151
|
Nolin SL, Napoli E, Flores A, Hagerman RJ, Giulivi C. Deficits in Prenatal Serine Biosynthesis Underlie the Mitochondrial Dysfunction Associated with the Autism-Linked FMR1 Gene. Int J Mol Sci 2021; 22:ijms22115886. [PMID: 34070950 PMCID: PMC8198117 DOI: 10.3390/ijms22115886] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/25/2021] [Accepted: 05/27/2021] [Indexed: 12/22/2022] Open
Abstract
Fifty-five to two hundred CGG repeats (called a premutation, or PM) in the 5′-UTR of the FMR1 gene are generally unstable, often expanding to a full mutation (>200) in one generation through maternal inheritance, leading to fragile X syndrome, a condition associated with autism and other intellectual disabilities. To uncover the early mechanisms of pathogenesis, we performed metabolomics and proteomics on amniotic fluids from PM carriers, pregnant with male fetuses, who had undergone amniocentesis for fragile X prenatal diagnosis. The prenatal metabolic footprint identified mitochondrial deficits, which were further validated by using internal and external cohorts. Deficits in the anaplerosis of the Krebs cycle were noted at the level of serine biosynthesis, which was confirmed by rescuing the mitochondrial dysfunction in the carriers’ umbilical cord fibroblasts using alpha-ketoglutarate precursors. Maternal administration of serine and its precursors has the potential to decrease the risk of developing energy shortages associated with mitochondrial dysfunction and linked comorbidities.
Collapse
Affiliation(s)
- Sarah L. Nolin
- Department of Human Genetics, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY 10314, USA;
| | - Eleonora Napoli
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA; (E.N.); (A.F.)
| | - Amanda Flores
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA; (E.N.); (A.F.)
- Medical Sciences Campus, Department of Biochemistry, University of Puerto Rico, San Juan PR00936, Puerto Rico
| | - Randi J. Hagerman
- Department of Pediatrics, University of California Davis Medical Center, Sacramento, CA 95817, USA;
- The MIND Institute, University of California Davis Medical Center, Sacramento, CA 95817, USA
| | - Cecilia Giulivi
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA; (E.N.); (A.F.)
- The MIND Institute, University of California Davis Medical Center, Sacramento, CA 95817, USA
- Correspondence: ; Tel.: +1-530-754-8603
| |
Collapse
|
152
|
Chang CY, Luo DZ, Pei JC, Kuo MC, Hsieh YC, Lai WS. Not Just a Bystander: The Emerging Role of Astrocytes and Research Tools in Studying Cognitive Dysfunctions in Schizophrenia. Int J Mol Sci 2021; 22:ijms22105343. [PMID: 34069523 PMCID: PMC8160762 DOI: 10.3390/ijms22105343] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/14/2021] [Accepted: 05/14/2021] [Indexed: 12/16/2022] Open
Abstract
Cognitive dysfunction is one of the core symptoms in schizophrenia, and it is predictive of functional outcomes and therefore useful for treatment targets. Rather than improving cognitive deficits, currently available antipsychotics mainly focus on positive symptoms, targeting dopaminergic/serotoninergic neurons and receptors in the brain. Apart from investigating the neural mechanisms underlying schizophrenia, emerging evidence indicates the importance of glial cells in brain structure development and their involvement in cognitive functions. Although the etiopathology of astrocytes in schizophrenia remains unclear, accumulated evidence reveals that alterations in gene expression and astrocyte products have been reported in schizophrenic patients. To further investigate the role of astrocytes in schizophrenia, we highlighted recent progress in the investigation of the effect of astrocytes on abnormalities in glutamate transmission and impairments in the blood–brain barrier. Recent advances in animal models and behavioral methods were introduced to examine schizophrenia-related cognitive deficits and negative symptoms. We also highlighted several experimental tools that further elucidate the role of astrocytes. Instead of focusing on schizophrenia as a neuron-specific disorder, an additional astrocytic perspective provides novel and promising insight into its causal mechanisms and treatment. The involvement of astrocytes in the pathogenesis of schizophrenia and other brain disorders is worth further investigation.
Collapse
Affiliation(s)
- Chia-Yuan Chang
- Department of Psychology, National Taiwan University, Taipei 10617, Taiwan; (C.-Y.C.); (D.-Z.L.); (J.-C.P.); (Y.-C.H.)
- Neurobiology and Cognitive Science Center, National Taiwan University, Taipei 10617, Taiwan;
| | - Da-Zhong Luo
- Department of Psychology, National Taiwan University, Taipei 10617, Taiwan; (C.-Y.C.); (D.-Z.L.); (J.-C.P.); (Y.-C.H.)
| | - Ju-Chun Pei
- Department of Psychology, National Taiwan University, Taipei 10617, Taiwan; (C.-Y.C.); (D.-Z.L.); (J.-C.P.); (Y.-C.H.)
| | - Ming-Che Kuo
- Neurobiology and Cognitive Science Center, National Taiwan University, Taipei 10617, Taiwan;
- Department of Neurology, National Taiwan University Hospital, Taipei 100225, Taiwan
| | - Yi-Chen Hsieh
- Department of Psychology, National Taiwan University, Taipei 10617, Taiwan; (C.-Y.C.); (D.-Z.L.); (J.-C.P.); (Y.-C.H.)
| | - Wen-Sung Lai
- Department of Psychology, National Taiwan University, Taipei 10617, Taiwan; (C.-Y.C.); (D.-Z.L.); (J.-C.P.); (Y.-C.H.)
- Neurobiology and Cognitive Science Center, National Taiwan University, Taipei 10617, Taiwan;
- Graduate Institute of Brain and Mind Sciences, National Taiwan University, Taipei 10617, Taiwan
- Correspondence: ; Tel.: +886-2-3366-3112; Fax: +886-2-3362-9909
| |
Collapse
|
153
|
Watanabe M, Chiba Y, Hirai MY. Metabolism and Regulatory Functions of O-Acetylserine, S-Adenosylmethionine, Homocysteine, and Serine in Plant Development and Environmental Responses. FRONTIERS IN PLANT SCIENCE 2021; 12:643403. [PMID: 34025692 PMCID: PMC8137854 DOI: 10.3389/fpls.2021.643403] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/17/2021] [Indexed: 05/19/2023]
Abstract
The metabolism of an organism is closely related to both its internal and external environments. Metabolites can act as signal molecules that regulate the functions of genes and proteins, reflecting the status of these environments. This review discusses the metabolism and regulatory functions of O-acetylserine (OAS), S-adenosylmethionine (AdoMet), homocysteine (Hcy), and serine (Ser), which are key metabolites related to sulfur (S)-containing amino acids in plant metabolic networks, in comparison to microbial and animal metabolism. Plants are photosynthetic auxotrophs that have evolved a specific metabolic network different from those in other living organisms. Although amino acids are the building blocks of proteins and common metabolites in all living organisms, their metabolism and regulation in plants have specific features that differ from those in animals and bacteria. In plants, cysteine (Cys), an S-containing amino acid, is synthesized from sulfide and OAS derived from Ser. Methionine (Met), another S-containing amino acid, is also closely related to Ser metabolism because of its thiomethyl moiety. Its S atom is derived from Cys and its methyl group from folates, which are involved in one-carbon metabolism with Ser. One-carbon metabolism is also involved in the biosynthesis of AdoMet, which serves as a methyl donor in the methylation reactions of various biomolecules. Ser is synthesized in three pathways: the phosphorylated pathway found in all organisms and the glycolate and the glycerate pathways, which are specific to plants. Ser metabolism is not only important in Ser supply but also involved in many other functions. Among the metabolites in this network, OAS is known to function as a signal molecule to regulate the expression of OAS gene clusters in response to environmental factors. AdoMet regulates amino acid metabolism at enzymatic and translational levels and regulates gene expression as methyl donor in the DNA and histone methylation or after conversion into bioactive molecules such as polyamine and ethylene. Hcy is involved in Met-AdoMet metabolism and can regulate Ser biosynthesis at an enzymatic level. Ser metabolism is involved in development and stress responses. This review aims to summarize the metabolism and regulatory functions of OAS, AdoMet, Hcy, and Ser and compare the available knowledge for plants with that for animals and bacteria and propose a future perspective on plant research.
