151
|
Du Y, Wu L, Wang L, Reiter RJ, Lip GYH, Ren J. Extracellular vesicles in cardiovascular diseases: From pathophysiology to diagnosis and therapy. Cytokine Growth Factor Rev 2023; 74:40-55. [PMID: 37798169 DOI: 10.1016/j.cytogfr.2023.09.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/07/2023]
Abstract
Extracellular vesicles (EVs), encompassing exosomes, microvesicles (MVs), and apoptotic bodies (ABs), are cell-derived heterogeneous nanoparticles with a pivotal role in intercellular communication. EVs are enclosed by a lipid-bilayer membrane to escape enzymatic degradation. EVs contain various functional molecules (e.g., nucleic acids, proteins, lipids and metabolites) which can be transferred from donor cells to recipient cells. EVs provide many advantages including accessibility, modifiability and easy storage, stability, biocompatibility, heterogeneity and they readily penetrate through biological barriers, making EVs ideal and promising candidates for diagnosis/prognosis biomarkers and therapeutic tools. Recently, EVs were implicated in both physiological and pathophysiological settings of cardiovascular system through regulation of cell-cell communication. Numerous studies have reported a role for EVs in the pathophysiological progression of cardiovascular diseases (CVDs) and have evaluated the utility of EVs for the diagnosis/prognosis and therapeutics of CVDs. In this review, we summarize the biology of EVs, evaluate the perceived biological function of EVs in different CVDs along with a consideration of recent progress for the application of EVs in diagnosis/prognosis and therapies of CVDs.
Collapse
Affiliation(s)
- Yuxin Du
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai 200032, China
| | - Lin Wu
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai 200032, China
| | - Litao Wang
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai 200032, China
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, TX, USA
| | - Gregory Y H Lip
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark; Liverpool Centre for Cardiovascular Science at University of Liverpool, Liverpool John Moores University and Liverpool Heart & Chest Hospital, Liverpool, United Kingdom
| | - Jun Ren
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai 200032, China; Department of Laboratory Medicine and Pathology, University of Washington, Seattle WA98195, USA.
| |
Collapse
|
152
|
Tang D, Liu M, Gao S, Sun H, Peng Y, Li Y, Wang Y, Wang X, Chen H. Thermally engineered MSC-derived extracellular vesicles ameliorate colitis in mice by restoring the imbalanced Th17/Treg cell ratio. Int Immunopharmacol 2023; 125:111077. [PMID: 38149575 DOI: 10.1016/j.intimp.2023.111077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/28/2023] [Accepted: 10/11/2023] [Indexed: 12/28/2023]
Abstract
Mesenchymal stem cell (MSC)-derived extracellular vesicles (EVs) have garnered extensive interest for their immunomodulatory properties in immune-mediated inflammatory diseases. However, the development of EVs as clinical drugs often faces challenges such as low production yield and suboptimal therapeutic efficacy. In this study, we discovered that thermally engineering was able to enhance the yield of MSC-EVs. Moreover, the PD-L1 expression of EVs released from the thermal engineering MSCs was found to be upregulated significantly, and these EVs ameliorated the symptoms and pathological damages in murine dextran sulfate sodium (DSS)-induced colitis model. The therapeutic effect on DSS-induced colitis was mediated through the regulation of the Th17/Treg cell balance, demonstrating the immunomodulatory properties of the thermally engineering MSC-EVs. Overall, our findings suggest that thermal engineering can be utilized as a promising strategy for enhancing EV production and may provide a potential therapeutic approach for clinical treatment of colitis.
Collapse
Affiliation(s)
- Deqian Tang
- Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China; Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou 510055, China
| | - Manqing Liu
- Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China; Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou 510055, China
| | - Shenghan Gao
- Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China; Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou 510055, China; School of Clinical Medicine, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Haipeng Sun
- Department of Prosthodontics and Implantology, Shenzhen University Affiliated Shenzhen Stomatology Hospital, Shenzhen 518000, Guangdong Province, China
| | - Yingying Peng
- Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China; Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou 510055, China
| | - Yi Li
- Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China; Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou 510055, China
| | - Yan Wang
- Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China; Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou 510055, China
| | - Xiaoxiao Wang
- Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China; Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou 510055, China; Department of Prosthodontics and Implantology, Shenzhen University Affiliated Shenzhen Stomatology Hospital, Shenzhen 518000, Guangdong Province, China; Department of Stomatology, Shenzhen Qianhai Taikang Hospital, No.3099, Menghai Avenue, Nanshan District, Shenzhen 518000, China.
| | - Huan Chen
- Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China; Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou 510055, China.
| |
Collapse
|
153
|
Feng L, Wang C, Zhang C, Zhang W, Song W. Role of epigenetic regulation in glaucoma. Biomed Pharmacother 2023; 168:115633. [PMID: 37806089 DOI: 10.1016/j.biopha.2023.115633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/23/2023] [Accepted: 10/03/2023] [Indexed: 10/10/2023] Open
Abstract
Glaucoma is the world's leading irreversible blinding eye disease. Lowering intraocular pressure is currently the only effective clinical treatment. However, there is a lack of long-acting IOP-lowering drugs, and some patients still experience retinal ganglion cell loss even with good intraocular pressure control. Currently, there is no effective method for neuroprotection and regeneration in clinical practice for glaucoma. In recent years, epigenetics has been widely researched and reported for its role in glaucoma's neuroprotection and regeneration. This article reviews the changes in histone modifications, DNA methylation, non-coding RNA, and m6A methylation in glaucoma, aiming to provide new perspectives for glaucoma management, protection of retinal ganglion cells, and axon regeneration by understanding epigenetic alterations.
Collapse
Affiliation(s)
- Lemeng Feng
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital of Central South University, Changsha, Hunan 410008, PR China; Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Hunan Key Laboratory of Ophthalmology, Changsha, Hunan 410008, PR China
| | - Chao Wang
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital of Central South University, Changsha, Hunan 410008, PR China; Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Hunan Key Laboratory of Ophthalmology, Changsha, Hunan 410008, PR China
| | - Cheng Zhang
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital of Central South University, Changsha, Hunan 410008, PR China; Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Hunan Key Laboratory of Ophthalmology, Changsha, Hunan 410008, PR China
| | - Wulong Zhang
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital of Central South University, Changsha, Hunan 410008, PR China; Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Hunan Key Laboratory of Ophthalmology, Changsha, Hunan 410008, PR China
| | - Weitao Song
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital of Central South University, Changsha, Hunan 410008, PR China; Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Hunan Key Laboratory of Ophthalmology, Changsha, Hunan 410008, PR China.
| |
Collapse
|
154
|
Schmidt AM. Obesity research: Moving from bench to bedside to population. PLoS Biol 2023; 21:e3002448. [PMID: 38048365 PMCID: PMC10721162 DOI: 10.1371/journal.pbio.3002448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 12/14/2023] [Indexed: 12/06/2023] Open
Abstract
Globally, obesity is on the rise. Research over the past 20 years has highlighted the far-reaching multisystem complications of obesity, but a better understanding of its complex pathogenesis is needed to identify safe and lasting solutions.
Collapse
Affiliation(s)
- Ann Marie Schmidt
- Diabetes Research Program, Department of Medicine, New York University Grossman School of Medicine, New York, New York, United States of America
| |
Collapse
|
155
|
Ye H, Wang F, Xu G, Shu F, Fan K, Wang D. Advancements in engineered exosomes for wound repair: current research and future perspectives. Front Bioeng Biotechnol 2023; 11:1301362. [PMID: 38033824 PMCID: PMC10682480 DOI: 10.3389/fbioe.2023.1301362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 11/01/2023] [Indexed: 12/02/2023] Open
Abstract
Wound healing is a complex and prolonged process that remains a significant challenge in clinical practice. Exosomes, a type of nanoscale extracellular vesicles naturally secreted by cells, are endowed with numerous advantageous attributes, including superior biocompatibility, minimal toxicity, and non-specific immunogenicity. These properties render them an exceptionally promising candidate for bioengineering applications. Recent advances have illustrated the potential of exosome therapy in promoting tissue repair. To further augment their therapeutic efficacy, the concept of engineered exosomes has been proposed. These are designed and functionally modifiable exosomes that have been tailored on the attributes of natural exosomes. This comprehensive review delineates various strategies for exosome engineering, placing specific emphasis on studies exploring the application of engineered exosomes for precision therapy in wound healing. Furthermore, this review sheds light on strategies for integrating exosomes with biomaterials to enhance delivery effectiveness. The insights presented herein provide novel perspectives and lay a robust foundation for forthcoming research in the realm of cutaneous wound repair therapies.
Collapse
Affiliation(s)
- Hailian Ye
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, Guizhou, China
| | - Feng Wang
- Department of Burn and Plastic Surgery, Department of Wound Repair, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, Guangdong, China
| | - Guangchao Xu
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, Guizhou, China
| | - Feihong Shu
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, Guizhou, China
| | - Kunwu Fan
- Department of Burn and Plastic Surgery, Department of Wound Repair, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, Guangdong, China
| | - Dali Wang
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, Guizhou, China
| |
Collapse
|
156
|
Shou J, Li S, Shi W, Zhang S, Zeng Z, Guo Z, Ye Z, Wen Z, Qiu H, Wang J, Zhou M. 3WJ RNA Nanoparticles-Aptamer Functionalized Exosomes From M2 Macrophages Target BMSCs to Promote the Healing of Bone Fractures. Stem Cells Transl Med 2023; 12:758-774. [PMID: 37740533 PMCID: PMC10630079 DOI: 10.1093/stcltm/szad052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 01/25/2023] [Indexed: 09/24/2023] Open
Abstract
Up to now, impaired bone regeneration severely affects the healing of bone fractures, thus bringing tremendous suffering to patients. As a vital mediator between inflammatory response and bone regeneration, M2 macrophage-derived exosomes (M2-Exos) attenuate inflammation and promote tissue repair. However, due to a lack of specific targeting property, M2-Exos will be rapidly eliminated after systematic administration, thus compromising their effectiveness in promoting bone regeneration. To solve this hurdle, we initially harvested and characterized the pro-osteogenic properties of M2-Exos. A bone marrow mesenchymal stem cell (BMSC)-specific aptamer was synthesized and 3-way junction (3WJ) RNA nanoparticles were applied to conjugate the BMSC-specific aptamer and M2-Exos. In vitro assays revealed that M2-Exos bore the representative features of exosomes and significantly promoted the proliferation, migration, and osteogenic differentiation of BMSCs. 3WJ RNA nanoparticles-aptamer functionalized M2-Exos (3WJ-BMSCapt/M2-Exos) maintained the original physical characteristics of M2-Exos, but bore a high specific binding ability to BMSCs. Furthermore, when being systemically administered in the mice model with femoral bone fractures, these functionalized M2-Exos mainly accumulated at the bone fracture site with a slow release of exosomal cargo, thereby significantly accelerating the healing processes compared with the M2-Exos group. Our study indicated that the 3WJ-BMSCapt/M2-Exos with BMSCs targeting ability and controlled release would be a promising strategy to treat bone fractures.
Collapse
Affiliation(s)
- Jiali Shou
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, the People’s Republic of China
- Department of Ultrasound Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, the People’s Republic of China
| | - Shuyi Li
- Department of Stomatology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, the People’s Republic of China
- Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, the People’s Republic of China
| | - Wenzhe Shi
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, the People’s Republic of China
| | - Sijuan Zhang
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, the People’s Republic of China
| | - Zheng Zeng
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, the People’s Republic of China
| | - Zecong Guo
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, the People’s Republic of China
| | - Ziming Ye
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, the People’s Republic of China
| | - Zhuohao Wen
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, the People’s Republic of China
| | - Huiguo Qiu
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, the People’s Republic of China
| | - Jinheng Wang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, the People’s Republic of China
| | - Miao Zhou
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, the People’s Republic of China
- Department of Stomatology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, the People’s Republic of China
| |
Collapse
|
157
|
Liu M, Yu X, Bu J, Xiao Q, Ma S, Chen N, Qu C. Comparative analyses of salivary exosomal miRNAs for patients with or without lung cancer. Front Genet 2023; 14:1249678. [PMID: 38028609 PMCID: PMC10657645 DOI: 10.3389/fgene.2023.1249678] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction: Lung cancer is the most frequent cause of cancer-related deaths worldwide. Exosomes are involved in different types of cancer, including lung cancer. Methods: We collected saliva from patients with (LC) or without (NC) lung cancer and successfully isolated salivary exosomes by ultracentrifugation. MiRNA sequencing was implemented for the exosome samples from NC and LC groups, dgeR was used to determine differentially expressed miRNAs (DE miRNAs), and quantitative real-time polymerase chain reaction (qPCR) was used to verify three differentially expressed microRNAs (miRNAs). Results: A total of 372 miRNAs were identified based on the sequencing results. Subsequently, 15 DE miRNAs were identified in LC vs. NC, including eight upregulated miRNAs and seven downregulated miRNAs. Some DE miRNAs were validated via qPCR. A total of 488 putative target genes of the upregulated DE miRNAs were found, and the functional analyses indicated that numerous target genes were enriched in the pathways associated with cancer. Discussion: This suggests that miRNAs of salivary exosomes might have the potential to be used as biomarkers for prediction and diagnosis of lung cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Changfa Qu
- Department of Thoracic Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| |
Collapse
|
158
|
Chen Q, Jiang FJ, Gao X, Li XY, Xia P. Steatotic hepatocyte-derived extracellular vesicles promote β-cell apoptosis and diabetes via microRNA-126a-3p. Liver Int 2023; 43:2560-2570. [PMID: 37337778 DOI: 10.1111/liv.15654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 06/08/2023] [Accepted: 06/10/2023] [Indexed: 06/21/2023]
Abstract
Extracellular vesicles (EVs) have emerged as a unique mediator of interorgan communications, playing important roles in the pathophysiologic process of various diseases, including diabetes and other metabolic diseases. Here, we reported that the EVs released by steatotic hepatocytes exerted a detrimental effect on pancreatic β cells, leading to β-cell apoptosis and dysfunction. The effect was profoundly attributable to an up-regulation of miR-126a-3p in the steatotic hepatocyte-derived EVs. Accordingly, overexpression of miR-126a-3p promoted, whereas inhibition of miR-126a-3p prevented β-cell apoptosis, through a mechanism related to its target gene, insulin receptor substrate-2. Moreover, inhibition of miR-126a-3p by its specific antagomir was able to partially reverse the loss of β-cell mass and ameliorate hyperglycaemia in diabetic mice. Thus, the findings reveal a novel pathogenic role of steatotic hepatocyte-derived EVs, which mechanistically links nonalcoholic fatty liver disease to the development of diabetes.
Collapse
Affiliation(s)
- Qi Chen
- Department of Endocrinology and Metabolism, Fudan Institute for Metabolic Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Fang-Jie Jiang
- Department of Endocrinology and Metabolism, Fudan Institute for Metabolic Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xin Gao
- Department of Endocrinology and Metabolism, Fudan Institute for Metabolic Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiao-Ying Li
- Department of Endocrinology and Metabolism, Fudan Institute for Metabolic Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Pu Xia
- Department of Endocrinology and Metabolism, Fudan Institute for Metabolic Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
159
|
Wei G, Li C, Jia X, Xie J, Tang Z, Jin M, Chen Q, Sun Y, He S, Li X, Chen Y, Zheng H, Liao W, Liao Y, Bin J, Huang S. Extracellular vesicle-derived CircWhsc1 promotes cardiomyocyte proliferation and heart repair by activating TRIM59/STAT3/Cyclin B2 pathway. J Adv Res 2023; 53:199-218. [PMID: 36587763 PMCID: PMC10658329 DOI: 10.1016/j.jare.2022.12.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/22/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022] Open
Abstract
INTRODUCTION Extracellular vesicles (EVs)-mediated cell-to-cell communication is crucial for hypoxia-induced cell proliferation and tissue repair, but its function in endogenous cardiac regeneration is still unknown. OBJECTIVES Herein, we aimed to determine whether hypoxia-inducible circWhsc1 in endothelial EVs promoted cardiomyocyte (CM) proliferation and cardiac regeneration. METHODS RNA-sequence data was used to identify EV circRNAs that were involved into endogenous cardiac regeneration. Quantitative polymerase chain reactions were conducted to determine circRNA expression in tissue, cells and EVs. Gain- and loss-of-function assays were performed to explore the function of EV-derived circWhsc1 during cardiac regeneration. Western blotting and RNA pulldown assays were used to investigate its underlying mechanism. RESULTS We found that circWhsc1 was enriched in neonatal mouse hearts, particularly in cardiac ECs, and was further upregulated both in ECs and EC-derived EVs under hypoxic conditions. When cocultured with hypoxia-preconditioned neonatal ECs or their secreted EVs, both neonatal and adult CMs exhibited an increased proliferation rate and G2/M ratio, which could be attenuated by knockdown of circWhsc1 in ECs. In vivo, EC-restricted overexpression of circWhsc1 and EV-mediated delivery of circWhsc1 induced CM proliferation, alleviated cardiac fibrosis and restored cardiac function following myocardial infarction in adult mice. Mechanistic studies revealed that EV-derived circWhsc1 activated TRIM59 by enhancing its phosphorylation, thereby reinforcing the binding of TRIM59 to STAT3, phosphorylating STAT3 and inducing CM proliferation. CONCLUSION The current study demonstrated that hypoxia-inducible circWhsc1 in EC-derived EVs induces CM proliferation and heart regeneration. EC-CM communication mediated by EV-derived circWhsc1 might represent a prospective therapeutic target for inducing cardiac repair post-myocardial infarction.
