151
|
|
152
|
Yang M, Lewis F, Foley G, Crawley JN. In tribute to Bob Blanchard: Divergent behavioral phenotypes of 16p11.2 deletion mice reared in same-genotype versus mixed-genotype cages. Physiol Behav 2016; 146:16-27. [PMID: 26066718 DOI: 10.1016/j.physbeh.2015.04.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 04/08/2015] [Accepted: 04/11/2015] [Indexed: 01/19/2023]
Abstract
Mouse models offer indispensable heuristic tools for studying genetic and environmental causes of neuropsychiatric disorders, including autism. Development of useful animal models of complex human behaviors depends not only on extensive knowledge of the human disease, but also on a deep understanding of animal behavior and ethology. Robert and Caroline Blanchard pioneered a number of elegant social paradigms in rodents. Their early work led to systematic delineations of rodent naturalist defensive behaviors,which were proven to be highly useful models of human psychiatric disorders, including fear and anxiety. Their work using the Visible Burrow System to study social stress in rats represented an unprecedented approach to study biological mechanisms of depression. In recent years, their extensive knowledge of mouse behavior and ethology enabled them to quickly become leading figures in the field of behavioral genetics of autism. To commemorate Robert Blanchard's influences on animal models of human psychiatric disorders, here we describe a study conceptualized and led by Mu Yang who was trained as a graduate student in the Blanchard laboratory in the early 2000s. This investigation focuses on social housing in a genetic mouse model of 16p11.2 deletion syndrome. Heterozygous deletions and duplications of a segment containing about 29 genes on human chromosome 16 appear in approximately 0.5–1% of all cases of autism. 16p11.2 deletion syndrome is also associated with intellectual disabilities and speech impairments. Our previous studies showed that a mouse model of 16p11.2 deletion syndrome exhibited deficits in vocalizations and novel object recognition, as compared to wildtype littermate control cagemates. In the spirit of Bob Blanchard's careful attention to the role of social dominance in rodent behaviors, we became interested in the question of whether behavioral outcomes of a mutation differ when mutants are housed in mixed genotype cages, versus housing only mutants together in one group cage, and only wildtype littermates together in another group cage after weaning. 16p11.2 deletion presented a particularly good model organism to investigate this question, because the heterozygotes are smaller than their wildtype littermates, and may therefore become subordinate to their larger cagemates.Wildtype and heterozygotes were housed with cagemates of the same genotype (same-genotype cage) or with cagemates of the opposite genotype (mixed-genotype cage). Current results replicated social vocalization and object recognition deficits that we previously found in heterozygotes living in mixed-genotype cages. In contrast, heterozygotes that lived in same-genotype cages emitted normal numbers of vocalizations during male–female interactions, and displayed normal novel object recognition, indicating that the deletion per se was not sufficient to cause cognitive or social deficits. Social approach, same-sex social interaction, anxiety-related behavior, depression-related behavior, and open field exploration were not different between genotypes, and were not affected by housing in mixed versus in same-genotype cages. These findings suggest that elements of the home cage social environment could interact with genotype to impact aspects of disease phenotypes. Current findings are discussed as potentially reflecting behavioral deficits resulted from social stress, as inspired by a seminal paper by Bob and Caroline Blanchard [1].
Collapse
|
153
|
Arbogast T, Ouagazzal AM, Chevalier C, Kopanitsa M, Afinowi N, Migliavacca E, Cowling BS, Birling MC, Champy MF, Reymond A, Herault Y. Reciprocal Effects on Neurocognitive and Metabolic Phenotypes in Mouse Models of 16p11.2 Deletion and Duplication Syndromes. PLoS Genet 2016; 12:e1005709. [PMID: 26872257 PMCID: PMC4752317 DOI: 10.1371/journal.pgen.1005709] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 11/06/2015] [Indexed: 11/18/2022] Open
Abstract
The 16p11.2 600 kb BP4-BP5 deletion and duplication syndromes have been associated with developmental delay; autism spectrum disorders; and reciprocal effects on the body mass index, head circumference and brain volumes. Here, we explored these relationships using novel engineered mouse models carrying a deletion (Del/+) or a duplication (Dup/+) of the Sult1a1-Spn region homologous to the human 16p11.2 BP4-BP5 locus. On a C57BL/6N inbred genetic background, Del/+ mice exhibited reduced weight and impaired adipogenesis, hyperactivity, repetitive behaviors, and recognition memory deficits. In contrast, Dup/+ mice showed largely opposite phenotypes. On a F1 C57BL/6N × C3B hybrid genetic background, we also observed alterations in social interaction in the Del/+ and the Dup/+ animals, with other robust phenotypes affecting recognition memory and weight. To explore the dosage effect of the 16p11.2 genes on metabolism, Del/+ and Dup/+ models were challenged with high fat and high sugar diet, which revealed opposite energy imbalance. Transcriptomic analysis revealed that the majority of the genes located in the Sult1a1-Spn region were sensitive to dosage with a major effect on several pathways associated with neurocognitive and metabolic phenotypes. Whereas the behavioral consequence of the 16p11 region genetic dosage was similar in mice and humans with activity and memory alterations, the metabolic defects were opposite: adult Del/+ mice are lean in comparison to the human obese phenotype and the Dup/+ mice are overweight in comparison to the human underweight phenotype. Together, these data indicate that the dosage imbalance at the 16p11.2 locus perturbs the expression of modifiers outside the CNV that can modulate the penetrance, expressivity and direction of effects in both humans and mice.
Collapse
Affiliation(s)
- Thomas Arbogast
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
- Université de Strasbourg, Illkirch, France
| | - Abdel-Mouttalib Ouagazzal
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
- Université de Strasbourg, Illkirch, France
| | - Claire Chevalier
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
- Université de Strasbourg, Illkirch, France
| | - Maksym Kopanitsa
- Synome Ltd, Moneta Building, Babraham Research Campus, Cambridge, United Kingdom
| | - Nurudeen Afinowi
- Synome Ltd, Moneta Building, Babraham Research Campus, Cambridge, United Kingdom
| | - Eugenia Migliavacca
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Belinda S. Cowling
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
- Université de Strasbourg, Illkirch, France
| | - Marie-Christine Birling
- PHENOMIN, Institut Clinique de la Souris, ICS; CNRS, INSERM, University of Strasbourg, Illkirch-Graffenstaden, France
| | - Marie-France Champy
- PHENOMIN, Institut Clinique de la Souris, ICS; CNRS, INSERM, University of Strasbourg, Illkirch-Graffenstaden, France
| | - Alexandre Reymond
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Yann Herault
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
- Université de Strasbourg, Illkirch, France
- PHENOMIN, Institut Clinique de la Souris, ICS; CNRS, INSERM, University of Strasbourg, Illkirch-Graffenstaden, France
- * E-mail:
| |
Collapse
|
154
|
Fuccillo MV. Striatal Circuits as a Common Node for Autism Pathophysiology. Front Neurosci 2016; 10:27. [PMID: 26903795 PMCID: PMC4746330 DOI: 10.3389/fnins.2016.00027] [Citation(s) in RCA: 187] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 01/22/2016] [Indexed: 12/17/2022] Open
Abstract
Autism spectrum disorders (ASD) are characterized by two seemingly unrelated symptom domains-deficits in social interactions and restrictive, repetitive patterns of behavioral output. Whether the diverse nature of ASD symptomatology represents distributed dysfunction of brain networks or abnormalities within specific neural circuits is unclear. Striatal dysfunction is postulated to underlie the repetitive motor behaviors seen in ASD, and neurological and brain-imaging studies have supported this assumption. However, as our appreciation of striatal function expands to include regulation of behavioral flexibility, motivational state, goal-directed learning, and attention, we consider whether alterations in striatal physiology are a central node mediating a range of autism-associated behaviors, including social and cognitive deficits that are hallmarks of the disease. This review investigates multiple genetic mouse models of ASD to explore whether abnormalities in striatal circuits constitute a common pathophysiological mechanism in the development of autism-related behaviors. Despite the heterogeneity of genetic insult investigated, numerous genetic ASD models display alterations in the structure and function of striatal circuits, as well as abnormal behaviors including repetitive grooming, stereotypic motor routines, deficits in social interaction and decision-making. Comparative analysis in rodents provides a unique opportunity to leverage growing genetic association data to reveal canonical neural circuits whose dysfunction directly contributes to discrete aspects of ASD symptomatology. The description of such circuits could provide both organizing principles for understanding the complex genetic etiology of ASD as well as novel treatment routes. Furthermore, this focus on striatal mechanisms of behavioral regulation may also prove useful for exploring the pathogenesis of other neuropsychiatric diseases, which display overlapping behavioral deficits with ASD.
