151
|
Stejskal L, Kalemera MD, Lewis CB, Palor M, Walker L, Daviter T, Lees WD, Moss DS, Kremyda-Vlachou M, Kozlakidis Z, Gallo G, Bailey D, Rosenberg W, Illingworth CJR, Shepherd AJ, Grove J. An entropic safety catch controls hepatitis C virus entry and antibody resistance. eLife 2022; 11:e71854. [PMID: 35796426 PMCID: PMC9333995 DOI: 10.7554/elife.71854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 06/28/2022] [Indexed: 11/24/2022] Open
Abstract
E1 and E2 (E1E2), the fusion proteins of Hepatitis C Virus (HCV), are unlike that of any other virus yet described, and the detailed molecular mechanisms of HCV entry/fusion remain unknown. Hypervariable region-1 (HVR-1) of E2 is a putative intrinsically disordered protein tail. Here, we demonstrate that HVR-1 has an autoinhibitory function that suppresses the activity of E1E2 on free virions; this is dependent on its conformational entropy. Thus, HVR-1 is akin to a safety catch that prevents premature triggering of E1E2 activity. Crucially, this mechanism is turned off by host receptor interactions at the cell surface to allow entry. Mutations that reduce conformational entropy in HVR-1, or genetic deletion of HVR-1, turn off the safety catch to generate hyper-reactive HCV that exhibits enhanced virus entry but is thermally unstable and acutely sensitive to neutralising antibodies. Therefore, the HVR-1 safety catch controls the efficiency of virus entry and maintains resistance to neutralising antibodies. This discovery provides an explanation for the ability of HCV to persist in the face of continual immune assault and represents a novel regulatory mechanism that is likely to be found in other viral fusion machinery.
Collapse
Affiliation(s)
- Lenka Stejskal
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College LondonLondonUnited Kingdom
- Institute of Structural and Molecular Biology, Birkbeck CollegeLondonUnited Kingdom
| | - Mphatso D Kalemera
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College LondonLondonUnited Kingdom
| | - Charlotte B Lewis
- MRC-University of Glasgow Centre for Virus ResearchGlasgowUnited Kingdom
| | - Machaela Palor
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College LondonLondonUnited Kingdom
| | - Lucas Walker
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College LondonLondonUnited Kingdom
| | - Tina Daviter
- Institute of Structural and Molecular Biology, Birkbeck CollegeLondonUnited Kingdom
- Shared Research Facilities, The Institute of Cancer ResearchLondonUnited Kingdom
| | - William D Lees
- Institute of Structural and Molecular Biology, Birkbeck CollegeLondonUnited Kingdom
| | - David S Moss
- Institute of Structural and Molecular Biology, Birkbeck CollegeLondonUnited Kingdom
| | | | - Zisis Kozlakidis
- International Agency for Research on Cancer, World Health OrganizationLyonFrance
| | | | | | - William Rosenberg
- Division of Medicine, Institute for Liver and Digestive Health, University College LondonLondonUnited Kingdom
| | - Christopher JR Illingworth
- MRC-University of Glasgow Centre for Virus ResearchGlasgowUnited Kingdom
- Department of Genetics, University of CambridgeCambridgeUnited Kingdom
- Institut für Biologische Physik, Universität zu KölnCologneGermany
- MRC Biostatistics Unit, University of CambridgeCambridgeUnited Kingdom
| | - Adrian J Shepherd
- Institute of Structural and Molecular Biology, Birkbeck CollegeLondonUnited Kingdom
| | - Joe Grove
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College LondonLondonUnited Kingdom
- MRC-University of Glasgow Centre for Virus ResearchGlasgowUnited Kingdom
| |
Collapse
|
152
|
Shafiq A, Zubair F, Ambreen A, Suleman M, Yousafi Q, Rasul Niazi Z, Anwar Z, Khan A, Mohammad A, Wei DQ. Investigation of the binding and dynamic features of A.30 variant revealed higher binding of RBD for hACE2 and escapes the neutralizing antibody: A molecular simulation approach. Comput Biol Med 2022; 146:105574. [PMID: 35533461 PMCID: PMC9055381 DOI: 10.1016/j.compbiomed.2022.105574] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 01/17/2023]
Abstract
With the emergence of Delta and Omicron variants, many other important variants of SARS-CoV-2, which cause Coronavirus disease-2019, including A.30, are reported to increase the concern created by the global pandemic. The A.30 variant, reported in Tanzania and other countries, harbors spike gene mutations that help this strain to bind more robustly and to escape neutralizing antibodies. The present study uses molecular modelling and simulation-based approaches to investigate the key features of this strain that result in greater infectivity. The protein-protein docking results for the spike protein demonstrated that additional interactions, particularly two salt-bridges formed by the mutated residue Lys484, increase binding affinity, while the loss of key residues at the N terminal domain (NTD) result in a change to binding conformation with monoclonal antibodies, thus escaping their neutralizing effects. Moreover, we deeply studied the atomic features of these binding complexes through molecular simulation, which revealed differential dynamics when compared to wild type. Analysis of the binding free energy using MM/GBSA revealed that the total binding free energy (TBE) for the wild type receptor-binding domain (RBD) complex was -58.25 kcal/mol in contrast to the A.30 RBD complex, which reported -65.59 kcal/mol. The higher TBE for the A.30 RBD complex signifies a more robust interaction between A.30 variant RBD with ACE2 than the wild type, allowing the variant to bind and spread more promptly. The BFE for the wild type NTD complex was calculated to be -65.76 kcal/mol, while the A.30 NTD complex was estimated to be -49.35 kcal/mol. This shows the impact of the reported substitutions and deletions in the NTD of A.30 variant, which consequently reduce the binding of mAb, allowing it to evade the immune response of the host. The reported results will aid the development of cross-protective drugs against SARS-CoV-2 and its variants.
Collapse
Affiliation(s)
- Athar Shafiq
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | | | - Amna Ambreen
- Amna Inayat Medical College, Lahore, Punjab, Pakistan
| | - Muhammad Suleman
- Center for Biotechnology and Microbiology, University of Swat, Khyber Pakhtunkhwa, Pakistan
| | - Qudsia Yousafi
- Department of Biosciences, COMSATS University Islamabad-Sahiwal Campus, Punjab, Pakistan
| | - Zahid Rasul Niazi
- Department of Pharmacy, Faculty of Pharmacy, Gomal University, D I Khan, KPK, Pakistan
| | - Zeeshan Anwar
- Department of Pharmacy, Abdul Wali Khan University, Mardan, KPK, Pakistan
| | - Abbas Khan
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China,Corresponding author
| | - Anwar Mohammad
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Kuwait
| | - Dong-Qing Wei
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China,State Key Laboratory of Microbial Metabolism, Shanghai-Islamabad-Belgrade Joint Innovation Center on Antibacterial Resistances, Joint Laboratory of International Laboratory of Metabolic and Developmental Sciences, Ministry of Education and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200030, PR China,Peng Cheng Laboratory, Vanke Cloud City Phase I Building 8, Xili Street, Nashan District, Shenzhen, Guangdong, 518055, PR China,Zhongjing Research and Industrialization Institute of Chinese Medicine, Zhongguancun Scientific Park, Meixi, Nayang, Henan, 473006, PR China,Corresponding author. Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| |
Collapse
|
153
|
Chavda VP, Patel AB, Vaghasiya DD. SARS-CoV-2 variants and vulnerability at the global level. J Med Virol 2022; 94:2986-3005. [PMID: 35277864 PMCID: PMC9088647 DOI: 10.1002/jmv.27717] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 12/24/2022]
Abstract
Numerous variants of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic have evolved. Viral variants may evolve with harmful susceptibility to the immunity established with the existing COVID-19 vaccination. These variants are more transmissible, induce relatively extreme illness, have evasive immunological features, decrease neutralization using antibodies from vaccinated persons, and are more susceptible to re-infection. The Centers for Disease Control and Prevention (CDC) has categorized SARS-CoV-2 mutations as variants of interest (VOI), variants of concern (VOC), and variants of high consequence (VOHC). At the moment, four VOC and many variants of interest have been defined and require constant observation. This review article summarizes various variants of SARS-CoV-2 surfaced with special emphasis on VOCs that are spreading across the world, as well as several viral mutational impacts and how these modifications alter the properties of the virus.
Collapse
Affiliation(s)
- Vivek P. Chavda
- Department of Pharmaceutics and Pharmaceutical TechnologyL.M. College of PharmacyAhmedabadGujaratIndia
| | | | | |
Collapse
|
154
|
Mishra T, Dalavi R, Joshi G, Kumar A, Pandey P, Shukla S, Mishra RK, Chande A. SARS-CoV-2 spike E156G/Δ157-158 mutations contribute to increased infectivity and immune escape. Life Sci Alliance 2022; 5:e202201415. [PMID: 35296517 PMCID: PMC8927725 DOI: 10.26508/lsa.202201415] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 12/23/2022] Open
Abstract
Breakthrough infections by emerging SARS-CoV-2 variants raise significant concerns. Here, we sequence-characterized the spike gene from breakthrough infections that corresponded to B.1.617 sublineage. Delineating the functional impact of spike mutations revealed that N-terminal domain (NTD)-specific E156G/Δ157-158 contributed to increased infectivity and reduced sensitivity to vaccine-induced antibodies. A six-nucleotide deletion (467-472) in the spike-coding region introduced this change in the NTD. We confirmed the presence of E156G/Δ157-158 from cases concurrently screened, in addition to other circulating spike (S1) mutations such as T19R, T95I, L452R, E484Q, and D614G. Notably, E156G/Δ157-158 was present in more than 90% of the sequences reported from the USA and UK in October 2021. The spike-pseudotyped viruses bearing a combination of E156G/Δ157-158 and L452R exhibited higher infectivity and reduced sensitivity to neutralization. Notwithstanding, the post-recovery plasma robustly neutralized viral particles bearing the mutant spike. When the spike harbored E156G/Δ157-158 along with L452R and E484Q, increased cell-to-cell fusion was also observed, suggesting a combinatorial effect of these mutations. Our study underscores the importance of non-RBD changes in determining infectivity and immune escape.
Collapse
Affiliation(s)
- Tarun Mishra
- Molecular Virology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, India
| | - Rishikesh Dalavi
- Molecular Virology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, India
| | - Garima Joshi
- Sumo and Nuclear Pore Biology Group, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, India
| | - Atul Kumar
- Structural Biology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, India
- COVID-19 Testing Centre, Indian Institute of Science Education and Research, Bhopal, India
| | - Pankaj Pandey
- COVID-19 Testing Centre, Indian Institute of Science Education and Research, Bhopal, India
| | - Sanjeev Shukla
- COVID-19 Testing Centre, Indian Institute of Science Education and Research, Bhopal, India
- Epigenetics and RNA Processing Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, India
| | - Ram K Mishra
- Sumo and Nuclear Pore Biology Group, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, India
- COVID-19 Testing Centre, Indian Institute of Science Education and Research, Bhopal, India
| | - Ajit Chande
- Molecular Virology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, India
- COVID-19 Testing Centre, Indian Institute of Science Education and Research, Bhopal, India
| |
Collapse
|
155
|
Wilkinson SAJ, Richter A, Casey A, Osman H, Mirza JD, Stockton J, Quick J, Ratcliffe L, Sparks N, Cumley N, Poplawski R, Nicholls SN, Kele B, Harris K, Peacock TP, Loman NJ. Recurrent SARS-CoV-2 mutations in immunodeficient patients. Virus Evol 2022; 8:veac050. [PMID: 35996593 PMCID: PMC9384748 DOI: 10.1093/ve/veac050] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/11/2022] [Accepted: 08/08/2022] [Indexed: 01/19/2023] Open
Abstract
Long-term severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections in immunodeficient patients are an important source of variation for the virus but are understudied. Many case studies have been published which describe one or a small number of long-term infected individuals but no study has combined these sequences into a cohesive dataset. This work aims to rectify this and study the genomics of this patient group through a combination of literature searches as well as identifying new case series directly from the COVID-19 Genomics UK (COG-UK) dataset. The spike gene receptor-binding domain and N-terminal domain (NTD) were identified as mutation hotspots. Numerous mutations associated with variants of concern were observed to emerge recurrently. Additionally a mutation in the envelope gene, T30I was determined to be the second most frequent recurrently occurring mutation arising in persistent infections. A high proportion of recurrent mutations in immunodeficient individuals are associated with ACE2 affinity, immune escape, or viral packaging optimisation. There is an apparent selective pressure for mutations that aid cell-cell transmission within the host or persistence which are often different from mutations that aid inter-host transmission, although the fact that multiple recurrent de novo mutations are considered defining for variants of concern strongly indicates that this potential source of novel variants should not be discounted.
Collapse
Affiliation(s)
- S A J Wilkinson
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Alex Richter
- Institute of Immunology and Immunotherapy (III), College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Anna Casey
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Husam Osman
- Queen Elizabeth Hospital, University Hospitals Birmingham, Birmingham B15 2TH, UK
| | - Jeremy D Mirza
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Joanne Stockton
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Josh Quick
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Liz Ratcliffe
- Queen Elizabeth Hospital, University Hospitals Birmingham, Birmingham B15 2TH, UK
| | - Natalie Sparks
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Nicola Cumley
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Radoslaw Poplawski
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Samuel N Nicholls
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Beatrix Kele
- Virology Department, Royal London Hospital, Barts Health NHS Trust, London, EC1A 7BE, UK
| | - Kathryn Harris
- Virology Department, Royal London Hospital, Barts Health NHS Trust, London, EC1A 7BE, UK
- Department of Infectious Disease, Imperial College London, London, Westminster W2 1PG, UK
| | - Thomas P Peacock
- Department of Infectious Disease, Imperial College London, London, Westminster W2 1PG, UK
| | - Nicholas J Loman
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
156
|
Ham RE, Smothers AR, Che R, Sell KJ, Peng CA, Dean D. Identifying SARS-CoV-2 Variants of Concern through Saliva-Based RT-qPCR by Targeting Recurrent Mutation Sites. Microbiol Spectr 2022; 10:e0079722. [PMID: 35546574 PMCID: PMC9241879 DOI: 10.1128/spectrum.00797-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/14/2022] [Indexed: 11/20/2022] Open
Abstract
SARS-CoV-2 variants of concern (VOCs) continue to pose a public health threat which necessitates a real-time monitoring strategy to complement whole genome sequencing. Thus, we investigated the efficacy of competitive probe RT-qPCR assays for six mutation sites identified in SARS-CoV-2 VOCs and, after validating the assays with synthetic RNA, performed these assays on positive saliva samples. When compared with whole genome sequence results, the SΔ69-70 and ORF1aΔ3675-3677 assays demonstrated 93.60 and 68.00% accuracy, respectively. The SNP assays (K417T, E484K, E484Q, L452R) demonstrated 99.20, 96.40, 99.60, and 96.80% accuracies, respectively. Lastly, we screened 345 positive saliva samples from 7 to 22 December 2021 using Omicron-specific mutation assays and were able to quickly identify rapid spread of Omicron in Upstate South Carolina. Our workflow demonstrates a novel approach for low-cost, real-time population screening of VOCs. IMPORTANCE SARS-CoV-2 variants of concern and their many sublineages can be characterized by mutations present within their genetic sequences. These mutations can provide selective advantages such as increased transmissibility and antibody evasion, which influences public health recommendations such as mask mandates, quarantine requirements, and treatment regimens. Our RT-qPCR workflow allows for strain identification of SARS-CoV-2 positive saliva samples by targeting common mutation sites shared between variants of concern and detecting single nucleotides present at the targeted location. This differential diagnostic system can quickly and effectively identify a wide array of SARS-CoV-2 strains, which can provide more informed public health surveillance strategies in the future.
