai Supasorn
- Graduate Program in Biomedical Sciences, Faculty of Allied Health Sciences, Thammasat University, 99 Moo 18 Paholyothin Road, Klong Luang, Rangsit, Pathum Thani, 12120, Thailand
| | - Pongsri Tongtawe
- Graduate Program in Biomedical Sciences, Faculty of Allied Health Sciences, Thammasat University, 99 Moo 18 Paholyothin Road, Klong Luang, Rangsit, Pathum Thani, 12120, Thailand
| | - Potjanee Srimanote
- Graduate Program in Biomedical Sciences, Faculty of Allied Health Sciences, Thammasat University, 99 Moo 18 Paholyothin Road, Klong Luang, Rangsit, Pathum Thani, 12120, Thailand
| | - Patthaya Rattanakomol
- Graduate Program in Biomedical Sciences, Faculty of Allied Health Sciences, Thammasat University, 99 Moo 18 Paholyothin Road, Klong Luang, Rangsit, Pathum Thani, 12120, Thailand
| | - Jeeraphong Thanongsaksrikul
- Graduate Program in Biomedical Sciences, Faculty of Allied Health Sciences, Thammasat University, 99 Moo 18 Paholyothin Road, Klong Luang, Rangsit, Pathum Thani, 12120, Thailand.
| |
Collapse
|
197
|
Ágoston D, Baltás E, Ócsai H, Rátkai S, Lázár PG, Korom I, Varga E, Németh IB, Dósa-Rácz Viharosné É, Gehl J, Oláh J, Kemény L, Kis EG. Evaluation of Calcium Electroporation for the Treatment of Cutaneous Metastases: A Double Blinded Randomised Controlled Phase II Trial. Cancers (Basel) 2020; 12:E179. [PMID: 31936897 PMCID: PMC7017133 DOI: 10.3390/cancers12010179] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 01/05/2020] [Accepted: 01/08/2020] [Indexed: 12/14/2022] Open
Abstract
Calcium electroporation (Ca-EP) is a new anticancer treatment providing similar features to electrochemotherapy (ECT). The aim of our study is to compare the efficacy of Ca-EP with bleomycin-based ECT. This double-blinded randomized controlled phase II study was conducted at the Medical University of Szeged, Hungary. During this once only treatment up to ten measurable cutaneous metastases per patient were separately block randomized for intratumoral delivery of either calcium or bleomycin, which was followed by reversible electroporation. Tumour response was evaluated clinically and histologically six months after treatment. (ClinicalTrials.gov: NCT03628417, closed). Seven patients with 44 metastases (34 from malignant melanoma, 10 from breast cancer) were included in the study. Eleven metastases were taken for biopsies, and 33 metastases were randomised and treated once. The objective response rates were 33% (6/18) for Ca-EP and 53% (8/15) for bleomycin-based ECT, with 22% (4/18) and 40% (6/15) complete response rates, respectively. The CR was confirmed histologically in both arms. Serious adverse events were not registered. Ulceration and hyperpigmentation, both CTCA criteria grade I side effects, were observed more frequently after bleomycin-based ECT than for Ca-EP. Ca-EP was non-inferior to ECT, therefore, it should be considered as a feasible, effective and safe treatment option.
Collapse
Affiliation(s)
- Dóra Ágoston
- Department of Dermatology and Allergology, University of Szeged, 6720 Szeged, Hungary; (D.Á.); (E.B.); (H.Ó.); (S.R.); (I.K.); (E.V.); (I.B.N.); (É.D.-R.V.); (L.K.)
| | - Eszter Baltás
- Department of Dermatology and Allergology, University of Szeged, 6720 Szeged, Hungary; (D.Á.); (E.B.); (H.Ó.); (S.R.); (I.K.); (E.V.); (I.B.N.); (É.D.-R.V.); (L.K.)
| | - Henriette Ócsai
- Department of Dermatology and Allergology, University of Szeged, 6720 Szeged, Hungary; (D.Á.); (E.B.); (H.Ó.); (S.R.); (I.K.); (E.V.); (I.B.N.); (É.D.-R.V.); (L.K.)
| | - Sándor Rátkai
- Department of Dermatology and Allergology, University of Szeged, 6720 Szeged, Hungary; (D.Á.); (E.B.); (H.Ó.); (S.R.); (I.K.); (E.V.); (I.B.N.); (É.D.-R.V.); (L.K.)
| | - Péter Gy Lázár
- Department of Oral and Maxillofacial Surgery, University of Szeged, 6720 Szeged, Hungary;
| | - Irma Korom
- Department of Dermatology and Allergology, University of Szeged, 6720 Szeged, Hungary; (D.Á.); (E.B.); (H.Ó.); (S.R.); (I.K.); (E.V.); (I.B.N.); (É.D.-R.V.); (L.K.)