Collapse
Affiliation(s)
- Guoquan Wei
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, 510515 Guangzhou, China
| | - Chuling Li
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, 510515 Guangzhou, China
| | - Xiaoqian Jia
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, 510515 Guangzhou, China
| | - Jingfang Xie
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, 510515 Guangzhou, China
| | - Zhenquan Tang
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, 510515 Guangzhou, China
| | - Ming Jin
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, 510515 Guangzhou, China
| | - Qiqi Chen
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, 510515 Guangzhou, China
| | - Yili Sun
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, 510515 Guangzhou, China
| | - Sisi He
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, 510515 Guangzhou, China
| | - Xinzhong Li
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, 510515 Guangzhou, China
| | - Yanmei Chen
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, 510515 Guangzhou, China
| | - Hao Zheng
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, 510515 Guangzhou, China
| | - Wangjun Liao
- Department of Oncology, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China
| | - Yulin Liao
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, 510515 Guangzhou, China
| | - Jianping Bin
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, 510515 Guangzhou, China.
| | - Senlin Huang
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, 510515 Guangzhou, China.
| |
Collapse
|
160
|
Liu Y, Xue M, Han Y, Li Y, Xiao B, Wang W, Yu J, Ye X. Exosomes from M2c macrophages alleviate intervertebral disc degeneration by promoting synthesis of the extracellular matrix via MiR-124/CILP/TGF-β. Bioeng Transl Med 2023; 8:e10500. [PMID: 38023721 PMCID: PMC10658595 DOI: 10.1002/btm2.10500] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 01/16/2023] [Accepted: 01/27/2023] [Indexed: 02/18/2023] Open
Abstract
Immuno-inflammation is highly associated with anabolic and catabolic dysregulation of the extracellular matrix (ECM) in the nucleus pulposus (NP), which dramatically propels intervertebral disc degeneration (IVDD). With the characteristics of tissue remodeling and regeneration, M2c macrophages have attracted great attention in research on immune modulation that rebuilds degenerated tissues. Therefore, we first demonstrated the facilitating effects of M2c macrophages on ECM anabolism of the NP in vitro. We subsequently found that exosomes from M2c macrophages (M2c-Exoss) mediated their metabolic rebalancing effects on the ECM. To determine whether M2c-Exoss served as positive agents protecting the ECM in IVDD, we constructed an M2c-Exos-loaded hyaluronic acid hydrogel (M2c-Exos@HA hydrogel) and implanted it into the degenerated caudal disc of rats. The results of MRI and histological staining indicated that the M2c-Exos@HA hydrogel alleviated IVDD in vivo in the long term. To elucidate the underlying molecular mechanism, we performed 4D label-free proteomics to screen dysregulated proteins in NPs treated with M2c-Exoss. Cartilage intermediate layer protein (CILP) was the key protein responsible for the rebalancing effects of M2c-Exoss on ECM metabolism in the NP. With prediction and verification using luciferase assays and rescue experiments, miR-124-3p was identified as the upstream regulator in M2c-Exoss that regulated CILP and consequently enhanced the activity of the TGF-β/smad3 pathway. In conclusion, we demonstrated ameliorating effects of M2c-Exoss on the imbalance of ECM metabolism in IVDD via the miR-124/CILP/TGF-β regulatory axis, which provides a promising theoretical basis for the application of M2c macrophages and their exosomes in the treatment of IVDD.
Collapse
Affiliation(s)
- Yi Liu
- Department of OrthopaedicsSecond Affiliated Hospital of Naval Medical UniversityShanghaiPeople's Republic of China
- Department of OrthopedicsTongren Hospital, Shanghai Jiao Tong University School of MedicineShanghaiPeople's Republic of China
| | - Mintao Xue
- Department of OrthopaedicsSecond Affiliated Hospital of Naval Medical UniversityShanghaiPeople's Republic of China
| | - Yaguang Han
- Department of OrthopaedicsSecond Affiliated Hospital of Naval Medical UniversityShanghaiPeople's Republic of China
| | - Yucai Li
- Department of OrthopedicsTongren Hospital, Shanghai Jiao Tong University School of MedicineShanghaiPeople's Republic of China
| | - Bing Xiao
- Department of OrthopaedicsSecond Affiliated Hospital of Naval Medical UniversityShanghaiPeople's Republic of China
| | - Weiheng Wang
- Department of OrthopaedicsSecond Affiliated Hospital of Naval Medical UniversityShanghaiPeople's Republic of China
| | - Jiangming Yu
- Department of OrthopedicsTongren Hospital, Shanghai Jiao Tong University School of MedicineShanghaiPeople's Republic of China
| | - Xiaojian Ye
- Department of OrthopedicsTongren Hospital, Shanghai Jiao Tong University School of MedicineShanghaiPeople's Republic of China
| |
Collapse
|
161
|
Xhuti D, Nilsson MI, Manta K, Tarnopolsky MA, Nederveen JP. Circulating exosome-like vesicle and skeletal muscle microRNAs are altered with age and resistance training. J Physiol 2023; 601:5051-5073. [PMID: 36722691 DOI: 10.1113/jp282663] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/25/2023] [Indexed: 02/02/2023] Open
Abstract
The age-related loss of skeletal muscle mass and functionality, known as sarcopenia, is a critical risk factor for morbidity and all-cause mortality. Resistance exercise training (RET) is the primary countermeasure to fight sarcopenia and ageing. Altered intercellular communication is a hallmark of ageing, which is not well elucidated. Circulating extracellular vesicles (EVs), including exosomes, contribute to intercellular communication by delivering microRNAs (miRNAs), which modulate post-translational modifications, and have been shown to be released following exercise. There is little evidence regarding how EVs or EV-miRNAs are altered with age or RET. Therefore, we sought to characterize circulating EVs in young and older individuals, prior to and following a 12-week resistance exercise programme. Plasma EVs were isolated using size exclusion chromatography and ultracentrifugation. We found that ageing reduced circulating expression markers of CD9, and CD81. Using late-passage human myotubes as a model for ageing in vitro, we show significantly lower secreted exosome-like vesicles (ELVs). Further, levels of circulating ELV-miRNAs associated with muscle health were lower in older individuals at baseline but increased following RET to levels comparable to young. Muscle biopsies show similar age-related reductions in miRNA expressions, with largely no effect of training. This is reflected in vitro, where aged myotubes show significantly reduced expression of endogenous and secreted muscle-specific miRNAs (myomiRs). Lastly, proteins associated with ELV and miRNA biogenesis were significantly higher in both older skeletal muscle tissues and aged human myotubes. Together we show that ageing significantly affects ELV and miRNA cargo biogenesis, and release. RET can partially normalize this altered intercellular communication. KEY POINTS: We show that ageing reduces circulating expression of exosome-like vesicle (ELV) markers, CD9 and CD81. Using late-passage human skeletal myotubes as a model of ageing, we show that secreted ELV markers are significantly reduced in vitro. We find circulating ELV miRNAs associated with skeletal muscle health are lower in older individuals but can increase following resistance exercise training (RET). In skeletal muscle, we find altered expression of miRNAs in older individuals, with no effect of RET. Late-passage myotubes also appear to have aberrant production of endogenous myomiRs with lower abundance than youthful counterparts In older skeletal muscle and late-passage myotubes, proteins involved with ELV- and miRNA biogenesis are upregulated.
Collapse
Affiliation(s)
- Donald Xhuti
- Department of Pediatrics, McMaster University Health Sciences Centre, Hamilton, Ontario, Canada
| | - Mats I Nilsson
- Exerkine Corporation, McMaster University Medical Centre (MUMC), Hamilton, Ontario, Canada
| | - Katherine Manta
- Department of Pediatrics, McMaster University Health Sciences Centre, Hamilton, Ontario, Canada
| | - Mark A Tarnopolsky
- Department of Pediatrics, McMaster University Health Sciences Centre, Hamilton, Ontario, Canada
- Exerkine Corporation, McMaster University Medical Centre (MUMC), Hamilton, Ontario, Canada
| | - Joshua P Nederveen
- Department of Pediatrics, McMaster University Health Sciences Centre, Hamilton, Ontario, Canada
| |
Collapse
|
162
|
Han S, Fang J, Yu L, Li B, Hu Y, Chen R, Li C, Zhao C, Li J, Wang Y, Gao Y, Tan H, Jin Q. Serum‑derived exosomal hsa‑let‑7b‑5p as a biomarker for predicting the severity of coronary stenosis in patients with coronary heart disease and hyperglycemia. Mol Med Rep 2023; 28:203. [PMID: 37711034 PMCID: PMC10539999 DOI: 10.3892/mmr.2023.13090] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 08/21/2023] [Indexed: 09/16/2023] Open
Abstract
Exosomal microRNAs (miRNAs/miRs) are potential biomarkers for the diagnosis and treatment of cardiovascular disease, and hyperglycemia serves an important role in the development of atherosclerosis. The present study aimed to investigate the expression profile of serum‑derived exosomal miRNAs in coronary heart disease (CHD) with hyperglycemia, and to identify effective biomarkers for predicting coronary artery lesions. Serum samples were collected from eight patients with CHD and hyperglycemia and eight patients with CHD and normoglycemia, exosomes were isolated and differentially expressed miRNAs (DEMIs) were filtered using a human miRNA microarray. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed using standard enrichment computational methods for the target genes of DEMIs. Receiver operating characteristic (ROC) curve analysis was applied to evaluate the values of the selected DEMIs in predicting the severity of coronary stenosis. A total of 10 DEMIs, including four upregulated miRNAs (hsa‑let‑7b‑5p, hsa‑miR‑4313, hsa‑miR‑4665‑3p and hsa‑miR‑940) and six downregulated miRNAs (hsa‑miR‑4459, hsa‑miR‑4687‑3p, hsa‑miR‑6087, hsa‑miR‑6089, hsa‑miR‑6740‑5p and hsa‑miR‑6800‑5p), were screened in patients with CHD and hyperglycemia. GO analysis showed that the 'cellular process', 'single‑organism process' and 'biological regulation' were significantly enriched. KEGG pathway analysis revealed that the 'mTOR signaling pathway', 'FoxO signaling pathway' and 'neurotrophin signaling pathway' were significantly enriched. Among these DEMIs, only hsa‑let‑7b‑5p expression was positively correlated with both hemoglobin A1C levels and Synergy between Percutaneous Coronary Intervention with Taxus and Cardiac Surgery score. ROC curves showed that hsa‑let‑7b‑5p could serve as an effective biomarker for differentiating the severity of coronary stenosis. In conclusion, the present study demonstrated that serum‑derived exosomal hsa‑let‑7b‑5p is upregulated in patients with CHD and hyperglycemia, and may serve as a noninvasive biomarker for the severity of coronary stenosis.
Collapse
Affiliation(s)
- Shufang Han
- Department of Cardiology, The 960th Hospital of The Joint Service Support Force of The People's Liberation Army, Jinan, Shandong 250031, P.R. China
| | - Jie Fang
- Department of Cardiology, The 960th Hospital of The Joint Service Support Force of The People's Liberation Army, Jinan, Shandong 250031, P.R. China
| | - Lili Yu
- Department of Cardiology, The 960th Hospital of The Joint Service Support Force of The People's Liberation Army, Jinan, Shandong 250031, P.R. China
| | - Bin Li
- Department of Cardiology, The 960th Hospital of The Joint Service Support Force of The People's Liberation Army, Jinan, Shandong 250031, P.R. China
| | - Yuhong Hu
- Department of Cardiology, The 960th Hospital of The Joint Service Support Force of The People's Liberation Army, Jinan, Shandong 250031, P.R. China
| | - Ruimin Chen
- Department of Cardiology, The 960th Hospital of The Joint Service Support Force of The People's Liberation Army, Jinan, Shandong 250031, P.R. China
| | - Changyong Li
- Department of Cardiology, The 960th Hospital of The Joint Service Support Force of The People's Liberation Army, Jinan, Shandong 250031, P.R. China
| | - Chuanxu Zhao
- Department of Cardiology, The 960th Hospital of The Joint Service Support Force of The People's Liberation Army, Jinan, Shandong 250031, P.R. China
| | - Jiaying Li
- Department of Cardiology, The 960th Hospital of The Joint Service Support Force of The People's Liberation Army, Jinan, Shandong 250031, P.R. China
| | - Yinan Wang
- Department of Cardiology, The 960th Hospital of The Joint Service Support Force of The People's Liberation Army, Jinan, Shandong 250031, P.R. China
| | - Yuqi Gao
- Department of Cardiology, The 960th Hospital of The Joint Service Support Force of The People's Liberation Army, Jinan, Shandong 250031, P.R. China
| | - Hong Tan
- Department of Cardiology, The 960th Hospital of The Joint Service Support Force of The People's Liberation Army, Jinan, Shandong 250031, P.R. China
| | - Qun Jin
- Department of Cardiology, The 960th Hospital of The Joint Service Support Force of The People's Liberation Army, Jinan, Shandong 250031, P.R. China
| |
Collapse
|
163
|
Zhao Z, Yan Q, Fang L, Li G, Liu Y, Li J, Pan S, Zhou S, Duan J, Liu D, Liu Z. Identification of urinary extracellular vesicles differentially expressed RNAs in diabetic nephropathy via whole-transcriptome integrated analysis. Comput Biol Med 2023; 166:107480. [PMID: 37738894 DOI: 10.1016/j.compbiomed.2023.107480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 08/30/2023] [Accepted: 09/15/2023] [Indexed: 09/24/2023]
Abstract
BACKGROUND Diabetic nephropathy (DN) is a common systemic microvascular complication of diabetes and a leading cause of chronic kidney disease worldwide. Urinary extracellular vesicles (uEVs), which are natural nanoscale vesicles that protect RNA from degradation, have the potential to serve as an invasive diagnostic biomarker for DN. METHODS We enrolled 24 participants, including twelve with renal biopsy-proven T2DN and twelve with T2DM, and isolated uEVs using ultracentrifugation. We performed microarrays for mRNAs, lncRNAs, and circRNAs in parallel, and Next-Generation Sequencing for miRNAs. Differentially expressed RNAs (DE-RNAs) were subjected to CIBERSORTx, ssGSEA analysis, GO enrichment, PPI network analysis, and construction of the lncRNA/circRNA-miRNA-mRNA regulatory network. Candidate genes and potential biomarker RNAs were validated using databases and machine learning models. RESULTS A total of 1684 mRNAs, 126 lncRNAs, 123 circRNAs and 66 miRNAs were found in uEVs in T2DN samples compared with T2DM. CIBERSORTx revealed the involvement of uEVs in immune activity and ssGSEA explored possible cell or tissue sources of uEVs. A ceRNA co-expression and regulation relationship network was constructed. Candidate genes MYO1C and SP100 mRNA were confirmed to be expressed in the kidney using Nephroseq database, scRNA-seq dataset, and Human Protein Atlas database. We further selected 2 circRNAs, 2 miRNAs, and 2 lncRNAs from WGCNAs and ceRNAs and demonstrated their efficacy as potential diagnostic biomarkers for T2DN using machine learning algorithms. CONCLUSIONS This study reported, for the first time, the whole-transcriptome genetic resources found in urine extracellular vesicles of T2DN patients. The results provide additional support for the possible interactions, and regulators between RNAs from uEVs themselves and as potential biomarkers in DN.
