151
|
Fouda AE, Gamage AK, Pflum MKH. An Affinity-Based, Cysteine-Specific ATP Analog for Kinase-Catalyzed Crosslinking. Angew Chem Int Ed Engl 2021; 60:9859-9862. [PMID: 33619842 DOI: 10.1002/anie.202014047] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 02/05/2021] [Indexed: 12/12/2022]
Abstract
Kinases mediate cell signaling pathways by catalyzing protein phosphorylation. Irregularities in kinase activity are directly associated with disease conditions. Therefore, methods to identify substrates of a particular kinase are needed to understand signaling cascades in normal and diseased states. Photocrosslinking ATP analogs provide powerful tools to study kinases by covalently linking kinases with substrates. However, the involvement of UV light and nonspecific reactivity of current ATP-photocrosslinkers challenge kinase-substrate identification. We report here an affinity-based crosslinking ATP analog, ATP-methylacrylamide (ATP-MAc), that contains a cysteine-reactive acrylamide crosslinking group, which avoids the UV irradiation and non-specific reactivity of prior analogs. Using in vitro kinase assays, ATP-MAc acts as a kinase co-substrate and covalently crosslinks only kinases containing cysteines in the active site. ATP-MAc was also able to crosslink cellular proteins in lysates, documenting compatibility with cell-based studies.
Collapse
Affiliation(s)
- Ahmed E Fouda
- Department of Chemistry, Wayne State University, 5101, Cass Ave, Detroit, MI, 48202, USA
| | - Aparni K Gamage
- Department of Chemistry, Wayne State University, 5101, Cass Ave, Detroit, MI, 48202, USA
| | - Mary Kay H Pflum
- Department of Chemistry, Wayne State University, 5101, Cass Ave, Detroit, MI, 48202, USA
| |
Collapse
|
152
|
Morgan CW, Dale IL, Thomas AP, Hunt J, Chin JW. Selective CRAF Inhibition Elicits Transactivation. J Am Chem Soc 2021; 143:4600-4606. [PMID: 33750116 PMCID: PMC8041278 DOI: 10.1021/jacs.0c11958] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
![]()
Discovering molecules that regulate
closely related protein isoforms
is challenging, and in many cases the consequences of isoform-specific
pharmacological regulation remains unknown. RAF isoforms are commonly
mutated oncogenes that serve as effector kinases in MAP kinase signaling.
BRAF/CRAF heterodimers are believed to be the primary RAF signaling
species, and many RAF inhibitors lead to a “paradoxical activation”
of RAF kinase activity through transactivation of the CRAF protomer;
this leads to resistance mechanisms and secondary tumors. It has been
hypothesized that CRAF-selective inhibition might bypass paradoxical
activation, but no CRAF-selective inhibitor has been reported and
the consequences of pharmacologically inhibiting CRAF have remained
unknown. Here, we use bio-orthogonal ligand tethering (BOLT) to selectively
target inhibitors to CRAF. Our results suggest that selective CRAF
inhibition promotes paradoxical activation and exemplify how BOLT
may be used to triage potential targets for drug discovery before
any target-selective small molecules are known.
Collapse
Affiliation(s)
- Charles W Morgan
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Ian L Dale
- Discovery Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, United Kingdom
| | - Andrew P Thomas
- Medicinal Chemistry, Oncology R&D, AstraZeneca, Cambridge CB4 0WG, United Kingdom
| | - James Hunt
- Antibody Discovery & Protein Engineering, R&D, AstraZeneca, Cambridge CB21 6GH, United Kingdom
| | - Jason W Chin
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| |
Collapse
|
153
|
Indole-3-acetic acid is a physiological inhibitor of TORC1 in yeast. PLoS Genet 2021; 17:e1009414. [PMID: 33690632 PMCID: PMC7978357 DOI: 10.1371/journal.pgen.1009414] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 03/19/2021] [Accepted: 02/11/2021] [Indexed: 01/13/2023] Open
Abstract
Indole-3-acetic acid (IAA) is the most common, naturally occurring phytohormone that regulates cell division, differentiation, and senescence in plants. The capacity to synthesize IAA is also widespread among plant-associated bacterial and fungal species, which may use IAA as an effector molecule to define their relationships with plants or to coordinate their physiological behavior through cell-cell communication. Fungi, including many species that do not entertain a plant-associated life style, are also able to synthesize IAA, but the physiological role of IAA in these fungi has largely remained enigmatic. Interestingly, in this context, growth of the budding yeast Saccharomyces cerevisiae is sensitive to extracellular IAA. Here, we use a combination of various genetic approaches including chemical-genetic profiling, SAturated Transposon Analysis in Yeast (SATAY), and genetic epistasis analyses to identify the mode-of-action by which IAA inhibits growth in yeast. Surprisingly, these analyses pinpointed the target of rapamycin complex 1 (TORC1), a central regulator of eukaryotic cell growth, as the major growth-limiting target of IAA. Our biochemical analyses further demonstrate that IAA inhibits TORC1 both in vivo and in vitro. Intriguingly, we also show that yeast cells are able to synthesize IAA and specifically accumulate IAA upon entry into stationary phase. Our data therefore suggest that IAA contributes to proper entry of yeast cells into a quiescent state by acting as a metabolic inhibitor of TORC1. Auxins are a major group of plant phytohormones that are critical for growth and development. Amongst the auxins, indole-3-acetic acid (IAA) is the most common, naturally occurring phytohormone that regulates cell division, differentiation, and senescence in plants. Interestingly, the capacity to synthesize and secrete IAA is also widespread among fungi, including the budding yeast Saccharomyces cerevisiae, but the role of IAA in fungi has largely remained unknown. Here, we confirm an earlier observation that IAA inhibits growth of budding yeast and show by diverse genetic and biochemical means that IAA restrains budding yeast growth by inhibiting the target of rapamycin complex 1 (TORC1), a highly conserved eukaryotic regulator of growth. Intriguingly, budding yeast cells accumulate IAA specifically when limited for nutrients, which suggests that IAA plays a hitherto unknown physiological role in contributing to the establishment of cellular quiescence by acting as a metabolic inhibitor of TORC1.
Collapse
|
154
|
Structural insights into redox-active cysteine residues of the Src family kinases. Redox Biol 2021; 41:101934. [PMID: 33765616 PMCID: PMC8022254 DOI: 10.1016/j.redox.2021.101934] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/18/2021] [Accepted: 03/02/2021] [Indexed: 12/24/2022] Open
Abstract
The Src Family Kinases (SFKs) are pivotal regulators of cellular signal transduction and highly sought-after targets in drug discovery. Their actions within cells are controlled by alterations in protein phosphorylation that switch the SFKs from autoinhibited to active states. The SFKs are also well recognized to contain redox-active cysteine residues where oxidation of certain residues directly contribute to kinase function. To more completely understand the factors that influence cysteine oxidation within the SFKs, a review is presented of the local structural environments surrounding SFK cysteine residues compared to their quantified oxidation in vivo from the Oximouse database. Generally, cysteine local structure and degree of redox sensitivity vary with respect to sequence conservation. Cysteine residues found in conserved positions are more mildly redox-active as they are found in hydrophobic environments and not fully exposed to solvent. Non-conserved redox-active cysteines are generally the most reactive with direct solvent access and/or in hydrophilic environments. Results from this analysis motivate future efforts to conduct comprehensive proteome-wide analysis of redox-sensitivity, conservation, and local structural environments of proteins containing reactive cysteine residues.
Collapse
|
155
|
Dupont CA, Riegel K, Pompaiah M, Juhl H, Rajalingam K. Druggable genome and precision medicine in cancer: current challenges. FEBS J 2021; 288:6142-6158. [PMID: 33626231 DOI: 10.1111/febs.15788] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 02/10/2021] [Accepted: 02/23/2021] [Indexed: 12/11/2022]
Abstract
The past decades have seen tremendous developments with respect to "specific" therapeutics that target key signaling molecules to conquer cancer. The key advancements with multiomics technologies, especially genomics, have allowed physicians and molecular oncologists to design "tailor-made" solutions to the specific oncogenes that are deregulated in individual patients, a strategy which has turned out to be successful though the patients quickly develop resistance. The swift integration of multidisciplinary approaches has led to the development of "next generation" therapeutics and, with synergistic therapeutic regimes combined with immune checkpoint inhibitors to reactivate the dampened immune response, has provided the much-needed promise for cancer patients. Despite these advances, a large portion of the druggable genome remains understudied, and the role of druggable genome in the immune system needs further attention. Establishment of patient-derived organoid models has fastened the preclinical validation of novel therapeutics for swift clinical translation. We summarized the current advances and challenges and also stress the importance of biobanking and collection of longitudinal data sets with structured clinical information, as well as the critical role these "high content data sets" will play in designing new therapeutic regimes in a tailor-made fashion.
Collapse
Affiliation(s)
- Camille Amandine Dupont
- Cell Biology Unit, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Kristina Riegel
- Cell Biology Unit, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Malvika Pompaiah
- Cell Biology Unit, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Hartmut Juhl
- Indivumed GmbH, Hamburg, Germany.,Indivumed-IMCB joint lab, IMCB, A*Star, Singapore
| | - Krishnaraj Rajalingam
- Cell Biology Unit, University Medical Center of the Johannes Gutenberg University, Mainz, Germany.,University Cancer Center Mainz, University Medical Center Mainz, Germany.,Indivumed-IMCB joint lab, IMCB, A*Star, Singapore
| |
Collapse
|
156
|
Toviwek B, Gleeson D, Gleeson MP. QM/MM and molecular dynamics investigation of the mechanism of covalent inhibition of TAK1 kinase. Org Biomol Chem 2021; 19:1412-1425. [PMID: 33501482 DOI: 10.1039/d0ob02273j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
TAK1 is a serine/threonine kinase which is involved in the moderation of cell survival and death via the TNFα signalling pathway. It is also implicated in a range of cancer and anti-inflammatory diseases. Drug discovery efforts on this target have focused on both traditional reversible ATP-binding site inhibitors and increasingly popular irreversible covalent binding inhibitors. Irreversible inhibitors can offer benefits in terms of potency, selectivity and PK/PD meaning they are increasingly pursued where the strategy exists. TAK1 kinase differs from the better-known kinase EGFR in that the reactive cysteine nucleophile targeted by electrophilic inhibitors is located towards the back of the ATP binding site, not at its mouth. While a wealth of structural and computational effort has been spent exploring EGFR, only limited studies on TAK1 have been reported. In this work we report the first QM/MM study on TAK1 aiming to better understand aspects of covalent adduct formation. Our goal is to identify the general base in the catalytic reaction, whether the process proceeds via a stepwise or concerted pathway, and how the highly flexible G-loop and A-loop affect the catalytic cysteine located nearby.
Collapse
Affiliation(s)
- Borvornwat Toviwek
- Department of Chemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | | | | |
Collapse
|
157
|
Rood JJM, Jamalpoor A, van Hoppe S, van Haren MJ, Wasmann RE, Janssen MJ, Schinkel AH, Masereeuw R, Beijnen JH, Sparidans RW. Extrahepatic metabolism of ibrutinib. Invest New Drugs 2021; 39:1-14. [PMID: 32623551 PMCID: PMC7851014 DOI: 10.1007/s10637-020-00970-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 06/24/2020] [Indexed: 02/07/2023]
Abstract
Ibrutinib is a first-in-class Bruton's kinase inhibitor used in the treatment of multiple lymphomas. In addition to CYP3A4-mediated metabolism, glutathione conjugation can be observed. Subsequently, metabolism of the conjugates and finally their excretion in feces and urine occurs. These metabolites, however, can reach substantial concentrations in human subjects, especially when CYP3A4 is inhibited. Ibrutinib has unexplained nephrotoxicity and high metabolite concentrations are also found in kidneys of Cyp3a knockout mice. Here, a mechanism is proposed where the intermediate cysteine metabolite is bioactivated. The metabolism of ibrutinib through this glutathione cycle was confirmed in cultured human renal proximal tubule cells. Ibrutinib-mediated toxicity was enhanced in-vitro by inhibitors of breast cancer resistance protein (BCRP), P-glycoprotein (P-gp) and multidrug resistance protein (MRP). This was a result of accumulating cysteine metabolite levels due to efflux inhibition. Finally, through inhibition of downstream metabolism, it was shown now that direct conjugation was responsible for cysteine metabolite toxicity.
