151
|
Abstract
There are three different marginal zone lymphomas (MZLs): the extranodal MZL of mucosa-associated lymphoid tissue (MALT) type (MALT lymphoma), the splenic MZL, and the nodal MZL. The three MZLs share common lesions and deregulated pathways but also present specific alterations that can be used for their differential diagnosis. Although trisomies of chromosomes 3 and 18, deletions at 6q23, deregulation of nuclear factor kappa B, and chromatin remodeling genes are frequent events in all of them, the three MZLs differ in the presence of recurrent translocations, mutations affecting the NOTCH pathway, and the transcription factor Kruppel like factor 2 ( KLF2) or the receptor-type protein tyrosine phosphatase delta ( PTPRD). Since a better understanding of the molecular events underlying each subtype may have practical relevance, this review summarizes the most recent and main advances in our understanding of the genetics and biology of MZLs.
Collapse
Affiliation(s)
- Francesco Bertoni
- Università della Svizzera italiana, Institute of Oncology Research, Bellinzona, Switzerland.,Oncology Institute of Southern Switzerland (IOSI), Ospedale San Giovanni, Bellinzona, Switzerland
| | - Davide Rossi
- Università della Svizzera italiana, Institute of Oncology Research, Bellinzona, Switzerland.,Oncology Institute of Southern Switzerland (IOSI), Ospedale San Giovanni, Bellinzona, Switzerland
| | - Emanuele Zucca
- Università della Svizzera italiana, Institute of Oncology Research, Bellinzona, Switzerland.,Oncology Institute of Southern Switzerland (IOSI), Ospedale San Giovanni, Bellinzona, Switzerland
| |
Collapse
|
152
|
Choi SC, Xu Z, Li W, Yang H, Roopenian DC, Morse HC, Morel L. Relative Contributions of B Cells and Dendritic Cells from Lupus-Prone Mice to CD4 + T Cell Polarization. THE JOURNAL OF IMMUNOLOGY 2018; 200:3087-3099. [PMID: 29563177 DOI: 10.4049/jimmunol.1701179] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 02/28/2018] [Indexed: 11/19/2022]
Abstract
Mouse models of lupus have shown that multiple immune cell types contribute to autoimmune disease. This study sought to investigate the involvement of B cells and dendritic cells in supporting the expansion of inflammatory and regulatory CD4+ T cells that are critical for lupus pathogenesis. We used lupus-prone B6.NZM2410.Sle1.Sle2.Sle3 (TC) and congenic C57BL/6J (B6) control mice to investigate how the genetic predisposition of these two cell types controls the activity of normal B6 T cells. Using an allogeneic in vitro assay, we showed that TC B1-a and conventional B cells expanded Th17 cells significantly more than their B6 counterparts. This expansion was dependent on CD86 and IL-6 expression and mapped to the Sle1 lupus-susceptibility locus. In vivo, TC B cells promoted greater differentiation of CD4+ T cells into Th1 and follicular helper T cells than did B6 B cells, but they limited the expansion of Foxp3 regulatory CD4+ T cells to a greater extent than did B6 B cells. Finally, when normal B6 CD4+ T cells were introduced into Rag1-/- mice, TC myeloid/stromal cells caused their heightened activation, decreased Foxp3 regulatory CD4+ T cell differentiation, and increased renal infiltration of Th1 and Th17 cells in comparison with B6 myeloid/stromal cells. The results show that B cells from lupus mice amplify inflammatory CD4+ T cells in a nonredundant manner with myeloid/stromal cells.
Collapse
Affiliation(s)
- Seung-Chul Choi
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610
| | - Zhiwei Xu
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610
| | - Wei Li
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610
| | - Hong Yang
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610
| | | | - Herbert C Morse
- Virology and Cellular Immunology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852
| | - Laurence Morel
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610;
| |
Collapse
|
153
|
Sadana P, Geyer R, Pezoldt J, Helmsing S, Huehn J, Hust M, Dersch P, Scrima A. The invasin D protein from Yersinia pseudotuberculosis selectively binds the Fab region of host antibodies and affects colonization of the intestine. J Biol Chem 2018. [PMID: 29535184 DOI: 10.1074/jbc.ra117.001068] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Yersinia pseudotuberculosis is a Gram-negative bacterium and zoonotic pathogen responsible for a wide range of diseases, ranging from mild diarrhea, enterocolitis, lymphatic adenitis to persistent local inflammation. The Y. pseudotuberculosis invasin D (InvD) molecule belongs to the invasin (InvA)-type autotransporter proteins, but its structure and function remain unknown. In this study, we present the first crystal structure of InvD, analyzed its expression and function in a murine infection model, and identified its target molecule in the host. We found that InvD is induced at 37 °C and expressed in vivo 2-4 days after infection, indicating that InvD is a virulence factor. During infection, InvD was expressed in all parts of the intestinal tract, but not in deeper lymphoid tissues. The crystal structure of the C-terminal adhesion domain of InvD revealed a distinct Ig-related fold that, apart from the canonical β-sheets, comprises various modifications of and insertions into the Ig-core structure. We identified the Fab fragment of host-derived IgG/IgA antibodies as the target of the adhesion domain. Phage display panning and flow cytometry data further revealed that InvD exhibits a preferential binding specificity toward antibodies with VH3/VK1 variable domains and that it is specifically recruited to a subset of B cells. This finding suggests that InvD modulates Ig functions in the intestine and affects direct interactions with a subset of cell surface-exposed B-cell receptors. In summary, our results provide extensive insights into the structure of InvD and its specific interaction with the target molecule in the host.
Collapse
Affiliation(s)
- Pooja Sadana
- From the Young Investigator Group Structural Biology of Autophagy, Department of Structure and Function of Proteins
| | | | - Joern Pezoldt
- Experimental Immunology, Helmholtz-Centre for Infection Research, 38124 Braunschweig and
| | - Saskia Helmsing
- the Institute of Biochemistry, Biotechnology and Bioinformatics, Technische Universität, 38106 Braunschweig, Germany
| | - Jochen Huehn
- Experimental Immunology, Helmholtz-Centre for Infection Research, 38124 Braunschweig and
| | - Michael Hust
- the Institute of Biochemistry, Biotechnology and Bioinformatics, Technische Universität, 38106 Braunschweig, Germany
| | - Petra Dersch
- the Departments of Molecular Infection Biology and
| | - Andrea Scrima
- From the Young Investigator Group Structural Biology of Autophagy, Department of Structure and Function of Proteins,
| |
Collapse
|
154
|
Jenberie S, Thim HL, Sunyer JO, Skjødt K, Jensen I, Jørgensen JB. Profiling Atlantic salmon B cell populations: CpG-mediated TLR-ligation enhances IgM secretion and modulates immune gene expression. Sci Rep 2018; 8:3565. [PMID: 29476080 PMCID: PMC5824956 DOI: 10.1038/s41598-018-21895-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 01/25/2018] [Indexed: 12/18/2022] Open
Abstract
While TLR-activated pathways are key regulators of B cell responses in mammals, their impact on teleost B cells are scarcely addressed. Here, the potential of Atlantic salmon B cells to respond to TLR ligands was shown by demonstrating a constitutive expression of nucleic-acid sensing TLRs in magnetic sorted IgM+ cells. Of the two receptors recognizing CpG in teleosts, tlr9 was the dominating receptor with over ten-fold higher expression than tlr21. Upon CpG-stimulation, IgM secretion increased for head kidney (HK) and splenic IgM+ cells, while blood B cells were marginally affected. The results suggest that CpG directly affects salmon B cells to differentiate into antibody secreting cells (ASCs). IgM secretion was also detected in the non-treated controls, again with the highest levels in the HK derived population, signifying that persisting ASCs are present in this tissue. In all tissues, the IgM+ cells expressed high MHCII levels, suggesting antigen-presenting functions. Upon CpG-treatment the co-stimulatory molecules cd83 and cd40 were upregulated, while cd86 was down-regulated under the same conditions. Finally, ifna1 was upregulated upon CpG-stimulation in all tissues, while a restricted upregulation was evident for ifnb, proposing that salmon IgM+ B cells exhibit a type I IFN-response.
Collapse
Affiliation(s)
- Shiferaw Jenberie
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries & Economics, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
| | - Hanna L Thim
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries & Economics, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
| | - J Oriol Sunyer
- Department of Pathology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| | - Karsten Skjødt
- Department of Immunology and Microbiology, Institute of Medical Biology, University of Southern Denmark, Odense, Denmark
| | - Ingvill Jensen
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries & Economics, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
| | - Jorunn B Jørgensen
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries & Economics, University of Tromsø - The Arctic University of Norway, Tromsø, Norway.
| |
Collapse
|
155
|
Liu J, Zhu H, Qian J, Xiong E, Zhang L, Wang YQ, Chu Y, Kubagawa H, Tsubata T, Wang JY. Fcµ Receptor Promotes the Survival and Activation of Marginal Zone B Cells and Protects Mice against Bacterial Sepsis. Front Immunol 2018; 9:160. [PMID: 29459869 PMCID: PMC5807594 DOI: 10.3389/fimmu.2018.00160] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 01/18/2018] [Indexed: 11/14/2022] Open
Abstract
The marginal zone B cells (MZB) are located at the interface between the circulation and lymphoid tissue and as a gatekeeper play important roles in both innate and adaptive immune responses. We have previously found that MZB are significantly reduced in mice deficient in the IgM Fc receptor (FcμR) but how FcμR regulates the development and function of MZB remains unknown. In this study, we found that both marginal zone precursor (MZP) and MZB were decreased in FcμR−/− mice. The reduction of MZP and MZB was not due to impaired proliferation of these cells but rather due to their increased death. Further analysis revealed that FcμR−/− MZB had reduced tonic BCR signal, as evidenced by their decreased levels of phosphorylated SYK and AKT relative to WT MZB. MZB in FcμR−/− mice responded poorly to LPS in vivo when compared with MZB in WT mice. Consistent with the reduced proportion of MZB and their impaired response to LPS, antibody production against the type 1 T-independent Ag, NP-LPS, was significantly reduced in FcμR−/− mice. Moreover, FcμR−/− mice were highly susceptible to Citrobacter rodentium-induced sepsis. These results reveal a critical role for FcμR in the survival and activation of MZB and in protection against acute bacterial infection.
Collapse
Affiliation(s)
- Jun Liu
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Hanying Zhu
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jiawen Qian
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Ermeng Xiong
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Lumin Zhang
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yan-Qing Wang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences; Institute of Acupuncture and Moxibustion, Fudan Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Yiwei Chu
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | | | - Takeshi Tsubata
- Department of Immunology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ji-Yang Wang
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China.,Department of Immunology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
156
|
Liu X, Huang H, Gao H, Wu X, Zhang W, Yu B, Dou X. Regulatory B cells induced by ultraviolet B through toll-like receptor 4 signalling contribute to the suppression of contact hypersensitivity responses in mice. Contact Dermatitis 2018; 78:117-130. [PMID: 29205369 DOI: 10.1111/cod.12913] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 09/23/2017] [Accepted: 09/24/2017] [Indexed: 12/16/2022]
Abstract
BACKGROUND Ultraviolet (UV) B irradiation is known to suppress contact hypersensitivity (CHS) responses in mouse models by suppressing immune responses. However, the cellular mechanisms responsible for UVB-induced systemic suppression remain unclear. Regulatory B cells have been reported to play an inhibitory role during CHS. It is presently unknown whether regulatory B cells contribute to the effect of UVB phototherapy. OBJECTIVE To investigate the inductive effect of UVB on regulatory B cells and the underlying mechanisms by using a CHS mouse model. METHODS CHS was induced with oxazolone, and evaluated by histopathology, flow cytometry, and quantitative real-time polymerase chain reaction. RESULT We found that UVB irradiation induced regulatory B cell expansion and ameliorated CHS. UVB-induced regulatory B cells contribute to systemic immunosuppression by inhibiting the proliferation of T cells. Moreover, we determined that toll-like receptor (TLR) 4, the expression of which was upregulated in B cells after UVB exposure, played an essential role in the induction of regulatory B cells. CONCLUSION Our data identified regulatory B cells as regulators of UVB-induced immunosuppression in CHS, and suggest the importance of the UVB-TLR4 axis in the generation of regulatory B cells.
Collapse
Affiliation(s)
- Xiaoming Liu
- Shenzhen Key Laboratory for Translational Medicine of Dermatology, Shenzhen Peking University - the Hong Kong University of Science and Technology Medical Centre, Shenzhen, 518036, China
- Department of Dermatology and Venereology, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Haiyan Huang
- Department of Dermatology and Venereology, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Hongbin Gao
- Shenzhen Key Laboratory for Translational Medicine of Dermatology, Shenzhen Peking University - the Hong Kong University of Science and Technology Medical Centre, Shenzhen, 518036, China
- Department of Dermatology and Venereology, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Xia Wu
- Department of Dermatology and Venereology, Peking University Shenzhen Hospital, Shenzhen, 518036, China
- Postgraduate School, Guangzhou Medical University, Guangzhou, 511436, China
| | - Wei Zhang
- Shenzhen Key Laboratory for Translational Medicine of Dermatology, Shenzhen Peking University - the Hong Kong University of Science and Technology Medical Centre, Shenzhen, 518036, China
| | - Bo Yu
- Shenzhen Key Laboratory for Translational Medicine of Dermatology, Shenzhen Peking University - the Hong Kong University of Science and Technology Medical Centre, Shenzhen, 518036, China
- Department of Dermatology and Venereology, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Xia Dou
- Department of Dermatology and Venereology, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| |
Collapse
|
157
|
Martin-Gayo E, Cole MB, Kolb KE, Ouyang Z, Cronin J, Kazer SW, Ordovas-Montanes J, Lichterfeld M, Walker BD, Yosef N, Shalek AK, Yu XG. A Reproducibility-Based Computational Framework Identifies an Inducible, Enhanced Antiviral State in Dendritic Cells from HIV-1 Elite Controllers. Genome Biol 2018; 19:10. [PMID: 29378643 PMCID: PMC5789701 DOI: 10.1186/s13059-017-1385-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Accepted: 12/23/2017] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Human immunity relies on the coordinated responses of many cellular subsets and functional states. Inter-individual variations in cellular composition and communication could thus potentially alter host protection. Here, we explore this hypothesis by applying single-cell RNA-sequencing to examine viral responses among the dendritic cells (DCs) of three elite controllers (ECs) of HIV-1 infection. RESULTS To overcome the potentially confounding effects of donor-to-donor variability, we present a generally applicable computational framework for identifying reproducible patterns in gene expression across donors who share a unifying classification. Applying it, we discover a highly functional antiviral DC state in ECs whose fractional abundance after in vitro exposure to HIV-1 correlates with higher CD4+ T cell counts and lower HIV-1 viral loads, and that effectively primes polyfunctional T cell responses in vitro. By integrating information from existing genomic databases into our reproducibility-based analysis, we identify and validate select immunomodulators that increase the fractional abundance of this state in primary peripheral blood mononuclear cells from healthy individuals in vitro. CONCLUSIONS Overall, our results demonstrate how single-cell approaches can reveal previously unappreciated, yet important, immune behaviors and empower rational frameworks for modulating systems-level immune responses that may prove therapeutically and prophylactically useful.