Collapse
Affiliation(s)
- Marc V. Fuccillo
- Department of Neuroscience, Perelman School of Medicine, University of PennsylvaniaPhiladelphia, PA, USA
| |
Collapse
|
155
|
Rothwell PE. Autism Spectrum Disorders and Drug Addiction: Common Pathways, Common Molecules, Distinct Disorders? Front Neurosci 2016; 10:20. [PMID: 26903789 PMCID: PMC4742554 DOI: 10.3389/fnins.2016.00020] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 01/15/2016] [Indexed: 11/17/2022] Open
Abstract
Autism spectrum disorders (ASDs) and drug addiction do not share substantial comorbidity or obvious similarities in etiology or symptomatology. It is thus surprising that a number of recent studies implicate overlapping neural circuits and molecular signaling pathways in both disorders. The purpose of this review is to highlight this emerging intersection and consider implications for understanding the pathophysiology of these seemingly distinct disorders. One area of overlap involves neural circuits and neuromodulatory systems in the striatum and basal ganglia, which play an established role in addiction and reward but are increasingly implicated in clinical and preclinical studies of ASDs. A second area of overlap relates to molecules like Fragile X mental retardation protein (FMRP) and methyl CpG-binding protein-2 (MECP2), which are best known for their contribution to the pathogenesis of syndromic ASDs, but have recently been shown to regulate behavioral and neurobiological responses to addictive drug exposure. These shared pathways and molecules point to common dimensions of behavioral dysfunction, including the repetition of behavioral patterns and aberrant reward processing. The synthesis of knowledge gained through parallel investigations of ASDs and addiction may inspire the design of new therapeutic interventions to correct common elements of striatal dysfunction.
Collapse
Affiliation(s)
- Patrick E Rothwell
- Department of Neuroscience, University of Minnesota Minneapolis, MN, USA
| |
Collapse
|
156
|
Kim H, Lim CS, Kaang BK. Neuronal mechanisms and circuits underlying repetitive behaviors in mouse models of autism spectrum disorder. Behav Brain Funct 2016; 12:3. [PMID: 26790724 PMCID: PMC4719705 DOI: 10.1186/s12993-016-0087-y] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 01/05/2016] [Indexed: 12/30/2022] Open
Abstract
Autism spectrum disorder (ASD) refers to a broad spectrum of neurodevelopmental disorders characterized by three central behavioral symptoms: impaired social interaction, impaired social communication, and restricted and repetitive behaviors. However, the symptoms are heterogeneous among patients and a number of ASD mouse models have been generated containing mutations that mimic the mutations found in human patients with ASD. Each mouse model was found to display a unique set of repetitive behaviors. In this review, we summarize the repetitive behaviors of the ASD mouse models and variations found in their neural mechanisms including molecular and electrophysiological features. We also propose potential neuronal mechanisms underlying these repetitive behaviors, focusing on the role of the cortico-basal ganglia-thalamic circuits and brain regions associated with both social and repetitive behaviors. Further understanding of molecular and circuitry mechanisms of the repetitive behaviors associated with ASD is necessary to aid the development of effective treatments for these disorders.
Collapse
Affiliation(s)
- Hyopil Kim
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, 1 Gwanangno, Gwanak-gu, Seoul, 08826, South Korea.
| | - Chae-Seok Lim
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, 1 Gwanangno, Gwanak-gu, Seoul, 08826, South Korea.
| | - Bong-Kiun Kaang
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, 1 Gwanangno, Gwanak-gu, Seoul, 08826, South Korea.
| |
Collapse
|
157
|
Kazdoba TM, Leach PT, Yang M, Silverman JL, Solomon M, Crawley JN. Translational Mouse Models of Autism: Advancing Toward Pharmacological Therapeutics. Curr Top Behav Neurosci 2016; 28:1-52. [PMID: 27305922 PMCID: PMC5116923 DOI: 10.1007/7854_2015_5003] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Animal models provide preclinical tools to investigate the causal role of genetic mutations and environmental factors in the etiology of autism spectrum disorder (ASD). Knockout and humanized knock-in mice, and more recently knockout rats, have been generated for many of the de novo single gene mutations and copy number variants (CNVs) detected in ASD and comorbid neurodevelopmental disorders. Mouse models incorporating genetic and environmental manipulations have been employed for preclinical testing of hypothesis-driven pharmacological targets, to begin to develop treatments for the diagnostic and associated symptoms of autism. In this review, we summarize rodent behavioral assays relevant to the core features of autism, preclinical and clinical evaluations of pharmacological interventions, and strategies to improve the translational value of rodent models of autism.
Collapse
Affiliation(s)
- Tatiana M Kazdoba
- MIND Institute, Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Room 1001A Research 2 Building 96, 4625 2nd Avenue, Sacramento, CA 95817, USA
| | - Prescott T Leach
- MIND Institute, Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Room 1001A Research 2 Building 96, 4625 2nd Avenue, Sacramento, CA 95817, USA
| | - Mu Yang
- MIND Institute, Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Room 1001A Research 2 Building 96, 4625 2nd Avenue, Sacramento, CA 95817, USA
| | - Jill L Silverman
- MIND Institute, Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Room 1001A Research 2 Building 96, 4625 2nd Avenue, Sacramento, CA 95817, USA
| | - Marjorie Solomon
- MIND Institute, Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Room 1001A Research 2 Building 96, 4625 2nd Avenue, Sacramento, CA 95817, USA
| | - Jacqueline N Crawley
- MIND Institute, Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Room 1001A Research 2 Building 96, 4625 2nd Avenue, Sacramento, CA 95817, USA.
| |
Collapse
|
158
|
Kalueff AV, Stewart AM, Song C, Berridge KC, Graybiel AM, Fentress JC. Neurobiology of rodent self-grooming and its value for translational neuroscience. Nat Rev Neurosci 2015; 17:45-59. [PMID: 26675822 DOI: 10.1038/nrn.2015.8] [Citation(s) in RCA: 522] [Impact Index Per Article: 52.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Self-grooming is a complex innate behaviour with an evolutionarily conserved sequencing pattern and is one of the most frequently performed behavioural activities in rodents. In this Review, we discuss the neurobiology of rodent self-grooming, and we highlight studies of rodent models of neuropsychiatric disorders--including models of autism spectrum disorder and obsessive compulsive disorder--that have assessed self-grooming phenotypes. We suggest that rodent self-grooming may be a useful measure of repetitive behaviour in such models, and therefore of value to translational psychiatry. Assessment of rodent self-grooming may also be useful for understanding the neural circuits that are involved in complex sequential patterns of action.