Collapse
Affiliation(s)
- Johannes J M Rood
- Division of Pharmacoepidemiology & Clinical Pharmacology, Faculty of Science, Department of Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
- Benu apotheek Hoorn, Pakhuisstraat 80, 1621 GL, Hoorn, The Netherlands
| | - Amer Jamalpoor
- Division of Pharmacology, Faculty of Science, Department of Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Stephanie van Hoppe
- Division of Pharmacology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
- Charles River Laboratories, Darwinweg 24, 2333 CR, Leiden, The Netherlands
| | - Matthijs J van Haren
- Division of Chemical Biology & Drug Development, Faculty of Science, Department of Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
- Institute of Biology, Biological Chemistry Group, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
| | - Roeland E Wasmann
- Department of Pharmacy, Radboud University Medical Centre, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, The Netherlands
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Observatory, Cape Town, 7925, South Africa
| | - Manoe J Janssen
- Division of Pharmacology, Faculty of Science, Department of Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Alfred H Schinkel
- Division of Pharmacology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Rosalinde Masereeuw
- Division of Pharmacology, Faculty of Science, Department of Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Jos H Beijnen
- Division of Pharmacoepidemiology & Clinical Pharmacology, Faculty of Science, Department of Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
- Department of Clinical Pharmacology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Rolf W Sparidans
- Division of Pharmacoepidemiology & Clinical Pharmacology, Faculty of Science, Department of Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands.
- Division of Pharmacology, Faculty of Science, Department of Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands.
- Division of Chemical Biology & Drug Development, Faculty of Science, Department of Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands.
| |
Collapse
|
158
|
Yan G, Zhong X, Pu C, Yue L, Shan H, Lan S, Zhou M, Hou X, Yang J, Li D, Fan S, Li R. Targeting Cysteine Located Outside the Active Site: An Effective Strategy for Covalent ALKi Design. J Med Chem 2021; 64:1558-1569. [PMID: 33471528 DOI: 10.1021/acs.jmedchem.0c01707] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Potent inhibitors of ALK are highly desired because of the occurrence of drug resistance. We herein firstly report the development of a rationally designed inhibitor, Con B-1, which can covalently bind to Cys1259, a cysteine located outside the ALK active site by linking a warhead with Ceritinib through a 2,2'-Oxybis(ethylamine) linker. The in vitro and in vivo assays showed ConB-1 is a potent selective ALKi with low toxicity to normal cells. In addition, the molecule showed significant improvement of anticancer activities and potential antidrug resistant activity compared with Ceritinib, demonstrating the covalent inhibitor of ALK can be a promising drug candidate for the treatment of NSCLC. This work may provide a novel perspective on the design of covalent inhibitors.
Collapse
Affiliation(s)
- Guoyi Yan
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, 610041, China.,Department of Hepatobiliary Pancreatic Surgery, Henan Provincial People's Hospital, Zhengzhou, 450000, China
| | - Xinxin Zhong
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Chunlan Pu
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Lin Yue
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Huifang Shan
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Suke Lan
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Meng Zhou
- Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Ministry of Education & State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550000, China
| | - Xueyan Hou
- College of Pharmacy, Xinxiang Medical University, Xinxiang, 453000, China
| | - Jie Yang
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Deyu Li
- Department of Hepatobiliary Pancreatic Surgery, Henan Provincial People's Hospital, Zhengzhou, 450000, China
| | - Shilong Fan
- The Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Collaborative Innovation Center for Biotherapy, School of Life Sciences, Tsinghua University, Beijing, 100000, China
| | - Rui Li
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, 610041, China
| |
Collapse
|
159
|
Orally effective FDA-approved protein kinase targeted covalent inhibitors (TCIs). Pharmacol Res 2021; 165:105422. [PMID: 33434619 DOI: 10.1016/j.phrs.2021.105422] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 12/31/2020] [Indexed: 02/07/2023]
Abstract
Because dysregulation of protein kinases owing to mutations or overexpression plays causal roles in human diseases, this family of enzymes has become one of the most important drug targets of the 21st century. Of the 62 protein kinases inhibitors that are approved by the FDA, seven of them form irreversible covalent adducts with their target enzymes. The clinical success of ibrutinib, an inhibitor of Bruton tyrosine kinase, in the treatment of mantle cell lymphomas following its approval in 2013 helped to overcome a general bias against the development of irreversible drug inhibitors. The other approved covalent drugs include acalabrutinib and zanubrutinib, which also inhibit Bruton tyrosine kinase. Furthermore afatinib, dacomitinib, and osimertinib, inhibitors of members of the epidermal growth factor receptor family (ErbB1/2/3/4), are used in the treatment of non-small cell lung cancers. Neratinib is an inhibitor of ErbB2 and is used in the treatment of ErbB2/HER2-positive breast cancer. The seven drugs considered in this review have a common mechanism of action; this process involves the addition of a protein cysteine thiolate anion (protein‒S:-) to an acrylamide derivative (CH2=CHC(=O)N(H)R) where R represents the pharmacophore. Such reactions are commonly referred to as Michael additions and each reaction results in the formation of a covalent bond between carbon and sulfur; the final product is a thioether. This process consists of two discrete steps; the first step involves the reversible association of the drug with its target enzyme so that a weakly electrophilic functionality, a warhead, is bound near an appropriately positioned nucleophilic cysteine. In the second step, a reaction occurs between the warhead and the target enzyme cysteine to form a covalently modified and inactive protein. For this process to work, the warhead must be appropriately juxtaposed in relationship to the cysteinyl thiolate so that the covalent addition can occur. Covalent inhibitors have emerged from the ranks of drugs to be avoided to become an emerging paradigm. Much of this recent success can be attributed to the clinical efficacy of ibrutinib as well as the other antagonists covered in this review. Moreover, the covalent inhibitor methodology is swiftly gaining acceptance as a valuable component of the medicinal chemist's toolbox and is primed to make a significant impact on the development of enzyme antagonists and receptor modulators.
Collapse
|
160
|
Yang J, Gong W, Wu S, Zhang H, Perrett S. PES inhibits human-inducible Hsp70 by covalent targeting of cysteine residues in the substrate-binding domain. J Biol Chem 2021; 296:100210. [PMID: 33835030 PMCID: PMC7948744 DOI: 10.1074/jbc.ra120.015440] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 12/14/2020] [Accepted: 12/18/2020] [Indexed: 12/13/2022] Open
Abstract
Hsp70 proteins are a family of ancient and conserved chaperones. They play important roles in vital cellular processes, such as protein quality control and the stress response. Hsp70 proteins are a potential drug target for treatment of disease, particularly cancer. PES (2-phenylethynesulfonamide or pifithrin-μ) has been reported to be an inhibitor of Hsp70. However, the mechanism of PES inhibition is still unclear. In this study we found that PES can undergo a Michael addition reaction with Cys-574 and Cys-603 in the SBDα of human HspA1A (hHsp70), resulting in covalent attachment of a PES molecule to each Cys residue. We previously showed that glutathionylation of Cys-574 and Cys-603 affects the structure and function of hHsp70. In this study, PES modification showed similar structural and functional effects on hHsp70 to glutathionylation. Further, we found that susceptibility to PES modification is influenced by changes in the conformational dynamics of the SBDα, such as are induced by interaction with adjacent domains, allosteric changes, and mutations. This study provides new avenues for development of covalent inhibitors of hHsp70.
Collapse
Affiliation(s)
- Jie Yang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China; University of the Chinese Academy of Sciences, Beijing, China
| | - Weibin Gong
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Si Wu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China; University of the Chinese Academy of Sciences, Beijing, China
| | - Hong Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China; University of the Chinese Academy of Sciences, Beijing, China.
| | - Sarah Perrett
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China; University of the Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
161
|
Kim J, Oh J, Han MS. Versatile small molecule kinase assay through real-time, ratiometric fluorescence changes based on a pyrene-DPA-Zn2+ complex. RSC Adv 2021; 11:10375-10380. [PMID: 35423495 PMCID: PMC8695712 DOI: 10.1039/d1ra01547h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 03/04/2021] [Indexed: 01/01/2023] Open
Abstract
A real-time kinase assay method based on a ratiometric fluorescence probe that can be applied to various small-molecule kinases is described herein. The probe can trace the reversible interchange of ATP and ADP, which is a common phenomenon in most small-molecule kinase reactions, by a ratiometric fluorescence change. This property facilitates the monitoring of phosphorylation and dephosphorylation in small-molecule kinases, whereas most of the existing methods focus on one of these reactions. To prove the applicability of this method for small-molecule kinase assays, hexokinase and creatine kinase, which phosphorylate and dephosphorylate substrates, respectively, were analyzed. The ratiometric fluorescence change was correlated with the enzyme activity, and the inhibition efficiencies of the well-known inhibitors, N-benzoyl-d-glucosamine and iodoacetamide, were also monitored. Notably, the change in fluorescence can be observed with a simple light source by the naked eye. A versatile assay system that can be trace both phosphorylation and dephosphorylation by small molecule kinase is demonstrated, and can be applied regardless of substrate diversity.![]()
Collapse
Affiliation(s)
- Jihoon Kim
- Department of Chemistry
- Gwangju Institute of Science and Technology (GIST)
- Gwangju 61005
- Republic of Korea
| | - Jinyoung Oh
- Department of Chemistry
- Gwangju Institute of Science and Technology (GIST)
- Gwangju 61005
- Republic of Korea
| | - Min Su Han
- Department of Chemistry
- Gwangju Institute of Science and Technology (GIST)
- Gwangju 61005
- Republic of Korea
| |
Collapse
|
162
|
Guo M, Dai S, Wu D, Duan Y, Li J, Qu L, Jiang L, Chen Z, Chen X, Chen Y. Characterization of ibrutinib as a non-covalent inhibitor of SRC-family kinases. Bioorg Med Chem Lett 2020; 34:127757. [PMID: 33359446 DOI: 10.1016/j.bmcl.2020.127757] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/05/2020] [Accepted: 12/16/2020] [Indexed: 11/17/2022]
Abstract
Ibrutinib is a BTK-targeted irreversible inhibitor. In this study, we demonstrate that ibrutinib potently inhibits SRC activity in a non-covalent manner via mass spectrometry and crystallography. The S345C mutation renders SRC to bind covalently with ibrutinib, and restores the potency of ibrutinib against the gatekeeper mutant. The co-crystal structure of ibrutinib/SRC shows Ser345 of SRC did not form covalent bond with ibrutinib, leading to a decrease of potency and loss of the ability to overcome the gatekeeper mutation of SRC. The X-ray crystallographic studies also provide structural insight into why ibrutinib behaves differently against gatekeeper mutants of different kinases.
Collapse
Affiliation(s)
- Ming Guo
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Shuyan Dai
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Daichao Wu
- Department of Histology and Embryology, Institute of Clinical Anatomy & Reproductive Medicine, University of South China Hengyang, Hunan 421001, China
| | - Yankun Duan
- Department of Infectious Diseases & Laboratory of Structural Biology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Jun Li
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Lingzhi Qu
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Longying Jiang
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Zhuchu Chen
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Xiaojuan Chen
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
| | - Yongheng Chen
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
| |
Collapse
|
163
|
Ceramella J, Iacopetta D, Barbarossa A, Caruso A, Grande F, Bonomo MG, Mariconda A, Longo P, Carmela S, Sinicropi MS. Carbazole Derivatives as Kinase-Targeting Inhibitors for Cancer Treatment. Mini Rev Med Chem 2020; 20:444-465. [PMID: 31951166 DOI: 10.2174/1389557520666200117144701] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 10/01/2019] [Accepted: 10/19/2019] [Indexed: 12/11/2022]
Abstract
Protein Kinases (PKs) are a heterogeneous family of enzymes that modulate several biological pathways, including cell division, cytoskeletal rearrangement, differentiation and apoptosis. In particular, due to their crucial role during human tumorigenesis and cancer progression, PKs are ideal targets for the design and development of effective and low toxic chemotherapeutics and represent the second group of drug targets after G-protein-coupled receptors. Nowadays, several compounds have been claimed to be PKs inhibitors, and some of them, such as imatinib, erlotinib and gefitinib, have already been approved for clinical use, whereas more than 30 others are in various phases of clinical trials. Among them, some natural or synthetic carbazole-based molecules represent promising PKs inhibitors due to their capability to interfere with PK activity by different mechanisms of action including the ability to act as DNA intercalating agents, interfere with the activity of enzymes involved in DNA duplication, such as topoisomerases and telomerases, and inhibit other proteins such as cyclindependent kinases or antagonize estrogen receptors. Thus, carbazoles can be considered a promising this class of compounds to be adopted in targeted therapy of different types of cancer.