Collapse
Affiliation(s)
| | - Michael B Cole
- Department of Physics, University of California, Berkeley, CA, USA
| | - Kellie E Kolb
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA.,Institute for Medical Engineering & Science (IMES) and Department of Chemistry, MIT, Cambridge, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Zhengyu Ouyang
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | | | - Samuel W Kazer
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA.,Institute for Medical Engineering & Science (IMES) and Department of Chemistry, MIT, Cambridge, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jose Ordovas-Montanes
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA.,Institute for Medical Engineering & Science (IMES) and Department of Chemistry, MIT, Cambridge, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Mathias Lichterfeld
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA.,Infectious Disease Division, Brigham and Women's Hospital, Boston, MA, USA
| | - Bruce D Walker
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA.,Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Nir Yosef
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA. .,Electrical Engineering & Computer Sciences, UC Berkeley, Berkeley, CA, USA. .,Chan Zuckerberg Biohub, San Francisco, CA, 94158, USA.
| | - Alex K Shalek
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA. .,Institute for Medical Engineering & Science (IMES) and Department of Chemistry, MIT, Cambridge, MA, USA. .,Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Xu G Yu
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA. .,Infectious Disease Division, Brigham and Women's Hospital, Boston, MA, USA.
| |
Collapse
|
158
|
Ádori M, Pedersen GK, Ádori C, Erikson E, Khoenkhoen S, Stark JM, Choi JH, Dosenovic P, Karlsson MCI, Beutler B, Karlsson Hedestam GB. Altered Marginal Zone B Cell Selection in the Absence of IκBNS. THE JOURNAL OF IMMUNOLOGY 2018; 200:775-787. [PMID: 29222168 DOI: 10.4049/jimmunol.1700791] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 11/07/2017] [Indexed: 12/20/2022]
Abstract
Marginal zone (MZ) B cells reside in the splenic MZ and play important roles in T cell-independent humoral immune responses against blood-borne pathogens. IκBNS-deficient bumble mice exhibit a severe reduction in the MZ B compartment but regain an MZ B population with age and, thus, represent a valuable model to examine the biology of MZ B cells. In this article, we characterized the MZ B cell defect in further detail and investigated the nature of the B cells that appear in the MZ of aged bumble mice. Flow cytometry analysis of the splenic transitional B cell subsets demonstrated that MZ B cell development was blocked at the transitional-1 to transitional-2-MZ precursor stage in the absence of functional IκBNS. Immunohistochemical analysis of spleen sections from wild-type and bumble mice revealed no alteration in the cellular MZ microenvironment, and analysis of bone marrow chimeras indicated that the MZ B cell development defect in bumble mice was B cell intrinsic. Further, we demonstrate that the B cells that repopulate the MZ in aged bumble mice were distinct from age-matched wild-type MZ B cells. Specifically, the expression of surface markers characteristic for MZ B cells was altered and the L chain Igλ+ repertoire was reduced in bumble mice. Finally, plasma cell differentiation of sorted LPS-stimulated MZ B cells was impaired, and aged bumble mice were unable to respond to NP-Ficoll immunization. These results demonstrate that IκBNS is required for an intact MZ B cell compartment in C57BL/6 mice.
Collapse
Affiliation(s)
- Monika Ádori
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | - Gabriel K Pedersen
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | - Csaba Ádori
- Department of Neuroscience, Karolinska Institutet, S-171 77 Stockholm, Sweden; and
| | - Elina Erikson
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | - Sharesta Khoenkhoen
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | - Julian M Stark
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | - Jin Huk Choi
- Center for the Genetics of Host Defense, UT Southwestern Medical Center, Dallas, TX 75390-8505
| | - Pia Dosenovic
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | - Mikael C I Karlsson
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | - Bruce Beutler
- Center for the Genetics of Host Defense, UT Southwestern Medical Center, Dallas, TX 75390-8505
| | | |
Collapse
|
159
|
Bod L, Douguet L, Auffray C, Lengagne R, Bekkat F, Rondeau E, Molinier-Frenkel V, Castellano F, Richard Y, Prévost-Blondel A. IL-4-Induced Gene 1: A Negative Immune Checkpoint Controlling B Cell Differentiation and Activation. THE JOURNAL OF IMMUNOLOGY 2017; 200:1027-1038. [PMID: 29288206 DOI: 10.4049/jimmunol.1601609] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 11/26/2017] [Indexed: 11/19/2022]
Abstract
Emerging data highlight the crucial role of enzymes involved in amino acid metabolism in immune cell biology. IL-4-induced gene-1 (IL4I1), a secreted l-phenylalanine oxidase expressed by APCs, has been detected in B cells, yet its immunoregulatory role has only been explored on T cells. In this study, we show that IL4I1 regulates multiple steps in B cell physiology. Indeed, IL4I1 knockout mice exhibit an accelerated B cell egress from the bone marrow, resulting in the accumulation of peripheral follicular B cells. They also present a higher serum level of natural Igs and self-reactive Abs. We also demonstrate that IL4I1 produced by B cells themselves controls the germinal center reaction, plasma cell differentiation, and specific Ab production in response to T dependent Ags, SRBC, and NP-KLH. In vitro, IL4I1-deficient B cells proliferate more efficiently than their wild-type counterparts in response to BCR cross-linking. Moreover, the absence of IL4I1 increases activation of the Syk-Akt-S6kinase signaling pathway and calcium mobilization, and inhibits SHP-1 activity upon BCR engagement, thus supporting that IL4I1 negatively controls BCR-dependent activation. Overall, our study reveals a new perspective on IL4I1 as a key regulator of B cell biology.
Collapse
Affiliation(s)
- Lloyd Bod
- INSERM, U1016, Institut Cochin, 75014 Paris, France.,CNRS, UMR8104, 75014 Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, 75006 Paris, France
| | - Laetitia Douguet
- INSERM, U1016, Institut Cochin, 75014 Paris, France.,CNRS, UMR8104, 75014 Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, 75006 Paris, France
| | - Cédric Auffray
- INSERM, U1016, Institut Cochin, 75014 Paris, France.,CNRS, UMR8104, 75014 Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, 75006 Paris, France
| | - Renée Lengagne
- INSERM, U1016, Institut Cochin, 75014 Paris, France.,CNRS, UMR8104, 75014 Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, 75006 Paris, France
| | - Fériel Bekkat
- INSERM, U1016, Institut Cochin, 75014 Paris, France.,CNRS, UMR8104, 75014 Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, 75006 Paris, France
| | - Elena Rondeau
- INSERM, U1016, Institut Cochin, 75014 Paris, France.,CNRS, UMR8104, 75014 Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, 75006 Paris, France
| | - Valérie Molinier-Frenkel
- INSERM, U955, Equipe 09, 94000 Créteil, France.,Faculté de Médecine, Université Paris Est, 94000 Créteil, France.,Assistance Publique - Hôpitaux de Paris, Hôpital Henri Mondor - Albert Chenevier, Service d'Immunologie Biologique, 94000 Créteil, France; and
| | - Flavia Castellano
- INSERM, U955, Equipe 09, 94000 Créteil, France.,Faculté de Médecine, Université Paris Est, 94000 Créteil, France.,Assistance Publique - Hôpitaux de Paris, Hôpital Henri Mondor - Albert Chenevier, Plateforme de Ressources Biologiques, 94000 Créteil, France
| | - Yolande Richard
- INSERM, U1016, Institut Cochin, 75014 Paris, France; .,CNRS, UMR8104, 75014 Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, 75006 Paris, France
| | - Armelle Prévost-Blondel
- INSERM, U1016, Institut Cochin, 75014 Paris, France; .,CNRS, UMR8104, 75014 Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, 75006 Paris, France
| |
Collapse
|
160
|
Podbielska M, O'Keeffe J, Hogan EL. Autoimmunity in multiple sclerosis: role of sphingolipids, invariant NKT cells and other immune elements in control of inflammation and neurodegeneration. J Neurol Sci 2017; 385:198-214. [PMID: 29406905 DOI: 10.1016/j.jns.2017.12.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 12/16/2017] [Accepted: 12/18/2017] [Indexed: 12/21/2022]
Abstract
Multiple sclerosis (MS) is the most common demyelinating disease of the central nervous system. It is classified as being an autoimmune response in the genetically susceptible individual to a persistent but unidentified antigen(s). Both the adaptive and the innate immune systems are likely to contribute significantly to MS pathogenesis. This review summarizes current understanding of the characteristics of MS autoimmunity in the initiation and progression of the disease. In particular we find it timely to classify the autoimmune responses by focusing on the immunogenic features of myelin-derived lipids in MS including molecular mimicry; on alterations of bioactive sphingolipids mediators in MS; and on functional roles for regulatory effector cells, including innate lymphocyte populations, like the invariant NKT (iNKT) cells which bridge adaptive and innate immune systems. Recent progress in identifying the nature of sphingolipids recognition for iNKT cells in immunity and the functional consequences of the lipid-CD1d interaction opens new avenues of access to the pathogenesis of demyelination in MS as well as design of lipid antigen-specific therapeutics.
Collapse
Affiliation(s)
- Maria Podbielska
- Department of Neurology and Neurosurgery, Medical University of South Carolina Charleston, SC, USA; Laboratory of Signal Transduction Molecules, Ludwik Hirszfeld Institute of Immunology & Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland.
| | - Joan O'Keeffe
- Department of Biopharmaceutical & Medical Science, School of Science & Computing, Galway-Mayo Institute of Technology, Galway, Ireland
| | - Edward L Hogan
- Department of Neurology and Neurosurgery, Medical University of South Carolina Charleston, SC, USA
| |
Collapse
|
161
|
Choi SC, Morel L. B cell contribution of the CD4 + T cell inflammatory phenotypes in systemic lupus erythematosus. Autoimmunity 2017; 50:37-41. [PMID: 28166683 DOI: 10.1080/08916934.2017.1280028] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Systemic lupus erythematosus is an autoimmune disease in which the effector molecules responsible for tissue damage are antibodies directed against a large number of self-antigens, among which nucleic acids complexed with proteins play a prominent role. These pathogenic autoantibodies are produced by plasma cells differentiated from activated autoreactive B cells, a process that requires complex interactions between multiple components of the immune systems. A key step in the activation of autoreactive B cells is provided by CD4+ T cells through cytokines and cell-to-cell contact. Lupus CD4+ T cells are autoreactive and they present an activated inflammatory phenotype that has been shown to contribute to disease. In addition to their role in antibody production, B cells have other effector functions, the most important ones being antigen presentation to and co-stimulation of CD4+ T cells, as well as the secretion of cytokines. Here, we review what is known, largely based on mouse models, how these B cell effector functions contribute to the CD4+ T cell inflammatory phenotypes in lupus. When possible, we compare CD4+ T cell activation by B cells and by dendritic cells, and speculate how these interactions may contribute to the disease process.
Collapse
Affiliation(s)
- Seung-Chul Choi
- a Department of Pathology, Immunology, and Laboratory Medicine , University of Florida , Gainesville , FL , USA
| | - Laurence Morel
- a Department of Pathology, Immunology, and Laboratory Medicine , University of Florida , Gainesville , FL , USA
| |
Collapse
|
162
|
Generation of an osteoblast-based artificial niche that supports in vitro B lymphopoiesis. Exp Mol Med 2017; 49:e400. [PMID: 29170473 PMCID: PMC5704192 DOI: 10.1038/emm.2017.189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 04/27/2017] [Accepted: 05/28/2017] [Indexed: 12/13/2022] Open
Abstract
B lymphocytes are produced from hematopoietic stem cells (HSCs) through the highly ordered process of B lymphopoiesis, which is regulated by a complex network of cytokines, chemokines and cell adhesion molecules derived from the hematopoietic niche. Primary osteoblasts function as an osteoblastic niche (OBN) that supports in vitro B lymphopoiesis. However, there are significant limitations to the use of primary osteoblasts, including their relative scarcity and the consistency and efficiency of the limited purification and proliferation of these cells. Thus, development of a stable osteoblast cell line that can function as a biomimetic or artificial OBN is necessary. In this study, we developed a stable osteoblastic cell line, designated OBN4, which functions as an osteoblast-based artificial niche that supports in vitro B lymphopoiesis. We demonstrated that the production of a B220+ cell population from Lineage− (Lin−) Sca-1+ c-Kit+ hematopoietic stem and progenitor cells (HSPCs) was increased ~1.7-fold by OBN4 cells relative to production by primary osteoblasts and OP9 cells in coculture experiments. Consistently, OBN4 cells exhibited the highest production of B220+ IgM+ cell populations (6.7±0.6–13.6±0.6%) in an IL-7- and stromal cell-derived factor 1-dependent manner, with higher production than primary osteoblasts (3.7±0.5–6.4±0.6%) and OP9 cells (1.8±0.6–3.9±0.5%). In addition, the production of B220+ IgM+ IgD+ cell populations was significantly enhanced by OBN4 cells (15.4±1.1–18.9±3.2%) relative to production by primary osteoblasts (9.5±0.6–14.6±1.6%) and OP9 cells (9.1±0.5–10.3±1.8%). We conclude that OBN4 cells support in vitro B lymphopoiesis of Lin− Sca-1+ c-Kit+ HSPCs more efficiently than primary osteoblasts or OP9 stromal cells.
Collapse
|
163
|
KLF2 in Regulation of NF-κB-Mediated Immune Cell Function and Inflammation. Int J Mol Sci 2017; 18:ijms18112383. [PMID: 29125549 PMCID: PMC5713352 DOI: 10.3390/ijms18112383] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 10/17/2017] [Accepted: 11/08/2017] [Indexed: 01/09/2023] Open
Abstract
KLF2 (Kruppel-like factor 2) is a member of the zinc finger transcription factor family, which critically regulates embryonic lung development, function of endothelial cells and maintenance of quiescence in T-cells and monocytes. It is expressed in naïve T-cells and monocytes, however its level of expression decreases during activation and differentiation. KLF2 also plays critical regulatory role in various inflammatory diseases and their pathogenesis. Nuclear factor-kappaB (NF-κB) is an important inducer of inflammation and the inflammation is mediated through the transcription of several proinflammatory cytokines, chemokines and adhesion molecules. So, both transcriptional factors KLF2 and NF-κB are being associated with the similar cellular functions and their maintenance. It was shown that KLF2 regulates most of the NF-κB-mediated activities. In this review, we focused on emphasizing the involvement of KLF2 in health and disease states and how they interact with transcriptional master regulator NF-κB.