Collapse
Affiliation(s)
- Mutsumi Watanabe
- Graduate School of Biological Science, Nara Institute of Science and Technology, Ikoma, Japan
| | - Yukako Chiba
- Graduate School of Life Sciences, Faculty of Science, Hokkaido University, Sapporo, Japan
| | - Masami Yokota Hirai
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| |
Collapse
|
154
|
Salmina AB, Kharitonova EV, Gorina YV, Teplyashina EA, Malinovskaya NA, Khilazheva ED, Mosyagina AI, Morgun AV, Shuvaev AN, Salmin VV, Lopatina OL, Komleva YK. Blood-Brain Barrier and Neurovascular Unit In Vitro Models for Studying Mitochondria-Driven Molecular Mechanisms of Neurodegeneration. Int J Mol Sci 2021; 22:4661. [PMID: 33925080 PMCID: PMC8125678 DOI: 10.3390/ijms22094661] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 04/24/2021] [Accepted: 04/27/2021] [Indexed: 12/15/2022] Open
Abstract
Pathophysiology of chronic neurodegeneration is mainly based on complex mechanisms related to aberrant signal transduction, excitation/inhibition imbalance, excitotoxicity, synaptic dysfunction, oxidative stress, proteotoxicity and protein misfolding, local insulin resistance and metabolic dysfunction, excessive cell death, development of glia-supported neuroinflammation, and failure of neurogenesis. These mechanisms tightly associate with dramatic alterations in the structure and activity of the neurovascular unit (NVU) and the blood-brain barrier (BBB). NVU is an ensemble of brain cells (brain microvessel endothelial cells (BMECs), astrocytes, pericytes, neurons, and microglia) serving for the adjustment of cell-to-cell interactions, metabolic coupling, local microcirculation, and neuronal excitability to the actual needs of the brain. The part of the NVU known as a BBB controls selective access of endogenous and exogenous molecules to the brain tissue and efflux of metabolites to the blood, thereby providing maintenance of brain chemical homeostasis critical for efficient signal transduction and brain plasticity. In Alzheimer's disease, mitochondria are the target organelles for amyloid-induced neurodegeneration and alterations in NVU metabolic coupling or BBB breakdown. In this review we discuss understandings on mitochondria-driven NVU and BBB dysfunction, and how it might be studied in current and prospective NVU/BBB in vitro models for finding new approaches for the efficient pharmacotherapy of Alzheimer's disease.
Collapse
Affiliation(s)
- Alla B. Salmina
- Research Institute of Molecular Medicine and Pathobiochemistry, Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia; (E.V.K.); (Y.V.G.); (E.A.T.); (N.A.M.); (E.D.K.); (A.I.M.); (A.V.M.); (A.N.S.); (V.V.S.); (O.L.L.); (Y.K.K.)
- Research Center of Neurology, 125367 Moscow, Russia
| | - Ekaterina V. Kharitonova
- Research Institute of Molecular Medicine and Pathobiochemistry, Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia; (E.V.K.); (Y.V.G.); (E.A.T.); (N.A.M.); (E.D.K.); (A.I.M.); (A.V.M.); (A.N.S.); (V.V.S.); (O.L.L.); (Y.K.K.)
| | - Yana V. Gorina
- Research Institute of Molecular Medicine and Pathobiochemistry, Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia; (E.V.K.); (Y.V.G.); (E.A.T.); (N.A.M.); (E.D.K.); (A.I.M.); (A.V.M.); (A.N.S.); (V.V.S.); (O.L.L.); (Y.K.K.)
| | - Elena A. Teplyashina
- Research Institute of Molecular Medicine and Pathobiochemistry, Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia; (E.V.K.); (Y.V.G.); (E.A.T.); (N.A.M.); (E.D.K.); (A.I.M.); (A.V.M.); (A.N.S.); (V.V.S.); (O.L.L.); (Y.K.K.)
| | - Natalia A. Malinovskaya
- Research Institute of Molecular Medicine and Pathobiochemistry, Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia; (E.V.K.); (Y.V.G.); (E.A.T.); (N.A.M.); (E.D.K.); (A.I.M.); (A.V.M.); (A.N.S.); (V.V.S.); (O.L.L.); (Y.K.K.)
| | - Elena D. Khilazheva
- Research Institute of Molecular Medicine and Pathobiochemistry, Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia; (E.V.K.); (Y.V.G.); (E.A.T.); (N.A.M.); (E.D.K.); (A.I.M.); (A.V.M.); (A.N.S.); (V.V.S.); (O.L.L.); (Y.K.K.)
| | - Angelina I. Mosyagina
- Research Institute of Molecular Medicine and Pathobiochemistry, Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia; (E.V.K.); (Y.V.G.); (E.A.T.); (N.A.M.); (E.D.K.); (A.I.M.); (A.V.M.); (A.N.S.); (V.V.S.); (O.L.L.); (Y.K.K.)
| | - Andrey V. Morgun
- Research Institute of Molecular Medicine and Pathobiochemistry, Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia; (E.V.K.); (Y.V.G.); (E.A.T.); (N.A.M.); (E.D.K.); (A.I.M.); (A.V.M.); (A.N.S.); (V.V.S.); (O.L.L.); (Y.K.K.)
| | - Anton N. Shuvaev
- Research Institute of Molecular Medicine and Pathobiochemistry, Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia; (E.V.K.); (Y.V.G.); (E.A.T.); (N.A.M.); (E.D.K.); (A.I.M.); (A.V.M.); (A.N.S.); (V.V.S.); (O.L.L.); (Y.K.K.)
| | - Vladimir V. Salmin
- Research Institute of Molecular Medicine and Pathobiochemistry, Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia; (E.V.K.); (Y.V.G.); (E.A.T.); (N.A.M.); (E.D.K.); (A.I.M.); (A.V.M.); (A.N.S.); (V.V.S.); (O.L.L.); (Y.K.K.)
| | - Olga L. Lopatina
- Research Institute of Molecular Medicine and Pathobiochemistry, Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia; (E.V.K.); (Y.V.G.); (E.A.T.); (N.A.M.); (E.D.K.); (A.I.M.); (A.V.M.); (A.N.S.); (V.V.S.); (O.L.L.); (Y.K.K.)
| | - Yulia K. Komleva
- Research Institute of Molecular Medicine and Pathobiochemistry, Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia; (E.V.K.); (Y.V.G.); (E.A.T.); (N.A.M.); (E.D.K.); (A.I.M.); (A.V.M.); (A.N.S.); (V.V.S.); (O.L.L.); (Y.K.K.)
