151
|
Abstract
Transposable element (TE) silencing is initiated early in mammalian development and maintained during somatic differentiation. Reporting in this issue of Developmental Cell, Ecco et al. (2016) show that in somatic tissues, TE regulation, and its subsequent effect on host gene transcription, is dynamic rather than locked in a silent state.
Collapse
Affiliation(s)
- Christopher J Playfoot
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK
| | - Ian R Adams
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK.
| |
Collapse
|
152
|
Feng G, Tong M, Xia B, Luo GZ, Wang M, Xie D, Wan H, Zhang Y, Zhou Q, Wang XJ. Ubiquitously expressed genes participate in cell-specific functions via alternative promoter usage. EMBO Rep 2016; 17:1304-13. [PMID: 27466324 DOI: 10.15252/embr.201541476] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 06/28/2016] [Indexed: 11/09/2022] Open
Abstract
How do different cell types acquire their specific identities and functions is a fundamental question of biology. Previously significant efforts have been devoted to search for cell-type-specifically expressed genes, especially transcription factors, yet how do ubiquitously expressed genes participate in the formation or maintenance of cell-type-specific features remains largely unknown. Here, we have identified 110 mouse embryonic stem cell (mESC) specifically expressed transcripts with cell-stage-specific alternative transcription start sites (SATS isoforms) from 104 ubiquitously expressed genes, majority of which have active epigenetic modification- or stem cell-related functions. These SATS isoforms are specifically expressed in mESCs, and tend to be transcriptionally regulated by key pluripotency factors through direct promoter binding. Knocking down the SATS isoforms of Nmnat2 or Usp7 leads to differentiation-related phenotype in mESCs. These results demonstrate that cell-type-specific transcription factors are capable to produce cell-type-specific transcripts with alternative transcription start sites from ubiquitously expressed genes, which confer ubiquitously expressed genes novel functions involved in the establishment or maintenance of cell-type-specific features.
Collapse
Affiliation(s)
- Guihai Feng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology Chinese Academy of Sciences, Beijing, China Key Laboratory of Genetic Network Biology, Collaborative Innovation Center of Genetics and Development Institute of Genetics and Developmental Biology Chinese Academy of Sciences, Beijing, China
| | - Man Tong
- Key Laboratory of Genetic Network Biology, Collaborative Innovation Center of Genetics and Development Institute of Genetics and Developmental Biology Chinese Academy of Sciences, Beijing, China
| | - Baolong Xia
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology Chinese Academy of Sciences, Beijing, China University of Chinese Academy of Sciences, Beijing, China
| | - Guan-Zheng Luo
- Key Laboratory of Genetic Network Biology, Collaborative Innovation Center of Genetics and Development Institute of Genetics and Developmental Biology Chinese Academy of Sciences, Beijing, China
| | - Meng Wang
- Key Laboratory of Genetic Network Biology, Collaborative Innovation Center of Genetics and Development Institute of Genetics and Developmental Biology Chinese Academy of Sciences, Beijing, China
| | - Dongfang Xie
- Key Laboratory of Genetic Network Biology, Collaborative Innovation Center of Genetics and Development Institute of Genetics and Developmental Biology Chinese Academy of Sciences, Beijing, China
| | - Haifeng Wan
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology Chinese Academy of Sciences, Beijing, China
| | - Ying Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology Chinese Academy of Sciences, Beijing, China
| | - Qi Zhou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology Chinese Academy of Sciences, Beijing, China
| | - Xiu-Jie Wang
- Key Laboratory of Genetic Network Biology, Collaborative Innovation Center of Genetics and Development Institute of Genetics and Developmental Biology Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
153
|
Göke J, Ng HH. CTRL+INSERT: retrotransposons and their contribution to regulation and innovation of the transcriptome. EMBO Rep 2016; 17:1131-44. [PMID: 27402545 DOI: 10.15252/embr.201642743] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 06/20/2016] [Indexed: 12/25/2022] Open
Abstract
The human genome contains millions of fragments from retrotransposons-highly repetitive DNA sequences that were once able to "copy and paste" themselves to other regions in the genome. However, the majority of retrotransposons have lost this capacity through acquisition of mutations or through endogenous silencing mechanisms. Without this imminent threat of transposition, retrotransposons have the potential to act as a major source of genomic innovation. Indeed, large numbers of retrotransposons have been found to be active in specific contexts: as gene regulatory elements and promoters for protein-coding genes or long noncoding RNAs, among others. In this review, we summarise recent findings about retrotransposons, with implications in gene expression regulation, the expansion of gene isoform diversity and the generation of long noncoding RNAs. We highlight key examples that demonstrate their role in cellular identity and their versatility as markers of cell states, and we discuss how their dysregulation may contribute to the formation of and possibly therapeutic response in human cancers.
Collapse
Affiliation(s)
- Jonathan Göke
- Computational and Systems Biology, Genome Institute of Singapore, Singapore
| | - Huck Hui Ng
- Gene Regulation Laboratory, Genome Institute of Singapore, Singapore Department of Biochemistry, National University of Singapore, Singapore Department of Biological Sciences, National University of Singapore, Singapore School of Biological Sciences, Nanyang Technological University, Singapore
| |
Collapse
|
154
|
Machitani M, Sakurai F, Wakabayashi K, Tomita K, Tachibana M, Mizuguchi H. Dicer functions as an antiviral system against human adenoviruses via cleavage of adenovirus-encoded noncoding RNA. Sci Rep 2016; 6:27598. [PMID: 27273616 PMCID: PMC4895142 DOI: 10.1038/srep27598] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 05/20/2016] [Indexed: 12/20/2022] Open
Abstract
In various organisms, including nematodes and plants, RNA interference (RNAi) is a defense system against virus infection; however, it is unclear whether RNAi functions as an antivirus system in mammalian cells. Rather, a number of DNA viruses, including herpesviruses, utilize post-transcriptional silencing systems for their survival. Here we show that Dicer efficiently suppresses the replication of adenovirus (Ad) via cleavage of Ad-encoding small RNAs (VA-RNAs), which efficiently promote Ad replication via the inhibition of eIF2α phosphorylation, to viral microRNAs (mivaRNAs). The Dicer knockdown significantly increases the copy numbers of VA-RNAs, leading to the efficient inhibition of eIF2α phosphorylation and the subsequent promotion of Ad replication. Conversely, overexpression of Dicer significantly inhibits Ad replication. Transfection with mivaRNA does not affect eIF2α phosphorylation or Ad replication. These results indicate that Dicer-mediated processing of VA-RNAs leads to loss of activity of VA-RNAs for enhancement of Ad replication and that Dicer functions as a defence system against Ad in mammalian cells.
Collapse
Affiliation(s)
- Mitsuhiro Machitani
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Fuminori Sakurai
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan.,Laboratory of Regulatory Sciences for Oligonucleotide Therapeutics, Clinical Drug Development Unit, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Keisaku Wakabayashi
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kyoko Tomita
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Masashi Tachibana
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hiroyuki Mizuguchi
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan.,Laboratory of Hepatocyte Regulation, National Institute of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito, Asagi, Ibaraki, Osaka 567-0085, Japan.,iPS Cell-Based Research Project on Hepatic Toxicity and Metabolism, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan.,Global Center for Advanced Medical Engineering and Informatics, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.,Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
155
|
Thompson PJ, Macfarlan TS, Lorincz MC. Long Terminal Repeats: From Parasitic Elements to Building Blocks of the Transcriptional Regulatory Repertoire. Mol Cell 2016; 62:766-76. [PMID: 27259207 PMCID: PMC4910160 DOI: 10.1016/j.molcel.2016.03.029] [Citation(s) in RCA: 172] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The life cycle of endogenous retroviruses (ERVs), also called long terminal repeat (LTR) retrotransposons, begins with transcription by RNA polymerase II followed by reverse transcription and re-integration into the host genome. While most ERVs are relics of ancient integration events, "young" proviruses competent for retrotransposition-found in many mammals, but not humans-represent an ongoing threat to host fitness. As a consequence, several restriction pathways have evolved to suppress their activity at both transcriptional and post-transcriptional stages of the viral life cycle. Nevertheless, accumulating evidence has revealed that LTR sequences derived from distantly related ERVs have been exapted as regulatory sequences for many host genes in a wide range of cell types throughout mammalian evolution. Here, we focus on emerging themes from recent studies cataloging the diversity of ERV LTRs acting as important transcriptional regulatory elements in mammals and explore the molecular features that likely account for LTR exaptation in developmental and tissue-specific gene regulation.
Collapse
Affiliation(s)
- Peter J Thompson
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Todd S Macfarlan
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA.
| | - Matthew C Lorincz
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
| |
Collapse
|
156
|
Much C, Auchynnikava T, Pavlinic D, Buness A, Rappsilber J, Benes V, Allshire R, O’Carroll D. Endogenous Mouse Dicer Is an Exclusively Cytoplasmic Protein. PLoS Genet 2016; 12:e1006095. [PMID: 27254021 PMCID: PMC4890738 DOI: 10.1371/journal.pgen.1006095] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 05/10/2016] [Indexed: 12/25/2022] Open
Abstract
Dicer is a large multi-domain protein responsible for the ultimate step of microRNA and short-interfering RNA biogenesis. In human and mouse cell lines, Dicer has been shown to be important in the nuclear clearance of dsRNA as well as the establishment of chromatin modifications. Here we set out to unambiguously define the cellular localization of Dicer in mice to understand if this is a conserved feature of mammalian Dicer in vivo. To this end, we utilized an endogenously epitope tagged Dicer knock-in mouse allele. From primary mouse cell lines and adult tissues, we determined with certainty by biochemical fractionation and confocal immunofluorescence microscopy that endogenous Dicer is exclusively cytoplasmic. We ruled out the possibility that a fraction of Dicer shuttles to and from the nucleus as well as that FGF or DNA damage signaling induce Dicer nuclear translocation. We also explored Dicer localization during the dynamic and developmental context of embryogenesis, where Dicer is ubiquitously expressed and strictly cytoplasmic in all three germ layers as well as extraembryonic tissues. Our data exclude a direct role for Dicer in the nuclear RNA processing in the mouse.