Collapse
Affiliation(s)
- Rachel E. Ham
- Center for Innovative Medical Devices and Sensors (REDDI Lab), Clemson University, Clemson, South Carolina, USA
| | - Austin R. Smothers
- Center for Innovative Medical Devices and Sensors (REDDI Lab), Clemson University, Clemson, South Carolina, USA
- Department of Bioengineering, Clemson University, Clemson, South Carolina, USA
| | - Rui Che
- Center for Innovative Medical Devices and Sensors (REDDI Lab), Clemson University, Clemson, South Carolina, USA
- Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina, USA
| | - Keegan J. Sell
- Center for Innovative Medical Devices and Sensors (REDDI Lab), Clemson University, Clemson, South Carolina, USA
| | - Congyue Annie Peng
- Center for Innovative Medical Devices and Sensors (REDDI Lab), Clemson University, Clemson, South Carolina, USA
| | - Delphine Dean
- Center for Innovative Medical Devices and Sensors (REDDI Lab), Clemson University, Clemson, South Carolina, USA
- Department of Bioengineering, Clemson University, Clemson, South Carolina, USA
| |
Collapse
|
157
|
Stalls V, Lindenberger J, Gobeil SMC, Henderson R, Parks R, Barr M, Deyton M, Martin M, Janowska K, Huang X, May A, Speakman M, Beaudoin E, Kraft B, Lu X, Edwards RJ, Eaton A, Montefiori DC, Williams WB, Saunders KO, Wiehe K, Haynes BF, Acharya P. Cryo-EM structures of SARS-CoV-2 Omicron BA.2 spike. Cell Rep 2022; 39:111009. [PMID: 35732171 PMCID: PMC9174147 DOI: 10.1016/j.celrep.2022.111009] [Citation(s) in RCA: 73] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/23/2022] [Accepted: 06/03/2022] [Indexed: 11/27/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron BA.2 sub-lineage has gained in proportion relative to BA.1. Because spike (S) protein variations may underlie differences in their pathobiology, here we determine cryoelectron microscopy (cryo-EM) structures of the BA.2 S ectodomain and compare these with previously determined BA.1 S structures. BA.2 receptor-binding domain (RBD) mutations induce remodeling of the RBD structure, resulting in tighter packing and improved thermostability. Interprotomer RBD interactions are enhanced in the closed (or 3-RBD-down) BA.2 S, while the fusion peptide is less accessible to antibodies than in BA.1. Binding and pseudovirus neutralization assays reveal extensive immune evasion while defining epitopes of two outer RBD face-binding antibodies, DH1044 and DH1193, that neutralize both BA.1 and BA.2. Taken together, our results indicate that stabilization of the closed state through interprotomer RBD-RBD packing is a hallmark of the Omicron variant and show differences in key functional regions in the BA.1 and BA.2 S proteins.
Collapse
Affiliation(s)
| | | | | | - Rory Henderson
- Duke Human Vaccine Institute, Durham, NC 27710, USA; Department of Medicine, Duke University, Durham, NC 27710, USA
| | - Rob Parks
- Duke Human Vaccine Institute, Durham, NC 27710, USA
| | - Maggie Barr
- Duke Human Vaccine Institute, Durham, NC 27710, USA
| | | | | | | | - Xiao Huang
- Duke Human Vaccine Institute, Durham, NC 27710, USA
| | - Aaron May
- Duke Human Vaccine Institute, Durham, NC 27710, USA; Department of Biochemistry, Duke University, Durham, NC 27710, USA
| | | | | | - Bryan Kraft
- Department of Medicine, Duke University, Durham, NC 27710, USA
| | - Xiaozhi Lu
- Duke Human Vaccine Institute, Durham, NC 27710, USA
| | - Robert J Edwards
- Duke Human Vaccine Institute, Durham, NC 27710, USA; Department of Medicine, Duke University, Durham, NC 27710, USA
| | - Amanda Eaton
- Duke Human Vaccine Institute, Durham, NC 27710, USA
| | - David C Montefiori
- Duke Human Vaccine Institute, Durham, NC 27710, USA; Department of Surgery, Duke University, Durham, NC 27710, USA
| | - Wilton B Williams
- Duke Human Vaccine Institute, Durham, NC 27710, USA; Department of Biochemistry, Duke University, Durham, NC 27710, USA
| | - Kevin O Saunders
- Duke Human Vaccine Institute, Durham, NC 27710, USA; Department of Surgery, Duke University, Durham, NC 27710, USA
| | - Kevin Wiehe
- Duke Human Vaccine Institute, Durham, NC 27710, USA; Department of Medicine, Duke University, Durham, NC 27710, USA
| | - Barton F Haynes
- Duke Human Vaccine Institute, Durham, NC 27710, USA; Department of Medicine, Duke University, Durham, NC 27710, USA; Department of Immunology, Duke University, Durham, NC 27710, USA.
| | - Priyamvada Acharya
- Duke Human Vaccine Institute, Durham, NC 27710, USA; Department of Biochemistry, Duke University, Durham, NC 27710, USA; Department of Surgery, Duke University, Durham, NC 27710, USA.
| |
Collapse
|
158
|
Sun C, Xie C, Bu GL, Zhong LY, Zeng MS. Molecular characteristics, immune evasion, and impact of SARS-CoV-2 variants. Signal Transduct Target Ther 2022; 7:202. [PMID: 35764603 PMCID: PMC9240077 DOI: 10.1038/s41392-022-01039-2] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/16/2022] [Accepted: 05/22/2022] [Indexed: 01/18/2023] Open
Abstract
The persistent COVID-19 pandemic since 2020 has brought an enormous public health burden to the global society and is accompanied by various evolution of the virus genome. The consistently emerging SARS-CoV-2 variants harboring critical mutations impact the molecular characteristics of viral proteins and display heterogeneous behaviors in immune evasion, transmissibility, and the clinical manifestation during infection, which differ each strain and endow them with distinguished features during populational spread. Several SARS-CoV-2 variants, identified as Variants of Concern (VOC) by the World Health Organization, challenged global efforts on COVID-19 control due to the rapid worldwide spread and enhanced immune evasion from current antibodies and vaccines. Moreover, the recent Omicron variant even exacerbated the global anxiety in the continuous pandemic. Its significant evasion from current medical treatment and disease control even highlights the necessity of combinatory investigation of the mutational pattern and influence of the mutations on viral dynamics against populational immunity, which would greatly facilitate drug and vaccine development and benefit the global public health policymaking. Hence in this review, we summarized the molecular characteristics, immune evasion, and impacts of the SARS-CoV-2 variants and focused on the parallel comparison of different variants in mutational profile, transmissibility and tropism alteration, treatment effectiveness, and clinical manifestations, in order to provide a comprehensive landscape for SARS-CoV-2 variant research.
Collapse
Affiliation(s)
- Cong Sun
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, 510060, Guangzhou, China
| | - Chu Xie
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, 510060, Guangzhou, China
| | - Guo-Long Bu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, 510060, Guangzhou, China
| | - Lan-Yi Zhong
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, 510060, Guangzhou, China
| | - Mu-Sheng Zeng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, 510060, Guangzhou, China. .,Guangdong-Hong Kong Joint Laboratory for RNA Medicine, 510060, Guangzhou, China.
| |
Collapse
|
159
|
Rojas Chávez RA, Fili M, Han C, Rahman SA, Bicar IGL, Gregory S, Hu G, Das J, Brown GD, Haim H. Mutability Patterns Across the Spike Glycoprotein Reveal the Diverging and Lineage-specific Evolutionary Space of SARS-CoV-2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.02.01.478697. [PMID: 35132415 PMCID: PMC8820662 DOI: 10.1101/2022.02.01.478697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Mutations in the spike glycoprotein of SARS-CoV-2 allow the virus to probe the sequence space in search of higher-fitness states. New sublineages of SARS-CoV-2 variants-of-concern (VOCs) continuously emerge with such mutations. Interestingly, the sites of mutation in these sublineages vary between the VOCs. Whether such differences reflect the random nature of mutation appearance or distinct evolutionary spaces of spike in the VOCs is unclear. Here we show that each position of spike has a lineage-specific likelihood for mutations to appear and dominate descendent sublineages. This likelihood can be accurately estimated from the lineage-specific mutational profile of spike at a protein-wide level. The mutability environment of each position, including adjacent sites on the protein structure and neighboring sites on the network of comutability, accurately forecast changes in descendent sublineages. Mapping of imminent changes within the VOCs can contribute to the design of immunogens and therapeutics that address future forms of SARS-CoV-2.
Collapse
|
160
|
Li H, Yuan S, Wei X, Sun H. Metal-based strategies for the fight against COVID-19. Chem Commun (Camb) 2022; 58:7466-7482. [PMID: 35730442 DOI: 10.1039/d2cc01772e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The emerging COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has claimed over six million lives globally to date. Despite the availability of vaccines, the pandemic still cannot be fully controlled owing to rapid mutation of the virus that renders enhanced transmissibility and antibody evasion. This is thus an unmet need to develop safe and effective therapeutic options for COVID-19, in particular, remedies that can be used at home. Considering the great success of multi-targeted cocktail therapy for the treatment of viral infections, metal-based drugs might represent a unique and new source of antivirals that resemble a cocktail therapy in terms of their mode of actions. In this review, we first summarize the role that metal ions played in SARS-CoV-2 viral replication and pathogenesis, then highlight the chemistry of metal-based strategies in the fight against SARS-CoV-2 infection, including both metal displacement and chelation based approaches. Finally, we outline a perspective and direction on how to design and develop metal-based antivirals for the fight against the current or future coronavirus pandemic.
Collapse
Affiliation(s)
- Hongyan Li
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry and CAS-HKU Joint Laboratory of Metallomics on Health and Environment, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
| | - Shuofeng Yuan
- Department of Microbiology and State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Xueying Wei
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry and CAS-HKU Joint Laboratory of Metallomics on Health and Environment, The University of Hong Kong, Pokfulam, Hong Kong SAR, China. .,Department of Microbiology and State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Hongzhe Sun
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry and CAS-HKU Joint Laboratory of Metallomics on Health and Environment, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
| |
Collapse
|
161
|
Guérin P, Yahi N, Azzaz F, Chahinian H, Sabatier JM, Fantini J. Structural Dynamics of the SARS-CoV-2 Spike Protein: A 2-Year Retrospective Analysis of SARS-CoV-2 Variants (from Alpha to Omicron) Reveals an Early Divergence between Conserved and Variable Epitopes. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123851. [PMID: 35744971 PMCID: PMC9230616 DOI: 10.3390/molecules27123851] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/09/2022] [Accepted: 06/13/2022] [Indexed: 12/17/2022]
Abstract
We analyzed the epitope evolution of the spike protein in 1,860,489 SARS-CoV-2 genomes. The structural dynamics of these epitopes was determined by molecular modeling approaches. The D614G mutation, selected in the first months of the pandemic, is still present in currently circulating SARS-CoV-2 strains. This mutation facilitates the conformational change leading to the demasking of the ACE2 binding domain. D614G also abrogated the binding of facilitating antibodies to a linear epitope common to SARS-CoV-1 and SARS-CoV-2. The main neutralizing epitope of the N-terminal domain (NTD) of the spike protein showed extensive structural variability in SARS-CoV-2 variants, especially Delta and Omicron. This epitope is located on the flat surface of the NTD, a large electropositive area which binds to electronegatively charged lipid rafts of host cells. A facilitating epitope located on the lower part of the NTD appeared to be highly conserved among most SARS-CoV-2 variants, which may represent a risk of antibody-dependent enhancement (ADE). Overall, this retrospective analysis revealed an early divergence between conserved (facilitating) and variable (neutralizing) epitopes of the spike protein. These data aid in the designing of new antiviral strategies that could help to control COVID-19 infection by mimicking neutralizing antibodies or by blocking facilitating antibodies.
Collapse
Affiliation(s)
| | - Nouara Yahi
- INSERM UMR_S 1072, Aix-Marseille University, CEDEX, 13015 Marseille, France; (N.Y.); (F.A.); (H.C.)
| | - Fodil Azzaz
- INSERM UMR_S 1072, Aix-Marseille University, CEDEX, 13015 Marseille, France; (N.Y.); (F.A.); (H.C.)
| | - Henri Chahinian
- INSERM UMR_S 1072, Aix-Marseille University, CEDEX, 13015 Marseille, France; (N.Y.); (F.A.); (H.C.)
| | - Jean-Marc Sabatier
- Inst Neurophysiopathol, Aix-Marseille University, CNRS, INP, CEDEX, 13005 Marseille, France;
| | - Jacques Fantini
- INSERM UMR_S 1072, Aix-Marseille University, CEDEX, 13015 Marseille, France; (N.Y.); (F.A.); (H.C.)
- Correspondence:
| |
Collapse
|
162
|
Marchioni C, Esposito G, Calci M, Bais B, Colussi G. Effect of intermediate/high versus low dose heparin on the thromboembolic and hemorrhagic risk of unvaccinated COVID-19 patients in the emergency department. BMC Emerg Med 2022; 22:107. [PMID: 35698054 PMCID: PMC9192337 DOI: 10.1186/s12873-022-00668-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 06/10/2022] [Indexed: 11/10/2022] Open
Abstract
Background The optimal prophylactic dose of heparin in patients with coronavirus-associated disease 2019 (COVID-19) in the emergency department (ED) is debated. This study aimed to analyze different thromboprophylaxis approaches in unvaccinated COVID-19 patients admitted to ED without initial venous thromboembolism. Methods Retrospectively, the effect of intermediate/high versus low dose heparin treatment was evaluated from December 2020 to July 2021 in a tertiary Academic Hospital in northeast Italy. The primary outcome comprised arterial or venous thromboembolism or all-cause death within 30 days. Secondary outcomes comprised each single primary outcome component or major hemorrhagic event. Cox regression was used to determine predictors of the primary outcome and propensity score weights to balance the effect of heparin treatment on all outcomes. Results Data of 144 consecutive patients (age 70 ± 13, 33% females) were included in the study. High-dose prophylactic heparin was used in 69%, intermediate in 15%, and low in 17% of patients. The primary outcome occurred in 48 patients. Independent predictors of the primary outcome were COVID-19 severity (hazards ratio (HR) 1.96, 95% confidence interval (CI) 1.05–3.65, p = 0.035) and D-dimer levels (HR each log ng/dl 1.38, 95% CI 1.04–1.84, p = 0.026). Intermediate/high dose heparin did not affect the risk of the primary outcome compared with the low dose (weighted HR 1.39, 95% CI 0.75–2.56, p = 0.292). Intermediate/high heparin increased the risk of major hemorrhagic events (weighted HR 5.92, 95% CI 1.09–32, p = 0.039). Conclusions In unvaccinated COVID-19 patients admitted to ED, prophylaxis with heparin at the intermediate/high dose did not reduce primary outcome compared with the low dose but increased the risk of major hemorrhagic events.
Collapse
Affiliation(s)
- Claudia Marchioni
- Division of Internal Medicine and Emergency Medicine Residency Program, Department of Medicine, University of Udine, 33100, Udine, Italy
| | - Gaetano Esposito
- Department of Emergency Medicine, ASUFC University Hospital of Udine, 33100, Udine, Italy
| | - Mario Calci
- Department of Emergency Medicine, ASUFC University Hospital of Udine, 33100, Udine, Italy
| | - Bruno Bais
- Thrombosis Prevention Unit, 2nd Division of Internal Medicine, Department of Medicine, ASUFC University Hospital of Udine, 33100, Udine, Italy
| | - GianLuca Colussi
- Division of Internal Medicine and Emergency Medicine Residency Program, Department of Medicine, University of Udine, 33100, Udine, Italy.
| |
Collapse
|
163
|
Naman ZT, Kadhim S, Al-Isawi ZJK, Butch CJ, Muhseen ZT. Computational Investigations of Traditional Chinese Medicinal Compounds against the Omicron Variant of SARS-CoV-2 to Rescue the Host Immune System. Pharmaceuticals (Basel) 2022; 15:ph15060741. [PMID: 35745660 PMCID: PMC9227372 DOI: 10.3390/ph15060741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/27/2022] [Accepted: 05/31/2022] [Indexed: 11/16/2022] Open
Abstract
Macrodomain-I of the NSP3 (non-structural protein 3) is responsible for immune response hijacking in the SARS-CoV-2 infection known as COVID-19. In the omicron variant (B.1.1.529), this domain harbors a new mutation, V1069I, which may increase the binding of ADPr and consequently the infection severity. This macrodomain-I, due to its significant role in infection, is deemed to be an important drug target. Hence, using structural bioinformatics and molecular simulation approaches, we performed a virtual screening of the traditional Chinese medicines (TCM) database for potential anti-viral drugs. The screening of 57,000 compounds yielded the 10 best compounds with docking scores better than the control ADPr. Among the top ten, the best three hits—TCM42798, with a docking score of −13.70 kcal/mol, TCM47007 of −13.25 kcal/mol, and TCM30675 of −12.49 kcal/mol—were chosen as the best hits. Structural dynamic features were explored including stability, compactness, flexibility, and hydrogen bonding, further demonstrating the anti-viral potential of these hits. Using the MM/GBSA approach, the total binding free energy for each complex was reported to be −69.78 kcal/mol, −50.11 kcal/mol, and −47.64 kcal/mol, respectively, which consequently reflect the stronger binding and inhibitory potential of these compounds. These agents might suppress NSP3 directly, allowing the host immune system to recuperate. The current study lays the groundwork for the development of new drugs to combat SARS-CoV-2 and its variants.