Collapse
Affiliation(s)
- Jessica Ceramella
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, (CS), Italy
| | - Domenico Iacopetta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, (CS), Italy
| | - Alexia Barbarossa
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, (CS), Italy
| | - Anna Caruso
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, (CS), Italy
| | - Fedora Grande
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, (CS), Italy
| | | | | | - Pasquale Longo
- Department of Biology and Chemistry, University of Salerno, 84084 Fisciano, Italy
| | - Saturnino Carmela
- Department of Science, University of Basilicata, 85100 Potenza, Italy
| | - Maria Stefania Sinicropi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, (CS), Italy
| |
Collapse
|
164
|
Borba JVVB, Silva AC, Lima MNN, Mendonca SS, Furnham N, Costa FTM, Andrade CH. Chemogenomics and bioinformatics approaches for prioritizing kinases as drug targets for neglected tropical diseases. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2020; 124:187-223. [PMID: 33632465 DOI: 10.1016/bs.apcsb.2020.10.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Neglected tropical diseases (NTDs) are a group of twenty-one diseases classified by the World Health Organization that prevail in regions with tropical and subtropical climate and affect more than one billion people. There is an urgent need to develop new and safer drugs for these diseases. Protein kinases are a potential class of targets for developing new drugs against NTDs, since they play crucial role in many biological processes, such as signaling pathways, regulating cellular communication, division, metabolism and death. Bioinformatics is a field that aims to organize large amounts of biological data as well as develop and use tools for understanding and analyze them in order to produce meaningful information in a biological manner. In combination with chemogenomics, which analyzes chemical-biological interactions to screen ligands against selected targets families, these approaches can be used to stablish a rational strategy for prioritizing new drug targets for NTDs. Here, we describe how bioinformatics and chemogenomics tools can help to identify protein kinases and their potential inhibitors for the development of new drugs for NTDs. We present a review of bioinformatics tools and techniques that can be used to define an organisms kinome for drug prioritization, drug and target repurposing, multi-quinase inhibition approachs and selectivity profiling. We also present some successful examples of the application of such approaches in recent case studies.
Collapse
Affiliation(s)
- Joyce Villa Verde Bastos Borba
- LabMol-Laboratory for Molecular Modeling and Drug Design, Faculty of Pharmacy, Federal University of Goiás, Goiânia, GO, Brazil; Laboratory of Tropical Diseases-Prof. Luiz Jacintho da Silva, Department of Genetics, Evolution and Bioagents, University of Campinas, Campinas, SP, Brazil
| | - Arthur Carvalho Silva
- LabMol-Laboratory for Molecular Modeling and Drug Design, Faculty of Pharmacy, Federal University of Goiás, Goiânia, GO, Brazil
| | - Marilia Nunes Nascimento Lima
- LabMol-Laboratory for Molecular Modeling and Drug Design, Faculty of Pharmacy, Federal University of Goiás, Goiânia, GO, Brazil
| | - Sabrina Silva Mendonca
- LabMol-Laboratory for Molecular Modeling and Drug Design, Faculty of Pharmacy, Federal University of Goiás, Goiânia, GO, Brazil
| | - Nicholas Furnham
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Fabio Trindade Maranhão Costa
- Laboratory of Tropical Diseases-Prof. Luiz Jacintho da Silva, Department of Genetics, Evolution and Bioagents, University of Campinas, Campinas, SP, Brazil
| | - Carolina Horta Andrade
- LabMol-Laboratory for Molecular Modeling and Drug Design, Faculty of Pharmacy, Federal University of Goiás, Goiânia, GO, Brazil; Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom.
| |
Collapse
|
165
|
Forster M, Liang XJ, Schröder M, Gerstenecker S, Chaikuad A, Knapp S, Laufer S, Gehringer M. Discovery of a Novel Class of Covalent Dual Inhibitors Targeting the Protein Kinases BMX and BTK. Int J Mol Sci 2020; 21:E9269. [PMID: 33291717 PMCID: PMC7730235 DOI: 10.3390/ijms21239269] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/29/2020] [Accepted: 12/01/2020] [Indexed: 12/19/2022] Open
Abstract
The nonreceptor tyrosine TEC kinases are key regulators of the immune system and play a crucial role in the pathogenesis of diverse hematological malignancies. In contrast to the substantial efforts in inhibitor development for Bruton's tyrosine kinase (BTK), specific inhibitors of the other TEC kinases, including the bone marrow tyrosine kinase on chromosome X (BMX), remain sparse. Here we present a novel class of dual BMX/BTK inhibitors, which were designed from irreversible inhibitors of Janus kinase (JAK) 3 targeting a cysteine located within the solvent-exposed front region of the ATP binding pocket. Structure-guided design exploiting the differences in the gatekeeper residues enabled the achievement of high selectivity over JAK3 and certain other kinases harboring a sterically demanding residue at this position. The most active compounds inhibited BMX and BTK with apparent IC50 values in the single digit nanomolar range or below showing moderate selectivity within the TEC family and potent cellular target engagement. These compounds represent an important first step towards selective chemical probes for the protein kinase BMX.
Collapse
Affiliation(s)
- Michael Forster
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmaceutical Sciences, Faculty of Sciences, University of Tübingen, 72076 Tübingen, Germany; (M.F.); (X.J.L.); (S.G.); (S.L.)
- Cluster of Excellence iFIT (EXC 2180) ‘Image-Guided & Functionally Instructed Tumor Therapies’, University of Tübingen, 72076 Tübingen, Germany
| | - Xiaojun Julia Liang
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmaceutical Sciences, Faculty of Sciences, University of Tübingen, 72076 Tübingen, Germany; (M.F.); (X.J.L.); (S.G.); (S.L.)
- Cluster of Excellence iFIT (EXC 2180) ‘Image-Guided & Functionally Instructed Tumor Therapies’, University of Tübingen, 72076 Tübingen, Germany
| | - Martin Schröder
- Structural Genomics Consortium, Goethe University Frankfurt, Buchmann Institute for Molecular Life Sciences, Max-von-Laue-Straße 15, 60438 Frankfurt am Main, Germany; (M.S.); (A.C.); (S.K.)
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Buchmann Institute for Molecular Life Sciences, Max-von-Laue-Straße 9, 60438 Frankfurt am Main, Germany
| | - Stefan Gerstenecker
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmaceutical Sciences, Faculty of Sciences, University of Tübingen, 72076 Tübingen, Germany; (M.F.); (X.J.L.); (S.G.); (S.L.)
| | - Apirat Chaikuad
- Structural Genomics Consortium, Goethe University Frankfurt, Buchmann Institute for Molecular Life Sciences, Max-von-Laue-Straße 15, 60438 Frankfurt am Main, Germany; (M.S.); (A.C.); (S.K.)
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Buchmann Institute for Molecular Life Sciences, Max-von-Laue-Straße 9, 60438 Frankfurt am Main, Germany
| | - Stefan Knapp
- Structural Genomics Consortium, Goethe University Frankfurt, Buchmann Institute for Molecular Life Sciences, Max-von-Laue-Straße 15, 60438 Frankfurt am Main, Germany; (M.S.); (A.C.); (S.K.)
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Buchmann Institute for Molecular Life Sciences, Max-von-Laue-Straße 9, 60438 Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI) and German Translational Cancer Network (DKTK) Site Frankfurt/Mainz, 60438 Frankfurt am Main, Germany
| | - Stefan Laufer
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmaceutical Sciences, Faculty of Sciences, University of Tübingen, 72076 Tübingen, Germany; (M.F.); (X.J.L.); (S.G.); (S.L.)
- Cluster of Excellence iFIT (EXC 2180) ‘Image-Guided & Functionally Instructed Tumor Therapies’, University of Tübingen, 72076 Tübingen, Germany
- Tübingen Center for Academic Drug Discovery (TüCAD2), 72076 Tübingen, Germany
| | - Matthias Gehringer
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmaceutical Sciences, Faculty of Sciences, University of Tübingen, 72076 Tübingen, Germany; (M.F.); (X.J.L.); (S.G.); (S.L.)
- Cluster of Excellence iFIT (EXC 2180) ‘Image-Guided & Functionally Instructed Tumor Therapies’, University of Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
166
|
Bianco G, Goodsell DS, Forli S. Selective and Effective: Current Progress in Computational Structure-Based Drug Discovery of Targeted Covalent Inhibitors. Trends Pharmacol Sci 2020; 41:1038-1049. [PMID: 33153778 PMCID: PMC7669701 DOI: 10.1016/j.tips.2020.10.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 10/09/2020] [Accepted: 10/12/2020] [Indexed: 12/28/2022]
Abstract
Targeted covalent inhibitors are currently showing great promise for systems that are normally difficult to target with small molecule therapies. This renewed interest has spurred the refinement of existing computational methods as well as the designof new ones, expanding the toolbox for discovery and optimization of selectiveand effective covalent inhibitors. Commonly applied approaches are covalentdocking methods that predict the conformation of the covalent complex with known residues. More recently, a new predictive method, reactive docking, was developed, building on the growing corpus of data generated by large proteomics experiments. This method was successfully used in several 'inverse drug discovery' programs that use high-throughput techniques to isolate effective compounds based on screening of entire compound libraries based on desired phenotypes.
Collapse
Affiliation(s)
- Giulia Bianco
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - David S Goodsell
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; Research Collaboratory for Structure Bioinformatics Protein Data Bank, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA
| | - Stefano Forli
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
167
|
Doherty W, Adler N, Butler TJ, Knox AJS, Evans P. Synthesis and optimisation of P 3 substituted vinyl sulfone-based inhibitors as anti-trypanosomal agents. Bioorg Med Chem 2020; 28:115774. [PMID: 32992251 DOI: 10.1016/j.bmc.2020.115774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/07/2020] [Accepted: 09/09/2020] [Indexed: 10/23/2022]
Abstract
A series of lysine-based vinyl sulfone peptidomimetics were synthesised and evaluated for anti-trypanosomal activity against bloodstream forms of T. brucei. This focused set of compounds, varying in the P3 position, were accessed in a divergent manner from a common intermediate (ammonium salt 8). Several P3 analogues exhibited sub-micromolar EC50 values, with thiourea 14, urea 15 and amide 21 representing the most potent anti-trypanosomal derivatives of the series. In order to establish an in vitro selectivity index the most active anti-trypanosomal compounds were also assessed for their impact on cell viability and cytotoxity effects in mammalian cells. Encouragingly, all compounds only reduced cellular metabolic activity in mammalian cells to a modest level and little, or no cytotoxicity, was observed with the series.
Collapse
Affiliation(s)
- William Doherty
- Centre for Synthesis and Chemical Biology, School of Chemistry and Chemical Biology, University College Dublin, Dublin D04 N2E2, Ireland
| | - Nikoletta Adler
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Pearse Street, Dublin 2, Ireland
| | - Thomas J Butler
- School of Biological and Health Sciences, Technological University Dublin, Dublin City Campus, Kevin St., Dublin D08 NF82, Ireland
| | - Andrew J S Knox
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Pearse Street, Dublin 2, Ireland; School of Biological and Health Sciences, Technological University Dublin, Dublin City Campus, Kevin St., Dublin D08 NF82, Ireland.
| | - Paul Evans
- Centre for Synthesis and Chemical Biology, School of Chemistry and Chemical Biology, University College Dublin, Dublin D04 N2E2, Ireland.
| |
Collapse
|
168
|
Covalent Versus Non-covalent Enzyme Inhibition: Which Route Should We Take? A Justification of the Good and Bad from Molecular Modelling Perspective. Protein J 2020; 39:97-105. [PMID: 32072438 DOI: 10.1007/s10930-020-09884-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The pace and efficiency of drug target strategies have been emanating debates among researchers in the field of drug development. Covalent inhibitors possess significant advantages over non-covalent inhibitors, such that covalent warheads can target rare residues of a particular target protein, thus leading to the development of highly selective inhibitors. However, toxicity can be a real challenge related to this class of therapeutics. From the challenges of irreversible drug toxicity to the declining reactivity of reversible drugs, herein we provide justifications from the computational point of view. It was evident that both classes had its merits; however, with the increase in drug resistance, covalent inhibition seemed more suitable. There also seems to be enhanced selectivity of the covalent systems, proving its use as a therapeutic regimen worldwide. We believe that this study will assist researchers in making informed decisions on which drug class to choose as lead compounds in the drug discovery pipeline.
Collapse
|
169
|
Gambini L, Udompholkul P, Salem AF, Baggio C, Pellecchia M. Stability and Cell Permeability of Sulfonyl Fluorides in the Design of Lys-Covalent Antagonists of Protein-Protein Interactions. ChemMedChem 2020; 15:2176-2184. [PMID: 32790900 PMCID: PMC7722097 DOI: 10.1002/cmdc.202000355] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/06/2020] [Indexed: 12/12/2022]
Abstract
Recently we reported on aryl-fluorosulfates as possible stable and effective electrophiles for the design of lysine covalent, cell permeable antagonists of protein-protein interactions (PPIs). Here we revisit the use of aryl-sulfonyl fluorides as Lys-targeting moieties, incorporating these electrophiles in XIAP (X-linked inhibitor of apoptosis protein) targeting agents. We evaluated stability in buffer and reactivity with Lys311 of XIAP of various aryl-sulfonyl fluorides using biochemical and biophysical approaches, including displacement assays, mass spectrometry, SDS gel electrophoresis, and denaturation thermal shift measurements. To assess whether these modified electrophilic "warheads" can also react with Tyr, we repeated these evaluations with a Lys311Tyr XIAP mutant. Using a direct cellular assay, we could demonstrate that selected agents are cell permeable and interact covalently with their intended target in cell. These results suggest that certain substituted aryl-sulfonyl fluorides can be useful Lys- or Tyr-targeting electrophiles for the design of covalent pharmacological tools or even future therapeutics targeting protein-protein interactions.