Collapse
Affiliation(s)
- Christian Much
- Mouse Biology Unit, European Molecular Biology Laboratory (EMBL), Monterotondo, Italy
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Tania Auchynnikava
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Dinko Pavlinic
- Genomics Core Facility, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Andreas Buness
- Mouse Biology Unit, European Molecular Biology Laboratory (EMBL), Monterotondo, Italy
| | - Juri Rappsilber
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Vladimir Benes
- Genomics Core Facility, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Robin Allshire
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Dónal O’Carroll
- Mouse Biology Unit, European Molecular Biology Laboratory (EMBL), Monterotondo, Italy
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland, United Kingdom
- * E-mail:
| |
Collapse
|
157
|
Arur S. Context-dependent regulation of Dicer activity and small RNA production: Implications to oocyte-to-embryo transition. WORM 2016; 4:e1086062. [PMID: 27123367 PMCID: PMC4826148 DOI: 10.1080/21624054.2015.1086062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 08/05/2015] [Accepted: 08/17/2015] [Indexed: 12/26/2022]
Abstract
Cellular and molecular mechanisms that suppress small RNAs in oocytes while maintaining them in zygotes remain unknown. Signal-mediated regulation of small RNA biogenesis pathway is emerging as a theme for regulating small RNA production. We recently reported that ERK-mediated phosphorylation of Dicer, a central player in small RNA biogenesis, induced Dicer to move from the cytoplasm to the nucleus. Dicer phosphorylation inhibited its function, e.g., the production of 26G endo-siRNAs in the female germline. Moreover, our findings showed that the inhibition of Dicer function was necessary for normal progression of meiosis I and oogenesis, and that Dicer function had to be restored before fertilization for normal progression of embryogenesis. Thus, extracellular signal-dependent inhibition and then reactivation of Dicer is essential for oocyte-to-embryo transition. Strikingly, signal-induced Dicer translocation from the cytoplasm to nucleus is evolutionarily conserved from worm, flies, mice to humans thereby suggesting the ERK-mediated control of Dicer activity may be a generalized mechanism for regulating small RNA biogenesis.
Collapse
Affiliation(s)
- Swathi Arur
- Department of Genetics; UT MD Anderson Cancer Center ; Houston, TX USA
| |
Collapse
|
158
|
Li K, Zhou ZY, Ji PP, Luo HS. Knockdown of β-catenin by siRNA influences proliferation, apoptosis and invasion of the colon cancer cell line SW480. Oncol Lett 2016; 11:3896-3900. [PMID: 27313713 DOI: 10.3892/ol.2016.4481] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Accepted: 03/18/2016] [Indexed: 01/13/2023] Open
Abstract
The aim of the present study was to explore the effect of knocking down the expression of β-catenin by small interference (si)RNA on the activity of the Wnt/β-catenin signaling pathway, and the proliferation, apoptosis and invasion abilities of the human colon cancer cell line SW480. For that purpose, double-stranded siRNA targeting β-catenin (β-catenin-siRNA) was synthesized and transfected into SW480 cells. Reverse transcription-polymerase chain reaction (RT-PCR) and western blotting were used to detect the messenger (m)RNA and protein levels of β-catenin in SW480 cells. To detect cell proliferation, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay was performed, while cell apoptosis and caspase-3 activity were detected by flow cytometry and caspase-3 activity assay, respectively. Matrigel invasion assay was performed to detect the influence of siRNA-mediated gene silencing on the invasion and metastasis of SW480 cells in vitro. The results of RT-PCR and western blot analysis demonstrated that, compared with the blank control, negative control and liposome groups, β-catenin-siRNA transfected SW480 cells had significantly decreased mRNA and protein levels of β-catenin. In addition, following β-catenin-siRNA transfection, the proliferation of SW480 cells was significantly lower than that of the blank control, negative control and liposome groups, while the apoptosis rate increased in β-catenin-siRNA transfected cells, compared with the aforementioned groups. Invasion assay showed that, following β-catenin-siRNA transfection, the number of SW480 cells infiltrating through the Matrigel membrane was significantly lower than that of the blank control, negative control and liposome groups. Following β-catenin-siRNA transfection, the caspase-3 activity in SW480 cells was lower than that in the blank control, negative control and liposome groups. These results indicate that siRNA-mediated silencing of β-catenin could inhibit the proliferation and invasion of SW480 cells and induce apoptosis, thus providing novel potential strategies for the clinical treatment of colon cancer, and may serve as a novel target for cancer therapy.
Collapse
Affiliation(s)
- Kui Li
- Department of Gastroenterology, Renmin Hospital, Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Zhong-Yin Zhou
- Department of Gastroenterology, Renmin Hospital, Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Pan-Pan Ji
- Department of Gastroenterology, Renmin Hospital, Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - He-Sheng Luo
- Department of Gastroenterology, Renmin Hospital, Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
159
|
Ahmad S, Hur S. Helicases in Antiviral Immunity: Dual Properties as Sensors and Effectors. Trends Biochem Sci 2016; 40:576-585. [PMID: 26410598 DOI: 10.1016/j.tibs.2015.08.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 08/05/2015] [Accepted: 08/06/2015] [Indexed: 01/01/2023]
Abstract
Many helicases have a unique ability to couple cognate RNA binding to ATP hydrolysis, which can induce a large conformational change that affects its interaction with RNA, position along RNA, or oligomeric state. A growing number of these helicases contribute to the innate immune system, either as sensors that detect foreign nucleic acids and/or as effectors that directly participate in the clearance of such foreign species. In this review, we discuss a few examples, including retinoic acid-inducible gene-I (RIG-I), melanoma differentiation-associated gene 5 (MDA5), and Dicer, focusing on their dual functions as both sensors and effectors. We will also discuss the closely related, but less understood, helicases, laboratory of genetics and physiology 2 (LGP2) and Dicer-related helicase-1 and -3 (DRH-1 and -3).
Collapse
Affiliation(s)
- Sadeem Ahmad
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Sun Hur
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA.
| |
Collapse
|
160
|
Svobodova E, Kubikova J, Svoboda P. Production of small RNAs by mammalian Dicer. Pflugers Arch 2016; 468:1089-102. [PMID: 27048428 PMCID: PMC4893058 DOI: 10.1007/s00424-016-1817-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 03/20/2016] [Accepted: 03/24/2016] [Indexed: 01/16/2023]
Abstract
MicroRNA (miRNA) and RNA interference (RNAi) pathways employ RNase III Dicer for the biogenesis of small RNAs guiding post-transcriptional repression. Requirements for Dicer activity differ in the two pathways. The biogenesis of miRNAs requires a single Dicer cleavage of a short hairpin precursor to produce a small RNA with a precisely defined sequence, while small RNAs in RNAi come from a processive cleavage of a long double-stranded RNA (dsRNA) into a pool of small RNAs with different sequences. While Dicer is generally conserved among eukaryotes, its substrate recognition, cleavage, and biological roles differ. In Metazoa, a single Dicer can function as a universal factor for RNAi and miRNA pathways or as a factor adapted specifically for one of the pathways. In this review, we focus on the structure, function, and evolution of mammalian Dicer. We discuss key structural features of Dicer and other factors defining Dicer substrate repertoire and biological functions in mammals in comparison with invertebrate models. The key for adaptation of Dicer for miRNA or RNAi pathways is the N-terminal helicase, a dynamically evolving Dicer domain. Its functionality differs between mammals and invertebrates: the mammalian Dicer is well adapted to produce miRNAs while its ability to support RNAi is limited.
Collapse
Affiliation(s)
- Eliska Svobodova
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083, Prague 4, 142 20, Czech Republic
| | - Jana Kubikova
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083, Prague 4, 142 20, Czech Republic
| | - Petr Svoboda
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083, Prague 4, 142 20, Czech Republic.
| |
Collapse
|
161
|
Gilchrist GC, Tscherner A, Nalpathamkalam T, Merico D, LaMarre J. MicroRNA Expression during Bovine Oocyte Maturation and Fertilization. Int J Mol Sci 2016; 17:396. [PMID: 26999121 PMCID: PMC4813251 DOI: 10.3390/ijms17030396] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 03/03/2016] [Accepted: 03/09/2016] [Indexed: 01/09/2023] Open
Abstract
Successful fertilization and subsequent embryo development rely on complex molecular processes starting with the development of oocyte competence through maturation. MicroRNAs (miRNAs) are small non-coding RNA molecules that function as gene regulators in many biological systems, including the oocyte and embryo. In order to further explore the roles of miRNAs in oocyte maturation, we employed small RNA sequencing as a screening tool to identify and characterize miRNA populations present in pools of bovine germinal vesicle (GV) oocytes, metaphase II (MII) oocytes, and presumptive zygotes (PZ). Each stage contained a defined miRNA population, some of which showed stable expression while others showed progressive changes between stages that were subsequently confirmed by quantitative reverse transcription polymerase chain reaction (RT-PCR). Bta-miR-155, bta-miR-222, bta-miR-21, bta-let-7d, bta-let-7i, and bta-miR-190a were among the statistically significant differentially expressed miRNAs (p < 0.05). To determine whether changes in specific primary miRNA (pri-miRNA) transcripts were responsible for the observed miRNA changes, we evaluated pri-miR-155, -222 and let-7d expression. Pri-miR-155 and -222 were not detected in GV oocytes but pri-miR-155 was present in MII oocytes, indicating transcription during maturation. In contrast, levels of pri-let-7d decreased during maturation, suggesting that the observed increase in let-7d expression was likely due to processing of the primary transcript. This study demonstrates that both dynamic and stable populations of miRNAs are present in bovine oocytes and zygotes and extend previous studies supporting the importance of the small RNA landscape in the maturing bovine oocyte and early embryo.
Collapse
Affiliation(s)
- Graham C Gilchrist
- Department of Biomedical Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada.
| | - Allison Tscherner
- Department of Biomedical Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada.
| | - Thomas Nalpathamkalam
- Program in Genetics and Genome Biology, The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada.
| | - Daniele Merico
- Program in Genetics and Genome Biology, The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada.
| | - Jonathan LaMarre
- Department of Biomedical Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada.
| |
Collapse
|
162
|
Yang F, Wang PJ. Multiple LINEs of retrotransposon silencing mechanisms in the mammalian germline. Semin Cell Dev Biol 2016; 59:118-125. [PMID: 26957474 DOI: 10.1016/j.semcdb.2016.03.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 02/29/2016] [Accepted: 03/01/2016] [Indexed: 02/07/2023]
Abstract
Retrotransposons play an important role in genome evolution but pose acute challenges to host genome integrity, particularly in early stage germ cells where epigenetic control is relaxed to permit genome-wide reprogramming. In most species, the inability to silence retrotransposons in the germline is usually associated with sterility. LINE1 is the most abundant retrotransposon type in the mammalian genome. Mammalian germ cells employ multiple mechanisms to suppress retrotransposon activity, including small non-coding piRNAs, DNA methylation, and repressive histone modifications. Novel factors contributing to the epigenetic silencing of retrotransposons in the germline continue to be identified. Recent studies have provided insight into how epigenetic changes associated with retrotransposon activation impact on fertility.
