151
|
Batra S, Corcoran J, Zhang DD, Pal P, K.P. U, Kulkarni R, Löfstedt C, Sowdhamini R, Olsson SB. A Functional Agonist of Insect Olfactory Receptors: Behavior, Physiology and Structure. Front Cell Neurosci 2019; 13:134. [PMID: 31110474 PMCID: PMC6501728 DOI: 10.3389/fncel.2019.00134] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 03/19/2019] [Indexed: 12/26/2022] Open
Abstract
Chemical signaling is ubiquitous and employs a variety of receptor types to detect the cacophony of molecules relevant for each living organism. Insects, our most diverse taxon, have evolved unique olfactory receptors with as little as 10% sequence identity between receptor types. We have identified a promiscuous volatile, 2-methyltetrahydro-3-furanone (coffee furanone), that elicits chemosensory and behavioral activity across multiple insect orders and receptors. In vivo and in vitro physiology showed that coffee furanone was detected by roughly 80% of the recorded neurons expressing the insect-specific olfactory receptor complex in the antenna of Drosophila melanogaster, at concentrations similar to other known, and less promiscuous, ligands. Neurons expressing specialized receptors, other chemoreceptor types, or mutants lacking the complex entirely did not respond to this compound. This indicates that coffee furanone is a promiscuous ligand for the insect olfactory receptor complex itself and did not induce non-specific cellular responses. In addition, we present homology modeling and docking studies with selected olfactory receptors that suggest conserved interaction regions for both coffee furanone and known ligands. Apart from its physiological activity, this known food additive elicits a behavioral response for several insects, including mosquitoes, flies, and cockroaches. A broad-scale behaviorally active molecule non-toxic to humans thus has significant implications for health and agriculture. Coffee furanone serves as a unique tool to unlock molecular, physiological, and behavioral relationships across this diverse receptor family and animal taxa.
Collapse
Affiliation(s)
- Srishti Batra
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, India
| | | | - Dan-Dan Zhang
- Department of Biology, Lund University, Lund, Sweden
| | - Pramit Pal
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, India
| | - Umesh K.P.
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, India
| | - Renuka Kulkarni
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, India
| | | | - Ramanathan Sowdhamini
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, India
| | - Shannon B. Olsson
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, India
| |
Collapse
|
152
|
Zhang K, Feng Y, Du L, Gao S, Yan H, Li K, Liu N, Wu J, Wang G. Functional Analysis of MsepOR13 in the Oriental Armyworm Mythimna separata (Walker). Front Physiol 2019; 10:367. [PMID: 31024335 PMCID: PMC6465334 DOI: 10.3389/fphys.2019.00367] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 03/18/2019] [Indexed: 12/21/2022] Open
Abstract
Olfaction in insects has a critical role in recognizing the host, finding food, and choosing mating partners, as well as avoiding predators. Odorant receptors (ORs), which are housed in the dendritic membrane of sensory neurons and extended into the lymph of sensilla on insect antennae, are participating in the detection of volatile compounds in insects. In the present study, we identified an OR gene, named MsepOR13, in the oriental armyworm Mythimna separata (Walker). Quantitative real-time polymerase chain reaction revealed that MsepOR13 was expressed mainly in the antennae of male and female moths. In in vitro heterologous expression experiments, MsepOR13 was widely tuned to 32 of the 67 different compounds tested. Furthermore, MsepOR13 responded to eugenol at a low concentration of 10-9 M, with an EC50 value of 3.91 × 10-6 M. The high sensitivity suggests an important role for the OR13 gene in the moth olfactory system.
Collapse
Affiliation(s)
- Kunpeng Zhang
- State Key Laboratory of Crop Stress, Northwest A&F University, Yangling, China.,College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, China
| | - Yilu Feng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lixiao Du
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shanshan Gao
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, China
| | - Hang Yan
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, China
| | - Kun Li
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, China
| | - Nana Liu
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, China
| | - Junxiang Wu
- State Key Laboratory of Crop Stress, Northwest A&F University, Yangling, China
| | - Guirong Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
153
|
Zhang Y, Tsang TK, Bushong EA, Chu LA, Chiang AS, Ellisman MH, Reingruber J, Su CY. Asymmetric ephaptic inhibition between compartmentalized olfactory receptor neurons. Nat Commun 2019; 10:1560. [PMID: 30952860 PMCID: PMC6451019 DOI: 10.1038/s41467-019-09346-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 03/04/2019] [Indexed: 11/09/2022] Open
Abstract
In the Drosophila antenna, different subtypes of olfactory receptor neurons (ORNs) housed in the same sensory hair (sensillum) can inhibit each other non-synaptically. However, the mechanisms underlying this underexplored form of lateral inhibition remain unclear. Here we use recordings from pairs of sensilla impaled by the same tungsten electrode to demonstrate that direct electrical ("ephaptic") interactions mediate lateral inhibition between ORNs. Intriguingly, within individual sensilla, we find that ephaptic lateral inhibition is asymmetric such that one ORN exerts greater influence onto its neighbor. Serial block-face scanning electron microscopy of genetically identified ORNs and circuit modeling indicate that asymmetric lateral inhibition reflects a surprisingly simple mechanism: the physically larger ORN in a pair corresponds to the dominant neuron in ephaptic interactions. Thus, morphometric differences between compartmentalized ORNs account for highly specialized inhibitory interactions that govern information processing at the earliest stages of olfactory coding.
Collapse
Affiliation(s)
- Ye Zhang
- Neurobiology Section, Division of Biological Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Tin Ki Tsang
- Neurobiology Section, Division of Biological Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Eric A Bushong
- National Center for Microscopy and Imaging Research, Center for Research in Biological Systems, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Li-An Chu
- Brain Research Center, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu, 30013, Taiwan
| | - Ann-Shyn Chiang
- Brain Research Center, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu, 30013, Taiwan
| | - Mark H Ellisman
- National Center for Microscopy and Imaging Research, Center for Research in Biological Systems, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Jürgen Reingruber
- Institut of Biology, École Normale Supérieure (IBENS), 46 rue d'Ulm, 75005, Paris, France.,INSERM U1024, 75005, Paris, France
| | - Chih-Ying Su
- Neurobiology Section, Division of Biological Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA.
| |
Collapse
|
154
|
Raji JI, Melo N, Castillo JS, Gonzalez S, Saldana V, Stensmyr MC, DeGennaro M. Aedes aegypti Mosquitoes Detect Acidic Volatiles Found in Human Odor Using the IR8a Pathway. Curr Biol 2019; 29:1253-1262.e7. [PMID: 30930038 DOI: 10.1016/j.cub.2019.02.045] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 01/16/2019] [Accepted: 02/19/2019] [Indexed: 01/05/2023]
Abstract
Mosquitoes use olfaction as a primary means of detecting their hosts. Previously, the functional ablation of a family of Aedes aegypti olfactory receptors, the odorant receptors (ORs), was not sufficient to reduce host seeking in the presence of carbon dioxide (CO2). This suggests the olfactory receptors that remain, such as the ionotropic receptors (IRs), could play a significant role in host detection. To test this, we disrupted the Ir8a co-receptor in Ae. aegypti using CRISPR/Cas9. We found that Ir8a mutant female mosquitoes are not attracted to lactic acid, a behaviorally active component of human sweat, and they lack odor-evoked responses to acidic volatiles. The loss of Ir8a reduces mosquito attraction to humans and their odor. We show that the CO2-detection pathway is necessary but not sufficient for IR8a to detect human odor. Our study reveals that the IR8a pathway is crucial for an anthropophilic vector mosquito to effectively seek hosts. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Joshua I Raji
- Department of Biological Sciences & Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA
| | - Nadia Melo
- Department of Biology, Lund University, 22362 Lund, Sweden
| | - John S Castillo
- Department of Biological Sciences & Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA
| | - Sheyla Gonzalez
- Department of Biological Sciences & Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA
| | - Valeria Saldana
- Department of Biological Sciences & Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA
| | | | - Matthew DeGennaro
- Department of Biological Sciences & Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA.
| |
Collapse
|
155
|
Chahda JS, Soni N, Sun JS, Ebrahim SAM, Weiss BL, Carlson JR. The molecular and cellular basis of olfactory response to tsetse fly attractants. PLoS Genet 2019; 15:e1008005. [PMID: 30875383 PMCID: PMC6420007 DOI: 10.1371/journal.pgen.1008005] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 02/05/2019] [Indexed: 12/12/2022] Open
Abstract
Dipteran or "true" flies occupy nearly every terrestrial habitat, and have evolved to feed upon a wide variety of sources including fruit, pollen, decomposing animal matter, and even vertebrate blood. Here we analyze the molecular, genetic and cellular basis of odor response in the tsetse fly Glossina morsitans, which feeds on the blood of humans and their livestock, and is a vector of deadly trypanosomes. The G. morsitans antenna contains specialized subtypes of sensilla, some of which line a sensory pit not found in the fruit fly Drosophila. We characterize distinct patterns of G. morsitans Odor receptor (GmmOr) gene expression in the antenna. We devise a new version of the "empty neuron" heterologous expression system, and use it to functionally express several GmmOrs in a mutant olfactory receptor neuron (ORN) of Drosophila. GmmOr35 responds to 1-hexen-3-ol, an odorant found in human emanations, and also alpha-pinene, a compound produced by malarial parasites. Another receptor, GmmOr9, which is expressed in the sensory pit, responds to acetone, 2-butanone and 2-propanol. We confirm by electrophysiological recording that neurons of the sensory pit respond to these odorants. Acetone and 2-butanone are strong attractants long used in the field to trap tsetse. We find that 2-propanol is also an attractant for both G. morsitans and the related species G. fuscipes, a major vector of African sleeping sickness. The results identify 2-propanol as a candidate for an environmentally friendly and practical tsetse attractant. Taken together, this work characterizes the olfactory system of a highly distinct kind of fly, and it provides an approach to identifying new agents for controlling the fly and the devastating diseases that it carries.
Collapse
Affiliation(s)
- J. Sebastian Chahda
- Dept. of Molecular Cellular and Developmental Biology, Yale University, New Haven, Connecticut, United States of America
| | - Neeraj Soni
- Dept. of Molecular Cellular and Developmental Biology, Yale University, New Haven, Connecticut, United States of America
| | - Jennifer S. Sun
- Dept. of Molecular Cellular and Developmental Biology, Yale University, New Haven, Connecticut, United States of America
| | - Shimaa A. M. Ebrahim
- Dept. of Molecular Cellular and Developmental Biology, Yale University, New Haven, Connecticut, United States of America
| | - Brian L. Weiss
- Dept. of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| | - John R. Carlson
- Dept. of Molecular Cellular and Developmental Biology, Yale University, New Haven, Connecticut, United States of America
| |
Collapse
|
156
|
Groschner LN, Miesenböck G. Mechanisms of Sensory Discrimination: Insights from Drosophila Olfaction. Annu Rev Biophys 2019; 48:209-229. [PMID: 30786228 DOI: 10.1146/annurev-biophys-052118-115655] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
All an animal can do to infer the state of its environment is to observe the sensory-evoked activity of its own neurons. These inferences about the presence, quality, or similarity of objects are probabilistic and inform behavioral decisions that are often made in close to real time. Neural systems employ several strategies to facilitate sensory discrimination: Biophysical mechanisms separate the neuronal response distributions in coding space, compress their variances, and combine information from sequential observations. We review how these strategies are implemented in the olfactory system of the fruit fly. The emerging principles of odor discrimination likely apply to other neural circuits of similar architecture.
Collapse
Affiliation(s)
- Lukas N Groschner
- Centre for Neural Circuits and Behavior, University of Oxford, Oxford OX1 3SR, United Kingdom;
| | - Gero Miesenböck
- Centre for Neural Circuits and Behavior, University of Oxford, Oxford OX1 3SR, United Kingdom;
| |
Collapse
|
157
|
Slankster E, Odell SR, Mathew D. Strength in diversity: functional diversity among olfactory neurons of the same type. J Bioenerg Biomembr 2019; 51:65-75. [PMID: 30604088 PMCID: PMC6382560 DOI: 10.1007/s10863-018-9779-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 11/13/2018] [Indexed: 01/01/2023]
Abstract
Most animals depend upon olfaction to find food, mates, and to avoid predators. An animal's olfactory circuit helps it sense its olfactory environment and generate critical behavioral responses. The general architecture of the olfactory circuit, which is conserved across species, is made up of a few different neuronal types including first-order receptor neurons, second- and third-order neurons, and local interneurons. Each neuronal type differs in their morphology, physiology, and neurochemistry. However, several recent studies have suggested that there is intrinsic diversity even among neurons of the same type and that this diversity is important for neural function. In this review, we first examine instances of intrinsic diversity observed among individual types of olfactory neurons. Next, we review potential genetic and experience-based plasticity mechanisms that underlie this diversity. Finally, we consider the implications of intrinsic neuronal diversity for circuit function. Overall, we hope to highlight the importance of intrinsic diversity as a previously underestimated property of circuit function.