| |
Collapse
|
155
|
Zhang X, Alshakhshir N, Zhao L. Glycolytic Metabolism, Brain Resilience, and Alzheimer's Disease. Front Neurosci 2021; 15:662242. [PMID: 33994936 PMCID: PMC8113697 DOI: 10.3389/fnins.2021.662242] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/06/2021] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) is the most common form of age-related dementia. Despite decades of research, the etiology and pathogenesis of AD are not well understood. Brain glucose hypometabolism has long been recognized as a prominent anomaly that occurs in the preclinical stage of AD. Recent studies suggest that glycolytic metabolism, the cytoplasmic pathway of the breakdown of glucose, may play a critical role in the development of AD. Glycolysis is essential for a variety of neural activities in the brain, including energy production, synaptic transmission, and redox homeostasis. Decreased glycolytic flux has been shown to correlate with the severity of amyloid and tau pathology in both preclinical and clinical AD patients. Moreover, increased glucose accumulation found in the brains of AD patients supports the hypothesis that glycolytic deficit may be a contributor to the development of this phenotype. Brain hyperglycemia also provides a plausible explanation for the well-documented link between AD and diabetes. Humans possess three primary variants of the apolipoprotein E (ApoE) gene - ApoE∗ϵ2, ApoE∗ϵ3, and ApoE∗ϵ4 - that confer differential susceptibility to AD. Recent findings indicate that neuronal glycolysis is significantly affected by human ApoE isoforms and glycolytic robustness may serve as a major mechanism that renders an ApoE2-bearing brain more resistant against the neurodegenerative risks for AD. In addition to AD, glycolytic dysfunction has been observed in other neurodegenerative diseases, including Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis, strengthening the concept of glycolytic dysfunction as a common pathway leading to neurodegeneration. Taken together, these advances highlight a promising translational opportunity that involves targeting glycolysis to bolster brain metabolic resilience and by such to alter the course of brain aging or disease development to prevent or reduce the risks for not only AD but also other neurodegenerative diseases.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, United States
| | - Nadine Alshakhshir
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, United States
| | - Liqin Zhao
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, United States
- Neuroscience Graduate Program, University of Kansas, Lawrence, KS, United States
| |
Collapse
|
156
|
Pham C, Hérault K, Oheim M, Maldera S, Vialou V, Cauli B, Li D. Astrocytes respond to a neurotoxic Aβ fragment with state-dependent Ca 2+ alteration and multiphasic transmitter release. Acta Neuropathol Commun 2021; 9:44. [PMID: 33726852 PMCID: PMC7968286 DOI: 10.1186/s40478-021-01146-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 02/28/2021] [Indexed: 12/13/2022] Open
Abstract
Excessive amounts of amyloid β (Aβ) peptide have been suggested to dysregulate synaptic transmission in Alzheimer's disease (AD). As a major type of glial cell in the mammalian brain, astrocytes regulate neuronal function and undergo activity alterations upon Aβ exposure. Yet the mechanistic steps underlying astrocytic responses to Aβ peptide remain to be elucidated. Here by fluorescence imaging of signaling pathways, we dissected astrocytic responses to Aβ25-35 peptide, a neurotoxic Aβ fragment present in AD patients. In native health astrocytes, Aβ25-35 evoked Ca2+ elevations via purinergic receptors, being also dependent on the opening of connexin (CX) hemichannels. Aβ25-35, however, induced a Ca2+ diminution in Aβ-preconditioned astrocytes as a result of the potentiation of the plasma membrane Ca2+ ATPase (PMCA). The PMCA and CX protein expression was observed with immunostaining in the brain tissue of hAPPJ20 AD mouse model. We also observed both Ca2+-independent and Ca2+-dependent glutamate release upon astrocytic Aβ exposure, with the former mediated by CX hemichannel and the latter by both anion channels and lysosome exocytosis. Our results suggest that Aβ peptide causes state-dependent responses in astrocytes, in association with a multiphasic release of signaling molecules. This study therefore helps to understand astrocyte engagement in AD-related amyloidopathy.
Collapse
|
157
|
Escartin C, Galea E, Lakatos A, O'Callaghan JP, Petzold GC, Serrano-Pozo A, Steinhäuser C, Volterra A, Carmignoto G, Agarwal A, Allen NJ, Araque A, Barbeito L, Barzilai A, Bergles DE, Bonvento G, Butt AM, Chen WT, Cohen-Salmon M, Cunningham C, Deneen B, De Strooper B, Díaz-Castro B, Farina C, Freeman M, Gallo V, Goldman JE, Goldman SA, Götz M, Gutiérrez A, Haydon PG, Heiland DH, Hol EM, Holt MG, Iino M, Kastanenka KV, Kettenmann H, Khakh BS, Koizumi S, Lee CJ, Liddelow SA, MacVicar BA, Magistretti P, Messing A, Mishra A, Molofsky AV, Murai KK, Norris CM, Okada S, Oliet SHR, Oliveira JF, Panatier A, Parpura V, Pekna M, Pekny M, Pellerin L, Perea G, Pérez-Nievas BG, Pfrieger FW, Poskanzer KE, Quintana FJ, Ransohoff RM, Riquelme-Perez M, Robel S, Rose CR, Rothstein JD, Rouach N, Rowitch DH, Semyanov A, Sirko S, Sontheimer H, Swanson RA, Vitorica J, Wanner IB, Wood LB, Wu J, Zheng B, Zimmer ER, Zorec R, Sofroniew MV, Verkhratsky A. Reactive astrocyte nomenclature, definitions, and future directions. Nat Neurosci 2021; 24:312-325. [PMID: 33589835 PMCID: PMC8007081 DOI: 10.1038/s41593-020-00783-4] [Citation(s) in RCA: 1196] [Impact Index Per Article: 299.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 12/16/2020] [Indexed: 12/18/2022]
Abstract
Reactive astrocytes are astrocytes undergoing morphological, molecular, and functional remodeling in response to injury, disease, or infection of the CNS. Although this remodeling was first described over a century ago, uncertainties and controversies remain regarding the contribution of reactive astrocytes to CNS diseases, repair, and aging. It is also unclear whether fixed categories of reactive astrocytes exist and, if so, how to identify them. We point out the shortcomings of binary divisions of reactive astrocytes into good-vs-bad, neurotoxic-vs-neuroprotective or A1-vs-A2. We advocate, instead, that research on reactive astrocytes include assessment of multiple molecular and functional parameters-preferably in vivo-plus multivariate statistics and determination of impact on pathological hallmarks in relevant models. These guidelines may spur the discovery of astrocyte-based biomarkers as well as astrocyte-targeting therapies that abrogate detrimental actions of reactive astrocytes, potentiate their neuro- and glioprotective actions, and restore or augment their homeostatic, modulatory, and defensive functions.
Collapse
Affiliation(s)
- Carole Escartin
- Université Paris-Saclay, CEA, CNRS, MIRCen, Laboratoire des Maladies Neurodégénératives, Fontenay-aux-Roses, France.
| | - Elena Galea
- Institut de Neurociències and Departament de Bioquímica i Biologia Molecular, Unitat de Bioquímica de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain.
- ICREA, Barcelona, Spain.