Collapse
Affiliation(s)
- Ziad Tareq Naman
- Department of Medical Laboratory Techniques, Al-Ma’Moon University College, Aladhamia, Baghdad 72029, Iraq;
| | - Salim Kadhim
- College of Pharmacy, University of Alkafeel, Najaf 61001, Iraq;
| | - Zahraa J. K. Al-Isawi
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Kufa, Najaf 61001, Iraq;
| | - Christopher J. Butch
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
- State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, China
- Correspondence: (C.J.B.); (Z.T.M.)
| | - Ziyad Tariq Muhseen
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
- Department of Pharmacy, Al-Mustaqbal University College, Hillah, Babylon 51001, Iraq
- Correspondence: (C.J.B.); (Z.T.M.)
| |
Collapse
|
164
|
Coutinho JVP, Macedo-da-Silva J, Mule SN, Kronenberger T, Rosa-Fernandes L, Wrenger C, Palmisano G. Glycoprotein molecular dynamics analysis: SARS-CoV-2 spike glycoprotein case study. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2022; 131:277-309. [PMID: 35871894 PMCID: PMC9181370 DOI: 10.1016/bs.apcsb.2022.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Molecular Dynamics (MD) is a method used to calculate the movement of atoms and molecules broadly applied to several aspects of science. It involves computational simulation, which makes it, at first glance, not easily accessible. The rise of several automated tools to perform molecular simulations has allowed researchers to navigate through the various steps of MD. This enables to elucidate structural properties of proteins that could not be analyzed otherwise, such as the impact of glycosylation. Glycosylation dictates the physicochemical and biological properties of a protein modulating its solubility, stability, resistance to proteolysis, interaction partners, enzymatic activity, binding and recognition. Given the high conformational and compositional diversity of the glycan chains, assessing their influence on the protein structure is challenging using conventional analytical techniques. In this manuscript, we present a step-by-step workflow to build and perform MD analysis of glycoproteins focusing on the SPIKE glycoprotein of SARS-CoV-2 to appraise the impact of glycans in structure stabilization and antibody occlusion.
Collapse
Affiliation(s)
| | - Janaina Macedo-da-Silva
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Simon Ngao Mule
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Thales Kronenberger
- Department of Internal Medicine VIII, University Hospital Tuebingen, Tuebingen, Germany; Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard-Karls-Universität, Tuebingen, Germany; Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tuebingen, Tuebingen, Germany; Tuebingen Center for Academic Drug Discovery & Development (TüCAD2), Tuebingen, Germany
| | - Livia Rosa-Fernandes
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Carsten Wrenger
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Giuseppe Palmisano
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil; Faculty of Science and engineering, Macquarie University, Sydney, NSW, Australia.
| |
Collapse
|
165
|
Troyano-Hernáez P, Reinosa R, Holguín Á. Evolution of SARS-CoV-2 in Spain during the First Two Years of the Pandemic: Circulating Variants, Amino Acid Conservation, and Genetic Variability in Structural, Non-Structural, and Accessory Proteins. Int J Mol Sci 2022; 23:6394. [PMID: 35742840 PMCID: PMC9223475 DOI: 10.3390/ijms23126394] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 02/04/2023] Open
Abstract
Monitoring SARS-CoV-2’s genetic diversity and emerging mutations in this ongoing pandemic is crucial to understanding its evolution and ensuring the performance of COVID-19 diagnostic tests, vaccines, and therapies. Spain has been one of the main epicenters of COVID-19, reaching the highest number of cases and deaths per 100,000 population in Europe at the beginning of the pandemic. This study aims to investigate the epidemiology of SARS-CoV-2 in Spain and its 18 Autonomous Communities across the six epidemic waves established from February 2020 to January 2022. We report on the circulating SARS-CoV-2 variants in each epidemic wave and Spanish region and analyze the mutation frequency, amino acid (aa) conservation, and most frequent aa changes across each structural/non-structural/accessory viral protein among the Spanish sequences deposited in the GISAID database during the study period. The overall SARS-CoV-2 mutation frequency was 1.24 × 10−5. The aa conservation was >99% in the three types of protein, being non-structural the most conserved. Accessory proteins had more variable positions, while structural proteins presented more aa changes per sequence. Six main lineages spread successfully in Spain from 2020 to 2022. The presented data provide an insight into the SARS-CoV-2 circulation and genetic variability in Spain during the first two years of the pandemic.
Collapse
Affiliation(s)
| | | | - África Holguín
- HIV-1 Molecular Epidemiology Laboratory, Microbiology Department and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) in Hospital Universitario Ramón y Cajal, CIBER en Epidemiología y Salud Pública (CIBERESP), Red en Investigación Translacional en Infecciones Pediátricas (RITIP), 28034 Madrid, Spain; (P.T.-H.); (R.R.)
| |
Collapse
|
166
|
Guerrero‐Preston R, Rivera‐Amill V, Caraballo K, Rodríguez‐Torres S, Purcell‐Wiltz A, García AA, Torres RS, Zamuner FT, Zanettini C, MacKay MJ, Baits R, Salgado D, Khullar G, Metti J, Baker T, Dudley J, Vale K, Pérez G, De Jesús L, Miranda Y, Ortiz D, García‐Negrón A, Viera L, Ortiz A, Canabal JA, Romaguera J, Jiménez‐Velázquez I, Marchionni L, Rodríguez‐Orengo JF, Baez A, Mason CE, Sidransky D. Precision health diagnostic and surveillance network uses S gene target failure (SGTF) combined with sequencing technologies to track emerging SARS-CoV-2 variants. Immun Inflamm Dis 2022; 10:e634. [PMID: 35634961 PMCID: PMC9092005 DOI: 10.1002/iid3.634] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 04/18/2022] [Accepted: 04/20/2022] [Indexed: 11/23/2022] Open
Abstract
INTRODUCTION The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic revealed a worldwide lack of effective molecular surveillance networks at local, state, and national levels, which are essential to identify, monitor, and limit viral community spread. SARS-CoV-2 variants of concern (VOCs) such as Alpha and Omicron, which show increased transmissibility and immune evasion, rapidly became dominant VOCs worldwide. Our objective was to develop an evidenced-based genomic surveillance algorithm, combining reverse transcription polymerase chain reaction (RT-PCR) and sequencing technologies to quickly identify highly contagious VOCs, before cases accumulate exponentially. METHODS Deidentified data were obtained from 508,969 patients tested for coronavirus disease 2019 (COVID-19) with the TaqPath COVID-19 RT-PCR Combo Kit (ThermoFisher) in four CLIA-certified clinical laboratories in Puerto Rico (n = 86,639) and in three CLIA-certified clinical laboratories in the United States (n = 422,330). RESULTS TaqPath data revealed a frequency of S Gene Target Failure (SGTF) > 47% for the last week of March 2021 in both, Puerto Rico and US laboratories. The monthly frequency of SGTF in Puerto Rico steadily increased exponentially from 4% in November 2020 to 47% in March 2021. The weekly SGTF rate in US samples was high (>8%) from late December to early January and then also increased exponentially through April (48%). The exponential increase in SGFT prevalence in Puerto Rico was concurrent with a sharp increase in VOCs among all SARS-CoV-2 sequences from Puerto Rico uploaded to Global Influenza Surveillance and Response System (GISAID) (n = 461). Alpha variant frequency increased from <1% in the last week of January 2021 to 51.5% of viral sequences from Puerto Rico collected in the last week of March 2021. CONCLUSIONS According to the proposed evidence-based algorithm, approximately 50% of all SGTF patients should be managed with VOCs self-quarantine and contact tracing protocols, while WGS confirms their lineage in genomic surveillance laboratories. Our results suggest this workflow is useful for tracking VOCs with SGTF.
Collapse
Affiliation(s)
| | - Vanessa Rivera‐Amill
- Center for Research ResourcesPonce Health Sciences University‐Ponce Research InstitutePoncePuerto Rico
| | | | | | - Ana Purcell‐Wiltz
- LifeGene‐Biomarks, IncSan JuanPuerto Rico
- Biology DepartmentUniversity of Puerto RicoRíoPiedrasPuerto Rico
| | - Andrea A. García
- Center for Research ResourcesPonce Health Sciences University‐Ponce Research InstitutePoncePuerto Rico
| | - Raphael S. Torres
- Center for Research ResourcesPonce Health Sciences University‐Ponce Research InstitutePoncePuerto Rico
| | - Fernando T. Zamuner
- Department of Otolaryngology‐Head and Neck SurgeryJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Claudio Zanettini
- Department of Pathology and Laboratory Medicine, Weill Cornell MedicineCornell UniversityNew YorkNew YorkUSA
| | | | | | | | | | | | | | | | | | - Gabriela Pérez
- Neurology Medicine DepartmentPalmetto General HospitalMiamiFloridaUSA
| | | | | | | | | | - Liliana Viera
- Department of SurgeryUniversity of Puerto Rico School of MedicineSan JuanPuerto Rico
| | - Alberto Ortiz
- Internal Medicine DepartmentUniversity of Puerto Rico School of MedicineSanJuanPuerto Rico
| | - Jorge A. Canabal
- Internal Medicine DepartmentUniversity of Puerto Rico School of MedicineSanJuanPuerto Rico
| | - Josefina Romaguera
- Obstetrics and Gynecology DepartmentUniversity of Puerto Rico School of MedicineSan JuanPuerto Rico
| | | | - Luigi Marchionni
- Department of Otolaryngology‐Head and Neck SurgeryJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | | | - Adriana Baez
- Otolaryngology DepartmentUniversity of Puerto Rico School of MedicineSan JuanPuerto Rico
| | | | - David Sidransky
- Department of Otolaryngology‐Head and Neck SurgeryJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| |
Collapse
|
167
|
Chen Y, Liu Q, Zhou L, Zhou Y, Yan H, Lan K. Emerging SARS-CoV-2 variants: Why, how, and what's next? CELL INSIGHT 2022; 1:100029. [PMID: 37193049 PMCID: PMC9057926 DOI: 10.1016/j.cellin.2022.100029] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 04/27/2022] [Accepted: 04/27/2022] [Indexed: 01/18/2023]
Abstract
The emergence of the SARS-CoV-2 Omicron variant poses a striking threat to human society. More than 30 mutations in the Spike protein of the Omicron variant severely compromised the protective immunity elicited by either vaccination or prior infection. The persistent viral evolutionary trajectory generates Omicron-associated lineages, such as BA.1 and BA.2. Moreover, the virus recombination upon Delta and Omicron co-infections has been reported lately, although the impact remains to be assessed. This minireview summarizes the characteristics, evolution and mutation control, and immune evasion mechanisms of SARS-CoV-2 variants, which will be helpful for the in-depth understanding of the SARS-CoV-2 variants and policy-making related to COVID-19 pandemic control.
Collapse
Affiliation(s)
- Yu Chen
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Qianyun Liu
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Li Zhou
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - You Zhou
- Systems Immunity University Research Institute and Division of Infection and Immunity, Cardiff University, Cardiff, UK
| | - Huan Yan
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Ke Lan
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, 430072, China
- Department of Infectious Diseases, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| |
Collapse
|
168
|
Rayati Damavandi A, Dowran R, Al Sharif S, Kashanchi F, Jafari R. Molecular variants of SARS-CoV-2: antigenic properties and current vaccine efficacy. Med Microbiol Immunol 2022; 211:79-103. [PMID: 35235048 PMCID: PMC8889515 DOI: 10.1007/s00430-022-00729-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 02/09/2022] [Indexed: 12/30/2022]
Abstract
An ongoing pandemic of newly emerged SARS-CoV-2 has puzzled many scientists and health care policymakers around the globe. The appearance of the virus was accompanied by several distinct antigenic changes, specifically spike protein which is a key element for host cell entry of virus and major target of currently developing vaccines. Some of these mutations enable the virus to attach to receptors more firmly and easily. Moreover, a growing number of trials are demonstrating higher transmissibility and, in some of them, potentially more serious forms of illness related to novel variants. Some of these lineages, especially the Beta variant of concern, were reported to diminish the neutralizing activity of monoclonal and polyclonal antibodies present in both convalescent and vaccine sera. This could imply that these independently emerged variants could make antiviral strategies prone to serious threats. The rapid changes in the mutational profile of new clades, especially escape mutations, suggest the convergent evolution of the virus due to immune pressure. Nevertheless, great international efforts have been dedicated to producing efficacious vaccines with cutting-edge technologies. Despite the partial decrease in vaccines efficacy against worrisome clades, most current vaccines are still effective at preventing mild to severe forms of disease and hospital admission or death due to coronavirus disease 2019 (COVID-19). Here, we summarize existing evidence about newly emerged variants of SARS-CoV-2 and, notably, how well vaccines work against targeting new variants and modifications of highly flexible mRNA vaccines that might be required in the future.
Collapse
Affiliation(s)
- Amirmasoud Rayati Damavandi
- Students’ Scientific Research Center, Exceptional Talents Development Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Razieh Dowran
- Students’ Scientific Research Center, Exceptional Talents Development Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Sarah Al Sharif
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA USA
| | - Fatah Kashanchi
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA USA
| | - Reza Jafari
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
- Hematology, Immune Cell Therapy, and Stem Cell Transplantation Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
169
|
Subissi L, von Gottberg A, Thukral L, Worp N, Oude Munnink BB, Rathore S, Abu-Raddad LJ, Aguilera X, Alm E, Archer BN, Attar Cohen H, Barakat A, Barclay WS, Bhiman JN, Caly L, Chand M, Chen M, Cullinane A, de Oliveira T, Drosten C, Druce J, Effler P, El Masry I, Faye A, Gaseitsiwe S, Ghedin E, Grant R, Haagmans BL, Herring BL, Iyer SS, Kassamali Z, Kakkar M, Kondor RJ, Leite JA, Leo YS, Leung GM, Marklewitz M, Moyo S, Mendez-Rico J, Melhem NM, Munster V, Nahapetyan K, Oh DY, Pavlin BI, Peacock TP, Peiris M, Peng Z, Poon LLM, Rambaut A, Sacks J, Shen Y, Siqueira MM, Tessema SK, Volz EM, Thiel V, van der Werf S, Briand S, Perkins MD, Van Kerkhove MD, Koopmans MPG, Agrawal A. An early warning system for emerging SARS-CoV-2 variants. Nat Med 2022; 28:1110-1115. [PMID: 35637337 PMCID: PMC11346314 DOI: 10.1038/s41591-022-01836-w] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Global sequencing and surveillance capacity for SARS-CoV-2 must be strengthened and combined with multidisciplinary studies of infectivity, virulence, and immune escape, in order to track the unpredictable evolution of the ongoing COVID-19 pandemic.