Collapse
Affiliation(s)
- Fang Yang
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, 3800 Spruce Street, Philadelphia, PA 19104, USA
| | - P Jeremy Wang
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, 3800 Spruce Street, Philadelphia, PA 19104, USA.
| |
Collapse
|
163
|
Tulay P, Sengupta SB. MicroRNA expression and its association with DNA repair in preimplantation embryos. J Reprod Dev 2016; 62:225-34. [PMID: 26853522 PMCID: PMC4919285 DOI: 10.1262/jrd.2015-167] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Active DNA repair pathways are crucial for preserving genomic integrity and are likely among the complex
mechanisms involved in the normal development of preimplantation embryos. MicroRNAs (miRNA), short non-coding
RNAs, are key regulators of gene expression through the post-transcriptional and post-translational
modification of mRNA. The association of miRNA expression with infertility or polycystic ovarian syndrome has
been widely investigated; however, there are limited data regarding the importance of miRNA regulation in DNA
repair during preimplantation embryo development. In this article, we review normal miRNA biogenesis and
consequences of aberrant miRNA expression in the regulation of DNA repair in gametes and preimplantation
embryos.
Collapse
Affiliation(s)
- Pinar Tulay
- Near East University, Faculty of Medicine, Department of Medical Genetics, Nicosia, Cyprus
| | | |
Collapse
|
164
|
Production of functional small interfering RNAs by an amino-terminal deletion mutant of human Dicer. Proc Natl Acad Sci U S A 2015; 112:E6945-54. [PMID: 26621737 DOI: 10.1073/pnas.1513421112] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Although RNA interference (RNAi) functions as a potent antiviral innate-immune response in plants and invertebrates, mammalian somatic cells appear incapable of mounting an RNAi response and few, if any, small interfering RNAs (siRNAs) can be detected. To examine why siRNA production is inefficient, we have generated double-knockout human cells lacking both Dicer and protein kinase RNA-activated. Using these cells, which tolerate double-stranded RNA expression, we show that a mutant form of human Dicer lacking the amino-terminal helicase domain can process double-stranded RNAs to produce high levels of siRNAs that are readily detectable by Northern blot, are loaded into RNA-induced silencing complexes, and can effectively and specifically inhibit the expression of cognate mRNAs. Remarkably, overexpression of this mutant Dicer, but not wild-type Dicer, also resulted in a partial inhibition of Influenza A virus-but not poliovirus-replication in human cells.
Collapse
|
165
|
A Small RNA-Based Immune System Defends Germ Cells against Mobile Genetic Elements. Stem Cells Int 2015; 2016:7595791. [PMID: 26681955 PMCID: PMC4670677 DOI: 10.1155/2016/7595791] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 06/11/2015] [Indexed: 11/17/2022] Open
Abstract
Transposons are mobile genetic elements that threaten the survival of species by destabilizing the germline genomes. Limiting the spread of these selfish elements is imperative. Germ cells employ specialized small regulatory RNA pathways to restrain transposon activity. PIWI proteins and Piwi-interacting RNAs (piRNAs) silence transposons at the transcriptional and posttranscriptional level with loss-of-function mutant animals universally exhibiting sterility often associated with germ cell defects. This short review aims to illustrate basic strategies of piRNA-guided defense against transposons. Mechanisms of piRNA silencing are most readily studied in Drosophila melanogaster, which serves as a model to delineate molecular concepts and as a reference for mammalian piRNA systems. PiRNA pathways utilize two major strategies to handle the challenges of transposon control: (1) the hard-wired molecular memory of prior transpositions enables recognition of mobile genetic elements and discriminates transposons from host genes; (2) a feed-forward adaptation mechanism shapes piRNA populations to selectively combat the immediate threat of transposon transcripts. In flies, maternally contributed PIWI-piRNA complexes bolster both of these lines of defense and ensure transgenerational immunity. While recent studies have provided a conceptual framework of what could be viewed as an ancient immune system, we are just beginning to appreciate its many molecular innovations.
Collapse
|
166
|
Chirn GW, Rahman R, Sytnikova YA, Matts JA, Zeng M, Gerlach D, Yu M, Berger B, Naramura M, Kile BT, Lau NC. Conserved piRNA Expression from a Distinct Set of piRNA Cluster Loci in Eutherian Mammals. PLoS Genet 2015; 11:e1005652. [PMID: 26588211 PMCID: PMC4654475 DOI: 10.1371/journal.pgen.1005652] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 10/15/2015] [Indexed: 12/18/2022] Open
Abstract
The Piwi pathway is deeply conserved amongst animals because one of its essential functions is to repress transposons. However, many Piwi-interacting RNAs (piRNAs) do not base-pair to transposons and remain mysterious in their targeting function. The sheer number of piRNA cluster (piC) loci in animal genomes and infrequent piRNA sequence conservation also present challenges in determining which piC loci are most important for development. To address this question, we determined the piRNA expression patterns of piC loci across a wide phylogenetic spectrum of animals, and reveal that most genic and intergenic piC loci evolve rapidly in their capacity to generate piRNAs, regardless of known transposon silencing function. Surprisingly, we also uncovered a distinct set of piC loci with piRNA expression conserved deeply in Eutherian mammals. We name these loci Eutherian-Conserved piRNA cluster (ECpiC) loci. Supporting the hypothesis that conservation of piRNA expression across ~100 million years of Eutherian evolution implies function, we determined that one ECpiC locus generates abundant piRNAs antisense to the STOX1 transcript, a gene clinically associated with preeclampsia. Furthermore, we confirmed reduced piRNAs in existing mouse mutations at ECpiC-Asb1 and -Cbl, which also display spermatogenic defects. The Asb1 mutant testes with strongly reduced Asb1 piRNAs also exhibit up-regulated gene expression profiles. These data indicate ECpiC loci may be specially adapted to support Eutherian reproduction. Animal genomes from flies to humans contain many hundreds of non-coding elements called Piwi-interacting RNAs (piRNAs) cluster loci (piC loci). Some of these elements generate piRNAs that direct the silencing of transposable elements, which are pervasive genetic parasites. However, we lack an understanding of the targeting function for the remaining bulk of piRNAs because their loci are not complementarity to transposable elements. In addition, the field does not know if all piC loci are quickly evolving, or if some piC loci might be deeply conserved in piRNA expression, an indication of its potentially functional importance. Our study confirms the highly rapid evolution in piRNA expression capacity for the majority of piC loci in flies and mammals, with many clade- and species-specific piC loci expression patterns. In spite of this, we also discover a cohort of piC loci that are deeply conserved in piRNA expression from the human to the dog, a significantly broad phylogenetic spectrum of eutherian mammals. However, this conservation in piRNA expression ends at non-eutherian mammals like marsupials and monotremes. Existing mutations in two of these Eutherian-Conserved piC (ECpiC) loci impair mouse reproduction and abrogate piRNA production. Therefore, we suggest these ECpiC loci are conserved for piRNA expression due to their important function in eutherian reproduction and stand out as prime candidates for future genetic studies.
Collapse
Affiliation(s)
- Gung-wei Chirn
- Department of Biology and Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, Massachusetts, United States of America
| | - Reazur Rahman
- Department of Biology and Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, Massachusetts, United States of America
| | - Yuliya A. Sytnikova
- Department of Biology and Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, Massachusetts, United States of America
| | - Jessica A. Matts
- Department of Biology and Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, Massachusetts, United States of America
| | - Mei Zeng
- Department of Biology and Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, Massachusetts, United States of America
| | - Daniel Gerlach
- Research Institute of Molecular Pathology, Vienna Biocenter, Vienna, Austria
| | - Michael Yu
- Mathematics Department and Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Bonnie Berger
- Mathematics Department and Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Mayumi Naramura
- Eppley Institute, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Benjamin T. Kile
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Nelson C. Lau
- Department of Biology and Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
167
|
Maalouf SW, Liu WS, Pate JL. MicroRNA in ovarian function. Cell Tissue Res 2015; 363:7-18. [PMID: 26558383 DOI: 10.1007/s00441-015-2307-4] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 09/29/2015] [Indexed: 01/14/2023]
Abstract
The mammalian ovary is a dynamic organ. The coordination of follicle recruitment, selection, and ovulation and the timely development and regression of the corpus luteum are essential for a functional ovary and fertility. Deregulation of any of these processes results in ovarian dysfunction and potential infertility. MicroRNA (miRNA) are short noncoding RNA that regulate developmental processes and time-sensitive functions. The expression of miRNA in the ovary varies with cell type, function, and stage of the estrous cycle. miRNA are involved in the formation of primordial follicles, follicular recruitment and selection, follicular atresia, oocyte-cumulus cell interaction, granulosal cell function, and luteinization. miRNA are differentially expressed in luteal cells at the various stages of the estrous cycle and during maternal recognition of pregnancy, suggesting a role in luteal development, maintenance, and regression. An understanding of the patterns of expression and functions of miRNA in the ovary will lead to novel therapeutics to treat ovarian dysfunction and improve fertility and, potentially, to the development of better contraceptives.