Collapse
Affiliation(s)
- Eryn Slankster
- Department of Biology, University of Nevada, 1664 N. Virginia St., MS: 0314, Reno, NV, 89557, USA
| | - Seth R Odell
- Department of Biology, University of Nevada, 1664 N. Virginia St., MS: 0314, Reno, NV, 89557, USA
- Integrated Neuroscience Program, University of Nevada, Reno, NV, 89557, USA
| | - Dennis Mathew
- Department of Biology, University of Nevada, 1664 N. Virginia St., MS: 0314, Reno, NV, 89557, USA.
- Integrated Neuroscience Program, University of Nevada, Reno, NV, 89557, USA.
| |
Collapse
|
158
|
Galang KC, Croft JR, Thompson GJ, Percival-Smith A. Analysis of the Drosophila melanogaster anti-ovarian response to honey bee queen mandibular pheromone. INSECT MOLECULAR BIOLOGY 2019; 28:99-111. [PMID: 30159981 DOI: 10.1111/imb.12531] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Queen mandibular pheromone (QMP) is a potent reproductive signal to which honey bee workers respond by suppressing their ovaries and adopting alloparental roles within the colony. This anti-ovarian effect of QMP on workers can, surprisingly, be induced in other insects, including fruit flies, in which females exposed to synthetic QMP develop smaller ovaries with fewer eggs. In this study, we use the Drosophila melanogaster model to identify the components of synthetic QMP required for the anti-ovarian effect. We found that virgin females respond strongly to 9-oxo-2-decenoic acid and 10-hydroxy-2-decenoic acid (10HDA), suggesting that the decenoic acid components of QMP are essential for the anti-ovarian response. Further, a nuclear factor of activated T-cells reporter system revealed neurones expressing the olfactory receptors Or-56a, Or-49b and Or-98a are activated by QMP in the antenna. In addition, we used olfactory receptor GAL4 drivers and a neuronal activator (a neuronal activating bacterial sodium channel) to test whether the candidate neurones are potential labelled lines for a decenoic acid response. We identified Or-49b as a potential candidate receiver of the 10HDA signal. Finally, the anti-ovarian response to synthetic QMP is not mediated by decreasing the titre of the reproductive hormones ecdysone and juvenile hormone.
Collapse
Affiliation(s)
- K C Galang
- Department of Biology, The University of Western Ontario, London, ON, Canada
| | - J R Croft
- Department of Biology, The University of Western Ontario, London, ON, Canada
| | - G J Thompson
- Department of Biology, The University of Western Ontario, London, ON, Canada
| | - A Percival-Smith
- Department of Biology, The University of Western Ontario, London, ON, Canada
| |
Collapse
|
159
|
Zhang RB, Liu Y, Yan SC, Wang GR. Identification and functional characterization of an odorant receptor in pea aphid, Acyrthosiphon pisum. INSECT SCIENCE 2019; 26:58-67. [PMID: 28730637 DOI: 10.1111/1744-7917.12510] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 05/27/2017] [Accepted: 06/08/2017] [Indexed: 06/07/2023]
Abstract
The sensitive olfactory system is necessary for survival of insects. Odorant receptors (ORs) are located on the dendrites of olfactory receptor neurons and play a critical role in odor detection. Insect ORs are functionally analyzed via heterologous expression in a Xenopus oocyte system using a two-electrode voltage-clamp (TEVC) electrophysiological recording. Here, we have identified a novel OR in the pea aphid, Acyrthosiphon pisum, then we cloned and named it ApisOR4. We analyzed the ApisOR4 tissue expression patterns and found expression only in antennae tissues. Further functional analysis using TEVC revealed that ApisOR4 is broadly tuned to eight volatiles, which elicit electrophysiological response in pea aphid antennae. This study provides an initial functional analysis of aphid ORs and identifies candidate volatiles to be used in developing new strategies for aphid control.
Collapse
Affiliation(s)
- Rui-Bin Zhang
- The College of Forestry, Northeast Forestry University, Harbin, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yang Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shan-Chun Yan
- The College of Forestry, Northeast Forestry University, Harbin, China
| | - Gui-Rong Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
160
|
Si G, Kanwal JK, Hu Y, Tabone CJ, Baron J, Berck M, Vignoud G, Samuel ADT. Structured Odorant Response Patterns across a Complete Olfactory Receptor Neuron Population. Neuron 2019; 101:950-962.e7. [PMID: 30683545 DOI: 10.1016/j.neuron.2018.12.030] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 10/29/2018] [Accepted: 12/20/2018] [Indexed: 11/15/2022]
Abstract
Odor perception allows animals to distinguish odors, recognize the same odor across concentrations, and determine concentration changes. How the activity patterns of primary olfactory receptor neurons (ORNs), at the individual and population levels, facilitate distinguishing these functions remains poorly understood. Here, we interrogate the complete ORN population of the Drosophila larva across a broadly sampled panel of odorants at varying concentrations. We find that the activity of each ORN scales with the concentration of any odorant via a fixed dose-response function with a variable sensitivity. Sensitivities across odorants and ORNs follow a power-law distribution. Much of receptor sensitivity to odorants is accounted for by a single geometrical property of molecular structure. Similarity in the shape of temporal response filters across odorants and ORNs extend these relationships to fluctuating environments. These results uncover shared individual- and population-level patterns that together lend structure to support odor perceptions.
Collapse
Affiliation(s)
- Guangwei Si
- Department of Physics, Harvard University, Cambridge, MA 02138, USA; Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Jessleen K Kanwal
- Center for Brain Science, Harvard University, Cambridge, MA 02138, USA; Program in Neuroscience, Harvard University, Cambridge, MA 02138, USA
| | - Yu Hu
- Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Christopher J Tabone
- Department of Physics, Harvard University, Cambridge, MA 02138, USA; Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Jacob Baron
- Department of Physics, Harvard University, Cambridge, MA 02138, USA; Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Matthew Berck
- Department of Physics, Harvard University, Cambridge, MA 02138, USA; Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Gaetan Vignoud
- Department of Physics, Harvard University, Cambridge, MA 02138, USA; Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Aravinthan D T Samuel
- Department of Physics, Harvard University, Cambridge, MA 02138, USA; Center for Brain Science, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
161
|
Li S, Zhou C, Zhou Y. Olfactory co-receptor Orco stimulated by Rice stripe virus is essential for host seeking behavior in small brown planthopper. PEST MANAGEMENT SCIENCE 2019; 75:187-194. [PMID: 29797766 DOI: 10.1002/ps.5086] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 04/23/2018] [Accepted: 05/21/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Laodelphax striatellus, the small brown planthopper (SBPH), is an economically important pest, besides sucking damage, which transmits rice viruses to cause severe damages to rice. In the process of virus transmission, the host orientation behavior of insect is mainly driven by olfaction. In this context, the molecular basis of olfaction in SBPH is of particular interest. RESULTS Here, we identified the gene that encodes olfactory receptor co-receptor (Orco) and analyzed its expression profiles in Rice stripe virus (RSV)-infected and RSV-free SBPH. It was found that LstrOrco shared high identity with other Orcos from different order insects. LstrOrco was mainly expressed in the head of SBPH, and its expression was significantly stimulated by RSV-infection. The behavioral bioassay revealed that viruliferous SBPH might have a stronger olfactory and seeking ability for rice than RSV-free insect. After silencing of LstrOrco expression, the olfaction and seeking behavior of nymphs for rice seedlings was significantly inhibited, mainly in the increase of the 'no response' percent and the prolongation of the response time. CONCLUSION These results suggested that Orco played an important role in olfactory signaling and seeking behavior of SBPH, which provided a basic for future development of olfactory-based agriculture pest management strategies. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shuo Li
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Changwei Zhou
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yijun Zhou
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| |
Collapse
|
162
|
Varela N, Gaspar M, Dias S, Vasconcelos ML. Avoidance response to CO2 in the lateral horn. PLoS Biol 2019; 17:e2006749. [PMID: 30653496 PMCID: PMC6336243 DOI: 10.1371/journal.pbio.2006749] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 12/13/2018] [Indexed: 12/16/2022] Open
Abstract
In flies, the olfactory information is carried from the first relay in the brain, the antennal lobe, to the mushroom body (MB) and the lateral horn (LH). Olfactory associations are formed in the MB. The LH was ascribed a role in innate responses based on the stereotyped connectivity with the antennal lobe, stereotyped physiological responses to odors, and MB silencing experiments. Direct evidence for the functional role of the LH is still missing. Here, we investigate the behavioral role of the LH neurons (LHNs) directly, using the CO2 response as a paradigm. Our results show the involvement of the LH in innate responses. Specifically, we demonstrate that activity in two sets of neurons is required for the full behavioral response to CO2. Tests of the behavioral response to other odors indicate the neurons are selective to CO2 response. Using calcium imaging, we observe that the two sets of neurons respond to CO2 in a different manner. Using independent manipulation and recording of the two sets of neurons, we find that the one that projects to the superior intermediate protocerebrum (SIP) also outputs to the local neurons within the LH. The design of simultaneous output at the LH and the SIP, an output of the MB, allows for coordination between innate and learned responses.
Collapse
Affiliation(s)
- Nélia Varela
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Miguel Gaspar
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Sophie Dias
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | | |
Collapse
|
163
|
Fleischer J, Krieger J. Insect Pheromone Receptors - Key Elements in Sensing Intraspecific Chemical Signals. Front Cell Neurosci 2018; 12:425. [PMID: 30515079 PMCID: PMC6255830 DOI: 10.3389/fncel.2018.00425] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 10/30/2018] [Indexed: 12/20/2022] Open
Abstract
Pheromones are chemicals that serve intraspecific communication. In animals, the ability to detect and discriminate pheromones in a complex chemical environment substantially contributes to the survival of the species. Insects widely use pheromones to attract mating partners, to alarm conspecifics or to mark paths to rich food sources. The various functional roles of pheromones for insects are reflected by the chemical diversity of pheromonal compounds. The precise detection of the relevant intraspecific signals is accomplished by specialized chemosensory neurons housed in hair-like sensilla located on the surface of body appendages. Current data indicate that the extraordinary sensitivity and selectivity of the pheromone-responsive neurons (PRNs) is largely based on specific pheromone receptors (PRs) residing in their ciliary membrane. Besides these key elements, proper ligand-induced responses of PR-expressing neurons appear to generally require a putative co-receptor, the so-called "sensory neuron membrane protein 1" (SNMP1). Regarding the PR-mediated chemo-electrical signal transduction processes in insect PRNs, ionotropic as well as metabotropic mechanisms may be involved. In this review, we summarize and discuss current knowledge on the peripheral detection of pheromones in the olfactory system of insects with a focus on PRs and their specific role in the recognition and transduction of volatile intraspecific chemical signals.
Collapse
Affiliation(s)
- Jörg Fleischer
- Department of Animal Physiology, Institute of Biology/Zoology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Jürgen Krieger
- Department of Animal Physiology, Institute of Biology/Zoology, Martin Luther University Halle-Wittenberg, Halle, Germany
| |
Collapse
|
164
|
Bastin F, Couto A, Larcher V, Phiancharoen M, Koeniger G, Koeniger N, Sandoz JC. Marked interspecific differences in the neuroanatomy of the male olfactory system of honey bees (genus Apis). J Comp Neurol 2018; 526:3020-3034. [PMID: 30417379 DOI: 10.1002/cne.24513] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 07/12/2018] [Accepted: 07/27/2018] [Indexed: 12/27/2022]
Abstract
All honey bee species (genus Apis) display a striking mating behavior with the formation of male (drone) congregations, in which virgin queens mate with many drones. Bees' mating behavior relies on olfactory communication involving queen-but also drone pheromones. To explore the evolution of olfactory communication in Apis, we analyzed the neuroanatomical organization of the antennal lobe (primary olfactory center) in the drones of five species from the three main lineages (open-air nesting species: dwarf honey bees Apis florea and giant honey bees Apis dorsata; cavity-nesting species: Apis mellifera, Apis kochevnikovi, and Apis cerana) and from three populations of A. cerana (Borneo, Thailand, and Japan). In addition to differences in the overall number of morphological units, the glomeruli, our data reveal marked differences in the number and position of macroglomeruli, enlarged units putatively dedicated to sex pheromone processing. Dwarf and giant honey bee species possess two macroglomeruli while cavity-nesting bees present three or four macroglomeruli, suggesting an increase in the complexity of sex communication during evolution in the genus Apis. The three A. cerana populations showed differing absolute numbers of glomeruli but the same three macroglomeruli. Overall, we identified six different macroglomeruli in the genus Apis. One of these (called MGb), which is dedicated to the detection of the major queen compound 9-ODA in A. mellifera, was conserved in all species. We discuss the implications of these results for our understanding of sex communication in honey bees and propose a putative scenario of antennal lobe evolution in the Apis genus.