Collapse
Affiliation(s)
| | - Anne von Gottberg
- National Institute for Communicable Diseases, Johannesburg, South Africa
- School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Lipi Thukral
- CSIR Institute of Genomics and Integrative Biology, Delhi, India
| | - Nathalie Worp
- Erasmus Medical Centre, Rotterdam, the Netherlands
- Pandemic and Disaster Preparedness Research Centre, Rotterdam/Delft, the Netherlands
| | - Bas B Oude Munnink
- Erasmus Medical Centre, Rotterdam, the Netherlands
- Pandemic and Disaster Preparedness Research Centre, Rotterdam/Delft, the Netherlands
| | - Surabhi Rathore
- CSIR Institute of Genomics and Integrative Biology, Delhi, India
| | | | - Ximena Aguilera
- Epidemiology and Health Policy Centre, Universidad del Desarollo, Santiago, Chile
| | - Erik Alm
- European Centre for Disease Prevention and Control, Stockholm, Sweden
| | | | | | - Amal Barakat
- World Health Organization Regional Office for the Eastern Mediterranean, Cairo, Egypt
| | | | - Jinal N Bhiman
- National Institute for Communicable Diseases, Johannesburg, South Africa
- School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Leon Caly
- Victorian Infectious Diseases Reference Laboratory, Melbourne, Victoria, Australia
| | | | - Mark Chen
- National Centre for Infectious Diseases, Singapore, Singapore
| | | | - Tulio de Oliveira
- Centre for Epidemic Response and Innovation, Stellenbosch University, Stellenbosch, South Africa
| | | | - Julian Druce
- Epidemiology and Health Policy Centre, Universidad del Desarollo, Santiago, Chile
| | - Paul Effler
- University of Western Australia, Perth, Western Australia, Australia
| | | | - Adama Faye
- Institut de Santé et Développement, Université Cheikh Anta Diop, Dakar, Senegal
| | - Simani Gaseitsiwe
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
- Harvard T.H Chan School of Public Health, Department of Immunology & Infectious Diseases, Boston, MA, USA
| | - Elodie Ghedin
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | - Bart L Haagmans
- Erasmus Medical Centre, Rotterdam, the Netherlands
- Pandemic and Disaster Preparedness Research Centre, Rotterdam/Delft, the Netherlands
| | - Belinda L Herring
- World Health Organization Regional Office for Africa, Brazzaville, Republic of Congo
| | - Shilpa S Iyer
- World Health Organization Regional Office for Western Pacific, Manila, The Philippines
| | | | - Manish Kakkar
- World Health Organization Regional Office for South-East Asia, New Delhi, India
| | - Rebecca J Kondor
- United States Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Juliana A Leite
- World Health Organization Regional Office for the Americas, Washington, DC, USA
| | - Yee-Sin Leo
- National Centre for Infectious Diseases, Singapore, Singapore
| | - Gabriel M Leung
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, The People's Republic of China
| | - Marco Marklewitz
- World Health Organization Regional Office for Europe, Copenhagen, Denmark
| | - Sikhulile Moyo
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
- Harvard T.H Chan School of Public Health, Department of Immunology & Infectious Diseases, Boston, MA, USA
| | - Jairo Mendez-Rico
- World Health Organization Regional Office for the Americas, Washington, DC, USA
| | | | - Vincent Munster
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, USA
| | - Karen Nahapetyan
- World Health Organization Regional Office for Europe, Copenhagen, Denmark
| | | | | | - Thomas P Peacock
- Imperial College London, London, UK
- UK Health Security Agency, London, UK
| | - Malik Peiris
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, The People's Republic of China
| | - Zhibin Peng
- Chinese Center for Disease Control and Prevention, Beijing, The People's Republic of China
| | - Leo L M Poon
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, The People's Republic of China
| | | | | | - Yinzhong Shen
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, The People's Republic of China
| | | | - Sofonias K Tessema
- Africa Centers for Disease Control and Prevention, Addis Ababa, Ethiopia
| | | | - Volker Thiel
- Multidisciplinary Center for Infectious Diseases, University of Bern, Bern, Switzerland
- Institute of Virology and Immunology, Mittelhäusern and Bern, Switzerland
| | | | | | | | | | - Marion P G Koopmans
- Erasmus Medical Centre, Rotterdam, the Netherlands
- Pandemic and Disaster Preparedness Research Centre, Rotterdam/Delft, the Netherlands
| | - Anurag Agrawal
- Trivedi School of Biosciences, Ashoka University, Sonipat, India
| |
Collapse
|
170
|
Tian D, Sun Y, Xu H, Ye Q. The emergence and epidemic characteristics of the highly mutated SARS-CoV-2 Omicron variant. J Med Virol 2022; 94:2376-2383. [PMID: 35118687 PMCID: PMC9015498 DOI: 10.1002/jmv.27643] [Citation(s) in RCA: 279] [Impact Index Per Article: 139.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 11/07/2022]
Abstract
Recently, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variant (B.1.1.529) was first identified in Botswana in November 2021. It was first reported to the World Health Organization (WHO) on November 24. On November 26, 2021, according to the advice of scientists who are part of the WHO's Technical Advisory Group on SARS-CoV-2 Virus Evolution (TAG-VE), the WHO defined the strain as a variant of concern (VOC) and named it Omicron. Compared to the other four VOCs (Alpha, Beta, Gamma, and Delta), the Omicron variant was the most highly mutated strain, with 50 mutations accumulated throughout the genome. The Omicron variant contains at least 32 mutations in the spike protein, which was twice as many as the Delta variant. Studies have shown that carrying many mutations can increase infectivity and immune escape of the Omicron variant compared with the early wild-type strain and the other four VOCs. The Omicron variant is becoming the dominant strain in many countries worldwide and brings new challenges to preventing and controlling coronavirus disease 2019 (COVID-19). The current review article aims to analyze and summarize information data about the biological characteristics of amino acid mutations, the epidemic characteristics, immune escape, and vaccine reactivity of the Omicron variant, hoping to provide a scientific reference for monitoring, prevention, and vaccine development strategies for the Omicron variant.
Collapse
Affiliation(s)
- Dandan Tian
- Department of clinical laboratoryNational Clinical Research Center for Child Health, National Children's Regional Medical Center, The Children's HospitalZhejiang University School of MedicineHangzhouChina
| | - Yanhong Sun
- Department of clinical laboratoryNational Clinical Research Center for Child Health, National Children's Regional Medical Center, The Children's HospitalZhejiang University School of MedicineHangzhouChina
| | - Huihong Xu
- Department of clinical laboratoryNational Clinical Research Center for Child Health, National Children's Regional Medical Center, The Children's HospitalZhejiang University School of MedicineHangzhouChina
| | - Qing Ye
- Department of clinical laboratoryNational Clinical Research Center for Child Health, National Children's Regional Medical Center, The Children's HospitalZhejiang University School of MedicineHangzhouChina
| |
Collapse
|
171
|
Souza PFN, Mesquita FP, Amaral JL, Landim PGC, Lima KRP, Costa MB, Farias IR, Belém MO, Pinto YO, Moreira HHT, Magalhaes ICL, Castelo-Branco DSCM, Montenegro RC, de Andrade CR. The spike glycoprotein of SARS-CoV-2: A review of how mutations of spike glycoproteins have driven the emergence of variants with high transmissibility and immune escape. Int J Biol Macromol 2022; 208:105-125. [PMID: 35300999 PMCID: PMC8920968 DOI: 10.1016/j.ijbiomac.2022.03.058] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 03/08/2022] [Accepted: 03/10/2022] [Indexed: 12/23/2022]
Abstract
Late in 2019, SARS-CoV-2 (severe acute respiratory syndrome coronavirus-2) emerged, causing an unknown type of pneumonia today called coronaviruses disease 2019 (COVID-19). COVID-19 is still an ongoing global outbreak that has claimed and threatened many lives worldwide. Along with the fastest vaccine developed in history to fight SARS-CoV-2 came a critical problem, SARS-CoV-2. These new variants are a result of the accumulation of mutations in the sequence and structure of spike (S) glycoprotein, which is by far the most critical protein for SARS-CoV-2 to recognize cells and escape the immune system, in addition to playing a role in SARS-CoV-2 infection, pathogenicity, transmission, and evolution. In this review, we discuss mutation of S protein and how these mutations have led to new variants that are usually more transmissible and can thus mitigate the immunity produced by vaccination. Here, analysis of S protein sequences and structures from variants point out the mutations among them, how they emerge, and the behavior of S protein from each variant. This review brings details in an understandable way about how the variants of SARS-CoV-2 are a result of mutations in S protein, making them more transmissible and even more aggressive than their relatives.
Collapse
Affiliation(s)
- Pedro F N Souza
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Brazil; Drug research and Development Center, Department of Medicine, Federal University of Ceará, Brazil.
| | - Felipe P Mesquita
- Drug research and Development Center, Department of Medicine, Federal University of Ceará, Brazil
| | - Jackson L Amaral
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Brazil
| | - Patrícia G C Landim
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Brazil
| | - Karollyny R P Lima
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Brazil
| | - Marília B Costa
- Drug research and Development Center, Department of Medicine, Federal University of Ceará, Brazil
| | - Izabelle R Farias
- Drug research and Development Center, Department of Medicine, Federal University of Ceará, Brazil
| | - Mônica O Belém
- Laboratory of Translational Research, Christus University Center, Fortaleza, Ceará 60192, Brazil
| | - Yago O Pinto
- Medical Education Institution-Idomed, Canindé, Ceará, Brazil
| | | | | | - Débora S C M Castelo-Branco
- Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Group of Applied Medical Microbiology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Raquel C Montenegro
- Drug research and Development Center, Department of Medicine, Federal University of Ceará, Brazil
| | - Claudia R de Andrade
- Laboratory of Translational Research, Christus University Center, Fortaleza, Ceará 60192, Brazil
| |
Collapse
|
172
|
Gröhs Ferrareze PA, Zimerman RA, Franceschi VB, Caldana GD, Netz PA, Thompson CE. Molecular evolution and structural analyses of the spike glycoprotein from Brazilian SARS-CoV-2 genomes: the impact of selected mutations. J Biomol Struct Dyn 2022; 41:3110-3128. [PMID: 35594172 DOI: 10.1080/07391102.2022.2076154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The COVID-19 pandemic caused by SARS-CoV-2 has reached by February 2022 more than 380 million cases and 5.5 million deaths worldwide since its beginning in late 2019, leading to enhanced concern in the scientific community and the general population. One of the most important pieces of this host-pathogen interaction is the spike protein, which binds to the hACE2 cell receptor, mediates the membrane fusion and is the major target of neutralizing antibodies against SARS-CoV-2. The multiple amino acid substitutions observed in this region, specially in RBD have enhanced the hACE2 binding affinity and led to several modifications in the mechanisms of SARS-CoV-2 pathogenesis, improving the viral fitness and/or promoting immune evasion, with potential impact in the vaccine development. In this work, we identified 48 sites under selective pressures, 17 of them with the strongest evidence by the HyPhy tests, including VOC related mutation sites 138, 142, 222, 262, 484, 681, and 845, among others. The coevolutionary analysis identified 28 sites found not to be conditionally independent, such as E484K-N501Y. The molecular dynamics and free energy estimates showed the structural stabilizing effect and the higher impact of E484K for enhanced binding affinity between the spike RBD and hACE2 in P.1 and P.2 lineages (specially with L452V). Structural changes were also identified in the hACE molecule when interacting with B.1.1.7 RDB. Despite some destabilizing substitutions, a stabilizing effect was identified for the majority of the positively selected mutations.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Patrícia Aline Gröhs Ferrareze
- Graduate Program in Health Sciences, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | | | - Vinícius Bonetti Franceschi
- Center of Biotechnology, Graduate Program in Cell and Molecular Biology (PPGBCM), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Gabriel Dickin Caldana
- Graduate Program in Health Sciences, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | - Paulo Augusto Netz
- Graduate Program in Chemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Claudia Elizabeth Thompson
- Graduate Program in Health Sciences, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil.,Center of Biotechnology, Graduate Program in Cell and Molecular Biology (PPGBCM), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.,Department of Pharmacosciences, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| |
Collapse
|
173
|
da Costa CHS, de Freitas CAB, Alves CN, Lameira J. Assessment of mutations on RBD in the Spike protein of SARS-CoV-2 Alpha, Delta and Omicron variants. Sci Rep 2022; 12:8540. [PMID: 35595778 PMCID: PMC9121086 DOI: 10.1038/s41598-022-12479-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 05/03/2022] [Indexed: 12/15/2022] Open
Abstract
The severe acute respiratory syndrome (SARS) coronavirus 2 (CoV-2) variant Omicron spread more rapid than the other variants of SARS-CoV-2 virus. Mutations on the Spike (S) protein receptor-binding domain (RBD) are critical for the antibody resistance and infectivity of the SARS-CoV-2 variants. In this study, we have used accelerated molecular dynamics (aMD) simulations and free energy calculations to present a systematic analysis of the affinity and conformational dynamics along with the interactions that drive the binding between Spike protein RBD and human angiotensin-converting enzyme 2 (ACE2) receptor. We evaluate the impacts of the key mutation that occur in the RBDs Omicron and other variants in the binding with the human ACE2 receptor. The results show that S protein Omicron has stronger binding to the ACE2 than other variants. The evaluation of the decomposition energy per residue shows the mutations N440K, T478K, Q493R and Q498R observed in Spike protein of SARS-CoV-2 provided a stabilization effect for the interaction between the SARS-CoV-2 RBD and ACE2. Overall, the results demonstrate that faster spreading of SARS-CoV-2 Omicron may be correlated with binding affinity of S protein RBD to ACE2 and mutations of uncharged residues to positively charged residues such as Lys and Arg in key positions in the RBD.
Collapse
Affiliation(s)
- Clauber Henrique Souza da Costa
- Laboratório de Planejamento e Desenvolvimento de Fármacos, Universidade Federal do Pará, Rua Augusto Correa S/N, Belém, PA, Brazil
| | - Camila Auad Beltrão de Freitas
- Laboratório de Planejamento e Desenvolvimento de Fármacos, Universidade Federal do Pará, Rua Augusto Correa S/N, Belém, PA, Brazil
| | - Cláudio Nahum Alves
- Laboratório de Planejamento e Desenvolvimento de Fármacos, Universidade Federal do Pará, Rua Augusto Correa S/N, Belém, PA, Brazil
| | - Jerônimo Lameira
- Laboratório de Planejamento e Desenvolvimento de Fármacos, Universidade Federal do Pará, Rua Augusto Correa S/N, Belém, PA, Brazil.
| |
Collapse
|
174
|
Zeng L, Liu Y, Nguyenla XH, Abbott TR, Han M, Zhu Y, Chemparathy A, Lin X, Chen X, Wang H, Rane DA, Spatz JM, Jain S, Rustagi A, Pinsky B, Zepeda AE, Kadina AP, Walker JA, Holden K, Temperton N, Cochran JR, Barron AE, Connolly MD, Blish CA, Lewis DB, Stanley SA, La Russa MF, Qi LS. Broad-spectrum CRISPR-mediated inhibition of SARS-CoV-2 variants and endemic coronaviruses in vitro. Nat Commun 2022; 13:2766. [PMID: 35589813 PMCID: PMC9119983 DOI: 10.1038/s41467-022-30546-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 05/06/2022] [Indexed: 12/13/2022] Open
Abstract
A major challenge in coronavirus vaccination and treatment is to counteract rapid viral evolution and mutations. Here we demonstrate that CRISPR-Cas13d offers a broad-spectrum antiviral (BSA) to inhibit many SARS-CoV-2 variants and diverse human coronavirus strains with >99% reduction of the viral titer. We show that Cas13d-mediated coronavirus inhibition is dependent on the crRNA cellular spatial colocalization with Cas13d and target viral RNA. Cas13d can significantly enhance the therapeutic effects of diverse small molecule drugs against coronaviruses for prophylaxis or treatment purposes, and the best combination reduced viral titer by over four orders of magnitude. Using lipid nanoparticle-mediated RNA delivery, we demonstrate that the Cas13d system can effectively treat infection from multiple variants of coronavirus, including Omicron SARS-CoV-2, in human primary airway epithelium air-liquid interface (ALI) cultures. Our study establishes CRISPR-Cas13 as a BSA which is highly complementary to existing vaccination and antiviral treatment strategies.
Collapse
Affiliation(s)
- Leiping Zeng
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Yanxia Liu
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Xammy Huu Nguyenla
- Department of Molecular and Cellular Biology, University of California, Berkeley, CA, 94720, USA
| | - Timothy R Abbott
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Mengting Han
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Yanyu Zhu
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | | | - Xueqiu Lin
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Xinyi Chen
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Haifeng Wang
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Draven A Rane
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Jordan M Spatz
- Department of Pediatrics, Stanford University, Stanford, CA, 94305, USA
| | - Saket Jain
- University of California San Francisco, San Francisco, CA, 94143, USA
| | - Arjun Rustagi
- Department of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Benjamin Pinsky
- Department of Medicine, Stanford University, Stanford, CA, 94305, USA
- Department of Pathology, Stanford University, Stanford, CA, USA
| | | | | | | | | | - Nigel Temperton
- Viral Pseudotype Unit, Medway School of Pharmacy, Chatham, Kent ME4 4TB, UK
| | - Jennifer R Cochran
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Annelise E Barron
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | | | - Catherine A Blish
- Department of Medicine, Stanford University, Stanford, CA, 94305, USA
- Chan Zuckerberg BioHub, San Francisco, CA, 94158, USA
| | - David B Lewis
- Department of Pediatrics, Stanford University, Stanford, CA, 94305, USA
| | - Sarah A Stanley
- Department of Molecular and Cellular Biology, University of California, Berkeley, CA, 94720, USA.
| | - Marie F La Russa
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA.
| | - Lei S Qi
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA.
- Chan Zuckerberg BioHub, San Francisco, CA, 94158, USA.