Collapse
Affiliation(s)
- S W Maalouf
- Department of Animal Science, Center for Reproductive Biology and Health, The Pennsylvania State University, 324 Henning Building, University Park, PA 16802, USA
| | - W S Liu
- Department of Animal Science, Center for Reproductive Biology and Health, The Pennsylvania State University, 324 Henning Building, University Park, PA 16802, USA
| | - J L Pate
- Department of Animal Science, Center for Reproductive Biology and Health, The Pennsylvania State University, 324 Henning Building, University Park, PA 16802, USA.
| |
Collapse
|
168
|
Korhonen HM, Yadav RP, Da Ros M, Chalmel F, Zimmermann C, Toppari J, Nef S, Kotaja N. DICER Regulates the Formation and Maintenance of Cell-Cell Junctions in the Mouse Seminiferous Epithelium. Biol Reprod 2015; 93:139. [PMID: 26510868 DOI: 10.1095/biolreprod.115.131938] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 10/26/2015] [Indexed: 01/09/2023] Open
Abstract
The endonuclease DICER that processes micro-RNAs and small interfering RNAs is essential for normal spermatogenesis and male fertility. We previously showed that the deletion of Dicer1 gene in postnatal spermatogonia in mice using Ngn3 promoter-driven Cre expression caused severe defects in the morphogenesis of haploid spermatid to mature spermatozoon, including problems in cell polarization and nuclear elongation. In this study, we further analyzed the same mouse model and revealed that absence of functional DICER in differentiating male germ cells induces disorganization of the cell-cell junctions in the seminiferous epithelium. We detected discontinuous and irregular apical ectoplasmic specializations between elongating spermatids and Sertoli cells. The defective anchoring of spermatids to Sertoli cells caused a premature release of spermatids into the lumen. Our findings may help also explain the abnormal elongation process of remaining spermatids because these junctions and the correct positioning of germ cells in the epithelium are critically important for the progression of spermiogenesis. Interestingly, cell adhesion-related genes were generally upregulated in Dicer1 knockout germ cells. Claudin 5 ( Cldn5 ) was among the most upregulated genes and we show that the polarized localization of CLAUDIN5 in the apical ectoplasmic specializations was lost in Dicer1 knockout spermatids. Our results suggest that DICER-dependent pathways control the formation and organization of cell-cell junctions in the seminiferous epithelium via the regulation of cell adhesion-related genes.
Collapse
Affiliation(s)
- Hanna Maria Korhonen
- Institute of Biomedicine, Department of Physiology, University of Turku, Turku, Finland
| | - Ram Prakash Yadav
- Institute of Biomedicine, Department of Physiology, University of Turku, Turku, Finland
| | - Matteo Da Ros
- Institute of Biomedicine, Department of Physiology, University of Turku, Turku, Finland
| | | | - Céline Zimmermann
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland iGE3, Institute of Genetics and Genomics of Geneva, University of Geneva, Geneva, Switzerland
| | - Jorma Toppari
- Institute of Biomedicine, Department of Physiology, University of Turku, Turku, Finland Department of Pediatrics, University of Turku, Turku, Finland
| | - Serge Nef
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland iGE3, Institute of Genetics and Genomics of Geneva, University of Geneva, Geneva, Switzerland
| | - Noora Kotaja
- Institute of Biomedicine, Department of Physiology, University of Turku, Turku, Finland
| |
Collapse
|
169
|
Gebert D, Rosenkranz D. RNA-based regulation of transposon expression. WILEY INTERDISCIPLINARY REVIEWS-RNA 2015; 6:687-708. [DOI: 10.1002/wrna.1310] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 09/08/2015] [Accepted: 09/13/2015] [Indexed: 11/12/2022]
Affiliation(s)
- Daniel Gebert
- Institute of Anthropology; Johannes Gutenberg University; Mainz Germany
| | - David Rosenkranz
- Institute of Anthropology; Johannes Gutenberg University; Mainz Germany
| |
Collapse
|
170
|
Veselovska L, Smallwood SA, Saadeh H, Stewart KR, Krueger F, Maupetit-Méhouas S, Arnaud P, Tomizawa SI, Andrews S, Kelsey G. Deep sequencing and de novo assembly of the mouse oocyte transcriptome define the contribution of transcription to the DNA methylation landscape. Genome Biol 2015; 16:209. [PMID: 26408185 PMCID: PMC4582738 DOI: 10.1186/s13059-015-0769-z] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 09/03/2015] [Indexed: 12/20/2022] Open
Abstract
Background Previously, a role was demonstrated for transcription in the acquisition of DNA methylation at imprinted control regions in oocytes. Definition of the oocyte DNA methylome by whole genome approaches revealed that the majority of methylated CpG islands are intragenic and gene bodies are hypermethylated. Yet, the mechanisms by which transcription regulates DNA methylation in oocytes remain unclear. Here, we systematically test the link between transcription and the methylome. Results We perform deep RNA-Seq and de novo transcriptome assembly at different stages of mouse oogenesis. This reveals thousands of novel non-annotated genes, as well as alternative promoters, for approximately 10 % of reference genes expressed in oocytes. In addition, a large fraction of novel promoters coincide with MaLR and ERVK transposable elements. Integration with our transcriptome assembly reveals that transcription correlates accurately with DNA methylation and accounts for approximately 85–90 % of the methylome. We generate a mouse model in which transcription across the Zac1/Plagl1 locus is abrogated in oocytes, resulting in failure of DNA methylation establishment at all CpGs of this locus. ChIP analysis in oocytes reveals H3K4me2 enrichment at the Zac1 imprinted control region when transcription is ablated, establishing a connection between transcription and chromatin remodeling at CpG islands by histone demethylases. Conclusions By precisely defining the mouse oocyte transcriptome, this work not only highlights transcription as a cornerstone of DNA methylation establishment in female germ cells, but also provides an important resource for developmental biology research. Electronic supplementary material The online version of this article (doi:10.1186/s13059-015-0769-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | - Heba Saadeh
- Epigenetics Programme, Babraham Institute, Cambridge, UK. .,Bioinformatics Group, Babraham Institute, Cambridge, UK.
| | | | - Felix Krueger
- Bioinformatics Group, Babraham Institute, Cambridge, UK.
| | | | - Philippe Arnaud
- GReD, CNRS, INSERM, and Clermont University, 63001, Clermont-Ferrand, France.
| | - Shin-Ichi Tomizawa
- Department of Histology and Cell Biology, Yokohama City University School of Medicine, Yokohama, Japan.
| | - Simon Andrews
- Bioinformatics Group, Babraham Institute, Cambridge, UK.
| | - Gavin Kelsey
- Epigenetics Programme, Babraham Institute, Cambridge, UK. .,Centre for Trophoblast Research, University of Cambridge, Cambridge, UK.
| |
Collapse
|
171
|
Analysis of Nearly One Thousand Mammalian Mirtrons Reveals Novel Features of Dicer Substrates. PLoS Comput Biol 2015; 11:e1004441. [PMID: 26325366 PMCID: PMC4556696 DOI: 10.1371/journal.pcbi.1004441] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 07/09/2015] [Indexed: 12/11/2022] Open
Abstract
Mirtrons are microRNA (miRNA) substrates that utilize the splicing machinery to bypass the necessity of Drosha cleavage for their biogenesis. Expanding our recent efforts for mammalian mirtron annotation, we use meta-analysis of aggregate datasets to identify ~500 novel mouse and human introns that confidently generate diced small RNA duplexes. These comprise nearly 1000 total loci distributed in four splicing-mediated biogenesis subclasses, with 5'-tailed mirtrons as, by far, the dominant subtype. Thus, mirtrons surprisingly comprise a substantial fraction of endogenous Dicer substrates in mammalian genomes. Although mirtron-derived small RNAs exhibit overall expression correlation with their host mRNAs, we observe a subset with substantial differences that suggest regulated processing or accumulation. We identify characteristic sequence, length, and structural features of mirtron loci that distinguish them from bulk introns, and find that mirtrons preferentially emerge from genes with larger numbers of introns. While mirtrons generate miRNA-class regulatory RNAs, we also find that mirtrons exhibit many features that distinguish them from canonical miRNAs. We observe that conventional mirtron hairpins are substantially longer than Drosha-generated pre-miRNAs, indicating that the characteristic length of canonical pre-miRNAs is not a general feature of Dicer substrate hairpins. In addition, mammalian mirtrons exhibit unique patterns of ordered 5' and 3' heterogeneity, which reveal hidden complexity in miRNA processing pathways. These include broad 3'-uridylation of mirtron hairpins, atypically heterogeneous 5' termini that may result from exonucleolytic processing, and occasionally robust decapitation of the 5' guanine (G) of mirtron-5p species defined by splicing. Altogether, this study reveals that this extensive class of non-canonical miRNA bears a multitude of characteristic properties, many of which raise general mechanistic questions regarding the processing of endogenous hairpin transcripts.
Collapse
|
172
|
Svoboda P, Franke V, Schultz RM. Sculpting the Transcriptome During the Oocyte-to-Embryo Transition in Mouse. Curr Top Dev Biol 2015; 113:305-49. [PMID: 26358877 DOI: 10.1016/bs.ctdb.2015.06.004] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In mouse, the oocyte-to-embryo transition entails converting a highly differentiated oocyte to totipotent blastomeres. This transition is driven by degradation of maternal mRNAs, which results in loss of oocyte identity, and reprogramming of gene expression during the course of zygotic gene activation, which occurs primarily during the two-cell stage and confers blastomere totipotency. Full-grown oocytes are transcriptionally quiescent and mRNAs are remarkably stable in oocytes due to the RNA-binding protein MSY2, which stabilizes mRNAs, and low activity of the 5' and 3' RNA degradation machinery. Oocyte maturation initiates a transition from mRNA stability to instability due to phosphorylation of MSY2, which makes mRNAs more susceptible to the RNA degradation machinery, and recruitment of dormant maternal mRNAs that encode for critical components of the 5' and 3' RNA degradation machinery. Small RNAs (miRNA, siRNA, and piRNA) play little, if any, role in mRNA degradation that occurs during maturation. Many mRNAs are totally degraded but a substantial fraction is only partially degraded, their degradation completed by the end of the two-cell stage. Genome activation initiates during the one-cell stage, is promiscuous, low level, and genome wide (and includes both inter- and intragenic regions) and produces transcripts that are inefficiently spliced and polyadenylated. The major wave of genome activation in two-cell embryos involves expression of thousands of new genes. This unique pattern of gene expression is the product of maternal mRNAs recruited during maturation that encode for transcription factors and chromatin remodelers, as well as dramatic changes in chromatin structure due to incorporation of histone variants and modified histones.
Collapse
Affiliation(s)
- Petr Svoboda
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic.
| | - Vedran Franke
- Bioinformatics Group, Division of Biology, Faculty of Science, Zagreb University, Zagreb, Croatia
| | - Richard M Schultz
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
173
|
Flemr M, Bühler M. Single-Step Generation of Conditional Knockout Mouse Embryonic Stem Cells. Cell Rep 2015; 12:709-16. [PMID: 26190102 DOI: 10.1016/j.celrep.2015.06.051] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 06/02/2015] [Accepted: 06/11/2015] [Indexed: 10/23/2022] Open
Abstract
Induction of double-strand DNA breaks (DSBs) by engineered nucleases, such as CRISPR/Cas9 or transcription activator-like effector nucleases (TALENs), stimulates knockin of exogenous DNA fragments via homologous recombination (HR). However, the knockin efficiencies reported so far have not allowed more complex in vitro genome modifications such as, for instance, simultaneous integration of a DNA fragment at two distinct genomic sites. We developed a reporter system to enrich for cells with engineered nuclease-assisted HR events. Using this system in mouse embryonic stem cells (mESCs), we achieve single-step biallelic and seamless integration of two loxP sites for Cre recombinase-mediated inducible gene knockout, as well as biallelic endogenous gene tagging with high efficiency. Our approach reduces the time and resources required for conditional knockout mESC generation dramatically.