Collapse
Affiliation(s)
- Allan V Kalueff
- Research Institute of Marine Drugs and Nutrition, Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China.,Neuroscience Research Laboratory, ZENEREI Research Center, Slidell, Louisiana 70458, USA.,Institute of Translational Biomedicine, St Petersburg State University, St Petersburg 199034, Russia.,Institutes of Chemical Technologies and Natural Sciences, Ural Federal University, Ekaterinburg 620002, Russia
| | - Adam Michael Stewart
- Neuroscience Research Laboratory, ZENEREI Research Center, Slidell, Louisiana 70458, USA
| | - Cai Song
- Research Institute of Marine Drugs and Nutrition, Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China.,Department of Psychology and Neuroscience, Dalhousie University, 1355 Oxford St, Life Sciences Centre, Halifax, Nova Scotia B3H4R2, Canada.,Graduate Institute of Neural Cognitive Science, China Medical University, Taichung 000001, Taiwan
| | - Kent C Berridge
- Department of Psychology, University of Michigan, 525E University Str, Ann Arbor, Michigan 48109, USA
| | - Ann M Graybiel
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, Massachusetts 02139, USA
| | - John C Fentress
- Department of Psychology and Neuroscience, Dalhousie University, 1355 Oxford St, Life Sciences Centre, Halifax, Nova Scotia B3H4R2, Canada
| |
Collapse
|
159
|
Abstract
PURPOSE OF REVIEW This review discusses the ways that rodent models of autism spectrum disorders (ASDs) have been used to gain critical information about convergent molecular pathways, the mechanisms underlying altered microcircuit structure and function, and as a screen for potential cutting edge-treatments for ASDs. RECENT FINDINGS There is convergent evidence that impaired developmental pruning of connections may be a common finding among several mouse models of ASDs. Recent studies have uncovered impaired autophagy by pathological mTOR activation as a potential contributor to microcircuit dysfunction and behavior. ASD-related disinhibition and exaggerated synaptic plasticity in multiple distinct circuits in cortex and reward circuits in striatum also contribute to social dysfunction and repetitive behaviors. New exciting molecular therapeutic techniques have reversed cognitive deficits in models of ASD, indicating that mouse models could be used for preclinical translational studies of new treatments. SUMMARY Rodent models of ASDs coupled to new emerging technologies for genome editing, cell-specific functional and structural imaging, and neuronal activity manipulation will yield critical insights into ASD pathogenesis and fuel the emergence of new treatments.
Collapse
|
160
|
Maillard AM, Hippolyte L, Rodriguez-Herreros B, Chawner SJRA, Dremmel D, Agüera Z, Fagundo AB, Pain A, Martin-Brevet S, Hilbert A, Kurz S, Etienne R, Draganski B, Jimenez-Murcia S, Männik K, Metspalu A, Reigo A, Isidor B, Le Caignec C, David A, Mignot C, Keren B, van den Bree MBM, Munsch S, Fernandez-Aranda F, Beckmann JS, Reymond A, Jacquemont S. 16p11.2 Locus modulates response to satiety before the onset of obesity. Int J Obes (Lond) 2015; 40:870-6. [PMID: 26620891 DOI: 10.1038/ijo.2015.247] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 11/06/2015] [Accepted: 11/16/2015] [Indexed: 01/01/2023]
Abstract
BACKGROUND The 600 kb BP4-BP5 copy number variants (CNVs) at the 16p11.2 locus have been associated with a range of neurodevelopmental conditions including autism spectrum disorders and schizophrenia. The number of genomic copies in this region is inversely correlated with body mass index (BMI): the deletion is associated with a highly penetrant form of obesity (present in 50% of carriers by the age of 7 years and in 70% of adults), and the duplication with being underweight. Mechanisms underlying this energy imbalance remain unknown. OBJECTIVE This study aims to investigate eating behavior, cognitive traits and their relationships with BMI in carriers of 16p11.2 CNVs. METHODS We assessed individuals carrying a 16p11.2 deletion or duplication and their intrafamilial controls using food-related behavior questionnaires and cognitive measures. We also compared these carriers with cohorts of individuals presenting with obesity, binge eating disorder or bulimia. RESULTS Response to satiety is gene dosage-dependent in pediatric CNV carriers. Altered satiety response is present in young deletion carriers before the onset of obesity. It remains altered in adolescent carriers and correlates with obesity. Adult deletion carriers exhibit eating behavior similar to that seen in a cohort of obesity without eating disorders such as bulimia or binge eating. None of the cognitive measures are associated with eating behavior or BMI. CONCLUSIONS These findings suggest that abnormal satiety response is a strong contributor to the energy imbalance in 16p11.2 CNV carriers, and, akin to other genetic forms of obesity, altered satiety responsiveness in children precedes the increase in BMI observed later in adolescence.
Collapse
Affiliation(s)
- A M Maillard
- Service de Génétique Médicale, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - L Hippolyte
- Service de Génétique Médicale, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - B Rodriguez-Herreros
- Service de Génétique Médicale, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland.,LREN-Département des Neurosciences Cliniques, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - S J R A Chawner
- MRC Centre for Neuropsychiatric Genetics and Genomics, Institute of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - D Dremmel
- Department of Psychology, Clinical Psychology and Psychotherapy, University of Fribourg, Fribourg, Switzerland
| | - Z Agüera
- CIBER Fisiopatologia Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III, Barcelona, Spain.,Department of Psychiatry, Bellvitge University Hospital-IDIBELL, Barcelona, Spain
| | - A B Fagundo
- CIBER Fisiopatologia Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III, Barcelona, Spain.,Department of Psychiatry, Bellvitge University Hospital-IDIBELL, Barcelona, Spain
| | - A Pain
- Service de Génétique Médicale, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - S Martin-Brevet
- Service de Génétique Médicale, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland.,LREN-Département des Neurosciences Cliniques, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - A Hilbert
- Integrated Research and Treatment Center Adiposity Diseases, Department of Medical Psychology and Medical SocCiology, University of Leipzig Medical Center, Leipzig, Germany
| | - S Kurz
- Department of Psychology, Clinical Psychology and Psychotherapy, University of Fribourg, Fribourg, Switzerland
| | - R Etienne
- Service de Génétique Médicale, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - B Draganski
- LREN-Département des Neurosciences Cliniques, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland.,Department of Neurology, Max-Planck Institute for Human Cognitive and Brain Science, Leipzig, Germany
| | - S Jimenez-Murcia
- CIBER Fisiopatologia Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III, Barcelona, Spain.,Department of Psychiatry, Bellvitge University Hospital-IDIBELL, Barcelona, Spain.,Clinical Sciences Department, School of Medicine, Barcelona, Spain
| | - K Männik
- Estonian Genome Center, Tartu University Hospital, Tartu, Estonia.,Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - A Metspalu
- Estonian Genome Center, Tartu University Hospital, Tartu, Estonia
| | - A Reigo
- Estonian Genome Center, Tartu University Hospital, Tartu, Estonia
| | - B Isidor
- Service de Génétique Médicale, CHU-Nantes, Nantes, France
| | - C Le Caignec
- Service de Génétique Médicale, CHU-Nantes, Nantes, France.,INSERM UMR957, Faculté de Médecine, Nantes, France
| | - A David
- Service de Génétique Médicale, CHU-Nantes, Nantes, France
| | - C Mignot
- AP-HP, Hôpital Pitié-Salpêtrière, Département de Génétique et de Cytogénétique, Unité Fonctionnelle de Génétique Clinique, Paris, France.,Centre de Référence Déficiences Intellectuelles de Causes Rares, Paris, France.,Groupe de Recherche Clinique Déficience Intellectuelle et Autisme, UPMC, Paris, France
| | - B Keren
- Groupe Hospitalier Pitié Salpêtrière, AP-HP, Department of Genetics and Cytogenetics, Paris, France
| | | | - M B M van den Bree
- MRC Centre for Neuropsychiatric Genetics and Genomics, Institute of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - S Munsch
- Department of Psychology, Clinical Psychology and Psychotherapy, University of Fribourg, Fribourg, Switzerland
| | - F Fernandez-Aranda
