151
|
Letourneau DR, Volmer DA. Mass spectrometry-based methods for the advanced characterization and structural analysis of lignin: A review. MASS SPECTROMETRY REVIEWS 2023; 42:144-188. [PMID: 34293221 DOI: 10.1002/mas.21716] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 06/23/2021] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
Lignin is currently one of the most promising biologically derived resources, due to its abundance and application in biofuels, materials and conversion to value aromatic chemicals. The need to better characterize and understand this complex biopolymer has led to the development of many different analytical approaches, several of which involve mass spectrometry and subsequent data analysis. This review surveys the most important analytical methods for lignin involving mass spectrometry, first looking at methods involving gas chromatography, liquid chromatography and then continuing with more contemporary methods such as matrix assisted laser desorption ionization and time-of-flight-secondary ion mass spectrometry. Following that will be techniques that directly ionize lignin mixtures-without chromatographic separation-using softer atmospheric ionization techniques that leave the lignin oligomers intact. Finally, ultra-high resolution mass analyzers such as FT-ICR have enabled lignin analysis without major sample preparation and chromatography steps. Concurrent with an increase in the resolution of mass spectrometers, there have been a wealth of complementary data analyses and visualization methods that have allowed researchers to probe deeper into the "lignome" than ever before. These approaches extract trends such as compound series and even important analytical information about lignin substructures without performing lignin degradation either chemically or during MS analysis. These innovative methods are paving the way for a more comprehensive understanding of this important biopolymer, as we seek more sustainable solutions for our human species' energy and materials needs.
Collapse
Affiliation(s)
- Dane R Letourneau
- Department of Chemistry, Humboldt University Berlin, Berlin, Germany
| | - Dietrich A Volmer
- Department of Chemistry, Humboldt University Berlin, Berlin, Germany
| |
Collapse
|
152
|
Ma X, Liu S, Wang H, Wang Y, Li Z, Gu T, Li Y, Xin F, Wen B. In Vitro Fermentation of Beechwood Lignin-Carbohydrate Complexes Provides Evidence for Utilization by Gut Bacteria. Nutrients 2023; 15:nu15010220. [PMID: 36615876 PMCID: PMC9824187 DOI: 10.3390/nu15010220] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/24/2022] [Accepted: 12/28/2022] [Indexed: 01/04/2023] Open
Abstract
Lignin-carbohydrate complexes (LCCs) are emerging as a new and natural product with pharmacological and nutraceutical potential. It is uncertain, however, whether LCCs have a positive effect on the microbiota of the gut based on the current evidence. Here, the LCC extracted from beechwood (BW-LCC) was used as a substrate for in vitro fermentation. The lignin in BW-LCC consisted of guaiacyl (G) and syringyl (S) units, which are mainly linked by β-O-4 bonds. After 24 h of in vitro fermentation, the pH had evidently declined. The concentrations of acetic acid and propionic acid, the two main short-chain fatty acids (SCFAs), were significantly higher than in the control group (CK). In addition, BW-LCC altered the microbial diversity and composition of gut microbes, including a reduction in the relative abundance of Firmicutes and an increase in the relative abundance of Proteobacteria and Bacteroidetes. The relative abundance of Escherichia coli-Shigella and Bacteroides were the most variable at the genus level. The genes of carbohydrate-active enzymes (CAZymes) also changed significantly with the fermentation and were related to the changes in microbes. Notably, the auxiliary actives (AAs), especially AA1, AA2, and AA3_2, play important roles in lignin degradation and were significantly enriched and concentrated in Proteobacteria. From this study, we are able to provide new perspectives on how gut microbes utilize LCC.
Collapse
Affiliation(s)
- Xiaochen Ma
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shujun Liu
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Hongliang Wang
- Center of Biomass Engineering, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Yulu Wang
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zhen Li
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Tianyi Gu
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yulong Li
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Fengjiao Xin
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Correspondence: (F.X.); (B.W.)
| | - Boting Wen
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Correspondence: (F.X.); (B.W.)
| |
Collapse
|
153
|
Lima LGAD, Ferreira SS, Simões MS, Cunha LXD, Fernie AR, Cesarino I. Comprehensive expression analyses of the ABCG subfamily reveal SvABCG17 as a potential transporter of lignin monomers in the model C4 grass Setaria viridis. JOURNAL OF PLANT PHYSIOLOGY 2023; 280:153900. [PMID: 36525838 DOI: 10.1016/j.jplph.2022.153900] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 12/07/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
Although several aspects of lignin metabolism have been extensively characterized, the mechanism(s) by which lignin monomers are transported across the plasma membrane remains largely unknown. Biochemical, proteomic, expression and co-expression analyses from several plant species support the involvement of active transporters, mainly those belonging to the ABC superfamily. Here, we report on the genome-wide characterization of the ABCG gene subfamily in the model C4 grass Setaria viridis and further identification of the members potentially involved in monolignol transport. A total of 48 genes encoding SvABCGs were found in the S. viridis genome, from which 21 SvABCGs were classified as full-size transporters and 27 as half-size transporters. Comprehensive analysis of the ABCG subfamily in S. viridis based on expression and co-expression analyses support a role for SvABCG17 in monolignol transport: (i) SvABCG17 is orthologous to AtABCG29, a monolignol transporter in Arabidopsis thaliana; (ii) SvABCG17 displays a similar expression profile to that of lignin biosynthetic genes in a set of different S. viridis tissues and along the elongating internode; (iii) SvABCG17 is highly co-expressed with lignin-related genes in a public transcriptomic database; (iv) SvABCG17displays particularly high expression in the top of the S. viridis elongating internode, a tissue undergoing active lignification; (v) SvABCG17 mRNA localization coincides with the histochemical pattern of lignin deposition; and (vi) the promoter of SvABCG17 is activated by secondary cell wall-associated transcription factors, especially by lignin-specific activators of the MYB family. Further studies might reveal further aspects of this potential monolignol transporter, including its real substrate specificity and whether it works redundantly with other ABC members during S. viridis lignification.
Collapse
Affiliation(s)
- Leydson Gabriel Alves de Lima
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, 277, 05508-090, São Paulo, Brazil
| | - Sávio Siqueira Ferreira
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, 277, 05508-090, São Paulo, Brazil
| | - Marcella Siqueira Simões
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, 277, 05508-090, São Paulo, Brazil
| | - Lucas Xavier da Cunha
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, 277, 05508-090, São Paulo, Brazil
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, 14476, Potsdam-Golm, Germany
| | - Igor Cesarino
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, 277, 05508-090, São Paulo, Brazil; Synthetic and Systems Biology Center, InovaUSP, Avenida Professor Lucio Martins Rodrigues, 370, 05508-020, São Paulo, Brazil.
| |
Collapse
|
154
|
Bioethanol Production from Lignocellulosic Biomass-Challenges and Solutions. Molecules 2022; 27:molecules27248717. [PMID: 36557852 PMCID: PMC9785513 DOI: 10.3390/molecules27248717] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/02/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Regarding the limited resources for fossil fuels and increasing global energy demands, greenhouse gas emissions, and climate change, there is a need to find alternative energy sources that are sustainable, environmentally friendly, renewable, and economically viable. In the last several decades, interest in second-generation bioethanol production from non-food lignocellulosic biomass in the form of organic residues rapidly increased because of its abundance, renewability, and low cost. Bioethanol production fits into the strategy of a circular economy and zero waste plans, and using ethanol as an alternative fuel gives the world economy a chance to become independent of the petrochemical industry, providing energy security and environmental safety. However, the conversion of biomass into ethanol is a challenging and multi-stage process because of the variation in the biochemical composition of biomass and the recalcitrance of lignin, the aromatic component of lignocellulose. Therefore, the commercial production of cellulosic ethanol has not yet become well-received commercially, being hampered by high research and production costs, and substantial effort is needed to make it more widespread and profitable. This review summarises the state of the art in bioethanol production from lignocellulosic biomass, highlights the most challenging steps of the process, including pretreatment stages required to fragment biomass components and further enzymatic hydrolysis and fermentation, presents the most recent technological advances to overcome the challenges and high costs, and discusses future perspectives of second-generation biorefineries.
Collapse
|
155
|
De Meester B, Van Acker R, Wouters M, Traversari S, Steenackers M, Neukermans J, Van Breusegem F, Déjardin A, Pilate G, Boerjan W. Field and saccharification performances of poplars severely downregulated in CAD1. THE NEW PHYTOLOGIST 2022; 236:2075-2090. [PMID: 35808905 DOI: 10.1111/nph.18366] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
Lignin is one of the main factors causing lignocellulosic biomass recalcitrance to enzymatic hydrolysis. Glasshouse-grown poplars severely downregulated for CINNAMYL ALCOHOL DEHYDROGENASE 1 (CAD1), the enzyme catalysing the last step in the monolignol-specific branch of lignin biosynthesis, have increased saccharification yields and normal growth. Here, we assess the performance of these hpCAD poplars in the field under short rotation coppice culture for two consecutive rotations of 1 yr and 3 yr. While 1-yr-old hpCAD wood had 10% less lignin, 3-yr-old hpCAD wood had wild-type lignin levels. Because of their altered cell wall composition, including elevated levels of cinnamaldehydes, both 1-yr-old and 3-yr-old hpCAD wood showed enhanced saccharification yields upon harsh alkaline pretreatments (up to +85% and +77%, respectively). In contrast with previous field trials with poplars less severely downregulated for CINNAMYL ALCOHOL DEHYDROGENASE (CAD), the hpCAD poplars displayed leaning phenotypes, early bud set, early flowering and yield penalties. Moreover, hpCAD wood had enlarged vessels, decreased wood density and reduced relative and free water contents. Our data show that the phenotypes of CAD-deficient poplars are strongly dependent on the environment and underpin the importance of field trials in translating basic research towards applications.
Collapse
Affiliation(s)
- Barbara De Meester
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052, Ghent, Belgium
| | - Rebecca Van Acker
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052, Ghent, Belgium
| | - Marlies Wouters
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052, Ghent, Belgium
| | - Silvia Traversari
- BioLabs, Institute of Life Sciences, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127, Pisa, Italy
- Research Institute on Terrestrial Ecosytems (IRET-CNR), Via Moruzzi 1, 56124, Pisa, Italy
| | - Marijke Steenackers
- Research Institute for Nature and Forest (INBO), Gaverstraat 4, 9500, Geraardsbergen, Belgium
| | - Jenny Neukermans
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052, Ghent, Belgium
| | - Frank Van Breusegem
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052, Ghent, Belgium
| | - Annabelle Déjardin
- INRAE, ONF, BioForA Orléans, 2163 Avenue de la pomme de pin, 45075, Ardon, France
| | - Gilles Pilate
- INRAE, ONF, BioForA Orléans, 2163 Avenue de la pomme de pin, 45075, Ardon, France
| | - Wout Boerjan
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052, Ghent, Belgium
| |
Collapse
|
156
|
Akiba N, Omori AT, Gaubeur I. Kraft lignin and its derivates - A study on the adsorption of mono and multielement metals, potential use for noble metal recycling and an alternative material for solid base catalyst. CHEMOSPHERE 2022; 308:136538. [PMID: 36150491 DOI: 10.1016/j.chemosphere.2022.136538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/05/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
Lignin is a natural polymer containing diverse functional groups and displaying an affinity for metals. Kraft lignin can be used as a carbon source, as a cleaving lignin structure for aromatic macromers or in the addition and modification of functional groups by the development of new active chemical sites. In this context, the aim of the present study is to investigate the adsorption of mono and multi-element metals solutions on lignin derivatives (unmodified Kraft lignin, acetylated Kraft lignin, charcoal Kraft lignin and activated carbon Kraft lignin). Parameters that affect adsorption processes, such as pH, contact time and adsorbent dose, were optimized in each case. The best adsorption condition was obtained at pH 7.00, a contact time of 120 min and with adsorbent dose of 30 mg. Also, unmodified Kraft lignin shows high adsorption selectivity (99%) for gold and palladium in acidic solutions. Acetylated and charcoal Kraft lignin resulted in lower adsorption levels in comparison with unmodified Kraft lignin. Activated carbon, however, reached adsorptions of over 86% for all metals. Finally, unmodified Kraft lignin impregnated with palladium presents a promising heterogeneous support in the Suzuki-Miyaura reaction.