Collapse
Affiliation(s)
- Matyas Flemr
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland; University of Basel, Petersplatz 10, 4003 Basel, Switzerland
| | - Marc Bühler
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland; University of Basel, Petersplatz 10, 4003 Basel, Switzerland.
| |
Collapse
|
174
|
Clarke HJ, Vieux KF. Epigenetic inheritance through the female germ-line: The known, the unknown, and the possible. Semin Cell Dev Biol 2015; 43:106-116. [DOI: 10.1016/j.semcdb.2015.07.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 07/04/2015] [Accepted: 07/06/2015] [Indexed: 02/06/2023]
|
175
|
Burger K, Gullerova M. Swiss army knives: non-canonical functions of nuclear Drosha and Dicer. Nat Rev Mol Cell Biol 2015; 16:417-30. [DOI: 10.1038/nrm3994] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
176
|
McGinnis LK, Luense LJ, Christenson LK. MicroRNA in Ovarian Biology and Disease. Cold Spring Harb Perspect Med 2015; 5:a022962. [PMID: 25986593 DOI: 10.1101/cshperspect.a022962] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
MicroRNAs (miRNAs) are posttranscriptional gene regulatory molecules that show regulated expression within ovarian tissue. Most research investigating miRNAs in the ovary has relied exclusively on in vitro analyses. In this review, we highlight those few studies in which investigators have illustrated an in vivo effect of miRNAs on ovarian function. We also provide a synopsis of how these small noncoding RNAs can impact ovarian disease. miRNAs have great potential as novel diagnostic biomarkers for the detection of ovarian disease and in the assisted reproductive technologies (ART) for selection of healthy viable oocytes and embryos.
Collapse
Affiliation(s)
- Lynda K McGinnis
- Department Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Lacey J Luense
- Epigenetics Program, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Lane K Christenson
- Department Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas 66160
| |
Collapse
|
177
|
Mammalian RNA virus-derived small RNA: biogenesis and functional activity. Microbes Infect 2015; 17:557-63. [PMID: 25980760 DOI: 10.1016/j.micinf.2015.04.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 04/30/2015] [Indexed: 11/24/2022]
Abstract
The role of virus-derived small RNAs (vsRNAs) has been identified as an antiviral mechanism in plants, arthropods, and nematodes. Although mammalian DNA viruses have been observed to encode functional miRNAs, whether RNA virus infection generates functional vsRNAs remains under discussion. This article reviews the most recent reports regarding pathways for generating vsRNAs and the identified vsRNA activity in mammalian cells infected with RNA viruses. We also discuss several hypotheses regarding the roles of mammalian vsRNAs and comment on the potential directions for this research field.
Collapse
|
178
|
Smalheiser NR. The RNA-centred view of the synapse: non-coding RNAs and synaptic plasticity. Philos Trans R Soc Lond B Biol Sci 2015; 369:rstb.2013.0504. [PMID: 25135965 PMCID: PMC4142025 DOI: 10.1098/rstb.2013.0504] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
If mRNAs were the only RNAs made by a neuron, there would be a simple mapping of mRNAs to proteins. However, microRNAs and other non-coding RNAs (ncRNAs; endo-siRNAs, piRNAs, BC1, BC200, antisense and long ncRNAs, repeat-related transcripts, etc.) regulate mRNAs via effects on protein translation as well as transcriptional and epigenetic mechanisms. Not only are genes ON or OFF, but their ability to be translated can be turned ON or OFF at the level of synapses, supporting an enormous increase in information capacity. Here, I review evidence that ncRNAs are expressed pervasively within dendrites in mammalian brain; that some are activity-dependent and highly enriched near synapses; and that synaptic ncRNAs participate in plasticity responses including learning and memory. Ultimately, ncRNAs can be viewed as the post-it notes of the neuron. They have no literal meaning of their own, but derive their functions from where (and to what) they are stuck. This may explain, in part, why ncRNAs differ so dramatically from protein-coding genes, both in terms of the usual indicators of functionality and in terms of evolutionary constraints. ncRNAs do not appear to be direct mediators of synaptic transmission in the manner of neurotransmitters or receptors, yet they orchestrate synaptic plasticity—and may drive species-specific changes in cognition.
Collapse
Affiliation(s)
- Neil R Smalheiser
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
179
|
Svoboda P. A toolbox for miRNA analysis. FEBS Lett 2015; 589:1694-701. [DOI: 10.1016/j.febslet.2015.04.054] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 04/28/2015] [Accepted: 04/28/2015] [Indexed: 12/21/2022]
|
180
|
Rosenkranz D, Rudloff S, Bastuck K, Ketting RF, Zischler H. Tupaia small RNAs provide insights into function and evolution of RNAi-based transposon defense in mammals. RNA (NEW YORK, N.Y.) 2015; 21:911-22. [PMID: 25802409 PMCID: PMC4408798 DOI: 10.1261/rna.048603.114] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 01/10/2015] [Indexed: 05/25/2023]
Abstract
Argonaute proteins comprising Piwi-like and Argonaute-like proteins and their guiding small RNAs combat mobile DNA on the transcriptional and post-transcriptional level. While Piwi-like proteins and associated piRNAs are generally restricted to the germline, Argonaute-like proteins and siRNAs have been linked with transposon control in the germline as well as in the soma. Intriguingly, evolution has realized distinct Argonaute subfunctionalization patterns in different species but our knowledge about mammalian RNA interference pathways relies mainly on findings from the mouse model. However, mice differ from other mammals by absence of functional Piwil3 and expression of an oocyte-specific Dicer isoform. Thus, studies beyond the mouse model are required for a thorough understanding of function and evolution of mammalian RNA interference pathways. We high-throughput sequenced small RNAs from the male Tupaia belangeri germline, which represents a close outgroup to primates, hence phylogenetically links mice with humans. We identified transposon-derived piRNAs as well as siRNAs clearly contrasting the separation of piRNA- and siRNA-pathways into male and female germline as seen in mice. Genome-wide analysis of tree shrew transposons reveal that putative siRNAs map to transposon sites that form foldback secondary structures thus representing suitable Dicer substrates. In contrast piRNAs target transposon sites that remain accessible. With this we provide a basic mechanistic explanation how secondary structure of transposon transcripts influences piRNA- and siRNA-pathway utilization. Finally, our analyses of tree shrew piRNA clusters indicate A-Myb and the testis-expressed transcription factor RFX4 to be involved in the transcriptional regulation of mammalian piRNA clusters.
Collapse
Affiliation(s)
- David Rosenkranz
- Institute of Anthropology, Johannes Gutenberg-University, Mainz, Rheinland-Pfalz 55128, Germany
| | - Stefanie Rudloff
- Institute of Anthropology, Johannes Gutenberg-University, Mainz, Rheinland-Pfalz 55128, Germany
| | - Katharina Bastuck
- Institute of Anthropology, Johannes Gutenberg-University, Mainz, Rheinland-Pfalz 55128, Germany
| | - René F Ketting
- Institute of Molecular Biology, IMB. Mainz, Rheinland-Pfalz 55128, Germany
| | - Hans Zischler
- Institute of Anthropology, Johannes Gutenberg-University, Mainz, Rheinland-Pfalz 55128, Germany
| |
Collapse
|
181
|
Moussa M, Shu J, Zhang X, Zeng F. Maternal control of oocyte quality in cattle “a review”. Anim Reprod Sci 2015; 155:11-27. [DOI: 10.1016/j.anireprosci.2015.01.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 11/20/2014] [Accepted: 01/15/2015] [Indexed: 02/09/2023]
|
182
|
Roovers EF, Rosenkranz D, Mahdipour M, Han CT, He N, Chuva de Sousa Lopes SM, van der Westerlaken LAJ, Zischler H, Butter F, Roelen BAJ, Ketting RF. Piwi proteins and piRNAs in mammalian oocytes and early embryos. Cell Rep 2015; 10:2069-82. [PMID: 25818294 DOI: 10.1016/j.celrep.2015.02.062] [Citation(s) in RCA: 144] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 02/12/2015] [Accepted: 02/24/2015] [Indexed: 10/23/2022] Open
Abstract
Germ cells of most animals critically depend on piRNAs and Piwi proteins. Surprisingly, piRNAs in mouse oocytes are relatively rare and dispensable. We present compelling evidence for strong Piwi and piRNA expression in oocytes of other mammals. Human fetal oocytes express PIWIL2 and transposon-enriched piRNAs. Oocytes in adult human ovary express PIWIL1 and PIWIL2, whereas those in bovine ovary only express PIWIL1. In human, macaque, and bovine ovaries, we find piRNAs that resemble testis-borne pachytene piRNAs. Isolated bovine follicular oocytes were shown to contain abundant, relatively short piRNAs that preferentially target transposable elements. Using label-free quantitative proteome analysis, we show that these maturing oocytes strongly and specifically express the PIWIL3 protein, alongside other, known piRNA-pathway components. A piRNA pool is still present in early bovine embryos, revealing a potential impact of piRNAs on mammalian embryogenesis. Our results reveal that there are highly dynamic piRNA pathways in mammalian oocytes and early embryos.