Collapse
|
164
|
Ghia P, Nadel B, Sander B, Stamatopoulos K, Stevenson FK. Early stages in the ontogeny of small B-cell lymphomas: genetics and microenvironment. J Intern Med 2017; 282:395-414. [PMID: 28393412 DOI: 10.1111/joim.12608] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In this review, we focus on the mechanisms underlying lymphomagenesis in chronic lymphocytic leukaemia, follicular lymphoma, mantle cell lymphoma and splenic marginal zone lymphoma. The cells of origin of these small B-cell lymphomas are distinct, as are the characteristic chromosomal lesions and clinical courses. One shared feature is retention of expression of surface immunoglobulin. Analysis of this critical receptor reveals the point of differentiation reached by the cell of origin. Additionally, the sequence patterns of the immunoglobulin-variable domains can indicate a role for stimulants of the B-cell receptor before, during and after malignant transformation. The pathways driven via the B-cell receptor are now being targeted by specific kinase inhibitors with exciting clinical effects. To consider routes to pathogenesis, potentially offering earlier intervention, or to identify causative factors, genetic tools are being used to track pretransformation events and the early phases in lymphomagenesis. These methods are revealing that chromosomal changes are only one of the many steps involved, and that the influence of surrounding cells, probably multiple and variable according to tissue location, is required, both to establish tumours and to maintain growth and survival. Similarly, the influence of the tumour microenvironment may protect malignant cells from eradication by treatment, and the resulting minimal residual disease will eventually give rise to relapse. The common and different features of the four lymphomas will be summarized to show how normal B lymphocytes can be subverted to generate tumours, how these tumours evolve and how their weaknesses can be attacked by targeted therapies.
Collapse
Affiliation(s)
- P Ghia
- Division of Experimental Oncology, Università Vita-Salute San Raffaele and IRCCS San Raffaele Scientific Institute Milan, Milan, Italy
| | - B Nadel
- Aix-Marseille Université, CNRS, INSERM, CIML, Marseille, France
| | - B Sander
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - K Stamatopoulos
- Institute of Applied Biosciences, Center for Research and Technology Hellas, Thessaloniki, Greece.,Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - F K Stevenson
- Cancer Research UK Centre, Cancer Sciences Unit, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton, UK
| |
Collapse
|
165
|
The Deadly Dance of B Cells with Trypanosomatids. Trends Parasitol 2017; 34:155-171. [PMID: 29089182 DOI: 10.1016/j.pt.2017.10.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 09/29/2017] [Accepted: 10/06/2017] [Indexed: 01/18/2023]
Abstract
B cells are notorious actors for the host's protection against several infectious diseases. So much so that early vaccinology seated its principles upon their long-term protective antibody secretion capabilities. Indeed, there are many examples of acute infectious diseases that are combated by functional humoral responses. However, some chronic infectious diseases actively induce immune deregulations that often lead to defective, if not deleterious, humoral immune responses. In this review we summarize how Leishmania and Trypanosoma spp. directly manipulate B cell responses to induce polyclonal B cell activation, hypergammaglobulinemia, low-specificity antibodies, limited B cell survival, and regulatory B cells, contributing therefore to immunopathology and the establishment of persistent infections.
Collapse
|
166
|
Catalan-Dibene J, Vazquez MI, Luu VP, Nuccio SP, Karimzadeh A, Kastenschmidt JM, Villalta SA, Ushach I, Pone EJ, Casali P, Raffatellu M, Burkhardt AM, Hernandez-Ruiz M, Heller G, Hevezi PA, Zlotnik A. Identification of IL-40, a Novel B Cell-Associated Cytokine. THE JOURNAL OF IMMUNOLOGY 2017; 199:3326-3335. [PMID: 28978694 DOI: 10.4049/jimmunol.1700534] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 08/31/2017] [Indexed: 11/19/2022]
Abstract
We describe a novel B cell-associated cytokine, encoded by an uncharacterized gene (C17orf99; chromosome 17 open reading frame 99), that is expressed in bone marrow and fetal liver and whose expression is also induced in peripheral B cells upon activation. C17orf99 is only present in mammalian genomes, and it encodes a small (∼27-kDa) secreted protein unrelated to other cytokine families, suggesting a function in mammalian immune responses. Accordingly, C17orf99 expression is induced in the mammary gland upon the onset of lactation, and a C17orf99-/- mouse exhibits reduced levels of IgA in the serum, gut, feces, and lactating mammary gland. C17orf99-/- mice have smaller and fewer Peyer's patches and lower numbers of IgA-secreting cells. The microbiome of C17orf99-/- mice exhibits altered composition, likely a consequence of the reduced levels of IgA in the gut. Although naive B cells can express C17orf99 upon activation, their production increases following culture with various cytokines, including IL-4 and TGF-β1, suggesting that differentiation can result in the expansion of C17orf99-producing B cells during some immune responses. Taken together, these observations indicate that C17orf99 encodes a novel B cell-associated cytokine, which we have called IL-40, that plays an important role in humoral immune responses and may also play a role in B cell development. Importantly, IL-40 is also expressed by human activated B cells and by several human B cell lymphomas. The latter observations suggest that it may play a role in the pathogenesis of certain human diseases.
Collapse
Affiliation(s)
- Jovani Catalan-Dibene
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA 92697.,Institute for Immunology, University of California, Irvine, Irvine, CA 92697
| | - Monica I Vazquez
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA 92697.,Institute for Immunology, University of California, Irvine, Irvine, CA 92697
| | - Van Phi Luu
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA 92697.,Institute for Immunology, University of California, Irvine, Irvine, CA 92697
| | - Sean-Paul Nuccio
- Department of Microbiology and Molecular Genetics, University of California, Irvine, Irvine, CA 92697; and
| | - Alborz Karimzadeh
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA 92697
| | - Jenna M Kastenschmidt
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA 92697.,Institute for Immunology, University of California, Irvine, Irvine, CA 92697
| | - S Armando Villalta
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA 92697.,Institute for Immunology, University of California, Irvine, Irvine, CA 92697
| | - Irina Ushach
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA 92697.,Institute for Immunology, University of California, Irvine, Irvine, CA 92697
| | - Egest J Pone
- Institute for Immunology, University of California, Irvine, Irvine, CA 92697.,Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA 92697
| | - Paolo Casali
- Institute for Immunology, University of California, Irvine, Irvine, CA 92697.,Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA 92697
| | - Manuela Raffatellu
- Department of Microbiology and Molecular Genetics, University of California, Irvine, Irvine, CA 92697; and
| | - Amanda M Burkhardt
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA 92697.,Institute for Immunology, University of California, Irvine, Irvine, CA 92697
| | - Marcela Hernandez-Ruiz
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA 92697.,Institute for Immunology, University of California, Irvine, Irvine, CA 92697
| | - Gina Heller
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA 92697.,Institute for Immunology, University of California, Irvine, Irvine, CA 92697
| | - Peter A Hevezi
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA 92697.,Institute for Immunology, University of California, Irvine, Irvine, CA 92697
| | - Albert Zlotnik
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA 92697; .,Institute for Immunology, University of California, Irvine, Irvine, CA 92697
| |
Collapse
|
167
|
Bone marrow basophils provide survival signals to immature B cells in vitro but are dispensable in vivo. PLoS One 2017; 12:e0185509. [PMID: 28957409 PMCID: PMC5619841 DOI: 10.1371/journal.pone.0185509] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 09/14/2017] [Indexed: 11/19/2022] Open
Abstract
Immature B cells are the first B cell progenitors to express a fully formed B cell receptor and are therefore subject to extensive selection processes that act to mitigate the emergence of autoreactive clones. While it is well appreciated that most B cell generation in the bone marrow is highly dependent on access to molecules present in the local milieu, the existence of extrinsically provided factors that modulate immature B cell biology is ambiguous. Nonetheless, a population of CD49b+CD90lo cells has demonstrated in vitro potential to promote immature B cell survival. Using a mouse basophil reporter strain we confirmed the identity of these CD49b+CD90lo supportive cells as basophils. However, analysis of bone marrow B cell populations following lineage specific basophil depletion demonstrates that basophils do not have a significant role in vivo in modulating immature B cell biology during steady-state conditions.
Collapse
|
168
|
Cholesterol Accumulation in CD11c + Immune Cells Is a Causal and Targetable Factor in Autoimmune Disease. Immunity 2017; 45:1311-1326. [PMID: 28002731 DOI: 10.1016/j.immuni.2016.11.008] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Revised: 07/25/2016] [Accepted: 10/20/2016] [Indexed: 02/06/2023]
Abstract
Liver X receptors (LXRs) are regulators of cholesterol metabolism that also modulate immune responses. Inactivation of LXR α and β in mice leads to autoimmunity; however, how the regulation of cholesterol metabolism contributes to autoimmunity is unclear. Here we found that cholesterol loading of CD11c+ cells triggered the development of autoimmunity, whereas preventing excess lipid accumulation by promoting cholesterol efflux was therapeutic. LXRβ-deficient mice crossed to the hyperlipidemic ApoE-deficient background or challenged with a high-cholesterol diet developed autoantibodies. Cholesterol accumulation in lymphoid organs promoted T cell priming and stimulated the production of the B cell growth factors Baff and April. Conversely, B cell expansion and the development of autoantibodies in ApoE/LXR-β-deficient mice was reversed by ApoA-I expression. These findings implicate cholesterol imbalance as a contributor to immune dysfunction and suggest that stimulating HDL-dependent reverse cholesterol transport could be beneficial in the setting of autoimmune disease.
Collapse
|
169
|
D'Souza L, Gupta SL, Bal V, Rath S, George A. CD73 expression identifies a subset of IgM + antigen-experienced cells with memory attributes that is T cell and CD40 signalling dependent. Immunology 2017; 152:602-612. [PMID: 28746783 DOI: 10.1111/imm.12800] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 07/20/2017] [Accepted: 07/20/2017] [Indexed: 12/15/2022] Open
Abstract
B-cell memory was long characterized as isotype-switched, somatically mutated and germinal centre (GC)-derived. However, it is now clear that the memory pool is a complex mixture that includes unswitched and unmutated cells. Further, expression of CD73, CD80 and CD273 has allowed the categorization of B-cell memory into multiple subsets, with combinatorial expression of the markers increasing with GC progression, isotype-switching and acquisition of somatic mutations. We have extended these findings to determine whether these markers can be used to identify IgM memory phenotypically as arising from T-dependent versus T-independent responses. We report that CD73 expression identifies a subset of antigen-experienced IgM+ cells that share attributes of functional B-cell memory. This subset is reduced in the spleens of T-cell-deficient and CD40-deficient mice and in mixed marrow chimeras made with mutant and wild-type marrow, the proportion of CD73+ IgM memory is restored in the T-cell-deficient donor compartment but not in the CD40-deficient donor compartment, indicating that CD40 ligation is involved in its generation. We also report that CD40 signalling supports optimal expression of CD73 on splenic T cells and age-associated B cells (ABCs), but not on other immune cells such as neutrophils, marginal zone B cells, peritoneal cavity B-1 B cells and regulatory T and B cells. Our data indicate that in addition to promoting GC-associated memory generation during B-cell differentiation, CD40-signalling can influence the composition of the unswitched memory B-cell pool. They also raise the possibility that a fraction of ABCs may represent T-cell-dependent IgM memory.
Collapse
Affiliation(s)
| | | | - Vineeta Bal
- National Institute of Immunology, New Delhi, India
| | | | - Anna George
- National Institute of Immunology, New Delhi, India
| |
Collapse
|
170
|
Sarvaria A, Madrigal JA, Saudemont A. B cell regulation in cancer and anti-tumor immunity. Cell Mol Immunol 2017; 14:662-674. [PMID: 28626234 PMCID: PMC5549607 DOI: 10.1038/cmi.2017.35] [Citation(s) in RCA: 438] [Impact Index Per Article: 54.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Revised: 04/18/2017] [Accepted: 04/18/2017] [Indexed: 02/07/2023] Open
Abstract
The balance between immune effector cells and immunosuppressive cells and how this regulates the tumor microenvironment has been well described. A significant contribution of immune regulatory cells, including regulatory T cells, to tumor progression has been widely reported. An emerging body of evidence has recently recognized a role for B cells in modulating the immune response to tumors and lymphoid malignancies. Regulatory B cells (Bregs) are a newly designated subset of B cells that have been shown to play a pivotal role in regulating immune responses involved in inflammation, autoimmunity and, more recently, cancer. Bregs can suppress diverse cell subtypes, including T cells, through the secretion of anti-inflammatory mediators, such as IL-10, and can facilitate the conversion of T cells to regulatory T cells, thus attenuating anti-tumor immune responses. Similar B-cell subpopulations have been reported to be recruited to the tumor but to acquire their immunosuppressive properties within the tumor bed and thereby attenuate anti-tumor immune responses. However, despite a pivotal role for Bregs in promoting inflammation and carcinogenesis, the phenotypic diversity of the cell surface markers that are unique to Bregs remains unclear in mice and humans. In this review, we summarize the characteristics of Bregs and review our current knowledge of Bregs and their inhibition of anti-tumor immune responses in murine tumor models and cancer patients.
Collapse
|
171
|
Zhang Y, Zhu G, Xiao H, Liu X, Han G, Chen G, Hou C, Shen B, Li Y, Ma N, Wang R. CD19 regulates ADAM28-mediated Notch2 cleavage to control the differentiation of marginal zone precursors to MZ B cells. J Cell Mol Med 2017; 21:3658-3669. [PMID: 28707394 PMCID: PMC5706524 DOI: 10.1111/jcmm.13276] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 05/15/2017] [Indexed: 12/19/2022] Open
Abstract
As the first line of defence, marginal zone (MZ) B cells play principal roles in clearing blood‐borne pathogens during infection and are over‐primed in autoimmune diseases. However, the basic mechanisms underlying MZ B‐cell development are still unclear. We found here that CD19 deficiency blocked the differentiation of marginal zone precursors (MZP) to MZ B cells, whereas CD19 expression in CD19‐deficient MZP rescues MZ B‐cell generation. Furthermore, CD19 regulates Notch2 cleavage by up‐regulating ADAM28 expression in MZP. Finally, we found that CD19 suppressed Foxo1 expression to promote ADAM28 expression in MZP. These results suggest that CD19 controls the differentiation of MZP to MZ B cells by regulating ADAM28‐mediated Notch2 cleavage. Thus, we demonstrated the basic mechanisms underlying the differentiation of MZP to MZ B cells.