| | - András Lakatos
- John van Geest Centre for Brain Repair and Division of Stem Cell Neurobiology, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Wellcome Trust-MRC Cambridge Stem Cell Institute, Cambridge Biomedical Campus, Cambridge, UK
| | - James P O'Callaghan
- Health Effects Laboratory Division, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Morgantown, West Virginia, USA
| | - Gabor C Petzold
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Division of Vascular Neurology, Department of Neurology, University Hospital Bonn, Bonn, Germany
| | - Alberto Serrano-Pozo
- Alzheimer Research Unit, Department of Neurology, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Christian Steinhäuser
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Andrea Volterra
- Department of Fundamental Neuroscience, University of Lausanne, Lausanne, Switzerland
| | - Giorgio Carmignoto
- Neuroscience Institute, Italian National Research Council (CNR), Padua, Italy
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Amit Agarwal
- The Chica and Heinz Schaller Research Group, Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Nicola J Allen
- Salk Institute for Biological Studies, Molecular Neurobiology Laboratory, La Jolla, California, USA
| | - Alfonso Araque
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota, USA
| | | | - Ari Barzilai
- Department of Neurobiology, George S. Wise, Faculty of Life Sciences and Sagol School of Neuroscience, Tel Aviv University, Ramat Aviv Tel Aviv, Israel
| | - Dwight E Bergles
- The Solomon H. Snyder Department of Neuroscience, Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Gilles Bonvento
- Université Paris-Saclay, CEA, CNRS, MIRCen, Laboratoire des Maladies Neurodégénératives, Fontenay-aux-Roses, France
| | - Arthur M Butt
- School of Pharmacy and Biomedical Science, University of Portsmouth, Portsmouth, UK
| | - Wei-Ting Chen
- Center for Brain and Disease Research, VIB and University of Leuven, Leuven, Belgium
| | - Martine Cohen-Salmon
- 'Physiology and Physiopathology of the Gliovascular Unit' Research Group, Center for Interdisciplinary Research in Biology (CIRB), College de France, Unité Mixte de Recherche 7241 CNRS, Unité1050 INSERM, PSL Research University, Paris, France
| | - Colm Cunningham
- Trinity Biomedical Sciences Institute & Trinity College Institute of Neuroscience, School of Biochemistry & Immunology, Trinity College Dublin, Dublin, Republic of Ireland
| | - Benjamin Deneen
- Center for Cell and Gene Therapy, Department of Neurosurgery, Baylor College of Medicine, Houston, Texas, USA
| | - Bart De Strooper
- Center for Brain and Disease Research, VIB and University of Leuven, Leuven, Belgium
- UK Dementia Research Institute at the University College London, London, UK
| | - Blanca Díaz-Castro
- UK Dementia Research Institute at the University of Edinburgh, Centre for Discovery Brain Sciences, Edinburgh, UK
| | - Cinthia Farina
- Institute of Experimental Neurology (INSpe) and Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | | | - Vittorio Gallo
- Center for Neuroscience Research, Children's National Research Institute, Children's National Hospital, Washington DC, USA
| | - James E Goldman
- Department of Pathology & Cell Biology, Columbia University, New York, New York, USA
| | - Steven A Goldman
- University of Rochester Medical Center, Rochester, New York, USA
- Center for Translational Neuromedicine, University of Copenhagen Faculty of Health and Medical Science and Rigshospitalet, Kobenhavn N, Denmark
| | - Magdalena Götz
- Physiological Genomics, Biomedical Center, Ludwig-Maximilians-Universitaet & Institute of Stem Cell Research, Helmholtz Center Munich, Munich, Germany
- Synergy, Excellence Cluster of Systems Neurology, Biomedical Center, Munich, Germany
| | - Antonia Gutiérrez
- Dpto. Biología Celular, Genética y Fisiología, Instituto de Investigación Biomédica de Málaga-IBIMA, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Philip G Haydon
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Dieter H Heiland
- Microenvironment and Immunology Research Laboratory, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Neurosurgery, Medical Center, University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Elly M Hol
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Matthew G Holt
- Laboratory of Glia Biology, VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium
| | - Masamitsu Iino
- Division of Cellular and Molecular Pharmacology, Nihon University School of Medicine, Tokyo, Japan
| | - Ksenia V Kastanenka
- Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Helmut Kettenmann
- Cellular Neurosciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Baljit S Khakh
- Department of Physiology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Schuichi Koizumi
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - C Justin Lee
- Center for Cognition and Sociality, Institute for Basic Science 55, Expo-ro, Yuseong-gu, Daejeon, Korea
| | - Shane A Liddelow
- Neuroscience Institute, Department of Neuroscience and Physiology, Department of Ophthalmology, NYU School of Medicine, New York, USA
| | - Brian A MacVicar
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Pierre Magistretti
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Centre de Neurosciences Psychiatriques, University of Lausanne and CHUV, Site de Cery, Prilly-Lausanne, Lausanne, Switzerland
| | - Albee Messing
- Waisman Center and School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Anusha Mishra
- Department of Neurology Jungers Center for Neurosciences Research and Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Anna V Molofsky
- Departments of Psychiatry/Weill Institute for Neuroscience University of California, San Francisco, California, USA
| | - Keith K Murai
- Centre for Research in Neuroscience, Department of Neurology & Neurosurgery, Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Christopher M Norris
- Sanders-Brown Center on Aging, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Seiji Okada
- Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Stéphane H R Oliet
- Université de Bordeaux, Inserm, Neurocentre Magendie, U1215, Bordeaux, France
| | - João F Oliveira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's -PT Government Associate Laboratory, Braga/Guimarães, Portugal
- IPCA-EST-2Ai, Polytechnic Institute of Cávado and Ave, Applied Artificial Intelligence Laboratory, Campus of IPCA, Barcelos, Portugal
| | - Aude Panatier
- Université de Bordeaux, Inserm, Neurocentre Magendie, U1215, Bordeaux, France
| | - Vladimir Parpura
- Department of Neurobiology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Marcela Pekna
- Laboratory of Regenerative Neuroimmunology, Center for Brain Repair, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Milos Pekny
- Laboratory of Astrocyte Biology and CNS Regeneration, Center for Brain Repair, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Luc Pellerin
- INSERM U1082, Université de Poitiers, Poitiers, France
| | - Gertrudis Perea
- Department of Functional and Systems Neurobiology, Cajal Institute, CSIC, Madrid, Spain
| | - Beatriz G Pérez-Nievas
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Frank W Pfrieger
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Kira E Poskanzer
- Department of Biochemistry & Biophysics, Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, California, USA
| | - Francisco J Quintana
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School. Associate Member, The Broad Institute, Boston, Massachusetts, USA
| | | | - Miriam Riquelme-Perez
- Université Paris-Saclay, CEA, CNRS, MIRCen, Laboratoire des Maladies Neurodégénératives, Fontenay-aux-Roses, France
| | - Stefanie Robel
- Fralin Biomedical Research Institute at Virginia Tech Carilion, School of Neuroscience Virginia Tech, Riverside Circle, Roanoke, Virginia, USA
| | - Christine R Rose
- Institute of Neurobiology, Heinrich Heine University, Düsseldorf, Germany
| | - Jeffrey D Rothstein
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Nathalie Rouach
- Neuroglial Interactions in Cerebral Physiology and Pathologies, Center for Interdisciplinary Research in Biology, Collège de France, CNRS UMR 7241, INSERM U1050, Labex Memolife, PSL Research University Paris, Paris, France
| | - David H Rowitch
- Wellcome Trust-MRC Cambridge Stem Cell Institute, Cambridge Biomedical Campus, Cambridge, UK
| | - Alexey Semyanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
- Sechenov First Moscow State Medical University, Moscow, Russia
| | - Swetlana Sirko
- Physiological Genomics, Biomedical Center, LMU Munich, Munich, Germany
- Institute for Stem Cell Research, Helmholtz Zentrum Munich, Neuherberg, Germany
| | - Harald Sontheimer
- Virginia Tech School of Neuroscience and Center for Glial Biology in Health, Disease and Cancer, Virginia Tech at the Fralin Biomedical Research Institute, Roanoke, Virginia, USA
| | - Raymond A Swanson
- Dept. of Neurology, University of California San Francisco and San Francisco Veterans Affairs Health Care System, San Francisco, California, USA
| | - Javier Vitorica
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Dept. Bioquímica y Biología Molecular, Instituto de Biomedicina de Sevilla, Universidad de Sevilla, Hospital Virgen del Rocío/CSIC, Sevilla, Spain
| | - Ina-Beate Wanner
- Semel Institute for Neuroscience & Human Behavior, IDDRC, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Levi B Wood
- George W. Woodruff School of Mechanical Engineering, Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory, and Parker H. Petit Institute for Bioengineering & Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Jiaqian Wu
- The Vivian L. Smith Department of Neurosurgery, Center for Stem Cell and Regenerative Medicine, MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, McGovern Medical School, UTHealth, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Binhai Zheng
- Department of Neurosciences, UC San Diego School of Medicine, La Jolla; VA San Diego Research Service, San Diego, CA, USA
| | - Eduardo R Zimmer
- Department of Pharmacology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Robert Zorec
- Laboratory of Neuroendocrinology, Molecular Cell Physiology, Institute of Pathophysiology, University of Ljubljana, Faculty of Medicine, Ljubljana, Slovenia
- Celica Biomedical, 1000, Ljubljana, Slovenia
| | - Michael V Sofroniew
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, California, USA.