Collapse
Affiliation(s)
- Florian Bastin
- Evolution, Genomes, Behavior and Ecology, CNRS (UMR 9191), Univ Paris-Sud, IRD, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Antoine Couto
- Evolution, Genomes, Behavior and Ecology, CNRS (UMR 9191), Univ Paris-Sud, IRD, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Virginie Larcher
- Evolution, Genomes, Behavior and Ecology, CNRS (UMR 9191), Univ Paris-Sud, IRD, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Mananya Phiancharoen
- Ratchaburi Campus, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
| | - Gudrun Koeniger
- Behavioral Physiology and Sociobiology (Zoology II), Biocenter, University of Würzburg, Würzburg, Germany
| | - Nikolaus Koeniger
- Behavioral Physiology and Sociobiology (Zoology II), Biocenter, University of Würzburg, Würzburg, Germany
| | - Jean-Christophe Sandoz
- Evolution, Genomes, Behavior and Ecology, CNRS (UMR 9191), Univ Paris-Sud, IRD, Université Paris-Saclay, Gif-sur-Yvette, France
| |
Collapse
|
165
|
Eliason J, Afify A, Potter C, Matsumura I. A GAL80 Collection To Inhibit GAL4 Transgenes in Drosophila Olfactory Sensory Neurons. G3 (BETHESDA, MD.) 2018; 8:3661-3668. [PMID: 30262521 PMCID: PMC6222567 DOI: 10.1534/g3.118.200569] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 09/17/2018] [Indexed: 01/16/2023]
Abstract
Fruit flies recognize hundreds of ecologically relevant odors and respond appropriately to them. The complexity, redundancy and interconnectedness of the olfactory machinery complicate efforts to pinpoint the functional contributions of any component neuron or receptor to behavior. Some contributions can only be elucidated in flies that carry multiple mutations and transgenes, but the production of such flies is currently labor-intensive and time-consuming. Here, we describe a set of transgenic flies that express the Saccharomyces cerevisiae GAL80 in specific olfactory sensory neurons (OrX-GAL80s). The GAL80s effectively and specifically subtract the activities of GAL4-driven transgenes that impart anatomical and physiological phenotypes. OrX-GAL80s can allow researchers to efficiently activate only one or a few types of functional neurons in an otherwise nonfunctional olfactory background. Such experiments will improve our understanding of the mechanistic connections between odorant inputs and behavioral outputs at the resolution of only a few functional neurons.
Collapse
Affiliation(s)
- Jessica Eliason
- Janelia Research Campus, Howard Hughes Medical Institute' Ashburn, VA, 20147
- Department of Biochemistry; Emory University School of Medicine; Atlanta, GA, 30322
| | - Ali Afify
- Solomon H. Snyder Department of Neuroscience; Johns Hopkins University School of Medicine; Baltimore, MD, 21205
| | - Christopher Potter
- Solomon H. Snyder Department of Neuroscience; Johns Hopkins University School of Medicine; Baltimore, MD, 21205
| | - Ichiro Matsumura
- Department of Biochemistry; Emory University School of Medicine; Atlanta, GA, 30322
| |
Collapse
|
166
|
Cohanim AB, Amsalem E, Saad R, Shoemaker D, Privman E. Evolution of Olfactory Functions on the Fire Ant Social Chromosome. Genome Biol Evol 2018; 10:2947-2960. [PMID: 30239696 PMCID: PMC6279166 DOI: 10.1093/gbe/evy204] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2018] [Indexed: 12/16/2022] Open
Abstract
Understanding the molecular evolutionary basis of social behavior is a major challenge in evolutionary biology. Social insects evolved a complex language of chemical signals to coordinate thousands of individuals. In the fire ant Solenopsis invicta, chemical signals are involved in the determination of a polymorphic social organization. Single-queen (monogyne) or multiqueen (polygyne) social structure is determined by the "social chromosome," a nonrecombining region containing ∼504 genes with two distinct haplotypes, SB and Sb. Monogyne queens are always SBB, while polygyne queens are always SBb. Workers discriminate monogyne from polygyne queens based on olfactory cues. Here, we took an evolutionary genomics approach to search for candidate genes in the social chromosome that could be responsible for this discrimination. We compared the SB and Sb haplotypes and analyzed the evolutionary rates since their divergence. Notably, we identified a cluster of 23 odorant receptors in the nonrecombining region of the social chromosome that stands out in terms of nonsynonymous changes in both haplotypes. The cluster includes twelve genes formed by recent Solenopsis-specific duplications. We found evidence for positive selection on several tree branches and significant differences between the SB and Sb haplotypes of these genes. The most dramatic difference is the complete deletion of two of these genes in Sb. These results suggest that the evolution of polygyne social organization involved adaptations in olfactory genes and opens the way for functional studies of the molecular mechanisms underlying social behavior.
Collapse
Affiliation(s)
- Amir B Cohanim
- Department of Evolutionary and Environmental Biology, Institute of Evolution, University of Haifa, Israel
| | - Etya Amsalem
- Department of Entomology, Huck Institutes of the Life Sciences, Pennsylvania State University
| | - Rana Saad
- Department of Evolutionary and Environmental Biology, Institute of Evolution, University of Haifa, Israel
| | - DeWayne Shoemaker
- Department of Entomology and Plant Pathology, University of Tennessee
| | - Eyal Privman
- Department of Evolutionary and Environmental Biology, Institute of Evolution, University of Haifa, Israel
| |
Collapse
|
167
|
Miyazaki H, Otake J, Mitsuno H, Ozaki K, Kanzaki R, Chui-Ting Chieng A, Kah-Wei Hee A, Nishida R, Ono H. Functional characterization of olfactory receptors in the Oriental fruit fly Bactrocera dorsalis that respond to plant volatiles. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2018; 101:32-46. [PMID: 30026095 DOI: 10.1016/j.ibmb.2018.07.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 07/14/2018] [Indexed: 06/08/2023]
Abstract
The Oriental fruit fly, Bactrocera dorsalis, is a highly destructive pest of various fruits. The reproductive and host-finding behaviors of this species are affected by several plant semiochemicals that are perceived through chemosensory receptors. However, the chemosensory mechanisms by which this perception occurs have not been fully elucidated. We conducted RNA sequencing analysis of the chemosensory organs of B. dorsalis to identify the genes coding for chemosensory receptors. We identified 60 olfactory receptors (ORs), 17 gustatory receptors and 23 ionotropic receptors-including their homologs and variants-from the transcriptome of male antennae and proboscises. We functionally analyzed ten ORs co-expressed with the obligatory co-receptor ORCO in Xenopus oocytes to identify their ligands. We tested 24 compounds including attractants for several Bactrocera species and volatiles from the host fruits of B. dorsalis. We found that BdorOR13a co-expressed with ORCO responded robustly to 1-octen-3-ol. BdorOR82a co-expressed with ORCO responded significantly to geranyl acetate, but responded weakly to farnesenes (a mixture of isomers) and linalyl acetate. These four compounds were subsequently subjected to behavioral bioassays. When each of the aforementioned compound was presented in combination with a sphere model as a visual cue to adult flies, 1-octen-3-ol, geranyl acetate, and farnesenes significantly enhanced landing behavior in mated females, but not in unmated females or males. These results suggest that the ORs characterized in the present study are involved in the perception of plant volatiles that affect host-finding behavior in B. dorsalis.
Collapse
Affiliation(s)
- Hitomi Miyazaki
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Jun Otake
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Hidefumi Mitsuno
- Research Center for Advanced Science and Technology, University of Tokyo, Tokyo 153-8904, Japan
| | - Katsuhisa Ozaki
- JT Biohistory Research Hall, Takatsuki Osaka, 569-1125, Japan
| | - Ryohei Kanzaki
- Research Center for Advanced Science and Technology, University of Tokyo, Tokyo 153-8904, Japan
| | | | - Alvin Kah-Wei Hee
- Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Malaysia
| | - Ritsuo Nishida
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Hajime Ono
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan.
| |
Collapse
|
168
|
Gomez-Diaz C, Martin F, Garcia-Fernandez JM, Alcorta E. The Two Main Olfactory Receptor Families in Drosophila, ORs and IRs: A Comparative Approach. Front Cell Neurosci 2018; 12:253. [PMID: 30214396 PMCID: PMC6125307 DOI: 10.3389/fncel.2018.00253] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 07/23/2018] [Indexed: 12/20/2022] Open
Abstract
Most insect species rely on the detection of olfactory cues for critical behaviors for the survival of the species, e.g., finding food, suitable mates and appropriate egg-laying sites. Although insects show a diverse array of molecular receptors dedicated to the detection of sensory cues, two main types of molecular receptors have been described as responsible for olfactory reception in Drosophila, the odorant receptors (ORs) and the ionotropic receptors (IRs). Although both receptor families share the role of being the first chemosensors in the insect olfactory system, they show distinct evolutionary origins and several distinct structural and functional characteristics. While ORs are seven-transmembrane-domain receptor proteins, IRs are related to the ionotropic glutamate receptor (iGluR) family. Both types of receptors are expressed on the olfactory sensory neurons (OSNs) of the main olfactory organ, the antenna, but they are housed in different types of sensilla, IRs in coeloconic sensilla and ORs in basiconic and trichoid sensilla. More importantly, from the functional point of view, they display different odorant specificity profiles. Research advances in the last decade have improved our understanding of the molecular basis, evolution and functional roles of these two families, but there are still controversies and unsolved key questions that remain to be answered. Here, we present an updated review on the advances of the genetic basis, evolution, structure, functional response and regulation of both types of chemosensory receptors. We use a comparative approach to highlight the similarities and differences among them. Moreover, we will discuss major open questions in the field of olfactory reception in insects. A comprehensive analysis of the structural and functional convergence and divergence of both types of receptors will help in elucidating the molecular basis of the function and regulation of chemoreception in insects.
Collapse
Affiliation(s)
- Carolina Gomez-Diaz
- Department of Functional Biology, Faculty of Medicine, University of Oviedo, Oviedo, Spain
| | - Fernando Martin
- Department of Functional Biology, Faculty of Medicine, University of Oviedo, Oviedo, Spain
| | | | - Esther Alcorta
- Department of Functional Biology, Faculty of Medicine, University of Oviedo, Oviedo, Spain
| |
Collapse
|
169
|
Wang B, Liu Y, Wang GR. Proceeding From in vivo Functions of Pheromone Receptors: Peripheral-Coding Perception of Pheromones From Three Closely Related Species, Helicoverpa armigera, H. assulta, and Heliothis virescens. Front Physiol 2018; 9:1188. [PMID: 30214413 PMCID: PMC6125646 DOI: 10.3389/fphys.2018.01188] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 08/07/2018] [Indexed: 01/07/2023] Open
Abstract
Three closely related species, Helicoverpa armigera, H. assulta, and Heliothis virescens from Lepidoptera Noctuidae, are used as a model system for exploring sexual communication and species isolation. Pheromone receptors (PRs) previously discovered in model moth species include seven in H. armigera, six in H. assulta, and six in H. virescens. PRs named OR6, OR13, and OR16 among these species were found to be functional, characterized by an in vitro Xenopus oocytes system. Using an in vivo transgenic fly system, functional assays of OR6, OR13, and OR16 clades from three closely related Noctuidae species showed that OR13 function was highly conserved, whereas OR6 and OR16 exhibited functional divergence. Similar results were produced from assays in the Xenopus oocytes system. Combined with earlier behavioral results and electrophysiological recordings, we found corresponding relationships among pheromones, PRs, and neurons at the periphery sensory system of each species. Our results provide vital information at the neuronal and molecular level, shedding insight into the sexual communication of closely related species in Lepidoptera.