Collapse
Affiliation(s)
- Naomi Akiba
- Center for Natural Sciences and Humanities, Federal University of ABC (UFABC), 09210-580, Santo André, SP, Brazil; Instituto de Pesquisas Tecnológicas (IPT), Avenida Prof. Almeida Prado, 532, Prédio 2, 05508-901, São Paulo, SP, Brazil
| | - Alvaro T Omori
- Center for Natural Sciences and Humanities, Federal University of ABC (UFABC), 09210-580, Santo André, SP, Brazil
| | - Ivanise Gaubeur
- Center for Natural Sciences and Humanities, Federal University of ABC (UFABC), 09210-580, Santo André, SP, Brazil.
| |
Collapse
|
157
|
Li J, Hu C, Arreola-Vargas J, Chen K, Yuan JS. Feedstock design for quality biomaterials. Trends Biotechnol 2022; 40:1535-1549. [PMID: 36273927 DOI: 10.1016/j.tibtech.2022.09.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/25/2022] [Accepted: 09/26/2022] [Indexed: 11/11/2022]
Abstract
Feedstock design is crucial for lignocellulosic biomass use. Current strategies for feedstock design cannot be readily applied to improve the quality of biomass-based materials, limiting the sustainability and economics of lignocellulosic biorefineries. Recent studies have advanced the understanding of biomass structure-property relationships and discovered several characteristics, such as molecular weight, uniformity, linkage profile, and functional groups, that are critical for manufacturing diverse quality biomaterials. These discoveries call for fundamentally different strategies for feedstock development. Such strategies need to rediscover the roles of monolignol biosynthesis enzymes and leverage lignin polymerization enzymes to achieve precise control of lignin molecular structure. These innovations could transform biomass into feedstock for high-quality biomaterials, addressing essential environmental challenges and empowering the bioeconomy.
Collapse
Affiliation(s)
- Jinghao Li
- Department of Energy, Environmental, and Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Cheng Hu
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843, USA
| | - Jorge Arreola-Vargas
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843, USA
| | - Kainan Chen
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843, USA
| | - Joshua S Yuan
- Department of Energy, Environmental, and Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA.
| |
Collapse
|
158
|
Deivayanai VC, Yaashikaa PR, Senthil Kumar P, Rangasamy G. A comprehensive review on the biological conversion of lignocellulosic biomass into hydrogen: Pretreatment strategy, technology advances and perspectives. BIORESOURCE TECHNOLOGY 2022; 365:128166. [PMID: 36283663 DOI: 10.1016/j.biortech.2022.128166] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/13/2022] [Accepted: 10/17/2022] [Indexed: 05/16/2023]
Abstract
The globe has dependent on energy generation and utilization for many years; conversely, ecological concerns constrained the world to view hydrogen as an alternative for economic development. Lignocellulosic biomass is broadly accessible as a low-cost renewable feedstock and nonreactive nature; it has received a lot of consideration as a global energy source and the most attractive alternative to replace fossil natural substances for energy production. Pretreatment of lignocellulosic biomass is essential to advance its fragmentation and lower the lignin content for sustainable energy generation. This review's goal is to provide the different pretreatment strategies for enlarging the solubility and surface area of lignocellulosic biomass. The biological conversion of lignocellulosic biomass to hydrogen was reviewed and operational conditions and enhancing methods were discussed. This review summarizes the working conditions, parameters, yield percentages, techno-economic analysis, challenges, and future recommendations on the direct conversion of biomass to hydrogen.
Collapse
Affiliation(s)
- V C Deivayanai
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai 602105, India
| | - P R Yaashikaa
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai 602105, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai 603110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai 603110, India; School of Engineering, Lebanese American University, Byblos, Lebanon.
| | - Gayathri Rangasamy
- University Centre for Research and Development & Department of Civil Engineering, Chandigarh University, Gharuan, Mohali, Punjab 140413, India
| |
Collapse
|
159
|
Ye Y, Cesarino I. A feast of consequences: Transcriptional and metabolic responses to lignin pathway perturbations. PLANT PHYSIOLOGY 2022; 190:2090-2093. [PMID: 36063038 PMCID: PMC9706415 DOI: 10.1093/plphys/kiac414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 08/14/2022] [Indexed: 06/15/2023]
Affiliation(s)
- Yajin Ye
- Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education of China, Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Igor Cesarino
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, 277, 05508-090 São Paulo, Brazil
- Synthetic and Systems Biology Center, InovaUSP, Avenida Professor Lucio Martins Rodrigues, 370, 05508-020 São Paulo, Brazil
| |
Collapse
|
160
|
Afifi OA, Tobimatsu Y, Lam PY, Martin AF, Miyamoto T, Osakabe Y, Osakabe K, Umezawa T. Genome-edited rice deficient in two 4-COUMARATE:COENZYME A LIGASE genes displays diverse lignin alterations. PLANT PHYSIOLOGY 2022; 190:2155-2172. [PMID: 36149320 PMCID: PMC9706450 DOI: 10.1093/plphys/kiac450] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 09/01/2022] [Indexed: 06/16/2023]
Abstract
The 4-coumarate:coenzyme A ligase (4CL) is a key enzyme that contributes to channeling metabolic flux in the cinnamate/monolignol pathway, leading to the production of monolignols, p-hydroxycinnamates, and a flavonoid tricin, the major building blocks of lignin polymer in grass cell walls. Vascular plants often contain multiple 4CL genes; however, the contribution of each 4CL isoform to lignin biosynthesis remains unclear, especially in grasses. In this study, we characterized the functions of two rice (Oryza sativa L.) 4CL isoforms (Os4CL3 and Os4CL4) primarily by analyzing the cell wall chemical structures of rice mutants generated by CRISPR/Cas9-mediated targeted mutagenesis. A series of chemical and nuclear magnetic resonance analyses revealed that loss-of-function of Os4CL3 and Os4CL4 differently altered the composition of lignin polymer units. Loss of function of Os4CL3 induced marked reductions in the major guaiacyl and syringyl lignin units derived from both the conserved non-γ-p-coumaroylated and the grass-specific γ-p-coumaroylated monolignols, with more prominent reductions in guaiacyl units than in syringyl units. In contrast, the loss-of-function mutation to Os4CL4 primarily decreased the abundance of the non-γ-p-coumaroylated guaiacyl units. Loss-of-function of Os4CL4, but not of Os4CL3, reduced the grass-specific lignin-bound tricin units, indicating that Os4CL4 plays a key role not only in monolignol biosynthesis but also in the biosynthesis of tricin used for lignification. Further, the loss-of-function of Os4CL3 and Os4CL4 notably reduced cell-wall-bound ferulates, indicating their roles in cell wall feruloylation. Overall, this study demonstrates the overlapping but divergent roles of 4CL isoforms during the coordinated production of various lignin monomers.
Collapse
Affiliation(s)
- Osama Ahmed Afifi
- Research Institute for Sustainable Humanosphere (RISH), Kyoto University, Kyoto 611-0011, Japan
- Faculty of Science, Al-Azhar University, Cairo 11884, Egypt
| | - Yuki Tobimatsu
- Research Institute for Sustainable Humanosphere (RISH), Kyoto University, Kyoto 611-0011, Japan
| | - Pui Ying Lam
- Center for Crossover Education, Graduate School of Engineering Science, Akita University, Akita 010-8502, Japan
| | - Andri Fadillah Martin
- Research Center for Genetic Engineering, National Research and Innovation Agency (BRIN), Bogor 16911, Indonesia
| | - Takuji Miyamoto
- Sakeology Center, Niigata University, Niigata 950-2181, Japan
| | - Yuriko Osakabe
- School of Life Science and Technology, Tokyo Institute of Technology, Tokyo 152-8550, Japan
| | - Keishi Osakabe
- Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima 770-8506, Japan
| | - Toshiaki Umezawa
- Research Institute for Sustainable Humanosphere (RISH), Kyoto University, Kyoto 611-0011, Japan
- Research Unit for Realization of Sustainable Society (RURSS), Kyoto University, Kyoto 611-0011, Japan
| |
Collapse
|
161
|
De Meester B, Vanholme R, Mota T, Boerjan W. Lignin engineering in forest trees: From gene discovery to field trials. PLANT COMMUNICATIONS 2022; 3:100465. [PMID: 36307984 PMCID: PMC9700206 DOI: 10.1016/j.xplc.2022.100465] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/10/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
Wood is an abundant and renewable feedstock for the production of pulp, fuels, and biobased materials. However, wood is recalcitrant toward deconstruction into cellulose and simple sugars, mainly because of the presence of lignin, an aromatic polymer that shields cell-wall polysaccharides. Hence, numerous research efforts have focused on engineering lignin amount and composition to improve wood processability. Here, we focus on results that have been obtained by engineering the lignin biosynthesis and branching pathways in forest trees to reduce cell-wall recalcitrance, including the introduction of exotic lignin monomers. In addition, we draw general conclusions from over 20 years of field trial research with trees engineered to produce less or altered lignin. We discuss possible causes and solutions for the yield penalty that is often associated with lignin engineering in trees. Finally, we discuss how conventional and new breeding strategies can be combined to develop elite clones with desired lignin properties. We conclude this review with priorities for the development of commercially relevant lignin-engineered trees.