- Sarafan ChEM-H, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
175
|
Tran A, Kervin TA, Overduin M. Multifaceted membrane binding head of the SARS-CoV-2 spike protein. Curr Res Struct Biol 2022; 4:146-157. [PMID: 35602928 PMCID: PMC9109970 DOI: 10.1016/j.crstbi.2022.05.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 04/04/2022] [Accepted: 05/05/2022] [Indexed: 12/23/2022] Open
Abstract
The SARS-CoV-2 spike protein presents a surface with enormous membrane binding potential to host tissues and organelles of infected cells. Its exposed trimeric head binds not only the angiotensin-converting enzyme 2 (ACE2), but also host phospholipids which are missing from all existing structures. Hence, the membrane interaction surfaces that mediate viral fusion, entry, assembly and egress remain unclear. Here the spike:membrane docking sites are identified based on membrane optimal docking area (MODA) analysis of 3D structures of spike proteins in closed and open conformations at endocytic and neutral pH levels as well as ligand complexes. This reveals multiple membrane binding sites in the closed spike head that together prefer convex membranes and are modulated by pH, fatty acids and post-translational modifications including glycosylation. The exposure of the various membrane interaction sites adjusts upon domain repositioning within the trimer, allowing formation of intermediate bilayer complexes that lead to the prefusion state while also enabling ACE2 receptor recognition. In contrast, all antibodies that target the spike head would block the membrane docking process that precedes ACE2 recognition. Together this illuminates the engagements of the spike protein with plasma, endocytic, ER or exocytic vesicle membranes that help to drive the cycle of viral infection, and offers novel sites for intervention.
Collapse
Affiliation(s)
- Anh Tran
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Troy A. Kervin
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Michael Overduin
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
176
|
Petersen JD, Lu J, Fitzgerald W, Zhou F, Blank PS, Matthies D, Zimmerberg J. Unique Aggregation of Retroviral Particles Pseudotyped with the Delta Variant SARS-CoV-2 Spike Protein. Viruses 2022; 14:1024. [PMID: 35632764 PMCID: PMC9147488 DOI: 10.3390/v14051024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/02/2022] [Accepted: 05/05/2022] [Indexed: 02/04/2023] Open
Abstract
Individuals infected with the SARS-CoV-2 Delta variant, lineage B.1.617.2, exhibit faster initial infection with a higher viral load than prior variants, and pseudotyped viral particles bearing the SARS-CoV-2 Delta variant spike protein induce a faster initial infection rate of target cells compared to those bearing other SARS-CoV-2 variant spikes. Here, we show that pseudotyped viral particles bearing the Delta variant spike form unique aggregates, as evidenced by negative stain and cryogenic electron microscopy (EM), flow cytometry, and nanoparticle tracking analysis. Viral particles pseudotyped with other SARS-CoV-2 spike variants do not show aggregation by any of these criteria. The contribution to infection kinetics of the Delta spike's unique property to aggregate is discussed with respect to recent evidence for collective infection by other viruses. Irrespective of this intriguing possibility, spike-dependent aggregation is a new functional parameter of spike-expressing viral particles to evaluate in future spike protein variants.
Collapse
Affiliation(s)
- Jennifer D. Petersen
- Section on Integrative Biophysics, Division of Basic and Translational Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA; (J.D.P.); (P.S.B.)
| | - Jianming Lu
- Codex BioSolutions, Inc., Department of Research and Development, Cell Biology, 12358 Parklawn Dr., Suite 250, North Bethesda, MD 20852, USA;
| | - Wendy Fitzgerald
- Section on Intercellular Interactions, Division of Basic and Translational Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Fei Zhou
- Unit on Structural Biology, Division of Basic and Translational Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA; (F.Z.); (D.M.)
| | - Paul S. Blank
- Section on Integrative Biophysics, Division of Basic and Translational Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA; (J.D.P.); (P.S.B.)
| | - Doreen Matthies
- Unit on Structural Biology, Division of Basic and Translational Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA; (F.Z.); (D.M.)
| | - Joshua Zimmerberg
- Section on Integrative Biophysics, Division of Basic and Translational Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA; (J.D.P.); (P.S.B.)
| |
Collapse
|
177
|
Peter AS, Roth E, Schulz SR, Fraedrich K, Steinmetz T, Damm D, Hauke M, Richel E, Mueller‐Schmucker S, Habenicht K, Eberlein V, Issmail L, Uhlig N, Dolles S, Grüner E, Peterhoff D, Ciesek S, Hoffmann M, Pöhlmann S, McKay PF, Shattock RJ, Wölfel R, Socher E, Wagner R, Eichler J, Sticht H, Schuh W, Neipel F, Ensser A, Mielenz D, Tenbusch M, Winkler TH, Grunwald T, Überla K, Jäck H. A pair of noncompeting neutralizing human monoclonal antibodies protecting from disease in a SARS-CoV-2 infection model. Eur J Immunol 2022; 52:770-783. [PMID: 34355795 PMCID: PMC8420377 DOI: 10.1002/eji.202149374] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/05/2021] [Accepted: 08/03/2021] [Indexed: 11/18/2022]
Abstract
TRIANNI mice carry an entire set of human immunoglobulin V region gene segments and are a powerful tool to rapidly isolate human monoclonal antibodies. After immunizing these mice with DNA encoding the spike protein of SARS-CoV-2 and boosting with spike protein, we identified 29 hybridoma antibodies that reacted with the SARS-CoV-2 spike protein. Nine antibodies neutralize SARS-CoV-2 infection at IC50 values in the subnanomolar range. ELISA-binding studies and DNA sequence analyses revealed one cluster of three clonally related neutralizing antibodies that target the receptor-binding domain and compete with the cellular receptor hACE2. A second cluster of six clonally related neutralizing antibodies bind to the N-terminal domain of the spike protein without competing with the binding of hACE2 or cluster 1 antibodies. SARS-CoV-2 mutants selected for resistance to an antibody from one cluster are still neutralized by an antibody from the other cluster. Antibodies from both clusters markedly reduced viral spread in mice transgenic for human ACE2 and protected the animals from SARS-CoV-2-induced weight loss. The two clusters of potent noncompeting SARS-CoV-2 neutralizing antibodies provide potential candidates for therapy and prophylaxis of COVID-19. The study further supports transgenic animals with a human immunoglobulin gene repertoire as a powerful platform in pandemic preparedness initiatives.
Collapse
|
178
|
Strohl WR, Ku Z, An Z, Carroll SF, Keyt BA, Strohl LM. Passive Immunotherapy Against SARS-CoV-2: From Plasma-Based Therapy to Single Potent Antibodies in the Race to Stay Ahead of the Variants. BioDrugs 2022; 36:231-323. [PMID: 35476216 PMCID: PMC9043892 DOI: 10.1007/s40259-022-00529-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2022] [Indexed: 12/15/2022]
Abstract
The COVID-19 pandemic is now approaching 2 years old, with more than 440 million people infected and nearly six million dead worldwide, making it the most significant pandemic since the 1918 influenza pandemic. The severity and significance of SARS-CoV-2 was recognized immediately upon discovery, leading to innumerable companies and institutes designing and generating vaccines and therapeutic antibodies literally as soon as recombinant SARS-CoV-2 spike protein sequence was available. Within months of the pandemic start, several antibodies had been generated, tested, and moved into clinical trials, including Eli Lilly's bamlanivimab and etesevimab, Regeneron's mixture of imdevimab and casirivimab, Vir's sotrovimab, Celltrion's regdanvimab, and Lilly's bebtelovimab. These antibodies all have now received at least Emergency Use Authorizations (EUAs) and some have received full approval in select countries. To date, more than three dozen antibodies or antibody combinations have been forwarded into clinical trials. These antibodies to SARS-CoV-2 all target the receptor-binding domain (RBD), with some blocking the ability of the RBD to bind human ACE2, while others bind core regions of the RBD to modulate spike stability or ability to fuse to host cell membranes. While these antibodies were being discovered and developed, new variants of SARS-CoV-2 have cropped up in real time, altering the antibody landscape on a moving basis. Over the past year, the search has widened to find antibodies capable of neutralizing the wide array of variants that have arisen, including Alpha, Beta, Gamma, Delta, and Omicron. The recent rise and dominance of the Omicron family of variants, including the rather disparate BA.1 and BA.2 variants, demonstrate the need to continue to find new approaches to neutralize the rapidly evolving SARS-CoV-2 virus. This review highlights both convalescent plasma- and polyclonal antibody-based approaches as well as the top approximately 50 antibodies to SARS-CoV-2, their epitopes, their ability to bind to SARS-CoV-2 variants, and how they are delivered. New approaches to antibody constructs, including single domain antibodies, bispecific antibodies, IgA- and IgM-based antibodies, and modified ACE2-Fc fusion proteins, are also described. Finally, antibodies being developed for palliative care of COVID-19 disease, including the ramifications of cytokine release syndrome (CRS) and acute respiratory distress syndrome (ARDS), are described.
Collapse
Affiliation(s)
| | - Zhiqiang Ku
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Sciences Center, Houston, TX USA
| | - Zhiqiang An
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Sciences Center, Houston, TX USA
| | | | | | | |
Collapse
|
179
|
Choi KE, Kim JM, Rhee JE, Park AK, Kim EJ, Yoo CK, Kang NS. Molecular Dynamics Studies on the Structural Stability Prediction of SARS-CoV-2 Variants Including Multiple Mutants. Int J Mol Sci 2022; 23:ijms23094956. [PMID: 35563345 PMCID: PMC9106056 DOI: 10.3390/ijms23094956] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/21/2022] [Accepted: 04/26/2022] [Indexed: 02/01/2023] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has caused the Coronavirus Disease (COVID-19) pandemic worldwide. The spike protein in SARS-CoV-2 fuses with and invades cells in the host respiratory system by binding to angiotensin-converting enzyme 2 (ACE2). The spike protein, however, undergoes continuous mutation from a D614G single mutant to an omicron variant, including multiple mutants. In this study, variants, including multiple mutants (double, triple mutants, B.1.620, delta, alpha, delta_E484Q, mu, and omicron) were investigated in patients. The 3D structure of the full-length spike protein was used in conformational analysis depending on the SARS-CoV-2 variants. The structural stability of the variant types was analyzed based on the distance between the receptor-binding domain (RBD) of each chain in the spike protein and the binding free energy between the spike protein and bound ACE2 in the one-, two-, and three-open-complex forms using molecular dynamics (MD) simulation. Omicron variants, the most prevalent in the recent history of the global pandemic, which consist of 32 mutations, showed higher stability in all open-complex forms compared with that of the wild type and other variants. We suggest that the conformational stability of the spike protein is the one of the important determinants for the differences in viral infectivity among variants, including multiple mutants.
Collapse
Affiliation(s)
- Kwang-Eun Choi
- Graduate School of New Drug Discovery and Development, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea;
| | - Jeong-Min Kim
- Division of Emerging Infectious Diseases, Bureau of Infectious Disease Diagnosis Control, Korea Disease Control and Prevention Agency, 187 Osongsaengmyeong 2-ro, Osong-eup, Heungdeok-gu, Cheongju-si 28159, Korea; (J.-M.K.); (J.E.R.); (A.K.P.); (E.-J.K.)
| | - Jee Eun Rhee
- Division of Emerging Infectious Diseases, Bureau of Infectious Disease Diagnosis Control, Korea Disease Control and Prevention Agency, 187 Osongsaengmyeong 2-ro, Osong-eup, Heungdeok-gu, Cheongju-si 28159, Korea; (J.-M.K.); (J.E.R.); (A.K.P.); (E.-J.K.)
| | - Ae Kyung Park
- Division of Emerging Infectious Diseases, Bureau of Infectious Disease Diagnosis Control, Korea Disease Control and Prevention Agency, 187 Osongsaengmyeong 2-ro, Osong-eup, Heungdeok-gu, Cheongju-si 28159, Korea; (J.-M.K.); (J.E.R.); (A.K.P.); (E.-J.K.)
| | - Eun-Jin Kim
- Division of Emerging Infectious Diseases, Bureau of Infectious Disease Diagnosis Control, Korea Disease Control and Prevention Agency, 187 Osongsaengmyeong 2-ro, Osong-eup, Heungdeok-gu, Cheongju-si 28159, Korea; (J.-M.K.); (J.E.R.); (A.K.P.); (E.-J.K.)
| | - Cheon Kwon Yoo
- Bureau of Infectious Disease Diagnosis Control, Korea Disease Control and Prevention Agency, 187 Osongsaengmyeong 2-ro, Osong-eup, Heungdeok-gu, Cheongju-si 28159, Korea;
| | - Nam Sook Kang
- Graduate School of New Drug Discovery and Development, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea;
- Correspondence: ; Tel.: +82-42-821-8626
| |
Collapse
|
180
|
Guo Y, Han J, Zhang Y, He J, Yu W, Zhang X, Wu J, Zhang S, Kong Y, Guo Y, Lin Y, Zhang J. SARS-CoV-2 Omicron Variant: Epidemiological Features, Biological Characteristics, and Clinical Significance. Front Immunol 2022; 13:877101. [PMID: 35572518 PMCID: PMC9099228 DOI: 10.3389/fimmu.2022.877101] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/07/2022] [Indexed: 12/23/2022] Open
Abstract
The SARS-CoV-2 Omicron (B.1.1529) variant was designated as a variant of concern (VOC) by the World Health Organization (WHO) on November 26, 2021. Within two months, it had replaced the Delta variant and had become the dominant circulating variant around the world. The Omicron variant possesses an unprecedented number of mutations, especially in the spike protein, which may be influencing its biological and clinical aspects. Preliminary studies have suggested that increased transmissibility and the reduced protective effects of neutralizing antibodies have contributed to the rapid spread of this variant, posing a significant challenge to control the coronavirus disease 2019 (COVID-19) pandemic. There is, however, a silver lining for this wave of the Omicron variant. A lower risk of hospitalization and mortality has been observed in prevailing countries. Booster vaccination also has ameliorated a significant reduction in neutralization. Antiviral drugs are minimally influenced. Moreover, the functions of Fc-mediated and T-cell immunity have been retained to a great extent, both of which play a key role in preventing severe disease.
Collapse
Affiliation(s)
- Yifei Guo
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Jiajia Han
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Yao Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Jingjing He
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Weien Yu
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Xueyun Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Jingwen Wu
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Shenyan Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Yide Kong
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Yue Guo
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Yanxue Lin
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Jiming Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Medical Molecular Virology (MOE/MOH), Shanghai Medical College, Fudan University, Shanghai, China
- Department of Infectious Diseases, Jing’An Branch of Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
181
|
Yu F, Pan T, Huang F, Ying R, Liu J, Fan H, Zhang J, Liu W, Lin Y, Yuan Y, Yang T, Li R, Zhang X, Lv X, Chen Q, Liang A, Zou F, Liu B, Hu F, Tang X, Li L, Deng K, He X, Zhang H, Zhang Y, Ma X. Glycopeptide Antibiotic Teicoplanin Inhibits Cell Entry of SARS-CoV-2 by Suppressing the Proteolytic Activity of Cathepsin L. Front Microbiol 2022; 13:884034. [PMID: 35572668 PMCID: PMC9096618 DOI: 10.3389/fmicb.2022.884034] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 03/28/2022] [Indexed: 12/13/2022] Open
Abstract
Since the outbreak of the coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), public health worldwide has been greatly threatened. The development of an effective treatment for this infection is crucial and urgent but is hampered by the incomplete understanding of the viral infection mechanisms and the lack of specific antiviral agents. We previously reported that teicoplanin, a glycopeptide antibiotic that has been commonly used in the clinic to treat bacterial infection, significantly restrained the cell entry of Ebola virus, SARS-CoV, and MERS-CoV by specifically inhibiting the activity of cathepsin L (CTSL). Here, we found that the cleavage sites of CTSL on the spike proteins of SARS-CoV-2 were highly conserved among all the variants. The treatment with teicoplanin suppressed the proteolytic activity of CTSL on spike and prevented the cellular infection of different pseudotyped SARS-CoV-2 viruses. Teicoplanin potently prevented the entry of SARS-CoV-2 into the cellular cytoplasm with an IC50 of 2.038 μM for the Wuhan-Hu-1 reference strain and an IC50 of 2.116 μM for the SARS-CoV-2 (D614G) variant. The pre-treatment of teicoplanin also prevented SARS-CoV-2 infection in hACE2 mice. In summary, our data reveal that CTSL is required for both SARS-CoV-2 and SARS-CoV infection and demonstrate the therapeutic potential of teicoplanin for universal anti-CoVs intervention.