Collapse
Affiliation(s)
- Zihao Zhao
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China; Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, PR China; Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, PR China; Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, PR China; Academy of Medical Science, Zhengzhou University, Zhengzhou, 450052, PR China
| | - Qianqian Yan
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China; Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, PR China; Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, PR China; Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, PR China; Academy of Medical Science, Zhengzhou University, Zhengzhou, 450052, PR China
| | - Li Fang
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China; Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, PR China; Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, PR China; Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, PR China; Academy of Medical Science, Zhengzhou University, Zhengzhou, 450052, PR China
| | - Guangpu Li
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China; Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, PR China; Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, PR China; Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, PR China; Academy of Medical Science, Zhengzhou University, Zhengzhou, 450052, PR China
| | - Yong Liu
- Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, PR China; Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, PR China; Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, PR China
| | - Jia Li
- Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, PR China; Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, PR China; Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, PR China
| | - Shaokang Pan
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China; Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, PR China; Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, PR China; Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, PR China
| | - Sijie Zhou
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China; Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, PR China; Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, PR China
| | - Jiayu Duan
- Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, PR China; Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, PR China; Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, PR China
| | - Dongwei Liu
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China; Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, PR China; Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, PR China; Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, PR China.
| | - Zhangsuo Liu
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China; Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, PR China; Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, PR China; Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, PR China.
| |
Collapse
|
164
|
Osaid Z, Haider M, Hamoudi R, Harati R. Exosomes Interactions with the Blood-Brain Barrier: Implications for Cerebral Disorders and Therapeutics. Int J Mol Sci 2023; 24:15635. [PMID: 37958619 PMCID: PMC10648512 DOI: 10.3390/ijms242115635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
The Blood-Brain Barrier (BBB) is a selective structural and functional barrier between the circulatory system and the cerebral environment, playing an essential role in maintaining cerebral homeostasis by limiting the passage of harmful molecules. Exosomes, nanovesicles secreted by virtually all cell types into body fluids, have emerged as a major mediator of intercellular communication. Notably, these vesicles can cross the BBB and regulate its physiological functions. However, the precise molecular mechanisms by which exosomes regulate the BBB remain unclear. Recent research studies focused on the effect of exosomes on the BBB, particularly in the context of their involvement in the onset and progression of various cerebral disorders, including solid and metastatic brain tumors, stroke, neurodegenerative, and neuroinflammatory diseases. This review focuses on discussing and summarizing the current knowledge about the role of exosomes in the physiological and pathological modulation of the BBB. A better understanding of this regulation will improve our understanding of the pathogenesis of cerebral diseases and will enable the design of effective treatment strategies.
Collapse
Affiliation(s)
- Zaynab Osaid
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates;
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates;
| | - Mohamed Haider
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates;
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
| | - Rifat Hamoudi
- Clinical Sciences Department, College of Medicine, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates;
- Division of Surgery and Interventional Science, University College London, London W1W 7EJ, UK
| | - Rania Harati
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates;
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates;
| |
Collapse
|
165
|
Lu T, Xie F, Huang C, Zhou L, Lai K, Gong Y, Li Z, Li L, Liang J, Cong Q, Li W, Ju R, Zhang SX, Jin C. ERp29 Attenuates Nicotine-Induced Endoplasmic Reticulum Stress and Inhibits Choroidal Neovascularization. Int J Mol Sci 2023; 24:15523. [PMID: 37958506 PMCID: PMC10649101 DOI: 10.3390/ijms242115523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/14/2023] [Accepted: 10/17/2023] [Indexed: 11/15/2023] Open
Abstract
Nicotine-induced endoplasmic reticulum (ER) stress in retinal pigment epithelium (RPE) cells is thought to be one pathological mechanism underlying age-related macular degeneration (AMD). ERp29 attenuates tobacco extract-induced ER stress and mitigates tight junction damage in RPE cells. Herein, we aimed to further investigate the role of ERp29 in nicotine-induced ER stress and choroidal neovascularization (CNV). We found that the expression of ERp29 and GRP78 in ARPE-19 cells was increased in response to nicotine exposure. Overexpression of ERp29 decreased the levels of GRP78 and the C/EBP homologous protein (CHOP). Knockdown of ERp29 increased the levels of GRP78 and CHOP while reducing the viability of ARPE-19 cells under nicotine exposure conditions. In the ARPE-19 cell/macrophage coculture system, overexpression of ERp29 decreased the levels of M2 markers and increased the levels of M1 markers. The viability, migration and tube formation of human umbilical vein endothelial cells (HUVECs) were inhibited by conditioned medium from the ERp29-overexpressing group. Moreover, overexpression of ERp29 inhibits the activity and growth of CNV in mice exposed to nicotine in vivo. Taken together, our results revealed that ERp29 attenuated nicotine-induced ER stress, regulated macrophage polarization and inhibited CNV.
Collapse
Affiliation(s)
- Tu Lu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Fangfang Xie
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Chuangxin Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Lijun Zhou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Kunbei Lai
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Yajun Gong
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Zijing Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Longhui Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Jiandong Liang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Qifeng Cong
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Weihua Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Rong Ju
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Sarah X. Zhang
- Department of Ophthalmology and Ross Eye Institute, University at Buffalo, State University of New York, Buffalo, NY 14203, USA
- SUNY Eye Institute, State University of New York, Buffalo, NY 14203, USA
- Department of Biochemistry, University at Buffalo, State University of New York, Buffalo, NY 14203, USA
| | - Chenjin Jin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| |
Collapse
|
166
|
Wang HC, Yin WX, Jiang M, Han JY, Kuai XW, Sun R, Sun YF, Ji JL. Function and biomedical implications of exosomal microRNAs delivered by parenchymal and nonparenchymal cells in hepatocellular carcinoma. World J Gastroenterol 2023; 29:5435-5451. [PMID: 37900996 PMCID: PMC10600808 DOI: 10.3748/wjg.v29.i39.5435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/13/2023] [Accepted: 10/16/2023] [Indexed: 10/19/2023] Open
Abstract
Small extracellular vesicles (exosomes) are important components of the tumor microenvironment. They are small membrane-bound vesicles derived from almost all cell types and play an important role in intercellular communication. Exosomes transmit biological molecules obtained from parent cells, such as proteins, lipids, and nucleic acids, and are involved in cancer development. MicroRNAs (miRNAs), the most abundant contents in exosomes, are selectively packaged into exosomes to carry out their biological functions. Recent studies have revealed that exosome-delivered miRNAs play crucial roles in the tumorigenesis, progression, and drug resistance of hepatocellular carcinoma (HCC). In addition, exosomes have great industrial prospects in the diagnosis, treatment, and prognosis of patients with HCC. This review summarized the composition and function of exosomal miRNAs of different cell origins in HCC and highlighted the association between exosomal miRNAs from stromal cells and immune cells in the tumor microenvironment and the progression of HCC. Finally, we described the potential applicability of exosomal miRNAs derived from mesenchymal stem cells in the treatment of HCC.
Collapse
Affiliation(s)
- Hai-Chen Wang
- Department of Pathology, Medical School of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Wen-Xuan Yin
- Department of Pathology, Medical School of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Meng Jiang
- Department of Pathology, Medical School of Nantong University, Nantong 226001, Jiangsu Province, China
- Key Laboratory of Microenvironment and Translational Cancer Research, Science and Technology Bureau of Nantong City, Nantong 226001, Jiangsu Province, China
| | - Jia-Yi Han
- Department of Pathology, Medical School of Nantong University, Nantong 226001, Jiangsu Province, China
- Key Laboratory of Microenvironment and Translational Cancer Research, Science and Technology Bureau of Nantong City, Nantong 226001, Jiangsu Province, China
| | - Xing-Wang Kuai
- Department of Pathology, Medical School of Nantong University, Nantong 226001, Jiangsu Province, China
- Key Laboratory of Microenvironment and Translational Cancer Research, Science and Technology Bureau of Nantong City, Nantong 226001, Jiangsu Province, China
| | - Rui Sun
- Department of Pathology, Medical School of Nantong University, Nantong 226001, Jiangsu Province, China
- Key Laboratory of Microenvironment and Translational Cancer Research, Science and Technology Bureau of Nantong City, Nantong 226001, Jiangsu Province, China
| | - Yu-Feng Sun
- Department of Pathology, Medical School of Nantong University, Nantong 226001, Jiangsu Province, China
- Key Laboratory of Microenvironment and Translational Cancer Research, Science and Technology Bureau of Nantong City, Nantong 226001, Jiangsu Province, China
| | - Ju-Ling Ji
- Department of Pathology, Medical School of Nantong University, Nantong 226001, Jiangsu Province, China
- Key Laboratory of Microenvironment and Translational Cancer Research, Science and Technology Bureau of Nantong City, Nantong 226001, Jiangsu Province, China
- Department of Pathology, The Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| |
Collapse
|
167
|
Yang S, Zeng Z, Yuan Q, Chen Q, Wang Z, Xie H, Liu J. Vascular calcification: from the perspective of crosstalk. MOLECULAR BIOMEDICINE 2023; 4:35. [PMID: 37851172 PMCID: PMC10584806 DOI: 10.1186/s43556-023-00146-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 09/20/2023] [Indexed: 10/19/2023] Open
Abstract
Vascular calcification (VC) is highly correlated with cardiovascular disease morbidity and mortality, but anti-VC treatment remains an area to be tackled due to the ill-defined molecular mechanisms. Regardless of the type of VC, it does not depend on a single cell but involves multi-cells/organs to form a complex cellular communication network through the vascular microenvironment to participate in the occurrence and development of VC. Therefore, focusing only on the direct effect of pathological factors on vascular smooth muscle cells (VSMCs) tends to overlook the combined effect of other cells and VSMCs, including VSMCs-VSMCs, ECs-VMSCs, Macrophages-VSMCs, etc. Extracellular vesicles (EVs) are a collective term for tiny vesicles with a membrane structure that are actively secreted by cells, and almost all cells secrete EVs. EVs docked on the surface of receptor cells can directly mediate signal transduction or transfer their contents into the cell to elicit a functional response from the receptor cells. They have been proven to participate in the VC process and have also shown attractive therapeutic prospects. Based on the advantages of EVs and the ability to be detected in body fluids, they may become a novel therapeutic agent, drug delivery vehicle, diagnostic and prognostic biomarker, and potential therapeutic target in the future. This review focuses on the new insight into VC molecular mechanisms from the perspective of crosstalk, summarizes how multi-cells/organs interactions communicate via EVs to regulate VC and the emerging potential of EVs as therapeutic methods in VC. We also summarize preclinical experiments on crosstalk-based and the current state of clinical studies on VC-related measures.
Collapse
Affiliation(s)
- Shiqi Yang
- Department of Metabolism and Endocrinology, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, China
- Department of Clinical Laboratory Medicine, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, China
| | - Zhaolin Zeng
- Department of Metabolism and Endocrinology, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, China
| | - Qing Yuan
- Department of Metabolism and Endocrinology, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, China
- Department of Clinical Laboratory Medicine, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, China
| | - Qian Chen
- Department of Metabolism and Endocrinology, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, China
| | - Zuo Wang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Hui Xie
- Department of Orthopaedics, Movement System Injury and Repair Research Centre, Xiangya Hospital, Central South University, Changsha, Hunan Province, China.
| | - Jianghua Liu
- Department of Metabolism and Endocrinology, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, China.
| |
Collapse
|
168
|
Xia S, Xu C, Liu F, Chen G. Development of microRNA-based therapeutics for central nervous system diseases. Eur J Pharmacol 2023; 956:175956. [PMID: 37541374 DOI: 10.1016/j.ejphar.2023.175956] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 07/21/2023] [Accepted: 08/01/2023] [Indexed: 08/06/2023]
Abstract
MicroRNA (miRNA)-mediated gene silencing is a method of RNA interference in which a miRNA binds to messenger RNA sequences and regulates target gene expression. MiRNA-based therapeutics have shown promise in treating a variety of central nervous system diseases, as verified by results from diverse preclinical model organisms. Over the last decade, several miRNA-based therapeutics have entered clinical trials for various kinds of diseases, such as tumors, infections, and inherited diseases. However, such clinical trials for central nervous system diseases are scarce, and many central nervous system diseases, including hemorrhagic stroke, ischemic stroke, traumatic brain injury, intractable epilepsy, and Alzheimer's disease, lack effective treatment. Considering its effectiveness for central nervous system diseases in preclinical experiments, microRNA-based intervention may serve as a promising treatment for these kinds of diseases. This paper reviews basic principles and recent progress of miRNA-based therapeutics and summarizes general procedures to develop such therapeutics for treating central nervous system diseases. Then, the current obstacles in drug development are discussed. This review also provides a new perspective on possible solutions to these obstacles in the future.
Collapse
Affiliation(s)
- Siqi Xia
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China.
| | - Chaoran Xu
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China; Department of Neurosurgery, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, Zhejiang, China.
| | - Fuyi Liu
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China.
| | - Gao Chen
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China.
| |
Collapse
|
169
|
Lan B, Dong X, Yang Q, Luo Y, Wen H, Chen Z, Chen H. Exosomal MicroRNAs: An Emerging Important Regulator in Acute Lung Injury. ACS OMEGA 2023; 8:35523-35537. [PMID: 37810708 PMCID: PMC10551937 DOI: 10.1021/acsomega.3c04955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/11/2023] [Indexed: 10/10/2023]
Abstract
Acute lung injury (ALI) is a clinically life-threatening form of respiratory failure with a mortality of 30%-40%. Acute respiratory distress syndrome is the aggravated form of ALI. Exosomes are extracellular lipid vesicles ubiquitous in human biofluids with a diameter of 30-150 nm. They can serve as carriers to convey their internal cargo, particularly microRNA (miRNA), to the target cells involved in cellular communication. In disease states, the quantities of exosomes and the cargo generated by cells are altered. These exosomes subsequently function as autocrine or paracrine signals to nearby or distant cells, regulating various pathogenic processes. Moreover, exosomal miRNAs from multiple stem cells can provide therapeutic value for ALI by regulating different signaling pathways. In addition, changes in exosomal miRNAs of biofluids can serve as biomarkers for the early diagnosis of ALI. This study aimed to review the role of exosomal miRNAs produced by different sources participating in various pathological processes of ALI and explore their potential significance in the treatment and diagnosis.