Collapse
Affiliation(s)
- Bing Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yang Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Gui-Rong Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
170
|
Srinivasan S, Greenspan RJ, Stevens CF, Grover D. Deep(er) Learning. J Neurosci 2018; 38:7365-7374. [PMID: 30006366 PMCID: PMC6596136 DOI: 10.1523/jneurosci.0153-18.2018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 06/30/2018] [Accepted: 07/05/2018] [Indexed: 12/30/2022] Open
Abstract
Animals successfully thrive in noisy environments with finite resources. The necessity to function with resource constraints has led evolution to design animal brains (and bodies) to be optimal in their use of computational power while being adaptable to their environmental niche. A key process undergirding this ability to adapt is the process of learning. Although a complete characterization of the neural basis of learning remains ongoing, scientists for nearly a century have used the brain as inspiration to design artificial neural networks capable of learning, a case in point being deep learning. In this viewpoint, we advocate that deep learning can be further enhanced by incorporating and tightly integrating five fundamental principles of neural circuit design and function: optimizing the system to environmental need and making it robust to environmental noise, customizing learning to context, modularizing the system, learning without supervision, and learning using reinforcement strategies. We illustrate how animals integrate these learning principles using the fruit fly olfactory learning circuit, one of nature's best-characterized and highly optimized schemes for learning. Incorporating these principles may not just improve deep learning but also expose common computational constraints. With judicious use, deep learning can become yet another effective tool to understand how and why brains are designed the way they are.
Collapse
Affiliation(s)
- Shyam Srinivasan
- Kavli Institute for Brain and Mind, University of California-San Diego, La Jolla, California 92093
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037
| | - Ralph J Greenspan
- Kavli Institute for Brain and Mind, University of California-San Diego, La Jolla, California 92093
- Division of Biological Sciences, University of California-San Diego, La Jolla, California 92093, and
- Department of Cognitive Science, University of California-San Diego, La Jolla, California 92093
| | - Charles F Stevens
- Kavli Institute for Brain and Mind, University of California-San Diego, La Jolla, California 92093,
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037
| | - Dhruv Grover
- Kavli Institute for Brain and Mind, University of California-San Diego, La Jolla, California 92093,
| |
Collapse
|
171
|
Liu H, Chen ZS, Zhang DJ, Lu YY. BdorOR88a Modulates the Responsiveness to Methyl Eugenol in Mature Males of Bactrocera dorsalis (Hendel). Front Physiol 2018; 9:987. [PMID: 30140233 PMCID: PMC6094957 DOI: 10.3389/fphys.2018.00987] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 07/05/2018] [Indexed: 01/06/2023] Open
Abstract
Insect attractants are important prevention tools for managing populations of the Oriental fruit fly, Bactrocera dorsalis (Hendel), which is a highly destructive agricultural pest with health implications in tropical and subtropical countries. Methyl eugenol (ME) is still considered the gold standard of B. dorsalis attractants. Mature male flies use their olfactory system to detect ME, but the molecular mechanism underlying their olfactory detection of ME largely remains unclear. Here, we showed that ME activates the odorant receptors OR63a-1 and OR88a in mature B. dorsalis males antennae by RNA-Seq and qRT-PCR analysis. Interestingly, ME only elicited robust responses in the BdorOR88a/BdorOrco-expressing Xenopus oocytes, thus suggesting that BdorOR88a is necessary for ME reception and tropism in B. dorsalis. Next, our indoor behavioral assays demonstrated that BdorOR63a-1 knockdown had no significant effects on ME detection and tropism. By contrast, reducing the BdorOR88a transcript levels led to a significant decrease in the males' responsiveness to ME. Taken together, our results gave novel insight in the understanding of the olfactory background to the Oriental fruit fly's attraction toward ME.
Collapse
Affiliation(s)
| | | | | | - Yong-Yue Lu
- Department of Entomology, South China Agricultural University, Guangzhou, China
| |
Collapse
|
172
|
Robertson HM, Baits RL, Walden KK, Wada‐Katsumata A, Schal C. Enormous expansion of the chemosensory gene repertoire in the omnivorous German cockroach Blattella germanica. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2018; 330:265-278. [PMID: 29566459 PMCID: PMC6175461 DOI: 10.1002/jez.b.22797] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 02/27/2018] [Indexed: 01/26/2023]
Abstract
The acquisition of genome sequences from a wide range of insects and other arthropods has revealed a broad positive correlation between the complexity of their chemical ecology and the size of their chemosensory gene repertoire. The German cockroach Blattella germanica is an extreme omnivore and has the largest chemosensory gene repertoire known for an arthropod, exceeding even the highly polyphagous spider mite Tetranychus urticae. While the Odorant Receptor family is not particularly large, with 123 genes potentially encoding 134 receptors (105 intact), the Gustatory Receptor family is greatly expanded to 431 genes potentially encoding 545 receptors (483 intact), the largest known for insects and second only to the spider mite. The Ionotropic Receptor family of olfactory and gustatory receptors is vastly expanded to at least 897 genes (604 intact), the largest size known in arthropods, far surpassing the 150 known from the dampwood termite Zootermopsis nevadensis. Commensurately, the Odorant Binding Protein family is expanded to the largest known for insects at 109 genes (all intact). Comparison with the far more specialized, but phylogenetically related termite, within the Dictyoptera, reveals considerable gene losses from the termite, and massive species-specific gene expansions in the cockroach. The cockroach has lost function of 11%-41% of these three chemoreceptor gene families to pseudogenization, and most of these are young events, implying rapid turnover of genes along with these major expansions, presumably in response to changes in its chemical ecology.
Collapse
Affiliation(s)
- Hugh M. Robertson
- Department of EntomologyUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
| | - Rachel L. Baits
- Department of EntomologyUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
| | - Kimberly K.O. Walden
- Department of EntomologyUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
| | - Ayako Wada‐Katsumata
- Department of Entomology and Plant PathologyNorth Carolina State UniversityRaleighNorth CarolinaUSA
| | - Coby Schal
- Department of Entomology and Plant PathologyNorth Carolina State UniversityRaleighNorth CarolinaUSA
| |
Collapse
|
173
|
Utashiro N, Williams CR, Parrish JZ, Emoto K. Prior activity of olfactory receptor neurons is required for proper sensory processing and behavior in Drosophila larvae. Sci Rep 2018; 8:8580. [PMID: 29872087 PMCID: PMC5988719 DOI: 10.1038/s41598-018-26825-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 05/14/2018] [Indexed: 11/10/2022] Open
Abstract
Animal responses to their environment rely on activation of sensory neurons by external stimuli. In many sensory systems, however, neurons display basal activity prior to the external stimuli. This prior activity is thought to modulate neural functions, yet its impact on animal behavior remains elusive. Here, we reveal a potential role for prior activity in olfactory receptor neurons (ORNs) in shaping larval olfactory behavior. We show that prior activity in larval ORNs is mediated by the olfactory receptor complex (OR complex). Mutations of Orco, an odorant co-receptor required for OR complex function, cause reduced attractive behavior in response to optogenetic activation of ORNs. Calcium imaging reveals that Orco mutant ORNs fully respond to optogenetic stimulation but exhibit altered temporal patterns of neural responses. These findings together suggest a critical role for prior activity in information processing upon ORN activation in Drosophila larvae, which in turn contributes to olfactory behavior control.
Collapse
Affiliation(s)
- Nao Utashiro
- Department of Biological Sciences, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Claire R Williams
- Department of Biology, University of Washington, 24 Kincaid Hall, Box 351800, Seattle, WA, 98195, USA.,Molecular and Cellular Biology Program, University of Washington, Seattle, WA, 98195, USA
| | - Jay Z Parrish
- Department of Biology, University of Washington, 24 Kincaid Hall, Box 351800, Seattle, WA, 98195, USA.,Molecular and Cellular Biology Program, University of Washington, Seattle, WA, 98195, USA
| | - Kazuo Emoto
- Department of Biological Sciences, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan. .,International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
174
|
Cui WC, Wang B, Guo MB, Liu Y, Jacquin-Joly E, Yan SC, Wang GR. A receptor-neuron correlate for the detection of attractive plant volatiles in Helicoverpa assulta (Lepidoptera: Noctuidae). INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2018; 97:31-39. [PMID: 29698698 DOI: 10.1016/j.ibmb.2018.04.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 04/01/2018] [Accepted: 04/14/2018] [Indexed: 06/08/2023]
Abstract
Plant volatiles are vital cues in the location of hosts for feeding and oviposition for Lepidoptera moths. The noctuid Helicoverpa assulta is a typical polyphagous moth, regarded as a good model for studying the olfactory reception of plant volatiles. In this study, four full-length genes encoding odorant receptors HassOR24, HassOR40, HassOR41, and HassOR55 expressed in antenna in H. assulta were functionally characterized. The highly expressed HassOR40 was narrowly tuned to a few structurally-related plant volatiles: geranyl acetate, geraniol and nerolidol. By systematically analyzing responses of single neuron in both trichoid sensilla and basiconic sensilla using single sensillum recording, the specific neuron B in one type of short trichoid sensilla was found to be mainly activated by the same chemicals as HassOR40 with high sensitivity, and with no significant difference between male and female neurons. Thus, a clear "receptor-neuron" relationship in H. assulta was demonstrated here, suggesting that HassOR40/HassOrco are expressed in neuron B of short trichoid sensilla. The active tobacco volatile nerolidol, recognized by this receptor-neuron line, elicits significant behavioral attraction of both sexes in H. assulta adults. The results indicate that we identified a receptor-neuron route for the peripheral coding of a behaviorally relevant host volatile in H. assulta.
Collapse
Affiliation(s)
- Wei-Chan Cui
- College of Forestry, Northeast Forestry University, 150040 Harbin, China; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 100193 Beijing, China
| | - Bing Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 100193 Beijing, China
| | - Meng-Bo Guo
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 100193 Beijing, China
| | - Yang Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 100193 Beijing, China
| | | | - Shan-Chun Yan
- College of Forestry, Northeast Forestry University, 150040 Harbin, China.
| | - Gui-Rong Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 100193 Beijing, China.
| |
Collapse
|
175
|
Zhang L, Yuan Y, Ren T, Guo Y, Li C, Pu X. Shining Light on Molecular Mechanism for Odor-selectivity of CNT-immobilized Olfactory Receptor. Sci Rep 2018; 8:7824. [PMID: 29777138 PMCID: PMC5959861 DOI: 10.1038/s41598-018-26105-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 04/20/2018] [Indexed: 01/17/2023] Open
Abstract
Olfactory receptor (OR)-based bioelectronic nose is a new type of bio-affinity sensor applied for detecting numerous odorant molecules. In order to elucidate the effect of the adsorption of nanomaterial carriers on the receptor structure and its selectivity to odors, we used a systematic computation-scheme to study two OR models immobilized onto carbon nanotube. Our result indicates that there is a multistep OR-adsorption process driven by hydrophobic interaction. Many allosteric communication pathways exist between the absorbed residues and the pocket ones, leading to a significant shrinkage of the pocket. Consequently, the size-selectivity of the receptor to the odors is changed to some extent. But, the odor size and its hydrophobicity, rather than specific functional groups of the odor, still play a determinant role in binding OR, at least for the 132 odors under study. Regardless of the limitation for the odor size in initial recognition, the different-size odors could induce significant changes in the pocket conformation so that it could better match the pocket space, indicating the importance of the ligand-fit binding. Due to the CNT-induced shrinkage of the pocket, the CNT immobilization could increase the binding affinity through enhancing van der Waals interaction, in particular for the large odors.
Collapse
Affiliation(s)
- Liyun Zhang
- College of Chemistry, Sichuan University, Chengdu, 610064, P.R. China
| | - Yuan Yuan
- College of Management, Southwest University for Nationalities, Chengdu, 610041, P.R. China
| | - Tian Ren
- College of Chemistry, Sichuan University, Chengdu, 610064, P.R. China
| | - Yanzhi Guo
- College of Chemistry, Sichuan University, Chengdu, 610064, P.R. China
| | - Chuan Li
- College of Computer Science, Sichuan University, Chengdu, 610064, P.R. China.
| | - Xuemei Pu
- College of Chemistry, Sichuan University, Chengdu, 610064, P.R. China.
| |
Collapse
|
176
|
Brand P, Ramírez SR. The Evolutionary Dynamics of the Odorant Receptor Gene Family in Corbiculate Bees. Genome Biol Evol 2018; 9:2023-2036. [PMID: 28854688 PMCID: PMC5597890 DOI: 10.1093/gbe/evx149] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2017] [Indexed: 12/24/2022] Open
Abstract
Insects rely on chemical information to locate food, choose mates, and detect potential predators. It has been hypothesized that adaptive changes in the olfactory system facilitated the diversification of numerous insect lineages. For instance, evolutionary changes of Odorant Receptor (OR) genes often occur in parallel with modifications in life history strategies. Corbiculate bees display a diverse array of behaviors that are controlled through olfaction, including varying degrees of social organization, and manifold associations with floral resources. Here we investigated the molecular mechanisms driving the evolution of the OR gene family in corbiculate bees in comparison to other chemosensory gene families. Our results indicate that the genomic organization of the OR gene family has remained highly conserved for ∼80 Myr, despite exhibiting major changes in repertoire size among bee lineages. Moreover, the evolution of OR genes appears to be driven mostly by lineage-specific gene duplications in few genomic regions that harbor large numbers of OR genes. A selection analysis revealed that OR genes evolve under positive selection, with the strongest signals detected in recently duplicated copies. Our results indicate that chromosomal translocations had a minimal impact on OR evolution, and instead local molecular mechanisms appear to be main drivers of OR repertoire size. Our results provide empirical support to the longstanding hypothesis that positive selection shaped the diversification of the OR gene family. Together, our results shed new light on the molecular mechanisms underlying the evolution of olfaction in insects.