Collapse
Affiliation(s)
- Yu Zhang
- Laboratory of Immunology, Institute of Basic Medical Sciences, Beijing, China.,College of Pharmacy, Henan University, Kaifeng, China
| | - Gaizhi Zhu
- Laboratory of Immunology, Institute of Basic Medical Sciences, Beijing, China.,Laboratory of Cellular and Molecular Immunology, Henan University, Kaifeng, Henan, China
| | - He Xiao
- Laboratory of Immunology, Institute of Basic Medical Sciences, Beijing, China
| | - Xiaoling Liu
- Laboratory of Immunology, Institute of Basic Medical Sciences, Beijing, China.,Department of Nephrology, The 307th Hospital of Chinese People's Liberation Army, Beijing, China
| | - Gencheng Han
- Laboratory of Immunology, Institute of Basic Medical Sciences, Beijing, China
| | - Guojiang Chen
- Laboratory of Immunology, Institute of Basic Medical Sciences, Beijing, China
| | - Chunmei Hou
- Laboratory of Immunology, Institute of Basic Medical Sciences, Beijing, China
| | - Beifen Shen
- Laboratory of Immunology, Institute of Basic Medical Sciences, Beijing, China
| | - Yan Li
- Laboratory of Immunology, Institute of Basic Medical Sciences, Beijing, China
| | - Ning Ma
- Department of Rheumatology, First Hospital of Jilin University, Changchun, China
| | - Renxi Wang
- Laboratory of Immunology, Institute of Basic Medical Sciences, Beijing, China
| |
Collapse
|
172
|
Stijlemans B, Radwanska M, De Trez C, Magez S. African Trypanosomes Undermine Humoral Responses and Vaccine Development: Link with Inflammatory Responses? Front Immunol 2017; 8:582. [PMID: 28596768 PMCID: PMC5442186 DOI: 10.3389/fimmu.2017.00582] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 05/01/2017] [Indexed: 01/15/2023] Open
Abstract
African trypanosomosis is a debilitating disease of great medical and socioeconomical importance. It is caused by strictly extracellular protozoan parasites capable of infecting all vertebrate classes including human, livestock, and game animals. To survive within their mammalian host, trypanosomes have evolved efficient immune escape mechanisms and manipulate the entire host immune response, including the humoral response. This report provides an overview of how trypanosomes initially trigger and subsequently undermine the development of an effective host antibody response. Indeed, results available to date obtained in both natural and experimental infection models show that trypanosomes impair homeostatic B-cell lymphopoiesis, B-cell maturation and survival and B-cell memory development. Data on B-cell dysfunctioning in correlation with parasite virulence and trypanosome-mediated inflammation will be discussed, as well as the impact of trypanosomosis on heterologous vaccine efficacy and diagnosis. Therefore, new strategies aiming at enhancing vaccination efficacy could benefit from a combination of (i) early parasite diagnosis, (ii) anti-trypanosome (drugs) treatment, and (iii) anti-inflammatory treatment that collectively might allow B-cell recovery and improve vaccination.
Collapse
Affiliation(s)
- Benoit Stijlemans
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium.,Myeloid Cell Immunology Lab, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Magdalena Radwanska
- Laboratory for Biomedical Research, Ghent University Global Campus, Yeonsu-Gu, Incheon, South Korea
| | - Carl De Trez
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium.,Structural Biology Research Centre (SBRC), VIB, Brussels, Belgium
| | - Stefan Magez
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium.,Laboratory for Biomedical Research, Ghent University Global Campus, Yeonsu-Gu, Incheon, South Korea
| |
Collapse
|
173
|
Control of B lymphocyte development and functions by the mTOR signaling pathways. Cytokine Growth Factor Rev 2017; 35:47-62. [PMID: 28583723 DOI: 10.1016/j.cytogfr.2017.04.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 04/07/2017] [Indexed: 12/21/2022]
Abstract
Mechanistic target of rapamycin (mTOR) is a serine/threonine kinase originally discovered as the molecular target of the immunosuppressant rapamycin. mTOR forms two compositionally and functionally distinct complexes, mTORC1 and mTORC2, which are crucial for coordinating nutrient, energy, oxygen, and growth factor availability with cellular growth, proliferation, and survival. Recent studies have identified critical, non-redundant roles for mTORC1 and mTORC2 in controlling B cell development, differentiation, and functions, and have highlighted emerging roles of the Folliculin-Fnip protein complex in regulating mTOR and B cell development. In this review, we summarize the basic mechanisms of mTOR signaling; describe what is known about the roles of mTORC1, mTORC2, and the Folliculin/Fnip1 pathway in B cell development and functions; and briefly outline current clinical approaches for targeting mTOR in B cell neoplasms. We conclude by highlighting a few salient questions and future perspectives regarding mTOR in B lineage cells.
Collapse
|
174
|
Positive selection of type II collagen-reactive CD80 high marginal zone B cells in DBA/1 mice. Clin Immunol 2017; 178:64-73. [DOI: 10.1016/j.clim.2017.01.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 01/24/2017] [Accepted: 01/31/2017] [Indexed: 12/23/2022]
|
175
|
Rawlings DJ, Metzler G, Wray-Dutra M, Jackson SW. Altered B cell signalling in autoimmunity. Nat Rev Immunol 2017; 17:421-436. [PMID: 28393923 DOI: 10.1038/nri.2017.24] [Citation(s) in RCA: 199] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Recent work has provided new insights into how altered B cell-intrinsic signals - through the B cell receptor (BCR) and key co-receptors - function together to promote the pathogenesis of autoimmunity. These combined signals affect B cells at two distinct stages: first, in the selection of the naive repertoire; and second, during extrafollicular or germinal centre activation responses. Thus, dysregulated signalling can lead to both an altered naive BCR repertoire and the generation of autoantibody-producing B cells. Strikingly, high-affinity autoantibodies predate and predict disease in several autoimmune disorders, including type 1 diabetes and systemic lupus erythematosus. This Review summarizes how, rather than being a downstream consequence of autoreactive T cell activation, dysregulated B cell signalling can function as a primary driver of many human autoimmune diseases.
Collapse
Affiliation(s)
- David J Rawlings
- Seattle Children's Research Institute, 1900 9th Avenue, Seattle, Washington 98101, USA.,Department of Immunology, University of Washington School of Medicine.,Department of Pediatrics, University of Washington School of Medicine, 750 Republican Street, Seattle, Washington 98109, USA
| | - Genita Metzler
- Seattle Children's Research Institute, 1900 9th Avenue, Seattle, Washington 98101, USA.,Department of Immunology, University of Washington School of Medicine
| | - Michelle Wray-Dutra
- Seattle Children's Research Institute, 1900 9th Avenue, Seattle, Washington 98101, USA.,Department of Immunology, University of Washington School of Medicine
| | - Shaun W Jackson
- Seattle Children's Research Institute, 1900 9th Avenue, Seattle, Washington 98101, USA.,Department of Pediatrics, University of Washington School of Medicine, 750 Republican Street, Seattle, Washington 98109, USA
| |
Collapse
|
176
|
Mediation of transitional B cell maturation in the absence of functional Bruton's tyrosine kinase. Sci Rep 2017; 7:46029. [PMID: 28378771 PMCID: PMC5380950 DOI: 10.1038/srep46029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 03/08/2017] [Indexed: 01/09/2023] Open
Abstract
X-linked immune-deficient (Xid) mice, carrying a mutation in Bruton’s tyrosine kinase (Btk), have multiple B cell lineage differentiation defects. We now show that, while Xid mice showed only mild reduction in the frequency of the late transitional (T2) stage of peripheral B cells, the defect became severe when the Xid genotype was combined with either a CD40-null, a TCRbeta-null or an MHC class II (MHCII)-null genotype. Purified Xid T1 and T2 B cells survived poorly in vitro compared to wild-type (WT) cells. BAFF rescued WT but not Xid T1 and T2 B cells from death in culture, while CD40 ligation equivalently rescued both. Xid transitional B cells ex vivo showed low levels of the p100 protein substrate for non-canonical NF-kappaB signalling. In vitro, CD40 ligation induced equivalent activation of the canonical but not of the non-canonical NF-kappaB pathway in Xid and WT T1 and T2 B cells. CD40 ligation efficiently rescued p100-null T1 B cells from neglect-induced death in vitro. These data indicate that CD40-mediated signals, likely from CD4 T cells, can mediate peripheral transitional B cell maturation independent of Btk and the non-canonical NF-kappaB pathway, and thus contribute to the understanding of the complexities of peripheral B cell maturation.
Collapse
|
177
|
Esteve-Solé A, Teixidó I, Deyà-Martínez A, Yagüe J, Plaza-Martín AM, Juan M, Alsina L. Characterization of the Highly Prevalent Regulatory CD24 hiCD38 hi B-Cell Population in Human Cord Blood. Front Immunol 2017; 8:201. [PMID: 28326080 PMCID: PMC5339297 DOI: 10.3389/fimmu.2017.00201] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 02/14/2017] [Indexed: 12/18/2022] Open
Abstract
The newborn's immune system must transition from a sterile haploidentical uterus to the world full of antigens. Regulatory B-cells (Breg; broadly defined as CD19+CD24hiCD38hi) are tolerance promoters in the adult immune system. They can inhibit IFN-γ and IL-17 production by T-cells and are essential in different conditions, including pregnancy. Breg have still not been well characterized in umbilical cord blood, where we hypothesize that they are pivotal in the achievement of tolerance. We studied CD19+CD24hiCD38hi Breg in healthy umbilical cord blood (hUCB) compared to healthy peripheral adult blood (hAPB). Total numbers of Breg were increased in hUCB compared to hAPB (34.39 vs. 9.49%; p = 0.0002), especially in the marginal zone-like B-cell subset, in which the most marked difference could be observed between hUCB and hAPB (60.80 vs. 4.94%; p = 0.1). CD24hiCD38hi subset in hUCB produced IL-10 and inhibited T-cell IFN-γ [1.63 vs. 0.95 stimulation ratio (SR); p = 0.004] and IL-4 (1.63 vs. 1.44 SR; p = 0.39) production. Phenotypically, hUCB Breg cells presented IgMhiIgDhiCD5+CD10+CD27- markers, similar to those described in hAPB Breg cells, but they showed increased IgM concentration and decreased expression of CD22 and CD73 markers. Our work characterized the frequency, phenotype, and function of Breg in hUCB, which may contribute to understanding of immune tolerance during pregnancy, paving the way to a new approach to immune-related diseases in the fetus and the newborn.
Collapse
Affiliation(s)
- Ana Esteve-Solé
- Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Institut de Recerca Pediàtrica Hospital Sant Joan de Déu, Esplugues de Llobregat, Spain; Functional Unit of Clinical Immunology, Sant Joan de Déu-Hospital Clinic, Barcelona, Spain
| | - Irene Teixidó
- Materno-Fetal Medicine Department Hospital Clínic de Barcelona (HCB) , Barcelona , Spain
| | - Angela Deyà-Martínez
- Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Institut de Recerca Pediàtrica Hospital Sant Joan de Déu, Esplugues de Llobregat, Spain; Functional Unit of Clinical Immunology, Sant Joan de Déu-Hospital Clinic, Barcelona, Spain
| | - Jordi Yagüe
- Immunology Service, Biomedic Diagnostic Center, HCB Universitat de Barcelona, IDIBAPS , Barcelona , Spain
| | - Ana M Plaza-Martín
- Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Institut de Recerca Pediàtrica Hospital Sant Joan de Déu , Esplugues de Llobregat , Spain
| | - Manel Juan
- Functional Unit of Clinical Immunology, Sant Joan de Déu-Hospital Clinic, Barcelona, Spain; Immunology Service, Biomedic Diagnostic Center, HCB Universitat de Barcelona, IDIBAPS, Barcelona, Spain
| | - Laia Alsina
- Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Institut de Recerca Pediàtrica Hospital Sant Joan de Déu, Esplugues de Llobregat, Spain; Functional Unit of Clinical Immunology, Sant Joan de Déu-Hospital Clinic, Barcelona, Spain
| |
Collapse
|
178
|
Habener A, Behrendt AK, Skuljec J, Jirmo AC, Meyer-Bahlburg A, Hansen G. B cell subsets are modulated during allergic airway inflammation but are not required for the development of respiratory tolerance in a murine model. Eur J Immunol 2017; 47:552-562. [PMID: 27995616 DOI: 10.1002/eji.201646518] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 11/01/2016] [Accepted: 12/16/2016] [Indexed: 01/04/2023]
Abstract
Allergic asthma is a widespread chronic inflammatory disease of the airways. The role of different B cell subsets in developing asthma and respiratory tolerance is not well known. Especially regulatory B (Breg) cells are proposed to be important in asthma regulation. Using wild-type (WT) and B cell-deficient (μMT) mice we investigated how B cells are affected by induction of allergic airway inflammation and respiratory tolerance and whether they are necessary to develop these conditions. WT mice with an asthma-like phenotype, characterized by increased airway hyper reactivity, eosinophilic airway inflammation, mucus hypersecretion and elevated Th2 cytokines, exhibited increased MHCII and CD23 expression on follicular mature B cells in lung, bronchial lymph nodes (bLN) and spleen, which contributed to allergen-specific T cell proliferation in vitro. Germinal center B cell numbers were elevated and associated with increased production of allergen-specific immunoglobulins especially in bLN. In contrast, respiratory tolerance clearly attenuated these B cell alterations and directly enhanced marginal zone precursor B cells, which induced regulatory T cells in vitro. However, μMT mice developed asthma-like and tolerized phenotypes like WT mice. Our data indicate that although B cell subsets are affected by asthma-like and respiratory tolerant phenotypes, B cells are not required for tolerance induction.