Collapse
Affiliation(s)
- Fei Yu
- Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Science, Guangzhou, China
| | - Ting Pan
- Key Laboratory of Tropical Disease Control of Ministry Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Institute of Human Virology, Sun Yat-sen University, Guangzhou, China
- Center for Infection and Immunity Study, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Feng Huang
- Key Laboratory of Tropical Disease Control of Ministry Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Institute of Human Virology, Sun Yat-sen University, Guangzhou, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Ruosu Ying
- Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jun Liu
- Key Laboratory of Tropical Disease Control of Ministry Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Institute of Human Virology, Sun Yat-sen University, Guangzhou, China
- Center for Infection and Immunity Study, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Huimin Fan
- Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Junsong Zhang
- Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Science, Guangzhou, China
| | - Weiwei Liu
- Key Laboratory of Tropical Disease Control of Ministry Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Institute of Human Virology, Sun Yat-sen University, Guangzhou, China
| | - Yingtong Lin
- Key Laboratory of Tropical Disease Control of Ministry Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Institute of Human Virology, Sun Yat-sen University, Guangzhou, China
| | - Yaochang Yuan
- Key Laboratory of Tropical Disease Control of Ministry Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Institute of Human Virology, Sun Yat-sen University, Guangzhou, China
| | - Tao Yang
- Key Laboratory of Tropical Disease Control of Ministry Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Institute of Human Virology, Sun Yat-sen University, Guangzhou, China
| | - Rong Li
- Key Laboratory of Tropical Disease Control of Ministry Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Institute of Human Virology, Sun Yat-sen University, Guangzhou, China
| | - Xu Zhang
- Key Laboratory of Tropical Disease Control of Ministry Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Institute of Human Virology, Sun Yat-sen University, Guangzhou, China
| | - Xi Lv
- Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Science, Guangzhou, China
| | - Qianyu Chen
- Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Science, Guangzhou, China
| | - Anqi Liang
- Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Science, Guangzhou, China
| | - Fan Zou
- Key Laboratory of Tropical Disease Control of Ministry Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Institute of Human Virology, Sun Yat-sen University, Guangzhou, China
- Guangzhou Women and Children Medical Center, Guangzhou Institute of Pediatrics, Guangzhou, China
| | - Bingfeng Liu
- Key Laboratory of Tropical Disease Control of Ministry Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Institute of Human Virology, Sun Yat-sen University, Guangzhou, China
| | - Fengyu Hu
- Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xiaoping Tang
- Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Linghua Li
- Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Kai Deng
- Key Laboratory of Tropical Disease Control of Ministry Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Institute of Human Virology, Sun Yat-sen University, Guangzhou, China
| | - Xin He
- Key Laboratory of Tropical Disease Control of Ministry Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Institute of Human Virology, Sun Yat-sen University, Guangzhou, China
| | - Hui Zhang
- Key Laboratory of Tropical Disease Control of Ministry Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Institute of Human Virology, Sun Yat-sen University, Guangzhou, China
- National Guangzhou Laboratory, Bio-Island, Guangzhou, China
| | - Yiwen Zhang
- Key Laboratory of Tropical Disease Control of Ministry Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Institute of Human Virology, Sun Yat-sen University, Guangzhou, China
| | - Xiancai Ma
- Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Science, Guangzhou, China
- Key Laboratory of Tropical Disease Control of Ministry Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Institute of Human Virology, Sun Yat-sen University, Guangzhou, China
- National Guangzhou Laboratory, Bio-Island, Guangzhou, China
| |
Collapse
|
182
|
Weng S, Zhou H, Ji C, Li L, Han N, Yang R, Shang J, Wu A. Conserved Pattern and Potential Role of Recurrent Deletions in SARS-CoV-2 Evolution. Microbiol Spectr 2022; 10:e0219121. [PMID: 35254107 PMCID: PMC9045279 DOI: 10.1128/spectrum.02191-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/06/2022] [Indexed: 12/22/2022] Open
Abstract
SARS-CoV-2 continues adapting to human hosts during the current worldwide pandemic since 2019. This virus evolves through multiple means, such as single nucleotide mutations and structural variations, which has brought great difficulty to disease prevention and control of COVID-19. Structural variation, including multiple nucleotide changes like insertions and deletions, has a greater impact relative to single nucleotide mutation on both genome structures and protein functions. In this study, we found that deletion occurred frequently in not only SARS-CoV-2 but also in other SARS-related coronaviruses. These deletions showed obvious location bias and formed 45 recurrent deletion regions in the viral genome. Some of these deletions showed proliferation advantages, including four high-frequency deletions (nsp6 Δ106-109, S Δ69-70, S Δ144, and Δ28271) that were detected in around 50% of SARS-CoV-2 genomes and other 19 median-frequency deletions. In addition, the association between deletions and the WHO reported variants of concern (VOC) and variants of interest (VOI) of SARS-CoV-2 indicated that these variants had a unique combination of deletion patterns. In the spike (S) protein, the deletions in SARS-CoV-2 were mainly in the N-terminal domain. Some deletions, such as S Δ144/145 and S Δ243-244, have been confirmed to block the binding sites of neutralizing antibodies. Overall, this study revealed a conservative regional pattern and the potential effect of some deletions in SARS-CoV-2 over the whole genome, providing important evidence for potential epidemic control and vaccine development. IMPORTANCE Mutations in SARS-CoV-2 were studied extensively, while only the structure variations on the spike protein were discussed well in previous studies. To study the role of structural variations in virus evolution, we described the distribution of structure variations on the whole genome. Conserved patterns were found of deletions among SARS-CoV-2, SARS-CoV-2-like, and SARS-CoV-like viruses. There were 45 recurrent deletion regions (RDRs) in SARS-CoV-2 generated through the integration of deleted positions. In these regions, four high-frequency deletions parallelly appeared in multiple strains. Furthermore, in the spike protein, the deletions in SARS-CoV-2 were mainly in the N-terminal domain, blocking the binding sites of some neutralizing antibodies, while the structural variations in SARS-related coronavirus were mainly in the N-terminal domain and receptor binding domain. The receptor binding domain is highly related to hosting recognition. The deletions in the receptor binding domain may play a role in host adaption.
Collapse
Affiliation(s)
- Shenghui Weng
- Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Suzhou Institute of Systems Medicine, Suzhou, China
| | - Hangyu Zhou
- Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Suzhou Institute of Systems Medicine, Suzhou, China
| | - Chengyang Ji
- Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Suzhou Institute of Systems Medicine, Suzhou, China
| | - Liang Li
- Linyi People’s Hospital, Shandong, China
| | - Na Han
- Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Suzhou Institute of Systems Medicine, Suzhou, China
| | - Rong Yang
- Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Suzhou Institute of Systems Medicine, Suzhou, China
| | - Jingzhe Shang
- Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Suzhou Institute of Systems Medicine, Suzhou, China
| | - Aiping Wu
- Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Suzhou Institute of Systems Medicine, Suzhou, China
| |
Collapse
|
183
|
McLean G, Kamil J, Lee B, Moore P, Schulz TF, Muik A, Sahin U, Türeci Ö, Pather S. The Impact of Evolving SARS-CoV-2 Mutations and Variants on COVID-19 Vaccines. mBio 2022; 13:e0297921. [PMID: 35352979 PMCID: PMC9040821 DOI: 10.1128/mbio.02979-21] [Citation(s) in RCA: 112] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2022] [Indexed: 12/26/2022] Open
Abstract
The emergence of several new variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in recent months has raised concerns around the potential impact on ongoing vaccination programs. Data from clinical trials and real-world evidence suggest that current vaccines remain highly effective against the alpha variant (B.1.1.7), while some vaccines have reduced efficacy and effectiveness against symptomatic disease caused by the beta variant (B.1.351) and the delta variant (B.1.617.2); however, effectiveness against severe disease and hospitalization caused by delta remains high. Although data on the effectiveness of the primary regimen against omicron (B.1.1.529) are limited, booster programs using mRNA vaccines have been shown to restore protection against infection and symptomatic disease (regardless of the vaccine used for the primary regimen) and maintain high effectiveness against hospitalization. However, effectiveness against infection and symptomatic disease wanes with time after the booster dose. Studies have demonstrated reductions of varying magnitude in neutralizing activity of vaccine-elicited antibodies against a range of SARS-CoV-2 variants, with the omicron variant in particular exhibiting partial immune escape. However, evidence suggests that T-cell responses are preserved across vaccine platforms, regardless of variant of concern. Nevertheless, various mitigation strategies are under investigation to address the potential for reduced efficacy or effectiveness against current and future SARS-CoV-2 variants, including modification of vaccines for certain variants (including omicron), multivalent vaccine formulations, and different delivery mechanisms.
Collapse
Affiliation(s)
- Gary McLean
- School of Human Sciences, London Metropolitan University and National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Jeremy Kamil
- Louisiana State University Health, Shreveport, Louisiana, USA
| | - Benhur Lee
- Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Penny Moore
- Centre for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
- MRC Antibody Immunity Research Unit, School of Pathology, The University of the Witwatersrand, Johannesburg, South Africa
| | - Thomas F. Schulz
- Institute of Virology, Hannover Medical School, Hannover, Germany
- Cluster of Excellence 2155 RESIST, Hannover, Germany
- German Centre for Infection Research, Hannover-Braunschweig Site, Germany
| | | | | | | | | |
Collapse
|
184
|
Dumache R, Enache A, Macasoi I, Dehelean CA, Dumitrascu V, Mihailescu A, Popescu R, Vlad D, Vlad CS, Muresan C. SARS-CoV-2: An Overview of the Genetic Profile and Vaccine Effectiveness of the Five Variants of Concern. Pathogens 2022; 11:pathogens11050516. [PMID: 35631037 PMCID: PMC9144800 DOI: 10.3390/pathogens11050516] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/21/2022] [Accepted: 04/25/2022] [Indexed: 12/13/2022] Open
Abstract
With the onset of the COVID-19 pandemic, enormous efforts have been made to understand the genus SARS-CoV-2. Due to the high rate of global transmission, mutations in the viral genome were inevitable. A full understanding of the viral genome and its possible changes represents one of the crucial aspects of pandemic management. Structural protein S plays an important role in the pathogenicity of SARS-CoV-2, mutations occurring at this level leading to viral forms with increased affinity for ACE2 receptors, higher transmissibility and infectivity, resistance to neutralizing antibodies and immune escape, increasing the risk of infection and disease severity. Thus, five variants of concern are currently being discussed, Alpha, Beta, Gamma, Delta and Omicron. In the present review, a comprehensive summary of the following critical aspects regarding SARS-CoV-2 has been made: (i) the genomic characteristics of SARS-CoV-2; (ii) the pathological mechanism of transmission, penetration into the cell and action on specific receptors; (iii) mutations in the SARS-CoV-2 genome; and (iv) possible implications of mutations in diagnosis, treatment, and vaccination.
Collapse
Affiliation(s)
- Raluca Dumache
- Ethics and Human Identification Research Center, Department of Neurosciences, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (R.D.); (A.E.); (A.M.); (C.M.)
| | - Alexandra Enache
- Ethics and Human Identification Research Center, Department of Neurosciences, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (R.D.); (A.E.); (A.M.); (C.M.)
| | - Ioana Macasoi
- Departament of Toxicology and Drug Industry, Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timişoara, Romania
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
- Correspondence: (I.M.); (C.A.D.)
| | - Cristina Adriana Dehelean
- Departament of Toxicology and Drug Industry, Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timişoara, Romania
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
- Correspondence: (I.M.); (C.A.D.)
| | - Victor Dumitrascu
- Department of Pharmacology and Biochemistry, Discipline of Pharmacology, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (V.D.); (D.V.); (C.S.V.)
| | - Alexandra Mihailescu
- Ethics and Human Identification Research Center, Department of Neurosciences, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (R.D.); (A.E.); (A.M.); (C.M.)
- Genetics, Genomic Medicine Research Center, Department of Microscopic Morphology, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Roxana Popescu
- Department of Microscopic Morphology, Discipline of Molecular and Cell Biology, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania;
| | - Daliborca Vlad
- Department of Pharmacology and Biochemistry, Discipline of Pharmacology, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (V.D.); (D.V.); (C.S.V.)
| | - Cristian Sebastian Vlad
- Department of Pharmacology and Biochemistry, Discipline of Pharmacology, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (V.D.); (D.V.); (C.S.V.)
| | - Camelia Muresan
- Ethics and Human Identification Research Center, Department of Neurosciences, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (R.D.); (A.E.); (A.M.); (C.M.)
| |
Collapse
|
185
|
Niu M, Han Y, Dong X, Yang L, Li F, Zhang Y, Hu Q, Xia X, Li H, Sun Y. Highly Sensitive Detection Method for HV69-70del in SARS-CoV-2 Alpha and Omicron Variants Based on CRISPR/Cas13a. Front Bioeng Biotechnol 2022; 10:831332. [PMID: 35497364 PMCID: PMC9039052 DOI: 10.3389/fbioe.2022.831332] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/21/2022] [Indexed: 11/21/2022] Open
Abstract
As SARS-CoV-2 variants continue to evolve, identifying variants with adaptive diagnostic tool is critical to containing the ongoing COVID-19 pandemic. Herein, we establish a highly sensitive and portable on-site detection method for the HV69-70del which exist in SARS-CoV-2 Alpha and Omicron variants using a PCR-based CRISPR/Cas13a detection system (PCR-CRISPR). The specific crRNA (CRISPR RNA) targeting the HV69-70del is screened using the fluorescence-based CRISPR assay, and the sensitivity and specificity of this method are evaluated using diluted nucleic acids of SARS-CoV-2 variants and other pathogens. The results show that the PCR-CRISPR detection method can detect 1 copies/μL SARS-CoV-2 HV69-70del mutant RNA and identify 0.1% of mutant RNA in mixed samples, which is more sensitive than the RT-qPCR based commercial SARS-CoV-2 variants detection kits and sanger sequencing. And it has no cross reactivity with ten other pathogens nucleic acids. Additionally, by combined with our previously developed ERASE (Easy-Readout and Sensitive Enhanced) lateral flow strip suitable for CRISPR detection, we provide a novel diagnosis tool to identify SARS-CoV-2 variants in primary and resource-limited medical institutions without professional and expensive fluorescent detector.
Collapse
Affiliation(s)
- Mengwei Niu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Yao Han
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Xue Dong
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Lan Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Fan Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Youcui Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Qiang Hu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Xueshan Xia
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Hao Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yansong Sun
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| |
Collapse
|
186
|
Martin DP, Lytras S, Lucaci AG, Maier W, Grüning B, Shank SD, Weaver S, MacLean OA, Orton RJ, Lemey P, Boni MF, Tegally H, Harkins GW, Scheepers C, Bhiman JN, Everatt J, Amoako DG, San JE, Giandhari J, Sigal A, Williamson C, Hsiao NY, von Gottberg A, De Klerk A, Shafer RW, Robertson DL, Wilkinson RJ, Sewell BT, Lessells R, Nekrutenko A, Greaney AJ, Starr TN, Bloom JD, Murrell B, Wilkinson E, Gupta RK, de Oliveira T, Kosakovsky Pond SL. Selection Analysis Identifies Clusters of Unusual Mutational Changes in Omicron Lineage BA.1 That Likely Impact Spike Function. Mol Biol Evol 2022; 39:msac061. [PMID: 35325204 PMCID: PMC9037384 DOI: 10.1093/molbev/msac061] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Among the 30 nonsynonymous nucleotide substitutions in the Omicron S-gene are 13 that have only rarely been seen in other SARS-CoV-2 sequences. These mutations cluster within three functionally important regions of the S-gene at sites that will likely impact (1) interactions between subunits of the Spike trimer and the predisposition of subunits to shift from down to up configurations, (2) interactions of Spike with ACE2 receptors, and (3) the priming of Spike for membrane fusion. We show here that, based on both the rarity of these 13 mutations in intrapatient sequencing reads and patterns of selection at the codon sites where the mutations occur in SARS-CoV-2 and related sarbecoviruses, prior to the emergence of Omicron the mutations would have been predicted to decrease the fitness of any virus within which they occurred. We further propose that the mutations in each of the three clusters therefore cooperatively interact to both mitigate their individual fitness costs, and, in combination with other mutations, adaptively alter the function of Spike. Given the evident epidemic growth advantages of Omicron overall previously known SARS-CoV-2 lineages, it is crucial to determine both how such complex and highly adaptive mutation constellations were assembled within the Omicron S-gene, and why, despite unprecedented global genomic surveillance efforts, the early stages of this assembly process went completely undetected.