- CIBER Fisiopatologia Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III, Barcelona, Spain.,Department of Psychiatry, Bellvitge University Hospital-IDIBELL, Barcelona, Spain.,Clinical Sciences Department, School of Medicine, Barcelona, Spain
| | - J S Beckmann
- Service de Génétique Médicale, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland.,SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - A Reymond
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - S Jacquemont
- Service de Génétique Médicale, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
161
|
Yang M, Lewis FC, Sarvi MS, Foley GM, Crawley JN. 16p11.2 Deletion mice display cognitive deficits in touchscreen learning and novelty recognition tasks. Learn Mem 2015; 22:622-32. [PMID: 26572653 PMCID: PMC4749736 DOI: 10.1101/lm.039602.115] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 09/28/2015] [Indexed: 01/25/2023]
Abstract
Chromosomal 16p11.2 deletion syndrome frequently presents with intellectual disabilities, speech delays, and autism. Here we investigated the Dolmetsch line of 16p11.2 heterozygous (+/−) mice on a range of cognitive tasks with different neuroanatomical substrates. Robust novel object recognition deficits were replicated in two cohorts of 16p11.2+/− mice, confirming previous findings. A similarly robust deficit in object location memory was discovered in +/−, indicating impaired spatial novelty recognition. Generalizability of novelty recognition deficits in +/− mice extended to preference for social novelty. Robust learning deficits and cognitive inflexibility were detected using Bussey–Saksida touchscreen operant chambers. During acquisition of pairwise visual discrimination, +/− mice required significantly more training trials to reach criterion than wild-type littermates (+/+), and made more errors and correction errors than +/+. In the reversal phase, all +/+ reached criterion, whereas most +/− failed to reach criterion by the 30-d cutoff. Contextual and cued fear conditioning were normal in +/−. These cognitive phenotypes may be relevant to some aspects of cognitive impairments in humans with 16p11.2 deletion, and support the use of 16p11.2+/− mice as a model system for discovering treatments for cognitive impairments in 16p11.2 deletion syndrome.
Collapse
Affiliation(s)
- Mu Yang
- Department of Psychiatry and Behavioral Sciences, MIND Institute, University of California Davis School of Medicine, Sacramento, California 95817, USA
| | - Freeman C Lewis
- Department of Psychiatry and Behavioral Sciences, MIND Institute, University of California Davis School of Medicine, Sacramento, California 95817, USA
| | - Michael S Sarvi
- Department of Psychiatry and Behavioral Sciences, MIND Institute, University of California Davis School of Medicine, Sacramento, California 95817, USA
| | - Gillian M Foley
- Department of Psychiatry and Behavioral Sciences, MIND Institute, University of California Davis School of Medicine, Sacramento, California 95817, USA
| | - Jacqueline N Crawley
- Department of Psychiatry and Behavioral Sciences, MIND Institute, University of California Davis School of Medicine, Sacramento, California 95817, USA
| |
Collapse
|
162
|
Subramanian M, Timmerman CK, Schwartz JL, Pham DL, Meffert MK. Characterizing autism spectrum disorders by key biochemical pathways. Front Neurosci 2015; 9:313. [PMID: 26483618 PMCID: PMC4586332 DOI: 10.3389/fnins.2015.00313] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 08/20/2015] [Indexed: 12/29/2022] Open
Abstract
The genetic and phenotypic heterogeneity of autism spectrum disorders (ASD) presents a substantial challenge for diagnosis, classification, research, and treatment. Investigations into the underlying molecular etiology of ASD have often yielded mixed and at times opposing findings. Defining the molecular and biochemical underpinnings of heterogeneity in ASD is crucial to our understanding of the pathophysiological development of the disorder, and has the potential to assist in diagnosis and the rational design of clinical trials. In this review, we propose that genetically diverse forms of ASD may be usefully parsed into entities resulting from converse patterns of growth regulation at the molecular level, which lead to the correlates of general synaptic and neural overgrowth or undergrowth. Abnormal brain growth during development is a characteristic feature that has been observed both in children with autism and in mouse models of autism. We review evidence from syndromic and non-syndromic ASD to suggest that entities currently classified as autism may fundamentally differ by underlying pro- or anti-growth abnormalities in key biochemical pathways, giving rise to either excessive or reduced synaptic connectivity in affected brain regions. We posit that this classification strategy has the potential not only to aid research efforts, but also to ultimately facilitate early diagnosis and direct appropriate therapeutic interventions.
Collapse
Affiliation(s)
- Megha Subramanian
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine Baltimore, MD, USA
| | - Christina K Timmerman
- Department of Biological Chemistry, Johns Hopkins University School of Medicine Baltimore, MD, USA
| | - Joshua L Schwartz
- Department of Biological Chemistry, Johns Hopkins University School of Medicine Baltimore, MD, USA
| | - Daniel L Pham
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine Baltimore, MD, USA
| | - Mollie K Meffert
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine Baltimore, MD, USA ; Department of Biological Chemistry, Johns Hopkins University School of Medicine Baltimore, MD, USA
| |
Collapse
|
163
|
Abstract
Over 70 years since the first description of the disease, disrupted social behavior remains a core clinical feature of autistic spectrum disorder. The complex etiology of the disorder portends the need for a better understanding of the brain mechanisms that enable social behaviors, particularly those that are relevant to autism which is characterized by a failure to develop peer relationships, difficulty with emotional reciprocity and imitative play, and disrupted language and communication skills. Toward this end, the current review will examine recent progress that has been made toward understanding the neural mechanisms underlying consociate social attachments.
Collapse
Affiliation(s)
- Gül Dölen
- a Department of Neuroscience, Brain Science Institute, Wendy Klag Center for Autism and Developmental Disabilities , Johns Hopkins University , Baltimore , MD , USA
| |
Collapse
|
164
|
Poot M, Haaf T. Mechanisms of Origin, Phenotypic Effects and Diagnostic Implications of Complex Chromosome Rearrangements. Mol Syndromol 2015; 6:110-34. [PMID: 26732513 DOI: 10.1159/000438812] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/23/2015] [Indexed: 01/08/2023] Open
Abstract
Complex chromosome rearrangements (CCRs) are currently defined as structural genome variations that involve more than 2 chromosome breaks and result in exchanges of chromosomal segments. They are thought to be extremely rare, but their detection rate is rising because of improvements in molecular cytogenetic technology. Their population frequency is also underestimated, since many CCRs may not elicit a phenotypic effect. CCRs may be the result of fork stalling and template switching, microhomology-mediated break-induced repair, breakage-fusion-bridge cycles, or chromothripsis. Patients with chromosomal instability syndromes show elevated rates of CCRs due to impaired DNA double-strand break responses during meiosis. Therefore, the putative functions of the proteins encoded by ATM, BLM, WRN, ATR, MRE11, NBS1, and RAD51 in preventing CCRs are discussed. CCRs may exert a pathogenic effect by either (1) gene dosage-dependent mechanisms, e.g. haploinsufficiency, (2) mechanisms based on disruption of the genomic architecture, such that genes, parts of genes or regulatory elements are truncated, fused or relocated and thus their interactions disturbed - these mechanisms will predominantly affect gene expression - or (3) mixed mutation mechanisms in which a CCR on one chromosome is combined with a different type of mutation on the other chromosome. Such inferred mechanisms of pathogenicity need corroboration by mRNA sequencing. Also, future studies with in vitro models, such as inducible pluripotent stem cells from patients with CCRs, and transgenic model organisms should substantiate current inferences regarding putative pathogenic effects of CCRs. The ramifications of the growing body of information on CCRs for clinical and experimental genetics and future treatment modalities are briefly illustrated with 2 cases, one of which suggests KDM4C (JMJD2C) as a novel candidate gene for mental retardation.