Collapse
Affiliation(s)
- Barbara De Meester
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Technologiepark 71, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Ruben Vanholme
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Technologiepark 71, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Thatiane Mota
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Technologiepark 71, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Wout Boerjan
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Technologiepark 71, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium.
| |
Collapse
|
162
|
Chettri D, Nad S, Konar U, Verma AK. CAZyme from gut microbiome for efficient lignocellulose degradation and biofuel production. FRONTIERS IN CHEMICAL ENGINEERING 2022. [DOI: 10.3389/fceng.2022.1054242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Over-exploitation and energy security concerns of the diminishing fossil fuels is a challenge to the present global economy. Further, the negative impact of greenhouse gases released using conventional fuels has led to the need for searching for alternative biofuel sources with biomass in the form of lignocellulose coming up as among the potent candidates. The entrapped carbon source of the lignocellulose has multiple applications other than biofuel generation under the biorefinery approach. However, the major bottleneck in using lignocellulose for biofuel production is its recalcitrant nature. Carbohydrate Active Enzymes (CAZymes) are enzymes that are employed for the disintegration and consumption of lignocellulose biomass as the carbon source for the production of biofuels and bio-derivatives. However, the cost of enzyme production and their stability and catalytic efficiency under stressed conditions is a concern that hinders large-scale biofuel production and utilization. Search for novel CAZymes with superior activity and stability under industrial condition has become a major research focus in this area considering the fact that the most conventional CAZymes has low commercial viability. The gut of plant-eating herbivores and other organisms is a potential source of CAZyme with high efficiency. The review explores the potential of the gut microbiome of various organisms in the production of an efficient CAZyme system and the challenges in using the biofuels produced through this approach as an alternative to conventional biofuels.
Collapse
|
163
|
Eswaran SCD, Subramaniam S, Sanyal U, Rallo R, Zhang X. Molecular structural dataset of lignin macromolecule elucidating experimental structural compositions. Sci Data 2022; 9:647. [PMID: 36273011 PMCID: PMC9588021 DOI: 10.1038/s41597-022-01709-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/20/2022] [Indexed: 11/23/2022] Open
Abstract
Lignin is one of the most abundant biopolymers in nature and has great potential to be transformed into high-value chemicals. However, the limited availability of molecular structure data hinders its potential industrial applications. Herein, we present the Lignin Structural (LGS) Dataset that includes the molecular structure of milled wood lignin focusing on two major monomeric units (coniferyl and syringyl), and the six most common interunit linkages (phenylpropane β-aryl ether, resinol, phenylcoumaran, biphenyl, dibenzodioxocin, and diaryl ether). The dataset constitutes a unique resource that covers a part of lignin’s chemical space characterized by polymer chains with lengths in the range of 3 to 25 monomer units. Structural data were generated using a sequence-controlled polymer generation approach that was calibrated to match experimental lignin properties. The LGS dataset includes 60 K newly generated lignin structures that match with high accuracy (~90%) the experimentally determined structural compositions available in the literature. The LGS dataset is a valuable resource to advance lignin chemistry research, including computational simulation approaches and predictive modelling. Measurement(s) | molecular structure | Technology Type(s) | Computer Modeling | Factor Type(s) | monomer ratio • bond frequency • degree of polymerization | Sample Characteristic - Organism | coniferous (softwood) • deciduous (hardwood) |
Collapse
Affiliation(s)
- Sudha Cheranma Devi Eswaran
- Bioproducts Sciences and Engineering Laboratory, Washington State University, 2710 Crimson Way, Richland, WA, 99354, USA.,Voiland School of Chemical Engineering and Bioengineering, Washington State University, Richland, WA, 99354, USA
| | - Senthil Subramaniam
- Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA, 99354, USA
| | - Udishnu Sanyal
- Bioproducts Sciences and Engineering Laboratory, Washington State University, 2710 Crimson Way, Richland, WA, 99354, USA.,Voiland School of Chemical Engineering and Bioengineering, Washington State University, Richland, WA, 99354, USA
| | - Robert Rallo
- Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA, 99354, USA.
| | - Xiao Zhang
- Bioproducts Sciences and Engineering Laboratory, Washington State University, 2710 Crimson Way, Richland, WA, 99354, USA. .,Voiland School of Chemical Engineering and Bioengineering, Washington State University, Richland, WA, 99354, USA. .,Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA, 99354, USA.
| |
Collapse
|
164
|
Ma X, Ma J, Li M, Gu Y, Wang T. MnO2 oxidative degradation of lignin and electrochemical recovery study. Polym Degrad Stab 2022. [DOI: 10.1016/j.polymdegradstab.2022.110091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
165
|
Qin X, Zhang Z, Yang T, Yuan L, Guo Y, Yang X. Auto-fluorescence of cellulose paper with spatial solid phrase dispersion-induced fluorescence enhancement behavior for three heavy metal ions detection. Food Chem 2022; 389:133093. [PMID: 35500406 DOI: 10.1016/j.foodchem.2022.133093] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 04/15/2022] [Accepted: 04/25/2022] [Indexed: 11/19/2022]
Abstract
Auto-fluorescence of cellulose paper is often considered as an interfering fluorescence, which directly impedes the cellulose paper as a substrate material. This paper creatively explored the composition and properties of auto-fluorescence, and lignosulfonate was primarily speculated as the main source of auto-fluorescence. Surprisingly, its spatial solid phrase dispersion-induced fluorescence enhancement behavior was found. Then, cellulose paper was modified with Mn-doped ZnS quantum dots, and the prepared ratiometric fluorescent paper chip has good performances on morphology, stability, and fluorescence properties. Besides, the paper chip exhibited different fluorescence responses to three heavy metal ions in water sample. The limit of detection for Cd2+, Hg2+ and Pb2+ reached 1.61 nM, 0.01 nM, and 0.02 nM, respectively. In short, the molecular simulation results theoretically proved that heavy metal ions owned substitution affinity with lignosulfonate. Ultimately, this study was the first attempt to utilize paper-based auto-fluorescence, which could better accelerate the development of paper-based chips.
Collapse
Affiliation(s)
- Xiaoxiao Qin
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Engineering Research Center of High Value Utilization of Western Fruit Resources, Ministry of Education, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China
| | - Zhong Zhang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Engineering Research Center of High Value Utilization of Western Fruit Resources, Ministry of Education, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China; Xi'an Key Laboratory of Characteristic Fruit Storage and Preservation, Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, Xi'an, Shaanxi 710062, PR China.
| | - Tian Yang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Engineering Research Center of High Value Utilization of Western Fruit Resources, Ministry of Education, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China
| | - Li Yuan
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Engineering Research Center of High Value Utilization of Western Fruit Resources, Ministry of Education, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China
| | - Yurong Guo
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Engineering Research Center of High Value Utilization of Western Fruit Resources, Ministry of Education, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China
| | - Xingbin Yang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Engineering Research Center of High Value Utilization of Western Fruit Resources, Ministry of Education, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China; Xi'an Key Laboratory of Characteristic Fruit Storage and Preservation, Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, Xi'an, Shaanxi 710062, PR China
| |
Collapse
|
166
|
Wang Q, Xiao LP, Lv YH, Yin WZ, Hou CJ, Sun RC. Metal–Organic-Framework-Derived Copper Catalysts for the Hydrogenolysis of Lignin into Monomeric Phenols. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Qiang Wang
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Ling-Ping Xiao
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Yi-Hui Lv
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Wen-Zheng Yin
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Chuan-Jin Hou
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Run-Cang Sun
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
167
|
Recent Advancements and Challenges in Lignin Valorization: Green Routes towards Sustainable Bioproducts. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27186055. [PMID: 36144795 PMCID: PMC9500909 DOI: 10.3390/molecules27186055] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/10/2022] [Accepted: 09/13/2022] [Indexed: 11/27/2022]
Abstract
The aromatic hetero-polymer lignin is industrially processed in the paper/pulp and lignocellulose biorefinery, acting as a major energy source. It has been proven to be a natural resource for useful bioproducts; however, its depolymerization and conversion into high-value-added chemicals is the major challenge due to the complicated structure and heterogeneity. Conversely, the various pre-treatments techniques and valorization strategies offers a potential solution for developing a biomass-based biorefinery. Thus, the current review focus on the new isolation techniques for lignin, various pre-treatment approaches and biocatalytic methods for the synthesis of sustainable value-added products. Meanwhile, the challenges and prospective for the green synthesis of various biomolecules via utilizing the complicated hetero-polymer lignin are also discussed.
Collapse
|
168
|
Lu H, Dun C, Jariwala H, Wang R, Cui P, Zhang H, Dai Q, Yang S, Zhang H. Improvement of bio-based polyurethane and its optimal application in controlled release fertilizer. J Control Release 2022; 350:748-760. [PMID: 36030990 DOI: 10.1016/j.jconrel.2022.08.039] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/20/2022] [Accepted: 08/21/2022] [Indexed: 11/28/2022]
Abstract
In the past decades, polyurethane has emerged as a new material that has been widely developed and applied in coated controlled release fertilizers (CRFs). Particularly in recent years, the excessive consumption of petroleum resources and increasing demand for sustainable development have resulted in considerable interest in bio-based polyurethane coated controlled-release fertilizers. This review article focuses on the application and progress of environmentally friendly bio-based materials in the polyurethane-coated CRF industry. We also explore prospects for the green and sustainable development of coated CRFs. Using animal and plant oils, starch, lignin, and cellulose as raw materials, polyols can be produced by physical, chemical, and biological means to replace petroleum-based materials and polyurethane film coating for CRFs can be prepared. Various modifications can also improve the hydrophobicity and degradability of polyurethane film. A growing body of research on bio-based polyurethane has revealed its great potential in the production and application of coated CRFs. The purpose of this review is to highlight the practicality of bio-based materials in the application of polyurethane-coated CRFs and to clarify their current limitations.
Collapse
Affiliation(s)
- Hao Lu
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Yangzhou University, Yangzhou, Jiangsu 225009, China; Key Laboratory of Saline-alkali Soil Improvement and Utilization (Coastal Saline-alkali Lands), Ministry of Agriculture and Rural Affairs, P.R. China, Yangzhou University, Yangzhou, Jiangsu, China
| | - Canping Dun
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Hiral Jariwala
- School of Engineering, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
| | - Rui Wang
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Peiyuan Cui
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Haipeng Zhang
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Qigen Dai
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Yangzhou University, Yangzhou, Jiangsu 225009, China; Key Laboratory of Saline-alkali Soil Improvement and Utilization (Coastal Saline-alkali Lands), Ministry of Agriculture and Rural Affairs, P.R. China, Yangzhou University, Yangzhou, Jiangsu, China
| | - Shuo Yang
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Hongcheng Zhang
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Yangzhou University, Yangzhou, Jiangsu 225009, China.
| |
Collapse
|
169
|
Momayez F, Hedenström M, Stagge S, Jönsson LJ, Martín C. Valorization of hydrolysis lignin from a spruce-based biorefinery by applying γ-valerolactone treatment. BIORESOURCE TECHNOLOGY 2022; 359:127466. [PMID: 35710049 DOI: 10.1016/j.biortech.2022.127466] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
Hydrolysis lignin, i.e., the hydrolysis residue of cellulosic ethanol plants, was extracted with the green solvent γ-valerolactone (GVL). Treatments at 170-210 °C were performed with either non-acidified GVL/water mixtures (NA-GVL) or with mixtures containing sulfuric acid (SA-GVL). SA-GVL treatment at 210 °C resulted in the highest lignin solubilization (64% (w/w) of initial content), and 76% of the solubilized mass was regenerated by water-induced precipitation. Regenerated lignins were characterized through compositional analysis with sulfuric acid, as well as using pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS), high-performance size-exclusion chromatography (HPSEC), solid-state cross-polarization/magic angle spinning 13C nuclear magnetic resonance (CP/MAS 13C NMR) spectroscopy, 1H-13C heteronuclear single-quantum coherence NMR (HSQC NMR), and Fourier-transform infrared (FTIR) spectroscopy. The characterization revealed that the main difference between regenerated lignins was their molecular weight. Molecular weight averages increased with treatment temperature, and they were higher and had broader distribution for SA-GVL lignins than for NA-GVL lignins.