Collapse
Affiliation(s)
- Luca Gambini
- Biomedical sciences Division, School of Medicine, University of California, Riverside, 900 University Avenue, CA 92521 Riverside, USA
| | - Parima Udompholkul
- Biomedical sciences Division, School of Medicine, University of California, Riverside, 900 University Avenue, CA 92521 Riverside, USA
| | - Ahmed F. Salem
- Biomedical sciences Division, School of Medicine, University of California, Riverside, 900 University Avenue, CA 92521 Riverside, USA
| | - Carlo Baggio
- Biomedical sciences Division, School of Medicine, University of California, Riverside, 900 University Avenue, CA 92521 Riverside, USA
| | - Maurizio Pellecchia
- Biomedical sciences Division, School of Medicine, University of California, Riverside, 900 University Avenue, CA 92521 Riverside, USA
| |
Collapse
|
170
|
Murakawa Y, Valter S, Barr H, London N, Kinoshita T. Structural basis for producing selective MAP2K7 inhibitors. Bioorg Med Chem Lett 2020; 30:127546. [PMID: 32931911 DOI: 10.1016/j.bmcl.2020.127546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/30/2020] [Accepted: 09/06/2020] [Indexed: 12/23/2022]
Abstract
Mitogen-activated protein kinase kinase 7 (MAP2K7) in the c-Jun N-terminal kinase signal cascade is an attractive drug target for a variety of diseases. The selectivity of MAP2K7 inhibitors against off-target kinases is a major barrier in drug development. We report a crystal structure of MAP2K7 complexed with a potent covalent inhibitor bearing an acrylamide moiety as an electrophile, which discloses a structural basis for producing selective and potent MAP2K7 inhibitors.
Collapse
Affiliation(s)
- Yuka Murakawa
- Graduate School of Science, Osaka Prefecture University, Osaka 599-8531, Japan
| | - Shirly Valter
- Whol Institute for Drug Discovery of the Nancy and Stephen Grand Israel National Center for Personalized Medicine, The Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Haim Barr
- Whol Institute for Drug Discovery of the Nancy and Stephen Grand Israel National Center for Personalized Medicine, The Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Nir London
- Department of Organic Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Takayoshi Kinoshita
- Graduate School of Science, Osaka Prefecture University, Osaka 599-8531, Japan.
| |
Collapse
|
171
|
Baier A, Szyszka R. Compounds from Natural Sources as Protein Kinase Inhibitors. Biomolecules 2020; 10:biom10111546. [PMID: 33198400 PMCID: PMC7698043 DOI: 10.3390/biom10111546] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/08/2020] [Accepted: 11/09/2020] [Indexed: 12/15/2022] Open
Abstract
The advantage of natural compounds is their lower number of side-effects when compared to most synthetic substances. Therefore, over the past several decades, the interest in naturally occurring compounds is increasing in the search for new potent drugs. Natural compounds are playing an important role as a starting point when developing new selective compounds against different diseases. Protein kinases play a huge role in several diseases, like cancers, neurodegenerative diseases, microbial infections, or inflammations. In this review, we give a comprehensive view of natural compounds, which are/were the parent compounds in the development of more potent substances using computational analysis and SAR studies.
Collapse
Affiliation(s)
- Andrea Baier
- Department of Animal Physiology and Toxicology, Institute of Biological Sciences, The John Paul II Catholic University of Lublin, 20-950 Lublin, Poland
- Correspondence:
| | - Ryszard Szyszka
- Department of Molecular Biology, Institute of Biological Sciences, The John Paul II Catholic University of Lublin, 20-950 Lublin, Poland;
| |
Collapse
|
172
|
Miura C, Shindo N, Okamoto K, Kuwata K, Ojida A. Fragment-Based Discovery of Irreversible Covalent Inhibitors of Cysteine Proteases Using Chlorofluoroacetamide Library. Chem Pharm Bull (Tokyo) 2020; 68:1074-1081. [PMID: 33132374 DOI: 10.1248/cpb.c20-00547] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Fragment-based approach combined with electrophilic reactive compounds is a powerful strategy to discover novel covalent ligands for protein target. However, the promiscuous reactivity often interferes with identification of the fragments possessing specific binding affinity to the targeted protein. In our study, we report the fragment-based covalent drug discovery using the chemically tuned weak reactivity of chlorofluoroacetamide (CFA). We constructed a small fragment library composed of 30 CFA-appended compounds and applied it to the covalent ligand screening for cysteine protease papain as a model protein target. Using the fluorescence enzymatic assay, we identified CFA-benzothiazole 30 as a papain inhibitor, which was found to irreversibly inactivate papain upon enzyme kinetic analysis. The formation of the covalent papain-30 adduct was confirmed using electrospray ionization mass spectrometry analysis. The activity-based protein profiling (ABPP) experiment using an alkynylated analog of 30 (i.e., 30-yne) revealed that 30-yne covalently labeled papain with high selectivity. These data demonstrate potential utility of the CFA-fragment library for de novo discovery of target selective covalent inhibitors.
Collapse
Affiliation(s)
- Chizuru Miura
- Graduate School of Pharmaceutical Sciences, Kyushu University
| | - Naoya Shindo
- Graduate School of Pharmaceutical Sciences, Kyushu University
| | - Kei Okamoto
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University
| | - Keiko Kuwata
- Graduate School of Pharmaceutical Sciences, Kyushu University
| | - Akio Ojida
- Graduate School of Pharmaceutical Sciences, Kyushu University
| |
Collapse
|
173
|
Pyrimidine and fused pyrimidine derivatives as promising protein kinase inhibitors for cancer treatment. Med Chem Res 2020. [DOI: 10.1007/s00044-020-02656-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
174
|
Ye Z, Wang Y, Wu H, Song T, Li X, Liu Q, Wang C. Chemoproteomic Profiling of an Ibrutinib Analogue Reveals its Unexpected Role in DNA Damage Repair. Chembiochem 2020; 22:129-133. [PMID: 32979005 DOI: 10.1002/cbic.202000527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/13/2020] [Indexed: 11/09/2022]
Abstract
Ibrutinib is an FDA-approved drug to treat B-lymphoid malignancies, which functions mechanistically as a covalent inhibitor for Bruton's tyrosine kinase (BTK). During the course of screening more potent and selective BTK inhibitors, we discovered that MM2-48, an ibrutinib analogue that contains the alkynyl amide functional group in place of the acrylamide warhead, exhibits a much stronger cytotoxicity. Comparative chemoproteomic profiling of the targets of ibrutinib and MM2-48 revealed that the alkynyl amide warhead exhibits much higher reactivity in proteomes. Unexpectedly, MM2-48 covalently targets a functional cysteine in a BRCA2 and CDKN1A-interacting protein, BCCIP, and significantly inhibits DNA damage repair. Our findings suggest that simultaneous inhibition of BTK activity and DNA damage repair might be a more effective therapeutic strategy for combating B-cell malignancies.
Collapse
Affiliation(s)
- Zi Ye
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Synthetic and Functional Biomolecules Center, Beijing National Laboratory of Molecular Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Peking, 100871, P. R. China
| | - Yankun Wang
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Synthetic and Functional Biomolecules Center, Beijing National Laboratory of Molecular Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Peking, 100871, P. R. China
| | - Hong Wu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, P. R. China.,Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230036, Anhui, P. R. China
| | - Tong Song
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Synthetic and Functional Biomolecules Center, Beijing National Laboratory of Molecular Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Peking, 100871, P. R. China
| | - Xixiang Li
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, P. R. China.,Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230036, Anhui, P. R. China
| | - Qingsong Liu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, P. R. China.,Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230036, Anhui, P. R. China
| | - Chu Wang
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Synthetic and Functional Biomolecules Center, Beijing National Laboratory of Molecular Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Peking, 100871, P. R. China
| |
Collapse
|
175
|
Tokunaga K, Sato M, Kuwata K, Miura C, Fuchida H, Matsunaga N, Koyanagi S, Ohdo S, Shindo N, Ojida A. Bicyclobutane Carboxylic Amide as a Cysteine-Directed Strained Electrophile for Selective Targeting of Proteins. J Am Chem Soc 2020; 142:18522-18531. [PMID: 33047956 DOI: 10.1021/jacs.0c07490] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Expanding the repertoire of electrophiles with unique reactivity features would facilitate the development of covalent inhibitors with desirable reactivity profiles. We herein introduce bicyclo[1.1.0]butane (BCB) carboxylic amide as a new class of thiol-reactive electrophiles for selective and irreversible inhibition of targeted proteins. We first streamlined the synthetic routes to generate a variety of BCB amides. The strain-driven nucleophilic addition to BCB amides proceeded chemoselectively with cysteine thiols under neutral aqueous conditions, the rate of which was significantly slower than that of acrylamide. This reactivity profile of BCB amide was successfully exploited to develop covalent ligands targeting Bruton's tyrosine kinase (BTK). By tuning BCB amide reactivity and optimizing its disposition on the ligand, we obtained a selective covalent inhibitor of BTK. The in-gel activity-based protein profiling and mass spectrometry-based chemical proteomics revealed that the selected BCB amide had a higher target selectivity for BTK in human cells than did a Michael acceptor probe. Further chemical proteomic study revealed that BTK probes bearing different classes of electrophiles exhibited distinct off-target profiles. This result suggests that incorporation of BCB amide as a cysteine-directed electrophile could expand the capability to develop covalent inhibitors with the desired proteome reactivity profile.
Collapse
Affiliation(s)
- Keisuke Tokunaga
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Mami Sato
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Keiko Kuwata
- Institute of Transformative Bio-Molecules (ITbM), Nagoya University, Furocho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| | - Chizuru Miura
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Hirokazu Fuchida
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Naoya Matsunaga
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Satoru Koyanagi
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Shigehiro Ohdo
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Naoya Shindo
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Akio Ojida
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
176
|
Saldivia M, Fang E, Ma X, Myburgh E, Carnielli JBT, Bower-Lepts C, Brown E, Ritchie R, Lakshminarayana SB, Chen YL, Patra D, Ornelas E, Koh HXY, Williams SL, Supek F, Paape D, McCulloch R, Kaiser M, Barrett MP, Jiricek J, Diagana TT, Mottram JC, Rao SPS. Targeting the trypanosome kinetochore with CLK1 protein kinase inhibitors. Nat Microbiol 2020; 5:1207-1216. [PMID: 32661312 PMCID: PMC7610364 DOI: 10.1038/s41564-020-0745-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 05/25/2020] [Indexed: 11/09/2022]
Abstract
The kinetochore is a macromolecular structure that assembles on the centromeres of chromosomes and provides the major attachment point for spindle microtubules during mitosis. In Trypanosoma brucei, the proteins that make up the kinetochore are highly divergent; the inner kinetochore comprises at least 20 distinct and essential proteins (KKT1-20) that include four protein kinases-CLK1 (also known as KKT10), CLK2 (also known as KKT19), KKT2 and KKT3. Here, we report the identification and characterization of the amidobenzimidazoles (AB) protein kinase inhibitors that show nanomolar potency against T. brucei bloodstream forms, Leishmania and Trypanosoma cruzi. We performed target deconvolution analysis using a selection of 29 T. brucei mutants that overexpress known essential protein kinases, and identified CLK1 as a primary target. Biochemical studies and the co-crystal structure of CLK1 in complex with AB1 show that the irreversible competitive inhibition of CLK1 is dependent on a Michael acceptor forming an irreversible bond with Cys 215 in the ATP-binding pocket, a residue that is not present in human CLK1, thereby providing selectivity. Chemical inhibition of CLK1 impairs inner kinetochore recruitment and compromises cell-cycle progression, leading to cell death. This research highlights a unique drug target for trypanosomatid parasitic protozoa and a new chemical tool for investigating the function of their divergent kinetochores.