Collapse
Affiliation(s)
- Darren P. Martin
- Institute of Infectious Diseases and Molecular Medicine, Division of Computational Biology, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, South Africa
| | - Spyros Lytras
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, United Kingdom
| | - Alexander G. Lucaci
- Institute for Genomics and Evolutionary Medicine, Department of Biology, Temple University, Philadelphia, PA, USA
| | - Wolfgang Maier
- Bioinformatics Group, Department of Computer Science, University of Freiburg, Freiburg, Germany, usegalaxy.eu
| | - Björn Grüning
- Bioinformatics Group, Department of Computer Science, University of Freiburg, Freiburg, Germany, usegalaxy.eu
| | - Stephen D. Shank
- Institute for Genomics and Evolutionary Medicine, Department of Biology, Temple University, Philadelphia, PA, USA
| | - Steven Weaver
- Institute for Genomics and Evolutionary Medicine, Department of Biology, Temple University, Philadelphia, PA, USA
| | - Oscar A. MacLean
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, United Kingdom
| | - Richard J. Orton
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, United Kingdom
| | - Philippe Lemey
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Maciej F. Boni
- Center for Infectious Disease Dynamics, Department of Biology, Pennsylvania State University, University Park, PA, USA
| | - Houriiyah Tegally
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine & Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Gordon W. Harkins
- South African National Bioinformatics Institute, University of the Western Cape, Cape Town, South Africa
| | - Cathrine Scheepers
- National Institute for Communicable Diseases (NICD) of the National Health Laboratory Service (NHLS), Johannesburg, South Africa
- SA MRC Antibody Immunity Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Jinal N. Bhiman
- National Institute for Communicable Diseases (NICD) of the National Health Laboratory Service (NHLS), Johannesburg, South Africa
- SA MRC Antibody Immunity Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Josie Everatt
- National Institute for Communicable Diseases (NICD) of the National Health Laboratory Service (NHLS), Johannesburg, South Africa
| | - Daniel G. Amoako
- National Institute for Communicable Diseases (NICD) of the National Health Laboratory Service (NHLS), Johannesburg, South Africa
| | - James Emmanuel San
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine & Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Jennifer Giandhari
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine & Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Alex Sigal
- Africa Health Research Institute, Durban, South Africa
| | - Carolyn Williamson
- Institute of Infectious Disease and Molecular Medicine, Department of Pathology, University of Cape Town, Cape Town, South Africa
- Division of Medical Virology, University of Cape Town and National Health Laboratory Service, Cape Town, South Africa
- Wellcome Center for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine and Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Nei-yuan Hsiao
- Division of Medical Virology, University of Cape Town and National Health Laboratory Service, Cape Town, South Africa
| | - Anne von Gottberg
- National Institute for Communicable Diseases (NICD) of the National Health Laboratory Service (NHLS), Johannesburg, South Africa
- School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Arne De Klerk
- Institute of Infectious Diseases and Molecular Medicine, Division of Computational Biology, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, South Africa
| | - Robert W. Shafer
- Division of Infectious Diseases, Department of Medicine, Stanford University, Stanford, CA, USA
| | - David L. Robertson
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, United Kingdom
| | - Robert J. Wilkinson
- Wellcome Center for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine and Department of Medicine, University of Cape Town, Cape Town, South Africa
- Francis Crick Institute, London, United Kingdom
- Department of Infectious Diseases, Imperial College London, London, United Kingdom
| | - B. Trevor Sewell
- Structural Biology Research Unit, Department of Integrative Biomedical Sciences, Institute for Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Richard Lessells
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine & Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Anton Nekrutenko
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA, usegalaxy.org
| | - Allison J. Greaney
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Genome Sciences & Medical Scientist Training Program, University of Washington, Seattle, WA, USA
| | - Tyler N. Starr
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Howard Hughes Medical Institute, Seattle, WA, USA
| | - Jesse D. Bloom
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Howard Hughes Medical Institute, Seattle, WA, USA
| | - Ben Murrell
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Eduan Wilkinson
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine & Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
- Centre for Epidemic Response and Innovation (CERI), School of Data Science, Stellenbosch University, Stellenbosch, South Africa
| | - Ravindra K. Gupta
- Africa Health Research Institute, Durban, South Africa
- Cambridge Institute of Therapeutic Immunology and Infectious Diseases, University of Cambridge, Cambridge, United Kingdom
| | - Tulio de Oliveira
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine & Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
- Centre for Epidemic Response and Innovation (CERI), School of Data Science, Stellenbosch University, Stellenbosch, South Africa
| | - Sergei L. Kosakovsky Pond
- Institute for Genomics and Evolutionary Medicine, Department of Biology, Temple University, Philadelphia, PA, USA
| |
Collapse
|
187
|
Boccia A, Tufano R, Ferrucci V, Sepe L, Bianchi M, Pascarella S, Zollo M, Paolella G. SARS-CoV-2 Pandemic Tracing in Italy Highlights Lineages with Mutational Burden in Growing Subsets. Int J Mol Sci 2022; 23:4155. [PMID: 35456974 PMCID: PMC9029933 DOI: 10.3390/ijms23084155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/31/2022] [Accepted: 04/06/2022] [Indexed: 02/07/2023] Open
Abstract
Tracing the appearance and evolution of virus variants is essential in the management of the COVID-19 pandemic. Here, we focus on SARS-CoV-2 spread in Italian patients by using viral sequences deposited in public databases and a tracing procedure which is used to monitor the evolution of the pandemic and detect the spreading, within the infected population of emergent sub-clades with a potential positive selection. Analyses of a collection of monthly samples focused on Italy highlighted the appearance and evolution of all the main viral sub-trees emerging at the end of the first year of the pandemic. It also identified additional expanding subpopulations which spread during the second year (i.e., 2021). Three-dimensional (3D) modelling of the main amino acid changes in mutated viral proteins, including ORF1ab (nsp3, nsp4, 2'-o-ribose methyltransferase, nsp6, helicase, nsp12 [RdRp]), N, ORF3a, ORF8, and spike proteins, shows the potential of the analysed structural variations to result in epistatic modulation and positive/negative selection pressure. These analyzes will be of importance to the early identification of emerging clades, which can develop into new "variants of concern" (i.e., VOC). These analyses and settings will also help SARS-CoV-2 coronet genomic centers in other countries to trace emerging worldwide variants.
Collapse
Affiliation(s)
- Angelo Boccia
- Ceinge Biotecnologie Avanzate, 80145 Naples, Italy; (A.B.); (R.T.); (V.F.); (L.S.)
| | - Rossella Tufano
- Ceinge Biotecnologie Avanzate, 80145 Naples, Italy; (A.B.); (R.T.); (V.F.); (L.S.)
| | - Veronica Ferrucci
- Ceinge Biotecnologie Avanzate, 80145 Naples, Italy; (A.B.); (R.T.); (V.F.); (L.S.)
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), Università degli Studi di Napoli Federico II, 80131 Naples, Italy
| | - Leandra Sepe
- Ceinge Biotecnologie Avanzate, 80145 Naples, Italy; (A.B.); (R.T.); (V.F.); (L.S.)
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), Università degli Studi di Napoli Federico II, 80131 Naples, Italy
| | - Martina Bianchi
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza Università di Roma, 00185 Rome, Italy; (M.B.); (S.P.)
| | - Stefano Pascarella
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza Università di Roma, 00185 Rome, Italy; (M.B.); (S.P.)
| | - Massimo Zollo
- Ceinge Biotecnologie Avanzate, 80145 Naples, Italy; (A.B.); (R.T.); (V.F.); (L.S.)
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), Università degli Studi di Napoli Federico II, 80131 Naples, Italy
- DAI Medicina di Laboratorio e Trasfusionale, AOU Azienda Ospedaliera ‘Federico II’, 80131 Naples, Italy
| | - Giovanni Paolella
- Ceinge Biotecnologie Avanzate, 80145 Naples, Italy; (A.B.); (R.T.); (V.F.); (L.S.)
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), Università degli Studi di Napoli Federico II, 80131 Naples, Italy
| |
Collapse
|
188
|
Petersen JD, Lu J, Fitzgerald W, Zhou F, Blank PS, Matthies D, Zimmerberg J. The Delta variant SARS-CoV-2 spike protein uniquely promotes aggregation of pseudotyped viral particles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.04.07.487415. [PMID: 35441171 PMCID: PMC9016642 DOI: 10.1101/2022.04.07.487415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Individuals infected with the SARS-CoV-2 Delta variant, lineage B.1.617.2, exhibit faster initial infection with a higher viral load than prior variants, and pseudotyped particles bearing the SARS-CoV-2 Delta variant spike protein induce a faster initial infection rate of target cells compared to those bearing other SARS-CoV-2 variant spikes. Here, we show that pseudotyped particles bearing the Delta variant spike form unique aggregates, as evidenced by negative stain and cryogenic electron microscopy (EM), flow cytometry, and nanoparticle tracking analysis. Viral particles pseudotyped with other SARS-CoV-2 spike variants do not show aggregation by any of these criteria. The contribution to infection kinetics of the Delta spike’s unique property to aggregate is discussed with respect to recent evidence for collective infection by other viruses. Irrespective of this intriguing possibility, spike-dependent aggregation is a new functional parameter of spike-expressing viral particles to evaluate in future spike protein variants.
Collapse
Affiliation(s)
- Jennifer D Petersen
- Section on Integrative Biophysics, Division of Basic and Translational Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Jianming Lu
- Codex BioSolutions, Inc., 12358 Parklawn Dr., Suite 250, North Bethesda, MD, USA
| | - Wendy Fitzgerald
- Section on Intercellular Interactions, Division of Basic and Translational Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Fei Zhou
- Unit on Structural Biology, Division of Basic and Translational Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Paul S Blank
- Section on Integrative Biophysics, Division of Basic and Translational Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Doreen Matthies
- Unit on Structural Biology, Division of Basic and Translational Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Joshua Zimmerberg
- Section on Integrative Biophysics, Division of Basic and Translational Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
189
|
SARS-CoV-2 Testing in the Community: Testing Positive Samples with the TaqMan SARS-CoV-2 Mutation Panel To Find Variants in Real Time. J Clin Microbiol 2022. [PMID: 35369709 PMCID: PMC9020355 DOI: 10.1128/jcm.02408-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Genome sequencing is a powerful tool for identifying SARS-CoV-2 variant lineages; however, there can be limitations due to sequence dropout when used to identify specific key mutations. Recently, ThermoFisher Scientific has developed genotyping assays to help bridge the gap between testing capacity and sequencing capability to generate real-time genotyping results based on specific variants. Over a 6-week period during the months of April and May 2021, we set out to assess the ThermoFisher TaqMan mutation panel genotyping assay, initially for three mutations of concern and then for an additional two mutations of concern, against SARS-CoV-2-positive clinical samples and the corresponding COVID-19 Genomics UK Consortium (COG-UK) sequencing data. We demonstrate that genotyping is a powerful in-depth technique for identifying specific mutations, is an excellent complement to genome sequencing, and has real clinical health value potential, allowing laboratories to report and take action on variants of concern much more quickly.
Collapse
|
190
|
Weng S, Shang J, Cheng Y, Zhou H, Ji C, Yang R, Wu A. Genetic differentiation and diversity of SARS-CoV-2 omicron variant in Its early outbreak. BIOSAFETY AND HEALTH 2022; 4:171-178. [PMID: 35496653 PMCID: PMC9035616 DOI: 10.1016/j.bsheal.2022.04.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/17/2022] [Accepted: 04/22/2022] [Indexed: 11/29/2022] Open
Abstract
The recently emerged Omicron variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has quickly spread around the world. Although many consensus mutations of the Omicron variant have been recognized, little is known about its genetic variation during its transmission in the population. Here, we comprehensively analyzed the genetic differentiation and diversity of the Omicron variant during its early outbreak. We found that Omicron achieved more structural variations, especially deletions, on the SARS-CoV-2 genome than the other four variants of concern (Alpha, Beta, Gamma, and Delta) in the same timescale. In addition, the Omicron variant acquired, except for 50 consensus mutations, seven great new non-synonymous nucleotide substitutions during its spread. Three of them are on the S protein, including S_A701V, S_L1081V, and S_R346K, which belong to the receptor-binding domain (RBD). The Omicron BA.1 branch could be divided into five divergent groups spreading across different countries and regions based on these seven novel mutations. Furthermore, we found that the Omicron variant possesses more mutations related to a faster transmission rate than the other SARS-CoV-2 variants by assessing the relationship between the genetic diversity and transmission rate. The findings indicated that more attention should be paid to the significant genetic differentiation and diversity of the Omicron variant for better disease prevention and control.
Collapse
|
191
|
Thakur N, Gallo G, Newman J, Peacock TP, Biasetti L, Hall CN, Wright E, Barclay W, Bailey D. SARS-CoV-2 variants of concern alpha, beta, gamma and delta have extended ACE2 receptor host ranges. J Gen Virol 2022; 103. [PMID: 35377298 DOI: 10.1099/jgv.0.001735] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Following the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in PR China in late 2019 a number of variants have emerged, with two of these - alpha and delta - subsequently growing to global prevalence. One characteristic of these variants are changes within the spike protein, in particular the receptor-binding domain (RBD). From a public health perspective, these changes have important implications for increased transmissibility and immune escape; however, their presence could also modify the intrinsic host range of the virus. Using viral pseudotyping, we examined whether the variants of concern (VOCs) alpha, beta, gamma and delta have differing host angiotensin-converting enzyme 2 (ACE2) receptor usage patterns, focusing on a range of relevant mammalian ACE2 proteins. All four VOCs were able to overcome a previous restriction for mouse ACE2, with demonstrable differences also seen for individual VOCs with rat, ferret or civet ACE2 receptors, changes that we subsequently attributed to N501Y and E484K substitutions within the spike RBD.
Collapse
Affiliation(s)
- Nazia Thakur
- The Pirbright Institute, Guildford, Surrey, GU24 0NF, UK.,Nuffield Department of Medicine, The Jenner Institute, Oxford, OX3 7DQ, UK
| | - Giulia Gallo
- The Pirbright Institute, Guildford, Surrey, GU24 0NF, UK
| | - Joseph Newman
- The Pirbright Institute, Guildford, Surrey, GU24 0NF, UK
| | - Thomas P Peacock
- Department of Infectious Disease, Imperial College - London, W2 1PG, UK
| | - Luca Biasetti
- School of Psychology and Neuroscience, University of Sussex, Falmer, BN1 9QH, UK
| | - Catherine N Hall
- School of Psychology and Neuroscience, University of Sussex, Falmer, BN1 9QH, UK
| | - Edward Wright
- Viral Pseudotype Unit, School of Life Sciences, University of Sussex, Falmer, BN1 9QG, UK
| | - Wendy Barclay
- Department of Infectious Disease, Imperial College - London, W2 1PG, UK
| | - Dalan Bailey
- The Pirbright Institute, Guildford, Surrey, GU24 0NF, UK
| |
Collapse
|
192
|
Bhattacharya M, Sharma AR, Dhama K, Agoramoorthy G, Chakraborty C. Omicron variant (B.1.1.529) of SARS-CoV-2: understanding mutations in the genome, S-glycoprotein, and antibody-binding regions. GeroScience 2022; 44:619-637. [PMID: 35258772 PMCID: PMC8902853 DOI: 10.1007/s11357-022-00532-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 02/16/2022] [Indexed: 01/18/2023] Open
Abstract
The Omicron variant has been detected in nearly 150 countries. We analyzed the mutational landscape of Omicron throughout the genome, focusing the S-glycoprotein. We also evaluated mutations in the antibody-binding regions and observed some important mutations overlapping those of previous variants including N501Y, D614G, H655Y, N679K, and P681H. Various new receptor-binding domain mutations were detected, including Q493K, G496S, Q498R, S477N, G466S, N440K, and Y505H. New mutations were found in the NTD (Δ143-145, A67V, T95I, L212I, and Δ211) including one new mutation in fusion peptide (D796Y). There are several mutations in the antibody-binding region including K417N, E484A, Q493K, Q498R, N501Y, and Y505H and several near the antibody-binding region (S477N, T478K, G496S, G446S, and N440K). The impact of mutations in regions important for the affinity between spike proteins and neutralizing antibodies was evaluated. Furthermore, we examined the effect of significant antibody-binding mutations (K417N, T478K, E484A, and N501Y) on antibody affinity, stability to ACE2 interaction, and possibility of amino acid substitution. All the four mutations destabilize the antibody-binding affinity. This study reveals future directions for developing neutralizing antibodies against the Omicron variant.