Collapse
Affiliation(s)
- Bowen Lan
- Department
of General Surgery, The First Affiliated
Hospital of Dalian Medical University, Dalian 116000, China
- Laboratory
of Integrative Medicine, The First Affiliated
Hospital of Dalian Medical University, Dalian 116000, China
| | - Xuanchi Dong
- Department
of General Surgery, The First Affiliated
Hospital of Dalian Medical University, Dalian 116000, China
- Laboratory
of Integrative Medicine, The First Affiliated
Hospital of Dalian Medical University, Dalian 116000, China
| | - Qi Yang
- Department
of General Surgery, The First Affiliated
Hospital of Dalian Medical University, Dalian 116000, China
- Laboratory
of Integrative Medicine, The First Affiliated
Hospital of Dalian Medical University, Dalian 116000, China
- Department
of Traditional Chinese Medicine, The Second
Affiliated Hospital of Dalian Medical University, Dalian 116023, China
| | - Yalan Luo
- Department
of General Surgery, The First Affiliated
Hospital of Dalian Medical University, Dalian 116000, China
- Laboratory
of Integrative Medicine, The First Affiliated
Hospital of Dalian Medical University, Dalian 116000, China
- Institute
(College) of Integrative Medicine, Dalian
Medical University, Dalian 116044, China
| | - Haiyun Wen
- Department
of General Surgery, The First Affiliated
Hospital of Dalian Medical University, Dalian 116000, China
- Laboratory
of Integrative Medicine, The First Affiliated
Hospital of Dalian Medical University, Dalian 116000, China
- Institute
(College) of Integrative Medicine, Dalian
Medical University, Dalian 116044, China
| | - Zhe Chen
- Department
of General Surgery, The First Affiliated
Hospital of Dalian Medical University, Dalian 116000, China
- Laboratory
of Integrative Medicine, The First Affiliated
Hospital of Dalian Medical University, Dalian 116000, China
| | - Hailong Chen
- Department
of General Surgery, The First Affiliated
Hospital of Dalian Medical University, Dalian 116000, China
- Laboratory
of Integrative Medicine, The First Affiliated
Hospital of Dalian Medical University, Dalian 116000, China
- Institute
(College) of Integrative Medicine, Dalian
Medical University, Dalian 116044, China
| |
Collapse
|
170
|
Cao M, Diao N, Cai X, Chen X, Xiao Y, Guo C, Chen D, Zhang X. Plant exosome nanovesicles (PENs): green delivery platforms. MATERIALS HORIZONS 2023; 10:3879-3894. [PMID: 37671650 DOI: 10.1039/d3mh01030a] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
Natural plants have been attracting increasing attention in biomedical research due to their numerous benefits. Plant exosome-derived vesicles, some of the plant's components, are small nanoscale vesicles secreted by plant cells. These vesicles are rich in bioactive substances and play significant roles in intercellular communication, information transfer, and maintaining homeostasis in organisms. They also hold promise for treating diseases, and their vesicular structures make them suitable carriers for drug delivery, with large-scale production feasible. Therefore, this paper aims to provide an overview of nanovesicles from different plant sources and their extraction methods. We also outline the biological activities of nanovesicles, including their anti-inflammatory, anti-viral, and anti-tumor properties, and systematically introduce their applications in drug delivery. These applications include transdermal delivery, targeted drug delivery, gene delivery, and their potential use in the modern food industry. This review provides new ideas and methods for future research on plant exosomes, including their empowerment by artificial intelligence and gene editing, as well as their potential application in the biomedicine, food, and agriculture industries.
Collapse
Affiliation(s)
- Min Cao
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai 264005, P. R. China.
| | - Ningning Diao
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai 264005, P. R. China.
| | - Xiaolu Cai
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xing Chen
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.
| | - Yi Xiao
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.
| | - Chunjing Guo
- College of Marine Life Science, Ocean University of China, 5# Yushan 10 Road, Qingdao 266003, P. R. China.
| | - Daquan Chen
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai 264005, P. R. China.
| | - Xingcai Zhang
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
171
|
Hegde M, Kumar A, Girisa S, Alqahtani MS, Abbas M, Goel A, Hui KM, Sethi G, Kunnumakkara AB. Exosomal noncoding RNA-mediated spatiotemporal regulation of lipid metabolism: Implications in immune evasion and chronic inflammation. Cytokine Growth Factor Rev 2023; 73:114-134. [PMID: 37419767 DOI: 10.1016/j.cytogfr.2023.06.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/06/2023] [Accepted: 06/06/2023] [Indexed: 07/09/2023]
Abstract
The hallmark of chronic inflammatory diseases is immune evasion. Successful immune evasion involves numerous mechanisms to suppress both adaptive and innate immune responses. Either direct contact between cells or paracrine signaling triggers these responses. Exosomes are critical drivers of these interactions and exhibit both immunogenic and immune evasion properties during the development and progression of various chronic inflammatory diseases. Exosomes carry diverse molecular cargo, including lipids, proteins, and RNAs that are crucial for immunomodulation. Moreover, recent studies have revealed that exosomes and their cargo-loaded molecules are extensively involved in lipid remodeling and metabolism during immune surveillance and disease. Many studies have also shown the involvement of lipids in controlling immune cell activities and their crucial upstream functions in regulating inflammasome activation, suggesting that any perturbation in lipid metabolism results in abnormal immune responses. Strikingly, the expanded immunometabolic reprogramming capacities of exosomes and their contents provided insights into the novel mechanisms behind the prophylaxis of inflammatory diseases. By summarizing the tremendous therapeutic potential of exosomes, this review emphasizes the role of exosome-derived noncoding RNAs in regulating immune responses through the modulation of lipid metabolism and their promising therapeutic applications.
Collapse
Affiliation(s)
- Mangala Hegde
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Aviral Kumar
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Sosmitha Girisa
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Mohammed S Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia; BioImaging Unit, Space Research Centre, Michael Atiyah Building, University of Leicester, Leicester LE1 7RH, UK
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia; Computers and communications Department College of Engineering Delta University for Science and Technology, Gamasa 35712, Egypt
| | - Akul Goel
- California Institute of Technology (CalTech), Pasadena, CA, USA
| | - Kam Man Hui
- Division of Cellular and Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre, Singapore 169610, Singapore
| | - Gautam Sethi
- Department of Pharmacology and NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| |
Collapse
|
172
|
Xie Y, Wang X, Wang Z, Feng J, Li D. Exosomes from magnetic particles-primed mesenchymal stem cells enhance neural differentiation of PC12 cells. Heliyon 2023; 9:e21075. [PMID: 37916092 PMCID: PMC10616344 DOI: 10.1016/j.heliyon.2023.e21075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 07/25/2023] [Accepted: 10/14/2023] [Indexed: 11/03/2023] Open
Abstract
This study aimed to investigate the effects of mesenchymal stem cell exosomes loaded with Fe3O4 magnetic particles (Fe3O4@ MSC-exo) on the survival and neural differentiation of PC12 cells. Exosomes were separated from Fe3O4 magnetic nanoparticles-primed umbilical cord mesenchymal stem cells condition medium by ultracentrifugation and characterized by transmission electron microscopy, flow nano analysis, and western blotting. PC12 cells were treated with culture medium containing exosomes. The effects of Fe3O4@ MSC-exo on PC12 cell proliferation, migration, and neural differentiation were analyzed using CCK-8 assay, transwell migration assay, RT-qPCR, and immunofluorescence, respectively. Additionally, miRNA sequencing was performed on Fe3O4@ MSC-exo, followed by bioinformatic analysis of the results. We found that Fe3O4@ MSC-exo can promote PC12 cell proliferation, migration, and neural differentiation. According to the sequencing results, there were a total of 43 differentially expressed miRNAs. The present study indicated that Fe3O4@ MSC-exo might enhance nerve cell function, laying the foundation for targeted therapy of nerve injury.
Collapse
Affiliation(s)
- Yong Xie
- Department of Obstetrics and Gynecology, The First People's Hospital of Foshan, Foshan 528000, China
- Department of Obstetrics and Gynecology, Leping Affiliated Hospital of the First People's Hospital of Foshan, Foshan 528100, China
| | - Xiaoyan Wang
- Department of Gynecology, Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan 030013, China
| | - Zhonghui Wang
- Department of Hepatobiliary Surgery, The First People's Hospital of Foshan, Foshan 528000, China
| | - Jianyang Feng
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510000, China
| | - Dongsheng Li
- DeJa Lab, VetCell Biotech Limited, Foshan 528225, China
| |
Collapse
|
173
|
Wang C, Wu R, Zhang S, Gong L, Fu K, Yao C, Peng C, Li Y. A comprehensive review on pharmacological, toxicity, and pharmacokinetic properties of phillygenin: Current landscape and future perspectives. Biomed Pharmacother 2023; 166:115410. [PMID: 37659207 DOI: 10.1016/j.biopha.2023.115410] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/28/2023] [Accepted: 08/28/2023] [Indexed: 09/04/2023] Open
Abstract
Forsythiae Fructus is a traditional Chinese medicine frequently in clinics. It is extensive in the treatment of various inflammation-related diseases and is renowned as 'the holy medicine of sores'. Phillygenin (C21H24O6, PHI) is a component of lignan that has been extracted from Forsythiae Fructus and exhibits notable biological activity. Modern pharmacological studies have confirmed that PHI demonstrates significant activities in the treatment of various diseases, including inflammatory diseases, liver diseases, cancer, bacterial infection and virus infection. Therefore, this review comprehensively summarizes the pharmacological effects of PHI up to June 2023 by searching PubMed, Web of Science, Science Direct, CNKI, and SciFinder databases. According to the data, PHI shows remarkable anti-inflammatory, antioxidant, hepatoprotective, antitumour, antibacterial, antiviral, immunoregulatory, analgesic, antihypertensive and vasodilatory activities. More importantly, NF-κB, MAPK, PI3K/AKT, P2X7R/NLRP3, Nrf2-ARE, JAK/STAT, Ca2+-calcineurin-TFEB, TGF-β/Smads, Notch1 and AMPK/ERK/NF-κB signaling pathways are considered as important molecular targets for PHI to exert these pharmacological activities. Studies of its toxicity and pharmacokinetic properties have shown that PHI has very low toxicity, incomplete absorption in vivo and low oral bioavailability. In addition, the physico-chemical properties, new formulations, derivatives and existing challenges and prospects of PHI are also reviewed and discussed in this paper, aiming to provide direction and rationale for the further development and clinical application of PHI.
Collapse
Affiliation(s)
- Cheng Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Rui Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Shenglin Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Lihong Gong
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ke Fu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Chenhao Yao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Yunxia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
174
|
Chen Y, Xu D, Ma Y, Chen P, Hu J, Chen D, Yu W, Han X. Sertoli cell-derived extracellular vesicles traverse the blood-testis barrier and deliver miR-24-3p inhibitor into germ cells improving sperm mobility. J Control Release 2023; 362:58-69. [PMID: 37595666 DOI: 10.1016/j.jconrel.2023.08.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/09/2023] [Accepted: 08/14/2023] [Indexed: 08/20/2023]
Abstract
Asthenozoospermia, characterized by poor sperm motility, is a common cause of male infertility. Improving energy metabolism and alleviating oxidative stress through drug regimens are potential therapeutic strategies. In this study, we observed upregulated miR-24-3p levels in asthenozoospermia spermatozoa, contributing to energy metabolism disorder and oxidative stress by reducing GSK3β expression. Thus, reducing miR-24-3p levels using drugs is expected to improve sperm motility. The blood-testis barrier (BTB) protects the testis from xenobiotics and drugs. In this study, we found that Sertoli cell-derived small extracellular vesicles (SC-sEV) can traverse the BTB and enter germ cells. We successfully loaded miR-24-3p inhibitor into SC-sEV, creating the nano-drug SC-sEV@miR-24-3p inhibitor, which effectively delivers miR-24-3p inhibitor into germ cells. In a gossypol-induced mouse asthenozoospermia model, administration of SC-sEV@miR-24-3p inhibitor significantly improved sperm motility, in vitro fertilization success, and blastocyst formation rates. As anticipated, it also improved the litter size of asthenozoospermia mice. These results suggest that SC-sEV@miR-24-3p inhibitor holds promise as a potential clinical treatment for asthenospermia.
Collapse
Affiliation(s)
- Yabing Chen
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, China; Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| | - Dihui Xu
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, China; Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| | - Yuhan Ma
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, China; Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| | - Peilin Chen
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, China; Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| | - Jianhang Hu
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, China; Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| | - Deyan Chen
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, China.
| | - Wen Yu
- Department of Andrology, Affiliated Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing, China.
| | - Xiaodong Han
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, China; Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China.
| |
Collapse
|
175
|
Vrablova V, Kosutova N, Blsakova A, Bertokova A, Kasak P, Bertok T, Tkac J. Glycosylation in extracellular vesicles: Isolation, characterization, composition, analysis and clinical applications. Biotechnol Adv 2023; 67:108196. [PMID: 37307942 DOI: 10.1016/j.biotechadv.2023.108196] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 06/05/2023] [Accepted: 06/05/2023] [Indexed: 06/14/2023]
Abstract
This review provides a comprehensive overview of our understanding of the role that glycans play in the formation, loading and release of extracellular vesicles (EVs). The capture of EVs (typically with a size of 100-200 nm) is described, including approaches based on glycan recognition with glycan-based analysis offering highly sensitive detection of EVs. Furthermore, detailed information is provided about the use of EV glycans and glycan processing enzymes as potential biomarkers, therapeutic targets or tools applied for regenerative medicine. The review also provides a short introduction into advanced methods for the characterization of EVs, new insights into the biomolecular corona covering EVs and bioanalytical tools available for glycan analysis.
Collapse
Affiliation(s)
- Veronika Vrablova
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 845 38, Slovak Republic
| | - Natalia Kosutova
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 845 38, Slovak Republic
| | - Anna Blsakova
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 845 38, Slovak Republic
| | - Aniko Bertokova
- Glycanostics sro., Kudlakova 7, Bratislava 841 01, Slovak Republic
| | - Peter Kasak
- Centre for Advanced Materials, Qatar University, P.O. Box 2713, Doha, Qatar.
| | - Tomas Bertok
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 845 38, Slovak Republic; Glycanostics sro., Kudlakova 7, Bratislava 841 01, Slovak Republic
| | - Jan Tkac
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 845 38, Slovak Republic; Glycanostics sro., Kudlakova 7, Bratislava 841 01, Slovak Republic.
| |
Collapse
|
176
|
Liao T, Gan M, Qiu Y, Lei Y, Chen Q, Wang X, Yang Y, Chen L, Zhao Y, Niu L, Wang Y, Zhang S, Zhu L, Shen L. miRNAs derived from cobra venom exosomes contribute to the cobra envenomation. J Nanobiotechnology 2023; 21:356. [PMID: 37777744 PMCID: PMC10544165 DOI: 10.1186/s12951-023-02131-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 09/26/2023] [Indexed: 10/02/2023] Open
Abstract
Currently, there is an increasing amount of evidence indicating that exosomes and the miRNAs they contain are crucial players in various biological processes. However, the role of exosomes and miRNAs in snake venom during the envenomation process remains largely unknown. In this study, fresh venom from Naja atra of different ages (2-month-old, 1-year-old, and 5-year-old) was collected, and exosomes were isolated through ultracentrifugation. The study found that exosomes with inactivated proteins and enzymes can still cause symptoms similar to cobra envenomation, indicating that substances other than proteins and enzymes in exosomes may also play an essential role in cobra envenomation. Furthermore, the expression profiles of isolated exosome miRNAs were analyzed. The study showed that a large number of miRNAs were co-expressed and abundant in cobra venom exosomes (CV-exosomes) of different ages, including miR-2904, which had high expression abundance and specific sequences. The specific miR-2094 derived from CV-exosomes (CV-exo-miR-2904) was overexpressed both in vitro and in vivo. As a result, CV-exo-miR-2904 induced symptoms similar to cobra envenomation in mice and caused liver damage, demonstrating that it plays a crucial role in cobra envenomation. These results reveal that CV-exosomes and the miRNAs they contain play a significant regulatory role in cobra envenomation. Our findings provide new insights for the treatment of cobra bites and the development of snake venom-based medicines.