Collapse
Affiliation(s)
- Philipp Brand
- Department for Evolution and Ecology, Center for Population Biology, University of California, Davis.,Population Biology Graduate Group, Center for Population Biology, University of California, Davis
| | - Santiago R Ramírez
- Department for Evolution and Ecology, Center for Population Biology, University of California, Davis
| |
Collapse
|
177
|
Ouedraogo L, den Otter CJ. Comparison of single cell sensitivities to acetone, 1-octen-3-ol and 3-methylphenol in the riverine tsetse species Glossina fuscipes fuscipes and G. palpalis palpalis. JOURNAL OF INSECT PHYSIOLOGY 2018; 107:144-151. [PMID: 29559304 DOI: 10.1016/j.jinsphys.2018.03.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 03/09/2018] [Accepted: 03/12/2018] [Indexed: 06/08/2023]
Abstract
Action potentials from individual cells were recorded from antennae (funiculi) of living tsetse flies, Glossina p. palpalis and Glossina f. fuscipes using a "surface-contact" recording technique. Stimuli were vapours of 1-octen-3-ol, acetone and 3-methylphenol. Of the 101 and 128 olfactory cells tested for their sensitivity to odour stimuli in G. p. palpalis and G. f. fuscipes, respectively, the majority (83 and 77%) were activated by more than one chemical. The numbers of these "generalist" cells were 20 and 15% higher in females than in males. Response intensity increased with increasing odour dose. Temporal patterns of excitation were phasic-tonic and showed cells with relatively rapid cessation of spike activity after the end of stimulation and cells which continued firing for several seconds or even minutes after stimulation. Inhibition by odours only occurred in a minority of cells and was dose-dependent. For each of the three substances the excitatory response was significantly higher in G. f. fuscipes than in G. p. palpalis, whereas no significant differences between inhibitory responses were found. In G. f. fuscipes each stimulus evoked equal excitatory responses. In G. p. palpalis, however, acetone induced significantly higher responses than 1-octen-3-ol and 3-methylphenol. Response intensities to each of the three chemicals did not differ between male and female G. p. palpalis, whereas in G. f. fuscipes 1-octen-3-ol evoked significantly higher responses in males. Possible mechanisms of receptor cell odour coding and behavioural effects of the various cell type activities are discussed.
Collapse
Affiliation(s)
- Lamini Ouedraogo
- Laboratoire de Physiologie Animale, Unité de Formation et de la Recherche en Sciences de la Vie et de la Terre (UFR/SVT), Universite Ouaga I Pr Joseph KI-ZERBO, Burkina Faso.
| | - C J den Otter
- FRES, Rijksstraatweg 377, 9752 CH Haren, The Netherlands.
| |
Collapse
|
178
|
Abstract
Among the insect olfactory receptors the odorant receptors (ORs) evolved in parallel to the onset of insect flight. A special property of this receptor type is the capability to adjust sensitivity of odor detection according to previous odor contacts. This article presents a current view on regulatory processes affecting the performance of ORs and proposes a model of mechanisms contributing to OR sensitization.
Collapse
Affiliation(s)
- Dieter Wicher
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology (MPG), Jena, Germany
| |
Collapse
|
179
|
Haney S, Saha D, Raman B, Bazhenov M. Differential effects of adaptation on odor discrimination. J Neurophysiol 2018; 120:171-185. [PMID: 29589811 DOI: 10.1152/jn.00389.2017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Adaptation of neural responses is ubiquitous in sensory systems and can potentially facilitate many important computational functions. Here we examined this issue with a well-constrained computational model of the early olfactory circuits. In the insect olfactory system, the responses of olfactory receptor neurons (ORNs) on the antennae adapt over time. We found that strong adaptation of sensory input is important for rapidly detecting a fresher stimulus encountered in the presence of other background cues and for faithfully representing its identity. However, when the overlapping odorants were chemically similar, we found that adaptation could alter the representation of these odorants to emphasize only distinguishing features. This work demonstrates novel roles for peripheral neurons during olfactory processing in complex environments. NEW & NOTEWORTHY Olfactory systems face the problem of distinguishing salient information from a complex olfactory environment. The neural representations of specific odor sources should be consistent regardless of the background. How are olfactory representations robust to varying environmental interference? We show that in locusts the extraction of salient information begins in the periphery. Olfactory receptor neurons adapt in response to odorants. Adaptation can provide a computational mechanism allowing novel odorant components to be highlighted during complex stimuli.
Collapse
Affiliation(s)
- Seth Haney
- Department of Medicine, University of California, San Diego, La Jolla, California
| | - Debajit Saha
- Department of Biomedical Engineering, Washington University in St. Louis , St. Louis, Missouri
| | - Baranidharan Raman
- Department of Biomedical Engineering, Washington University in St. Louis , St. Louis, Missouri
| | - Maxim Bazhenov
- Department of Medicine, University of California, San Diego, La Jolla, California
| |
Collapse
|
180
|
Wang Q, Wang Q, Zhou YL, Shan S, Cui HH, Xiao Y, Dong K, Khashaveh A, Sun L, Zhang YJ. Characterization and Comparative Analysis of Olfactory Receptor Co-Receptor Orco Orthologs Among Five Mirid Bug Species. Front Physiol 2018; 9:158. [PMID: 29556202 PMCID: PMC5845112 DOI: 10.3389/fphys.2018.00158] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 02/16/2018] [Indexed: 01/08/2023] Open
Abstract
The phytophagous mirid bugs of Apolygus lucorum, Lygus pratensis as well as three Adelphocoris spp., including Adelphocoris lineolatus, A. suturalis, and A. fasciaticollis are major pests of multiple agricultural crops in China, which have distinct geographical distribution and occurrence ranges. Like many insect species, these bugs heavily rely on olfactory cues to search preferred host plants, thereby investigation on functional co-evolution and divergence of olfactory genes seems to be necessary and is of great interest. In the odorant detection pathway, olfactory receptor co-receptor (Orco) plays critical role in the perception of odors. In this study, we identified the full-length cDNA sequences encoding three putative Orcos (AsutOrco, AfasOrco, and LpraOrco) in bug species of A. suturalis, A. fasciaticollis, and L. pratensis based on homology cloning method. Next, sequence alignment, membrane topology and gene structure analysis showed that these three Orco orthologs together with previously reported AlinOrco and AlucOrco shared high amino acid identities and similar topology structure, but had different gene structure especially at the length and insertion sites of introns. Furthermore, the evolutional estimation on the ratios of non-synonymous to synonymous (Ka/Ks) revealed that Orco genes were under strong purifying selection, but the degrees of variation were significant different between genera. The results of quantitative real-time PCR experiments showed that these five Orco genes had a similar antennae-biased tissue expression pattern. Taking these data together, it is thought that Orco genes in the mirid species could share conserved olfaction roles but had different evolution rates. These findings would lay a foundation to further investigate the molecular mechanisms of evolutionary interactions between mirid bugs and their host plants, which might in turn contribute to the development of pest management strategy for mirid bugs.
Collapse
Affiliation(s)
- Qi Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qian Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.,Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Yan-Le Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.,DanDong Entry-Exit Inspection and Quarantine Bureau, Dandong, China
| | - Shuang Shan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Huan-Huan Cui
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yong Xiao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Kun Dong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Adel Khashaveh
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Liang Sun
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Yong-Jun Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
181
|
Corcoran JA, Sonntag Y, Andersson MN, Johanson U, Löfstedt C. Endogenous insensitivity to the Orco agonist VUAA1 reveals novel olfactory receptor complex properties in the specialist fly Mayetiola destructor. Sci Rep 2018; 8:3489. [PMID: 29472565 PMCID: PMC5823858 DOI: 10.1038/s41598-018-21631-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 02/06/2018] [Indexed: 11/12/2022] Open
Abstract
Insect olfactory receptors are routinely expressed in heterologous systems for functional characterisation. It was recently discovered that the essential olfactory receptor co-receptor (Orco) of the Hessian fly, Mayetiola destructor (Mdes), does not respond to the agonist VUAA1, which activates Orco in all other insects analysed to date. Here, using a mutagenesis-based approach we identified three residues in MdesOrco, located in different transmembrane helices as supported by 3D modelling, that confer sensitivity to VUAA1. Reciprocal mutations in Drosophila melanogaster (Dmel) and the noctuid moth Agrotis segetum (Aseg) Orcos diminish sensitivity of these proteins to VUAA1. Additionally, mutating these residues in DmelOrco and AsegOrco compromised odourant receptor (OR) dependent ligand-induced Orco activation. In contrast, both wild-type and VUAA1-sensitive MdesOrco were capable of forming functional receptor complexes when coupled to ORs from all three species, suggesting unique complex properties in M. destructor, and that not all olfactory receptor complexes are “created” equal.
Collapse
Affiliation(s)
| | - Yonathan Sonntag
- Division of Biochemistry and Structural Biology, Department of Chemistry, Lund University, Lund, Sweden
| | | | - Urban Johanson
- Division of Biochemistry and Structural Biology, Department of Chemistry, Lund University, Lund, Sweden
| | | |
Collapse
|
182
|
Signaling Mode of the Broad-Spectrum Conserved CO 2 Receptor Is One of the Important Determinants of Odor Valence in Drosophila. Neuron 2018; 97:1153-1167.e4. [PMID: 29429938 DOI: 10.1016/j.neuron.2018.01.028] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Revised: 11/17/2017] [Accepted: 01/11/2018] [Indexed: 12/24/2022]
Abstract
Odor detection involves hundreds of olfactory receptors from diverse families, making modeling of hedonic valence of an odorant difficult, even in Drosophila melanogaster where most receptors have been deorphanised. We demonstrate that a broadly tuned heteromeric receptor that detects CO2 (Gr21a, Gr63a) and other odorants is a key determinant of valence along with a few members of the Odorant receptor family in a T-maze, but not in a trap assay. Gr21a and Gr63a have atypically high amino acid conservation in Dipteran insects, and they use both inhibition and activation to convey positive or negative valence for numerous odorants. Inhibitors elicit a robust Gr63a-dependent attraction, while activators, strong aversion. The attractiveness of inhibitory odorants increases with increasing background CO2 levels, providing a mechanism for behavior modulation in odor blends. In mosquitoes, valence is switched and activation of the orthologous receptor conveys attraction. Reverse chemical ecology enables the identification of inhibitory odorants to reduce attraction of mosquitoes to skin.
Collapse
|
183
|
Fleischer J, Pregitzer P, Breer H, Krieger J. Access to the odor world: olfactory receptors and their role for signal transduction in insects. Cell Mol Life Sci 2018; 75:485-508. [PMID: 28828501 PMCID: PMC11105692 DOI: 10.1007/s00018-017-2627-5] [Citation(s) in RCA: 194] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 08/09/2017] [Accepted: 08/14/2017] [Indexed: 12/26/2022]
Abstract
The sense of smell enables insects to recognize and discriminate a broad range of volatile chemicals in their environment originating from prey, host plants and conspecifics. These olfactory cues are received by olfactory sensory neurons (OSNs) that relay information about food sources, oviposition sites and mates to the brain and thus elicit distinct odor-evoked behaviors. Research over the last decades has greatly advanced our knowledge concerning the molecular basis underlying the reception of odorous compounds and the mechanisms of signal transduction in OSNs. The emerging picture clearly indicates that OSNs of insects recognize odorants and pheromones by means of ligand-binding membrane proteins encoded by large and diverse families of receptor genes. In contrast, the mechanisms of the chemo-electrical transduction process are not fully understood; the present status suggests a contribution of ionotropic as well as metabotropic mechanisms. In this review, we will summarize current knowledge on the peripheral mechanisms of odor sensing in insects focusing on olfactory receptors and their specific role in the recognition and transduction of odorant and pheromone signals by OSNs.