Collapse
Affiliation(s)
- Forough Momayez
- Umeå University, Department of Chemistry, SE-901 87 Umeå, Sweden
| | | | - Stefan Stagge
- Umeå University, Department of Chemistry, SE-901 87 Umeå, Sweden
| | - Leif J Jönsson
- Umeå University, Department of Chemistry, SE-901 87 Umeå, Sweden
| | - Carlos Martín
- Umeå University, Department of Chemistry, SE-901 87 Umeå, Sweden; Inland Norway University of Applied Sciences, Department of Biotechnology, N-2317 Hamar, Norway.
| |
Collapse
|
170
|
Nelson CD. Tree breeding, a necessary complement to genetic engineering. NEW FORESTS 2022; 54:1-18. [PMID: 35991378 PMCID: PMC9379239 DOI: 10.1007/s11056-022-09931-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
The fields of tree breeding and genetic engineering can be perceived as being antagonistic towards each other-genetic engineers suggesting that tree breeding is too slow and expensive and tree breeders suggesting that genetic engineering is not practical and too expensive. We argue here that both fields have much to offer forestry and the success of each is intimately tied to the other. The major purposes of genetic engineering in forestry are described as well as the importance of evaluating tree engineering initiatives in the context of tree improvement and silviculture and integrating genetic engineering with tree breeding from start to finish. A generalized approach is developed that meets these requirements and demonstrates the interrelationships between the activities and phases of each program. In addition, a case study of the American chestnut (Castanea dentata) is provided to underscore the value of integrating genetic engineering and tree breeding programs to achieve a long-term conservation goal.
Collapse
Affiliation(s)
- C. Dana Nelson
- USDA Forest Service, Southern Research Station, Lexington, KY 40546 USA
| |
Collapse
|
171
|
Rivai RR, Miyamoto T, Awano T, Yoshinaga A, Chen S, Sugiyama J, Tobimatsu Y, Umezawa T, Kobayashi M. Limiting silicon supply alters lignin content and structures of sorghum seedling cell walls. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 321:111325. [PMID: 35696925 DOI: 10.1016/j.plantsci.2022.111325] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
Sorghum has been recognized as a promising energy crop. The composition and structure of lignin in the cell wall are important factors that affect the quality of plant biomass as a bioenergy feedstock. Silicon (Si) supply may affect the lignin content and structure, as both Si and lignin are possibly involved in plant mechanical strength. However, our understanding regarding the interaction between Si and lignin in sorghum is limited. Therefore, in this study, we analyzed the lignin in the cell walls of sorghum seedlings cultured hydroponically with or without Si supplementation. Limiting the Si supply significantly increased the thioglycolic acid lignin content and thioacidolysis-derived syringyl/guaiacyl monomer ratio. At least part of the modification may be attributable to the change in gene expression, as suggested by the upregulation of phenylpropanoid biosynthesis-related genes under -Si conditions. The cell walls of the -Si plants had a higher mechanical strength and calorific value than those of the +Si plants. These results provide some insights into the enhancement of the value of sorghum biomass as a feedstock for energy production by limiting Si uptake.
Collapse
Affiliation(s)
- Reza Ramdan Rivai
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan; National Research and Innovation Agency of the Republic of Indonesia, Bogor, Indonesia
| | - Takuji Miyamoto
- Research Institute for Sustainable Humanosphere, Kyoto University, Kyoto, Japan
| | - Tatsuya Awano
- Division of Forest and Biomaterials Science, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Arata Yoshinaga
- Division of Forest and Biomaterials Science, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Shuoye Chen
- Division of Forest and Biomaterials Science, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Junji Sugiyama
- Division of Forest and Biomaterials Science, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Yuki Tobimatsu
- Research Institute for Sustainable Humanosphere, Kyoto University, Kyoto, Japan
| | - Toshiaki Umezawa
- Research Institute for Sustainable Humanosphere, Kyoto University, Kyoto, Japan
| | - Masaru Kobayashi
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan.
| |
Collapse
|
172
|
The temptation from homogeneous linear catechyl lignin. TRENDS IN CHEMISTRY 2022. [DOI: 10.1016/j.trechm.2022.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
173
|
Muro-Villanueva F, Kim H, Ralph J, Chapple C. H-lignin can be deposited independently of CINNAMYL ALCOHOL DEHYDROGENASE C and D in Arabidopsis. PLANT PHYSIOLOGY 2022; 189:2015-2028. [PMID: 35522042 PMCID: PMC9342963 DOI: 10.1093/plphys/kiac210] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/12/2022] [Indexed: 05/08/2023]
Abstract
Lignin contributes substantially to the recalcitrance of biomass toward saccharification. To circumvent this problem, researchers have genetically altered lignin, although, in a number of cases, these efforts have resulted in an undesirable yield penalty. Recent findings have shown that by knocking out two subunits (MED5A and MED5B) of the transcriptional regulatory complex Mediator, the stunted growth phenotype of mutants in p-coumaroyl shikimate 3'-hydroxylase, reduced epidermal fluorescence 8-1 (ref8-1), can be alleviated. Furthermore, these plants synthesize a lignin polymer almost entirely derived from p-coumaryl alcohol. Plants deficient in cinnamyl alcohol dehydrogenase (CAD) are notable in that they primarily incorporate coniferaldehyde and sinapaldehyde into their lignin. We tested the hypothesis that by stacking mutations in the genes encoding for the CAD paralogs C and D on an Arabidopsis (Arabidopsis thaliana) med5a/5b ref8-1 genetic background, the biosynthesis of p-coumaryl alcohol would be blocked, making p-coumaraldehyde available for polymerization into a novel kind of lignin. The med5a/5b ref8-1 cadc cadd plants are viable, but lignin analysis demonstrated that they continue to synthesize p-hydroxyphenyl lignin despite being mutated for the CADs typically considered to be required for monolignol biosynthesis. In addition, enzyme activity tests showed that even in the absence of CADC and CADD, there is high CAD activity in stems. We tested the potential involvement of other CADs in p-coumaraldehyde biosynthesis in the quintuple mutant by mutating them using the CRISPR/Cas9 system. Lignin analysis demonstrated that the resulting hextuple mutant plants continue to deposit p-coumaryl alcohol-derived lignin, demonstrating a route for the synthesis of p-hydroxyphenyl lignin in Arabidopsis independent of four CAD isoforms.
Collapse
Affiliation(s)
- Fabiola Muro-Villanueva
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907, USA
- Center for Plant Biology, Purdue University, West Lafayette, Indiana 47907, USA
| | - Hoon Kim
- US Department of Energy’s Great Lakes Bioenergy Research Center (GLBRC), Wisconsin Energy Institute (WEI), Madison, Wisconsin 53726, USA
| | - John Ralph
- US Department of Energy’s Great Lakes Bioenergy Research Center (GLBRC), Wisconsin Energy Institute (WEI), Madison, Wisconsin 53726, USA
- Department of Biochemistry, University of Wisconsin–Madison, Madison, Wisconsin 53706, USA
| | | |
Collapse
|
174
|
Cesarino I. Yet another twist in lignin biosynthesis: Is there a specific alcohol dehydrogenase for H-lignin production? PLANT PHYSIOLOGY 2022; 189:1884-1886. [PMID: 35639729 PMCID: PMC9343006 DOI: 10.1093/plphys/kiac249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 05/10/2022] [Indexed: 05/28/2023]
|
175
|
Identification and Functional Analysis of the Caffeic Acid O-Methyltransferase (COMT) Gene Family in Rice (Oryza sativa L.). Int J Mol Sci 2022; 23:ijms23158491. [PMID: 35955626 PMCID: PMC9369235 DOI: 10.3390/ijms23158491] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 07/28/2022] [Accepted: 07/28/2022] [Indexed: 11/16/2022] Open
Abstract
Caffeic acid O-methyltransferase (COMT) is one of the core enzymes involved in lignin synthesis. However, there is no systematic study on the rice COMT gene family. We identified 33 COMT genes containing the methyltransferase-2 domain in the rice genome using bioinformatic methods and divided them into Group I (a and b) and Group II. Motifs, conserved domains, gene structure and SNPs density are related to the classification of OsCOMTs. The tandem phenomenon plays a key role in the expansion of OsCOMTs. The expression levels of fourteen and thirteen OsCOMTs increased or decreased under salt stress and drought stress, respectively. OsCOMTs showed higher expression levels in the stem. The lignin content of rice was measured in five stages; combined with the expression analysis of OsCOMTs and multiple sequence alignment, we found that OsCOMT8, OsCOMT9 and OsCOMT15 play a key role in the synthesis of lignin. Targeted miRNAs and gene ontology annotation revealed that OsCOMTs were involved in abiotic stress responses. Our study contributes to the analysis of the biological function of OsCOMTs, which may provide information for future rice breeding and editing of the rice genome.
Collapse
|
176
|
Sun H, Xu Q, Ren M, Wang S, Kong F. Recent Studies on the Preparation and Application of Ionic Amphiphilic Lignin: A Comprehensive Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:8871-8891. [PMID: 35848582 DOI: 10.1021/acs.jafc.2c02798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
As the second most abundant natural polymer after cellulose, lignin has received considerable attention recently due to its reproducibility, safety, and biodegradability. Studies are now focusing on the development of new lignin applications to replace petroleum-based chemicals. Unfortunately, lignin has several inherent problems, such as poor water solubility and a tendency to agglomerate. However, after chemical modification, lignin can gain new functions through the introduction of new functional groups. For example, amphiphilic lignin is a polymer that is soluble in both water and organic solvents. Amphiphilic lignin polymers can be divided into anionic, cationic, and anionic-cationic amphoteric lignin-based polymers, according to the ions contained in their molecular structure. Amphiphilic lignin polymers also have a wide range of applications in various industrial fields and can be used as wetting agents, detergents, controlled release fertilizers, adsorbents, and emulsifiers. Thus, this article reviews research progress on the synthesis and applications of amphiphilic lignin-derived polymers over the past 10 years, providing a theoretical reference for the utilization of high-added-value and high-performance lignin.
Collapse
Affiliation(s)
- Hui Sun
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Qingyu Xu
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Mingguang Ren
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Shoujuan Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Fangong Kong
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| |
Collapse
|
177
|
Singh‐Morgan A, Puente‐Urbina A, van Bokhoven JA. Technology Overview of Fast Pyrolysis of Lignin: Current State and Potential for Scale-Up. CHEMSUSCHEM 2022; 15:e202200343. [PMID: 35474609 PMCID: PMC9400966 DOI: 10.1002/cssc.202200343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Indexed: 06/14/2023]
Abstract
Lignin is an abundant natural polymer obtained from lignocellulosic biomass and rich in aromatic substructures. When efficiently depolymerized, it has great potential in the production of value-added chemicals. Fast pyrolysis is a promising depolymerization method, but current studies focus mainly on small quantities of lignin. In this Review, to determine the potential for upscaling, systems used in the most relevant unit operations of fast pyrolysis of lignin are evaluated. Fluidized-bed reactors have the most potential. It would be beneficial to combine them with the following: slug injectors for feeding, hot particle filters, cyclones, and fractional condensation for product separation and recovery. Moreover, upgrading lignin pyrolysis oil would allow the necessary quality parameters for particular applications to be reached.