Collapse
Affiliation(s)
- Manuel Saldivia
- York Biomedical Research Institute and Department of Biology, University of York, York, UK
- Novartis Institute for Tropical Diseases, Emeryville, CA, USA
| | - Eric Fang
- Novartis Institutes for Biomedical Research, Emeryville, CA, USA
| | - Xiaolei Ma
- Novartis Institutes for Biomedical Research, Emeryville, CA, USA
| | - Elmarie Myburgh
- York Biomedical Research Institute, Hull York Medical School, University of York, York, UK
| | - Juliana B T Carnielli
- York Biomedical Research Institute and Department of Biology, University of York, York, UK
| | | | - Elaine Brown
- York Biomedical Research Institute and Department of Biology, University of York, York, UK
| | - Ryan Ritchie
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | | | - Yen-Liang Chen
- Novartis Institute for Tropical Diseases, Emeryville, CA, USA
| | - Debjani Patra
- Novartis Institute for Tropical Diseases, Emeryville, CA, USA
| | | | - Hazel X Y Koh
- Novartis Institute for Tropical Diseases, Emeryville, CA, USA
| | - Sarah L Williams
- Novartis Institutes for Biomedical Research, Emeryville, CA, USA
| | - Frantisek Supek
- Genomics Institute of the Novartis Research Foundation, San Diego, CA, USA
| | - Daniel Paape
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Richard McCulloch
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Marcel Kaiser
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Michael P Barrett
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Jan Jiricek
- Novartis Institute for Tropical Diseases, Emeryville, CA, USA
| | | | - Jeremy C Mottram
- York Biomedical Research Institute and Department of Biology, University of York, York, UK.
| | | |
Collapse
|
177
|
Theoretical study on the interactions between ibrutinib and gold nanoparticles for being used as drug delivery in the chronic lymphocytic leukemia. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113878] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
178
|
Seixas JD, Sousa BB, Marques MC, Guerreiro A, Traquete R, Rodrigues T, Albuquerque IS, Sousa MFQ, Lemos AR, Sousa PMF, Bandeiras TM, Wu D, Doyle SK, Robinson CV, Koehler AN, Corzana F, Matias PM, Bernardes GJL. Structural and biophysical insights into the mode of covalent binding of rationally designed potent BMX inhibitors. RSC Chem Biol 2020; 1:251-262. [PMID: 34458764 PMCID: PMC8341910 DOI: 10.1039/d0cb00033g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 08/21/2020] [Indexed: 12/14/2022] Open
Abstract
The bone marrow tyrosine kinase in chromosome X (BMX) is pursued as a drug target because of its role in various pathophysiological processes. We designed BMX covalent inhibitors with single-digit nanomolar potency with unexploited topological pharmacophore patterns. Importantly, we reveal the first X-ray crystal structure of covalently inhibited BMX at Cys496, which displays key interactions with Lys445, responsible for hampering ATP catalysis and the DFG-out-like motif, typical of an inactive conformation. Molecular dynamic simulations also showed this interaction for two ligand/BMX complexes. Kinome selectivity profiling showed that the most potent compound is the strongest binder, displays intracellular target engagement in BMX-transfected cells with two-digit nanomolar inhibitory potency, and leads to BMX degradation PC3 in cells. The new inhibitors displayed anti-proliferative effects in androgen-receptor positive prostate cancer cells that where further increased when combined with known inhibitors of related signaling pathways, such as PI3K, AKT and Androgen Receptor. We expect these findings to guide development of new selective BMX therapeutic approaches.
Collapse
Affiliation(s)
- João D Seixas
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa Avenida Professor Egas Moniz 1649-028 Lisboa Portugal
| | - Bárbara B Sousa
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa Avenida Professor Egas Moniz 1649-028 Lisboa Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa Av. da República EAN 2780-157 Oeiras Portugal
| | - Marta C Marques
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa Avenida Professor Egas Moniz 1649-028 Lisboa Portugal
| | - Ana Guerreiro
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa Avenida Professor Egas Moniz 1649-028 Lisboa Portugal
| | - Rui Traquete
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa Avenida Professor Egas Moniz 1649-028 Lisboa Portugal
| | - Tiago Rodrigues
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa Avenida Professor Egas Moniz 1649-028 Lisboa Portugal
| | - Inês S Albuquerque
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa Avenida Professor Egas Moniz 1649-028 Lisboa Portugal
| | - Marcos F Q Sousa
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa Av. da República EAN 2780-157 Oeiras Portugal
- IBET - Instituto de Biologia Experimental e Tecnológica Av. da República EAN 2780-157 Oeiras Portugal
| | - Ana R Lemos
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa Av. da República EAN 2780-157 Oeiras Portugal
- IBET - Instituto de Biologia Experimental e Tecnológica Av. da República EAN 2780-157 Oeiras Portugal
| | - Pedro M F Sousa
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa Av. da República EAN 2780-157 Oeiras Portugal
- IBET - Instituto de Biologia Experimental e Tecnológica Av. da República EAN 2780-157 Oeiras Portugal
| | - Tiago M Bandeiras
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa Av. da República EAN 2780-157 Oeiras Portugal
- IBET - Instituto de Biologia Experimental e Tecnológica Av. da República EAN 2780-157 Oeiras Portugal
| | - Di Wu
- Department of Chemistry, University of Oxford South Parks Road Oxford OX1 3QZ UK
| | - Shelby K Doyle
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology Cambridge MA 02142 USA
| | - Carol V Robinson
- Department of Chemistry, University of Oxford South Parks Road Oxford OX1 3QZ UK
| | - Angela N Koehler
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology Cambridge MA 02142 USA
| | - Francisco Corzana
- Departamento de Química, Universidad de La Rioja, Centro de Investigación en Síntesis Química 26006 Logroño Spain
| | - Pedro M Matias
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa Av. da República EAN 2780-157 Oeiras Portugal
- IBET - Instituto de Biologia Experimental e Tecnológica Av. da República EAN 2780-157 Oeiras Portugal
| | - Gonçalo J L Bernardes
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa Avenida Professor Egas Moniz 1649-028 Lisboa Portugal
- Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| |
Collapse
|
179
|
Aljoundi A, El Rashedy A, Appiah-Kubi P, Soliman MES. Coupling of HSP72 α-Helix Subdomains by the Unexpected Irreversible Targeting of Lysine-56 over Cysteine-17; Coevolution of Covalent Bonding. Molecules 2020; 25:molecules25184239. [PMID: 32947765 PMCID: PMC7570744 DOI: 10.3390/molecules25184239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/02/2020] [Accepted: 04/06/2020] [Indexed: 11/16/2022] Open
Abstract
Covalent inhibition has recently gained a resurgence of interest in several drug discovery areas. The expansion of this approach is based on evidence elucidating the selectivity and potency of covalent inhibitors when bound to particular amino acids of a biological target. The unexpected covalent inhibition of heat shock protein 72 (HSP72) by covalently targeting Lys-56 instead of Cys-17 was an interesting observation. However, the structural basis and conformational changes associated with this preferential coupling to Lys-56 over Cys-17 remain unclear. To resolve this mystery, we employed structural and dynamic analyses to investigate the structural basis and conformational dynamics associated with the unexpected covalent inhibition. Our analyses reveal that the coupling of the irreversible inhibitor to Lys-56 is intrinsically less dynamic than Cys-17. Conformational dynamics analyses further reveal that the coupling of the inhibitor to Lys-56 induced a closed conformation of the nucleotide-binding subdomain (NBD) α-helices, in contrast, an open conformation was observed in the case of Cys-17. The closed conformation maintained the crucial salt-bridge between Glu-268 and Lys-56 residues, which strengthens the interaction affinity of the inhibitor nearly identical to adenosine triphosphate (ADP/Pi) bound to the HSP72-NBD. The outcome of this report provides a substantial shift in the conventional direction for the design of more potent covalent inhibitors.
Collapse
|
180
|
Petri L, Egyed A, Bajusz D, Imre T, Hetényi A, Martinek T, Ábrányi-Balogh P, Keserű GM. An electrophilic warhead library for mapping the reactivity and accessibility of tractable cysteines in protein kinases. Eur J Med Chem 2020; 207:112836. [PMID: 32971426 DOI: 10.1016/j.ejmech.2020.112836] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 09/03/2020] [Accepted: 09/07/2020] [Indexed: 12/22/2022]
Abstract
Targeted covalent inhibitors represent a viable strategy to block protein kinases involved in different disease pathologies. Although a number of computational protocols have been published for identifying druggable cysteines, experimental approaches are limited for mapping the reactivity and accessibility of these residues. Here, we present a ligand based approach using a toolbox of fragment-sized molecules with identical scaffold but equipped with diverse covalent warheads. Our library represents a unique opportunity for the efficient integration of warhead-optimization and target-validation into the covalent drug development process. Screening this probe kit against multiple kinases could experimentally characterize the accessibility and reactivity of the targeted cysteines and helped to identify suitable warheads for designed covalent inhibitors. The usefulness of this approach has been confirmed retrospectively on Janus kinase 3 (JAK3). Furthermore, representing a prospective validation, we identified Maternal embryonic leucine zipper kinase (MELK), as a tractable covalent target. Covalently labelling and biochemical inhibition of MELK would suggest an alternative covalent strategy for MELK inhibitor programs.
Collapse
Affiliation(s)
- László Petri
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Magyar Tudósok Krt 2, H-1117, Budapest, Hungary
| | - Attila Egyed
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Magyar Tudósok Krt 2, H-1117, Budapest, Hungary
| | - Dávid Bajusz
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Magyar Tudósok Krt 2, H-1117, Budapest, Hungary
| | - Tímea Imre
- MS Metabolomics Research Group, Research Centre for Natural Sciences, Magyar Tudósok Krt 2, H-1117, Budapest, Hungary
| | - Anasztázia Hetényi
- Department of Medicinal Chemistry, University of Szeged, Dóm Tér 8, H-6720, Szeged, Hungary
| | - Tamás Martinek
- Department of Medicinal Chemistry, University of Szeged, Dóm Tér 8, H-6720, Szeged, Hungary
| | - Péter Ábrányi-Balogh
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Magyar Tudósok Krt 2, H-1117, Budapest, Hungary
| | - György M Keserű
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Magyar Tudósok Krt 2, H-1117, Budapest, Hungary.
| |
Collapse
|
181
|
Jiang J, Jiang B, He Z, Ficarro SB, Che J, Marto JA, Gao Y, Zhang T, Gray NS. Discovery of Covalent MKK4/7 Dual Inhibitor. Cell Chem Biol 2020; 27:1553-1560.e8. [PMID: 32916088 DOI: 10.1016/j.chembiol.2020.08.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/04/2020] [Accepted: 08/20/2020] [Indexed: 12/22/2022]
Abstract
MKK4/7 are kinases that phosphorylate JNKs and regulate the MAPK signaling pathway. Their overexpression has been associated with tumorigenesis and aggressiveness in cancers such as breast, prostate, non-small cell lung, and pediatric leukemia, making them a potential target for inhibitor development. Here, we report the discovery, development, and validation of a dual MKK4/7 inhibitor, BSJ-04-122, that covalently targets a conserved cysteine located before the DFG motif and displays excellent kinome selectivity. BSJ-04-122 exhibits potent cellular target engagement and induces robust target-specific downstream effects. The combination of the dual MKK4/7 inhibitor with a selective, covalent JNK inhibitor demonstrated an enhanced antiproliferative activity against triple-negative breast cancer cells. Taken together, the results show that BSJ-04-122 represents a pharmacological probe for MKK4/7 and credential covalent targeting as a way to explore the therapeutic potential of these kinases.
Collapse
Affiliation(s)
- Jie Jiang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02215, USA
| | - Baishan Jiang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02215, USA
| | - Zhixiang He
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02215, USA
| | - Scott B Ficarro
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Jianwei Che
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02215, USA
| | - Jarrod A Marto
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA; Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Yang Gao
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02215, USA
| | - Tinghu Zhang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02215, USA.
| | - Nathanael S Gray
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
182
|
Kumar M, Papaleo E. A pan-cancer assessment of alterations of the kinase domain of ULK1, an upstream regulator of autophagy. Sci Rep 2020; 10:14874. [PMID: 32913252 PMCID: PMC7483646 DOI: 10.1038/s41598-020-71527-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 06/22/2020] [Indexed: 02/06/2023] Open
Abstract
Autophagy is a key clearance process to recycle damaged cellular components. One important upstream regulator of autophagy is ULK1 kinase. Several three-dimensional structures of the ULK1 catalytic domain are available, but a comprehensive study, including molecular dynamics, is missing. Also, an exhaustive description of ULK1 alterations found in cancer samples is presently lacking. We here applied a framework which links -omics data to structural protein ensembles to study ULK1 alterations from genomics data available for more than 30 cancer types. We predicted the effects of mutations on ULK1 function and structural stability, accounting for protein dynamics, and the different layers of changes that a mutation can induce in a protein at the functional and structural level. ULK1 is down-regulated in gynecological tumors. In other cancer types, ULK2 could compensate for ULK1 downregulation and, in the majority of the cases, no marked changes in expression have been found. 36 missense mutations of ULK1, not limited to the catalytic domain, are co-occurring with mutations in a large number of ULK1 interactors or substrates, suggesting a pronounced effect of the upstream steps of autophagy in many cancer types. Moreover, our results pinpoint that more than 50% of the mutations in the kinase domain of ULK1, here investigated, are predicted to affect protein stability. Three mutations (S184F, D102N, and A28V) are predicted with only impact on kinase activity, either modifying the functional dynamics or the capability to exert effects from distal sites to the functional and catalytic regions. The framework here applied could be extended to other protein targets to aid the classification of missense mutations from cancer genomics studies, as well as to prioritize variants for experimental validation, or to select the appropriate biological readouts for experiments.