Collapse
Affiliation(s)
- Martin Poot
- Department of Human Genetics, University of Würzburg, Würzburg, Germany
| | - Thomas Haaf
- Department of Human Genetics, University of Würzburg, Würzburg, Germany
| |
Collapse
|
165
|
Brunner D, Kabitzke P, He D, Cox K, Thiede L, Hanania T, Sabath E, Alexandrov V, Saxe M, Peles E, Mills A, Spooren W, Ghosh A, Feliciano P, Benedetti M, Luo Clayton A, Biemans B. Comprehensive Analysis of the 16p11.2 Deletion and Null Cntnap2 Mouse Models of Autism Spectrum Disorder. PLoS One 2015; 10:e0134572. [PMID: 26273832 PMCID: PMC4537259 DOI: 10.1371/journal.pone.0134572] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 07/10/2015] [Indexed: 01/12/2023] Open
Abstract
Autism spectrum disorder comprises several neurodevelopmental conditions presenting symptoms in social communication and restricted, repetitive behaviors. A major roadblock for drug development for autism is the lack of robust behavioral signatures predictive of clinical efficacy. To address this issue, we further characterized, in a uniform and rigorous way, mouse models of autism that are of interest because of their construct validity and wide availability to the scientific community. We implemented a broad behavioral battery that included but was not restricted to core autism domains, with the goal of identifying robust, reliable phenotypes amenable for further testing. Here we describe comprehensive findings from two known mouse models of autism, obtained at different developmental stages, using a systematic behavioral test battery combining standard tests as well as novel, quantitative, computer-vision based systems. The first mouse model recapitulates a deletion in human chromosome 16p11.2, found in 1% of individuals with autism. The second mouse model harbors homozygous null mutations in Cntnap2, associated with autism and Pitt-Hopkins-like syndrome. Consistent with previous results, 16p11.2 heterozygous null mice, also known as Del(7Slx1b-Sept1)4Aam weighed less than wild type littermates displayed hyperactivity and no social deficits. Cntnap2 homozygous null mice were also hyperactive, froze less during testing, showed a mild gait phenotype and deficits in the three-chamber social preference test, although less robust than previously published. In the open field test with exposure to urine of an estrous female, however, the Cntnap2 null mice showed reduced vocalizations. In addition, Cntnap2 null mice performed slightly better in a cognitive procedural learning test. Although finding and replicating robust behavioral phenotypes in animal models is a challenging task, such functional readouts remain important in the development of therapeutics and we anticipate both our positive and negative findings will be utilized as a resource for the broader scientific community.
Collapse
Affiliation(s)
- Daniela Brunner
- PsychoGenics, Inc., Tarrytown, NY, United States of America
- Department of Psychiatry, Columbia University, New York, NY, United States of America
- * E-mail:
| | - Patricia Kabitzke
- PsychoGenics, Inc., Tarrytown, NY, United States of America
- Department of Psychiatry, Columbia University, New York, NY, United States of America
| | - Dansha He
- PsychoGenics, Inc., Tarrytown, NY, United States of America
| | - Kimberly Cox
- PsychoGenics, Inc., Tarrytown, NY, United States of America
| | - Lucinda Thiede
- PsychoGenics, Inc., Tarrytown, NY, United States of America
| | - Taleen Hanania
- PsychoGenics, Inc., Tarrytown, NY, United States of America
| | - Emily Sabath
- PsychoGenics, Inc., Tarrytown, NY, United States of America
| | | | | | - Elior Peles
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Alea Mills
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, United States of America
| | | | | | - Pamela Feliciano
- Simons Foundation Autism Research Initiative, New York, NY, United States of America
| | - Marta Benedetti
- Simons Foundation Autism Research Initiative, New York, NY, United States of America
| | - Alice Luo Clayton
- Simons Foundation Autism Research Initiative, New York, NY, United States of America
| | | |
Collapse
|
166
|
Abstract
In order to understand the consequences of the mutation on behavioral and biological phenotypes relevant to autism, mutations in many of the risk genes for autism spectrum disorder have been experimentally generated in mice. Here, we summarize behavioral outcomes and neuroanatomical abnormalities, with a focus on high-resolution magnetic resonance imaging of postmortem mouse brains. Results are described from multiple mouse models of autism spectrum disorder and comorbid syndromes, including the 15q11-13, 16p11.2, 22q11.2, Cntnap2, Engrailed2, Fragile X, Integrinβ3, MET, Neurexin1a, Neuroligin3, Reelin, Rett, Shank3, Slc6a4, tuberous sclerosis, and Williams syndrome models, and inbred strains with strong autism-relevant behavioral phenotypes, including BTBR and BALB. Concomitant behavioral and neuroanatomical abnormalities can strengthen the interpretation of results from a mouse model, and may elevate the usefulness of the model system for therapeutic discovery.
Collapse
Affiliation(s)
- Jacob Ellegood
- />Mouse Imaging Centre (MICe), Hospital for Sick Children, 25 Orde Street, Toronto, ON M5T 3H7 Canada
| | - Jacqueline N. Crawley
- />MIND Institute and Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, 4625 2nd Avenue, Sacramento, CA 95817 USA
| |
Collapse
|
167
|
Dölen G. Oxytocin: parallel processing in the social brain? J Neuroendocrinol 2015; 27:516-35. [PMID: 25912257 DOI: 10.1111/jne.12284] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 03/29/2015] [Accepted: 04/07/2015] [Indexed: 12/31/2022]
Abstract
Early studies attempting to disentangle the network complexity of the brain exploited the accessibility of sensory receptive fields to reveal circuits made up of synapses connected both in series and in parallel. More recently, extension of this organisational principle beyond the sensory systems has been made possible by the advent of modern molecular, viral and optogenetic approaches. Here, evidence supporting parallel processing of social behaviours mediated by oxytocin is reviewed. Understanding oxytocinergic signalling from this perspective has significant implications for the design of oxytocin-based therapeutic interventions aimed at disorders such as autism, where disrupted social function is a core clinical feature. Moreover, identification of opportunities for novel technology development will require a better appreciation of the complexity of the circuit-level organisation of the social brain.