Collapse
Affiliation(s)
- Amrita Singh‐Morgan
- Institute for Chemical and BioengineeringDepartment of Chemistry and Applied BiosciencesETH Zurich HCI E 127Vladimir-Prelog-Weg 18093ZurichSwitzerland
- School of ChemistryUniversity of EdinburghEdinburgh EH9 3FJUnited Kingdom
| | - Allen Puente‐Urbina
- Institute for Chemical and BioengineeringDepartment of Chemistry and Applied BiosciencesETH Zurich HCI E 127Vladimir-Prelog-Weg 18093ZurichSwitzerland
| | - Jeroen A. van Bokhoven
- Institute for Chemical and BioengineeringDepartment of Chemistry and Applied BiosciencesETH Zurich HCI E 127Vladimir-Prelog-Weg 18093ZurichSwitzerland
- Laboratory for Catalysis and Sustainable ChemistryPaul Scherrer Institute OSUA 201Forschungsstrasse 1115232VilligenSwitzerland
| |
Collapse
|
178
|
Hoengenaert L, Wouters M, Kim H, De Meester B, Morreel K, Vandersyppe S, Pollier J, Desmet S, Goeminne G, Ralph J, Boerjan W, Vanholme R. Overexpression of the scopoletin biosynthetic pathway enhances lignocellulosic biomass processing. SCIENCE ADVANCES 2022; 8:eabo5738. [PMID: 35857515 PMCID: PMC9278857 DOI: 10.1126/sciadv.abo5738] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 06/03/2022] [Indexed: 06/15/2023]
Abstract
Lignin is the main factor limiting the enzymatic conversion of lignocellulosic biomass into fermentable sugars. To reduce the recalcitrance engendered by the lignin polymer, the coumarin scopoletin was incorporated into the lignin polymer through the simultaneous expression of FERULOYL-CoA 6'-HYDROXYLASE 1 (F6'H1) and COUMARIN SYNTHASE (COSY) in lignifying cells in Arabidopsis. The transgenic lines overproduced scopoletin and incorporated it into the lignin polymer, without adversely affecting plant growth. About 3.3% of the lignin units in the transgenic lines were derived from scopoletin, thereby exceeding the levels of the traditional p-hydroxyphenyl units. Saccharification efficiency of alkali-pretreated scopoletin-overproducing lines was 40% higher than for wild type.
Collapse
Affiliation(s)
- Lennart Hoengenaert
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Marlies Wouters
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Hoon Kim
- Department of Biochemistry and U.S. Department of Energy’s Great Lakes Bioenergy Research Center, University of Wisconsin, Madison, WI, USA
| | - Barbara De Meester
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Kris Morreel
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Steven Vandersyppe
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
- VIB Metabolomics Core, Ghent, Belgium
| | - Jacob Pollier
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
- VIB Metabolomics Core, Ghent, Belgium
| | - Sandrien Desmet
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
- VIB Metabolomics Core, Ghent, Belgium
| | - Geert Goeminne
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
- VIB Metabolomics Core, Ghent, Belgium
| | - John Ralph
- Department of Biochemistry and U.S. Department of Energy’s Great Lakes Bioenergy Research Center, University of Wisconsin, Madison, WI, USA
| | - Wout Boerjan
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Ruben Vanholme
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| |
Collapse
|
179
|
Wang Y, Kalscheur J, Ebikade E, Li Q, Vlachos DG. LigninGraphs: lignin structure determination with multiscale graph modeling. J Cheminform 2022; 14:43. [PMID: 35794646 PMCID: PMC9261032 DOI: 10.1186/s13321-022-00627-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/12/2022] [Indexed: 11/10/2022] Open
Abstract
Lignin is an aromatic biopolymer found in ubiquitous sources of woody biomass. Designing and optimizing lignin valorization processes requires a fundamental understanding of lignin structures. Experimental characterization techniques, such as 2D-heteronuclear single quantum coherence (HSQC) nuclear magnetic resonance (NMR) spectra, could elucidate the global properties of the polymer molecules. Computer models could extend the resolution of experiments by representing structures at the molecular and atomistic scales. We introduce a graph-based multiscale modeling framework for lignin structure generation and visualization. The framework employs accelerated rejection-free polymerization and hierarchical Metropolis Monte Carlo optimization algorithms. We obtain structure libraries for various lignin feedstocks based on literature and new experimental NMR data for poplar wood, pinewood, and herbaceous lignin. The framework could guide researchers towards feasible lignin structures, efficient space exploration, and future kinetics modeling. Its software implementation in Python, LigninGraphs, is open-source and available on GitHub.
Collapse
Affiliation(s)
- Yifan Wang
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy St, Newark, DE, 19716, USA.,Catalysis Center for Energy Innovation, RAPID Manufacturing Institute, and Delaware Energy Institute (DEI), University of Delaware, 221 Academy St, Newark, DE, 19716, USA
| | - Jake Kalscheur
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy St, Newark, DE, 19716, USA.,Catalysis Center for Energy Innovation, RAPID Manufacturing Institute, and Delaware Energy Institute (DEI), University of Delaware, 221 Academy St, Newark, DE, 19716, USA
| | - Elvis Ebikade
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy St, Newark, DE, 19716, USA.,Catalysis Center for Energy Innovation, RAPID Manufacturing Institute, and Delaware Energy Institute (DEI), University of Delaware, 221 Academy St, Newark, DE, 19716, USA
| | - Qiang Li
- Catalysis Center for Energy Innovation, RAPID Manufacturing Institute, and Delaware Energy Institute (DEI), University of Delaware, 221 Academy St, Newark, DE, 19716, USA
| | - Dionisios G Vlachos
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy St, Newark, DE, 19716, USA. .,Catalysis Center for Energy Innovation, RAPID Manufacturing Institute, and Delaware Energy Institute (DEI), University of Delaware, 221 Academy St, Newark, DE, 19716, USA.
| |
Collapse
|
180
|
De Meester B, Oyarce P, Vanholme R, Van Acker R, Tsuji Y, Vangeel T, Van den Bosch S, Van Doorsselaere J, Sels B, Ralph J, Boerjan W. Engineering Curcumin Biosynthesis in Poplar Affects Lignification and Biomass Yield. FRONTIERS IN PLANT SCIENCE 2022; 13:943349. [PMID: 35860528 PMCID: PMC9289561 DOI: 10.3389/fpls.2022.943349] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/14/2022] [Indexed: 06/02/2023]
Abstract
Lignocellulosic biomass is recalcitrant toward deconstruction into simple sugars mainly due to the presence of lignin. By engineering plants to partially replace traditional lignin monomers with alternative ones, lignin degradability and extractability can be enhanced. Previously, the alternative monomer curcumin has been successfully produced and incorporated into lignified cell walls of Arabidopsis by the heterologous expression of DIKETIDE-CoA SYNTHASE (DCS) and CURCUMIN SYNTHASE2 (CURS2). The resulting transgenic plants did not suffer from yield penalties and had an increased saccharification yield after alkaline pretreatment. Here, we translated this strategy into the bio-energy crop poplar. Via the heterologous expression of DCS and CURS2 under the control of the secondary cell wall CELLULOSE SYNTHASE A8-B promoter (ProCesA8-B), curcumin was also produced and incorporated into the lignified cell walls of poplar. ProCesA8-B:DCS_CURS2 transgenic poplars, however, suffered from shoot-tip necrosis and yield penalties. Compared to that of the wild-type (WT), the wood of transgenic poplars had 21% less cellulose, 28% more matrix polysaccharides, 23% more lignin and a significantly altered lignin composition. More specifically, ProCesA8-B:DCS_CURS2 lignin had a reduced syringyl/guaiacyl unit (S/G) ratio, an increased frequency of p-hydroxyphenyl (H) units, a decreased frequency of p-hydroxybenzoates and a higher fraction of phenylcoumaran units. Without, or with alkaline or hot water pretreatment, the saccharification efficiency of the transgenic lines was equal to that of the WT. These differences in (growth) phenotype illustrate that translational research in crops is essential to assess the value of an engineering strategy for applications. Further fine-tuning of this research strategy (e.g., by using more specific promoters or by translating this strategy to other crops such as maize) might lead to transgenic bio-energy crops with cell walls more amenable to deconstruction without settling in yield.
Collapse
Affiliation(s)
- Barbara De Meester
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Paula Oyarce
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Ruben Vanholme
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Rebecca Van Acker
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Yukiko Tsuji
- Department of Biochemistry, University of Wisconsin, Madison, WI, United States
- US Department of Energy, Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, Madison, WI, United States
| | - Thijs Vangeel
- Center for Sustainable Catalysis and Engineering, KU Leuven, Leuven, Belgium
| | | | | | - Bert Sels
- Center for Sustainable Catalysis and Engineering, KU Leuven, Leuven, Belgium
| | - John Ralph
- Department of Biochemistry, University of Wisconsin, Madison, WI, United States
- US Department of Energy, Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, Madison, WI, United States
| | - Wout Boerjan
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| |
Collapse
|
181
|
Alternative Splicing and Its Roles in Plant Metabolism. Int J Mol Sci 2022; 23:ijms23137355. [PMID: 35806361 PMCID: PMC9266299 DOI: 10.3390/ijms23137355] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 01/02/2023] Open
Abstract
Plant metabolism, including primary metabolism such as tricarboxylic acid cycle, glycolysis, shikimate and amino acid pathways as well as specialized metabolism such as biosynthesis of phenolics, alkaloids and saponins, contributes to plant survival, growth, development and interactions with the environment. To this end, these metabolic processes are tightly and finely regulated transcriptionally, post-transcriptionally, translationally and post-translationally in response to different growth and developmental stages as well as the constantly changing environment. In this review, we summarize and describe the current knowledge of the regulation of plant metabolism by alternative splicing, a post-transcriptional regulatory mechanism that generates multiple protein isoforms from a single gene by using alternative splice sites during splicing. Numerous genes in plant metabolism have been shown to be alternatively spliced under different developmental stages and stress conditions. In particular, alternative splicing serves as a regulatory mechanism to fine-tune plant metabolism by altering biochemical activities, interaction and subcellular localization of proteins encoded by splice isoforms of various genes.