Collapse
Affiliation(s)
- Mukesh Kumar
- Computational Biology Laboratory, Center for Autophagy, Recycling and Disease (CARD), Danish Cancer Society Research Center, Strandboulevarden 49, 2100, Copenhagen, Denmark
| | - Elena Papaleo
- Computational Biology Laboratory, Center for Autophagy, Recycling and Disease (CARD), Danish Cancer Society Research Center, Strandboulevarden 49, 2100, Copenhagen, Denmark.
- Translational Disease System Biology, Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
183
|
Bruemmer KJ, Crossley SWM, Chang CJ. Activity-Based Sensing: A Synthetic Methods Approach for Selective Molecular Imaging and Beyond. Angew Chem Int Ed Engl 2020; 59:13734-13762. [PMID: 31605413 PMCID: PMC7665898 DOI: 10.1002/anie.201909690] [Citation(s) in RCA: 153] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Indexed: 01/10/2023]
Abstract
Emerging from the origins of supramolecular chemistry and the development of selective chemical receptors that rely on lock-and-key binding, activity-based sensing (ABS)-which utilizes molecular reactivity rather than molecular recognition for analyte detection-has rapidly grown into a distinct field to investigate the production and regulation of chemical species that mediate biological signaling and stress pathways, particularly metal ions and small molecules. Chemical reactions exploit the diverse chemical reactivity of biological species to enable the development of selective and sensitive synthetic methods to decipher their contributions within complex living environments. The broad utility of this reaction-driven approach facilitates application to imaging platforms ranging from fluorescence, luminescence, photoacoustic, magnetic resonance, and positron emission tomography modalities. ABS methods are also being expanded to other fields, such as drug and materials discovery.
Collapse
Affiliation(s)
- Kevin J Bruemmer
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Steven W M Crossley
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Christopher J Chang
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, 94720, USA
| |
Collapse
|
184
|
Design, synthesis, molecular docking and antiproliferative activity of some novel benzothiazole derivatives targeting EGFR/HER2 and TS. Bioorg Chem 2020; 101:103976. [DOI: 10.1016/j.bioorg.2020.103976] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/21/2020] [Accepted: 05/24/2020] [Indexed: 12/13/2022]
|
185
|
Byrne DP, Shrestha S, Galler M, Cao M, Daly LA, Campbell AE, Eyers CE, Veal EA, Kannan N, Eyers PA. Aurora A regulation by reversible cysteine oxidation reveals evolutionarily conserved redox control of Ser/Thr protein kinase activity. Sci Signal 2020; 13:eaax2713. [PMID: 32636306 DOI: 10.1126/scisignal.aax2713] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Reactive oxygen species (ROS) are physiological mediators of cellular signaling and play potentially damaging roles in human diseases. In this study, we found that the catalytic activity of the Ser/Thr kinase Aurora A was inhibited by the oxidation of a conserved cysteine residue (Cys290) that lies adjacent to Thr288, a critical phosphorylation site in the activation segment. Cys is present at the equivalent position in ~100 human Ser/Thr kinases, a residue that we found was important not only for the activity of human Aurora A but also for that of fission yeast MAPK-activated kinase (Srk1) and PKA (Pka1). Moreover, the presence of this conserved Cys predicted biochemical redox sensitivity among a cohort of human CAMK, AGC, and AGC-like kinases. Thus, we predict that redox modulation of the conserved Cys290 of Aurora A may be an underappreciated regulatory mechanism that is widespread in eukaryotic Ser/Thr kinases. Given the key biological roles of these enzymes, these findings have implications for understanding physiological and pathological responses to ROS and highlight the importance of protein kinase regulation through multivalent modification of the activation segment.
Collapse
Affiliation(s)
- Dominic P Byrne
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK.
| | - Safal Shrestha
- Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Martin Galler
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Min Cao
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Leonard A Daly
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
- Centre for Proteome Research, Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Amy E Campbell
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
- Centre for Proteome Research, Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Claire E Eyers
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
- Centre for Proteome Research, Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Elizabeth A Veal
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Natarajan Kannan
- Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Patrick A Eyers
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK.
| |
Collapse
|
186
|
Chemical genetics strategy to profile kinase target engagement reveals role of FES in neutrophil phagocytosis. Nat Commun 2020; 11:3216. [PMID: 32587248 PMCID: PMC7316778 DOI: 10.1038/s41467-020-17027-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 06/05/2020] [Indexed: 02/07/2023] Open
Abstract
Chemical tools to monitor drug-target engagement of endogenously expressed protein kinases are highly desirable for preclinical target validation in drug discovery. Here, we describe a chemical genetics strategy to selectively study target engagement of endogenous kinases. By substituting a serine residue into cysteine at the DFG-1 position in the ATP-binding pocket, we sensitize the non-receptor tyrosine kinase FES towards covalent labeling by a complementary fluorescent chemical probe. This mutation is introduced in the endogenous FES gene of HL-60 cells using CRISPR/Cas9 gene editing. Leveraging the temporal and acute control offered by our strategy, we show that FES activity is dispensable for differentiation of HL-60 cells towards macrophages. Instead, FES plays a key role in neutrophil phagocytosis via SYK kinase activation. This chemical genetics strategy holds promise as a target validation method for kinases.
Collapse
|
187
|
Sato M, Fuchida H, Shindo N, Kuwata K, Tokunaga K, Xiao-Lin G, Inamori R, Hosokawa K, Watari K, Shibata T, Matsunaga N, Koyanagi S, Ohdo S, Ono M, Ojida A. Selective Covalent Targeting of Mutated EGFR(T790M) with Chlorofluoroacetamide-Pyrimidines. ACS Med Chem Lett 2020; 11:1137-1144. [PMID: 32550993 DOI: 10.1021/acsmedchemlett.9b00574] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 04/08/2020] [Indexed: 12/14/2022] Open
Abstract
Covalent modification of disease-associated proteins with small molecules is a powerful approach for achieving an increased and sustained pharmacological effect. To reduce the potential risk of nonselective covalent modification, molecular design of covalent inhibitors is critically important. We report herein the development of a targeted covalent inhibitor for mutated epidermal growth factor receptor (EGFR) (L858R/T790M) using α-chlorofluoroacetamide (CFA) as the reactive group. The chemically tuned weak reactivity of CFA was suitable for the design of third-generation EGFR inhibitors that possess the pyrimidine scaffold. The structure-activity relationship study revealed that CFA inhibitor 18 (NSP-037) possessed higher inhibition selectivity to the mutated EGFR over wild-type EGFR when compared to clinically approved osimertinib. Mass-based chemical proteomics analyses further revealed that 18 displayed high covalent modification selectivity for the mutated EGFR in living cells. These findings highlight the utility of CFA as a warhead of targeted covalent inhibitors and the potential application of the CFA-pyrimidines for treatment of non-small-cell lung cancer.
Collapse
Affiliation(s)
- Mami Sato
- Graduate School of Pharmaceutical Sciences, Kyushu University, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Hirokazu Fuchida
- Graduate School of Pharmaceutical Sciences, Kyushu University, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Naoya Shindo
- Graduate School of Pharmaceutical Sciences, Kyushu University, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Keiko Kuwata
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa, Nagoya 464-8601, Japan
| | - Keisuke Tokunaga
- Graduate School of Pharmaceutical Sciences, Kyushu University, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Guo Xiao-Lin
- Graduate School of Pharmaceutical Sciences, Kyushu University, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Ryo Inamori
- Graduate School of Pharmaceutical Sciences, Kyushu University, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Keitaro Hosokawa
- Graduate School of Pharmaceutical Sciences, Kyushu University, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Kosuke Watari
- Graduate School of Pharmaceutical Sciences, Kyushu University, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Tomohiro Shibata
- Graduate School of Pharmaceutical Sciences, Kyushu University, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Naoya Matsunaga
- Graduate School of Pharmaceutical Sciences, Kyushu University, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Satoru Koyanagi
- Graduate School of Pharmaceutical Sciences, Kyushu University, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Shigehiro Ohdo
- Graduate School of Pharmaceutical Sciences, Kyushu University, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Mayumi Ono
- Graduate School of Pharmaceutical Sciences, Kyushu University, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Akio Ojida
- Graduate School of Pharmaceutical Sciences, Kyushu University, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
188
|
McAulay K, Hoyt EA, Thomas M, Schimpl M, Bodnarchuk MS, Lewis HJ, Barratt D, Bhavsar D, Robinson DM, Deery MJ, Ogg DJ, Bernardes GJL, Ward RA, Waring MJ, Kettle JG. Alkynyl Benzoxazines and Dihydroquinazolines as Cysteine Targeting Covalent Warheads and Their Application in Identification of Selective Irreversible Kinase Inhibitors. J Am Chem Soc 2020; 142:10358-10372. [PMID: 32412754 DOI: 10.1021/jacs.9b13391] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
With a resurgence in interest in covalent drugs, there is a need to identify new moieties capable of cysteine bond formation that are differentiated from commonly employed systems such as acrylamide. Herein, we report on the discovery of new alkynyl benzoxazine and dihydroquinazoline moieties capable of covalent reaction with cysteine. Their utility as alternative electrophilic warheads for chemical biological probes and drug molecules is demonstrated through site-selective protein modification and incorporation into kinase drug scaffolds. A potent covalent inhibitor of JAK3 kinase was identified with superior selectivity across the kinome and improvements in in vitro pharmacokinetic profile relative to the related acrylamide-based inhibitor. In addition, the use of a novel heterocycle as a cysteine reactive warhead is employed to target Cys788 in c-KIT, where acrylamide has previously failed to form covalent interactions. These new reactive and selective heterocyclic warheads supplement the current repertoire for cysteine covalent modification while avoiding some of the limitations generally associated with established moieties.
Collapse
Affiliation(s)
| | - Emily A Hoyt
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
| | | | - Marianne Schimpl
- Discovery Sciences, R&D BioPharmaceuticals, AstraZeneca, Cambridge CB4 0WG, U.K
| | | | | | - Derek Barratt
- Discovery Sciences, R&D BioPharmaceuticals, AstraZeneca, Cambridge CB4 0WG, U.K
| | - Deepa Bhavsar
- Oncology R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| | | | - Michael J Deery
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, U.K
| | - Derek J Ogg
- Discovery Sciences, R&D BioPharmaceuticals, AstraZeneca, Cambridge CB4 0WG, U.K
| | - Gonçalo J L Bernardes
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.,Instituto de Medicina Molecular, Faculdade de Medicina de Universidad de Lisboa, Avenida Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | | | - Michael J Waring
- Northern Institute for Cancer Research, Chemistry, School of Natural and Environmental Sciences, Newcastle University, Bedson Building, Newcastle upon Tyne NE1 7RU, U.K
| | | |
Collapse
|
189
|
Identification of a potent and selective covalent Pin1 inhibitor. Nat Chem Biol 2020; 16:979-987. [PMID: 32483379 PMCID: PMC7442691 DOI: 10.1038/s41589-020-0550-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 04/15/2020] [Indexed: 12/16/2022]
Abstract
Peptidyl-prolyl cis/trans isomerase NIMA-interacting 1 (Pin1) is commonly overexpressed in human cancers, including pancreatic ductal adenocarcinoma (PDAC). While Pin1 is dispensable for viability in mice, it is required for activated Ras to induce tumorigenesis, suggesting a role for Pin1 inhibitors in Ras-driven tumors, such as PDAC. We report the development of rationally designed peptide inhibitors that covalently target Cys113, a highly conserved cysteine located in the Pin1 active site. The inhibitors were iteratively optimized for potency, selectivity, and cell permeability to give BJP-06–005-3, a versatile tool compound with which to probe Pin1 biology and interrogate its role in cancer. In parallel to inhibitor development, we employed genetic and chemical-genetic strategies to assess the consequences of Pin1 loss in human PDAC cell lines. We demonstrate that Pin1 cooperates with mutant KRAS to promote transformation in PDAC, and that Pin1 inhibition impairs cell viability over time in PDAC cell lines.