Collapse
Affiliation(s)
- Anika Habener
- Department of Paediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL)
| | - Ann-Kathrin Behrendt
- Department of Paediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany.,Department of Paediatrics, University Medicine Greifswald, Greifswald, Germany
| | - Jelena Skuljec
- Department of Paediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL)
| | - Adan Chari Jirmo
- Department of Paediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL)
| | - Almut Meyer-Bahlburg
- Department of Paediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL).,Department of Paediatrics, University Medicine Greifswald, Greifswald, Germany
| | - Gesine Hansen
- Department of Paediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL)
| |
Collapse
|
179
|
King JK, Ung NM, Paing MH, Contreras JR, Alberti MO, Fernando TR, Zhang K, Pellegrini M, Rao DS. Regulation of Marginal Zone B-Cell Differentiation by MicroRNA-146a. Front Immunol 2017; 7:670. [PMID: 28138326 PMCID: PMC5237642 DOI: 10.3389/fimmu.2016.00670] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 12/19/2016] [Indexed: 11/13/2022] Open
Abstract
B-cell development in the bone marrow is followed by specification into functional subsets in the spleen, including marginal zone (MZ) B-cells. MZ B-cells are classically characterized by T-independent antigenic responses and require the elaboration of distinct gene expression programs for development. Given their role in gene regulation, it is not surprising that microRNAs are important factors in B-cell development. Recent work demonstrated that deficiency of the NFκB feedback regulator, miR-146a, led to a range of hematopoietic phenotypes, but B-cell phenotypes have not been extensively characterized. Here, we found that miR-146a-deficient mice demonstrate a reduction in MZ B-cells, likely from a developmental block. Utilizing high-throughput sequencing and comparative analysis of developmental stage-specific transcriptomes, we determined that MZ cell differentiation was impaired due to decreases in Notch2 signaling. Our studies reveal miR-146a-dependent B-cell phenotypes and highlight the complex role of miR-146a in the hematopoietic system.
Collapse
Affiliation(s)
- Jennifer K. King
- Division of Rheumatology and STAR Program, Department of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Cellular and Molecular Pathology Ph.D.Program, Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA, USA
| | - Nolan M. Ung
- Department of Pathology and Laboratory Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - May H. Paing
- Department of Pathology and Laboratory Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Jorge R. Contreras
- Cellular and Molecular Pathology Ph.D.Program, Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA, USA
- Department of Pathology and Laboratory Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Michael O. Alberti
- Department of Pathology and Laboratory Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Thilini R. Fernando
- Department of Pathology and Laboratory Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Kelvin Zhang
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, CA, USA
- Howard Hughes Medical Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - Matteo Pellegrini
- Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA, USA
- Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA, USA
| | - Dinesh S. Rao
- Department of Pathology and Laboratory Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
180
|
Lentucci C, Belkina AC, Cederquist CT, Chan M, Johnson HE, Prasad S, Lopacinski A, Nikolajczyk BS, Monti S, Snyder-Cappione J, Tanasa B, Cardamone MD, Perissi V. Inhibition of Ubc13-mediated Ubiquitination by GPS2 Regulates Multiple Stages of B Cell Development. J Biol Chem 2016; 292:2754-2772. [PMID: 28039360 DOI: 10.1074/jbc.m116.755132] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 12/21/2016] [Indexed: 12/12/2022] Open
Abstract
Non-proteolytic ubiquitin signaling mediated by Lys63 ubiquitin chains plays a critical role in multiple pathways that are key to the development and activation of immune cells. Our previous work indicates that GPS2 (G-protein Pathway Suppressor 2) is a multifunctional protein regulating TNFα signaling and lipid metabolism in the adipose tissue through modulation of Lys63 ubiquitination events. However, the full extent of GPS2-mediated regulation of ubiquitination and the underlying molecular mechanisms are unknown. Here, we report that GPS2 is required for restricting the activation of TLR and BCR signaling pathways and the AKT/FOXO1 pathway in immune cells based on direct inhibition of Ubc13 enzymatic activity. Relevance of this regulatory strategy is confirmed in vivo by B cell-targeted deletion of GPS2, resulting in developmental defects at multiple stages of B cell differentiation. Together, these findings reveal that GPS2 genomic and non-genomic functions are critical for the development and cellular homeostasis of B cells.
Collapse
Affiliation(s)
| | - Anna C Belkina
- the Flow Cytometry Core Facility, Boston University School of Medicine, Boston, Massachusetts 02118 and.,Microbiology, and
| | | | | | | | | | | | | | | | - Jennifer Snyder-Cappione
- the Flow Cytometry Core Facility, Boston University School of Medicine, Boston, Massachusetts 02118 and.,Microbiology, and
| | - Bogdan Tanasa
- the Department of Pediatrics, Stanford University School of Medicine, Stanford, California 94305
| | | | | |
Collapse
|
181
|
Spina V, Rossi D. Molecular pathogenesis of splenic and nodal marginal zone lymphoma. Best Pract Res Clin Haematol 2016; 30:5-12. [PMID: 28288716 DOI: 10.1016/j.beha.2016.09.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 09/22/2016] [Indexed: 12/18/2022]
Abstract
Genomic studies have improved our understanding of the biological basis of splenic (SMZL) and nodal (NMZL) marginal zone lymphoma by providing a comprehensive and unbiased view of the genes/pathways that are deregulated in these diseases. Consistent with the physiological involvement of NOTCH, NF-κB, B-cell receptor and toll-like receptor signaling in mature B-cells differentiation into the marginal zone B-cells, many oncogenic mutations of genes involved in these pathways have been identified in SMZL and NMZL. Beside genetic lesions, also epigenetic and post-transcriptional modifications contribute to the deregulation of marginal zone B-cell differentiation pathways in SMZL and NMZL. This review describes the progress in understanding the molecular mechanism underlying SMZL and NMZL, including molecular and post-transcriptional modifications, and discusses how information gained from these efforts has provided new insights on potential targets of diagnostic, prognostic and therapeutic relevance in SMZL and NMZL.
Collapse
MESH Headings
- B-Lymphocytes/metabolism
- Cell Differentiation
- Epigenesis, Genetic
- Gene Expression Regulation, Neoplastic
- Humans
- Lymphoma, B-Cell, Marginal Zone/diagnosis
- Lymphoma, B-Cell, Marginal Zone/genetics
- Lymphoma, B-Cell, Marginal Zone/metabolism
- Lymphoma, B-Cell, Marginal Zone/therapy
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Protein Processing, Post-Translational
- Splenic Neoplasms/diagnosis
- Splenic Neoplasms/genetics
- Splenic Neoplasms/metabolism
- Splenic Neoplasms/therapy
Collapse
Affiliation(s)
- Valeria Spina
- Hematology, Institute of Oncology Research and Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
| | - Davide Rossi
- Hematology, Institute of Oncology Research and Oncology Institute of Southern Switzerland, Bellinzona, Switzerland.
| |
Collapse
|
182
|
Yu X, Wang Y, Lin J, Hu Y, Kawai T, Taubman MA, Han X. Lipopolysaccharides-Induced Suppression of Innate-Like B Cell Apoptosis Is Enhanced by CpG Oligodeoxynucleotide and Requires Toll-Like Receptors 2 and 4. PLoS One 2016; 11:e0165862. [PMID: 27812176 PMCID: PMC5094738 DOI: 10.1371/journal.pone.0165862] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 10/19/2016] [Indexed: 12/30/2022] Open
Abstract
Innate-like B lymphocytes play an important role in innate immunity in periodontal disease through Toll-like receptor (TLR) signaling. However, it is unknown how innate-like B cell apoptosis is affected by the periodontal infection-associated innate signals. This study is to determine the effects of two major TLR ligands, lipopolysaccharide (LPS) and CpG-oligodeoxynucleotides (CpG-ODN), on innate-like B cell apoptosis. Spleen B cells were isolated from wild type (WT), TLR2 knockout (KO) and TLR4 KO mice and cultured with E. coli LPS alone, P. gingivalis LPS alone, or combined with CpG-ODN for 2 days. B cell apoptosis and expressions of specific apoptosis-related genes were analyzed by flow cytometry and real-time PCR respectively. P. gingivalis LPS, but not E. coli LPS, reduced the percentage of AnnexinV+/7-AAD- cells within IgMhighCD23lowCD43-CD93- marginal zone (MZ) B cell sub-population and IgMhighCD23lowCD43+CD93+ innate response activator (IRA) B cell sub-population in WT but not TLR2KO or TLR4KO mice. CpG-ODN combined with P. gingivalis LPS further reduced the percentage of AnnexinV+/7-AAD- cells within MZ B cells and IRA B cells in WT but not TLR2 KO or TLR4 KO mice. Pro-apoptotic CASP4, CASP9 and Dapk1 were significantly down-regulated in P. gingivalis LPS- and CpG-ODN-treated B cells from WT but not TLR2 KO or TLR4 KO mice. Anti-apoptotic IL-10 was significantly up-regulated in P. gingivalis LPS- and CpG-ODN-treated B cells from WT and TLR2 KO but not TLR4 KO mice. These results suggested that both TLR2 and TLR4 signaling are required for P. gingivalis LPS-induced, CpG-ODN-enhanced suppression of innate-like B cell apoptosis.
Collapse
Affiliation(s)
- Xiaoqian Yu
- The Forsyth Institute, Department of Immunology and Infectious Diseases, Cambridge, MA, United States of America
- Peking University School and Hospital of Stomatology, Department of Periodontology, Beijing, China
| | - Yuhua Wang
- The Forsyth Institute, Department of Immunology and Infectious Diseases, Cambridge, MA, United States of America
- Ninth People’s Hospital, College of Stomatology, Shanghai JiaoTong University School of Medicine, Department of Prosthodontics, Shanghai Key laboratory, Shanghai, China
| | - Jiang Lin
- The Forsyth Institute, Department of Immunology and Infectious Diseases, Cambridge, MA, United States of America
- The Fourth Hospital of Harbin Medical University, Department of stomatology, Harbin, China
| | - Yang Hu
- The Forsyth Institute, Department of Immunology and Infectious Diseases, Cambridge, MA, United States of America
| | - Toshihisa Kawai
- The Forsyth Institute, Department of Immunology and Infectious Diseases, Cambridge, MA, United States of America
| | - Martin A. Taubman
- The Forsyth Institute, Department of Immunology and Infectious Diseases, Cambridge, MA, United States of America
| | - Xiaozhe Han
- The Forsyth Institute, Department of Immunology and Infectious Diseases, Cambridge, MA, United States of America
- * E-mail:
| |
Collapse
|
183
|
Cole J, Morris P, Dickman MJ, Dockrell DH. The therapeutic potential of epigenetic manipulation during infectious diseases. Pharmacol Ther 2016; 167:85-99. [PMID: 27519803 PMCID: PMC5109899 DOI: 10.1016/j.pharmthera.2016.07.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 07/20/2016] [Indexed: 12/16/2022]
Abstract
Epigenetic modifications are increasingly recognized as playing an important role in the pathogenesis of infectious diseases. They represent a critical mechanism regulating transcriptional profiles in the immune system that contributes to the cell-type and stimulus specificity of the transcriptional response. Recent data highlight how epigenetic changes impact macrophage functional responses and polarization, influencing the innate immune system through macrophage tolerance and training. In this review we will explore how post-translational modifications of histone tails influence immune function to specific infectious diseases. We will describe how these may influence outcome, highlighting examples derived from responses to acute bacterial pathogens, models of sepsis, maintenance of viral latency and HIV infection. We will discuss how emerging classes of pharmacological agents, developed for use in oncology and other settings, have been applied to models of infectious diseases and their potential to modulate key aspects of the immune response to bacterial infection and HIV therapy.
Collapse
Affiliation(s)
- Joby Cole
- Department of Infection and Immunity, University of Sheffield Medical School, UK; Sheffield Teaching Hospitals, UK; Chemical and Biologic Engineering, University of Sheffield, UK
| | - Paul Morris
- Department of Infection and Immunity, University of Sheffield Medical School, UK; Sheffield Teaching Hospitals, UK
| | - Mark J Dickman
- Chemical and Biologic Engineering, University of Sheffield, UK
| | - David H Dockrell
- Department of Infection and Immunity, University of Sheffield Medical School, UK; Sheffield Teaching Hospitals, UK.
| |
Collapse
|
184
|
Roles of Zinc Signaling in the Immune System. J Immunol Res 2016; 2016:6762343. [PMID: 27872866 PMCID: PMC5107842 DOI: 10.1155/2016/6762343] [Citation(s) in RCA: 155] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 08/11/2016] [Indexed: 02/07/2023] Open
Abstract
Zinc (Zn) is an essential micronutrient for basic cell activities such as cell growth, differentiation, and survival. Zn deficiency depresses both innate and adaptive immune responses. However, the precise physiological mechanisms of the Zn-mediated regulation of the immune system have been largely unclear. Zn homeostasis is tightly controlled by the coordinated activity of Zn transporters and metallothioneins, which regulate the transport, distribution, and storage of Zn. There is growing evidence that Zn behaves like a signaling molecule, facilitating the transduction of a variety of signaling cascades in response to extracellular stimuli. In this review, we highlight the emerging functional roles of Zn and Zn transporters in immunity, focusing on how crosstalk between Zn and immune-related signaling guides the normal development and function of immune cells.
Collapse
|
185
|
Jones DD, Gaudette BT, Wilmore JR, Chernova I, Bortnick A, Weiss BM, Allman D. mTOR has distinct functions in generating versus sustaining humoral immunity. J Clin Invest 2016; 126:4250-4261. [PMID: 27760048 DOI: 10.1172/jci86504] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 09/08/2016] [Indexed: 12/11/2022] Open
Abstract
Little is known about the role of mTOR signaling in plasma cell differentiation and function. Furthermore, for reasons not understood, mTOR inhibition reverses antibody-associated disease in a murine model of systemic lupus erythematosus. Here, we have demonstrated that induced B lineage-specific deletion of the gene encoding RAPTOR, an essential signaling adaptor for rapamycin-sensitive mTOR complex 1 (mTORC1), abrogated the generation of antibody-secreting plasma cells in mice. Acute treatment with rapamycin recapitulated the effects of RAPTOR deficiency, and both strategies led to the ablation of newly formed plasma cells in the spleen and bone marrow while also obliterating preexisting germinal centers. Surprisingly, although perturbing mTOR activity caused a profound decline in serum antibodies that were specific for exogenous antigen or DNA, frequencies of long-lived bone marrow plasma cells were unaffected. Instead, mTORC1 inhibition led to decreased expression of immunoglobulin-binding protein (BiP) and other factors needed for robust protein synthesis. Consequently, blockade of antibody synthesis was rapidly reversed after termination of rapamycin treatment. We conclude that mTOR signaling plays critical but diverse roles in early and late phases of antibody responses and plasma cell differentiation.