Collapse
Affiliation(s)
- Tianci Liao
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130 China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130 China
| | - Mailin Gan
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130 China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130 China
| | - Yanhao Qiu
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130 China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130 China
| | - Yuhang Lei
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130 China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130 China
| | - Qiuyang Chen
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130 China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130 China
| | - Xingyu Wang
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130 China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130 China
| | - Yiting Yang
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130 China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130 China
| | - Lei Chen
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130 China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130 China
| | - Ye Zhao
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130 China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130 China
| | - Lili Niu
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130 China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130 China
| | - Yan Wang
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130 China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130 China
| | - Shunhua Zhang
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130 China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130 China
| | - Li Zhu
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130 China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130 China
| | - Linyuan Shen
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130 China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130 China
| |
Collapse
|
177
|
Wang M, Xie K, Zhao S, Jia N, Zong Y, Gu W, Cai Y. Aerobic exercise improves cognitive impairment in mice with type 2 diabetes by regulating the MALAT1/miR-382-3p/BDNF signaling pathway in serum-exosomes. Mol Med 2023; 29:130. [PMID: 37740187 PMCID: PMC10517522 DOI: 10.1186/s10020-023-00727-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 09/11/2023] [Indexed: 09/24/2023] Open
Abstract
BACKGROUND It has been documented that aerobic exercise (AE) has a positive effect on improving cognitive function in type 2 diabetes (T2DM) patients. Here, we tried to explore how AE regulates the expression of long non-coding RNA in serum-exosomes (Exos), thereby affecting cognitive impairment in T2DM mice as well as its potential molecular mechanism. METHODS T2DM mouse models were constructed, and serum-Exos were isolated for whole transcriptome sequencing to screen differentially expressed lncRNA and mRNA, followed by prediction of downstream target genes. The binding ability of miR-382-3p with a long non-coding RNA MALAT1 and brain-derived neurotrophic factor (BDNF) was explored. Then, primary mouse hippocampal neurons were collected for in vitro mechanism verification, as evidenced by the detection of hippocampal neurons' vitality, proliferation, and apoptosis capabilities, and insulin resistance. Finally, in vivo mechanism verification was performed to assess the effect of AE on insulin resistance and cognitive disorder. RESULTS Transcriptome sequencing analysis showed that MALAT1 was lowly expressed and miR-382-3p was highly expressed in serum-Exos samples of T2DM mice. There were targeted binding sites between MALAT1 and miR-382-3p and between miR-382-3p and BDNF. In vitro experiments showed that MALAT1 upregulated BDNF expression by inhibiting miR-382-3p. Silencing MALAT1 or overexpressing miR-382-3p could reduce the expression of INSR, IRS-1, IRS-2, PI3K/AKT, and Ras/MAPK, inhibit neuronal proliferation, and promote apoptosis. In vivo experiments further confirmed that AE could increase the expression of MALAT1 in serum-Exos to competitively inhibit miR-382-3p and upregulate BDNF expression, thereby improving cognitive impairment in T2DM mice. CONCLUSION AE may upregulate the expression of MALAT1 in serum-Exos to competitively inhibit miR-382-3p and upregulate BDNF expression, thus improving cognitive impairment in T2DM mice.
Collapse
Affiliation(s)
- Mingzhu Wang
- National Clinical Research Center for Geriatric Disorders, Department of Rehabilitation, Xiangya Hospital Central South University, Changsha, 410008, Hunan, China
| | - Kangling Xie
- National Clinical Research Center for Geriatric Disorders, Department of Rehabilitation, Xiangya Hospital Central South University, Changsha, 410008, Hunan, China
| | - Shengnan Zhao
- National Clinical Research Center for Geriatric Disorders, Department of Rehabilitation, Xiangya Hospital Central South University, Changsha, 410008, Hunan, China
| | - Nan Jia
- National Clinical Research Center for Geriatric Disorders, Department of Rehabilitation, Xiangya Hospital Central South University, Changsha, 410008, Hunan, China
| | - Yujiao Zong
- National Clinical Research Center for Geriatric Disorders, Department of Rehabilitation, Xiangya Hospital Central South University, Changsha, 410008, Hunan, China
| | - Wenping Gu
- National Clinical Research Center for Geriatric Disorders, Department of Neurology, Xiangya Hospital Central South University, Changsha, 410008, China
| | - Ying Cai
- National Clinical Research Center for Geriatric Disorders, Department of Rehabilitation, Xiangya Hospital Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
178
|
Fang Q, Wei Y, Zhang Y, Cao W, Yan L, Kong M, Zhu Y, Xu Y, Guo L, Zhang L, Wang W, Yu Y, Sun J, Yang J. Stem cells as potential therapeutics for hearing loss. Front Neurosci 2023; 17:1259889. [PMID: 37746148 PMCID: PMC10512725 DOI: 10.3389/fnins.2023.1259889] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 08/23/2023] [Indexed: 09/26/2023] Open
Abstract
Hearing impairment is a global health problem. Stem cell therapy has become a cutting-edge approach to tissue regeneration. In this review, the recent advances in stem cell therapy for hearing loss have been discussed. Nanomaterials can modulate the stem cell microenvironment to augment the therapeutic effects further. The potential of combining nanomaterials with stem cells for repairing and regenerating damaged inner ear hair cells (HCs) and spiral ganglion neurons (SGNs) has also been discussed. Stem cell-derived exosomes can contribute to the repair and regeneration of damaged tissue, and the research progress on exosome-based hearing loss treatment has been summarized as well. Despite stem cell therapy's technical and practical limitations, the findings reported so far are promising and warrant further investigation for eventual clinical translation.
Collapse
Affiliation(s)
- Qiaojun Fang
- Department of Otolaryngology-Head and Neck Surgery, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- School of Life Sciences and Technology, Southeast University, Nanjing, China
| | - Yongjie Wei
- Department of Otolaryngology-Head and Neck Surgery, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yuhua Zhang
- Department of Otolaryngology-Head and Neck Surgery, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Wei Cao
- Department of Otolaryngology-Head and Neck Surgery, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Lin Yan
- Department of Otolaryngology-Head and Neck Surgery, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Mengdie Kong
- School of Life Sciences and Technology, Southeast University, Nanjing, China
| | - Yongjun Zhu
- Department of Otolaryngology-Head and Neck Surgery, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yan Xu
- Department of Otolaryngology-Head and Neck Surgery, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Lingna Guo
- Department of Otolaryngology-Head and Neck Surgery, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Lei Zhang
- Department of Otolaryngology-Head and Neck Surgery, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Weiqing Wang
- Department of Otolaryngology-Head and Neck Surgery, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yafeng Yu
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Jingwu Sun
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Jianming Yang
- Department of Otolaryngology-Head and Neck Surgery, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
179
|
Zheng MH, Shan SK, Lin X, Xu F, Wu F, Guo B, Li FXZ, Zhou ZA, Wang Y, Lei LM, Tang KX, Duan JY, Wu YY, Cao YC, Liao XB, Yuan LQ. Vascular wall microenvironment: exosomes secreted by adventitial fibroblasts induced vascular calcification. J Nanobiotechnology 2023; 21:315. [PMID: 37667298 PMCID: PMC10478424 DOI: 10.1186/s12951-023-02000-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 07/12/2023] [Indexed: 09/06/2023] Open
Abstract
Vascular calcification often occurs in patients with chronic renal failure (CRF), which significantly increases the incidence of cardiovascular events in CRF patients. Our previous studies identified the crosstalk between the endothelial cells (ECs) and vascular smooth muscle cells (VSMCs), and the paracrine effect of VSMCs, which regulate the calcification of VSMCs. Herein, we aim to investigate the effects of exosomes secreted by high phosphorus (HPi) -induced adventitial fibroblasts (AFs) on the calcification of VSMCs and the underlying mechanism, which will further elucidate the important role of AFs in high phosphorus vascular wall microenvironment. The conditioned medium of HPi-induced AFs promotes the calcification of VSMCs, which is partially abrogated by GW4869, a blocker of exosomes biogenesis or release. Exosomes secreted by high phosphorus-induced AFs (AFsHPi-Exos) show similar effects on VSMCs. miR-21-5p is enriched in AFsHPi-Exos, and miR-21-5p enhances osteoblast-like differentiation of VSMCs by downregulating cysteine-rich motor neuron 1 (Crim1) expression. AFsHPi-Exos and exosomes secreted by AFs with overexpression of miR-21-5p (AFsmiR21M-Exos) significantly accelerate vascular calcification in CRF mice. In general, AFsHPi-Exos promote the calcification of VSMCs and vascular calcification by delivering miR-21-5p to VSMCs and subsequently inhibiting the expression of Crim1. Combined with our previous studies, the present experiment supports the theory of vascular wall microenvironment.
Collapse
Grants
- 81770881, 81870623, 82100494, 82100944 and 82070910 National Natural Science Foundation of China
- 81770881, 81870623, 82100494, 82100944 and 82070910 National Natural Science Foundation of China
- 81770881, 81870623, 82100494, 82100944 and 82070910 National Natural Science Foundation of China
- 81770881, 81870623, 82100494, 82100944 and 82070910 National Natural Science Foundation of China
- 2020SK2078 Key R&D Plan of Hunan Province
- 2021JJ40842 Natural Science Foundation of Hunan Province
- Key R&D Plan of Hunan Province
Collapse
Affiliation(s)
- Ming-Hui Zheng
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, the Second Xiangya Hospital, Central South University, Changsha, 410000, China
| | - Su-Kang Shan
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, the Second Xiangya Hospital, Central South University, Changsha, 410000, China
| | - Xiao Lin
- Department of Radiology, the Second Xiangya Hospital, Central South University, Changsha, 410000, China
| | - Feng Xu
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, the Second Xiangya Hospital, Central South University, Changsha, 410000, China
| | - Feng Wu
- Department of Pathology, the Second Xiangya Hospital, Central South University, Changsha, 410000, China
| | - Bei Guo
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, the Second Xiangya Hospital, Central South University, Changsha, 410000, China
| | - Fu-Xing-Zi Li
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, the Second Xiangya Hospital, Central South University, Changsha, 410000, China
| | - Zhi-Ang Zhou
- Department of Cardiovascular Surgery, the Second Xiangya Hospital, Central South University, Changsha, 410000, China
| | - Yi Wang
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, the Second Xiangya Hospital, Central South University, Changsha, 410000, China
| | - Li-Min Lei
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, the Second Xiangya Hospital, Central South University, Changsha, 410000, China
| | - Ke-Xin Tang
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, the Second Xiangya Hospital, Central South University, Changsha, 410000, China
| | - Jia-Yue Duan
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, the Second Xiangya Hospital, Central South University, Changsha, 410000, China
| | - Yun-Yun Wu
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, the Second Xiangya Hospital, Central South University, Changsha, 410000, China
| | - Ye-Chi Cao
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, the Second Xiangya Hospital, Central South University, Changsha, 410000, China
| | - Xiao-Bo Liao
- Department of Cardiovascular Surgery, the Second Xiangya Hospital, Central South University, Changsha, 410000, China.
| | - Ling-Qing Yuan
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, the Second Xiangya Hospital, Central South University, Changsha, 410000, China.
| |
Collapse
|
180
|
Luo M, Luan X, Jiang G, Yang L, Yan K, Li S, Xiang W, Zhou J. The Dual Effects of Exosomes on Glioma: A Comprehensive Review. J Cancer 2023; 14:2707-2719. [PMID: 37779868 PMCID: PMC10539397 DOI: 10.7150/jca.86996] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 08/21/2023] [Indexed: 10/03/2023] Open
Abstract
Glioma is a frequently occurring type of cancer that affects the central nervous system. Despite the availability of standardized treatment options including surgical resection, concurrent radiotherapy, and adjuvant temozolomide (TMZ) therapy, the prognosis for glioma patients is often unfavorable. Exosomes act as vehicles for intercellular communication, contributing to tissue repair, immune modulation, and the transfer of metabolic cargo to recipient cells. However, the transmission of abnormal substances can also contribute to pathologic states such as cancer, metabolic diseases, and neurodegenerative disorders. The field of exosome research in oncology has seen significant advancements, with exosomes identified as dynamic modulators of tumor cell proliferation, migration, and invasion, as well as angiogenesis and drug resistance. Exosomes have negligible cytotoxicity, low immunogenicity, and small size, rendering them an ideal therapeutic candidate for glioma. This comprehensive review discusses the dual effects of exosomes in glioma, with an emphasis on their role in facilitating drug resistance. Furthermore, the clinical applications and current limitations of exosomes in glioma therapy are also discussed in detail.
Collapse
Affiliation(s)
- Maowen Luo
- Southwest Medical University, Luzhou 646000, China
| | - Xingzhao Luan
- Department of Neurosurgery, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Department of Neurosurgery, the Affiliated Hospital of PanZhiHua University, PanZhiHua 617000, China
| | - Gen Jiang
- Department of Neurosurgery, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Luxia Yang
- Department of Neurosurgery, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Kekun Yan
- Department of Neurosurgery, the Affiliated Hospital of PanZhiHua University, PanZhiHua 617000, China
| | - Shenjie Li
- Department of Neurosurgery, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Sichuan Clinical Research Center for Neurosurgery, Luzhou 646000, China
- Academician (Expert) Workstation of Sichuan Province, Luzhou 646000, China
| | - Wei Xiang
- Department of Neurosurgery, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Sichuan Clinical Research Center for Neurosurgery, Luzhou 646000, China
- Academician (Expert) Workstation of Sichuan Province, Luzhou 646000, China
| | - Jie Zhou
- Department of Neurosurgery, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Sichuan Clinical Research Center for Neurosurgery, Luzhou 646000, China
- Academician (Expert) Workstation of Sichuan Province, Luzhou 646000, China
| |
Collapse
|
181
|
Sun H, Kemper JK. MicroRNA regulation of AMPK in nonalcoholic fatty liver disease. Exp Mol Med 2023; 55:1974-1981. [PMID: 37653034 PMCID: PMC10545736 DOI: 10.1038/s12276-023-01072-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/10/2023] [Accepted: 06/13/2023] [Indexed: 09/02/2023] Open
Abstract
Obesity-associated nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease and is the leading cause of liver failure and death. The function of AMP-activated protein kinase (AMPK), a master energy sensor, is aberrantly reduced in NAFLD, but the underlying mechanisms are not fully understood. Increasing evidence indicates that aberrantly expressed microRNAs (miRs) are associated with impaired AMPK function in obesity and NAFLD. In this review, we discuss the emerging evidence that miRs have a role in reducing AMPK activity in NAFLD and nonalcoholic steatohepatitis (NASH), a severe form of NAFLD. We also discuss the underlying mechanisms of the aberrant expression of miRs that can negatively impact AMPK, as well as the therapeutic potential of targeting the miR-AMPK pathway for NAFLD/NASH.
Collapse
Affiliation(s)
- Hao Sun
- Department of Molecular and Integrative Physiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Jongsook Kim Kemper
- Department of Molecular and Integrative Physiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
182
|
Hu Z, Wang J, Pan T, Li X, Tao C, Wu Y, Wang X, Zhang Z, Liu Y, Zhang W, Xu C, Wu X, Gu Q, Fan Y, Qian H, Mugisha A, Yuan S, Liu Q, Xie P. The Exosome-Transmitted lncRNA LOC100132249 Induces Endothelial Dysfunction in Diabetic Retinopathy. Diabetes 2023; 72:1307-1319. [PMID: 37347724 DOI: 10.2337/db22-0435] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 06/14/2023] [Indexed: 06/24/2023]
Abstract
Diabetic retinopathy (DR), one of the most common microangiopathic complications in diabetes, causes severe visual damage among working-age populations. Retinal vascular endothelial cells, the key cell type in DR pathogenesis, are responsible for abnormal retinal angiogenesis in advanced stages of DR. The roles of exosomes in DR have been largely unknown. In this study, we report the first evidence that exosomes derived from the vitreous humor of patients with proliferative DR (PDR-exo) promote proliferation, migration, and tube formation of human retinal vascular endothelial cells (HRVECs). We identified long noncoding RNA (lncRNA) LOC100132249 enrichment in PDR-exo via high-throughput sequencing. This lncRNA, also mainly derived from HRVECs, promoted angiogenesis both in vitro and in vivo. Mechanistically, LOC100132249 acted as a competing endogenous sponge of miRNA-199a-5p (miR-199a-5p), thus regulating the endothelial-mesenchymal transition promoter SNAI1 via activation of the Wnt/β-catenin pathway and ultimately resulting in endothelial dysfunction. In conclusion, our findings underscored the pathogenic role of endothelial-derived exosomes via the LOC100132249/miR-199a-5p/SNAI1 axis in DR angiogenesis and may shed light on new therapeutic strategies for future treatment of DR. ARTICLE HIGHLIGHTS This study provides the first evidence that exosomes derived from vitreous humor from patients with proliferative diabetic retinopathy participate in angiogenesis. The findings demonstrate an unreported long noncoding RNA (lncRNA), LOC100132249, by exosomal sequencing of vitreous humor. The newly found lncRNA LOC100132249, mainly derived from endothelial cells, promotes angiogenesis via an miRNA-199a-5p/SNAI1/Wnt/β-catenin axis in a pro-endothelial-mesenchymal transition manner.