| | - Erika Varga
- Department of Dermatology and Allergology, University of Szeged, 6720 Szeged, Hungary; (D.Á.); (E.B.); (H.Ó.); (S.R.); (I.K.); (E.V.); (I.B.N.); (É.D.-R.V.); (L.K.)
| | - István Balázs Németh
- Department of Dermatology and Allergology, University of Szeged, 6720 Szeged, Hungary; (D.Á.); (E.B.); (H.Ó.); (S.R.); (I.K.); (E.V.); (I.B.N.); (É.D.-R.V.); (L.K.)
| | - Éva Dósa-Rácz Viharosné
- Department of Dermatology and Allergology, University of Szeged, 6720 Szeged, Hungary; (D.Á.); (E.B.); (H.Ó.); (S.R.); (I.K.); (E.V.); (I.B.N.); (É.D.-R.V.); (L.K.)
| | - Julie Gehl
- Center for Experimental Drug and Gene Electrotransfer (C*EDGE), Department of Clinical Oncology and Palliative Care, Zealand University Hospital, 4000 Roskilde, Denmark;
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Judit Oláh
- Department of Oncotherapy, University of Szeged, 6720 Szeged, Hungary;
| | - Lajos Kemény
- Department of Dermatology and Allergology, University of Szeged, 6720 Szeged, Hungary; (D.Á.); (E.B.); (H.Ó.); (S.R.); (I.K.); (E.V.); (I.B.N.); (É.D.-R.V.); (L.K.)
| | - Erika Gabriella Kis
- Department of Dermatology and Allergology, University of Szeged, 6720 Szeged, Hungary; (D.Á.); (E.B.); (H.Ó.); (S.R.); (I.K.); (E.V.); (I.B.N.); (É.D.-R.V.); (L.K.)
| |
Collapse
|
198
|
Sarco-Endoplasmic Reticulum Calcium Release Model Based on Changes in the Luminal Calcium Content. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1131:337-370. [DOI: 10.1007/978-3-030-12457-1_14] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
199
|
Flores-Romero H, Ros U, García-Sáez AJ. A lipid perspective on regulated cell death. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 351:197-236. [PMID: 32247580 DOI: 10.1016/bs.ircmb.2019.11.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Lipids are fundamental to life as structural components of cellular membranes and for signaling. They are also key regulators of different cellular processes such as cell division, proliferation, and death. Regulated cell death (RCD) requires the engagement of lipids and lipid metabolism for the initiation and execution of its killing machinery. The permeabilization of lipid membranes is a hallmark of RCD that involves, for each kind of cell death, a unique lipid profile. While the permeabilization of the mitochondrial outer membrane allows the release of apoptotic factors to the cytosol during apoptosis, permeabilization of the plasma membrane facilitates the release of intracellular content in other nonapoptotic types of RCD like necroptosis and ferroptosis. Lipids and lipid membranes are important accessory molecules required for the activation of protein executors of cell death such as BAX in apoptosis and MLKL in necroptosis. Peroxidation of membrane phospholipids and the subsequent membrane destabilization is a prerequisite to ferroptosis. Here, we discuss how lipids are essential players in apoptosis, the most common form of RCD, and also their role in necroptosis and ferroptosis. Altogether, we aim to highlight the contribution of lipids and membrane dynamics in cell death regulation.
Collapse
Affiliation(s)
- Hector Flores-Romero
- Interfaculty Institute of Biochemistry, Eberhard-Karls-Universität Tübingen, Tübingen, Germany
| | - Uris Ros
- Interfaculty Institute of Biochemistry, Eberhard-Karls-Universität Tübingen, Tübingen, Germany
| | - Ana J García-Sáez
- Interfaculty Institute of Biochemistry, Eberhard-Karls-Universität Tübingen, Tübingen, Germany.