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.
- Achúcarro Basque Center for Neuroscience, IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
158
|
Cho S, Lee H, Seo J. Impact of Genetic Risk Factors for Alzheimer's Disease on Brain Glucose Metabolism. Mol Neurobiol 2021; 58:2608-2619. [PMID: 33479841 DOI: 10.1007/s12035-021-02297-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 01/13/2021] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative disease that affects more than 30 million people worldwide. Despite growing knowledge of AD pathophysiology, a complete understanding of the pathogenic mechanisms underpinning AD is lacking, and there is currently no cure for AD. Extant literature suggests that AD is a polygenic and multifactorial disease underscored by complex and dynamic pathogenic mechanisms. Despite extensive research and clinical trials, there has been a dearth of novel drugs for AD treatment on the market since memantine in 2003. This lack of therapeutic success has directed the entire research community to approach the disease from a different angle. In this review, we discuss growing evidence for the close link between altered glucose metabolism and AD pathogenesis by exploring how genetic risk factors for AD are associated with dysfunctional glucose metabolism. We also discuss modification of genes responsible for metabolic pathways implicated in AD pathology.
Collapse
Affiliation(s)
- Sukhee Cho
- Department of Brain and Cognitive Sciences, DGIST, Daegu, 42988, South Korea
| | - Hyein Lee
- Department of Brain and Cognitive Sciences, DGIST, Daegu, 42988, South Korea
| | - Jinsoo Seo
- Department of Brain and Cognitive Sciences, DGIST, Daegu, 42988, South Korea.
| |
Collapse
|
159
|
Orzylowski M, Fujiwara E, Mousseau DD, Baker GB. An Overview of the Involvement of D-Serine in Cognitive Impairment in Normal Aging and Dementia. Front Psychiatry 2021; 12:754032. [PMID: 34707525 PMCID: PMC8542907 DOI: 10.3389/fpsyt.2021.754032] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/02/2021] [Indexed: 12/14/2022] Open
Abstract
Dementia, of which Alzheimer's disease (AD) is the most common form, is characterized by progressive cognitive deterioration, including profound memory loss, which affects functioning in many aspects of life. Although cognitive deterioration is relatively common in aging and aging is a risk factor for AD, the condition is not necessarily a part of the aging process. The N-methyl-D-aspartate glutamate receptor (NMDAR) and its co-agonist D-serine are currently of great interest as potential important contributors to cognitive function in normal aging and dementia. D-Serine is necessary for activation of the NMDAR and in maintenance of long-term potentiation (LTP) and is involved in brain development, neuronal connectivity, synaptic plasticity and regulation of learning and memory. In this paper, we review evidence, from both preclinical and human studies, on the involvement of D-serine (and the enzymes involved in its metabolism) in regulation of cognition. Potential mechanisms of action of D-serine are discussed in the context of normal aging and in dementia, as is the potential for using D-serine as a potential biomarker and/or therapeutic agent in dementia. Although there is some controversy in the literature, it has been proposed that in normal aging there is decreased expression of serine racemase and decreased levels of D-serine and down-regulation of NMDARs, resulting in impaired synaptic plasticity and deficits in learning and memory. In contrast, in AD there appears to be activation of serine racemase, increased levels of D-serine and overstimulation of NMDARs, resulting in cytotoxicity, synaptic deficits, and dementia.
Collapse
Affiliation(s)
- Magdalena Orzylowski
- Villa Caritas Geriatric Psychiatry Hospital, Edmonton, AB, Canada.,Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| | - Esther Fujiwara
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada.,Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Darrell D Mousseau
- Department of Psychiatry, University of Saskatchewan, Saskatoon, SK, Canada
| | - Glen B Baker
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada.,Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
160
|
Chen P, Shen Z, Wang Q, Zhang B, Zhuang Z, Lin J, Shen Y, Chen Y, Dai Z, Wu R. Reduced Cerebral Glucose Uptake in an Alzheimer's Rat Model With Glucose-Weighted Chemical Exchange Saturation Transfer Imaging. Front Aging Neurosci 2021; 13:618690. [PMID: 33815088 PMCID: PMC8010663 DOI: 10.3389/fnagi.2021.618690] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 02/24/2021] [Indexed: 02/05/2023] Open
Abstract
A correlation between the abnormal cerebral glucose metabolism and the progression of Alzheimer's disease (AD) has been found in previous studies, suggesting that glucose alterations may be used to predict the histopathological diagnosis in AD. In this study, we investigated the dynamic changes of cerebral glucose uptake in vivo using MR glucose chemical exchange saturation transfer (glucoCEST) imaging in a rat model of AD with an intracerebroventricular (i.c.v) injection of amyloid Aβ-protein (25-35), confirmed by Morris water maze and Nissl staining. In total, 6 rats in the AD group and 6 rats in the control group that were given an injection of sterile normal saline were included. At 28 days after injection, all rats performed a 7.0 T MR exanimation, including glucoCEST, diffusion tensor imaging (DTI) and hippocampus magnetic resonance spectra (MRS), to detect the possible metabolic and structural changes in the rat brain. A significantly elevated brain glucoCEST signal in the brain of AD rats was observed, and a decreased brain glucose uptake was also explored during the progression of glucose infusion compared with those in rats of the control group. In addition, there is a significant positive correlation between glucoCEST enhancement (GCE) and myo-Inosito (Ins) in the AD group and the control group (P < 0.05). A significantly reduced number of neurons in the cortex and hippocampus in AD rats combined with the significantly longer escape and a decreased number of crossings were verified at 28 days after Aβ25-35 injection by Nissl staining and Morris water maze, respectively. Our results indicated that an abnormal brain glucose mechanism in AD rats could be detected by glucoCEST imaging, suggesting a new method to explore the occurrence and progress of diabetes-related AD or dementia.
Collapse
Affiliation(s)
- Peidong Chen
- Department of Medical Imaging, The Second Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Zhiwei Shen
- Department of Medical Imaging, The Second Affiliated Hospital, Shantou University Medical College, Shantou, China
- Philips Healthcare, Beijing, China
| | - Qianqian Wang
- Department of Postgraduate, Shantou University Medical College, Shantou, China
| | - Bingna Zhang
- Center for Translational Medicine, The Second Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Zerui Zhuang
- Department of Medical Imaging, The Second Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Jiefen Lin
- Department of Medical Imaging, The Second Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Yuanyu Shen
- Department of Medical Imaging, The Second Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Yanzhi Chen
- Department of Medical Imaging, The Second Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Zhuozhi Dai
- Department of Medical Imaging, The Second Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Renhua Wu
- Department of Medical Imaging, The Second Affiliated Hospital, Shantou University Medical College, Shantou, China
- *Correspondence: Renhua Wu,
| |
Collapse
|
161
|
Rõlova T, Lehtonen Š, Goldsteins G, Kettunen P, Koistinaho J. Metabolic and immune dysfunction of glia in neurodegenerative disorders: Focus on iPSC models. Stem Cells 2020; 39:256-265. [PMID: 33270954 DOI: 10.1002/stem.3309] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 11/17/2020] [Indexed: 12/14/2022]
Abstract
The research on neurodegenerative disorders has long focused on neuronal pathology and used transgenic mice as disease models. However, our understanding of the chronic neurodegenerative process in the human brain is still very limited. It is increasingly recognized that neuronal loss is not caused solely by intrinsic degenerative processes but rather via impaired interactions with surrounding glia and other brain cells. Dysfunctional astrocytes do not provide sufficient nutrients and antioxidants to the neurons, while dysfunctional microglia cannot efficiently clear pathogens and cell debris from extracellular space, thus resulting in chronic inflammatory processes in the brain. Importantly, human glia, especially the astrocytes, differ significantly in morphology and function from their mouse counterparts, and therefore more human-based disease models are needed. Recent advances in stem cell technology make it possible to reprogram human patients' somatic cells to induced pluripotent stem cells (iPSC) and differentiate them further into patient-specific glia and neurons, thus providing a virtually unlimited source of human brain cells. This review summarizes the recent studies using iPSC-derived glial models of Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis and discusses the applicability of these models to drug testing. This line of research has shown that targeting glial metabolism can improve the survival and function of cocultured neurons and thus provide a basis for future neuroprotective treatments.