Collapse
Affiliation(s)
- Joerg Fleischer
- Department of Animal Physiology, Institute of Biology/Zoology, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Pablo Pregitzer
- Institute of Physiology, University of Hohenheim, Stuttgart, Germany
| | - Heinz Breer
- Institute of Physiology, University of Hohenheim, Stuttgart, Germany
| | - Jürgen Krieger
- Department of Animal Physiology, Institute of Biology/Zoology, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany.
| |
Collapse
|
184
|
Zhuang L, Sun Y, Hu M, Wu C, La X, Chen X, Feng Y, Wang X, Hu Y, Xue L. Or47b plays a role in Drosophila males' preference for younger mates. Open Biol 2017; 6:rsob.160086. [PMID: 27278650 PMCID: PMC4929943 DOI: 10.1098/rsob.160086] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 05/09/2016] [Indexed: 11/12/2022] Open
Abstract
Reproductive behaviour is important for animals to keep their species existing on Earth. A key question is how to generate more and healthier progenies by choosing optimal mates. In Drosophila melanogaster, males use multiple sensory cues, including vision, olfaction and gustation, to achieve reproductive success. These sensory inputs are important, yet not all these different modalities are simultaneously required for courtship behaviour to occur. Moreover, the roles of these sensory inputs for male courtship choice remain largely unknown. Here, we demonstrate that males court younger females with greater preference and that olfactory inputs are indispensable for this male courtship choice. Specifically, the olfactory receptor Or47b is required for males to discriminate younger female mates from older ones. In combination with our previous work indicating that gustatory perception is necessary for this preference behaviour, our current study demonstrates the requirement of both olfaction and gustation in Drosophila males' courtship preference, thus providing new insights into the role of sensory cues in reproductive behaviour and success.
Collapse
Affiliation(s)
- Luming Zhuang
- Department of Interventional Radiology, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, Shanghai 200092, People's Republic of China
| | - Ying Sun
- Department of Interventional Radiology, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, Shanghai 200092, People's Republic of China
| | - Mi Hu
- Kent School, 1 Macedonia Rd, Kent, CT 06757, USA
| | - Chenxi Wu
- Department of Interventional Radiology, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, Shanghai 200092, People's Republic of China College of Chinese Medicine, North China University of Science and Technology, Tangshan 063000, People's Republic of China
| | - Xiaojin La
- College of Chinese Medicine, North China University of Science and Technology, Tangshan 063000, People's Republic of China
| | - Xinhong Chen
- Department of Interventional Radiology, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, Shanghai 200092, People's Republic of China
| | - Yu Feng
- Department of Interventional Radiology, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, Shanghai 200092, People's Republic of China
| | - Xingjun Wang
- Department of Interventional Radiology, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, Shanghai 200092, People's Republic of China
| | - Yujia Hu
- Department of Interventional Radiology, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, Shanghai 200092, People's Republic of China
| | - Lei Xue
- Department of Interventional Radiology, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, Shanghai 200092, People's Republic of China
| |
Collapse
|
185
|
Brown EB, Patterson C, Pancoast R, Rollmann SM. Artificial selection for odor-guided behavior in Drosophila reveals changes in food consumption. BMC Genomics 2017; 18:867. [PMID: 29132294 PMCID: PMC5683340 DOI: 10.1186/s12864-017-4233-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 10/23/2017] [Indexed: 11/20/2022] Open
Abstract
Background The olfactory system enables organisms to detect chemical cues in the environment and can signal the availability of food or the presence of a predator. Appropriate behavioral responses to these chemical cues are therefore important for organismal survival and can influence traits such as organismal life span and food consumption. However, understanding the genetic mechanisms underlying odor-guided behavior, correlated responses in other traits, and how these constrain or promote their evolution, remain an important challenge. Here, we performed artificial selection for attractive and aversive behavioral responses to four chemical compounds, two aromatics (4-ethylguaiacol and 4-methylphenol) and two esters (methyl hexanoate and ethyl acetate), for thirty generations. Results Artificial selection for odor-guided behavior revealed symmetrical responses to selection for each of the four chemical compounds. We then investigated whether selection for odor-guided behavior resulted in correlated responses in life history traits and/or food consumption. We found changes in food consumption upon selection for behavioral responses to aromatics. In many cases, lines selected for increased attraction to aromatics showed an increase in food consumption. We then performed RNA sequencing of lines selected for responses to 4-ethylguaiacol to identify candidate genes associated with odor-guided behavior and its impact on food consumption. We identified 91 genes that were differentially expressed among lines, many of which were associated with metabolic processes. RNAi-mediated knockdown of select candidate genes further supports their role in odor-guided behavior and/or food consumption. Conclusions This study identifies novel genes underlying variation in odor-guided behavior and further elucidates the genetic mechanisms underlying the interrelationship between olfaction and feeding. Electronic supplementary material The online version of this article (10.1186/s12864-017-4233-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Elizabeth B Brown
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221-0006, USA
| | - Cody Patterson
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221-0006, USA
| | - Rayanne Pancoast
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221-0006, USA.,Department of Biology, Xavier University, Cincinnati, OH, 45207, USA
| | - Stephanie M Rollmann
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221-0006, USA.
| |
Collapse
|
186
|
Jacob V, Scolari F, Delatte H, Gasperi G, Jacquin-Joly E, Malacrida AR, Duyck PF. Current source density mapping of antennal sensory selectivity reveals conserved olfactory systems between tephritids and Drosophila. Sci Rep 2017; 7:15304. [PMID: 29127313 PMCID: PMC5681579 DOI: 10.1038/s41598-017-15431-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 10/27/2017] [Indexed: 11/09/2022] Open
Abstract
Ecological specialization of insects involves the functional and morphological reshaping of olfactory systems. Little is known about the degree to which insect sensitivity to odorant compounds is conserved between genera, tribes, or families. Here we compared the olfactory systems of six tephritid fruit fly species spanning two tribes and the distantly related Drosophila melanogaster at molecular, functional, and morphological levels. Olfaction in these flies is mediated by a set of olfactory receptors (ORs) expressed in different functional classes of neurons located in distinct antennal regions. We performed a phylogenetic analysis that revealed both family-specific OR genes and putative orthologous OR genes between tephritids and Drosophila. With respect to function, we then used a current source density (CSD) analysis to map activity across antennae. Functional maps mirrored the intrinsic structure of antennae observed with scanning electron microscopy. Together, the results revealed partial conservation of the olfactory systems between tephritids and Drosophila. We also demonstrate that the mapping of olfactory responses is necessary to decipher antennal sensory selectivity to olfactory compounds. CSD analysis can be easily applied to map antennae of other species and therefore enables the rapid deriving of olfactory maps and the reconstructing of the target organisms' history of evolution.
Collapse
Affiliation(s)
- Vincent Jacob
- UMR PVBMT, Université de la Réunion, Saint Pierre, La Réunion, France.
- UMR PVBMT, CIRAD, Saint Pierre, La Réunion, France.
| | - Francesca Scolari
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | | | - Giuliano Gasperi
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | | | - Anna R Malacrida
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | | |
Collapse
|
187
|
Abstract
The study of behavior requires manipulation of the controlling neural circuits. The fruit fly, Drosophila melanogaster, is an ideal model for studying behavior because of its relatively small brain and the numerous sophisticated genetic tools that have been developed for this animal. Relatively recent technical advances allow the manipulation of a small subset of neurons with temporal resolution in flies while they are subject to behavior assays. This review briefly describes the most important genetic techniques, reagents, and approaches that are available to study and manipulate the neural circuits involved in Drosophila behavior. We also describe some examples of these genetic tools in the study of the olfactory receptor system.
Collapse
Affiliation(s)
- Fernando Martín
- a Department of Functional Biology (Genetics) , University of Oviedo , Oviedo , Spain
| | - Esther Alcorta
- a Department of Functional Biology (Genetics) , University of Oviedo , Oviedo , Spain
| |
Collapse
|
188
|
Odor-evoked inhibition of olfactory sensory neurons drives olfactory perception in Drosophila. Nat Commun 2017; 8:1357. [PMID: 29116083 PMCID: PMC5676773 DOI: 10.1038/s41467-017-01185-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 08/24/2017] [Indexed: 11/28/2022] Open
Abstract
Inhibitory response occurs throughout the nervous system, including the peripheral olfactory system. While odor-evoked excitation in peripheral olfactory cells is known to encode odor information, the molecular mechanism and functional roles of odor-evoked inhibition remain largely unknown. Here, we examined Drosophila olfactory sensory neurons and found that inhibitory odors triggered outward receptor currents by reducing the constitutive activities of odorant receptors, inhibiting the basal spike firing in olfactory sensory neurons. Remarkably, this odor-evoked inhibition of olfactory sensory neurons elicited by itself a full range of olfactory behaviors from attraction to avoidance, as did odor-evoked olfactory sensory neuron excitation. These results indicated that peripheral inhibition is comparable to excitation in encoding sensory signals rather than merely regulating excitation. Furthermore, we demonstrated that a bidirectional code with both odor-evoked inhibition and excitation in single olfactory sensory neurons increases the odor-coding capacity, providing a means of efficient sensory encoding. It is well established that odor-evoked excitation in olfactory sensory neurons (OSNs) encodes odor information. Here the authors report that odor-evoked inhibition in OSNs of Drosophila also encodes odor identity, and can in itself drive both attraction and avoidance behaviors.
Collapse
|
189
|
Clavijo McCormick A, Grosse-Wilde E, Wheeler D, Mescher MC, Hansson BS, De Moraes CM. Comparing the Expression of Olfaction-Related Genes in Gypsy Moth (Lymantria dispar) Adult Females and Larvae from One Flightless and Two Flight-Capable Populations. Front Ecol Evol 2017. [DOI: 10.3389/fevo.2017.00115] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
190
|
Lebreton S, Borrero-Echeverry F, Gonzalez F, Solum M, Wallin EA, Hedenström E, Hansson BS, Gustavsson AL, Bengtsson M, Birgersson G, Walker WB, Dweck HKM, Becher PG, Witzgall P. A Drosophila female pheromone elicits species-specific long-range attraction via an olfactory channel with dual specificity for sex and food. BMC Biol 2017; 15:88. [PMID: 28962619 PMCID: PMC5622430 DOI: 10.1186/s12915-017-0427-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Accepted: 09/12/2017] [Indexed: 12/20/2022] Open
Abstract
Background Mate finding and recognition in animals evolves during niche adaptation and involves social signals and habitat cues. Drosophila melanogaster and related species are known to be attracted to fermenting fruit for feeding and egg-laying, which poses the question of whether species-specific fly odours contribute to long-range premating communication. Results We have discovered an olfactory channel in D. melanogaster with a dual affinity to sex and food odorants. Female flies release a pheromone, (Z)-4-undecenal (Z4-11Al), that elicits flight attraction in both sexes. Its biosynthetic precursor is the cuticular hydrocarbon (Z,Z)-7,11-heptacosadiene (7,11-HD), which is known to afford reproductive isolation between the sibling species D. melanogaster and D. simulans during courtship. Twin olfactory receptors, Or69aB and Or69aA, are tuned to Z4-11Al and food odorants, respectively. They are co-expressed in the same olfactory sensory neurons, and feed into a neural circuit mediating species-specific, long-range communication; however, the close relative D. simulans, which shares food resources with D. melanogaster, does not respond to Z4-11Al. Conclusion The Or69aA and Or69aB isoforms have adopted dual olfactory traits. The underlying gene yields a collaboration between natural and sexual selection, which has the potential to drive speciation.