Collapse
|
186
|
Elgueta R, Tse D, Deharvengt SJ, Luciano MR, Carriere C, Noelle RJ, Stan RV. Endothelial Plasmalemma Vesicle-Associated Protein Regulates the Homeostasis of Splenic Immature B Cells and B-1 B Cells. THE JOURNAL OF IMMUNOLOGY 2016; 197:3970-3981. [PMID: 27742829 DOI: 10.4049/jimmunol.1501859] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 09/18/2016] [Indexed: 12/18/2022]
Abstract
Plasmalemma vesicle-associated protein (Plvap) is an endothelial protein with roles in endothelial diaphragm formation and maintenance of basal vascular permeability. At the same time, Plvap has roles in immunity by facilitating leukocyte diapedesis at inflammatory sites and controlling peripheral lymph node morphogenesis and the entry of soluble Ags into lymph node conduits. Based on its postulated role in diapedesis, we have investigated the role of Plvap in hematopoiesis and show that deletion of Plvap results in a dramatic decrease of IgM+IgDlo B cells in both the spleen and the peritoneal cavity. Tissue-specific deletion of Plvap demonstrates that the defect is B cell extrinsic, because B cell and pan-hematopoietic Plvap deletion has no effect on IgM+IgDlo B cell numbers. Endothelial-specific deletion of Plvap in the embryo or at adult stage recapitulates the full Plvap knockout phenotype, whereas endothelial-specific reconstitution of Plvap under the Chd5 promoter rescues the IgM+IgDlo B cell phenotype. Taken together, these results show that Plvap expression in endothelial cells is important in the maintenance of IgM+ B cells in the spleen and peritoneal cavity.
Collapse
Affiliation(s)
- Raul Elgueta
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756.,Department of Immune Regulation and Intervention, Medical Research Council Centre for Transplantation, King's College London, Guy's Hospital, London, SE1 9RT, United Kingdom
| | - Dan Tse
- Department of Pathology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756
| | - Sophie J Deharvengt
- Department of Pathology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756
| | - Marcus R Luciano
- Department of Pathology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756
| | - Catherine Carriere
- Department of Medicine, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756.,Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth and Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756; and
| | - Randolph J Noelle
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756; .,Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth and Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756; and
| | - Radu V Stan
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756; .,Department of Pathology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756.,Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756
| |
Collapse
|
187
|
Wiede F, Sacirbegovic F, Leong YA, Yu D, Tiganis T. PTPN2-deficiency exacerbates T follicular helper cell and B cell responses and promotes the development of autoimmunity. J Autoimmun 2016; 76:85-100. [PMID: 27658548 DOI: 10.1016/j.jaut.2016.09.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 09/08/2016] [Accepted: 09/11/2016] [Indexed: 02/07/2023]
Abstract
Non-coding single nucleotide polymorphisms that repress PTPN2 expression have been linked with the development of type 1 diabetes, rheumatoid arthritis and Crohn's disease. PTPN2 attenuates CD8+ T cell responses to self and prevents overt autoreactivity in the context of T cell homeostasis and antigen cross-presentation. The role of PTPN2 in other immune subsets in the development of autoimmunity remains unclear. Here we show that the inducible deletion of PTPN2 in hematopoietic compartment of adult non-autoimmune prone mice results in systemic inflammation and autoimmunity. PTPN2-deficient mice had increased inflammatory monocytes, B cells and effector T cells in lymphoid and non-lymphoid tissues and exhibited symptoms of dermatitis, glomerulonephritis, pancreatitis and overt liver disease. Autoimmunity was characterised by the formation of germinal centers in the spleen and associated with markedly increased germinal center B cells and T follicular helper (Tfh) cells and circulating anti-nuclear antibodies, inflammatory cytokines and immunoglobulins. CD8+ T cell proliferative responses were enhanced, and interleukin-21-induced STAT-3 signalling in Tfh cells and B cells was increased and accompanied by enhanced B cell proliferation ex vivo. These results indicate that deficiencies in PTPN2 across multiple immune lineages, including naive T cells, Tfh cells and B cells, contribute to the development of autoimmunity.
Collapse
Affiliation(s)
- Florian Wiede
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Victoria 3800, Australia
| | - Faruk Sacirbegovic
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Victoria 3800, Australia
| | - Yew Ann Leong
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Victoria 3800, Australia
| | - Di Yu
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Victoria 3800, Australia
| | - Tony Tiganis
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Victoria 3800, Australia.
| |
Collapse
|
188
|
Peschke K, Achleitner M, Frenzel K, Gerbaulet A, Ada SR, Zeller N, Lienenklaus S, Lesche M, Poulet C, Naumann R, Dahl A, Ravens U, Günther C, Müller W, Knobeloch KP, Prinz M, Roers A, Behrendt R. Loss of Trex1 in Dendritic Cells Is Sufficient To Trigger Systemic Autoimmunity. THE JOURNAL OF IMMUNOLOGY 2016; 197:2157-66. [DOI: 10.4049/jimmunol.1600722] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 07/12/2016] [Indexed: 01/14/2023]
|
189
|
Drake LY, Iijima K, Bartemes K, Kita H. Group 2 Innate Lymphoid Cells Promote an Early Antibody Response to a Respiratory Antigen in Mice. THE JOURNAL OF IMMUNOLOGY 2016; 197:1335-42. [PMID: 27421480 DOI: 10.4049/jimmunol.1502669] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 06/13/2016] [Indexed: 01/31/2023]
Abstract
Innate lymphoid cells (ILCs) are a new family of immune cells that play important roles in innate immunity in mucosal tissues, and in the maintenance of tissue and metabolic homeostasis. Recently, group 2 ILCs (ILC2s) were found to promote the development and effector functions of Th2-type CD4(+) T cells by interacting directly with T cells or by activating dendritic cells, suggesting a role for ILC2s in regulating adaptive immunity. However, our current knowledge on the role of ILCs in humoral immunity is limited. In this study, we found that ILC2s isolated from the lungs of naive BALB/c mice enhanced the proliferation of B1- as well as B2-type B cells and promoted the production of IgM, IgG1, IgA, and IgE by these cells in vitro. Soluble factors secreted by ILC2s were sufficient to enhance B cell Ig production. By using blocking Abs and ILC2s isolated from IL-5-deficient mice, we found that ILC2-derived IL-5 is critically involved in the enhanced production of IgM. Furthermore, when adoptively transferred to Il7r(-/-) mice, which lack ILC2s and mature T cells, lung ILC2s promoted the production of IgM Abs to a polysaccharide Ag, 4-hydroxy-3-nitrophenylacetyl Ficoll, within 7 d of airway exposure in vivo. These findings add to the growing body of literature regarding the regulatory functions of ILCs in adaptive immunity, and suggest that lung ILC2s promote B cell production of early Abs to a respiratory Ag even in the absence of T cells.
Collapse
Affiliation(s)
- Li Yin Drake
- Division of Allergic Diseases, Department of Medicine, Mayo Clinic, Rochester, MN 55905; and
| | - Koji Iijima
- Division of Allergic Diseases, Department of Medicine, Mayo Clinic, Rochester, MN 55905; and
| | - Kathleen Bartemes
- Division of Allergic Diseases, Department of Medicine, Mayo Clinic, Rochester, MN 55905; and
| | - Hirohito Kita
- Division of Allergic Diseases, Department of Medicine, Mayo Clinic, Rochester, MN 55905; and Department of Immunology, Mayo Clinic, Rochester, MN 55905
| |
Collapse
|
190
|
Wang X, Jiang Y, Zhu Y, Zhang M, Li M, Wang H, Gao P. Circulating memory B cells and plasmablasts are associated with the levels of serum immunoglobulin in patients with ulcerative colitis. J Cell Mol Med 2016; 20:804-14. [PMID: 26800315 PMCID: PMC4831367 DOI: 10.1111/jcmm.12728] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 09/29/2015] [Indexed: 12/12/2022] Open
Abstract
Humoural immunity is crucial for the pathogenesis of ulcerative colitis (UC), but the precise perturbation of B cell immunity is poorly understood. This study is aimed at evaluating the numbers of different subsets of circulating memory B cells, plasmablasts, and the levels of serum immunoglobulin in UC patients. Total of 23 patients with active UC and 14 healthy controls (HC) were examined for the numbers of different subsets of circulating memory B cells and plasmablasts before and after treatment with mesalazine for 8-12 weeks by flow cytometry. Disease activity was evaluated by the Mayo clinic score. The levels of serum immunoglobulin, C-reactive protein (CRP) and erythrocyte sedimentation rate (ESR) were measured in individual subjects. In comparison with that in HC, significantly reduced numbers of IgG(+) IgD(-) CD27(+) CD19(+) memory B cells, increased numbers of CD20(-) CD19(+) plasmablast subsets, and higher serum IgG levels were detected in UC patients. The concentrations of serum IgG, the numbers of CD138(+) CD38(+) CD20(-) CD19(+), and IgG(+) CD38(+) CD20(-) CD19(+) plasmablasts were negatively associated with the numbers of IgG(+) IgD(-) CD27(+) CD19(+) memory B cells. Furthermore, the values of Mayo clinic score, CRP, or ESR in UC patients were negatively correlated with the numbers of IgG(+) IgD(-) CD27(+) CD19(+) memory B cells, while positively correlated with the serum IgG levels and the numbers of plasmablast subsets. Following treatment with mesalazine, the numbers of circulating IgG(+) IgD(-) CD27(+) CD19(+) memory B cells were significantly increased, while the numbers of CD138(+) CD38(+) CD20(-) CD19(+) and IgG(+) CD38(+) CD20(-) CD19(+) plasmablasts were reduced in UC patients. These decreased IgG(+) IgD(-) CD27(+) CD19(+) memory B cells and increased plasmablasts may be involved in the pathogenic process of UC.
Collapse
Affiliation(s)
- Xinrui Wang
- Department of Central Laboratory, The First Hospital, Jilin University, Changchun, China
| | - Yanfang Jiang
- Department of Central Laboratory, The First Hospital, Jilin University, Changchun, China
- Key Laboratory of Zoonosis Research, Ministry of Education, The First Hospital, Jilin University, Changchun, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Yonggang Zhu
- Department of Radiation Oncology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Manli Zhang
- Department of Central Laboratory, The First Hospital, Jilin University, Changchun, China
| | - Man Li
- Department of Central Laboratory, The First Hospital, Jilin University, Changchun, China
| | - Hongjuan Wang
- Department of Central Laboratory, The First Hospital, Jilin University, Changchun, China
| | - Pujun Gao
- Department of Central Laboratory, The First Hospital, Jilin University, Changchun, China
| |
Collapse
|
191
|
Negative role of TAK1 in marginal zone B-cell development incidental to NF-κB noncanonical pathway activation. Immunol Cell Biol 2016; 94:821-829. [PMID: 27121163 PMCID: PMC5073155 DOI: 10.1038/icb.2016.44] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 03/21/2016] [Accepted: 04/23/2016] [Indexed: 12/16/2022]
Abstract
The transcription factor nuclear factor-κB (NF-κB) signaling pathway is crucial in B-cell physiology. One key molecule regulating this pathway is the serine/threonine kinase TAK1 (MAP3K7). TAK1 is responsible for positive feedback mechanisms in B-cell receptor signaling that serve as an NF-κB activation threshold. This study aimed to better understand the correlation between TAK1-mediated signaling and B-cell development and humoral immune responses. Here we showed that a B-cell conditional deletion of TAK1 using mb1-cre resulted in a dramatic elimination of the humoral immune response, consistent with the absence of the B-1 B-cell subset. When monitoring the self-reactive B-cell system (the immunoglobulin hen egg lysozyme/soluble hen egg lysozyme double-transgenic mouse model), we found that TAK1-deficient B cells exhibited an enhanced susceptibility to cell death that might explain the disappearance of the B1 subset. In contrast, these mice gained numerous marginal zone (MZ) B cells. We consequently examined the basal and B-cell receptor-induced activity of NF-κB2 that is reported to regulate MZ B-cell development, and demonstrated that the activity of NF-κB2 increased in TAK1-deficient B cells. Thus, our results present a novel in vivo function, the negative role of TAK1 in MZ B-cell development that is likely associated with NF-κB2 activation.
Collapse
|
192
|
Zhang J, Wan M, Ren J, Gao J, Fu M, Wang G, Liu Y, Li W. Positive selection of B10 cells is determined by BCR specificity and signaling strength. Cell Immunol 2016; 304-305:27-34. [PMID: 27132875 DOI: 10.1016/j.cellimm.2016.04.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 03/15/2016] [Accepted: 04/22/2016] [Indexed: 02/08/2023]
Abstract
B10 cells, a regulatory B cell subset, negatively regulate immune responses in an IL-10-dependent manner. However, the mechanism of B10 cell development is unclear. We found that B10 cells mainly identified self-antigens. TgVH3B4 transgenic mice, whose VH was derived from an actin-reactive natural antibody, exhibit elevated numbers of actin-binding B10 cells. Immunization of TgVH3B4 mice with actin induced elevated B10 cell numbers in an antigen-specific manner, indicating positive selection of B10 cells by self-antigens. Furthermore, higher BCR signaling strength facilitated B10 cell development. We also observed that actin-reactive IgG levels were unchanged in TgVH3B4 mice after immunization with actin in contrast to the elevated OVA-reactive IgG level after immunization with OVA, indicating that B10 cells acted in an antigen-specific manner to inhibit the immune response. Our data demonstrate for the first time that B10 cells are positively selected by self-reactivity and that higher BCR signaling strength promotes B10 cell development.