Collapse
Affiliation(s)
- Elke F Roovers
- Biology of Non-coding RNA Group, Institute of Molecular Biology (IMB), Ackermannweg 4, 55128 Mainz, Germany
| | - David Rosenkranz
- Johannes Gutenberg-University Mainz, Institute of Anthropology, Anselm-Franz-von-Bentzel-Weg 7, 55128 Mainz, Germany
| | - Mahdi Mahdipour
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, the Netherlands
| | - Chung-Ting Han
- Genomics Core Facility, Institute of Molecular Biology (IMB), Ackermannweg 4, 55128 Mainz, Germany
| | - Nannan He
- Department of Anatomy and Embryology, Leiden University Medical Center, Einthovenweg 20, 2333 ZA Leiden, the Netherlands
| | - Susana M Chuva de Sousa Lopes
- Department of Anatomy and Embryology, Leiden University Medical Center, Einthovenweg 20, 2333 ZA Leiden, the Netherlands
| | | | - Hans Zischler
- Johannes Gutenberg-University Mainz, Institute of Anthropology, Anselm-Franz-von-Bentzel-Weg 7, 55128 Mainz, Germany
| | - Falk Butter
- Quantitative Proteomics Group, Institute of Molecular Biology (IMB), Ackermannweg 4, 55128 Mainz, Germany
| | - Bernard A J Roelen
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, the Netherlands
| | - René F Ketting
- Biology of Non-coding RNA Group, Institute of Molecular Biology (IMB), Ackermannweg 4, 55128 Mainz, Germany.
| |
Collapse
|
183
|
Emerging roles for RNA degradation in viral replication and antiviral defense. Virology 2015; 479-480:600-8. [PMID: 25721579 PMCID: PMC4424162 DOI: 10.1016/j.virol.2015.02.007] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 01/29/2015] [Accepted: 02/06/2015] [Indexed: 11/23/2022]
Abstract
Viral replication significantly alters the gene expression landscape of infected cells. Many of these changes are driven by viral manipulation of host transcription or translation machinery. Several mammalian viruses encode factors that broadly dampen gene expression by directly targeting messenger RNA (mRNA). Here, we highlight how these factors promote mRNA degradation to globally regulate both host and viral gene expression. Although these viral factors are not homologous and use distinct mechanisms to target mRNA, many of them display striking parallels in their strategies for executing RNA degradation and invoke key features of cellular RNA quality control pathways. In some cases, there is a lack of selectivity for degradation of host versus viral mRNA, indicating that the purposes of virus-induced mRNA degradation extend beyond redirecting cellular resources towards viral gene expression. In addition, several antiviral pathways use RNA degradation as a viral restriction mechanism, and we will summarize new findings related to how these host-encoded ribonucleases target and destroy viral RNA.
Collapse
|
184
|
Paro S, Imler JL, Meignin C. Sensing viral RNAs by Dicer/RIG-I like ATPases across species. Curr Opin Immunol 2015; 32:106-13. [PMID: 25658360 DOI: 10.1016/j.coi.2015.01.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 01/12/2015] [Accepted: 01/13/2015] [Indexed: 01/03/2023]
Abstract
Induction of antiviral immunity in vertebrates and invertebrates relies on members of the RIG-I-like receptor and Dicer families, respectively. Although these proteins have different size and domain composition, members of both families share a conserved DECH-box helicase domain. This helicase, also known as a duplex RNA activated ATPase, or DRA domain, plays an important role in viral RNA sensing. Crystallographic and electron microscopy studies of the RIG-I and Dicer DRA domains indicate a common structure and that similar conformational changes are induced by dsRNA binding. Genetic and biochemical studies on the function and regulation of DRAs reveal similarities, but also some differences, between viral RNA sensing mechanisms in nematodes, flies and mammals.
Collapse
Affiliation(s)
- Simona Paro
- Antiviral Immunity Group, CNRS-UPR9022, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France
| | - Jean-Luc Imler
- Antiviral Immunity Group, CNRS-UPR9022, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France; Faculté des Sciences de la Vie, Université de Strasbourg, Strasbourg, France
| | - Carine Meignin
- Antiviral Immunity Group, CNRS-UPR9022, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France; Faculté des Sciences de la Vie, Université de Strasbourg, Strasbourg, France.
| |
Collapse
|
185
|
Stein P, Rozhkov NV, Li F, Cárdenas FL, Davydenk O, Vandivier LE, Gregory BD, Hannon GJ, Schultz RM. Essential Role for endogenous siRNAs during meiosis in mouse oocytes. PLoS Genet 2015; 11:e1005013. [PMID: 25695507 PMCID: PMC4335007 DOI: 10.1371/journal.pgen.1005013] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 01/20/2015] [Indexed: 11/21/2022] Open
Abstract
The RNase III enzyme DICER generates both microRNAs (miRNAs) and endogenous short interfering RNAs (endo-siRNAs). Both small RNA species silence gene expression post-transcriptionally in association with the ARGONAUTE (AGO) family of proteins. In mammals, there are four AGO proteins (AGO1-4), of which only AGO2 possesses endonucleolytic activity. siRNAs trigger endonucleolytic cleavage of target mRNAs, mediated by AGO2, whereas miRNAs cause translational repression and mRNA decay through association with any of the four AGO proteins. Dicer deletion in mouse oocytes leads to female infertility due to defects during meiosis I. Because mouse oocytes express both miRNAs and endo-siRNAs, this phenotype could be due to the absence of either class of small RNA, or both. However, we and others demonstrated that miRNA function is suppressed in mouse oocytes, which suggested that endo-siRNAs, not miRNAs, are essential for female meiosis. To determine if this was the case we generated mice that express a catalytically inactive knock-in allele of Ago2 (Ago2ADH) exclusively in oocytes and thereby disrupted the function of siRNAs. Oogenesis and hormonal response are normal in Ago2ADH oocytes, but meiotic maturation is impaired, with severe defects in spindle formation and chromosome alignment that lead to meiotic catastrophe. The transcriptome of these oocytes is widely perturbed and shows a highly significant correlation with the transcriptome of Dicer null and Ago2 null oocytes. Expression of the mouse transcript (MT), the most abundant transposable element in mouse oocytes, is increased. This study reveals that endo-siRNAs are essential during meiosis I in mouse females, demonstrating a role for endo-siRNAs in mammals.
Collapse
Affiliation(s)
- Paula Stein
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Nikolay V. Rozhkov
- Cold Spring Harbor Laboratory, Watson School of Biological Sciences and Howard Hughes Medical Institute, Cold Spring Harbor, New York, United States of America
| | - Fan Li
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Fabián L. Cárdenas
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Olga Davydenk
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Lee E. Vandivier
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Brian D. Gregory
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Gregory J. Hannon
- Cold Spring Harbor Laboratory, Watson School of Biological Sciences and Howard Hughes Medical Institute, Cold Spring Harbor, New York, United States of America
- CRUK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, United Kingdom
| | - Richard M. Schultz
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
186
|
Pattabiraman S, Baumann C, Guisado D, Eppig JJ, Schimenti JC, De La Fuente R. Mouse BRWD1 is critical for spermatid postmeiotic transcription and female meiotic chromosome stability. ACTA ACUST UNITED AC 2014; 208:53-69. [PMID: 25547156 PMCID: PMC4284233 DOI: 10.1083/jcb.201404109] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Exhibiting sexually dimorphic roles in mice, BRWD1 is essential for proper meiotic chromosome condensation and telomere structure during oogenesis and for haploid-specific gene transcription during postmeiotic sperm differentiation. Postmeiotic gene expression is essential for development and maturation of sperm and eggs. We report that the dual bromodomain-containing protein BRWD1, which is essential for both male and female fertility, promotes haploid spermatid–specific transcription but has distinct roles in oocyte meiotic progression. Brwd1 deficiency caused down-regulation of ∼300 mostly spermatid-specific transcripts in testis, including nearly complete elimination of those encoding the protamines and transition proteins, but was not associated with global epigenetic changes in chromatin, which suggests that BRWD1 acts selectively. In females, Brwd1 ablation caused severe chromosome condensation and structural defects associated with abnormal telomere structure but only minor changes in gene expression at the germinal vesicle stage, including more than twofold overexpression of the histone methyltransferase MLL5 and LINE-1 elements transposons. Thus, loss of BRWD1 function interferes with the completion of oogenesis and spermatogenesis through sexually dimorphic mechanisms: it is essential in females for epigenetic control of meiotic chromosome stability and in males for haploid gene transcription during postmeiotic sperm differentiation.
Collapse
Affiliation(s)
- Shrivatsav Pattabiraman
- Department of Biomedical Sciences and Center for Vertebrate Genomics, Cornell University, College of Veterinary Medicine, Ithaca, NY 14853 Department of Biomedical Sciences and Center for Vertebrate Genomics, Cornell University, College of Veterinary Medicine, Ithaca, NY 14853
| | - Claudia Baumann
- Department of Physiology and Pharmacology, University of Georgia College of Veterinary Medicine, Athens, GA 30602
| | - Daniela Guisado
- Department of Biomedical Sciences and Center for Vertebrate Genomics, Cornell University, College of Veterinary Medicine, Ithaca, NY 14853 Department of Biomedical Sciences and Center for Vertebrate Genomics, Cornell University, College of Veterinary Medicine, Ithaca, NY 14853
| | | | - John C Schimenti
- Department of Biomedical Sciences and Center for Vertebrate Genomics, Cornell University, College of Veterinary Medicine, Ithaca, NY 14853 Department of Biomedical Sciences and Center for Vertebrate Genomics, Cornell University, College of Veterinary Medicine, Ithaca, NY 14853
| | - Rabindranath De La Fuente
- Department of Physiology and Pharmacology, University of Georgia College of Veterinary Medicine, Athens, GA 30602
| |
Collapse
|
187
|
Wang H, Graham I, Hastings R, Gunewardena S, Brinkmeier ML, Conn PM, Camper SA, Kumar TR. Gonadotrope-specific deletion of Dicer results in severely suppressed gonadotropins and fertility defects. J Biol Chem 2014; 290:2699-714. [PMID: 25525274 DOI: 10.1074/jbc.m114.621565] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Pituitary gonadotropins follicle-stimulating hormone and luteinizing hormone are heterodimeric glycoproteins expressed in gonadotropes. They act on gonads and promote their development and functions including steroidogenesis and gametogenesis. Although transcriptional regulation of gonadotropin subunits has been well studied, the post-transcriptional regulation of gonadotropin subunits is not well understood. To test if microRNAs regulate the hormone-specific gonadotropin β subunits in vivo, we deleted Dicer in gonadotropes by a Cre-lox genetic approach. We found that many of the DICER-dependent microRNAs, predicted in silico to bind gonadotropin β subunit mRNAs, were suppressed in purified gonadotropes of mutant mice. Loss of DICER-dependent microRNAs in gonadotropes resulted in profound suppression of gonadotropin-β subunit proteins and, consequently, the heterodimeric hormone secretion. In addition to suppression of basal levels, interestingly, the post-gonadectomy-induced rise in pituitary gonadotropin synthesis and secretion were both abolished in mutants, indicating a defective gonadal negative feedback control. Furthermore, mutants lacking Dicer in gonadotropes displayed severely reduced fertility and were rescued with exogenous hormones confirming that the fertility defects were secondary to suppressed gonadotropins. Our studies reveal that DICER-dependent microRNAs are essential for gonadotropin homeostasis and fertility in mice. Our studies also implicate microRNAs in gonadal feedback control of gonadotropin synthesis and secretion. Thus, DICER-dependent microRNAs confer a new layer of transcriptional and post-transcriptional regulation in gonadotropes to orchestrate the hypothalamus-pituitary-gonadal axis physiology.