Collapse
Affiliation(s)
- Sebastien Lebreton
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Box 102, 23053, Alnarp, Sweden.
| | - Felipe Borrero-Echeverry
- Biological Control Laboratory, Colombian Corporation of Agricultural Research, AA 240142 Las Palmas, Bogota, Colombia
| | - Francisco Gonzalez
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Box 102, 23053, Alnarp, Sweden
| | - Marit Solum
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Box 102, 23053, Alnarp, Sweden
| | - Erika A Wallin
- Department of Chemical Engineering, Mid Sweden University, Holmgatan 10, 85170, Sundsvall, Sweden
| | - Erik Hedenström
- Department of Chemical Engineering, Mid Sweden University, Holmgatan 10, 85170, Sundsvall, Sweden
| | - Bill S Hansson
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, 07745, Jena, Germany
| | - Anna-Lena Gustavsson
- Chemical Biology Consortium Sweden, Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Scheeles väg 172, 17165, Solna, Sweden
| | - Marie Bengtsson
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Box 102, 23053, Alnarp, Sweden
| | - Göran Birgersson
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Box 102, 23053, Alnarp, Sweden
| | - William B Walker
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Box 102, 23053, Alnarp, Sweden
| | - Hany K M Dweck
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, 07745, Jena, Germany.,Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, 06520, USA
| | - Paul G Becher
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Box 102, 23053, Alnarp, Sweden.
| | - Peter Witzgall
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Box 102, 23053, Alnarp, Sweden.
| |
Collapse
|
191
|
Münch D, Galizia CG. Take time: odor coding capacity across sensory neurons increases over time in Drosophila. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2017; 203:959-972. [PMID: 28852844 PMCID: PMC5696509 DOI: 10.1007/s00359-017-1209-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Revised: 08/11/2017] [Accepted: 08/14/2017] [Indexed: 11/25/2022]
Abstract
Due to the highly efficient olfactory code, olfactory sensory systems are able to reliably encode enormous numbers of olfactory stimuli. The olfactory code consists of combinatorial activation patterns across sensory neurons, thus its capacity exceeds the number of involved classes of sensory neurons by a manifold. Activation patterns are not static but vary over time, caused by the temporally complex response dynamics of the individual sensory neuron responses. We systematically analyzed the temporal dynamics of olfactory sensory neuron responses to a diverse set of odorants. We find that response dynamics depend on the combination of sensory neuron and odorant and that information about odorant identity can be extracted from the time course of the response. We also show that new response dynamics can arise when mixing two odorants. Our data show that temporal dynamics of odorant responses are able to significantly enhance the coding capacity of olfactory sensory systems.
Collapse
Affiliation(s)
- Daniel Münch
- Neurobiology, University of Konstanz, 78457, Konstanz, Germany. .,Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Av. Brasília, 1400-038, Lisbon, Portugal.
| | | |
Collapse
|
192
|
Chemosensory genes in the antennal transcriptome of two syrphid species, Episyrphus balteatus and Eupeodes corollae (Diptera: Syrphidae). BMC Genomics 2017; 18:586. [PMID: 28784086 PMCID: PMC5547493 DOI: 10.1186/s12864-017-3939-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 07/12/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Predatory syrphid larvae are an important natural enemy of aphids in cotton agro-ecosystems in China. Their behaviors in prey foraging, localization and oviposition greatly rely on the perception of chemical cues. As a first step to better understand syrphid olfaction at the molecular level, we have performed a systematic identification of their major chemosensory genes. RESULTS Male and female antennal transcriptomes of Episyrphus balteatus and Eupeodes corollae were sequenced and assembled using Illumina HiSeq2000 technology. A total of 154 chemosensory genes in E. balteatus transcriptome, including candidate 51 odorant receptors (ORs), 32 ionotropic receptors (IRs), 14 gustatory receptors (GRs), 49 odorant-binding proteins (OBPs), 6 chemosensory proteins (CSPs) and 2 sensory neuron membrane proteins (SNMPs) were identified. In E. corollae transcriptome, we identified 134 genes including 42 ORs, 23 IRs, 16 GRs, 44 OBPs, 7 CSPs and 2 SNMPs. We have provided full-length sequences of the highly conserved co-receptor Orco, IR8a/25a family and carbon dioxide gustatory receptor in both syrphid species. The expression of candidate OR genes in the two syrphid species was evaluated by semi-quantitative reverse transcription PCR. There were no significant differences of transcript abundances in the respective male and female antenna, which is consistent with differentially expressed genes (DEGs) analysis using the FPKM value. The sequences of candidate chemosensory genes were confirmed and phylogenetic analysis was performed. CONCLUSIONS This research comprehensively analyzed and identified many novel candidate chemosensory genes regarding syrphid olfaction. It provides an opportunity for understanding how syrphid insects use chemical cues to conduct their behaviors among tritrophic interactions of plants, herbivorous insects, and natural enemies in agricultural ecosystems.
Collapse
|
193
|
Eyun SI, Soh HY, Posavi M, Munro JB, Hughes DS, Murali SC, Qu J, Dugan S, Lee SL, Chao H, Dinh H, Han Y, Doddapaneni H, Worley KC, Muzny DM, Park EO, Silva JC, Gibbs RA, Richards S, Lee CE. Evolutionary History of Chemosensory-Related Gene Families across the Arthropoda. Mol Biol Evol 2017; 34:1838-1862. [PMID: 28460028 PMCID: PMC5850775 DOI: 10.1093/molbev/msx147] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Chemosensory-related gene (CRG) families have been studied extensively in insects, but their evolutionary history across the Arthropoda had remained relatively unexplored. Here, we address current hypotheses and prior conclusions on CRG family evolution using a more comprehensive data set. In particular, odorant receptors were hypothesized to have proliferated during terrestrial colonization by insects (hexapods), but their association with other pancrustacean clades and with independent terrestrial colonizations in other arthropod subphyla have been unclear. We also examine hypotheses on which arthropod CRG family is most ancient. Thus, we reconstructed phylogenies of CRGs, including those from new arthropod genomes and transcriptomes, and mapped CRG gains and losses across arthropod lineages. Our analysis was strengthened by including crustaceans, especially copepods, which reside outside the hexapod/branchiopod clade within the subphylum Pancrustacea. We generated the first high-resolution genome sequence of the copepod Eurytemora affinis and annotated its CRGs. We found odorant receptors and odorant binding proteins present only in hexapods (insects) and absent from all other arthropod lineages, indicating that they are not universal adaptations to land. Gustatory receptors likely represent the oldest chemosensory receptors among CRGs, dating back to the Placozoa. We also clarified and confirmed the evolutionary history of antennal ionotropic receptors across the Arthropoda. All antennal ionotropic receptors in E. affinis were expressed more highly in males than in females, suggestive of an association with male mate-recognition behavior. This study is the most comprehensive comparative analysis to date of CRG family evolution across the largest and most speciose metazoan phylum Arthropoda.
Collapse
Affiliation(s)
- Seong-il Eyun
- Center for Biotechnology, University of Nebraska-Lincoln, Lincoln, NE
| | - Ho Young Soh
- Faculty of Marine Technology, Chonnam National University, Yeosu, Korea
| | - Marijan Posavi
- Center of Rapid Evolution (CORE) and Department of Integrative Biology, University of Wisconsin, Madison, WI
| | - James B. Munro
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD
| | | | - Shwetha C. Murali
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX
| | - Jiaxin Qu
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX
| | - Shannon Dugan
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX
| | - Sandra L. Lee
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX
| | - Hsu Chao
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX
| | - Huyen Dinh
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX
| | - Yi Han
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX
| | | | - Kim C. Worley
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX
| | - Donna M. Muzny
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX
| | - Eun-Ok Park
- Fisheries Science Institute, Chonnam National University, Yeosu, Korea
| | - Joana C. Silva
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD
| | - Richard A. Gibbs
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX
| | - Stephen Richards
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX
| | - Carol Eunmi Lee
- Center of Rapid Evolution (CORE) and Department of Integrative Biology, University of Wisconsin, Madison, WI
| |
Collapse
|
194
|
Xu X, You Y, Zhang L. Localization of Odorant Receptor Genes in Locust Antennae by RNA In Situ Hybridization. J Vis Exp 2017. [PMID: 28745638 DOI: 10.3791/55924] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Insects have evolved sophisticated olfactory reception systems to sense exogenous chemical signals. These chemical signals are transduced by Olfactory Receptor Neurons (ORNs) housed in hair-like structures, called chemosensilla, of the antennae. On the ORNs' membranes, Odorant Receptors (ORs) are believed to be involved in odor coding. Thus, being able to identify genes localized to the ORNs is necessary to recognize OR genes, and provides a fundamental basis for further functional in situ studies. The RNA expression levels of specific ORs in insect antennae are very low, and preserving insect tissue for histology is challenging. Thus, it is difficult to localize an OR to a specific type of sensilla using RNA in situ hybridization. In this paper, a detailed and highly effective RNA in situ hybridization protocol particularly for lowly expressed OR genes of insects, is introduced. In addition, a specific OR gene was identified by conducting double-color fluorescent in situ hybridization experiments using a co-expressing receptor gene, Orco, as a marker.
Collapse
Affiliation(s)
- Xiao Xu
- Department of Entomology, China Agricultural University
| | - Yinwei You
- Department of Entomology, China Agricultural University; Bio-tech Research Center, Shandong Academy of Agricultural Sciences;
| | - Long Zhang
- Department of Entomology, China Agricultural University;
| |
Collapse
|
195
|
Hasni N, Pinier C, Imed C, Ouhichi M, Couzi P, Chermiti B, Frérot B, Saïd I, Rochat D. Synthetic Co-Attractants of the Aggregation Pheromone of the Date Palm Root Borer Oryctes agamemnon. J Chem Ecol 2017; 43:631-643. [PMID: 28667548 DOI: 10.1007/s10886-017-0862-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 06/12/2017] [Accepted: 06/21/2017] [Indexed: 10/19/2022]
Abstract
Laboratory and field investigations to identify and evaluate plant co-attractants of the aggregation pheromone of the date palm pest Oryctes agamemnon are reported. Volatiles emitted by freshly cut palm core and palm core with feeding males, were collected, analyzed by gas chromatography coupled to mass spectrometry and evaluated in olfactometers alone or combined with synthetic pheromone. A collection of palm odor without male effluvia was attractive alone and enhanced attraction to synthetic pheromone in an olfactometer similar to that to a collection of palm odor emitted with feeding males and containing natural pheromone. Behavioral responses to collections of palm volatiles were correlated to the amount of volatiles material in them. Enhancement of the attractiveness of the pheromone was not correlated to chemicals specific to beetle feeding. The chemicals common to the active collections extracts were benzoate esters, mostly ethyl benzoate, anisole derivatives and sesquiterpenes. Blends of the most abundant components of the extracts were evaluated for enhancement of the attractiveness of pheromone (1 μg) in olfactometers at 1 or 10 μg doses. The mixtures were further evaluated by field trapping in Tunisia at 3-10 mg/day using reference (6 mg/day) or experimental pheromone formulations. A mixture of ethyl benzoate, 4-methylanisole and farnesol (1:1:1 w/w at 6.5 mg/day) enhanced captures in pheromone baited traps in 2014 and 2015 and this mixture was as active as the natural palm bait. The practical prospect of the result for the management for O. agamemnon, and other palm beetles is discussed.
Collapse
Affiliation(s)
- Narjes Hasni
- Unité de Recherche Biochimie Macromoléculaire et Génétique, Faculté des Sciences de Gafsa, Université de Gafsa, Campus Zarroug, 2112, Gafsa, Tunisia
| | - Centina Pinier
- UMR 1392 iEES Paris, INRA, UPMC, CNRS, IRD, Paris Diderot, UPEC, Route de Saint- Cyr, F-78026, Versailles, France
| | - Cheraief Imed
- Laboratory of Biochemistry, UR03/ES-08 'Human Nutrition and Metabolic Disorders' Faculty of Medicine, 5019, Monastir, Tunisia
| | - Monêem Ouhichi
- Office of Development of Rjim Maâtoug, Avenue Salah Ben Youssef, 4200, Kebili, Tunisia
| | - Philippe Couzi
- UMR 1392 iEES Paris, INRA, UPMC, CNRS, IRD, Paris Diderot, UPEC, Route de Saint- Cyr, F-78026, Versailles, France
| | - Brahim Chermiti
- Institut Supérieur Agronomique de Chott-Mariem, 4042, Sousse, Tunisia
| | - Brigitte Frérot
- UMR 1392 iEES Paris, INRA, UPMC, CNRS, IRD, Paris Diderot, UPEC, Route de Saint- Cyr, F-78026, Versailles, France
| | - Imen Saïd
- Unité de Recherche Biochimie Macromoléculaire et Génétique, Faculté des Sciences de Gafsa, Université de Gafsa, Campus Zarroug, 2112, Gafsa, Tunisia
| | - Didier Rochat
- UMR 1392 iEES Paris, INRA, UPMC, CNRS, IRD, Paris Diderot, UPEC, Route de Saint- Cyr, F-78026, Versailles, France.