Collapse
Affiliation(s)
- Zizhong Hu
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jingfan Wang
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ting Pan
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of Ophthalmology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Xinsheng Li
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chao Tao
- MOE Key Laboratory of Modern Acoustics, Department of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China
| | - Yan Wu
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xingxing Wang
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhengyu Zhang
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yu Liu
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Eye Institute, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Weiwei Zhang
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Changlin Xu
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xinjing Wu
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qinyuan Gu
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yuanyuan Fan
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Huiming Qian
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of Ophthalmology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Aime Mugisha
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Songtao Yuan
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qinghuai Liu
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ping Xie
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
183
|
Wang T, Li W, Zhang Y, Xu X, Qiang L, Miao W, Yue X, Jiao X, Zhou X, Ma Z, Li S, Ding M, Zhu J, Yang C, Wang H, Li T, Sun X, Wang J. Bioprinted constructs that simulate nerve-bone crosstalk to improve microenvironment for bone repair. Bioact Mater 2023; 27:377-393. [PMID: 37122897 PMCID: PMC10131128 DOI: 10.1016/j.bioactmat.2023.02.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/10/2023] [Accepted: 02/13/2023] [Indexed: 05/02/2023] Open
Abstract
Crosstalk between nerves and bone is essential for bone repair, for which Schwann cells (SCs) are crucial in the regulation of the microenvironment. Considering that exosomes are critical paracrine mediators for intercellular communication that exert important effects in tissue repair, the aim of this study is to confirm the function and molecular mechanisms of Schwann cell-derived exosomes (SC-exos) on bone regeneration and to propose engineered constructs that simulate SC-mediated nerve-bone crosstalk. SCs promoted the proliferation and differentiation of bone marrow mesenchymal stem cells (BMSCs) through exosomes. Subsequent molecular mechanism studies demonstrated that SC-exos promoted BMSC osteogenesis by regulating the TGF-β signaling pathway via let-7c-5p. Interestingly, SC-exos promoted the migration and tube formation performance of endothelial progenitor cells. Furthermore, the SC-exos@G/S constructs were developed by bioprinting technology that simulated SC-mediated nerve-bone crosstalk and improved the bone regeneration microenvironment by releasing SC-exos, exerting the regulatory effect of SCs in the microenvironment to promote innervation, vascularization, and osteogenesis and thus effectively improving bone repair in a cranial defect model. This study demonstrates the important role and underlying mechanism of SCs in regulating bone regeneration through SC-exos and provides a new engineered strategy for bone repair.
Collapse
Affiliation(s)
- Tianchang Wang
- Shanghai Key Laboratory of Orthopedic Implant, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai, 200011, China
| | - Wentao Li
- Sports Medicine Department, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, No.49, North Garden Road, Haidian District, Beijing, 100191, China
- Peking University Institute of Sports Medicine, No.49, North Garden Road, Haidian District, Beijing, 100191, China
| | - Yuxin Zhang
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China
| | - Xiang Xu
- Shanghai Key Laboratory of Orthopedic Implant, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai, 200011, China
| | - Lei Qiang
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Weiqiang Miao
- Shanghai Key Laboratory of Orthopedic Implant, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai, 200011, China
| | - Xiaokun Yue
- Shanghai Key Laboratory of Orthopedic Implant, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai, 200011, China
| | - Xin Jiao
- Shanghai Key Laboratory of Orthopedic Implant, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai, 200011, China
| | - Xianhao Zhou
- Shanghai Key Laboratory of Orthopedic Implant, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai, 200011, China
| | - Zhenjiang Ma
- Shanghai Key Laboratory of Orthopedic Implant, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai, 200011, China
| | - Shuai Li
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd, Hangzhou, 310003, China
| | - Muliang Ding
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, 410001, Hunan, China
| | - Junfeng Zhu
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated with Shanghai Jiao Tong University School of Medicine, No. 1665, Kongjiang Road, Shanghai, 200092, China
| | - Chi Yang
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China
| | - Hui Wang
- Institute of Rehabilitation Medicine, School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, 201210, China
| | - Tao Li
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated with Shanghai Jiao Tong University School of Medicine, No. 1665, Kongjiang Road, Shanghai, 200092, China
| | - Xin Sun
- Shanghai Key Laboratory of Orthopedic Implant, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai, 200011, China
| | - Jinwu Wang
- Shanghai Key Laboratory of Orthopedic Implant, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai, 200011, China
- Institute of Rehabilitation Medicine, School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, 201210, China
| |
Collapse
|
184
|
Liu Y, Wang Z, Hao H, Wang Y, Hua L. Insight into immune checkpoint inhibitor therapy for colorectal cancer from the perspective of circadian clocks. Immunology 2023; 170:13-27. [PMID: 37114514 DOI: 10.1111/imm.13647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 04/02/2023] [Indexed: 04/29/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common malignant tumours and the third most common cause of cancer deaths worldwide, with high morbidity and mortality. Circadian clocks are widespread in humans and temporally regulate physiologic functions to maintain homeostasis. Recent studies showed that circadian components were strong regulators of the tumour immune microenvironment (TIME) and the immunogenicity of CRC cells. Therefore, insight into immunotherapy from the perspective of circadian clocks can be promising. Although immunotherapy, especially immune checkpoint inhibitor (ICI) treatment, has been a milestone in cancer treatment, greater accuracy is still needed for selecting patients who will respond positively to immunotherapy with minimal side effects. In addition, there were few reviews focusing on the role of the circadian components in the TIME and the immunogenicity of CRC cells. Therefore, this review highlights the crosstalk between the TIME in CRC and the immunogenicity of CRC cells based on the circadian clocks. With the goal to achieve the possibility that patients with CRC can benefit most from the ICI treatment, we provide potential evidence and a novel idea for building a predictive framework combined with circadian factors, searching for enhancers of ICIs targeting circadian components and clinically implementing the timing of ICI treatment for patients with CRC.
Collapse
Affiliation(s)
- Yanhong Liu
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Zeqin Wang
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Hankun Hao
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Yaping Wang
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Luchun Hua
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
185
|
Hu S, Hu Y, Yan W. Extracellular vesicle-mediated interorgan communication in metabolic diseases. Trends Endocrinol Metab 2023; 34:571-582. [PMID: 37394346 DOI: 10.1016/j.tem.2023.06.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/06/2023] [Accepted: 06/09/2023] [Indexed: 07/04/2023]
Abstract
The body partially maintains metabolic homeostasis through interorgan communication between metabolic organs under physiological conditions. This crosstalk is known to be mediated by hormones or metabolites, and has recently been expanding to include extracellular vesicles (EVs). EVs participate in interorgan communication under physiological and pathological conditions by encapsulating various bioactive cargoes, including proteins, metabolites, and nucleic acids. In this review we summarize the latest findings about the metabolic regulation of EV biogenesis, secretion, and components, and highlight the biological role of EV cargoes in interorgan communication in cancer, obesity, diabetes, and cardiovascular disease. We also discuss the potential application of EVs as diagnostic markers, and corresponding therapeutic strategies by EV engineering for both early detection and treatment of metabolic disorders.
Collapse
Affiliation(s)
- Sheng Hu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Yong Hu
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Wei Yan
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
186
|
Lu C, Zhan Y, Jiang Y, Liao J, Qiu Z. Exosome-derived ANXA9 functions as an oncogene in breast cancer. J Pathol Clin Res 2023; 9:378-390. [PMID: 37294149 PMCID: PMC10397375 DOI: 10.1002/cjp2.334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/05/2023] [Accepted: 05/24/2023] [Indexed: 06/10/2023]
Abstract
Breast cancer (BCA) is one of the most prevalent cancers among women. Emerging evidence has revealed that Annexin A-9 (ANXA9) plays a crucial function in the development of some cancers. Notably, ANXA9 has been reported to be a new prognostic biomarker for gastric and colorectal cancers. However, its expression and biological function in BCA have not yet been investigated. Using online bioinformatics tools such as TIMER, GEPIA, HPA, and UALCAN, we predicted ANXA9 expression and its correlation with the clinicopathological characteristics of BCA patients. RT-qPCR and western blot were utilized to measure ANXA9 mRNA and ANXA9 protein expression in BCA patient tissues and cells. BCA-derived exosomes were identified by transmission electron microscopy. Functional assays were employed to evaluate the biological role of ANXA9 in BCA cell proliferation, migration, invasion, and apoptosis. A tumor xenograft in vivo model was utilized to assess the role of ANXA9 in tumor growth in mice. Bioinformatics and functional screening analysis revealed that ANXA9 was highly expressed in BCA patient tissues, with median ANXA9 expression 1.5- to 2-fold higher than in normal tissues (p < 0.05). RT-qPCR confirmed that ANXA9 expression in BCA tissues was around 1.5-fold higher than the adjacent normal tissues (p < 0.001). ANXA9 expression in different subtypes of BCA also showed a difference, and ANXA9 was found to be mostly significantly upregulated in luminal BCA relative to normal tissues or other histological subtypes (p < 0.001). Moreover, ANXA9 expression was elevated in different races, ages, clinical stages, node metastasis status, and menopause status groups relative to the normal group (p < 0.001). Furthermore, ANXA9 was found to be secreted by BCA tissue-derived exosomes and its expression was upregulated 1- to 7-fold in BCA cells treated with exosomes (p < 0.001), while its expression in MCF10A cells was not significantly altered by treatment with exosomes (p > 0.05). ANXA9 silencing induced a significant decrease of around 30% in the colony number of BCA cells (p < 0.01). The number of migrated and invaded BCA cells also decreased by around 65 and 68%, respectively, after silencing ANXA9 (p < 0.01). Tumor size was significantly reduced (nearly half) in the LV-sh-ANXA9 group relative to the LV-NC group in the xenograft model (p < 0.01), suggesting that ANXA9 silencing repressed tumor progression in BCA progression in vitro and in vivo. In conclusion, exosome-derived ANXA9 functions as an oncogene that facilitates the proliferation, migration, and invasiveness of BCA cells and enhances tumor growth in BCA development, which may provide a new prognostic and therapeutic biomarker for BCA patients.
Collapse
Affiliation(s)
- Cuiping Lu
- Department of Medical OncologyLongyan First Affiliated Hospital of Fujian Medical UniversityLongyanFujianPR China
| | - Ying Zhan
- Department of Medical OncologyLongyan First Affiliated Hospital of Fujian Medical UniversityLongyanFujianPR China
| | - Yunshan Jiang
- Department of Medical OncologyLongyan First Affiliated Hospital of Fujian Medical UniversityLongyanFujianPR China
| | - Jianrong Liao
- Department of Medical OncologyLongyan First Affiliated Hospital of Fujian Medical UniversityLongyanFujianPR China
| | - Zidan Qiu
- Department of Medical OncologyLongyan First Affiliated Hospital of Fujian Medical UniversityLongyanFujianPR China
| |
Collapse
|
187
|
Wu F, Lei N, Yang S, Zhou J, Chen M, Chen C, Qiu L, Guo R, Li Y, Chang L. Treatment strategies for intrauterine adhesion: focus on the exosomes and hydrogels. Front Bioeng Biotechnol 2023; 11:1264006. [PMID: 37720318 PMCID: PMC10501405 DOI: 10.3389/fbioe.2023.1264006] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 08/21/2023] [Indexed: 09/19/2023] Open
Abstract
Intrauterine adhesion (IUA), also referred to as Asherman Syndrome (AS), results from uterine trauma in both pregnant and nonpregnant women. The IUA damages the endometrial bottom layer, causing partial or complete occlusion of the uterine cavity. This leads to irregular menstruation, infertility, or repeated abortions. Transcervical adhesion electroreception (TCRA) is frequently used to treat IUA, which greatly lowers the prevalence of adhesions and increases pregnancy rates. Although surgery aims to disentangle the adhesive tissue, it can exacerbate the development of IUA when the degree of adhesion is severer. Therefore, it is critical to develop innovative therapeutic approaches for the prevention of IUA. Endometrial fibrosis is the essence of IUA, and studies have found that the use of different types of mesenchymal stem cells (MSCs) can reduce the risk of endometrial fibrosis and increase the possibility of pregnancy. Recent research has suggested that exosomes derived from MSCs can overcome the limitations of MSCs, such as immunogenicity and tumorigenicity risks, thereby providing new directions for IUA treatment. Moreover, the hydrogel drug delivery system can significantly ameliorate the recurrence rate of adhesions and the intrauterine pregnancy rate of patients, and its potential mechanism in the treatment of IUA has also been studied. It has been shown that the combination of two or more therapeutic schemes has broader application prospects; therefore, this article reviews the pathophysiology of IUA and current treatment strategies, focusing on exosomes combined with hydrogels in the treatment of IUA. Although the use of exosomes and hydrogels has certain challenges in treating IUA, they still provide new promising directions in this field.
Collapse
Affiliation(s)
- Fengling Wu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ningjing Lei
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Shenyu Yang
- Medical 3D Printing Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Junying Zhou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Mengyu Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Cheng Chen
- Department of Gynaecology and Obstetrics, Chongqing General Hospital, Chongqing, China
| | - Luojie Qiu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ruixia Guo
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yong Li
- St George and Sutherland Clinical Campuses, School of Clinical Medicine, UNSW Sydney, Kensington, NSW, Australia
| | - Lei Chang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
188
|
Qi L, Heianza Y, Li X, Sacks FM, Bray GA. Toward Precision Weight-Loss Dietary Interventions: Findings from the POUNDS Lost Trial. Nutrients 2023; 15:3665. [PMID: 37630855 PMCID: PMC10458797 DOI: 10.3390/nu15163665] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/13/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
The POUNDS Lost trial is a 2-year clinical trial testing the effects of dietary interventions on weight loss. This study included 811 adults with overweight or obesity who were randomized to one of four diets that contained either 15% or 25% protein and 20% or 40% fat in a 2 × 2 factorial design. By 2 years, participants on average lost from 2.9 to 3.6 kg in body weight in the four intervention arms, while no significant difference was observed across the intervention arms. In POUNDS Lost, we performed a series of ancillary studies to detect intrinsic factors particular to genomic, epigenomic, and metabolomic markers that may modulate changes in weight and other cardiometabolic traits in response to the weight-loss dietary interventions. Genomic variants identified from genome-wide association studies (GWASs) on obesity, type 2 diabetes, glucose and lipid metabolisms, gut microbiome, and dietary intakes have been found to interact with dietary macronutrients (fat, protein, and carbohydrates) in relation to weight loss and changes of body composition and cardiometabolic traits. In addition, we recently investigated epigenomic modifications, particularly blood DNA methylation and circulating microRNAs (miRNAs). We reported DNA methylation levels at NFATC2IP, CPT1A, TXNIP, and LINC00319 were related to weight loss or changes of glucose, lipids, and blood pressure; we also reported thrifty miRNA expression as a significant epigenomic marker related to changes in insulin sensitivity and adiposity. Our studies have also highlighted the importance of temporal changes in novel metabolomic signatures for gut microbiota, bile acids, and amino acids as predictors for achievement of successful weight loss outcomes. Moreover, our studies indicate that biochemical, behavioral, and psychosocial factors such as physical activity, sleep disturbance, and appetite may also modulate metabolic changes during dietary interventions. This review summarized our major findings in the POUNDS Lost trial, which provided preliminary evidence supporting the development of precision diet interventions for obesity management.
Collapse
Affiliation(s)
- Lu Qi
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70118, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Yoriko Heianza
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70118, USA
| | - Xiang Li
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70118, USA
| | - Frank M. Sacks
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - George A. Bray
- Department of Clinical Obesity, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA 70808, USA
| |
Collapse
|
189
|
Jiang C, Zhang J, Wang W, Shan Z, Sun F, Tan Y, Tong Y, Qiu Y. Extracellular vesicles in gastric cancer: role of exosomal lncRNA and microRNA as diagnostic and therapeutic targets. Front Physiol 2023; 14:1158839. [PMID: 37664422 PMCID: PMC10469264 DOI: 10.3389/fphys.2023.1158839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 07/31/2023] [Indexed: 09/05/2023] Open
Abstract
Extracellular vesicles (EVs), including exosomes, play a crucial role in intercellular communication and have emerged as important mediators in the development and progression of gastric cancer. This review discusses the current understanding of the role of EVs, particularly exosomal lncRNA and microRNA, in gastric cancer and their potential as diagnostic and therapeutic targets. Exosomes are small membrane-bound particles secreted by both cancer cells and stromal cells within the tumor microenvironment. They contain various ncRNA and biomolecules, which can be transferred to recipient cells to promote tumor growth and metastasis. In this review, we highlighted the importance of exosomal lncRNA and microRNA in gastric cancer. Exosomal lncRNAs have been shown to regulate gene expression by interacting with transcription factors or chromatin-modifying enzymes, which regulate gene expression by binding to target mRNAs. We also discuss the potential use of exosomal lncRNAs and microRNAs as diagnostic biomarkers for gastric cancer. Exosomes can be isolated from various bodily fluids, including blood, urine, and saliva. They contain specific molecules that reflect the molecular characteristics of the tumor, making them promising candidates for non-invasive diagnostic tests. Finally, the potential of targeting exosomal lncRNAs and microRNAs as a therapeutic strategy for gastric cancer were reviewed as wee. Inhibition of specific molecules within exosomes has been shown to suppress tumor growth and metastasis in preclinical models. In conclusion, this review article provides an overview of the current understanding of the role of exosomal lncRNA and microRNA in gastric cancer. We suggest that further research into these molecules could lead to new diagnostic tools and therapeutic strategies for this deadly disease.