Collapse
Affiliation(s)
- Jigang Zhang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, PR China
| | - Ming Wan
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, PR China
| | - Jing Ren
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, PR China
| | - Jixin Gao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, PR China
| | - Meng Fu
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, PR China
| | - Gang Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, PR China
| | - Yufeng Liu
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, PR China
| | - Wei Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, PR China.
| |
Collapse
|
193
|
Srikakulapu P, Hu D, Yin C, Mohanta SK, Bontha SV, Peng L, Beer M, Weber C, McNamara CA, Grassia G, Maffia P, Manz RA, Habenicht AJR. Artery Tertiary Lymphoid Organs Control Multilayered Territorialized Atherosclerosis B-Cell Responses in Aged ApoE-/- Mice. Arterioscler Thromb Vasc Biol 2016; 36:1174-85. [PMID: 27102965 PMCID: PMC4894775 DOI: 10.1161/atvbaha.115.306983] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 04/11/2016] [Indexed: 12/20/2022]
Abstract
Supplemental Digital Content is available in the text. Objective— Explore aorta B-cell immunity in aged apolipoprotein E-deficient (ApoE−/−) mice. Approach and Results— Transcript maps, fluorescence-activated cell sorting, immunofluorescence analyses, cell transfers, and Ig-ELISPOT (enzyme-linked immunospot) assays showed multilayered atherosclerosis B-cell responses in artery tertiary lymphoid organs (ATLOs). Aging-associated aorta B-cell–related transcriptomes were identified, and transcript atlases revealed highly territorialized B-cell responses in ATLOs versus atherosclerotic lesions: ATLOs showed upregulation of bona fide B-cell genes, including Cd19, Ms4a1 (Cd20), Cd79a/b, and Ighm although intima plaques preferentially expressed molecules involved in non–B effector responses toward B-cell–derived mediators, that is, Fcgr3 (Cd16), Fcer1g (Cd23), and the C1q family. ATLOs promoted B-cell recruitment. ATLO B-2 B cells included naive, transitional, follicular, germinal center, switched IgG1+, IgA+, and IgE+ memory cells, plasmablasts, and long-lived plasma cells. ATLOs recruited large numbers of B-1 cells whose subtypes were skewed toward interleukin-10+ B-1b cells versus interleukin-10− B-1a cells. ATLO B-1 cells and plasma cells constitutively produced IgM and IgG and a fraction of plasma cells expressed interleukin-10. Moreover, ApoE−/− mice showed increased germinal center B cells in renal lymph nodes, IgM-producing plasma cells in the bone marrow, and higher IgM and anti–MDA-LDL (malondialdehyde-modified low-density lipoprotein) IgG serum titers. Conclusions— ATLOs orchestrate dichotomic, territorialized, and multilayered B-cell responses in the diseased aorta; germinal center reactions indicate generation of autoimmune B cells within the diseased arterial wall during aging.
Collapse
Affiliation(s)
- Prasad Srikakulapu
- From the Cardiovascular Research Center, Department of Medicine (P.S., C.A.M.), Department of Surgery (S.V.B.), University of Virginia, Charlottesville; Institute for Immunology (D.H.) and Institute for Cardiovascular Prevention (C.Y., S.K.M., C.W., A.J.R.H.), Ludwig-Maximilians-University, Munich, Germany; Institute of Molecular Immunology, Helmholtz-Zentrum München, Oberschleißheim, Germany (D.H.); Department for Information Technology, University of Jena, Jena University Hospital, Jena, Germany (M.B.); Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom (G.G., P.M.); BHF Centre for Excellence in Vascular Science and Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom (P.M.); Department of Pharmacy, University of Naples Federico II, Naples, Italy (P.M.); Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany (R.A.M.); and Department of Traditional Chinese Medicine, Medical College of Xiamen University, Xiamen University, Xiamen, China (L.P.)
| | - Desheng Hu
- From the Cardiovascular Research Center, Department of Medicine (P.S., C.A.M.), Department of Surgery (S.V.B.), University of Virginia, Charlottesville; Institute for Immunology (D.H.) and Institute for Cardiovascular Prevention (C.Y., S.K.M., C.W., A.J.R.H.), Ludwig-Maximilians-University, Munich, Germany; Institute of Molecular Immunology, Helmholtz-Zentrum München, Oberschleißheim, Germany (D.H.); Department for Information Technology, University of Jena, Jena University Hospital, Jena, Germany (M.B.); Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom (G.G., P.M.); BHF Centre for Excellence in Vascular Science and Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom (P.M.); Department of Pharmacy, University of Naples Federico II, Naples, Italy (P.M.); Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany (R.A.M.); and Department of Traditional Chinese Medicine, Medical College of Xiamen University, Xiamen University, Xiamen, China (L.P.)
| | - Changjun Yin
- From the Cardiovascular Research Center, Department of Medicine (P.S., C.A.M.), Department of Surgery (S.V.B.), University of Virginia, Charlottesville; Institute for Immunology (D.H.) and Institute for Cardiovascular Prevention (C.Y., S.K.M., C.W., A.J.R.H.), Ludwig-Maximilians-University, Munich, Germany; Institute of Molecular Immunology, Helmholtz-Zentrum München, Oberschleißheim, Germany (D.H.); Department for Information Technology, University of Jena, Jena University Hospital, Jena, Germany (M.B.); Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom (G.G., P.M.); BHF Centre for Excellence in Vascular Science and Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom (P.M.); Department of Pharmacy, University of Naples Federico II, Naples, Italy (P.M.); Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany (R.A.M.); and Department of Traditional Chinese Medicine, Medical College of Xiamen University, Xiamen University, Xiamen, China (L.P.)
| | - Sarajo K Mohanta
- From the Cardiovascular Research Center, Department of Medicine (P.S., C.A.M.), Department of Surgery (S.V.B.), University of Virginia, Charlottesville; Institute for Immunology (D.H.) and Institute for Cardiovascular Prevention (C.Y., S.K.M., C.W., A.J.R.H.), Ludwig-Maximilians-University, Munich, Germany; Institute of Molecular Immunology, Helmholtz-Zentrum München, Oberschleißheim, Germany (D.H.); Department for Information Technology, University of Jena, Jena University Hospital, Jena, Germany (M.B.); Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom (G.G., P.M.); BHF Centre for Excellence in Vascular Science and Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom (P.M.); Department of Pharmacy, University of Naples Federico II, Naples, Italy (P.M.); Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany (R.A.M.); and Department of Traditional Chinese Medicine, Medical College of Xiamen University, Xiamen University, Xiamen, China (L.P.)
| | - Sai Vineela Bontha
- From the Cardiovascular Research Center, Department of Medicine (P.S., C.A.M.), Department of Surgery (S.V.B.), University of Virginia, Charlottesville; Institute for Immunology (D.H.) and Institute for Cardiovascular Prevention (C.Y., S.K.M., C.W., A.J.R.H.), Ludwig-Maximilians-University, Munich, Germany; Institute of Molecular Immunology, Helmholtz-Zentrum München, Oberschleißheim, Germany (D.H.); Department for Information Technology, University of Jena, Jena University Hospital, Jena, Germany (M.B.); Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom (G.G., P.M.); BHF Centre for Excellence in Vascular Science and Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom (P.M.); Department of Pharmacy, University of Naples Federico II, Naples, Italy (P.M.); Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany (R.A.M.); and Department of Traditional Chinese Medicine, Medical College of Xiamen University, Xiamen University, Xiamen, China (L.P.)
| | - Li Peng
- From the Cardiovascular Research Center, Department of Medicine (P.S., C.A.M.), Department of Surgery (S.V.B.), University of Virginia, Charlottesville; Institute for Immunology (D.H.) and Institute for Cardiovascular Prevention (C.Y., S.K.M., C.W., A.J.R.H.), Ludwig-Maximilians-University, Munich, Germany; Institute of Molecular Immunology, Helmholtz-Zentrum München, Oberschleißheim, Germany (D.H.); Department for Information Technology, University of Jena, Jena University Hospital, Jena, Germany (M.B.); Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom (G.G., P.M.); BHF Centre for Excellence in Vascular Science and Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom (P.M.); Department of Pharmacy, University of Naples Federico II, Naples, Italy (P.M.); Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany (R.A.M.); and Department of Traditional Chinese Medicine, Medical College of Xiamen University, Xiamen University, Xiamen, China (L.P.)
| | - Michael Beer
- From the Cardiovascular Research Center, Department of Medicine (P.S., C.A.M.), Department of Surgery (S.V.B.), University of Virginia, Charlottesville; Institute for Immunology (D.H.) and Institute for Cardiovascular Prevention (C.Y., S.K.M., C.W., A.J.R.H.), Ludwig-Maximilians-University, Munich, Germany; Institute of Molecular Immunology, Helmholtz-Zentrum München, Oberschleißheim, Germany (D.H.); Department for Information Technology, University of Jena, Jena University Hospital, Jena, Germany (M.B.); Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom (G.G., P.M.); BHF Centre for Excellence in Vascular Science and Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom (P.M.); Department of Pharmacy, University of Naples Federico II, Naples, Italy (P.M.); Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany (R.A.M.); and Department of Traditional Chinese Medicine, Medical College of Xiamen University, Xiamen University, Xiamen, China (L.P.)
| | - Christian Weber
- From the Cardiovascular Research Center, Department of Medicine (P.S., C.A.M.), Department of Surgery (S.V.B.), University of Virginia, Charlottesville; Institute for Immunology (D.H.) and Institute for Cardiovascular Prevention (C.Y., S.K.M., C.W., A.J.R.H.), Ludwig-Maximilians-University, Munich, Germany; Institute of Molecular Immunology, Helmholtz-Zentrum München, Oberschleißheim, Germany (D.H.); Department for Information Technology, University of Jena, Jena University Hospital, Jena, Germany (M.B.); Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom (G.G., P.M.); BHF Centre for Excellence in Vascular Science and Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom (P.M.); Department of Pharmacy, University of Naples Federico II, Naples, Italy (P.M.); Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany (R.A.M.); and Department of Traditional Chinese Medicine, Medical College of Xiamen University, Xiamen University, Xiamen, China (L.P.)
| | - Coleen A McNamara
- From the Cardiovascular Research Center, Department of Medicine (P.S., C.A.M.), Department of Surgery (S.V.B.), University of Virginia, Charlottesville; Institute for Immunology (D.H.) and Institute for Cardiovascular Prevention (C.Y., S.K.M., C.W., A.J.R.H.), Ludwig-Maximilians-University, Munich, Germany; Institute of Molecular Immunology, Helmholtz-Zentrum München, Oberschleißheim, Germany (D.H.); Department for Information Technology, University of Jena, Jena University Hospital, Jena, Germany (M.B.); Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom (G.G., P.M.); BHF Centre for Excellence in Vascular Science and Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom (P.M.); Department of Pharmacy, University of Naples Federico II, Naples, Italy (P.M.); Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany (R.A.M.); and Department of Traditional Chinese Medicine, Medical College of Xiamen University, Xiamen University, Xiamen, China (L.P.)
| | - Gianluca Grassia
- From the Cardiovascular Research Center, Department of Medicine (P.S., C.A.M.), Department of Surgery (S.V.B.), University of Virginia, Charlottesville; Institute for Immunology (D.H.) and Institute for Cardiovascular Prevention (C.Y., S.K.M., C.W., A.J.R.H.), Ludwig-Maximilians-University, Munich, Germany; Institute of Molecular Immunology, Helmholtz-Zentrum München, Oberschleißheim, Germany (D.H.); Department for Information Technology, University of Jena, Jena University Hospital, Jena, Germany (M.B.); Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom (G.G., P.M.); BHF Centre for Excellence in Vascular Science and Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom (P.M.); Department of Pharmacy, University of Naples Federico II, Naples, Italy (P.M.); Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany (R.A.M.); and Department of Traditional Chinese Medicine, Medical College of Xiamen University, Xiamen University, Xiamen, China (L.P.)
| | - Pasquale Maffia
- From the Cardiovascular Research Center, Department of Medicine (P.S., C.A.M.), Department of Surgery (S.V.B.), University of Virginia, Charlottesville; Institute for Immunology (D.H.) and Institute for Cardiovascular Prevention (C.Y., S.K.M., C.W., A.J.R.H.), Ludwig-Maximilians-University, Munich, Germany; Institute of Molecular Immunology, Helmholtz-Zentrum München, Oberschleißheim, Germany (D.H.); Department for Information Technology, University of Jena, Jena University Hospital, Jena, Germany (M.B.); Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom (G.G., P.M.); BHF Centre for Excellence in Vascular Science and Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom (P.M.); Department of Pharmacy, University of Naples Federico II, Naples, Italy (P.M.); Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany (R.A.M.); and Department of Traditional Chinese Medicine, Medical College of Xiamen University, Xiamen University, Xiamen, China (L.P.)
| | - Rudolf A Manz
- From the Cardiovascular Research Center, Department of Medicine (P.S., C.A.M.), Department of Surgery (S.V.B.), University of Virginia, Charlottesville; Institute for Immunology (D.H.) and Institute for Cardiovascular Prevention (C.Y., S.K.M., C.W., A.J.R.H.), Ludwig-Maximilians-University, Munich, Germany; Institute of Molecular Immunology, Helmholtz-Zentrum München, Oberschleißheim, Germany (D.H.); Department for Information Technology, University of Jena, Jena University Hospital, Jena, Germany (M.B.); Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom (G.G., P.M.); BHF Centre for Excellence in Vascular Science and Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom (P.M.); Department of Pharmacy, University of Naples Federico II, Naples, Italy (P.M.); Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany (R.A.M.); and Department of Traditional Chinese Medicine, Medical College of Xiamen University, Xiamen University, Xiamen, China (L.P.)
| | - Andreas J R Habenicht
- From the Cardiovascular Research Center, Department of Medicine (P.S., C.A.M.), Department of Surgery (S.V.B.), University of Virginia, Charlottesville; Institute for Immunology (D.H.) and Institute for Cardiovascular Prevention (C.Y., S.K.M., C.W., A.J.R.H.), Ludwig-Maximilians-University, Munich, Germany; Institute of Molecular Immunology, Helmholtz-Zentrum München, Oberschleißheim, Germany (D.H.); Department for Information Technology, University of Jena, Jena University Hospital, Jena, Germany (M.B.); Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom (G.G., P.M.); BHF Centre for Excellence in Vascular Science and Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom (P.M.); Department of Pharmacy, University of Naples Federico II, Naples, Italy (P.M.); Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany (R.A.M.); and Department of Traditional Chinese Medicine, Medical College of Xiamen University, Xiamen University, Xiamen, China (L.P.).
| |
Collapse
|
194
|
Hobeika E, Maity PC, Jumaa H. Control of B Cell Responsiveness by Isotype and Structural Elements of the Antigen Receptor. Trends Immunol 2016; 37:310-320. [PMID: 27052149 DOI: 10.1016/j.it.2016.03.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 03/09/2016] [Accepted: 03/13/2016] [Indexed: 01/08/2023]
Abstract
Expression of a functional B cell antigen receptor (BCR) plays a central role in regulating B cell development, maturation, and effector functions. Although IgM is solely expressed in immature B cell stages, the presence of both IgM- and IgD-BCR isotypes on mature naïve B cells raises the question of whether IgD has a unique role in B cell activation and function. While earlier studies suggested a broad functional redundancy between IgM and IgD, recent data point to an important immune regulatory role of IgD. Herein, we review these findings and discuss how the structural flexibility, mode of antigen binding, and co-receptor interactions, enable the IgD-BCR to act as a 'rheostat', regulating the activation and function of mature naïve B cells.