Collapse
|
182
|
Liu Z, Ku X, Jin H. Pyrolysis Mechanism of Wheat Straw Based on ReaxFF Molecular Dynamics Simulations. ACS OMEGA 2022; 7:21075-21085. [PMID: 35755388 PMCID: PMC9218979 DOI: 10.1021/acsomega.2c01899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
Biomass has played an increasingly important role in the consumption of energy worldwide because of its renewability and carbon-neutral property. In this work, the pyrolysis mechanism of wheat straw is explored using reactive force field molecular dynamics simulations. A large-scale wheat straw model composed of cellulose, hemicellulose, and lignin is built. After model validation, the temporal evolutions of the main pyrolysis products under different temperatures are analyzed. As the temperature rises, the gas production increases and the tar yield can decrease after peaking. Relatively high temperatures accelerate the generation rates of the main gas and tar species. CO and CO2 molecules mainly come from the cleavage of CHO2 radicals, and numerous H2O molecules are generated on account of dehydration. Moreover, the evolution of six functional groups and pyran and phenyl rings as well as three types of bonds is also presented. It is observed that the phenyl rings reflect improved thermostability. Finally, the pyrolytic kinetics analysis is conducted, and the estimated activation energy of wheat straw pyrolysis is found to be 56.19 kJ/mol. All these observations can help deeply understand the pyrolytic mechanism of wheat straw biomass.
Collapse
Affiliation(s)
- Zhiwei Liu
- Department
of Engineering Mechanics, Zhejiang University, 310027 Hangzhou, China
| | - Xiaoke Ku
- Department
of Engineering Mechanics, Zhejiang University, 310027 Hangzhou, China
- State
Key Laboratory of Clean Energy Utilization, Zhejiang University, 310027 Hangzhou, China
| | - Hanhui Jin
- Department
of Engineering Mechanics, Zhejiang University, 310027 Hangzhou, China
| |
Collapse
|
183
|
Smith RA, Lu F, Muro-Villanueva F, Cusumano JC, Chapple C, Ralph J. Manipulation of Lignin Monomer Composition Combined with the Introduction of Monolignol Conjugate Biosynthesis Leads to Synergistic Changes in Lignin Structure. PLANT & CELL PHYSIOLOGY 2022; 63:744-754. [PMID: 35275214 PMCID: PMC9245121 DOI: 10.1093/pcp/pcac031] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 02/22/2022] [Accepted: 03/10/2022] [Indexed: 06/01/2023]
Abstract
The complexity of lignin structure impedes efficient cell wall digestibility. Native lignin is composed of a mixture of three dominant monomers, coupled together through a variety of linkages. Work over the past few decades has demonstrated that lignin composition can be altered through a variety of mutational and transgenic approaches such that the polymer is derived almost entirely from a single monomer. In this study, we investigated changes to lignin structure and digestibility in Arabidopsis thaliana in near-single-monolignol transgenics and mutants and determined whether novel monolignol conjugates, produced by a FERULOYL-CoA MONOLIGNOL TRANSFERASE (FMT) or a p-COUMAROYL-CoA MONOLIGNOL TRANSFERASE (PMT), could be integrated into these novel polymers to further improve saccharification efficiency. Monolignol conjugates, including a new conjugate of interest, p-coumaryl p-coumarate, were successfully integrated into high-H, high-G and high-S lignins in A. thaliana. Regardless of lignin composition, FMT- and PMT-expressing plants produced monolignol ferulates and monolignol p-coumarates, respectively, and incorporated them into their lignin. Through the production and incorporation of monolignol conjugates into near-single-monolignol lignins, we demonstrated that substrate availability, rather than monolignol transferase substrate preference, is the most important determining factor in the production of monolignol conjugates, and lignin composition helps dictate cell wall digestibility.
Collapse
Affiliation(s)
| | - Fachuang Lu
- Great Lakes Bioenergy Research Center, University
of Wisconsin-Madison, Madison, WI 53726, USA
- Department of Biochemistry, University of
Wisconsin-Madison, Madison, WI 53706, USA
| | | | - Joanne C Cusumano
- Department of Biochemistry, Purdue
University, West Lafayette, IN 47907, USA
| | - Clint Chapple
- Department of Biochemistry, Purdue
University, West Lafayette, IN 47907, USA
- Purdue Center for Plant Biology, Purdue
University, West Lafayette, IN 47907, USA
| | - John Ralph
- Great Lakes Bioenergy Research Center, University
of Wisconsin-Madison, Madison, WI 53726, USA
- Department of Biochemistry, University of
Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
184
|
Gao Y, Mortimer JC. Reimagining Lignin for the Biorefinery. PLANT & CELL PHYSIOLOGY 2022; 63:734-736. [PMID: 35413114 DOI: 10.1093/pcp/pcac051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 06/14/2023]
Affiliation(s)
- Yu Gao
- Joint BioEnergy Institute, 5885 Hollis St, Emeryville, CA 94608, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Jenny C Mortimer
- Joint BioEnergy Institute, 5885 Hollis St, Emeryville, CA 94608, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
- School of Agriculture, Food and Wine, Waite Research Institute, Waite Research Precinct, University of Adelaide, Glen Osmond, SA 5064, Australia
| |
Collapse
|
185
|
Wang Y, Hou Y, Li H, Wu W, Ren S, Li J. A New Structural Model of Enzymatic Lignin with Multiring Aromatic Clusters. ACS OMEGA 2022; 7:18861-18869. [PMID: 35694518 PMCID: PMC9178751 DOI: 10.1021/acsomega.2c01812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
Lignin is a natural aromatic compound in plants. Several lignin structural models have been proposed in the past years, but all the models cannot be converted to benzene carboxylic acids (BCAs) for all aromatic rings connected to oxygen. This inspired us to explore the structures of lignin. Based on the yields of BCAs, the results of 13C NMR and ethanolysis residues, and gas chromatography-mass spectrometry and electrospray ionization mass spectrometry of ethanolysis of lignin, we have constructed a structural model of lignin with a formula C6407H6736O2590N147S3. The model not only satisfies the results of analyses, but also explains the generation of BCAs from lignin oxidation and the ethanolysis products. Importantly, double-ring and triple-ring aromatic clusters are found in lignin, and some of them are connected by alkyl bridges, which results in conventional low conversions of lignin. Our findings in the structures of lignin may significantly influence the structures and applications of lignin.
Collapse
Affiliation(s)
- Yupeng Wang
- State
Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yucui Hou
- Department
of Chemistry, Taiyuan Normal University, Jinzhong, Shanxi 030619, China
| | - He Li
- State
Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Weize Wu
- State
Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shuhang Ren
- State
Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jianwei Li
- State
Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
186
|
Ultrastructural elucidation of lignin macromolecule from different growth stages of Chinese pine. Int J Biol Macromol 2022; 209:1792-1800. [PMID: 35483510 DOI: 10.1016/j.ijbiomac.2022.04.151] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/29/2022] [Accepted: 04/12/2022] [Indexed: 11/23/2022]
Abstract
Understanding of the morphological changes at different growth stages and lignin accumulation pattern for pine biomass plays the key role in facilitating the further development of value-added utilization and downstream conversion processes. This work systematically revealed the morphological change and lignin accumulation pattern in Chinese pine branches cell walls via confocal Raman microscopy (CRM) technology. Meanwhile, the structural characteristics of isolated lignin samples from different growth stages were synthetically characterized by nuclear magnetic resonance (NMR) and gel permeation chromatography (GPC) techniques. The results indicated that the content of pith in adult pine new branch was bigger than juvenile trees. With the increase of physiological age, the branches in adult pine could accumulate more lignin both in overall content and the concentration of cell corner middle layer. Moreover, the significantly increases of molecular weights and the β-O-4, β-β linkages content revealed that the lignin macromolecule of pine would polymerize faster in the adult stage (14, 35 years). The panorama generated from the structural and chemical features of pine native lignin not only benefited to understand the biosynthetic pathways and lignin macromolecules structural variation in plant cell walls from different growth stages but also contributed to the valorization and deconstruction of biomass.
Collapse
|
187
|
Structural elucidation and targeted valorization of poplar lignin from the synergistic hydrothermal-deep eutectic solvent pretreatment. Int J Biol Macromol 2022; 209:1882-1892. [PMID: 35489620 DOI: 10.1016/j.ijbiomac.2022.04.162] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 01/16/2023]
Abstract
Elucidating the structural variations of lignin during the pretreatment is very important for lignin valorization. Herein, poplar wood was pretreated with an integrated process, which was composed of AlCl3-catalyzed hydrothermal pretreatment (HTP, 130-150 °C, 1.0 h) and mild deep-eutectic solvents (DES, 100 °C, 10 min) delignification for recycling lignin fractions. Confocal Raman Microscopy (CRM) was developed to visually monitor the delignification process during the HTP-DES pretreatment. NMR characterizations (2D-HSQC and 31P NMR) and elemental analysis demonstrated that the lignin fractions had undergone the following structural changes, such as dehydration, depolymerization, condensation. Molecular weights (GPC), microstructure (SEM and TEM), and antioxidant activity (DPPH analysis) of the lignins revealed that the DES delignification resulted in homogeneous lignin fragments (1.32 < PDI < 1.58) and facilitated the rapid assemblage of lignin nanoparticles (LNPs) with controllable nanoscale sizes (30-210 nm) and excellent antioxidant activity. These findings will enhance the understanding of structural transformations of the lignin during the integrated process and maximize the lignin valorization in a current biorefinery process.
Collapse
|
188
|
Elder T, Del Río JC, Ralph J, Rencoret J, Kim H. Density functional theory study on the coupling and reactions of diferuloylputrescine as a lignin monomer. PHYTOCHEMISTRY 2022; 197:113122. [PMID: 35131641 DOI: 10.1016/j.phytochem.2022.113122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 01/25/2022] [Accepted: 01/29/2022] [Indexed: 06/14/2023]
Abstract
Diferuloylputrescine has been found in a variety of plant species, and recent work has provided evidence of its covalent bonding into lignin. Results from nuclear magnetic resonance spectroscopy revealed the presence of bonding patterns consistent with homo-coupling of diferuloylputrescine and the possibility of cross-coupling with lignin. In the present work, density functional theory calculations have been applied to assess the energetics associated with radical coupling, rearomatization, and dehydrogenation for possible homo-coupled dimers of diferuloylputrescine and cross-coupled dimers of diferuloylputrescine and coniferyl alcohol. The values obtained for these reaction energetics are consistent with those reported for monolignols and other novel lignin monomers. As such, this study shows that there would be no thermodynamic impediment to the incorporation of diferuloylputrescine into the lignin polymer and its addition to the growing list of non-canonical lignin monomers.