Collapse
Affiliation(s)
- Chengyao Jiang
- Department of Gastric Surgery, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Shenyang, China
| | - Jianjun Zhang
- Department of Gastric Surgery, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Shenyang, China
| | - Wentao Wang
- Department of Gastric Surgery, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Shenyang, China
| | - Zexing Shan
- Department of Gastric Surgery, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Shenyang, China
| | - Fan Sun
- Department of Gastric Surgery, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Shenyang, China
| | - Yuen Tan
- Department of Gastric Surgery, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Shenyang, China
| | - Yilin Tong
- Department of Gastric Surgery, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Shenyang, China
| | - Yue Qiu
- Medical Oncology Department of Gastrointestinal Cancer, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, China
| |
Collapse
|
190
|
Dumčius P, Mikhaylov R, Zhang X, Bareford M, Stringer M, Errington R, Sun C, Gonzalez E, Krukovski T, Falcon-Perez JM, Liang D, Fu YQ, Clayton A, Yang X. Dual-Wave Acoustofluidic Centrifuge for Ultrafast Concentration of Nanoparticles and Extracellular Vesicles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300390. [PMID: 37118859 DOI: 10.1002/smll.202300390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/30/2023] [Indexed: 06/19/2023]
Abstract
Extracellular vesicles (EVs) are secreted nanostructures that play various roles in critical cancer processes. They operate as an intercellular communication system, transferring complex sets of biomolecules from cell to cell. The concentration of EVs is difficult to decipher, and there is an unmet technological need for improved (faster, simpler, and gentler) approaches to isolate EVs from complex matrices. Herein, an acoustofluidic concentration of extracellular vesicles (ACEV) is presented, based on a thin-film printed circuit board with interdigital electrodes mounted on a piezoelectric substrate. An angle of 120° is identified between the electrodes and the reference flat of the piezoelectric substrate for simultaneous generation of Rayleigh and shear horizontal waves. The dual waves create a complex acoustic field in a droplet, resulting in effective concentration of nanoparticles and EVs. The ACEV is able to concentrate 20 nm nanospheres within 105 s and four EV dilutions derived from the human prostate cancer (Du145) cell line in approximately 30 s. Cryo-electron microscopy confirmed the preservation of EV integrity. The ACEV device holds great potential to revolutionize investigations of EVs. Its faster, simpler, and gentler approach to EV isolation and concentration can save time and effort in phenotypic and functional studies of EVs.
Collapse
Affiliation(s)
- Povilas Dumčius
- Department of Electrical and Electronic Engineering, School of Engineering, Cardiff University, Cardiff, CF243AA, UK
| | - Roman Mikhaylov
- Department of Electrical and Electronic Engineering, School of Engineering, Cardiff University, Cardiff, CF243AA, UK
| | - Xiaoyan Zhang
- Department of Electrical and Electronic Engineering, School of Engineering, Cardiff University, Cardiff, CF243AA, UK
| | - Matthew Bareford
- Tissue Micro-Environment Group, Division of Cancer & Genetics, School of Medicine, Cardiff University, Cardiff, CF144XN, UK
| | - Mercedes Stringer
- Department of Electrical and Electronic Engineering, School of Engineering, Cardiff University, Cardiff, CF243AA, UK
| | - Rachel Errington
- Tissue Micro-Environment Group, Division of Cancer & Genetics, School of Medicine, Cardiff University, Cardiff, CF144XN, UK
| | - Chao Sun
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, P. R. China
| | - Esperanza Gonzalez
- Exosomes Laboratory, CIC bioGUNE-BRTA, CIBERehd, Bizkaia Technology Park, Bilbao, 48160, Spain
| | - Tomaš Krukovski
- Department of Electrical Engineering and Sensor Technology, Institute of Engineering, Hanze University Groningen, AS Groningen, 119747, Netherlands
| | - Juan M Falcon-Perez
- Exosomes Laboratory, CIC bioGUNE-BRTA, CIBERehd, Bizkaia Technology Park, Bilbao, 48160, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas Y Digestivas (CIBERehd), Madrid, 28029, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, 48011, Spain
| | - Dongfang Liang
- Department of Engineering, University of Cambridge, Cambridge, CB2 1PZ, UK
| | - Yong-Qing Fu
- Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne NE1 8ST, UK
| | - Aled Clayton
- Tissue Micro-Environment Group, Division of Cancer & Genetics, School of Medicine, Cardiff University, Cardiff, CF144XN, UK
| | - Xin Yang
- Department of Electrical and Electronic Engineering, School of Engineering, Cardiff University, Cardiff, CF243AA, UK
| |
Collapse
|
191
|
Lou P, Liu S, Wang Y, Lv K, Zhou X, Li L, Zhang Y, Chen Y, Cheng J, Lu Y, Liu J. Neonatal-Tissue-Derived Extracellular Vesicle Therapy (NEXT): A Potent Strategy for Precision Regenerative Medicine. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300602. [PMID: 37148469 DOI: 10.1002/adma.202300602] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/27/2023] [Indexed: 05/08/2023]
Abstract
Extracellular vesicle (EV)-based therapies have emerged as a promising means in regenerative medicine. However, the conventional EV therapy strategy displays some limitations, such as inefficient EV production and lack of tissue-specific repair effects. Here, it is reported that neonatal-tissue-derived EV therapy (NEXT) is a potent strategy for precision tissue repair. In brief, large amounts of EVs with higher yield/purity can be readily isolated from desired tissues with less production time/cost compared to the conventional cell-culture-based method. Moreover, source factors, such as age and tissue type, can affect the repair efficacy of such tissue-derived EVs in different tissue injury models (skin wounds and acute kidney injury), and neonatal-tissue-derived EVs show superior tissue repair potency compared with adult-tissue-derived EVs. Different age- or tissue-type-derived EVs have distinct composition (e.g., protein) signatures that are likely due to the diverse metabolic patterns of the donor tissues, which may contribute to the specific repair action modes of NEXT in different types of tissue injury. Furthermore, neonatal-tissue-derived EVs can be incorporated with bioactive materials for advanced tissue repair. This study highlights that the NEXT strategy may provide a new avenue for precision tissue repair in many types of tissue injury.
Collapse
Affiliation(s)
- Peng Lou
- Department of Nephrology and NHC Key Laboratory of Transplant Engineering and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Shuyun Liu
- Department of Nephrology and NHC Key Laboratory of Transplant Engineering and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yizhuo Wang
- Department of Nephrology and NHC Key Laboratory of Transplant Engineering and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ke Lv
- Department of Nephrology and NHC Key Laboratory of Transplant Engineering and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiyue Zhou
- Department of Nephrology and NHC Key Laboratory of Transplant Engineering and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lan Li
- Department of Nephrology and NHC Key Laboratory of Transplant Engineering and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yong Zhang
- Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Younan Chen
- Department of Nephrology and NHC Key Laboratory of Transplant Engineering and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jingqiu Cheng
- Department of Nephrology and NHC Key Laboratory of Transplant Engineering and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yanrong Lu
- Department of Nephrology and NHC Key Laboratory of Transplant Engineering and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jingping Liu
- Department of Nephrology and NHC Key Laboratory of Transplant Engineering and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
192
|
Li Y, Wang J, Xie J. Biomimetic nanoparticles targeting atherosclerosis for diagnosis and therapy. SMART MEDICINE 2023; 2:e20230015. [PMID: 39188346 PMCID: PMC11236035 DOI: 10.1002/smmd.20230015] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 05/28/2023] [Indexed: 08/28/2024]
Abstract
Atherosclerosis is a typical chronic inflammatory vascular disease that seriously endangers human health. At present, oral lipid-lowering or anti-inflammatory drugs are clinically used to inhibit the development of atherosclerosis. However, traditional oral drug treatments have problems such as low utilization, slow response, and serious side effects. Traditional nanodrug delivery systems are difficult to interactively recognize by normal biological organisms, and it is difficult to target the delivery of drugs to target lesions. Therefore, building a biomimetic nanodrug delivery system with targeted drug delivery based on the pathological characteristics of atherosclerosis is the key to achieving efficient and safe treatment of atherosclerosis. In this review, various nanodrug delivery systems that can target atherosclerosis are summarized and discussed. In addition, the future prospects and challenges of its clinical translation are also discussed.
Collapse
Affiliation(s)
- Yuyu Li
- Department of CardiologyNational Cardiovascular Disease Regional Center for Anhuithe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
- Key Laboratory of Remodeling‐Related Cardiovascular Diseases, Ministry of Education, Beijing Collaborative Innovation Centre for Cardiovascular Disorders, Beijing Anzhen Hospital, Capital Medical UniversityBeijingChina
- Beijing Institute of Heart, Lung, and Blood Vessel DiseasesBeijing Anzhen Hospital Affiliated to Capital Medical UniversityBeijingChina
| | - Jifang Wang
- Department of CardiologyNational Cardiovascular Disease Regional Center for Anhuithe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
- Department of CardiologyDrum Tower HospitalMedical School of Nanjing UniversityNanjingChina
| | - Jun Xie
- Department of CardiologyNational Cardiovascular Disease Regional Center for Anhuithe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
| |
Collapse
|
193
|
Shen X, Yin L, Xu S, Wang J, Yin D, Zhao R, Pan X, Dai Y, Hou H, Zhou X, Hu X. Altered Proteomic Profile of Exosomes Secreted from Vero Cells Infected with Porcine Epidemic Diarrhea Virus. Viruses 2023; 15:1640. [PMID: 37631983 PMCID: PMC10459195 DOI: 10.3390/v15081640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/23/2023] [Accepted: 07/23/2023] [Indexed: 08/27/2023] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) infection causes severe diarrhea in pigs and can be fatal in newborn piglets. Exosomes are extracellular vesicles secreted by cells that transfer biologically active proteins, lipids, and RNA to neighboring or distant cells. Herein, the morphology, particle size, and secretion of exosomes derived from a control and PEDV-infected group are examined, followed by a proteomic analysis of the exosomes. The results show that the exosomes secreted from the Vero cells had a typical cup-shaped structure. The average particle size of the exosomes from the PEDV-infected group was 112.4 nm, whereas that from the control group was 150.8 nm. The exosome density analysis and characteristic protein determination revealed that the content of exosomes in the PEDV-infected group was significantly higher than that in the control group. The quantitative proteomics assays revealed 544 differentially expressed proteins (DEPs) in the PEDV-infected group's exosomes compared with those in the controls, with 236 upregulated and 308 downregulated proteins. The DEPs were closely associated with cellular regulatory pathways, such as the phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)-protein kinase B (Akt) signaling pathway, extracellular matrix-receptor interaction, focal adhesion, and cytoskeletal regulation. These findings provide the basis for further investigation of the pathogenic mechanisms of PEDV and the discovery of novel antiviral targets.
Collapse
Affiliation(s)
- Xuehuai Shen
- Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Institute of Animal Husbandry and Veterinary Science, Anhui Academy of Agricultural Science, Hefei 230031, China; (X.S.); (L.Y.); (S.X.); (J.W.); (D.Y.); (R.Z.); (Y.D.); (H.H.); (X.Z.); (X.H.)
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Hefei 230031, China
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Lei Yin
- Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Institute of Animal Husbandry and Veterinary Science, Anhui Academy of Agricultural Science, Hefei 230031, China; (X.S.); (L.Y.); (S.X.); (J.W.); (D.Y.); (R.Z.); (Y.D.); (H.H.); (X.Z.); (X.H.)
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Hefei 230031, China
| | - Shuangshuang Xu
- Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Institute of Animal Husbandry and Veterinary Science, Anhui Academy of Agricultural Science, Hefei 230031, China; (X.S.); (L.Y.); (S.X.); (J.W.); (D.Y.); (R.Z.); (Y.D.); (H.H.); (X.Z.); (X.H.)
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Hefei 230031, China
| | - Jieru Wang
- Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Institute of Animal Husbandry and Veterinary Science, Anhui Academy of Agricultural Science, Hefei 230031, China; (X.S.); (L.Y.); (S.X.); (J.W.); (D.Y.); (R.Z.); (Y.D.); (H.H.); (X.Z.); (X.H.)
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Hefei 230031, China
| | - Dongdong Yin
- Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Institute of Animal Husbandry and Veterinary Science, Anhui Academy of Agricultural Science, Hefei 230031, China; (X.S.); (L.Y.); (S.X.); (J.W.); (D.Y.); (R.Z.); (Y.D.); (H.H.); (X.Z.); (X.H.)
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Hefei 230031, China
| | - Ruihong Zhao
- Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Institute of Animal Husbandry and Veterinary Science, Anhui Academy of Agricultural Science, Hefei 230031, China; (X.S.); (L.Y.); (S.X.); (J.W.); (D.Y.); (R.Z.); (Y.D.); (H.H.); (X.Z.); (X.H.)
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Hefei 230031, China
| | - Xiaocheng Pan
- Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Institute of Animal Husbandry and Veterinary Science, Anhui Academy of Agricultural Science, Hefei 230031, China; (X.S.); (L.Y.); (S.X.); (J.W.); (D.Y.); (R.Z.); (Y.D.); (H.H.); (X.Z.); (X.H.)
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Hefei 230031, China
| | - Yin Dai
- Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Institute of Animal Husbandry and Veterinary Science, Anhui Academy of Agricultural Science, Hefei 230031, China; (X.S.); (L.Y.); (S.X.); (J.W.); (D.Y.); (R.Z.); (Y.D.); (H.H.); (X.Z.); (X.H.)
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Hefei 230031, China
| | - Hongyan Hou
- Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Institute of Animal Husbandry and Veterinary Science, Anhui Academy of Agricultural Science, Hefei 230031, China; (X.S.); (L.Y.); (S.X.); (J.W.); (D.Y.); (R.Z.); (Y.D.); (H.H.); (X.Z.); (X.H.)
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Hefei 230031, China
| | - Xueli Zhou
- Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Institute of Animal Husbandry and Veterinary Science, Anhui Academy of Agricultural Science, Hefei 230031, China; (X.S.); (L.Y.); (S.X.); (J.W.); (D.Y.); (R.Z.); (Y.D.); (H.H.); (X.Z.); (X.H.)
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Hefei 230031, China
| | - Xiaomiao Hu
- Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Institute of Animal Husbandry and Veterinary Science, Anhui Academy of Agricultural Science, Hefei 230031, China; (X.S.); (L.Y.); (S.X.); (J.W.); (D.Y.); (R.Z.); (Y.D.); (H.H.); (X.Z.); (X.H.)