Collapse
Affiliation(s)
- Taisia Rõlova
- Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Šárka Lehtonen
- Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland.,A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Gundars Goldsteins
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Pinja Kettunen
- Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Jari Koistinaho
- Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland.,A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
162
|
Murtas G, Marcone GL, Sacchi S, Pollegioni L. L-serine synthesis via the phosphorylated pathway in humans. Cell Mol Life Sci 2020; 77:5131-5148. [PMID: 32594192 PMCID: PMC11105101 DOI: 10.1007/s00018-020-03574-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 06/03/2020] [Accepted: 06/12/2020] [Indexed: 12/12/2022]
Abstract
L-serine is a nonessential amino acid in eukaryotic cells, used for protein synthesis and in producing phosphoglycerides, glycerides, sphingolipids, phosphatidylserine, and methylenetetrahydrofolate. Moreover, L-serine is the precursor of two relevant coagonists of NMDA receptors: glycine (through the enzyme serine hydroxymethyltransferase), which preferentially acts on extrasynaptic receptors and D-serine (through the enzyme serine racemase), dominant at synaptic receptors. The cytosolic "phosphorylated pathway" regulates de novo biosynthesis of L-serine, employing 3-phosphoglycerate generated by glycolysis and the enzymes 3-phosphoglycerate dehydrogenase, phosphoserine aminotransferase, and phosphoserine phosphatase (the latter representing the irreversible step). In the human brain, L-serine is primarily found in glial cells and is supplied to neurons for D-serine synthesis. Serine-deficient patients show severe neurological symptoms, including congenital microcephaly, psychomotor retardation, and intractable seizures, thus highlighting the relevance of de novo production of this amino acid in brain development and morphogenesis. Indeed, the phosphorylated pathway is strictly linked to cancer. Moreover, L-serine has been suggested as a ready-to-use treatment, as also recently proposed for Alzheimer's disease. Here, we present our current state of knowledge concerning the three mammalian enzymes of the phosphorylated pathway and known mutations related to pathological conditions: although the structure of these enzymes has been solved, how enzyme activity is regulated remains largely unknown. We believe that an in-depth investigation of these enzymes is crucial to identify the molecular mechanisms involved in modulating concentrations of the serine enantiomers and for studying the interplay between glial and neuronal cells and also to determine the most suitable therapeutic approach for various diseases.
Collapse
Affiliation(s)
- Giulia Murtas
- Department of Biotechnology and Life Sciences, University of Insubria, Via J. H. Dunant 3, 21100, Varese, Italy
| | - Giorgia Letizia Marcone
- Department of Biotechnology and Life Sciences, University of Insubria, Via J. H. Dunant 3, 21100, Varese, Italy
| | - Silvia Sacchi
- Department of Biotechnology and Life Sciences, University of Insubria, Via J. H. Dunant 3, 21100, Varese, Italy
| | - Loredano Pollegioni
- Department of Biotechnology and Life Sciences, University of Insubria, Via J. H. Dunant 3, 21100, Varese, Italy.
| |
Collapse
|
163
|
Köhler S, Schmidt H, Fülle P, Hirrlinger J, Winkler U. A Dual Nanosensor Approach to Determine the Cytosolic Concentration of ATP in Astrocytes. Front Cell Neurosci 2020; 14:565921. [PMID: 33192312 PMCID: PMC7530325 DOI: 10.3389/fncel.2020.565921] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 08/26/2020] [Indexed: 11/17/2022] Open
Abstract
Adenosine triphosphate (ATP) is the central energy carrier of all cells and knowledge on the dynamics of the concentration of ATP ([ATP]) provides important insights into the energetic state of a cell. Several genetically encoded fluorescent nanosensors for ATP were developed, which allow following the cytosolic [ATP] at high spatial and temporal resolution using fluorescence microscopy. However, to calibrate the fluorescent signal to [ATP] has remained challenging. To estimate basal cytosolic [ATP] ([ATP]0) in astrocytes, we here took advantage of two ATP nanosensors of the ATeam-family (ATeam1.03; ATeam1.03YEMK) with different affinities for ATP. Altering [ATP] by external stimuli resulted in characteristic pairs of signal changes of both nanosensors, which depend on [ATP]0. Using this dual nanosensor strategy and epifluorescence microscopy, [ATP]0 was estimated to be around 1.5 mM in primary cultures of cortical astrocytes from mice. Furthermore, in astrocytes in acutely isolated cortical slices from mice expressing both nanosensors after stereotactic injection of AAV-vectors, 2-photon microscopy revealed [ATP]0 of 0.7 mM to 1.3 mM. Finally, the change in [ATP] induced in the cytosol of cultured cortical astrocytes by application of azide, glutamate, and an increased extracellular concentration of K+ were calculated as −0.50 mM, −0.16 mM, and 0.07 mM, respectively. In summary, the dual nanosensor approach adds another option for determining the concentration of [ATP] to the increasing toolbox of fluorescent nanosensors for metabolites. This approach can also be applied to other metabolites when two sensors with different binding properties are available.
Collapse
Affiliation(s)
- Susanne Köhler
- Carl-Ludwig-Institute for Physiology, Faculty of Medicine, University Leipzig, Leipzig, Germany
| | - Hartmut Schmidt
- Carl-Ludwig-Institute for Physiology, Faculty of Medicine, University Leipzig, Leipzig, Germany
| | - Paula Fülle
- Carl-Ludwig-Institute for Physiology, Faculty of Medicine, University Leipzig, Leipzig, Germany.,Wilhelm-Ostwald-Schule, Gymnasium der Stadt Leipzig, Leipzig, Germany
| | - Johannes Hirrlinger
- Carl-Ludwig-Institute for Physiology, Faculty of Medicine, University Leipzig, Leipzig, Germany.,Department of Neurogenetics, Max-Planck-Institute for Experimental Medicine, Göttingen, Germany
| | - Ulrike Winkler
- Carl-Ludwig-Institute for Physiology, Faculty of Medicine, University Leipzig, Leipzig, Germany
| |
Collapse
|
164
|
Ganesh A, Genesh P, Adil MM, Varma M, Smith EE. Practice Current: How do you manage mild cognitive impairment? Neurol Clin Pract 2020; 10:362-370. [PMID: 32983617 DOI: 10.1212/cpj.0000000000000890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 05/08/2020] [Indexed: 11/15/2022]
Abstract
Mild cognitive impairment (MCI) is characterized by evidence of cognitive impairment with minimal disruption of instrumental activities of daily living and carries a substantial risk of progression of dementia. Whereas current guidelines support a relatively minimalistic workup to identify reversible or structural causes, the field has witnessed the rapid development of various sophisticated imaging, biomarker, and genetic investigations in the past few years. The role of these investigations in routine practice is uncertain. Similarly, although there are no approved treatments for MCI, neurologists may experience uncertainty about using cholinesterase inhibitors or other medications or supplements that have been studied in MCI with limited success, particularly when patients or families are keen to try pharmacologic options. Given these uncertainties, and the paucity of high-quality data in the literature, we sought expert opinion from around the globe on how to investigate and treat patients with MCI. Similar questions were posed to the rest of our readership in an online survey, the preliminary results of which are also presented.