Collapse
|
190
|
Matheson CJ, Coxon CR, Bayliss R, Boxall K, Carbain B, Fry AM, Hardcastle IR, Harnor SJ, Mas-Droux C, Newell DR, Richards MW, Sivaprakasam M, Turner D, Griffin RJ, Golding BT, Cano C. 2-Arylamino-6-ethynylpurines are cysteine-targeting irreversible inhibitors of Nek2 kinase. RSC Med Chem 2020; 11:707-731. [PMID: 33479670 PMCID: PMC7649933 DOI: 10.1039/d0md00074d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 05/02/2020] [Indexed: 12/30/2022] Open
Abstract
Renewed interest in covalent inhibitors of enzymes implicated in disease states has afforded several agents targeted at protein kinases of relevance to cancers. We now report the design, synthesis and biological evaluation of 6-ethynylpurines that act as covalent inhibitors of Nek2 by capturing a cysteine residue (Cys22) close to the catalytic domain of this protein kinase. Examination of the crystal structure of the non-covalent inhibitor 3-((6-cyclohexylmethoxy-7H-purin-2-yl)amino)benzamide in complex with Nek2 indicated that replacing the alkoxy with an ethynyl group places the terminus of the alkyne close to Cys22 and in a position compatible with the stereoelectronic requirements of a Michael addition. A series of 6-ethynylpurines was prepared and a structure activity relationship (SAR) established for inhibition of Nek2. 6-Ethynyl-N-phenyl-7H-purin-2-amine [IC50 0.15 μM (Nek2)] and 4-((6-ethynyl-7H-purin-2-yl)amino)benzenesulfonamide (IC50 0.14 μM) were selected for determination of the mode of inhibition of Nek2, which was shown to be time-dependent, not reversed by addition of ATP and negated by site directed mutagenesis of Cys22 to alanine. Replacement of the ethynyl group by ethyl or cyano abrogated activity. Variation of substituents on the N-phenyl moiety for 6-ethynylpurines gave further SAR data for Nek2 inhibition. The data showed little correlation of activity with the nature of the substituent, indicating that after sufficient initial competitive binding to Nek2 subsequent covalent modification of Cys22 occurs in all cases. A typical activity profile was that for 2-(3-((6-ethynyl-9H-purin-2-yl)amino)phenyl)acetamide [IC50 0.06 μM (Nek2); GI50 (SKBR3) 2.2 μM] which exhibited >5-10-fold selectivity for Nek2 over other kinases; it also showed > 50% growth inhibition at 10 μM concentration against selected breast and leukaemia cell lines. X-ray crystallographic analysis confirmed that binding of the compound to the Nek2 ATP-binding site resulted in covalent modification of Cys22. Further studies confirmed that 2-(3-((6-ethynyl-9H-purin-2-yl)amino)phenyl)acetamide has the attributes of a drug-like compound with good aqueous solubility, no inhibition of hERG at 25 μM and a good stability profile in human liver microsomes. It is concluded that 6-ethynylpurines are promising agents for cancer treatment by virtue of their selective inhibition of Nek2.
Collapse
Affiliation(s)
- Christopher J Matheson
- Cancer Research UK Newcastle Drug Discovery Unit , Chemistry, School of Natural and Environmental Sciences , Newcastle University , Newcastle upon Tyne , UK . ; Tel: +44 (0)191 208 7060
| | - Christopher R Coxon
- Cancer Research UK Newcastle Drug Discovery Unit , Chemistry, School of Natural and Environmental Sciences , Newcastle University , Newcastle upon Tyne , UK . ; Tel: +44 (0)191 208 7060
| | - Richard Bayliss
- School of Molecular and Cellular Biology , The Astbury Centre for Structural Molecular Biology , University of Leeds , UK
- Section of Structural Biology , The Institute of Cancer Research , Sutton , UK
| | - Kathy Boxall
- Cancer Research UK Cancer Therapeutics Unit , The Institute of Cancer Research , Sutton , UK
| | - Benoit Carbain
- Cancer Research UK Newcastle Drug Discovery Unit , Chemistry, School of Natural and Environmental Sciences , Newcastle University , Newcastle upon Tyne , UK . ; Tel: +44 (0)191 208 7060
| | - Andrew M Fry
- School of Molecular and Cellular Biology , The Astbury Centre for Structural Molecular Biology , University of Leeds , UK
| | - Ian R Hardcastle
- Cancer Research UK Newcastle Drug Discovery Unit , Chemistry, School of Natural and Environmental Sciences , Newcastle University , Newcastle upon Tyne , UK . ; Tel: +44 (0)191 208 7060
| | - Suzannah J Harnor
- Cancer Research UK Newcastle Drug Discovery Unit , Chemistry, School of Natural and Environmental Sciences , Newcastle University , Newcastle upon Tyne , UK . ; Tel: +44 (0)191 208 7060
| | - Corine Mas-Droux
- Section of Structural Biology , The Institute of Cancer Research , Sutton , UK
| | - David R Newell
- Cancer Research UK Newcastle Drug Discovery Unit , Translational and Clinical Research Institute , Newcastle University Centre for Cancer , Faculty of Medical Sciences , Newcastle University , Newcastle upon Tyne , UK
| | - Mark W Richards
- School of Molecular and Cellular Biology , The Astbury Centre for Structural Molecular Biology , University of Leeds , UK
| | - Mangaleswaran Sivaprakasam
- Cancer Research UK Newcastle Drug Discovery Unit , Chemistry, School of Natural and Environmental Sciences , Newcastle University , Newcastle upon Tyne , UK . ; Tel: +44 (0)191 208 7060
| | - David Turner
- Cancer Research UK Newcastle Drug Discovery Unit , Chemistry, School of Natural and Environmental Sciences , Newcastle University , Newcastle upon Tyne , UK . ; Tel: +44 (0)191 208 7060
| | - Roger J Griffin
- Cancer Research UK Newcastle Drug Discovery Unit , Chemistry, School of Natural and Environmental Sciences , Newcastle University , Newcastle upon Tyne , UK . ; Tel: +44 (0)191 208 7060
| | - Bernard T Golding
- Cancer Research UK Newcastle Drug Discovery Unit , Chemistry, School of Natural and Environmental Sciences , Newcastle University , Newcastle upon Tyne , UK . ; Tel: +44 (0)191 208 7060
| | - Céline Cano
- Cancer Research UK Newcastle Drug Discovery Unit , Chemistry, School of Natural and Environmental Sciences , Newcastle University , Newcastle upon Tyne , UK . ; Tel: +44 (0)191 208 7060
| |
Collapse
|
191
|
Sazanova ES, Gracheva IA, Allegro D, Barbier P, Combes S, Svirshchevskaya EV, Fedorov AY. Allocolchicinoids bearing a Michael acceptor fragment for possible irreversible binding of tubulin. RSC Med Chem 2020; 11:696-706. [PMID: 33479669 PMCID: PMC7578708 DOI: 10.1039/d0md00060d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 04/10/2020] [Indexed: 12/23/2022] Open
Abstract
We describe an attempt to apply the concept of covalent binding towards the highly active allocolchicinoids selected on the basis of SAR analysis of previously synthesized molecules. To achieve the irreversible binding of the agent to the cysteine residues of the colchicine site of tubulin protein, we synthesized a number of new allocolchicinoids bearing the acceptor moiety. Some of the new derivatives possess cytotoxic activity against COLO-357, BxPC-3, HaCaT, and HEK293 cell lines in a low nanomolar range of concentrations. A substoichiometric mode of microtubule assembly inhibition was demonstrated. The most active compounds possess close to colchicine general toxicity on mice.
Collapse
Affiliation(s)
- Ekaterina S Sazanova
- Department of Chemistry , N. I. Lobachevsky State University of Nizhny Novgorod , 23 Gagarin Avenue , 603950 Nizhny Novgorod , Russian Federation
| | - Iuliia A Gracheva
- Department of Chemistry , N. I. Lobachevsky State University of Nizhny Novgorod , 23 Gagarin Avenue , 603950 Nizhny Novgorod , Russian Federation
| | - Diane Allegro
- Institute of NeuroPhysiopathology (INP) - CNRS UMR 7051 , Aix-Marseille University , 27 Boulevard Jean Moulin , 13385 Marseille , Cedex 5 , France
| | - Pascale Barbier
- Institute of NeuroPhysiopathology (INP) - CNRS UMR 7051 , Aix-Marseille University , 27 Boulevard Jean Moulin , 13385 Marseille , Cedex 5 , France
| | - Sébastien Combes
- CRCM , CNRS , Inserm , Institut Paoli-Calmettes , Aix-Marseille University , 232 Boulevard de Sainte-Marguerite , 13009 Marseille , France
- DOSynth Platform , CRCM , Faculté de Pharmacie , Aix-Marseille Université , 27 Boulevard Jean Moulin , 13385 Marseille , Cedex 5 , France
| | - Elena V Svirshchevskaya
- Laboratory of Cell Interactions , Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS , 16/10 Miklukho-Maklaya Street , 117997 Moscow , Russian Federation
| | - Alexey Yu Fedorov
- Department of Chemistry , N. I. Lobachevsky State University of Nizhny Novgorod , 23 Gagarin Avenue , 603950 Nizhny Novgorod , Russian Federation
| |
Collapse
|
192
|
Asquith CRM, Tizzard GJ, Bennett JM, Wells CI, Elkins JM, Willson TM, Poso A, Laitinen T. Targeting the Water Network in Cyclin G‐Associated Kinase (GAK) with 4‐Anilino‐quin(az)oline Inhibitors. ChemMedChem 2020; 15:1200-1215. [DOI: 10.1002/cmdc.202000150] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Christopher R. M. Asquith
- Department of Pharmacology, School of MedicineUniversity of North Carolina at Chapel Hill Chapel Hill NC 27599 USA
- Structural Genomics Consortium, UNC Eshelman School of PharmacyUniversity of North Carolina at Chapel Hill Chapel Hill NC 27599 USA
| | - Graham J. Tizzard
- UK National Crystallography Service, School of ChemistryUniversity of Southampton Southampton SO17 1BJ UK
| | - James M. Bennett
- Structural Genomics Consortium and Target Discovery Institute Nuffield Department of Clinical MedicineUniversity of Oxford Old Road Campus Research Building Oxford OX3 7DQ UK)
| | - Carrow I. Wells
- Structural Genomics Consortium, UNC Eshelman School of PharmacyUniversity of North Carolina at Chapel Hill Chapel Hill NC 27599 USA
| | - Jonathan M. Elkins
- Structural Genomics Consortium and Target Discovery Institute Nuffield Department of Clinical MedicineUniversity of Oxford Old Road Campus Research Building Oxford OX3 7DQ UK)
- Structural Genomics ConsortiumUniversidade Estadual de Campinas – UNICAMP Campinas São Paulo 13083-886 Brazil
| | - Timothy M. Willson
- Structural Genomics Consortium, UNC Eshelman School of PharmacyUniversity of North Carolina at Chapel Hill Chapel Hill NC 27599 USA
| | - Antti Poso
- School of Pharmacy, Faculty of Health SciencesUniversity of Eastern Finland 70211 Kuopio Finland
- University Hospital Tübingen Department of Internal Medicine VIIIUniversity of Tübingen 72076 Tübingen Germany
| | - Tuomo Laitinen
- School of Pharmacy, Faculty of Health SciencesUniversity of Eastern Finland 70211 Kuopio Finland
| |
Collapse
|
193
|
Sivakumaren SC, Shim H, Zhang T, Ferguson FM, Lundquist MR, Browne CM, Seo HS, Paddock MN, Manz TD, Jiang B, Hao MF, Krishnan P, Wang DG, Yang TJ, Kwiatkowski NP, Ficarro SB, Cunningham JM, Marto JA, Dhe-Paganon S, Cantley LC, Gray NS. Targeting the PI5P4K Lipid Kinase Family in Cancer Using Covalent Inhibitors. Cell Chem Biol 2020; 27:525-537.e6. [PMID: 32130941 PMCID: PMC7286548 DOI: 10.1016/j.chembiol.2020.02.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 11/14/2019] [Accepted: 02/13/2020] [Indexed: 12/12/2022]
Abstract
The PI5P4Ks have been demonstrated to be important for cancer cell proliferation and other diseases. However, the therapeutic potential of targeting these kinases is understudied due to a lack of potent, specific small molecules available. Here, we present the discovery and characterization of a pan-PI5P4K inhibitor, THZ-P1-2, that covalently targets cysteines on a disordered loop in PI5P4Kα/β/γ. THZ-P1-2 demonstrates cellular on-target engagement with limited off-targets across the kinome. AML/ALL cell lines were sensitive to THZ-P1-2, consistent with PI5P4K's reported role in leukemogenesis. THZ-P1-2 causes autophagosome clearance defects and upregulation in TFEB nuclear localization and target genes, disrupting autophagy in a covalent-dependent manner and phenocopying the effects of PI5P4K genetic deletion. Our studies demonstrate that PI5P4Ks are tractable targets, with THZ-P1-2 as a useful tool to further interrogate the therapeutic potential of PI5P4K inhibition and inform drug discovery campaigns for these lipid kinases in cancer metabolism and other autophagy-dependent disorders.