Collapse
Affiliation(s)
- Elias Hobeika
- Institute of Immunology, University Hospital Ulm, 89081 Ulm, Germany
| | - Palash Chandra Maity
- Department of Molecular Immunology, Faculty of Biology, Albert-Ludwigs University of Freiburg, 79104 Freiburg, Germany; Max-Planck-Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany; Center for Biological Signaling Studies (BIOSS), Albert-Ludwigs University of Freiburg, 79104 Freiburg, Germany
| | - Hassan Jumaa
- Institute of Immunology, University Hospital Ulm, 89081 Ulm, Germany; Department of Molecular Immunology, Faculty of Biology, Albert-Ludwigs University of Freiburg, 79104 Freiburg, Germany.
| |
Collapse
|
195
|
Naik E, Dixit VM. Usp9X Is Required for Lymphocyte Activation and Homeostasis through Its Control of ZAP70 Ubiquitination and PKCβ Kinase Activity. THE JOURNAL OF IMMUNOLOGY 2016; 196:3438-51. [PMID: 26936881 DOI: 10.4049/jimmunol.1403165] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 02/09/2016] [Indexed: 11/19/2022]
Abstract
To achieve a durable adaptive immune response, lymphocytes must undergo clonal expansion and induce a survival program that enables the persistence of Ag-experienced cells and the development of memory. During the priming phase of this response, CD4(+)T lymphocytes either remain tolerized or undergo clonal expansion. In this article, we show that Usp9X functions as a positive regulatory switch during T lymphocyte priming through removal of inhibitory monoubiquitination from ZAP70. In the absence of Usp9X, an increased amount of ZAP70 localized to early endosomes consistent with the role of monoubiquitin in endocytic sorting. Usp9X becomes competent to deubiquitinate ZAP70 through TCR-dependent phosphorylation and enhancement of its catalytic activity and association with the LAT signalosome. In B lymphocytes, Usp9X is required for the induction of PKCβ kinase activity after BCR-dependent activation. Accordingly, inUsp9Xknockout B cells, there was a significant reduction in phospho-CARMA1 levels that resulted in reduced CARMA1/Bcl-10/MALT-1 complex formation and NF-κB-dependent cell survival. The pleiotropic effect of Usp9X during Ag-receptor signaling highlights its importance for the development of an effective and durable adaptive immune response.
Collapse
Affiliation(s)
- Edwina Naik
- Department of Physiological Chemistry, Genentech, Inc., South San Francisco, CA 94080
| | - Vishva M Dixit
- Department of Physiological Chemistry, Genentech, Inc., South San Francisco, CA 94080
| |
Collapse
|
196
|
Reipert BM. B-cell memory against factor VIII. Cell Immunol 2016; 301:49-58. [DOI: 10.1016/j.cellimm.2016.01.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 01/05/2016] [Accepted: 01/06/2016] [Indexed: 10/22/2022]
|
197
|
Lee KE, Spata M, Bayne LJ, Buza EL, Durham AC, Allman D, Vonderheide RH, Simon MC. Hif1a Deletion Reveals Pro-Neoplastic Function of B Cells in Pancreatic Neoplasia. Cancer Discov 2016; 6:256-69. [PMID: 26715642 PMCID: PMC4783189 DOI: 10.1158/2159-8290.cd-15-0822] [Citation(s) in RCA: 169] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 12/22/2015] [Indexed: 12/25/2022]
Abstract
UNLABELLED Pancreatic ductal adenocarcinoma (PDAC) is a leading cause of cancer-related deaths worldwide, with an exceedingly low 5-year survival rate. PDAC tumors are characterized by an extensive desmoplastic stromal response and hypovascularity, suggesting that tumor hypoxia could regulate PDAC initiation and/or progression. Using a well-defined, autochthonous Kras(G12D)-driven murine model, as well as human tumors, we demonstrate that hypoxia and stabilization of hypoxia-inducible factor 1α (HIF1α), a principal mediator of hypoxic adaptation, emerge early during preinvasive stages of PDAC. Surprisingly, pancreas-specific Hif1a deletion drastically accelerated Kras(G12D)-driven pancreatic neoplasia and was accompanied by significant increases in intrapancreatic B lymphocytes, featuring prominent influx of a rare "B1b" B-cell subtype. Finally, treatment of HIF1α-deficient mice with B cell-depleting αCD20 monoclonal antibodies inhibited progression of pancreatic intraepithelial neoplasia (PanIN). Our data reveal a previously unrecognized role for B cells in promoting pancreatic tumorigenesis and implicate HIF1α as a critical regulator of PDAC development. SIGNIFICANCE We show here that pancreas-specific Hif1a deletion promotes PDAC initiation, coincident with increased intrapancreatic accumulation of B cells, and that B-cell depletion suppresses pancreatic tumorigenesis. We therefore demonstrate a protective role for HIF1α in pancreatic cancer initiation and uncover a previously unrecognized function of B cells.
Collapse
MESH Headings
- Animals
- B-Lymphocyte Subsets/immunology
- B-Lymphocyte Subsets/metabolism
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- Carcinoma in Situ
- Cell Line, Tumor
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/immunology
- Cell Transformation, Neoplastic/metabolism
- Chemokine CXCL13/metabolism
- Chemotaxis, Leukocyte/genetics
- Chemotaxis, Leukocyte/immunology
- Disease Models, Animal
- Gene Deletion
- Genes, ras
- Humans
- Hypoxia/genetics
- Hypoxia/metabolism
- Hypoxia-Inducible Factor 1, alpha Subunit/deficiency
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Mice
- Mice, Knockout
- Neoplasm Invasiveness
- Neoplasm Staging
- Pancreatic Neoplasms/etiology
- Pancreatic Neoplasms/metabolism
- Pancreatic Neoplasms/pathology
Collapse
Affiliation(s)
- Kyoung Eun Lee
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania. Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Michelle Spata
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania. Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Lauren J Bayne
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania. Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Elizabeth L Buza
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Amy C Durham
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - David Allman
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania. Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Robert H Vonderheide
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania. Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - M Celeste Simon
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania. Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania. Howard Hughes Medical Institute, Chevy Chase, Maryland.
| |
Collapse
|
198
|
Chen L, Oleksyn D, Pulvino M, Sanz I, Ryan D, Ryan C, Lin CS, Poligone B, Pentland AP, Ritchlin C, Zhao J. A critical role for the protein kinase PKK in the maintenance of recirculating mature B cells and the development of B1 cells. Immunol Lett 2016; 172:67-78. [PMID: 26921474 DOI: 10.1016/j.imlet.2016.02.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Revised: 02/16/2016] [Accepted: 02/21/2016] [Indexed: 01/10/2023]
Abstract
Protein kinase C associated kinase (PKK) regulates NF-κB activation and is required for the survival of certain lymphoma cells. Mice lacking PKK die soon after birth, and previous studies suggest that the role of PKK in B cell development might be context dependent. We have generated a mouse strain harboring conditional null alleles for PKK and a Cre-recombinase transgene under the control of the endogenous CD19 promoter. In the present study, we show that knockout of PKK in B cells results in the reduction of long-lived recirculating mature B cell population in lymph nodes and bone marrow as well as a decrease in peritoneal B1 cells, while PKK deficiency has no apparent effect on early B cell development in bone marrow or the development of follicular and marginal zone B cells in the spleen. In addition, we demonstrate that PKK-deficient B cells display defective proliferation and survival responses to stimulation of B cell receptor (BCR), which may underlie the reduction of recirculating mature B cells in PKK mutant mice. Consistently, BCR-mediated NF-κB activation, known to be required for the survival of activated but not resting B cells, is attenuated in PKK-deficient B cells. Thus, our results reveal a critical role of PKK in the maintenance of recirculating mature B cells as well as the development of B1 cells in mice.
Collapse
Affiliation(s)
- Luojing Chen
- Division of Allergy/Immunology and Rheumatology, University of Rochester Medical Center, 601 Elmwood Ave. Rochester, NY 14642, United States; Department of Dermatology, University of Rochester Medical Center, 601 Elmwood Ave. Rochester, NY 14642, United States.
| | - David Oleksyn
- Division of Allergy/Immunology and Rheumatology, University of Rochester Medical Center, 601 Elmwood Ave. Rochester, NY 14642, United States; Department of Dermatology, University of Rochester Medical Center, 601 Elmwood Ave. Rochester, NY 14642, United States
| | - Mary Pulvino
- Department of Biomedical Genetics, University of Rochester Medical Center, 601 Elmwood Ave. Rochester, NY 14642, United States
| | - Ignacio Sanz
- Division of Allergy/Immunology and Rheumatology, University of Rochester Medical Center, 601 Elmwood Ave. Rochester, NY 14642, United States
| | - Daniel Ryan
- Department of Pathology, University of Rochester Medical Center, 601 Elmwood Ave. Rochester, NY 14642, United States
| | - Charlotte Ryan
- Department of Pathology, University of Rochester Medical Center, 601 Elmwood Ave. Rochester, NY 14642, United States
| | - Chyuan-Sheng Lin
- Department of Pathology and Cell Biology & Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, United States
| | - Brian Poligone
- Department of Dermatology, University of Rochester Medical Center, 601 Elmwood Ave. Rochester, NY 14642, United States
| | - Alice P Pentland
- Department of Dermatology, University of Rochester Medical Center, 601 Elmwood Ave. Rochester, NY 14642, United States
| | - Christopher Ritchlin
- Division of Allergy/Immunology and Rheumatology, University of Rochester Medical Center, 601 Elmwood Ave. Rochester, NY 14642, United States
| | - Jiyong Zhao
- Department of Biomedical Genetics, University of Rochester Medical Center, 601 Elmwood Ave. Rochester, NY 14642, United States.
| |
Collapse
|
199
|
Fahl SP, Harris B, Coffey F, Wiest DL. Rpl22 Loss Impairs the Development of B Lymphocytes by Activating a p53-Dependent Checkpoint. THE JOURNAL OF IMMUNOLOGY 2016; 194:200-9. [PMID: 25416806 DOI: 10.4049/jimmunol.1402242] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Although ribosomal proteins facilitate the ribosome’s core function of translation, emerging evidence suggests that some ribosomal proteins are also capable of performing tissue-restricted functions either from within specialized ribosomes or from outside of the ribosome. In particular, we have previously demonstrated that germline ablation of the gene encoding ribosomal protein Rpl22 causes a selective and p53-dependent arrest of ab T cell progenitors at the b-selection checkpoint. We have now identified a crucial role for Rpl22 during early B cell development. Germline ablation of Rpl22 results in a reduction in the absolute number of B-lineage progenitors in the bone marrow beginning at the pro–B cell stage. Although Rpl22-deficient pro–B cells are hyporesponsive to IL-7, a key cytokine required for early B cell development, the arrest of B cell development does not result from disrupted IL-7 signaling. Instead, p53 induction appears to be responsible for the developmental defects, as Rpl22 deficiency causes increased expression of p53 and activation of downstream p53 target genes, and p53 deficiency rescues the defect in B cell development in Rpl22-deficient mice. Interestingly, the requirement for Rpl22 in the B cell lineage appears to be developmentally restricted, because Rpl22-deficient splenic B cells proliferate normally in response to Ag receptor and Toll receptor stimuli and undergo normal class-switch recombination. These results indicate that Rpl22 performs a critical, developmentally restricted role in supporting early B cell development by preventing p53 induction.
Collapse
Affiliation(s)
- Shawn P Fahl
- Immune Cell Development and Host Defense Program, Fox Chase Cancer Center, Philadelphia, PA 19111
| | - Bryan Harris
- Immune Cell Development and Host Defense Program, Fox Chase Cancer Center, Philadelphia, PA 19111
| | - Francis Coffey
- Immune Cell Development and Host Defense Program, Fox Chase Cancer Center, Philadelphia, PA 19111
| | - David L Wiest
- Immune Cell Development and Host Defense Program, Fox Chase Cancer Center, Philadelphia, PA 19111
| |
Collapse
|
200
|
Levit-Zerdoun E, Becker M, Pohlmeyer R, Wilhelm I, Maity PC, Rajewsky K, Reth M, Hobeika E. Survival of Igα-Deficient Mature B Cells Requires BAFF-R Function. THE JOURNAL OF IMMUNOLOGY 2016; 196:2348-60. [PMID: 26843325 DOI: 10.4049/jimmunol.1501707] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 12/29/2015] [Indexed: 12/18/2022]
Abstract
Expression of a functional BCR is essential for the development of mature B cells and has been invoked in the control of their maintenance. To test this maintenance function in a new experimental setting, we used the tamoxifen-inducible mb1-CreER(T2) mouse strain to delete or truncate either the mb-1 gene encoding the BCR signaling subunit Igα or the VDJ segment of the IgH (H chain [HC]). In this system, Cre-mediated deletion of the mb-1 gene is accompanied by expression of a GFP reporter. We found that, although the Igα-deficient mature B cells survive for >20 d in vivo, the HC-deficient or Igα tail-truncated B cell population is short-lived, with the HC-deficient cells displaying signs of an unfolded protein response. We also show that Igα-deficient B cells still respond to the prosurvival factor BAFF in culture and require BAFF-R signaling for their in vivo maintenance. These results suggest that, under certain conditions, the loss of the BCR can be tolerated by mature B cells for some time, whereas HC-deficient B cells, potentially generated by aberrant somatic mutations in the germinal center, are rapidly eliminated.
Collapse
Affiliation(s)
- Ella Levit-Zerdoun
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany; Department of Molecular Immunology, Biology III, Faculty of Biology, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany; International Max Planck Research School for Molecular and Cellular Biology, 79108 Freiburg, Germany
| | - Martin Becker
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany; Department of Molecular Immunology, Biology III, Faculty of Biology, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany; International Max Planck Research School for Molecular and Cellular Biology, 79108 Freiburg, Germany
| | - Roland Pohlmeyer
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany; Department of Molecular Immunology, Biology III, Faculty of Biology, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany; Centre for Biological Signaling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Isabel Wilhelm
- Department of Molecular Immunology, Biology III, Faculty of Biology, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany; Centre for Biological Signaling Studies, University of Freiburg, 79104 Freiburg, Germany; Spemann Graduate School of Biology and Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Palash Chandra Maity
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany; Department of Molecular Immunology, Biology III, Faculty of Biology, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany; Centre for Biological Signaling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Klaus Rajewsky
- Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany; and
| | - Michael Reth
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany; Department of Molecular Immunology, Biology III, Faculty of Biology, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany; Centre for Biological Signaling Studies, University of Freiburg, 79104 Freiburg, Germany;
| | - Elias Hobeika
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany; Centre for Biological Signaling Studies, University of Freiburg, 79104 Freiburg, Germany; Institute of Immunology, University Hospital Ulm, 89081 Ulm, Germany
| |
Collapse
|