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Hefei 230031, China
| |
Collapse
|
194
|
Peng Q, Duan N, Wang X, Wang W. The potential roles of cigarette smoke-induced extracellular vesicles in oral leukoplakia. Eur J Med Res 2023; 28:250. [PMID: 37481562 PMCID: PMC10362576 DOI: 10.1186/s40001-023-01217-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 07/08/2023] [Indexed: 07/24/2023] Open
Abstract
BACKGROUND The onset of oral leukoplakia (OLK), the most common oral lesion with a high risk of malignant transformation, is closely associated with the exposure of cigarette smoke. Cigarette smoke is a complicated mixture of more than 4500 different chemicals including various oxidants and free radical, which contributes to the onset of immune and inflammatory response or even carcinogenesis. Recent studies have proved that the exposure of cigarette smoke leads to the onset and aggravation of many diseases via significantly changed the production and components of extracellular vesicles. The extracellular vesicles are membrane-enclosed nanosized particles secreted by diverse cells and involved in cell-cell communication because of their ability to deliver a number of bioactive molecules including proteins, lipids, DNAs and RNAs. Getting insight into the mechanisms of extracellular vesicles in regulating OLK upon cigarette smoke stimulation contributes to unravel the pathophysiology of OLK in-depth. However, evidence done on the role of extracellular vesicles in cigarette smoke-induced OLK is still in its infancy. MATERIALS AND METHODS Relevant literatures on cigarette smoke, oral leukoplakia and extracellular vesicles were searched in PubMed database. CONCLUSIONS In this review, we summarize the recent findings about the function of extracellular vesicles in the pathogenesis of cigarette smoke-induced diseases, and to infer their potential utilizations as diagnostic biomarkers, prognostic evaluation, and therapeutic targets of OLK in the future.
Collapse
Affiliation(s)
- Qiao Peng
- Department of Oral Medicine, Nanjing Stomatological Hospital, Medical School of Nanjing University, 30 Zhongyang Road, Nanjing, 210008, China
| | - Ning Duan
- Department of Oral Medicine, Nanjing Stomatological Hospital, Medical School of Nanjing University, 30 Zhongyang Road, Nanjing, 210008, China
| | - Xiang Wang
- Department of Oral Medicine, Nanjing Stomatological Hospital, Medical School of Nanjing University, 30 Zhongyang Road, Nanjing, 210008, China.
| | - Wenmei Wang
- Department of Oral Medicine, Nanjing Stomatological Hospital, Medical School of Nanjing University, 30 Zhongyang Road, Nanjing, 210008, China.
| |
Collapse
|
195
|
Gao H, Wang K, Suarez JA, Jin Z, Rocha KCE, Zhang D, Farrell A, Truong T, Tekin Y, Tan B, Jung HS, Kempf J, Mahata SK, Dillmann WH, Suarez J, Ying W. Gut lumen-leaked microbial DNA causes myocardial inflammation and impairs cardiac contractility in ageing mouse heart. Front Immunol 2023; 14:1216344. [PMID: 37520546 PMCID: PMC10373503 DOI: 10.3389/fimmu.2023.1216344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 06/27/2023] [Indexed: 08/01/2023] Open
Abstract
Emerging evidence indicates the critical roles of microbiota in mediating host cardiac functions in ageing, however, the mechanisms underlying the communications between microbiota and cardiac cells during the ageing process have not been fully elucidated. Bacterial DNA was enriched in the cardiomyocytes of both ageing humans and mice. Antibiotic treatment remarkably reduced bacterial DNA abundance in ageing mice. Gut microbial DNA containing extracellular vesicles (mEVs) were readily leaked into the bloodstream and infiltrated into cardiomyocytes in ageing mice, causing cardiac microbial DNA enrichment. Vsig4+ macrophages efficiently block the spread of gut mEVs whereas Vsig4+ cell population was greatly decreased in ageing mice. Gut mEV treatment resulted in cardiac inflammation and a reduction in cardiac contractility in young Vsig4-/- mice. Microbial DNA depletion attenuated the pathogenic effects of gut mEVs. cGAS/STING signaling is critical for the effects of microbial DNA. Restoring Vsig4+ macrophage population in ageing WT mice reduced cardiac microbial DNA abundance and inflammation and improved heart contractility.
Collapse
Affiliation(s)
- Hong Gao
- Division of Endocrinology and Metabolism, Department of Medicine, University of California San Diego, San Diego, CA, United States
| | - Ke Wang
- Division of Endocrinology and Metabolism, Department of Medicine, University of California San Diego, San Diego, CA, United States
| | - Jorge A. Suarez
- Division of Endocrinology and Metabolism, Department of Medicine, University of California San Diego, San Diego, CA, United States
| | - Zhongmou Jin
- Division of Biological Sciences, University of California San Diego, San Diego, CA, United States
| | - Karina Cunha e Rocha
- Division of Endocrinology and Metabolism, Department of Medicine, University of California San Diego, San Diego, CA, United States
| | - Dinghong Zhang
- Division of Endocrinology and Metabolism, Department of Medicine, University of California San Diego, San Diego, CA, United States
| | - Andrea Farrell
- Division of Biological Sciences, University of California San Diego, San Diego, CA, United States
| | - Tyler Truong
- Division of Biological Sciences, University of California San Diego, San Diego, CA, United States
| | - Yasemin Tekin
- Division of Biological Sciences, University of California San Diego, San Diego, CA, United States
| | - Breanna Tan
- Division of Biological Sciences, University of California San Diego, San Diego, CA, United States
| | - Hyun Suh Jung
- Division of Biological Sciences, University of California San Diego, San Diego, CA, United States
| | - Julia Kempf
- Division of Biological Sciences, University of California San Diego, San Diego, CA, United States
| | - Sushil K. Mahata
- the Veterans Affairs San Diego Healthcare System, San Diego, CA, United States
- Division of Nephrology and Hypertension, Department of Medicine, University of California San Diego, San Diego, CA, United States
| | - Wolfgang H. Dillmann
- Division of Endocrinology and Metabolism, Department of Medicine, University of California San Diego, San Diego, CA, United States
| | - Jorge Suarez
- Division of Endocrinology and Metabolism, Department of Medicine, University of California San Diego, San Diego, CA, United States
| | - Wei Ying
- Division of Endocrinology and Metabolism, Department of Medicine, University of California San Diego, San Diego, CA, United States
| |
Collapse
|
196
|
Hu X, Lu Y, Zhou J, Wang L, Zhang M, Mao Y, Chen Z. Progress of regulatory RNA in small extracellular vesicles in colorectal cancer. Front Cell Dev Biol 2023; 11:1225965. [PMID: 37519298 PMCID: PMC10382209 DOI: 10.3389/fcell.2023.1225965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 07/03/2023] [Indexed: 08/01/2023] Open
Abstract
Colorectal cancer (CRC) is the second most common malignant tumor of the gastrointestinal tract with the second highest mortality rate and the third highest incidence rate. Early diagnosis and treatment are important measures to reduce CRC mortality. Small extracellular vesicles (sEVs) have emerged as key mediators that facilitate communication between tumor cells and various other cells, playing a significant role in the growth, invasion, and metastasis of cancer cells. Regulatory RNAs have been identified as potential biomarkers for early diagnosis and prognosis of CRC, serving as crucial factors in promoting CRC cell proliferation, invasion and metastasis, angiogenesis, drug resistance, and immune cell differentiation. This review provides a comprehensive summary of the vital role of sEVs as biomarkers in CRC diagnosis and their potential application in CRC treatment, highlighting their importance as a promising avenue for further research and clinical translation.
Collapse
Affiliation(s)
- Xinyi Hu
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Yukang Lu
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Jiajun Zhou
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Lanfeng Wang
- Department of Nephrology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Mengting Zhang
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Yiping Mao
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Zhiping Chen
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| |
Collapse
|
197
|
Cui JT, Wang XY, Mu XD, Huang M, Wang YD, Luo Q, He HX. Bone marrow stromal cell-derived exosome combinate with fibrin on tantalum coating titanium implant accelerates osseointegration. Front Bioeng Biotechnol 2023; 11:1198545. [PMID: 37496851 PMCID: PMC10367419 DOI: 10.3389/fbioe.2023.1198545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 06/20/2023] [Indexed: 07/28/2023] Open
Abstract
This study aims to present a sustainably releasing system of exosomes-fibrin combinate loaded on tantalum-coating titanium implants. We hope to investigate potential effects of the system on osseointegration between tantalum coating titanium implants and its surrounding bone tissue. Exosomes derived from rabbit bone marrow stromal cells (rBMSCs) and fibrin were deposited onto the micro-nanostructure tantalum coating surface (Ta + exo + FI) and compared to control groups, including tantalum coating (Ta), tantalum coating loaded exosomes (Ta + exo) and tantalum coating loaded fibrin (Ta + FI). The optimal concentration of loading exosomes, exosomes uptake capacity by BMSCs, and the effect of controlled-release by fibrin were assessed by laser scanning confocal microscope (LCSM) and microplate reader. The optimal concentration of exosomes was 1 μg/μL. Adhesion, proliferation, and osteogenic differentiation ability of BMSCs on different materials were assessed in vitro. Finally, osseointegrative capacity of Ta, Ta + exo, Ta + FI, Ta + exo + FI implants in rabbit tibia were respectively evaluated with histology and bone-implant contact ratio (BIC%). It was demonstrated that exosome sustained-release system with fibrin loading on the tantalum coating was successfully established. Fibrin contribute to exosomes release extension from 2d to 6d. Furthermore, Ta + exo + FI significantly promoted adhesion, proliferation, and osteogenic differentiation of BMSCs. In vivo, the implants in Ta + exo + FI group displayed the highest osseointegrative capability than those in other groups. It is concluded that this exosome delivery system on the implants may be an effective way for tantalum coating titanium implants to promote osseointegration between implant and its surrounding bone tissue.
Collapse
Affiliation(s)
- Jian-Tong Cui
- Department of Stomatology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
- Shannxi Provincial Crops Hospital of Chinese People’s Armed Police Forces, Xian, China
| | - Xin-Yuan Wang
- Department of Stomatology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Xiao-Dan Mu
- Department of Stomatology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Meng Huang
- Department of Stomatology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Ya-Di Wang
- Department of Stomatology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Qiang Luo
- Department of Stomatology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Hui-Xia He
- Department of Stomatology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
198
|
Paneru BD, Hill DA. The role of extracellular vesicle-derived miRNAs in adipose tissue function and metabolic health. IMMUNOMETABOLISM (COBHAM, SURREY) 2023; 5:e00027. [PMID: 37501663 PMCID: PMC10371064 DOI: 10.1097/in9.0000000000000027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 06/23/2023] [Indexed: 07/29/2023]
Abstract
Extracellular vesicles (EVs) are nanometer size lipid particles that are released from virtually every cell type. Recent studies have shown that miRNAs carried by EVs play important roles in intercellular and interorgan communication. In the context of obesity and insulin resistance, EV-derived miRNAs functionally bridge major metabolic organs, including the adipose tissue, skeletal muscle, liver, and pancreas, to regulate insulin secretion and signaling. As a result, many of these EV-derived miRNAs have been proposed as potential disease biomarkers and/or therapeutic agents. However, the field's knowledge of EV miRNA-mediated regulation of mammalian metabolism is still in its infancy. Here, we review the evidence indicating that EV-derived miRNAs provide cell-to-cell and organ-to-organ communication to support metabolic health, highlight the potential medical relevance of these discoveries, and discuss the most important knowledge gaps and future directions for this field.
Collapse
Affiliation(s)
- Bam D. Paneru
- Division of Allergy and Immunology, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - David A. Hill
- Division of Allergy and Immunology, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Institute for Immunology, and Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
199
|
Luo Q, Jiang Z, Jiang J, Wan L, Li Y, Huang Y, Qiu J, Yu K, Zhuang J. Tsp-1 + microglia attenuate retinal neovascularization by maintaining the expression of Smad3 in endothelial cells through exosomes with decreased miR-27a-5p. Theranostics 2023; 13:3689-3706. [PMID: 37441592 PMCID: PMC10334831 DOI: 10.7150/thno.84236] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 06/12/2023] [Indexed: 07/15/2023] Open
Abstract
Rationale: Microglia with a repertoire of functions are critical in pathological regulation of angiogenesis in the retina. However, retinal microglia with beneficial contributions and corresponding mechanisms during pathological neovascularization are poorly understood. Methods: We conducted a bioinformatic comparison of public single-cell RNA transcriptome data between retinal microglia from mice with oxygen-induced retinopathy (OIR) and an antiangiogenic microglial population named MG3 from the spine. The essential beneficial factor thrombospondin-1 (Tsp-1) from microglia was discovered and then validated in the retina of mice with OIR at P17. Exosomes were isolated from Tsp-1-knockout microglia (KO-Exos) and Tsp-1+ microglia (NT-Exos). Human umbilical vein endothelial cells (HUVEC) morphology studies, exosomes' miRNA sequencing, luciferase reporter assay, miRNA loss of function studies, and intravitreal injection were used to explore the mechanism of Tsp-1 and microglia-associated retinal angiogenesis. Results: The bioinformatic analyses of single-cell RNA-seq data indicated that a subtype of retinal microglia named RMG1 shares features with MG3 in regulating wound healing, cell adhesion, and angiogenesis. Remarkably, Tsp-1, an extracellular matrix protein with robust inhibition of angiogenesis, was especially expressed in both MG3 and RMG1. However, the scarcity of Tsp-1+ cells was observed in RMG1, which could be an obstacle to attenuating retinal neovascularization. Subsequently, we found that exosomes derived from Tsp-1+ microglia inhibit the migration and tube formation of HUVEC. Moreover, the knockout of Tsp-1 led to the enrichment of miR-27a-5p in exosomes from microglia and promoted angiogenesis compared to that of NT-Exos in vitro. Furthermore, in the luciferase reporter assay on the transcriptional activity of the promoter, we demonstrated that Tsp-1 negatively regulates miR-27a-5p expression. In addition, SMAD family member 3 (Smad3), a receptor-activated Smad protein that is conducive to vascular homeostasis, was defined as a functional target gene of miR-27a-5p. These data were consistently confirmed in vivo in the retina of mice with OIR. Conclusion: Collectively, the Tsp-1/miR-27a-5p/Smad3 axis is involved in microglia-related and exosome-mediated antiangiogenic regulation of the retina. Therefore, this study reveals a novel mechanism by which retinal microglia maintain vascular homeostasis, thereby providing a new therapeutic target for pathological neovascularization.
Collapse
Affiliation(s)
- Qian Luo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, No.7 Jinsui Road, Tianhe District, Guangzhou, 510060, China
- Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Zihua Jiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, No.7 Jinsui Road, Tianhe District, Guangzhou, 510060, China
- Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Jingyi Jiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, No.7 Jinsui Road, Tianhe District, Guangzhou, 510060, China
- Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Linxi Wan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, No.7 Jinsui Road, Tianhe District, Guangzhou, 510060, China
- Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Yan Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, No.7 Jinsui Road, Tianhe District, Guangzhou, 510060, China
- Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Yuke Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, No.7 Jinsui Road, Tianhe District, Guangzhou, 510060, China
- Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Jin Qiu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, No.7 Jinsui Road, Tianhe District, Guangzhou, 510060, China
- Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Keming Yu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, No.7 Jinsui Road, Tianhe District, Guangzhou, 510060, China
- Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Jing Zhuang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, No.7 Jinsui Road, Tianhe District, Guangzhou, 510060, China
- Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| |
Collapse
|
200
|
Crewe C. Energetic Stress-Induced Metabolic Regulation by Extracellular Vesicles. Compr Physiol 2023; 13:5051-5068. [PMID: 37358503 PMCID: PMC10414774 DOI: 10.1002/cphy.c230001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
Abstract
Recent studies have demonstrated that extracellular vesicles (EVs) serve powerful and complex functions in metabolic regulation and metabolic-associated disease, although this field of research is still in its infancy. EVs are released into the extracellular space from all cells and carry a wide range of cargo including miRNAs, mRNA, DNA, proteins, and metabolites that have robust signaling effects in receiving cells. EV production is stimulated by all major stress pathways and, as such, has a role in both restoring homeostasis during stress and perpetuating disease. In metabolic regulation, the dominant stress signal is a lack of energy due to either nutrient deficits or damaged mitochondria from nutrient excess. This stress signal is termed "energetic stress," which triggers a robust and evolutionarily conserved response that engages major cellular stress pathways, the ER unfolded protein response, the hypoxia response, the antioxidant response, and autophagy. This article proposes the model that energetic stress is the dominant stimulator of EV release with a focus on metabolically important cells such as hepatocytes, adipocytes, myocytes, and pancreatic β-cells. Furthermore, this article will discuss how the cargo in stress-stimulated EVs regulates metabolism in receiving cells in both beneficial and detrimental ways. © 2023 American Physiological Society. Compr Physiol 13:5051-5068, 2023.
Collapse
Affiliation(s)
- Clair Crewe
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Internal Medicine, Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|