Collapse
Affiliation(s)
- Aravind Ganesh
- Department of Clinical Neurosciences (AG), University of Calgary; Learning and Support Services (PG), Alzheimer Society of Calgary, Canada; Johns Hopkins University School of Medicine (MMA), Bethesda, MD; Advanced Health Analytics (AHA Health Ltd) (MV), Calgary, and Katthy Taylor Chair in Vascular Dementia (EES), Department of Clinical Neurosciences, University of Calgary, Canada
| | - Padmaja Genesh
- Department of Clinical Neurosciences (AG), University of Calgary; Learning and Support Services (PG), Alzheimer Society of Calgary, Canada; Johns Hopkins University School of Medicine (MMA), Bethesda, MD; Advanced Health Analytics (AHA Health Ltd) (MV), Calgary, and Katthy Taylor Chair in Vascular Dementia (EES), Department of Clinical Neurosciences, University of Calgary, Canada
| | - Malik M Adil
- Department of Clinical Neurosciences (AG), University of Calgary; Learning and Support Services (PG), Alzheimer Society of Calgary, Canada; Johns Hopkins University School of Medicine (MMA), Bethesda, MD; Advanced Health Analytics (AHA Health Ltd) (MV), Calgary, and Katthy Taylor Chair in Vascular Dementia (EES), Department of Clinical Neurosciences, University of Calgary, Canada
| | - Malavika Varma
- Department of Clinical Neurosciences (AG), University of Calgary; Learning and Support Services (PG), Alzheimer Society of Calgary, Canada; Johns Hopkins University School of Medicine (MMA), Bethesda, MD; Advanced Health Analytics (AHA Health Ltd) (MV), Calgary, and Katthy Taylor Chair in Vascular Dementia (EES), Department of Clinical Neurosciences, University of Calgary, Canada
| | - Eric E Smith
- Department of Clinical Neurosciences (AG), University of Calgary; Learning and Support Services (PG), Alzheimer Society of Calgary, Canada; Johns Hopkins University School of Medicine (MMA), Bethesda, MD; Advanced Health Analytics (AHA Health Ltd) (MV), Calgary, and Katthy Taylor Chair in Vascular Dementia (EES), Department of Clinical Neurosciences, University of Calgary, Canada
| |
Collapse
|
165
|
Ploux E, Freret T, Billard JM. d-serine in physiological and pathological brain aging. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1869:140542. [PMID: 32950692 DOI: 10.1016/j.bbapap.2020.140542] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/10/2020] [Accepted: 09/13/2020] [Indexed: 01/24/2023]
Abstract
Among aging-induced impairments, those affecting cognitive functions certainly represent one the most major challenge to face to improve elderly quality of life. In last decades, our knowledge on changes in the morphology and function of neuronal networks associated with normal and pathological brain aging has rapidly progressed, initiating the development of different pharmacological and behavioural strategies to alleviate cognitive aging. In particular, experimental evidences have accumulated indicating that the communication between neurons and its plasticity gradually weakens with aging. Because of its pivotal role for brain functional plasticity, the N-Methyl‑d-Aspartate receptor subtype of glutamate receptors (NMDAr) has gathered much of the experimental interest. NMDAr activation is regulated by many mechanisms. Among is the mandatory binding of a co-agonist, such as the amino acid d-serine, in order to activate NMDAr. This mini-review presents the most recent information indicating how d-serine could contribute to mechanisms of physiological cognitive aging and also considers the divergent views relative of the role of the NMDAr co-agonist in Alzheimer's disease.
Collapse
Affiliation(s)
- E Ploux
- Normandie Univ, UNICAEN, INSERM, CYCERON, COMETE, 14000 Caen, France.
| | - T Freret
- Normandie Univ, UNICAEN, INSERM, CYCERON, COMETE, 14000 Caen, France
| | - J-M Billard
- Normandie Univ, UNICAEN, INSERM, CYCERON, COMETE, 14000 Caen, France.
| |
Collapse
|
166
|
Ngo B, Kim E, Osorio-Vasquez V, Doll S, Bustraan S, Liang RJ, Luengo A, Davidson SM, Ali A, Ferraro GB, Fischer GM, Eskandari R, Kang DS, Ni J, Plasger A, Rajasekhar VK, Kastenhuber ER, Bacha S, Sriram RK, Stein BD, Bakhoum SF, Snuderl M, Cotzia P, Healey JH, Mainolfi N, Suri V, Friedman A, Manfredi M, Sabatini DM, Jones DR, Yu M, Zhao JJ, Jain RK, Keshari KR, Davies MA, Vander Heiden MG, Hernando E, Mann M, Cantley LC, Pacold ME. Limited Environmental Serine and Glycine Confer Brain Metastasis Sensitivity to PHGDH Inhibition. Cancer Discov 2020; 10:1352-1373. [PMID: 32571778 PMCID: PMC7483776 DOI: 10.1158/2159-8290.cd-19-1228] [Citation(s) in RCA: 163] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 04/15/2020] [Accepted: 06/17/2020] [Indexed: 12/19/2022]
Abstract
A hallmark of metastasis is the adaptation of tumor cells to new environments. Metabolic constraints imposed by the serine and glycine-limited brain environment restrict metastatic tumor growth. How brain metastases overcome these growth-prohibitive conditions is poorly understood. Here, we demonstrate that 3-phosphoglycerate dehydrogenase (PHGDH), which catalyzes the rate-limiting step of glucose-derived serine synthesis, is a major determinant of brain metastasis in multiple human cancer types and preclinical models. Enhanced serine synthesis proved important for nucleotide production and cell proliferation in highly aggressive brain metastatic cells. In vivo, genetic suppression and pharmacologic inhibition of PHGDH attenuated brain metastasis, but not extracranial tumor growth, and improved overall survival in mice. These results reveal that extracellular amino acid availability determines serine synthesis pathway dependence, and suggest that PHGDH inhibitors may be useful in the treatment of brain metastasis. SIGNIFICANCE: Using proteomics, metabolomics, and multiple brain metastasis models, we demonstrate that the nutrient-limited environment of the brain potentiates brain metastasis susceptibility to serine synthesis inhibition. These findings underscore the importance of studying cancer metabolism in physiologically relevant contexts, and provide a rationale for using PHGDH inhibitors to treat brain metastasis.This article is highlighted in the In This Issue feature, p. 1241.
Collapse
Affiliation(s)
- Bryan Ngo
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, New York
| | - Eugenie Kim
- Department of Radiation Oncology, Perlmutter Cancer Center and NYU Langone Health, New York, New York
| | - Victoria Osorio-Vasquez
- Department of Radiation Oncology, Perlmutter Cancer Center and NYU Langone Health, New York, New York
| | - Sophia Doll
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Sophia Bustraan
- Department of Radiation Oncology, Perlmutter Cancer Center and NYU Langone Health, New York, New York
| | - Roger J Liang
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, New York
| | - Alba Luengo
- Koch Institute for Integrative Cancer Research, Cambridge, Massachusetts
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Shawn M Davidson
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey
| | - Ahmed Ali
- Koch Institute for Integrative Cancer Research, Cambridge, Massachusetts
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Gino B Ferraro
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Grant M Fischer
- Departments of Translational Molecular Pathology, Melanoma Medical Oncology, Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Roozbeh Eskandari
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Diane S Kang
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California Norris Comprehensive Cancer Center, Keck School of Medicine, Los Angeles, California
| | - Jing Ni
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts
| | - Ariana Plasger
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, New York
| | | | - Edward R Kastenhuber
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, New York
| | - Sarah Bacha
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, New York
| | - Roshan K Sriram
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, New York
| | - Benjamin D Stein
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, New York
| | - Samuel F Bakhoum
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Matija Snuderl
- Department of Pathology, New York University Langone Health, New York, New York
| | - Paolo Cotzia
- Department of Pathology, New York University Langone Health, New York, New York
| | - John H Healey
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | | | - Vipin Suri
- Raze Therapeutics, Cambridge, Massachusetts
| | | | | | - David M Sabatini
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts
- Broad Institute, Cambridge, Massachusetts
| | - Drew R Jones
- Department of Radiation Oncology, Perlmutter Cancer Center and NYU Langone Health, New York, New York
- Metabolomics Core Resource Laboratory, NYU Langone Health, New York, New York
| | - Min Yu
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jean J Zhao
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts
- Broad Institute, Cambridge, Massachusetts
| | - Rakesh K Jain
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Kayvan R Keshari
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Michael A Davies
- Departments of Translational Molecular Pathology, Melanoma Medical Oncology, Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Matthew G Vander Heiden
- Koch Institute for Integrative Cancer Research, Cambridge, Massachusetts
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Broad Institute, Cambridge, Massachusetts
| | - Eva Hernando
- Department of Pathology, New York University Langone Health, New York, New York
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
- Faculty of Health and Medical Sciences, NNF Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Lewis C Cantley
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, New York.