Collapse
Affiliation(s)
- Huizhen Wang
- From the Departments of Molecular and Integrative Physiology
| | - Ian Graham
- From the Departments of Molecular and Integrative Physiology
| | - Richard Hastings
- Flow Cytometry Core Laboratory, University of Kansas Medical Center, Kansas City, Kansas 66160
| | | | - Michelle L Brinkmeier
- Department of Molecular and Human Genetics, University of Michigan, Ann Arbor, Michigan 48109, and
| | - P Michael Conn
- Departments of Internal Medicine, Cell Biology, and Biochemistry, Texas Tech University, Lubbock, Texas 79430
| | - Sally A Camper
- Department of Molecular and Human Genetics, University of Michigan, Ann Arbor, Michigan 48109, and
| | - T Rajendra Kumar
- From the Departments of Molecular and Integrative Physiology, Center for Reproductive Sciences, Institute for Reproductive Health and Regenerative Medicine, and
| |
Collapse
|
188
|
Drake M, Furuta T, Man KS, Gonzalez G, Liu B, Kalia A, Ladbury J, Fire AZ, Skeath JB, Arur S. A requirement for ERK-dependent Dicer phosphorylation in coordinating oocyte-to-embryo transition in C. elegans. Dev Cell 2014; 31:614-28. [PMID: 25490268 PMCID: PMC4261158 DOI: 10.1016/j.devcel.2014.11.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 08/12/2014] [Accepted: 11/04/2014] [Indexed: 02/03/2023]
Abstract
Signaling pathways and small RNAs direct diverse cellular events, but few examples are known of defined signaling pathways directly regulating small RNA biogenesis. We show that ERK phosphorylates Dicer on two conserved residues in its RNase IIIb and double-stranded RNA (dsRNA)-binding domains and that phosphorylation of these residues is necessary and sufficient to trigger Dicer's nuclear translocation in worms, mice, and human cells. Phosphorylation of Dicer on either site inhibits Dicer function in the female germline and dampens small RNA repertoire. Our data demonstrate that ERK phosphorylates and inhibits Dicer during meiosis I for oogenesis to proceed normally in Caenorhabditis elegans and that this inhibition is released before fertilization for embryogenesis to proceed normally. The conserved Dicer residues, their phosphorylation by ERK, and the consequences of the resulting modifications implicate an ERK-Dicer nexus as a fundamental component of the oocyte-to-embryo transition and an underlying mechanism coupling extracellular cues to small RNA production.
Collapse
Affiliation(s)
- Melanie Drake
- Department of Genetics, UT MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Tokiko Furuta
- Department of Genetics, UT MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Kin Suen Man
- Department of Biochemistry and Molecular Biology, UT MD Anderson Cancer Center, Houston, TX, 77030, USA,Graduate School of Biomedical Sciences, Houston, TX, 77030, USA
| | - Gabriel Gonzalez
- Department of Genetics, UT MD Anderson Cancer Center, Houston, TX, 77030, USA,Graduate School of Biomedical Sciences, Houston, TX, 77030, USA
| | - Bin Liu
- Center for Genetics and Genomics, UT MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Awdhesh Kalia
- Graduate Program in Diagnostic Genetics, School of Health Professions, UT MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - John Ladbury
- Department of Biochemistry and Molecular Biology, UT MD Anderson Cancer Center, Houston, TX, 77030, USA,Graduate School of Biomedical Sciences, Houston, TX, 77030, USA
| | - Andrew Z. Fire
- Department of Pathology and Genetics, Stanford University, Stanford, CA, 94305, USA
| | - James B Skeath
- Department of Genetics, Washington University School of Medicine, Scott Avenue, Saint Louis, MO, 63110, USA
| | - Swathi Arur
- Department of Genetics, UT MD Anderson Cancer Center, Houston, TX, 77030, USA,Graduate School of Biomedical Sciences, Houston, TX, 77030, USA,Center for Genetics and Genomics, UT MD Anderson Cancer Center, Houston, TX, 77030, USA,Address correspondence to: Swathi Arur, Ph.D, Department of Genetics, Unit 1010, UT MD Anderson Cancer Center, Houston, 77030, Phone: 713-745-8424,
| |
Collapse
|
189
|
Kasparek P, Krausova M, Haneckova R, Kriz V, Zbodakova O, Korinek V, Sedlacek R. Efficient gene targeting of the Rosa26 locus in mouse zygotes using TALE nucleases. FEBS Lett 2014; 588:3982-8. [PMID: 25241166 DOI: 10.1016/j.febslet.2014.09.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 08/27/2014] [Accepted: 09/03/2014] [Indexed: 01/06/2023]
Abstract
Gene targeting in mice mainly employs homologous recombination (HR) in embryonic stem (ES) cells. Although it is a standard way for production of genetically modified mice, the procedure is laborious and time-consuming. This study describes targeting of the mouse Rosa26 locus by transcription activator-like effector nucleases (TALENs). We employed TALEN-assisted HR in zygotes to introduce constructs encoding TurboRFP and TagBFP fluorescent proteins into the first intron of the Rosa26 gene, and in this way generated two transgenic mice. We also demonstrated that these Rosa26-specific TALENs exhibit high targeting efficiency superior to that of zinc-finger nucleases (ZFNs) specific for the same targeting sequence. Moreover, we devised a reporter assay to assess TALENs activity and specificity to improve the quality of TALEN-assisted targeting.
Collapse
Affiliation(s)
- Petr Kasparek
- Institute of Molecular Genetics of the AS CR, v.v.i., Videnska 1083, 142 20, Czech Republic
| | - Michaela Krausova
- Institute of Molecular Genetics of the AS CR, v.v.i., Videnska 1083, 142 20, Czech Republic
| | - Radka Haneckova
- Institute of Molecular Genetics of the AS CR, v.v.i., Videnska 1083, 142 20, Czech Republic
| | - Vitezslav Kriz
- Institute of Molecular Genetics of the AS CR, v.v.i., Videnska 1083, 142 20, Czech Republic
| | - Olga Zbodakova
- Institute of Molecular Genetics of the AS CR, v.v.i., Videnska 1083, 142 20, Czech Republic
| | - Vladimir Korinek
- Institute of Molecular Genetics of the AS CR, v.v.i., Videnska 1083, 142 20, Czech Republic.
| | - Radislav Sedlacek
- Institute of Molecular Genetics of the AS CR, v.v.i., Videnska 1083, 142 20, Czech Republic.
| |
Collapse
|
190
|
Abstract
The question of whether any mammalian cells are able to mount an effective RNA interference-mediated antiviral innate immune response has remained highly controversial. In this Gem, I review recent data addressing this important issue and propose a testable hypothesis that can explain many of the apparently contradictory results published in this area of research.
Collapse
|
191
|
Cantini LP, Andino LM, Attaway CC, Butler B, Dumitriu A, Blackshaw A, Jakymiw A. Identification and characterization of Dicer1e, a Dicer1 protein variant, in oral cancer cells. Mol Cancer 2014; 13:190. [PMID: 25115815 PMCID: PMC4141963 DOI: 10.1186/1476-4598-13-190] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 08/05/2014] [Indexed: 01/15/2023] Open
Abstract
Background The human dicer1 gene has been predicted to produce several mRNA variants that encode truncated Dicer1 proteins of varying lengths. One of these Dicer1 variants, Dicer1e, was recently found to be differentially expressed in breast cancer cells. Because the expression and function of the Dicer1e protein variant has not been well characterized and the underlying molecular mechanisms for the development of oral squamous cell carcinomas (OSCCs) are poorly understood, the present study sought to characterize the biological role of Dicer1e and determine its relationship, if any, to OSCC pathogenesis. Methods Western blot analyses were used to examine Dicer1e expression levels in a panel of oral cancer cells/tissues and during epithelial-mesenchymal transition (EMT), followed by 5′/3′-RACE analyses to obtain the full-length Dicer1e transcript. Biochemical fractionation and indirect immunofluorescent studies were performed to determine the cellular localization of Dicer1e and the effects of Dicer1e silencing on cancer cell proliferation, clonogenicity, and drug sensitivity were also assessed. Results Dicer1e protein levels were found to be overexpressed in OSCC cell lines of epithelial phenotype and in OSCC tissues with its levels downregulated during EMT. Moreover, the Dicer1e protein was observed to predominantly localize in the nucleus. 5′/3′-RACE analyses confirmed the presence of the Dicer1e transcript and silencing of Dicer1e impaired both cancer cell proliferation and clonogenicity by inducing either apoptosis and/or G2/M cell cycle arrest. Lastly, Dicer1e knockdown enhanced the chemosensitivity of oral cancer cells to cisplatin. Conclusion The expression levels of Dicer1e influence the pathogenesis of oral cancer cells and alter their response to chemosensitivity, thus supporting the importance of Dicer1e as a therapeutic target for OSCCs. Electronic supplementary material The online version of this article (doi:10.1186/1476-4598-13-190) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Andrew Jakymiw
- Department of Oral Health Sciences and Center for Oral Health Research, Hollings Cancer Center, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA.
| |
Collapse
|
192
|
Ryazansky SS, Mikhaleva EA, Olenkina OV. Essential functions of microRNAs in animal reproductive organs. Mol Biol 2014. [DOI: 10.1134/s0026893314030182] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
193
|
Abstract
Xanthomonas phytopathogenic bacteria produce unique transcription activator-like effector (TALE) proteins that recognize and activate specific plant promoters through a set of tandem repeats. A unique TALE-DNA-binding code uses two polymorphic amino acids in each repeat to mediate recognition of specific nucleotides. The order of repeats determines effector’s specificity toward the cognate nucleotide sequence of the sense DNA strand. Artificially designed TALE-DNA-binding domains fused to nuclease or activation and repressor domains provide an outstanding toolbox for targeted gene editing and gene regulation in research, biotechnology and gene therapy. Gene editing with custom-designed TALE nucleases (TALENs) extends the repertoire of targeted genome modifications across a broad spectrum of organisms ranging from plants and insect to mammals.