| |
Collapse
|
200
|
Alberti P, Canta A, Chiorazzi A, Fumagalli G, Meregalli C, Monza L, Pozzi E, Ballarini E, Rodriguez-Menendez V, Oggioni N, Sancini G, Marmiroli P, Cavaletti G. Topiramate prevents oxaliplatin-related axonal hyperexcitability and oxaliplatin induced peripheral neurotoxicity. Neuropharmacology 2019; 164:107905. [PMID: 31811874 DOI: 10.1016/j.neuropharm.2019.107905] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 11/26/2019] [Accepted: 12/03/2019] [Indexed: 12/15/2022]
Abstract
Oxaliplatin (OHP) Induced Peripheral Neurotoxicity (OIPN) is one of the dose-limiting toxicities of the drug and these adverse effects limit cancer therapy with L-OHP, used for colorectal cancer treatment. Acute neurotoxicity consists of symptoms that are the hallmarks of a transient axonal hyperexcitability; chronic neurotoxicity has a clinical picture compatible with a length-dependent sensory neuropathy. Acute OIPN pathogenesis has been linked to sodium voltage-operated channels (Na + VOC) dysfunction and it has been advocated as a possible predisposing factor to chronic neurotoxicity. We tested if topiramate (TPM), a well-known Na + VOC modulator, was able to modify acute as well as chronic OIPN. The project was divided into two parts. In Experiment 1 we tested by means of Nerve Excitability Testing (NET) a cohort of female Wistar rats to assess TPM effects after a single OHP administration (5 mg/kg, iv). In Experiment 2 we assessed TPM effects after chronic OHP treatment (5 mg/kg, 2qw4ws, iv) using NET, nerve conduction studies (NCS), behavioral tests and neuropathology (caudal nerve morphometry and morphology and Intraepidermal Nerve Fiber [IENF] density). In Experiment 1 TPM was able to prevent OHP effects on Na + VOC: OHP treatment induced a highly significant reduction of the sensory nerve's threshold, during the superexcitability period (p-value = 0.008), whereas TPM co-administration prevented this effect. In Experiment 2 we verified that TPM was able to prevent not only acute phenomena, but also to completely prevent chronic OIPN. This latter observation was supported by a multimodal approach: in fact, only OHP group showed altered findings compared to CTRL group at a neurophysiological (proximal caudal nerve sensory nerve action potential [SNAP] amplitude, p-value = 0.001; distal caudal nerve SNAP amplitude, p-value<0.001, distal caudal nerve sensory conduction velocity, p-value = 0.04), behavioral (mechanical threshold, p-value 0.003) and neuropathological levels (caudal nerve fibers density, p-value 0.001; IENF density, p-value <0.001). Our data show that TPM is a promising drug to prevent both acute and chronic OIPN. These findings have a high translational potential, since they were obtained using outcome measures that match clinical practice and TPM is already approved for clinical use being free from detrimental interaction with OHP anticancer properties.
Collapse
Affiliation(s)
- Paola Alberti
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, 20900, Monza, Italy; NeuroMI (Milan Center for Neuroscience), School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, 20900, Monza, Italy.
| | - Annalisa Canta
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, 20900, Monza, Italy; NeuroMI (Milan Center for Neuroscience), School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, 20900, Monza, Italy
| | - Alessia Chiorazzi
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, 20900, Monza, Italy; NeuroMI (Milan Center for Neuroscience), School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, 20900, Monza, Italy
| | - Giulia Fumagalli
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, 20900, Monza, Italy; NeuroMI (Milan Center for Neuroscience), School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, 20900, Monza, Italy; PhD program in Neuroscience, School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, 20900, Monza, Italy
| | - Cristina Meregalli
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, 20900, Monza, Italy; NeuroMI (Milan Center for Neuroscience), School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, 20900, Monza, Italy
| | - Laura Monza
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, 20900, Monza, Italy; NeuroMI (Milan Center for Neuroscience), School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, 20900, Monza, Italy; Human Physiology Lab., School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, 20900, Monza, Italy
| | - Eleonora Pozzi
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, 20900, Monza, Italy; NeuroMI (Milan Center for Neuroscience), School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, 20900, Monza, Italy; PhD program in Neuroscience, School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, 20900, Monza, Italy
| | - Elisa Ballarini
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, 20900, Monza, Italy; NeuroMI (Milan Center for Neuroscience), School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, 20900, Monza, Italy
| | - Virginia Rodriguez-Menendez
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, 20900, Monza, Italy; NeuroMI (Milan Center for Neuroscience), School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, 20900, Monza, Italy
| | - Norberto Oggioni
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, 20900, Monza, Italy; NeuroMI (Milan Center for Neuroscience), School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, 20900, Monza, Italy
| | - Giulio Sancini
- NeuroMI (Milan Center for Neuroscience), School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, 20900, Monza, Italy; Human Physiology Lab., School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, 20900, Monza, Italy
| | - Paola Marmiroli
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, 20900, Monza, Italy; NeuroMI (Milan Center for Neuroscience), School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, 20900, Monza, Italy
| | - Guido Cavaletti
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, 20900, Monza, Italy; NeuroMI (Milan Center for Neuroscience), School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, 20900, Monza, Italy
| |
Collapse
|