Collapse
Affiliation(s)
- Thomas Elder
- USDA-Forest Service, Southern Research Station, 521 Devall Drive, Auburn, AL, 36849, USA.
| | - José C Del Río
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Av. Reina Mercedes, 10, 41012, Seville, Spain
| | - John Ralph
- Department of Energy Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin, 1552 University Ave, Madison, WI, 53726, USA; Department of Biochemistry, University of Wisconsin, 433 Babcock Drive, Madison, WI, 53706, USA
| | - Jorge Rencoret
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Av. Reina Mercedes, 10, 41012, Seville, Spain
| | - Hoon Kim
- Department of Energy Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin, 1552 University Ave, Madison, WI, 53726, USA
| |
Collapse
|
189
|
Arefmanesh M, Vuong TV, Nikafshar S, Wallmo H, Nejad M, Master ER. Enzymatic synthesis of kraft lignin-acrylate copolymers using an alkaline tolerant laccase. Appl Microbiol Biotechnol 2022; 106:2969-2979. [PMID: 35449361 PMCID: PMC9064866 DOI: 10.1007/s00253-022-11916-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 03/29/2022] [Accepted: 04/02/2022] [Indexed: 11/28/2022]
Abstract
Abstract Softwood kraft lignin is a major bioresource relevant to the production of sustainable bio-based products. Continued challenges to lignin valorization, however, include poor solubility in organic solvents and in aqueous solutions at neutral pH. Herein, an alkaline tolerant laccase was used to graft acrylate functionalities onto softwood kraft lignin, which is expected to enhance the reactivity of lignin with isocyanate when producing bio-based polyurethanes. Proton nuclear magnetic resonance, Fourier-transform infrared spectroscopy, and high-performance liquid chromatography were used to confirm successful grafting of the acrylate monomer onto lignin and verify the importance of including tert-butyl hydroperoxide as an initiator in the grafting reaction. Laccase-mediated grafting of softwood kraft lignin under alkaline conditions produced lignin products with approximately 30% higher hydroxyl value and higher reactivity toward isocyanate. The reported enzymatic and aqueous process presents an opportunity for the sustainable valorization of softwood kraft lignin. Key points • Softwood kraft lignin displayed high phenolic hydroxyl content, polydispersity index and average molecular weight • Grafting hydroxyethyl acrylate (HEA) monomer onto kraft lignin by laccase was successful at 60 °C and alkaline conditions • Lignin-HEA grafted copolymer showed an increase in total OH value and an increase in average molecular weight Supplementary information The online version contains supplementary material available at 10.1007/s00253-022-11916-z.
Collapse
Affiliation(s)
- Maryam Arefmanesh
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON, M5S 3E5, Canada
| | - Thu V Vuong
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON, M5S 3E5, Canada
| | - Saeid Nikafshar
- Department of Forestry, Michigan State University, 480 Wilson Road, East Lansing, MI, 48824, USA
| | - Henrik Wallmo
- Valmet AB, Regnbågsgatan 6, PO Box 8734, 402 75, Gothenburg, Sweden
| | - Mojgan Nejad
- Department of Forestry, Michigan State University, 480 Wilson Road, East Lansing, MI, 48824, USA.,Department of Chemical Engineering and Material Science, Michigan State University, 428 S Shaw Lane, East Lansing, MI, 48824, USA
| | - Emma R Master
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON, M5S 3E5, Canada. .,Department of Bioproducts and Biosystems, Aalto University, Kemistintie 1, 00076 Aalto, Espoo, Finland.
| |
Collapse
|
190
|
Scimmi C, Sancineto L, Drabowicz J, Santi C. New Insights into Green Protocols for Oxidative Depolymerization of Lignin and Lignin Model Compounds. Int J Mol Sci 2022; 23:ijms23084378. [PMID: 35457195 PMCID: PMC9026536 DOI: 10.3390/ijms23084378] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 01/08/2023] Open
Abstract
Oxidative depolymerization of lignin is a hot topic in the field of biomass valorization. The most recent and green procedures have been herein detailed. Photochemical and electrochemical approaches are reviewed highlighting the pros and cons of each method. Mechanochemistry activated strategies are able to combine oxidation and depolymerization in the deconstruction of lignin. Homogenous and heterogeneous catalytic systems are exemplified stressing the green aspects associated with both the procedures. Solvent-free approaches as well as those carried out in alternative media are listed. Finally, the few examples of selenium catalyzed lignin valorization reported so far are cited.
Collapse
Affiliation(s)
- Cecilia Scimmi
- Group of Catalysis Synthesis and Organic Green Chemistry, Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06122 Perugia, Italy; (C.S.); (L.S.)
| | - Luca Sancineto
- Group of Catalysis Synthesis and Organic Green Chemistry, Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06122 Perugia, Italy; (C.S.); (L.S.)
| | - Jozef Drabowicz
- Institute of Chemistry, Jan Dlugosz University in Czestochowa, Armii Krajowej 13/15, 42-200 Czestochowa, Poland;
- Division of Organic Chemistry, Center of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | - Claudio Santi
- Group of Catalysis Synthesis and Organic Green Chemistry, Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06122 Perugia, Italy; (C.S.); (L.S.)
- Correspondence:
| |
Collapse
|
191
|
Abstract
Wood modification is an excellent and increasingly used method to expand the application of woody materials. Traditional methods, such as chemical or thermal, have been developed for the targeted improvement of some selected properties, unfortunately typically at the expense of others. These methods generally alter the composition of wood, and thus its mechanical properties, and enhance dimensional stability, water resistance, or decrease its susceptibility to microorganisms. Although conventional methods achieve the desired properties, they require a lot of energy and chemicals, therefore research is increasingly moving towards more environmentally friendly processes. The advantage of modern methods is that in most cases, they only modify the surface and do not affect the structure and mechanical properties of the wood, while reducing the amount of chemicals used. Cold plasma surface treatment is one of the cheapest and easiest technologies with a limited burden on the environment. In this review, we focus on cold plasma treatment, the interaction between plasma and wood compounds, the advantages of plasma treatment compared to traditional methods, and perspectives.
Collapse
|
192
|
Joshi A, Verma KK, D Rajput V, Minkina T, Arora J. Recent advances in metabolic engineering of microorganisms for advancing lignocellulose-derived biofuels. Bioengineered 2022; 13:8135-8163. [PMID: 35297313 PMCID: PMC9161965 DOI: 10.1080/21655979.2022.2051856] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/04/2022] [Accepted: 03/05/2022] [Indexed: 01/09/2023] Open
Abstract
Combating climate change and ensuring energy supply to a rapidly growing global population has highlighted the need to replace petroleum fuels with clean, and sustainable renewable fuels. Biofuels offer a solution to safeguard energy security with reduced ecological footprint and process economics. Over the past years, lignocellulosic biomass has become the most preferred raw material for the production of biofuels, such as fuel, alcohol, biodiesel, and biohydrogen. However, the cost-effective conversion of lignocellulose into biofuels remains an unsolved challenge at the industrial scale. Recently, intensive efforts have been made in lignocellulose feedstock and microbial engineering to address this problem. By improving the biological pathways leading to the polysaccharide, lignin, and lipid biosynthesis, limited success has been achieved, and still needs to improve sustainable biofuel production. Impressive success is being achieved by the retouring metabolic pathways of different microbial hosts. Several robust phenotypes, mostly from bacteria and yeast domains, have been successfully constructed with improved substrate spectrum, product yield and sturdiness against hydrolysate toxins. Cyanobacteria is also being explored for metabolic advancement in recent years, however, it also remained underdeveloped to generate commercialized biofuels. The bacterium Escherichia coli and yeast Saccharomyces cerevisiae strains are also being engineered to have cell surfaces displaying hydrolytic enzymes, which holds much promise for near-term scale-up and biorefinery use. Looking forward, future advances to achieve economically feasible production of lignocellulosic-based biofuels with special focus on designing more efficient metabolic pathways coupled with screening, and engineering of novel enzymes.
Collapse
Affiliation(s)
- Abhishek Joshi
- Laboratory of Biomolecular Technology, Department of Botany, Mohanlal Sukhadia University, Udaipur313001, India
| | - Krishan K. Verma
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning - 530007, China
| | - Vishnu D Rajput
- Academy of Biology and Biotechnology, Southern Federal University, 344090, Russia
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, 344090, Russia
| | - Jaya Arora
- Laboratory of Biomolecular Technology, Department of Botany, Mohanlal Sukhadia University, Udaipur313001, India
| |
Collapse
|
193
|
Wu CW, Li PH, Wei YM, Yang C, Wu WJ. Review on the preparation and application of lignin-based carbon aerogels. RSC Adv 2022; 12:10755-10765. [PMID: 35424986 PMCID: PMC8988173 DOI: 10.1039/d2ra01402e] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 03/31/2022] [Indexed: 12/17/2022] Open
Abstract
Carbon aerogels (CAs) are excellent carrier materials with a large surface area and high porosity. In addition to the above-mentioned wonderful characteristics, aerogel with lignin as a precursor is also a material with high bioactivity and degradability. Lignin carbon aerogels (LCAs) have a wide range of applications, and can be used in supercapacitors, adsorbents and catalysts, etc., but their preparation process is more complex. In this paper, we review the preparation and influencing factors of LCAs, analyze their properties and structural characterization, and aim to provide references for the optimal preparation, effective characterization, and expansion of applications of LCAs.
Collapse
Affiliation(s)
- Cai-Wen Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University Nanjing 210037 P. R. China
- College of Light Industry and Food Engineering, Nanjing Forestry University Nanjing 210037 P. R. China
| | - Peng-Hui Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University Nanjing 210037 P. R. China
- College of Light Industry and Food Engineering, Nanjing Forestry University Nanjing 210037 P. R. China
| | - Yu-Meng Wei
- College of Light Industry and Food Engineering, Nanjing Forestry University Nanjing 210037 P. R. China
| | - Chi Yang
- College of Light Industry and Food Engineering, Nanjing Forestry University Nanjing 210037 P. R. China
| | - Wen-Juan Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University Nanjing 210037 P. R. China
- College of Light Industry and Food Engineering, Nanjing Forestry University Nanjing 210037 P. R. China
| |
Collapse
|
194
|
Lam PY, Wang L, Lui ACW, Liu H, Takeda-Kimura Y, Chen MX, Zhu FY, Zhang J, Umezawa T, Tobimatsu Y, Lo C. Deficiency in flavonoid biosynthesis genes CHS, CHI, and CHIL alters rice flavonoid and lignin profiles. PLANT PHYSIOLOGY 2022; 188:1993-2011. [PMID: 34963002 PMCID: PMC8969032 DOI: 10.1093/plphys/kiab606] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/09/2021] [Indexed: 05/24/2023]
Abstract
Lignin is a complex phenylpropanoid polymer deposited in the secondary cell walls of vascular plants. Unlike most gymnosperm and eudicot lignins that are generated via the polymerization of monolignols, grass lignins additionally incorporate the flavonoid tricin as a natural lignin monomer. The biosynthesis and functions of tricin-integrated lignin (tricin-lignin) in grass cell walls and its effects on the utility of grass biomass remain largely unknown. We herein report a comparative analysis of rice (Oryza sativa) mutants deficient in the early flavonoid biosynthetic genes encoding CHALCONE SYNTHASE (CHS), CHALCONE ISOMERASE (CHI), and CHI-LIKE (CHIL), with an emphasis on the analyses of disrupted tricin-lignin formation and the concurrent changes in lignin profiles and cell wall digestibility. All examined CHS-, CHI-, and CHIL-deficient rice mutants were largely depleted of extractable flavones, including tricin, and nearly devoid of tricin-lignin in the cell walls, supporting the crucial roles of CHS and CHI as committed enzymes and CHIL as a noncatalytic enhancer in the conserved biosynthetic pathway leading to flavone and tricin-lignin formation. In-depth cell wall structural analyses further indicated that lignin content and composition, including the monolignol-derived units, were differentially altered in the mutants. However, regardless of the extent of the lignin alterations, cell wall saccharification efficiencies of all tested rice mutants were similar to that of the wild-type controls. Together with earlier studies on other tricin-depleted grass mutant and transgenic plants, our results reflect the complexity in the metabolic consequences of tricin pathway perturbations and the relationships between lignin profiles and cell wall properties.