Collapse
|
194
|
Bogerd HP, Whisnant AW, Kennedy EM, Flores O, Cullen BR. Derivation and characterization of Dicer- and microRNA-deficient human cells. RNA (NEW YORK, N.Y.) 2014; 20:923-37. [PMID: 24757167 PMCID: PMC4024645 DOI: 10.1261/rna.044545.114] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
We have used genome editing to generate inactivating deletion mutations in all three copies of the dicer (hdcr) gene present in the human cell line 293T. As previously shown in murine ES cells lacking Dicer function, hDcr-deficient 293T cells are severely impaired for the production of mature microRNAs (miRNAs). Nevertheless, RNA-induced silencing complexes (RISCs) present in these hDcr-deficient cells are readily programmed by transfected, synthetic miRNA duplexes to repress mRNAs bearing either fully or partially complementary targets, including targets bearing incomplete seed homology to the introduced miRNA. Using these hDcr-deficient 293T cells, we demonstrate that human pre-miRNA processing can be effectively rescued by ectopic expression of the Drosophila Dicer 1 protein, but only in the presence of the PB isoform of Loquacious (Loqs-PB), the fly homolog of the hDcr cofactor TRBP. In contrast, Drosophila Dicer 2, even in the presence of its cofactors Loqs-PD and R2D2, was unable to support human pre-miRNA processing. Interestingly, although ectopic Drosophila Dicer 1/Loqs-PB or hDcr both rescued pre-miRNA processing effectively in these hDcr-deficient cells, there were significant differences in the ratio of the miRNA isoforms that were produced, especially in the case of miR-30 family members, and we also noted differences in the relative expression level of miRNAs vs. passenger strands for a subset of human miRNAs. These data demonstrate that the mechanisms underlying the accurate processing of pre-miRNAs are largely, but not entirely, conserved between mammalian and insect cells.
Collapse
|
195
|
Gantier MP. Processing of Double-Stranded RNA in Mammalian Cells: A Direct Antiviral Role? J Interferon Cytokine Res 2014; 34:469-77. [DOI: 10.1089/jir.2014.0003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- Michael P. Gantier
- Centre for Cancer Research, MIMR-PHI Institute of Medical Research, Clayton, Australia
- Department of Molecular and Translational Sciences, Monash University, Clayton, Australia
| |
Collapse
|
196
|
Svoboda P. Renaissance of mammalian endogenous RNAi. FEBS Lett 2014; 588:2550-6. [DOI: 10.1016/j.febslet.2014.05.030] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2014] [Revised: 05/16/2014] [Accepted: 05/19/2014] [Indexed: 01/03/2023]
|
197
|
Jee D, Lai EC. Alteration of miRNA activity via context-specific modifications of Argonaute proteins. Trends Cell Biol 2014; 24:546-53. [PMID: 24865524 DOI: 10.1016/j.tcb.2014.04.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 04/22/2014] [Accepted: 04/23/2014] [Indexed: 12/12/2022]
Abstract
miRNAs are enclosed within Argonaute (Ago) proteins, the downstream effectors of small RNA-mediated gene silencing. Because miRNAs mediate extensive networks of post-transcriptional control, cells have evolved multiple strategies to control their activity with precision. A growing theme of recent years is how post-translational modifications of Ago proteins, such as prolyl hydroxylation, phosphorylation, ubiquitination, and poly-ADP-ribosylation, alter miRNA activity at global or specific levels. In this review, we discuss recent advances in Ago modifications in mammalian cells and emphasize how such alterations modulate small RNA function to coordinate appropriate downstream cellular responses. These findings provide a framework to understand how Ago protein modifications are linked to reorganization of post-transcriptional regulatory networks, enabling dynamic responses to diverse external stimuli and changing environmental conditions.
Collapse
Affiliation(s)
- David Jee
- Department of Developmental Biology, Sloan-Kettering Institute, 1275 York Ave, Box 252, New York, NY 10065, USA; Program in Biochemistry, Cell and Molecular Biology, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
| | - Eric C Lai
- Department of Developmental Biology, Sloan-Kettering Institute, 1275 York Ave, Box 252, New York, NY 10065, USA.
| |
Collapse
|
198
|
Flemr M, Moravec M, Libova V, Sedlacek R, Svoboda P. Lin28a is dormant, functional, and dispensable during mouse oocyte-to-embryo transition. Biol Reprod 2014; 90:131. [PMID: 24829024 DOI: 10.1095/biolreprod.114.118703] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The oocyte-to-embryo transition (OET) denotes transformation of a highly differentiated oocyte into totipotent blastomeres of the early mammalian embryo. OET depends exclusively on maternal RNAs and proteins accumulated during oocyte growth, which implies importance of post-transcriptional control of gene expression. OET includes replacement of abundant maternal microRNAs (miRNAs), enriched also in differentiated cells and exemplified by the Let-7 family, with embryonic miRNAs common in pluripotent stem cells (the miR-290 family in the mouse). Lin28a and its homolog Lin28b encode RNA-binding proteins, which interfere with Let-7 maturation and facilitate reprogramming of induced pluripotent stem cells. Both Lin28a and Lin28b transcripts are abundant in mouse oocytes. To test the role of maternal expression of Lin28a and Lin28b during oocyte-to-zygote reprogramming, we generated mice with oocyte-specific knockdown of both genes by using transgenic RNA interference. Lin28a and Lin28b are dispensable during oocyte growth because their knockdown has no effect on Let-7a levels in fully grown germinal vesicle (GV)-intact oocytes. Furthermore, transgenic females were fertile and produced healthy offspring, and their overall breeding performance was comparable to that of wild-type mice. At the same time, 2-cell embryos derived from transgenic females showed up-regulation of mature Let-7, suggesting that maternally provided LIN28A and LIN28B function during zygotic genome activation. Consistent with this conclusion is increased translation of Lin28a transcripts upon resumption of meiosis. Our data imply dual repression of Let-7 during OET in the mouse model, the selective suppression of Let-7 biogenesis by Lin28 homologs superimposed on previously reported global suppression of miRNA activity.
Collapse
Affiliation(s)
- Matyas Flemr
- Institute of Molecular Genetics of the Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Martin Moravec
- Institute of Molecular Genetics of the Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Veronika Libova
- Institute of Molecular Genetics of the Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Radislav Sedlacek
- Institute of Molecular Genetics of the Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Petr Svoboda
- Institute of Molecular Genetics of the Academy of Sciences of the Czech Republic, Prague, Czech Republic
| |
Collapse
|
199
|
Shapiro JS, Schmid S, Aguado LC, Sabin LR, Yasunaga A, Shim JV, Sachs D, Cherry S, tenOever BR. Drosha as an interferon-independent antiviral factor. Proc Natl Acad Sci U S A 2014; 111:7108-13. [PMID: 24778219 PMCID: PMC4024876 DOI: 10.1073/pnas.1319635111] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Utilization of antiviral small interfering RNAs is thought to be largely restricted to plants, nematodes, and arthropods. In an effort to determine whether a physiological interplay exists between the host small RNA machinery and the cellular response to virus infection in mammals, we evaluated antiviral activity in the presence and absence of Dicer or Drosha, the RNase III nucleases responsible for generating small RNAs. Although loss of Dicer did not compromise the cellular response to virus infection, Drosha deletion resulted in a significant increase in virus levels. Here, we demonstrate that diverse RNA viruses trigger exportin 1 (XPO1/CRM1)-dependent Drosha translocation into the cytoplasm in a manner independent of de novo protein synthesis or the canonical type I IFN system. Additionally, increased virus infection in the absence of Drosha was not due to a loss of viral small RNAs but, instead, correlated with cleavage of viral genomic RNA and modulation of the host transcriptome. Taken together, we propose that Drosha represents a unique and conserved arm of the cellular defenses used to combat virus infection.
Collapse
Affiliation(s)
- Jillian S Shapiro
- Department of Microbiology,Icahn Graduate School of Biomedical Sciences, and
| | | | - Lauren C Aguado
- Department of Microbiology,Icahn Graduate School of Biomedical Sciences, and
| | - Leah R Sabin
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104
| | - Ari Yasunaga
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104
| | | | - David Sachs
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029; and
| | - Sara Cherry
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104
| | - Benjamin R tenOever
- Department of Microbiology,Icahn Graduate School of Biomedical Sciences, and
| |
Collapse
|
200
|
Replication of many human viruses is refractory to inhibition by endogenous cellular microRNAs. J Virol 2014; 88:8065-76. [PMID: 24807715 DOI: 10.1128/jvi.00985-14] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The issue of whether viruses are subject to restriction by endogenous microRNAs (miRNAs) and/or by virus-induced small interfering RNAs (siRNAs) in infected human somatic cells has been controversial. Here, we address this question in two ways. First, using deep sequencing, we demonstrate that infection of human cells by the RNA virus dengue virus (DENV) or West Nile virus (WNV) does not result in the production of any virus-derived siRNAs or viral miRNAs. Second, to more globally assess the potential of small regulatory RNAs to inhibit virus replication, we used gene editing to derive human cell lines that lack a functional Dicer enzyme and that therefore are unable to produce miRNAs or siRNAs. Infection of these cells with a wide range of viruses, including DENV, WNV, yellow fever virus, Sindbis virus, Venezuelan equine encephalitis virus, measles virus, influenza A virus, reovirus, vesicular stomatitis virus, human immunodeficiency virus type 1, or herpes simplex virus 1 (HSV-1), failed to reveal any enhancement in the replication of any of these viruses, although HSV-1, which encodes at least eight Dicer-dependent viral miRNAs, did replicate somewhat more slowly in the absence of Dicer. We conclude that most, and perhaps all, human viruses have evolved to be resistant to inhibition by endogenous human miRNAs during productive replication and that dependence on a cellular miRNA, as seen with hepatitis C virus, is rare. How viruses have evolved to avoid inhibition by endogenous cellular miRNAs, which are generally highly conserved during metazoan evolution, remains to be determined. Importance: Eukaryotic cells express a wide range of small regulatory RNAs, including miRNAs, that have the potential to inhibit the expression of mRNAs that show sequence complementarity. Indeed, previous work has suggested that endogenous miRNAs have the potential to inhibit viral gene expression and replication. Here, we demonstrate that the replication of a wide range of pathogenic viruses is not enhanced in human cells engineered to be unable to produce miRNAs, indicating that viruses have evolved to be resistant to inhibition by miRNAs. This result is important, as it implies that manipulation of miRNA levels is not likely to prove useful in inhibiting virus replication. It also focuses attention on the question of how viruses have evolved to resist inhibition by miRNAs and whether virus mutants that have lost this resistance might prove useful, for example, in the development of attenuated virus vaccines.
Collapse
|