| | - Michael E Pacold
- Department of Radiation Oncology, Perlmutter Cancer Center and NYU Langone Health, New York, New York.
| |
Collapse
|
167
|
Maugard M, Vigneron PA, Bolaños JP, Bonvento G. l-Serine links metabolism with neurotransmission. Prog Neurobiol 2020; 197:101896. [PMID: 32798642 DOI: 10.1016/j.pneurobio.2020.101896] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 07/20/2020] [Accepted: 08/09/2020] [Indexed: 12/12/2022]
Abstract
Brain energy metabolism is often considered as a succession of biochemical steps that metabolize the fuel (glucose and oxygen) for the unique purpose of providing sufficient ATP to maintain the huge information processing power of the brain. However, a significant fraction (10-15 %) of glucose is shunted away from the ATP-producing pathway (oxidative phosphorylation) and may be used to support other functions. Recent studies have pointed to the marked compartmentation of energy metabolic pathways between neurons and glial cells. Here, we focused our attention on the biosynthesis of l-serine, a non-essential amino acid that is formed exclusively in glial cells (mostly astrocytes) by re-routing the metabolic fate of the glycolytic intermediate, 3-phosphoglycerate (3PG). This metabolic pathway is called the phosphorylated pathway and transforms 3PG into l-serine via three enzymatic reactions. We first compiled the available data on the mechanisms that regulate the flux through this metabolic pathway. We then reviewed the current evidence that is beginning to unravel the roles of l-serine both in the healthy and diseased brain, leading to the notion that this specific metabolic pathway connects glial metabolism with synaptic activity and plasticity. We finally suggest that restoring astrocyte-mediated l-serine homeostasis may provide new therapeutic strategies for brain disorders.
Collapse
Affiliation(s)
- Marianne Maugard
- Université Paris-Saclay, CEA, CNRS, MIRCen, Laboratoire des Maladies Neurodégénératives, Fontenay-aux-Roses, France
| | - Pierre-Antoine Vigneron
- Université Paris-Saclay, CEA, CNRS, MIRCen, Laboratoire des Maladies Neurodégénératives, Fontenay-aux-Roses, France
| | - Juan P Bolaños
- Institute of Functional Biology and Genomics (IBFG), Universidad de Salamanca, CSIC, Salamanca, Spain; Centro de Investigación Biomédica en Red sobre Fragilidad y Envejecimiento Saludable (CIBERFES), Institute of Biomedical Research of Salamanca, 37007, Salamanca, Spain
| | - Gilles Bonvento
- Université Paris-Saclay, CEA, CNRS, MIRCen, Laboratoire des Maladies Neurodégénératives, Fontenay-aux-Roses, France.
| |
Collapse
|
168
|
Rosini E, D’Antona P, Pollegioni L. Biosensors for D-Amino Acids: Detection Methods and Applications. Int J Mol Sci 2020; 21:E4574. [PMID: 32605078 PMCID: PMC7369756 DOI: 10.3390/ijms21134574] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 06/25/2020] [Accepted: 06/25/2020] [Indexed: 12/24/2022] Open
Abstract
D-enantiomers of amino acids (D-AAs) are only present in low amounts in nature, frequently at trace levels, and for this reason, their biological function was undervalued for a long time. In the past 25 years, the improvements in analytical methods, such as gas chromatography, HPLC, and capillary electrophoresis, allowed to detect D-AAs in foodstuffs and biological samples and to attribute them specific biological functions in mammals. These methods are time-consuming, expensive, and not suitable for online application; however, life science investigations and industrial applications require rapid and selective determination of D-AAs, as only biosensors can offer. In the present review, we provide a status update concerning biosensors for detecting and quantifying D-AAs and their applications for safety and quality of foods, human health, and neurological research. The review reports the main challenges in the field, such as selectivity, in order to distinguish the different D-AAs present in a solution, the simultaneous assay of both L- and D-AAs, the production of implantable devices, and surface-scanning biosensors. These innovative tools will push future research aimed at investigating the neurological role of D-AAs, a vibrant field that is growing at an accelerating pace.
Collapse
Affiliation(s)
- Elena Rosini
- Department of Biotechnology and Life Sciences, University of Insubria, via J.H. Dunant 3, 21100 Varese, Italy; (P.D.); (L.P.)
| | | | | |
Collapse
|
169
|
Abstract
Alzheimer's disease (AD) is associated with lower brain glucose metabolism. In this issue, Le Douce et al. (2020) show that this leads to insufficient astrocyte-dependent production of D-serine, co-agonist of synaptic NMDA receptors. Oral L-serine therapy rescues NMDA receptor hypofunction, plasticity, and cognition in an AD model, suggesting a new therapeutic strategy.
Collapse
Affiliation(s)
- Giles E Hardingham
- UK Dementia Research Institute at the University of Edinburgh, Chancellor's Building, Edinburgh Medical School, Edinburgh EH16 4SB, UK; Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK.
| |
Collapse
|
170
|
He W, Wu G. Metabolism of Amino Acids in the Brain and Their Roles in Regulating Food Intake. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1265:167-185. [PMID: 32761576 DOI: 10.1007/978-3-030-45328-2_10] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Amino acids (AAs) and their metabolites play an important role in neurological health and function. They are not only the building blocks of protein but are also neurotransmitters. In the brain, glutamate and aspartate are the major excitatory neurotransmitters, whereas γ-aminobutyrate (GABA, a metabolite of glutamate) and glycine are the major inhibitory neurotransmitters. Nitric oxide (NO, a metabolite of arginine), H2S (a metabolite of cysteine), serotonin (a metabolite of tryptophan) and histamine (a metabolite of histidine), as well as dopamine and norepinephrine (metabolites of tyrosine) are neurotransmitters to modulate synaptic plasticity, neuronal activity, learning, motor control, motivational behavior, emotion, and executive function. Concentrations of glutamine (a precursor of glutamate and aspartate), branched-chain AAs (precursors of glutamate, glutamine and aspartate), L-serine (a precursor of glycine and D-serine), methionine and phenylalanine in plasma are capable of affecting neurotransmission through the syntheses of glutamate, aspartate, and glycine, as well as the competitive transport of tryptophan and tyrosine across from the blood-brain barrier. Adequate consumption of AAs is crucial to maintain their concentrations and the production of neurotransmitters in the central nervous system. Thus, the content and balance of AAs in diets have a profound impact on food intake by animals. Knowledge of AA transport and metabolism in the brain is beneficial for improving the health and well-being of humans and animals.
Collapse
Affiliation(s)
- Wenliang He
- Department of Animal Science, Texas A&M University, College Station, TX, USA
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX, USA.
| |
Collapse
|