Collapse
Affiliation(s)
| | | | - Andy C W Lui
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Hongjia Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | | | - Mo-Xian Chen
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Fu-Yuan Zhu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037 China
| | - Jianhua Zhang
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Sha Tin, Hong Kong, China
| | - Toshiaki Umezawa
- Research Institute for Sustainable Humanosphere, Kyoto University, Kyoto 611-0011, Japan
- Research Unit for Realization of Sustainable Society, Kyoto University, Kyoto 611-0011, Japan
| | | | | |
Collapse
|
195
|
Kishimoto T, Hiyama A, Toda H, Urabe D. Effect of pH on the Dehydrogenative Polymerization of Monolignols by Laccases from Trametes versicolor and Rhus vernicifera. ACS OMEGA 2022; 7:9846-9852. [PMID: 35350311 PMCID: PMC8945161 DOI: 10.1021/acsomega.2c00144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 02/24/2022] [Indexed: 06/14/2023]
Abstract
Dehydrogenative polymerization of coniferyl alcohol (CA) and sinapyl alcohol (SA) was conducted using commercial laccases, fungal laccase from Trametes versicolor (LacT) and plant laccase from Rhus vernicifera (LacR), at pH 4-7 to investigate how the enzymatic polymerization of monolignols differs between these two laccase systems. The enzyme activity of LacT was the highest at pH 4, whereas that of LacR was the highest at pH 7. A dehydrogenation polymer (DHP) was obtained only from CA in both laccase systems, although the consumption rate of SA was higher than that of CA. 1H-13C HSQC NMR analysis showed that DHPs obtained using LacT and LacR contained lignin substructures, including β-O-4, β-O-4/α-O-4, β-β, and β-5 structures. At pH 4.5, the β-O-4 structure was preferentially formed over the β-O-4/α-O-4 structure, whereas at pH 6.5, the β-O-4/α-O-4 structure was preferred. The pH of the reaction solution was more vital to affect the chemical structure of DHP than the origin of laccases.
Collapse
|
196
|
Musl O, Galler S, Wurzer G, Bacher M, Sulaeva I, Sumerskii I, Mahler AK, Rosenau T, Potthast A. High-Resolution Profiling of the Functional Heterogeneity of Technical Lignins. Biomacromolecules 2022; 23:1413-1422. [PMID: 35212532 PMCID: PMC8924861 DOI: 10.1021/acs.biomac.1c01630] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/08/2022] [Indexed: 11/29/2022]
Abstract
In technical lignins, functionality is strongly related to molar mass. Hence, any technical lignin exhibits concurrent functionality-type distribution (FTD) along its molar mass distribution (MMD). This study combined preparative size-exclusion chromatography with offline characterizations to acquire highly resolved profiles of the functional heterogeneity of technical lignins, which represent crucial information for their material use. The shape of these profiles showed considerable dissimilarity between different technical lignins and followed sigmoid trends. Determining the dispersity in functionality (ĐF) of lignins via their FTD revealed a rather homogeneous distribution of their functionalities (ĐF of 1.00-1.21). The high resolution of the acquired profiles of functional heterogeneity facilitated the development of a robust calculation method for the estimation of functional group contents of lignin fractions based simply on their MMD, an invaluable tool to simulate the effects of intended purification processes. Moreover, a more thorough evaluation of separations based on functionality becomes accessible.
Collapse
Affiliation(s)
- Oliver Musl
- Department
of Chemistry, Institute of Chemistry of Renewable Resources, University of Natural Resources and Life Sciences, Konrad-Lorenz-Strasse 24, A-3430 Tulln, Austria
| | - Samira Galler
- Department
of Chemistry, Institute of Chemistry of Renewable Resources, University of Natural Resources and Life Sciences, Konrad-Lorenz-Strasse 24, A-3430 Tulln, Austria
| | - Gerhild Wurzer
- Department
of Chemistry, Institute of Chemistry of Renewable Resources, University of Natural Resources and Life Sciences, Konrad-Lorenz-Strasse 24, A-3430 Tulln, Austria
| | - Markus Bacher
- Department
of Chemistry, Institute of Chemistry of Renewable Resources, University of Natural Resources and Life Sciences, Konrad-Lorenz-Strasse 24, A-3430 Tulln, Austria
| | - Irina Sulaeva
- Core
Facility “Analysis of Lignocellulose” ALICE, University of Natural Resources and Life Sciences, Konrad-Lorenz-Strasse 24, A-3430 Tulln, Austria
| | - Ivan Sumerskii
- Core
Facility “Analysis of Lignocellulose” ALICE, University of Natural Resources and Life Sciences, Konrad-Lorenz-Strasse 24, A-3430 Tulln, Austria
| | - Arnulf Kai Mahler
- Sappi
Europe, Sappi Papier Holding GmbH, Bruckner Straße 21, A-8101 Gratkorn, Austria
| | - Thomas Rosenau
- Department
of Chemistry, Institute of Chemistry of Renewable Resources, University of Natural Resources and Life Sciences, Konrad-Lorenz-Strasse 24, A-3430 Tulln, Austria
| | - Antje Potthast
- Department
of Chemistry, Institute of Chemistry of Renewable Resources, University of Natural Resources and Life Sciences, Konrad-Lorenz-Strasse 24, A-3430 Tulln, Austria
| |
Collapse
|
197
|
Zhuo C, Wang X, Docampo-Palacios M, Sanders BC, Engle NL, Tschaplinski TJ, Hendry JI, Maranas CD, Chen F, Dixon RA. Developmental changes in lignin composition are driven by both monolignol supply and laccase specificity. SCIENCE ADVANCES 2022; 8:eabm8145. [PMID: 35263134 PMCID: PMC8906750 DOI: 10.1126/sciadv.abm8145] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 01/17/2022] [Indexed: 05/25/2023]
Abstract
The factors controlling lignin composition remain unclear. Catechyl (C)-lignin is a homopolymer of caffeyl alcohol with unique properties as a biomaterial and precursor of industrial chemicals. The lignin synthesized in the seed coat of Cleome hassleriana switches from guaiacyl (G)- to C-lignin at around 12 to 14 days after pollination (DAP), associated with a rerouting of the monolignol pathway. Lack of synthesis of caffeyl alcohol limits C-lignin formation before around 12 DAP, but coniferyl alcohol is still synthesized and highly accumulated after 14 DAP. We propose a model in which, during C-lignin biosynthesis, caffeyl alcohol noncompetitively inhibits oxidation of coniferyl alcohol by cell wall laccases, a process that might limit movement of coniferyl alcohol to the apoplast. Developmental changes in both substrate availability and laccase specificity together account for the metabolic fates of G- and C-monolignols in the Cleome seed coat.
Collapse
Affiliation(s)
- Chunliu Zhuo
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, 1155 Union Circle #311428, Denton, TX 76203, USA
- Center for Bioenergy Innovation (CBI), Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Xin Wang
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, 1155 Union Circle #311428, Denton, TX 76203, USA
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Maite Docampo-Palacios
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, 1155 Union Circle #311428, Denton, TX 76203, USA
| | - Brian C. Sanders
- Center for Bioenergy Innovation (CBI), Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Nancy L. Engle
- Center for Bioenergy Innovation (CBI), Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Timothy J. Tschaplinski
- Center for Bioenergy Innovation (CBI), Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - John I. Hendry
- Center for Bioenergy Innovation (CBI), Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Costas D. Maranas
- Center for Bioenergy Innovation (CBI), Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Fang Chen
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, 1155 Union Circle #311428, Denton, TX 76203, USA
- Center for Bioenergy Innovation (CBI), Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Richard A. Dixon
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, 1155 Union Circle #311428, Denton, TX 76203, USA
- Center for Bioenergy Innovation (CBI), Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| |
Collapse
|
198
|
Wu M, Wu M, Pan M, Jiang F, Hui B, Zhou L. Synthesization and Characterization of Lignin-graft-Poly (Lauryl Methacrylate) via ARGET ATRP. Int J Biol Macromol 2022; 207:522-530. [PMID: 35247427 DOI: 10.1016/j.ijbiomac.2022.02.169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/19/2022] [Accepted: 02/26/2022] [Indexed: 11/26/2022]
Abstract
Lignin as an abundant biological macromolecule isolated from the plant cell wall, and it cannot be efficiently utilized until suitable modifications to its structures were made. Therefore, we proposed a strategy to prepare an all biomass-based Lignin-graft-poly(Lauryl methacrylate, LMA) by grafting LMA monomers on the organosolv lignin through ARGET ATRP. The results of FT-IR and 1H NMR analysis demonstrated that PLMA molecular chains were successfully grafted on the lignin. Lignin improved copolymer's thermal stability and had a negligible effect on crystallization of PLMA molecular chains, according to our findings in the test of TGA and DSC. The rheological properties of the copolymer were found depending on the length of molecular chains of copolymer and lignin inside it. Both height and phase images of AFM suggest that lignin constituted a nanoscale aciculas and embedded in the microscale spheral dot composed by grafted PLMA molecular chains. Furthermore, the integrated consideration of results of all characterizations suggests a relative independent micro-component, which was composed by central lignin and peripheral PLMA, aggregates with each other to build the OL-g-PLMA copolymers. It hopes that the copolymer will be used as an additive for improving mechanical performance and UV blocking of other biopolymers.
Collapse
Affiliation(s)
- Min Wu
- School of Forestry and Landscape Architecture, Anhui Agriculture University, Hefei, Anhui 230036, China; Key Lab of State Forest and Grassland Administration on Wood Quality Improvement & High Efficient Utilization, Hefei, Anhui 230036, China
| | - Mang Wu
- Biomass Molecular Engineering Center, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Meng Pan
- Department of Materials Science and Engineering, The University of Sheffield, Sheffield S3 8PH, United Kingdom
| | - Feng Jiang
- Biomass Molecular Engineering Center, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Bin Hui
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Institute of Marine Biobased Materials, School of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Liang Zhou
- School of Forestry and Landscape Architecture, Anhui Agriculture University, Hefei, Anhui 230036, China; Key Lab of State Forest and Grassland Administration on Wood Quality Improvement & High Efficient Utilization, Hefei, Anhui 230036, China.
| |
Collapse
|
199
|
Computational approach in lignin structural models: Influence of non-covalent intramolecular interactions on βO4 bond properties. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
200
|
Shen Q, Xue Y, Zhang Y, Li T, Yang T, Li S. Effect of microstructure-scale features on lignin fluorescence for preparation of high fluorescence efficiency lignin-based nanomaterials. Int J Biol Macromol 2022; 202:520-528. [DOI: 10.1016/j.ijbiomac.2022.01.095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/05/2022] [Accepted: 01/13/2022] [Indexed: 01/14/2023]
|