Collapse
Affiliation(s)
- Sindhu Carmen Sivakumaren
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Hyeseok Shim
- Meyer Cancer Center, Weill Cornell Medicine and New York Presbyterian Hospital, New York, NY 10065, USA
| | - Tinghu Zhang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Fleur M Ferguson
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Mark R Lundquist
- Meyer Cancer Center, Weill Cornell Medicine and New York Presbyterian Hospital, New York, NY 10065, USA
| | - Christopher M Browne
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Hyuk-Soo Seo
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Marcia N Paddock
- Meyer Cancer Center, Weill Cornell Medicine and New York Presbyterian Hospital, New York, NY 10065, USA
| | - Theresa D Manz
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Department of Pharmaceutical and Medicinal Chemistry, Saarland University, Saarbruecken, Germany
| | - Baishan Jiang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Ming-Feng Hao
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Pranav Krishnan
- Department of Medicine, Division of Hematology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Diana G Wang
- Meyer Cancer Center, Weill Cornell Medicine and New York Presbyterian Hospital, New York, NY 10065, USA
| | - T Jonathan Yang
- Meyer Cancer Center, Weill Cornell Medicine and New York Presbyterian Hospital, New York, NY 10065, USA
| | - Nicholas P Kwiatkowski
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Scott B Ficarro
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - James M Cunningham
- Department of Medicine, Division of Hematology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jarrod A Marto
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Sirano Dhe-Paganon
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Lewis C Cantley
- Meyer Cancer Center, Weill Cornell Medicine and New York Presbyterian Hospital, New York, NY 10065, USA.
| | - Nathanael S Gray
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
194
|
Yin Y, Chen CJ, Yu RN, Shu L, Wang ZJ, Zhang TT, Zhang DY. Novel 1H-pyrazolo[3,4-d]pyrimidin-6-amino derivatives as potent selective Janus kinase 3 (JAK3) inhibitors. Evaluation of their improved effect for the treatment of rheumatoid arthritis. Bioorg Chem 2020; 98:103720. [DOI: 10.1016/j.bioorg.2020.103720] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 11/24/2019] [Accepted: 03/02/2020] [Indexed: 01/26/2023]
|
195
|
Elmongy EI. Thieno[2,3‐
d
]pyrimidine derivatives: Synthetic approaches and their FLT3 kinase inhibition. J Heterocycl Chem 2020. [DOI: 10.1002/jhet.3934] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Elshaymaa I. Elmongy
- Department of Pharmaceutical Chemistry, Faculty of PharmacyHelwan University Cairo Egypt
- Department of Pharmaceutical Sciences, Faculty of PharmacyPrincess Nourah bint Abdulrahman University Riyadh Saudi Arabia
| |
Collapse
|
196
|
Zambaldo C, Vinogradova EV, Qi X, Iaconelli J, Suciu RM, Koh M, Senkane K, Chadwick SR, Sanchez BB, Chen JS, Chatterjee AK, Liu P, Schultz PG, Cravatt BF, Bollong MJ. 2-Sulfonylpyridines as Tunable, Cysteine-Reactive Electrophiles. J Am Chem Soc 2020; 142:8972-8979. [PMID: 32302104 DOI: 10.1021/jacs.0c02721] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The emerging use of covalent ligands as chemical probes and drugs would benefit from an expanded repertoire of cysteine-reactive electrophiles for efficient and diverse targeting of the proteome. Here we use the endogenous electrophile sensor of mammalian cells, the KEAP1-NRF2 pathway, to discover cysteine-reactive electrophilic fragments from a reporter-based screen for NRF2 activation. This strategy identified a series of 2-sulfonylpyridines that selectively react with biological thiols via nucleophilic aromatic substitution (SNAr). By tuning the electrophilicity and appended recognition elements, we demonstrate the potential of the 2-sulfonylpyridine reactive group with the discovery of a selective covalent modifier of adenosine deaminase (ADA). Targeting a cysteine distal to the active site, this molecule attenuates the enzymatic activity of ADA and inhibits proliferation of lymphocytic cells. This study introduces a modular and tunable SNAr-based reactive group for targeting reactive cysteines in the human proteome and illustrates the pharmacological utility of this electrophilic series.
Collapse
Affiliation(s)
- Claudio Zambaldo
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Ekaterina V Vinogradova
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Xiaotian Qi
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Jonathan Iaconelli
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Radu M Suciu
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Minseob Koh
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Kristine Senkane
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Stormi R Chadwick
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Brittany B Sanchez
- Automated Synthesis Facility, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Jason S Chen
- Automated Synthesis Facility, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Arnab K Chatterjee
- California Institute for Biomedical Research (Calibr), La Jolla, California 92037, United States
| | - Peng Liu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Peter G Schultz
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Benjamin F Cravatt
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Michael J Bollong
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| |
Collapse
|
197
|
Brulet JW, Borne AL, Yuan K, Libby AH, Hsu KL. Liganding Functional Tyrosine Sites on Proteins Using Sulfur-Triazole Exchange Chemistry. J Am Chem Soc 2020; 142:8270-8280. [PMID: 32329615 DOI: 10.1021/jacs.0c00648] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Tuning reactivity of sulfur electrophiles is key for advancing click chemistry and chemical probe discovery. To date, activation of the sulfur electrophile for protein modification has been ascribed principally to stabilization of a fluoride leaving group (LG) in covalent reactions of sulfonyl fluorides and arylfluorosulfates. We recently introduced sulfur-triazole exchange (SuTEx) chemistry to demonstrate the triazole as an effective LG for activating nucleophilic substitution reactions on tyrosine sites of proteins. Here, we probed tunability of SuTEx for fragment-based ligand discovery by modifying the adduct group (AG) and LG with functional groups of differing electron-donating and -withdrawing properties. We discovered the sulfur electrophile is highly sensitive to the position of modification (AG versus LG), which enabled both coarse and fine adjustments in solution and proteome activity. We applied these reactivity principles to identify a large fraction of tyrosine sites (∼30%) on proteins (∼44%) that can be liganded across >1500 probe-modified sites quantified by chemical proteomics. Our proteomic studies identified noncatalytic tyrosine and phosphotyrosine sites that can be liganded by SuTEx fragments with site specificity in lysates and live cells to disrupt protein function. Collectively, we describe SuTEx as a versatile covalent chemistry with broad applications for chemical proteomics and protein ligand discovery.
Collapse
Affiliation(s)
- Jeffrey W Brulet
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Adam L Borne
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, Virginia 22908, United States
| | - Kun Yuan
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Adam H Libby
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States.,University of Virginia Cancer Center, University of Virginia, Charlottesville, Virginia 22903, United States
| | - Ku-Lung Hsu
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States.,Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, Virginia 22908, United States.,University of Virginia Cancer Center, University of Virginia, Charlottesville, Virginia 22903, United States.,Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia 22908, United States
| |
Collapse
|
198
|
Bruemmer KJ, Crossley SWM, Chang CJ. Aktivitätsbasierte Sensorik: ein synthetisch‐methodischer Ansatz für die selektive molekulare Bildgebung und darüber hinaus. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201909690] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Kevin J. Bruemmer
- Department of Chemistry University of California, Berkeley Berkeley CA 94720 USA
| | | | - Christopher J. Chang
- Department of Chemistry University of California, Berkeley Berkeley CA 94720 USA
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute University of California, Berkeley Berkeley CA 94720 USA
| |
Collapse
|
199
|
Moshafi MH, Ghasemshirazi S, Abiri A. The art of suicidal molecular seduction for targeting drug resistance. Med Hypotheses 2020; 140:109676. [PMID: 32203818 DOI: 10.1016/j.mehy.2020.109676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 02/29/2020] [Accepted: 03/14/2020] [Indexed: 12/11/2022]
Abstract
The development of drug resistance is one of the most significant challenges of the current century in the pharmaceutical industry. Superinfections, cancer chemoresistance, and resistance observed in many non-infectious diseases are nullifying the efforts and monetary supplies, put in the advent of new drug molecules. Millions of people die because of this drug resistance developed gradually through extensive use of the drugs. Inherently, some drugs are less prone to become ineffective by drug resistance than others. Covalent inhibitors bind to their targets via a biologically permanent bound with their cognate receptor and therefore display more potent inhibiting characteristics. Suicide inhibitors or mechanism-based inhibitors are one of the covalent inhibitors, which require a pre-activation step by their targeting enzyme. This step accrues their selectivity and specificity with respect to other covalent inhibitors. After that pre-activation step, they produce an analogue of the transition state of the catalytic enzyme, which is practically incapable of dissociating from the enzyme. Suicide inhibitors, due to their high intrinsic affinity toward the related enzyme, are resistant to many mechanisms involved in the development of drug resistance and can be regarded as one of the enemies of this scientific hurdle. These inhibitors compete even with monoclonal antibodies in terms of their cost-effectiveness and efficacy.
Collapse
Affiliation(s)
- Mohammad Hassan Moshafi
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Saeid Ghasemshirazi
- Department of Computer Engineering, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Ardavan Abiri
- Department of Medicinal Chemistry, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
200
|
Manz T, Sivakumaren SC, Yasgar A, Hall MD, Davis MI, Seo HS, Card JD, Ficarro SB, Shim H, Marto JA, Dhe-Paganon S, Sasaki AT, Boxer MB, Simeonov A, Cantley LC, Shen M, Zhang T, Ferguson FM, Gray NS. Structure-Activity Relationship Study of Covalent Pan-phosphatidylinositol 5-Phosphate 4-Kinase Inhibitors. ACS Med Chem Lett 2020; 11:346-352. [PMID: 32184968 PMCID: PMC7074221 DOI: 10.1021/acsmedchemlett.9b00402] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 11/03/2019] [Indexed: 12/20/2022] Open
Abstract
Phosphatidylinositol 5-phosphate 4-kinases (PI5P4Ks) are important molecular players in a variety of diseases, such as cancer. Currently available PI5P4K inhibitors are reversible small molecules, which may lack selectivity and sufficient cellular on-target activity. In this study, we present a new class of covalent pan-PI5P4K inhibitors with potent biochemical and cellular activity. Our designs are based on THZ-P1-2, a covalent PI5P4K inhibitor previously developed in our lab. Here, we report further structure-guided optimization and structure-activity relationship (SAR) study of this scaffold, resulting in compound 30, which retained biochemical and cellular potency, while demonstrating a significantly improved selectivity profile. Furthermore, we confirm that the inhibitors show efficient binding affinity in the context of HEK 293T cells using isothermal CETSA methods. Taken together, compound 30 represents a highly selective pan-PI5P4K covalent lead molecule.
Collapse
Affiliation(s)
- Theresa
D. Manz
- Department
of Cancer Biology, Dana-Farber Cancer Institute, 360 Longwood Avenue, Boston, Massachusetts 02215, United States
- Department
of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02215, United States
- Department
of Pharmaceutical and Medicinal Chemistry, Saarland University, Saarbruecken, Germany
| | - Sindhu C. Sivakumaren
- Department
of Cancer Biology, Dana-Farber Cancer Institute, 360 Longwood Avenue, Boston, Massachusetts 02215, United States
- Department
of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Adam Yasgar
- National
Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Matthew D. Hall
- National
Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Mindy I. Davis
- National
Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Hyuk-Soo Seo
- Department
of Cancer Biology, Dana-Farber Cancer Institute, 360 Longwood Avenue, Boston, Massachusetts 02215, United States
- Department
of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Joseph D. Card
- Department
of Cancer Biology and Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
- Department
of Oncologic Pathology, Dana-Farber Cancer
Institute, 360 Longwood
Avenue, Boston, Massachusetts 02215, United States
- Department
of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Scott B. Ficarro
- Department
of Cancer Biology and Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
- Department
of Oncologic Pathology, Dana-Farber Cancer
Institute, 360 Longwood
Avenue, Boston, Massachusetts 02215, United States
- Department
of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Hyeseok Shim
- Meyer
Cancer Center, Weill Cornell Medicine and
New York Presbyterian Hospital, New York, New York 10065, United States
| | - Jarrod A. Marto
- Department
of Cancer Biology and Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
- Department
of Oncologic Pathology, Dana-Farber Cancer
Institute, 360 Longwood
Avenue, Boston, Massachusetts 02215, United States
- Department
of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Sirano Dhe-Paganon
- Department
of Cancer Biology, Dana-Farber Cancer Institute, 360 Longwood Avenue, Boston, Massachusetts 02215, United States
- Department
of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Atsuo T. Sasaki
- Division
of Hematology and Oncology, University of
Cincinnati, 3125 Eden
Avenue, Cincinnati, Ohio 45267-0508, United States
| | - Matthew B. Boxer
- National
Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Anton Simeonov
- National
Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Lewis C. Cantley
- Meyer
Cancer Center, Weill Cornell Medicine and
New York Presbyterian Hospital, New York, New York 10065, United States
| | - Min Shen
- National
Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Tinghu Zhang
- Department
of Cancer Biology, Dana-Farber Cancer Institute, 360 Longwood Avenue, Boston, Massachusetts 02215, United States
- Department
of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Fleur M. Ferguson
- Department
of Cancer Biology, Dana-Farber Cancer Institute, 360 Longwood Avenue, Boston, Massachusetts 02215, United States
- Department
of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Nathanael S. Gray
- Department
of Cancer Biology, Dana-Farber Cancer Institute, 360 Longwood Avenue, Boston, Massachusetts 02215, United States
- Department
of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02215, United States
| |
Collapse
|