Collapse
Affiliation(s)
- Gül Dölen
- Department of Neuroscience, Brain Science Institute, Wendy Klag Center for Developmental Disabilities and Autism, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
168
|
Iyer J, Girirajan S. Gene discovery and functional assessment of rare copy-number variants in neurodevelopmental disorders. Brief Funct Genomics 2015; 14:315-28. [DOI: 10.1093/bfgp/elv018] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
169
|
Lin GN, Corominas R, Lemmens I, Yang X, Tavernier J, Hill DE, Vidal M, Sebat J, Iakoucheva LM. Spatiotemporal 16p11.2 protein network implicates cortical late mid-fetal brain development and KCTD13-Cul3-RhoA pathway in psychiatric diseases. Neuron 2015; 85:742-54. [PMID: 25695269 DOI: 10.1016/j.neuron.2015.01.010] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Revised: 08/17/2014] [Accepted: 01/14/2015] [Indexed: 12/19/2022]
Abstract
The psychiatric disorders autism and schizophrenia have a strong genetic component, and copy number variants (CNVs) are firmly implicated. Recurrent deletions and duplications of chromosome 16p11.2 confer a high risk for both diseases, but the pathways disrupted by this CNV are poorly defined. Here we investigate the dynamics of the 16p11.2 network by integrating physical interactions of 16p11.2 proteins with spatiotemporal gene expression from the developing human brain. We observe profound changes in protein interaction networks throughout different stages of brain development and/or in different brain regions. We identify the late mid-fetal period of cortical development as most critical for establishing the connectivity of 16p11.2 proteins with their co-expressed partners. Furthermore, our results suggest that the regulation of the KCTD13-Cul3-RhoA pathway in layer 4 of the inner cortical plate is crucial for controlling brain size and connectivity and that its dysregulation by de novo mutations may be a potential determinant of 16p11.2 CNV deletion and duplication phenotypes.
Collapse
Affiliation(s)
- Guan Ning Lin
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA
| | - Roser Corominas
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA
| | - Irma Lemmens
- Department of Medical Protein Research, VIB, and Department of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium
| | - Xinping Yang
- Center for Cancer Systems Biology (CCSB) and Department of Cancer Biology, Dana-Farber Cancer Institute, and Department of Genetics, Harvard Medical School, Boston, MA 02215, USA
| | - Jan Tavernier
- Department of Medical Protein Research, VIB, and Department of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium
| | - David E Hill
- Center for Cancer Systems Biology (CCSB) and Department of Cancer Biology, Dana-Farber Cancer Institute, and Department of Genetics, Harvard Medical School, Boston, MA 02215, USA
| | - Marc Vidal
- Center for Cancer Systems Biology (CCSB) and Department of Cancer Biology, Dana-Farber Cancer Institute, and Department of Genetics, Harvard Medical School, Boston, MA 02215, USA
| | - Jonathan Sebat
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA; Beyster Center for Genomics of Psychiatric Diseases, University of California San Diego, La Jolla, CA 92093, USA
| | - Lilia M Iakoucheva
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
170
|
The 16p11.2 deletion mouse model of autism exhibits altered cortical progenitor proliferation and brain cytoarchitecture linked to the ERK MAPK pathway. J Neurosci 2015; 35:3190-200. [PMID: 25698753 DOI: 10.1523/jneurosci.4864-13.2015] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Autism spectrum disorders are complex, highly heritable neurodevelopmental disorders affecting ∼1 in 100 children. Copy number variations of human chromosomal region 16p11.2 are genetically linked to 1% of autism-related disorders. This interval contains the MAPK3 gene, which encodes the MAP kinase, ERK1. Mutations in upstream elements regulating the ERK pathway are genetically linked to autism and other disorders of cognition including the neuro-cardio-facial cutaneous syndromes and copy number variations. We report that a murine model of human 16p11.2 deletion exhibits a reduction in brain size and perturbations in cortical cytoarchitecture. We observed enhanced progenitor proliferation and premature cell cycle exit, which are a consequence of altered levels of downstream ERK effectors cyclin D1 and p27(Kip1) during mid-neurogenesis. The increased progenitor proliferation and cell cycle withdrawal resulted in premature depletion of progenitor pools, altering the number and frequency of neurons ultimately populating cortical lamina. Specifically, we found a reduced number of upper layer pyramidal neurons and an increase in layer VI corticothalamic projection neurons, reflecting the altered cortical progenitor proliferation dynamics in these mice. Importantly, we observed a paradoxical increase in ERK signaling in mid-neurogenesis in the 16p11.2del mice, which is coincident with the development of aberrant cortical cytoarchitecture. The 16p11.2del mice exhibit anxiety-like behaviors and impaired memory. Our findings provide evidence of ERK dysregulation, developmental abnormalities in neurogenesis, and behavioral impairment associated with the 16p11.2 chromosomal deletion.
Collapse
|
171
|
Ellegood J, Nakai N, Nakatani J, Henkelman M, Takumi T, Lerch J. Neuroanatomical Phenotypes Are Consistent With Autism-Like Behavioral Phenotypes in the 15q11-13 Duplication Mouse Model. Autism Res 2015; 8:545-55. [PMID: 25755142 DOI: 10.1002/aur.1469] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 02/04/2015] [Indexed: 11/07/2022]
Abstract
Paternally and maternally inherited deletions and duplications of human chromosome 15q11-13 are relatively common in the human population. Furthermore, duplications in the 15q region are often associated with autism. Both maternal and paternal interstitial 15q11-13 duplication mouse models have been previously created, where several behavioral differences were found in the paternal duplication (patDp/+) mouse but not in the maternal duplication (matDp/+). These included decreased sociability, behavioral inflexibility, abnormal ultrasonic vocalizations, decreased spontaneous activity, and increased anxiety. Similarly, in the current study, we found several anatomical differences in the patDp/+ mice that were not seen in the matDp/+ mice. Regional differences that are evident only in the paternal duplication are a smaller dentate gyrus and smaller medial striatum. These differences may be responsible for the behavioral inflexibility. Furthermore, a smaller dorsal raphe nucleus could be responsible for the reported serotonin defects. This study highlights consistency that can be found between behavioral and anatomical phenotyping.
Collapse
Affiliation(s)
- Jacob Ellegood
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario Canada (J.E., R.M.H., J.L.)
| | - Nobuhiro Nakai
- RIKEN Brain Science Institute, Wako, Saiama, Japan (N.N., T.T.)
| | - Jin Nakatani
- Shiga University of Medical Science, Ohtsu, Shiga, Japan (J.N.)
| | - Mark Henkelman
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario Canada (J.E., R.M.H., J.L.)
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada (R.M.H., J.L.)
| | - Toru Takumi
- RIKEN Brain Science Institute, Wako, Saiama, Japan (N.N., T.T.)
- JST, CREST(T.T.)
| | - Jason Lerch
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario Canada (J.E., R.M.H., J.L.)
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada (R.M.H., J.L.)
| |
Collapse
|
172
|
Yang M, Mahrt EJ, Lewis F, Foley G, Portmann T, Dolmetsch RE, Portfors CV, Crawley JN. 16p11.2 Deletion Syndrome Mice Display Sensory and Ultrasonic Vocalization Deficits During Social Interactions. Autism Res 2015; 8:507-21. [PMID: 25663600 DOI: 10.1002/aur.1465] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 12/24/2014] [Indexed: 11/08/2022]
Abstract
Recurrent deletions and duplications at chromosomal region 16p11.2 are variably associated with speech delay, autism spectrum disorder, developmental delay, schizophrenia, and cognitive impairments. Social communication deficits are a primary diagnostic symptom of autism. Here we investigated ultrasonic vocalizations (USVs) in young adult male 16p11.2 deletion mice during a novel three-phase male-female social interaction test that detects vocalizations emitted by a male in the presence of an estrous female, how the male changes its calling when the female is suddenly absent, and the extent to which calls resume when the female returns. Strikingly fewer vocalizations were detected in two independent cohorts of 16p11.2 heterozygous deletion males (+/-) during the first exposure to an unfamiliar estrous female, as compared to wildtype littermates (+/+). When the female was removed, +/+ emitted calls, but at a much lower level, whereas +/- males called minimally. Sensory and motor abnormalities were detected in +/-, including higher nociceptive thresholds, a complete absence of acoustic startle responses, and hearing loss in all +/- as confirmed by lack of auditory brainstem responses to frequencies between 8 and 100 kHz. Stereotyped circling and backflipping appeared in a small percentage of individuals, as previously reported. However, these sensory and motor phenotypes could not directly explain the low vocalizations in 16p11.2 deletion mice, since (a) +/- males displayed normal abilities to emit vocalizations when the female was subsequently reintroduced, and (b) +/- vocalized less than +/+ to social odor cues delivered on an inanimate cotton swab. Our findings support the concept that mouse USVs in social settings represent a response to social cues, and that 16p11.2 deletion mice are deficient in their initial USVs responses to novel social cues.