| |
Collapse
|
196
|
Identified Serotonergic Modulatory Neurons Have Heterogeneous Synaptic Connectivity within the Olfactory System of Drosophila. J Neurosci 2017; 37:7318-7331. [PMID: 28659283 DOI: 10.1523/jneurosci.0192-17.2017] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 05/20/2017] [Accepted: 06/19/2017] [Indexed: 11/21/2022] Open
Abstract
Modulatory neurons project widely throughout the brain, dynamically altering network processing based on an animal's physiological state. The connectivity of individual modulatory neurons can be complex, as they often receive input from a variety of sources and are diverse in their physiology, structure, and gene expression profiles. To establish basic principles about the connectivity of individual modulatory neurons, we examined a pair of identified neurons, the "contralaterally projecting, serotonin-immunoreactive deutocerebral neurons" (CSDns), within the olfactory system of Drosophila Specifically, we determined the neuronal classes providing synaptic input to the CSDns within the antennal lobe (AL), an olfactory network targeted by the CSDns, and the degree to which CSDn active zones are uniformly distributed across the AL. Using anatomical techniques, we found that the CSDns received glomerulus-specific input from olfactory receptor neurons (ORNs) and projection neurons (PNs), and networkwide input from local interneurons (LNs). Furthermore, we quantified the number of CSDn active zones in each glomerulus and found that CSDn output is not uniform, but rather heterogeneous, across glomeruli and stereotyped from animal to animal. Finally, we demonstrate that the CSDns synapse broadly onto LNs and PNs throughout the AL but do not synapse upon ORNs. Our results demonstrate that modulatory neurons do not necessarily provide purely top-down input but rather receive neuron class-specific input from the networks that they target, and that even a two cell modulatory network has highly heterogeneous, yet stereotyped, pattern of connectivity.SIGNIFICANCE STATEMENT Modulatory neurons often project broadly throughout the brain to alter processing based on physiological state. However, the connectivity of individual modulatory neurons to their target networks is not well understood, as modulatory neuron populations are heterogeneous in their physiology, morphology, and gene expression. In this study, we use a pair of identified serotonergic neurons within the Drosophila olfactory system as a model to establish a framework for modulatory neuron connectivity. We demonstrate that individual modulatory neurons can integrate neuron class-specific input from their target network, which is often nonreciprocal. Additionally, modulatory neuron output can be stereotyped, yet nonuniform, across network regions. Our results provide new insight into the synaptic relationships that underlie network function of modulatory neurons.
Collapse
|
197
|
Bachtiar LR, Newcomb RD, Kralicek AV, Unsworth CP. Improving odorant chemical class prediction with multi-layer perceptrons using temporal odorant spike responses from drosophila melanogaster olfactory receptor neurons. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2017; 2016:6393-6396. [PMID: 28269711 DOI: 10.1109/embc.2016.7592191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In this work, we examine the possibility of improving the prediction performance of an olfactory biosensor through the use of temporal spiking data. We present an Artificial Neural Network (ANN), in the form of an optimal hybrid Multi-Layer Perceptron (MLP) system for the classification of chemical odorants from olfactory receptor neuron spike responses of the Drosophila melanogaster fruit fly (DmOrs). The data used in this study contains the responses to 34 odorants from 6 individual DmOrs, of which we exploit the temporal spiking responses of a 500ms odorant stimulus window. We report, for the first time, the difference between the classification performance of the temporal spiking data to an equivalent spontaneous scalar dataset that we have reported previously. We demonstrate that a higher prediction (%) was obtained when using the temporal data, in which a greater number of validation odorants are identified to their correct chemical class. This work presents a novel technique to improve the classification performance of an olfactory biosensor, whilst maintaining a limited sensory array of 6 DmOr receptors.
Collapse
|
198
|
Hughes DT, Pelletier J, Rahman S, Chen S, Leal WS, Luetje CW. Functional and Nonfunctional Forms of CquiOR91, an Odorant Selectivity Subunit of Culex quinquefasciatus. Chem Senses 2017; 42:333-341. [PMID: 28334229 DOI: 10.1093/chemse/bjx011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
In Culex quinquefasciatus, CquiOR91 is the ortholog of 2 larvae-specific odorant receptors (ORs) from Anopheles gambiae (Agam\Or40, previously shown to respond to several odorant ligands including the broad-spectrum repellent N,N-diethyl-3-methylbenzamide, DEET) and Aedes aegypti (Aaeg\Or40). When we cloned full-length CquiOR91 from a Culex quinquefasciatus larval head RNA sample, we found 2 alleles of this OR, differing at 9 residues. Functional analysis using the Xenopus oocyte expression system and 2-electrode voltage clamp electrophysiology revealed one allele (CquiOR91.1) to be nonfunctional, whereas the other allele (CquiOR91.2) was functional. Receptors formed by CquiOR91.2 and Cqui\Orco responded to (-)-fenchone, (+)-fenchone, and DEET, similar to what has been reported for Agam\Or40. We also identified 5 novel odorant ligands for the CquiOR91.2 + Cqui\Orco receptor: 2-isobutylthiazole, veratrole, eucalyptol, d-camphor, and safranal, with safranal being the most potent. To explore possible reasons for the lack of function for CquiOR91.1, we generated a series of mutant CquiOR91.2 subunits, in which the residue at each of the 9 polymorphic residue positions was changed from what occurs in CquiOR91.2 to what occurs in CquiOR91.1. Eight of the 9 mutant versions of CquiOR91.2 formed functional receptors, responding to (-)-fenchone. Only the CquiOR91.2 Y183C mutant was nonfunctional. The reverse mutation (C183Y) conferred function on CquiOR91.1 , which became responsive to (-)-fenchone and safranal. These results indicate that the "defect" in CquiOR91.1 that prevents function is the cysteine at position 183.
Collapse
Affiliation(s)
- David T Hughes
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, R-189, PO Box 016189, Miami, FL 33101, USA and.,Present address: Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Julien Pelletier
- Department of Molecular and Cellular Biology, University of California, 1 Shields Avenue, Davis, CA 95616, USA.,Present address: School of Life Sciences, Keele University, Keele, Staffordshire ST5 5BG, UK
| | - Suhaila Rahman
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, R-189, PO Box 016189, Miami, FL 33101, USA and
| | - Sisi Chen
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, R-189, PO Box 016189, Miami, FL 33101, USA and.,Present address: Leidos Biomedical Research, Inc., Rockville, MD 20892, USA
| | - Walter S Leal
- Department of Molecular and Cellular Biology, University of California, 1 Shields Avenue, Davis, CA 95616, USA
| | - Charles W Luetje
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, R-189, PO Box 016189, Miami, FL 33101, USA and
| |
Collapse
|
199
|
de Fouchier A, Walker WB, Montagné N, Steiner C, Binyameen M, Schlyter F, Chertemps T, Maria A, François MC, Monsempes C, Anderson P, Hansson BS, Larsson MC, Jacquin-Joly E. Functional evolution of Lepidoptera olfactory receptors revealed by deorphanization of a moth repertoire. Nat Commun 2017; 8:15709. [PMID: 28580965 PMCID: PMC5465368 DOI: 10.1038/ncomms15709] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 04/20/2017] [Indexed: 02/07/2023] Open
Abstract
Insects detect their hosts or mates primarily through olfaction, and olfactory receptors (ORs) are at the core of odorant detection. Each species has evolved a unique repertoire of ORs whose functional properties are expected to meet its ecological needs, though little is known about the molecular basis of olfaction outside Diptera. Here we report a pioneer functional analysis of a large array of ORs in a lepidopteran, the herbivorous pest Spodoptera littoralis. We demonstrate that most ORs are narrowly tuned to ubiquitous plant volatiles at low, relevant odorant titres. Our phylogenetic analysis highlights a basic conservation of function within the receptor repertoire of Lepidoptera, across the expansive evolutionary radiation of different major clades. Our study provides a reference for further studies of olfactory mechanisms in Lepidoptera, a historically crucial insect order in olfactory research.
Collapse
Affiliation(s)
- Arthur de Fouchier
- INRA, Institute of Ecology & Environmental Sciences of Paris, Department of Sensory Ecology, Route de Saint-Cyr, 78026 Versailles Cedex, France
| | - William B. Walker
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Sundsvägen 14, 230 53 Alnarp, Sweden
| | - Nicolas Montagné
- Sorbonne Universités—UPMC University Paris 06, Institute of Ecology & Environmental Sciences of Paris, Department of Sensory Ecology, 7 quai Saint Bernard, 75252 Paris Cedex 05, France
| | - Claudia Steiner
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Sundsvägen 14, 230 53 Alnarp, Sweden
- Sorbonne Universités—UPMC University Paris 06, Institute of Ecology & Environmental Sciences of Paris, Department of Sensory Ecology, 7 quai Saint Bernard, 75252 Paris Cedex 05, France
| | - Muhammad Binyameen
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Sundsvägen 14, 230 53 Alnarp, Sweden
- Chemical Ecology Laboratory, Department of Entomology, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Fredrik Schlyter
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Sundsvägen 14, 230 53 Alnarp, Sweden
| | - Thomas Chertemps
- Sorbonne Universités—UPMC University Paris 06, Institute of Ecology & Environmental Sciences of Paris, Department of Sensory Ecology, 7 quai Saint Bernard, 75252 Paris Cedex 05, France
| | - Annick Maria
- Sorbonne Universités—UPMC University Paris 06, Institute of Ecology & Environmental Sciences of Paris, Department of Sensory Ecology, 7 quai Saint Bernard, 75252 Paris Cedex 05, France
| | - Marie-Christine François
- INRA, Institute of Ecology & Environmental Sciences of Paris, Department of Sensory Ecology, Route de Saint-Cyr, 78026 Versailles Cedex, France
| | - Christelle Monsempes
- INRA, Institute of Ecology & Environmental Sciences of Paris, Department of Sensory Ecology, Route de Saint-Cyr, 78026 Versailles Cedex, France
| | - Peter Anderson
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Sundsvägen 14, 230 53 Alnarp, Sweden
| | - Bill S. Hansson
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Mattias C. Larsson
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Sundsvägen 14, 230 53 Alnarp, Sweden
| | - Emmanuelle Jacquin-Joly
- INRA, Institute of Ecology & Environmental Sciences of Paris, Department of Sensory Ecology, Route de Saint-Cyr, 78026 Versailles Cedex, France
| |
Collapse
|
200
|
Bin SY, Qu MQ, Li KM, Peng ZQ, Wu ZZ, Lin JT. Antennal and abdominal transcriptomes reveal chemosensory gene families in the coconut hispine beetle, Brontispa longissima. Sci Rep 2017; 7:2809. [PMID: 28584273 PMCID: PMC5459851 DOI: 10.1038/s41598-017-03263-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 04/25/2017] [Indexed: 11/09/2022] Open
Abstract
Antennal and abdominal transcriptomes of males and females of the coconut hispine beetle Brontispa longissima were sequenced to identify and compare the expression patterns of genes involved in odorant reception and detection. Representative proteins from the chemosensory gene families likely essential for insect olfaction were identified. These include 48 odorant receptors (ORs), 19 ionotropic receptors (IRs), 4 sensory neuron membrane proteins (SNMPs), 34 odorant binding proteins (OBPs) and 16 chemosensory proteins (CSPs). Phylogenetic analysis revealed the evolutionary relationship of these proteins with homologs from Coleopterans or other insects, and led to the identification of putative aggregation pheromone receptors in B. longissima. Comparative expression analysis performed by calculating FPKM values were also validated using quantitative real time-PCR (qPCR). The results revealed that all ORs and antennal IRs, two IR co-receptors (BlonIR8a and BlonIR25a) and one SNMP (BlonSNMP1a) were predominantly expressed in antennae when compared to abdomens, and approximately half of the OBPs (19) and CSPs (7) were enriched in antennae. These findings for the first time reveal the identification of key molecular components in B. longissima olfaction and provide a valuable resource for future functional analyses of olfaction, and identification of potential targets to control this quarantine pest.
Collapse
Affiliation(s)
- Shu-Ying Bin
- Institute for Management of Invasive Alien Species, 314 Yingdong teaching building, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, PR China
| | - Meng-Qiu Qu
- Institute for Management of Invasive Alien Species, 314 Yingdong teaching building, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, PR China
| | - Ke-Ming Li
- Institute of Banana and Plantain, Chinese Academy of Tropical Agricultural Sciences, Haikou, 570102, PR China.,Institute of Environment and Plant Protection, Chinese Academy of Tropical Agricultural Sciences, Haikou, 570101, PR China
| | - Zheng-Qiang Peng
- Institute of Environment and Plant Protection, Chinese Academy of Tropical Agricultural Sciences, Haikou, 570101, PR China
| | - Zhong-Zhen Wu
- Institute for Management of Invasive Alien Species, 314 Yingdong teaching building, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, PR China.
| | - Jin-Tian Lin
- Institute for Management of Invasive Alien Species, 314 Yingdong teaching building, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, PR China.
| |
Collapse
|