Collapse
Affiliation(s)
- Manojit Bhattacharya
- Department of Zoology, Fakir Mohan University, Vyasa Vihar, Balasore, 756020, Odisha, India
| | - Ashish Ranjan Sharma
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, 24252, Gangwon-do, Republic of Korea
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, Uttar Pradesh, India
| | | | - Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Barasat-Barrackpore Rd, Kolkata, West Bengal, 700126, India.
| |
Collapse
|
193
|
Behl T, Kaur I, Sehgal A, Singh S, Sharma N, Anwer MK, Makeen HA, Albratty M, Alhazmi HA, Bhatia S, Bungau S. There is nothing exempt from the peril of mutation - The Omicron spike. Biomed Pharmacother 2022; 148:112756. [PMID: 35228064 PMCID: PMC8872818 DOI: 10.1016/j.biopha.2022.112756] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 11/25/2022] Open
Abstract
The 2019 corona virus disease (COVID-19) has caused a global chaos, where a novel Omicron variant has challenged the healthcare system, followed by which it has been referred to as a variant of concern (VOC) by the World Health Organization (WHO), owing to its alarming transmission and infectivity rate. The large number of mutations in the receptor binding domain (RBD) of the spike protein is responsible for strengthening of the spike-angiotensin-converting enzyme 2 (ACE2) interaction, thereby explaining the elevated threat. This is supplemented by enhanced resistance of the variant towards pre-existing antibodies approved for the COVID-19 therapy. The manuscript brings into light failure of existing therapies to provide the desired effect, however simultaneously discussing the novel possibilities on the verge of establishing suitable treatment portfolio. The authors entail the risks associated with omicron resistance against antibodies and vaccine ineffectiveness on one side, and novel approaches and targets - kinase inhibitors, viral protease inhibitors, phytoconstituents, entry pathways - on the other. The manuscript aims to provide a holistic picture about the Omicron variant, by providing comprehensive discussions related to multiple aspects of the mutated spike variant, which might aid the global researchers and healthcare experts in finding an optimised solution to this pandemic.
Collapse
Affiliation(s)
- Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Ishnoor Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Neelam Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Md Khalid Anwer
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Hafiz A Makeen
- Pharmacy Practice Research Unit, Clinical Pharmacy Department, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Mohammed Albratty
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Hassan A Alhazmi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Saudi Arabia; Substance Abuse and Toxicology Research Centre, Jazan University, Jazan, Saudi Arabia
| | - Saurabh Bhatia
- Natural & Medical Sciences Research Centre, University of Nizwa, Nizwa, Oman; School of Health Science, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania.
| |
Collapse
|
194
|
Yang Z, Zhang S, Tang YP, Zhang S, Xu DQ, Yue SJ, Liu QL. Clinical Characteristics, Transmissibility, Pathogenicity, Susceptible Populations, and Re-infectivity of Prominent COVID-19 Variants. Aging Dis 2022; 13:402-422. [PMID: 35371608 PMCID: PMC8947836 DOI: 10.14336/ad.2021.1210] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/10/2021] [Indexed: 12/11/2022] Open
Abstract
In addition to the rapid, global spread of SARS-CoV-2, new and comparatively more contagious variants are of considerable concern. These emerging mutations have become a threat to the global public health, creating COVID-19 surges in different countries. However, information on these emerging variants is limited and scattered. In this review, we discuss new variants that have emerged worldwide and identify several variants of concern, such as B.1.1.7, B.1.351, P.1, B.1.617.2 and B.1.1.529, and their basic characteristics. Other significant variants such as C.37, B.1.621, B.1.525, B.1.526, AZ.5, C.1.2, and B.1.617.1 are also discussed. This review highlights the clinical characteristics of these variants, including transmissibility, pathogenicity, susceptible population, and re-infectivity. It provides the latest information on the recent variants of SARS-CoV-2. The summary of this information will help researchers formulate reasonable strategies to curb the ongoing COVID-19 pandemic.
Collapse
Affiliation(s)
- Zhen Yang
- 1Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi, China
- 2School of Public Health, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi, China
| | - Shuo Zhang
- 3School of Clinical Medicine (Guang'anmen Hospital), Beijing University of Chinese Medicine, Beijing, China
| | - Yu-Ping Tang
- 1Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi, China
| | - Sai Zhang
- 1Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi, China
| | - Ding-Qiao Xu
- 1Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi, China
| | - Shi-Jun Yue
- 1Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi, China
| | - Qi-Ling Liu
- 2School of Public Health, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi, China
| |
Collapse
|
195
|
Zhang Y, Zhang H, Zhang W. SARS-CoV-2 variants, immune escape, and countermeasures. Front Med 2022; 16:196-207. [PMID: 35253097 PMCID: PMC8898658 DOI: 10.1007/s11684-021-0906-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 11/01/2021] [Indexed: 02/08/2023]
Abstract
Coronavirus disease 2019 (COVID-19) has become a global pandemic disease. SARS-CoV-2 variants have aroused great concern and are expected to continue spreading. Although many countries have promoted roll-out vaccination, the immune barrier has not yet been fully established, indicating that populations remain susceptible to infection. In this review, we summarize the literature on variants of concern and focus on the changes in their transmissibility, pathogenicity, and resistance to the immunity constructed by current vaccines. Furthermore, we analyzed relationships between variants and breakthrough infections, as well as the paradigm of new variants in countries with high vaccination rates. Terminating transmission, continuing to strengthen variant surveillance, and combining nonpharmaceutical intervention measures and vaccines are necessary to control these variants.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Infectious Diseases, National Medical Center for Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Haocheng Zhang
- Department of Infectious Diseases, National Medical Center for Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Wenhong Zhang
- Department of Infectious Diseases, National Medical Center for Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Huashan Hospital, Fudan University, Shanghai, 200040, China.
- State Key Laboratory of Genetic Engineering and Institute of Biostatistics, School of Life Sciences, Fudan University, Shanghai, 200040, China.
| |
Collapse
|
196
|
Rajah MM, Bernier A, Buchrieser J, Schwartz O. The Mechanism and Consequences of SARS-CoV-2 Spike-Mediated Fusion and Syncytia Formation. J Mol Biol 2022; 434:167280. [PMID: 34606831 PMCID: PMC8485708 DOI: 10.1016/j.jmb.2021.167280] [Citation(s) in RCA: 91] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/22/2021] [Accepted: 09/27/2021] [Indexed: 12/12/2022]
Abstract
Syncytia are formed when individual cells fuse. SARS-CoV-2 induces syncytia when the viral spike (S) protein on the surface of an infected cell interacts with receptors on neighboring cells. Syncytia may potentially contribute to pathology by facilitating viral dissemination, cytopathicity, immune evasion, and inflammatory response. SARS-CoV-2 variants of concern possess several mutations within the S protein that enhance receptor interaction, fusogenicity and antibody binding. In this review, we discuss the molecular determinants of S mediated fusion and the antiviral innate immunity components that counteract syncytia formation. Several interferon-stimulated genes, including IFITMs and LY6E act as barriers to S protein-mediated fusion by altering the composition or biophysical properties of the target membrane. We also summarize the effect that the mutations associated with the variants of concern have on S protein fusogenicity. Altogether, this review contextualizes the current understanding of Spike fusogenicity and the role of syncytia during SARS-CoV-2 infection and pathology.
Collapse
Affiliation(s)
- Maaran Michael Rajah
- Virus & Immunity Unit, Department of Virology, Institut Pasteur, CNRS UMR 3569, Paris, France; Université de Paris, Sorbonne Paris Cité, Paris, France. https://twitter.com/MaaranRajah
| | - Annie Bernier
- Institut Curie, INSERM U932, Paris, France. https://twitter.com/nini_bernier
| | - Julian Buchrieser
- Virus & Immunity Unit, Department of Virology, Institut Pasteur, CNRS UMR 3569, Paris, France. https://twitter.com/JBuchrieser
| | - Olivier Schwartz
- Virus & Immunity Unit, Department of Virology, Institut Pasteur, CNRS UMR 3569, Paris, France; Université de Paris, Sorbonne Paris Cité, Paris, France; Vaccine Research Institute, Creteil, France.
| |
Collapse
|
197
|
Hertanto DM, Sutanto H, Lusida MI, Kuntaman K, Santoso D. The genomic and clinical features of the COVID-19 Omicron variant: a narrative review. F1000Res 2022. [DOI: 10.12688/f1000research.110647.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is a major cause of morbidity and mortality worldwide. Since late November 2021, the Omicron variant has emerged as the primary cause of COVID-19 and caused a huge increase in the reported incidence around the world. To date, 32-34 spike mutations have been reported to be present in the Omicron variant, 15 of which were located in the receptor-binding domain that interacts with the cell surface of the host cells, while the rest were located in the N-terminal domain and around the furin cleavage site. Recent studies have suggested that those mutations could have a major role in the transmissibility and pathogenicity of the Omicron variant. Additionally, some mutations might contribute to the change of viral tropism of this novel variant. Here, we aim to discuss the recent reports on the transmissibility and severity of the Omicron variant from both the genetic and clinical perspectives. Afterward, we also take the chance to deliver our personal view on the topic.
Collapse
|
198
|
Jung C, Kmiec D, Koepke L, Zech F, Jacob T, Sparrer KMJ, Kirchhoff F. Omicron: What Makes the Latest SARS-CoV-2 Variant of Concern So Concerning? J Virol 2022; 96:e0207721. [PMID: 35225672 PMCID: PMC8941872 DOI: 10.1128/jvi.02077-21] [Citation(s) in RCA: 120] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 01/27/2022] [Indexed: 11/20/2022] Open
Abstract
Emerging strains of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of the coronavirus disease 2019 (COVID-19) pandemic, that show increased transmission fitness and/or immune evasion are classified as "variants of concern" (VOCs). Recently, a SARS-CoV-2 variant first identified in November 2021 in South Africa has been recognized as a fifth VOC, termed "Omicron." What makes this VOC so alarming is the high number of changes, especially in the viral Spike protein, and accumulating evidence for increased transmission efficiency and escape from neutralizing antibodies. In an amazingly short time, the Omicron VOC has outcompeted the previously dominating Delta VOC. However, it seems that the Omicron VOC is overall less pathogenic than other SARS-CoV-2 VOCs. Here, we provide an overview of the mutations in the Omicron genome and the resulting changes in viral proteins compared to other SARS-CoV-2 strains and discuss their potential functional consequences.
Collapse
Affiliation(s)
- Christoph Jung
- Institute of Electrochemistry, Ulm University, Ulm, Germany
| | - Dorota Kmiec
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Lennart Koepke
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Fabian Zech
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Timo Jacob
- Institute of Electrochemistry, Ulm University, Ulm, Germany
| | | | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| |
Collapse
|
199
|
Song Y, He X, Yang W, Wu Y, Cui J, Tang T, Zhang R. Virus-specific editing identification approach reveals the landscape of A-to-I editing and its impacts on SARS-CoV-2 characteristics and evolution. Nucleic Acids Res 2022; 50:2509-2521. [PMID: 35234938 PMCID: PMC8934641 DOI: 10.1093/nar/gkac120] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 01/19/2022] [Accepted: 02/08/2022] [Indexed: 11/14/2022] Open
Abstract
Upon SARS-CoV-2 infection, viral intermediates specifically activate the IFN response through MDA5-mediated sensing and accordingly induce ADAR1 p150 expression, which might lead to viral A-to-I RNA editing. Here, we developed an RNA virus-specific editing identification pipeline, surveyed 7622 RNA-seq data from diverse types of samples infected with SARS-CoV-2, and constructed an atlas of A-to-I RNA editing sites in SARS-CoV-2. We found that A-to-I editing was dynamically regulated, varied between tissue and cell types, and was correlated with the intensity of innate immune response. On average, 91 editing events were deposited at viral dsRNA intermediates per sample. Moreover, editing hotspots were observed, including recoding sites in the spike gene that affect viral infectivity and antigenicity. Finally, we provided evidence that RNA editing accelerated SARS-CoV-2 evolution in humans during the epidemic. Our study highlights the ability of SARS-CoV-2 to hijack components of the host antiviral machinery to edit its genome and fuel its evolution, and also provides a framework and resource for studying viral RNA editing.
Collapse
MESH Headings
- Adenosine Deaminase/genetics
- Adenosine Deaminase/immunology
- Adenosine Deaminase/metabolism
- Angiotensin-Converting Enzyme 2/genetics
- Angiotensin-Converting Enzyme 2/immunology
- Angiotensin-Converting Enzyme 2/metabolism
- Base Sequence
- Binding Sites/genetics
- COVID-19/genetics
- COVID-19/immunology
- COVID-19/virology
- Evolution, Molecular
- Gene Expression/immunology
- Humans
- Immunity, Innate/genetics
- Immunity, Innate/immunology
- Interferon-Induced Helicase, IFIH1/genetics
- Interferon-Induced Helicase, IFIH1/immunology
- Interferon-Induced Helicase, IFIH1/metabolism
- Mutation
- Protein Binding
- RNA Editing/genetics
- RNA Editing/immunology
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/immunology
- RNA-Binding Proteins/metabolism
- SARS-CoV-2/genetics
- SARS-CoV-2/immunology
- SARS-CoV-2/physiology
- Sequence Homology, Nucleic Acid
- Spike Glycoprotein, Coronavirus/genetics
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/metabolism
Collapse
Affiliation(s)
- Yulong Song
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou510275, PR China
| | - Xiuju He
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou510275, PR China
| | - Wenbing Yang
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou510275, PR China
| | - Yaoxing Wu
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou510275, PR China
| | - Jun Cui
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou510275, PR China
| | - Tian Tang
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou510275, PR China
| | - Rui Zhang
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou510275, PR China
| |
Collapse
|
200
|
Anwar MZ, Lodhi MS, Khan MT, Khan MI, Sharif S. Coronavirus Genomes and Unique Mutations in Structural and Non-Structural Proteins in Pakistani SARS-CoV-2 Delta Variants during the Fourth Wave of the Pandemic. Genes (Basel) 2022; 13:552. [PMID: 35328105 PMCID: PMC8951394 DOI: 10.3390/genes13030552] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/10/2022] [Accepted: 03/18/2022] [Indexed: 12/15/2022] Open
Abstract
Genomic epidemiology of SARS-CoV-2 is imperative to explore the transmission, evolution, and also pathogenicity of viruses. The emergence of SARS-CoV-2 variants of concern posed a severe threat to the global public health efforts. To assess the potential consequence of these emerging variants on public health, continuous molecular epidemiology is of vital importance. The current study has been designed to investigate the major SARS-CoV-2 variants and emerging mutations in virus structural and non-structural proteins (NSP) during the fourth wave in September 2021 from the Punjab province of Pakistan. Twenty SARS-CoV-2 positive samples have been collected from major cities were subjected to next-generation sequencing. Among the 20 whole genomes (GenBank Accession SRR16294858-SRR16294877), 2 samples failed to be completely sequenced. These genome sequences harbored 207 non-synonymous mutations, among which 19 were unique to GISAID. The genome sequences were detected: Delta 21I, 21J variants (B.1.617.2). Mutation's spike_F157del, spike_P681R, spike_T478K, spike_T19R, spike_L452R, spike_D614G, spike_G142D, spike_E156G, and spike_R158del have been detected in all samples where K1086Q, E554K, and C1250W were unique in spike protein. These genomic sequences also harbored 129 non-synonymous mutations in NSP. The most common were NSP3_P1469S (N = 17), NSP3_A488S (N = 17), NSP3_P1228L (N = 17), NSP4_V167L (N = 17), NSP4_T492I (N = 17), NSP6_T77A (N = 17), NSP14_A394V (N = 17), NSP12_G671S (N = 18), and NSP13_P77L (N = 18). The mutation, F313Y in NSP12, detected in the current study, was found in a single isolate from Belgium. Numerous other unique mutations have been detected in the virus papain-like protease (NSP3), main protease (NSP5), and RNA-dependent RNA polymerase (NSP12). The most common non-synonymous mutations in the spike protein were subjected to stability analysis, exhibiting a stabilizing effect on structures. The presence of Delta variants may affect therapeutic efforts and vaccine efficacy. Continuous genomic epidemiology of SARS-CoV-2 in Pakistan may be useful for better management of SARS-CoV-2 infections.
Collapse
Affiliation(s)
| | - Madeeha Shahzad Lodhi
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore, 1 KM Defence Road, Lahore 58 810, Pakistan; (M.Z.A.); (M.T.K.); (M.I.K.); (S.S.)
| | | | | | | |
Collapse
|