Collapse
Affiliation(s)
- Mu Yang
- Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA, 95817
| | - Elena J Mahrt
- School of Biological Sciences, College of Arts and Sciences, Washington State University Vancouver, Vancouver, WA, 98686
| | - Freeman Lewis
- Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA, 95817
| | - Gillian Foley
- Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA, 95817
| | - Thomas Portmann
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA, 94305.,Drug Discovery Program, Circuit Therapeutics Inc., Menlo Park, CA, 94025
| | - Ricardo E Dolmetsch
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA, 94305.,Novartis Institutes for Biomedical Research, Cambridge, MA, 02139
| | - Christine V Portfors
- School of Biological Sciences, College of Arts and Sciences, Washington State University Vancouver, Vancouver, WA, 98686
| | - Jacqueline N Crawley
- Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA, 95817
| |
Collapse
|
173
|
Maillard AM, Ruef A, Pizzagalli F, Migliavacca E, Hippolyte L, Adaszewski S, Dukart J, Ferrari C, Conus P, Männik K, Zazhytska M, Siffredi V, Maeder P, Kutalik Z, Kherif F, Hadjikhani N, Beckmann JS, Reymond A, Draganski B, Jacquemont S. The 16p11.2 locus modulates brain structures common to autism, schizophrenia and obesity. Mol Psychiatry 2015; 20:140-7. [PMID: 25421402 PMCID: PMC4320286 DOI: 10.1038/mp.2014.145] [Citation(s) in RCA: 136] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 08/28/2014] [Accepted: 09/17/2014] [Indexed: 01/11/2023]
Abstract
Anatomical structures and mechanisms linking genes to neuropsychiatric disorders are not deciphered. Reciprocal copy number variants at the 16p11.2 BP4-BP5 locus offer a unique opportunity to study the intermediate phenotypes in carriers at high risk for autism spectrum disorder (ASD) or schizophrenia (SZ). We investigated the variation in brain anatomy in 16p11.2 deletion and duplication carriers. Beyond gene dosage effects on global brain metrics, we show that the number of genomic copies negatively correlated to the gray matter volume and white matter tissue properties in cortico-subcortical regions implicated in reward, language and social cognition. Despite the near absence of ASD or SZ diagnoses in our 16p11.2 cohort, the pattern of brain anatomy changes in carriers spatially overlaps with the well-established structural abnormalities in ASD and SZ. Using measures of peripheral mRNA levels, we confirm our genomic copy number findings. This combined molecular, neuroimaging and clinical approach, applied to larger datasets, will help interpret the relative contributions of genes to neuropsychiatric conditions by measuring their effect on local brain anatomy.
Collapse
Affiliation(s)
- A M Maillard
- Service of Medical Genetics, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - A Ruef
- LREN—Département des neurosciences cliniques, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - F Pizzagalli
- Service of Medical Genetics, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
- LREN—Département des neurosciences cliniques, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - E Migliavacca
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, University of Lausanne, Lausanne, Switzerland
| | - L Hippolyte
- Service of Medical Genetics, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - S Adaszewski
- LREN—Département des neurosciences cliniques, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - J Dukart
- LREN—Département des neurosciences cliniques, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
- Department of Neurology, Max-Planck Institute for Human Cognitive and Brain Science, Leipzig, Germany
| | - C Ferrari
- Department of Psychiatry, CERY Hospital Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - P Conus
- Department of Psychiatry, CERY Hospital Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - K Männik
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - M Zazhytska
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - V Siffredi
- Service of Medical Genetics, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - P Maeder
- Department of Radiology, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Z Kutalik
- Swiss Institute of Bioinformatics, University of Lausanne, Lausanne, Switzerland
- Department of Medical Genetics, University of Lausanne, Lausanne, Switzerland
- Institute of Social and Preventive Medicine (IUMSP), Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - F Kherif
- LREN—Département des neurosciences cliniques, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - N Hadjikhani
- Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Athinoula A. Martinos Center for Biomedical Imaging, Massachussetts General Hospital, Harvard Medical School, Charlestown, MA, USA
- Gillberg Neuropsychiatry Centre, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - 16p11.2 European Consortium
- Service of Medical Genetics, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
- LREN—Département des neurosciences cliniques, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, University of Lausanne, Lausanne, Switzerland
- Department of Neurology, Max-Planck Institute for Human Cognitive and Brain Science, Leipzig, Germany
- Department of Psychiatry, CERY Hospital Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
- Department of Radiology, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
- Department of Medical Genetics, University of Lausanne, Lausanne, Switzerland
- Institute of Social and Preventive Medicine (IUMSP), Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
- Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Athinoula A. Martinos Center for Biomedical Imaging, Massachussetts General Hospital, Harvard Medical School, Charlestown, MA, USA
- Gillberg Neuropsychiatry Centre, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - J S Beckmann
- Service of Medical Genetics, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, University of Lausanne, Lausanne, Switzerland
- Department of Medical Genetics, University of Lausanne, Lausanne, Switzerland
| | - A Reymond
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - B Draganski
- LREN—Département des neurosciences cliniques, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
- Department of Neurology, Max-Planck Institute for Human Cognitive and Brain Science, Leipzig, Germany
| | - S Jacquemont
- Service of Medical Genetics, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
174
|
Clustering autism: using neuroanatomical differences in 26 mouse models to gain insight into the heterogeneity. Mol Psychiatry 2015; 20:118-25. [PMID: 25199916 PMCID: PMC4426202 DOI: 10.1038/mp.2014.98] [Citation(s) in RCA: 214] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 07/14/2014] [Accepted: 07/15/2014] [Indexed: 12/15/2022]
Abstract
Autism is a heritable disorder, with over 250 associated genes identified to date, yet no single gene accounts for >1-2% of cases. The clinical presentation, behavioural symptoms, imaging and histopathology findings are strikingly heterogeneous. A more complete understanding of autism can be obtained by examining multiple genetic or behavioural mouse models of autism using magnetic resonance imaging (MRI)-based neuroanatomical phenotyping. Twenty-six different mouse models were examined and the consistently found abnormal brain regions across models were parieto-temporal lobe, cerebellar cortex, frontal lobe, hypothalamus and striatum. These models separated into three distinct clusters, two of which can be linked to the under and over-connectivity found in autism. These clusters also identified previously unknown connections between Nrxn1α, En2 and Fmr1; Nlgn3, BTBR and Slc6A4; and also between X monosomy and Mecp2. With no single treatment for autism found, clustering autism using neuroanatomy and identifying these strong connections may prove to be a crucial step in predicting treatment response.
Collapse
|
175
|
Tian D, Stoppel LJ, Heynen AJ, Lindemann L, Jaeschke G, Mills AA, Bear MF. Contribution of mGluR5 to pathophysiology in a mouse model of human chromosome 16p11.2 microdeletion. Nat Neurosci 2015; 18:182-4. [PMID: 25581360 PMCID: PMC4323380 DOI: 10.1038/nn.3911] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 12/03/2014] [Indexed: 12/23/2022]
Abstract
Human chromosome 16p11.2 microdeletion is the most common gene copy number variation in autism, but the synaptic pathophysiology caused by this mutation is largely unknown. Using a mouse with the same genetic deficiency, we found that metabotropic glutamate receptor 5 (mGluR5)-dependent synaptic plasticity and protein synthesis was altered in the hippocampus and that hippocampus-dependent memory was impaired. Notably, chronic treatment with a negative allosteric modulator of mGluR5 reversed the cognitive deficit.
Collapse
MESH Headings
- Animals
- Autistic Disorder/genetics
- Autistic Disorder/metabolism
- Autistic Disorder/physiopathology
- Behavior, Animal/drug effects
- Behavior, Animal/physiology
- Chromosome Deletion
- Chromosome Disorders/genetics
- Chromosome Disorders/metabolism
- Chromosome Disorders/physiopathology
- Chromosomes, Human, Pair 16/genetics
- Chromosomes, Human, Pair 16/metabolism
- Chromosomes, Mammalian
- Disease Models, Animal
- Hippocampus/metabolism
- Hippocampus/physiopathology
- Imidazoles/pharmacology
- Intellectual Disability/genetics
- Intellectual Disability/metabolism
- Intellectual Disability/physiopathology
- Male
- Memory Disorders/drug therapy
- Memory Disorders/metabolism
- Memory Disorders/physiopathology
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Neuronal Plasticity/drug effects
- Neuronal Plasticity/genetics
- Neuronal Plasticity/physiology
- Pyridines/pharmacology
- Receptor, Metabotropic Glutamate 5/genetics
- Receptor, Metabotropic Glutamate 5/metabolism
- Receptor, Metabotropic Glutamate 5/physiology
- Signal Transduction/drug effects
- Signal Transduction/genetics
- Signal Transduction/physiology
Collapse
Affiliation(s)
- Di Tian
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge MA, 02139, USA
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge MA, 02139, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge MA, 02139, USA
- The C.S. Kubik Laboratory for Neuropathology, Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston MA 02114. Current address: Department of Pathology and Laboratory Medicine, Developmental Neuroscience Program, The Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles CA, 90027, USA
| | - Laura J. Stoppel
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge MA, 02139, USA
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge MA, 02139, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge MA, 02139, USA
| | - Arnold J. Heynen
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge MA, 02139, USA
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge MA, 02139, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge MA, 02139, USA
| | - Lothar Lindemann
- Pharmaceuticals Division, F. Hoffmann-La Roche, CH-4070 Basel, Switzerland
| | - Georg Jaeschke
- Pharmaceuticals Division, F. Hoffmann-La Roche, CH-4070 Basel, Switzerland
| | - Alea A. Mills
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
| | - Mark F. Bear
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge MA, 02139, USA
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge MA, 02139, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge MA, 02139, USA
| |
Collapse
|
176
|
Abstract
Deletions and duplications of the recurrent ~600 kb chromosomal BP4-BP5 region of 16p11.2 are associated with a broad variety of neurodevelopmental outcomes including autism spectrum disorder. A clue to the pathogenesis of the copy number variant (CNV)'s effect on the brain is that the deletion is associated with a head size increase, whereas the duplication is associated with a decrease. Here we analyzed brain structure in a clinically ascertained group of human deletion (N = 25) and duplication (N = 17) carriers from the Simons Variation in Individuals Project compared with age-matched controls (N = 29 and 33, respectively). Multiple brain measures showed increased size in deletion carriers and reduced size in duplication carriers. The effects spanned global measures of intracranial volume, brain size, compartmental measures of gray matter and white matter, subcortical structures, and the cerebellum. Quantitatively, the largest effect was on the thalamus, but the collective results suggest a pervasive rather than a selective effect on the brain. Detailed analysis of cortical gray matter revealed that cortical surface area displays a strong dose-dependent effect of CNV (deletion > control > duplication), whereas average cortical thickness is less affected. These results suggest that the CNV may exert its opposing influences through mechanisms that influence early stages of embryonic brain development.
Collapse
|
177
|
Corre C, Friedel M, Vousden DA, Metcalf A, Spring S, Qiu LR, Lerch JP, Palmert MR. Separate effects of sex hormones and sex chromosomes on brain structure and function revealed by high-resolution magnetic resonance imaging and spatial navigation assessment of the Four Core Genotype mouse model. Brain Struct Funct 2014; 221:997-1016. [PMID: 25445841 DOI: 10.1007/s00429-014-0952-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 11/22/2014] [Indexed: 12/18/2022]
Abstract
Males and females exhibit several differences in brain structure and function. To examine the basis for these sex differences, we investigated the influences of sex hormones and sex chromosomes on brain structure and function in mice. We used the Four Core Genotype (4CG) mice, which can generate both male and female mice with XX or XY sex chromosome complement, allowing the decoupling of sex chromosomes from hormonal milieu. To examine whole brain structure, high-resolution ex vivo MRI was performed, and to assess differences in cognitive function, mice were trained on a radial arm maze. Voxel-wise and volumetric analyses of MRI data uncovered a striking independence of hormonal versus chromosomal influences in 30 sexually dimorphic brain regions. For example, the bed nucleus of the stria terminalis and the parieto-temporal lobe of the cerebral cortex displayed steroid-dependence while the cerebellar cortex, corpus callosum, and olfactory bulbs were influenced by sex chromosomes. Spatial learning and memory demonstrated strict hormone-dependency with no apparent influence of sex chromosomes. Understanding the influences of chromosomes and hormones on brain structure and function is important for understanding sex differences in brain structure and function, an endeavor that has eventual implications for understanding sex biases observed in the prevalence of psychiatric disorders.
Collapse
Affiliation(s)
- Christina Corre
- Division of Endocrinology, The Hospital for Sick Children, 555 University Avenue, Toronto, ON, M5G 1X8, Canada.
| | - Miriam Friedel
- Mouse Imaging Centre and Program in Neuroscience and Mental Health, The Hospital for Sick Children, 25 Orde Street, Toronto, ON, M5T 3H7, Canada
| | - Dulcie A Vousden
- Mouse Imaging Centre and Program in Neuroscience and Mental Health, The Hospital for Sick Children, 25 Orde Street, Toronto, ON, M5T 3H7, Canada.,Department of Medical Biophysics, The University of Toronto, Toronto, ON, Canada
| | - Ariane Metcalf
- Mouse Imaging Centre and Program in Neuroscience and Mental Health, The Hospital for Sick Children, 25 Orde Street, Toronto, ON, M5T 3H7, Canada
| | - Shoshana Spring
- Mouse Imaging Centre and Program in Neuroscience and Mental Health, The Hospital for Sick Children, 25 Orde Street, Toronto, ON, M5T 3H7, Canada
| | - Lily R Qiu
- Division of Endocrinology, The Hospital for Sick Children, 555 University Avenue, Toronto, ON, M5G 1X8, Canada.,Institute of Medical Science, The University of Toronto, Toronto, ON, Canada
| | - Jason P Lerch
- Mouse Imaging Centre and Program in Neuroscience and Mental Health, The Hospital for Sick Children, 25 Orde Street, Toronto, ON, M5T 3H7, Canada.,Department of Medical Biophysics, The University of Toronto, Toronto, ON, Canada
| | - Mark R Palmert
- Division of Endocrinology, The Hospital for Sick Children, 555 University Avenue, Toronto, ON, M5G 1X8, Canada. .,Institute of Medical Science, The University of Toronto, Toronto, ON, Canada. .,Departments of Paediatrics and Physiology, The University of Toronto, Toronto, ON, Canada.
| |
Collapse
|