151
|
Isaza-Correa JM, Liang Z, van den Berg A, Diepstra A, Visser L. Toll-like receptors in the pathogenesis of human B cell malignancies. J Hematol Oncol 2014; 7:57. [PMID: 25112836 PMCID: PMC4237867 DOI: 10.1186/s13045-014-0057-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 07/28/2014] [Indexed: 12/20/2022] Open
Abstract
Toll-like receptors (TLRs) are important players in B-cell activation, maturation and memory and may be involved in the pathogenesis of B-cell lymphomas. Accumulating studies show differential expression in this heterogeneous group of cancers. Stimulation with TLR specific ligands, or agonists of their ligands, leads to aberrant responses in the malignant B-cells. According to current data, TLRs can be implicated in malignant transformation, tumor progression and immune evasion processes. Most of the studies focused on multiple myeloma and chronic lymphocytic leukemia, but in the last decade the putative role of TLRs in other types of B-cell lymphomas has gained much interest. The aim of this review is to discuss recent findings on the role of TLRs in normal B cell functioning and their role in the pathogenesis of B-cell malignancies.
Collapse
|
152
|
Abstract
Breast cancer is one of the leading causes of mortality in the females. Intensive efforts have been made to understand the molecular mechanisms of pathogenesis of breast cancer. The physiological conditions that lead to tumorigenesis including breast cancer are not well understood. Toll like receptors (TLRs) are essential components of innate immune system that protect the host against bacterial and viral infection. The emerging evidences suggest that TLRs are activated through pathogen associated molecular patterns (PAMPs) as well as endogenous molecules, which lead to the activation of inflammatory pathways. This leads to increased levels of several pro-inflammatory cytokines and chemokines mounting inflammation. Several evidences support the view that chronic inflammation can lead to cancerous condition. Inflammation aids in tumor progression and metastasis. Association of inflammation with breast cancer is emerging. TLR mediated activation of NF-κB and IRF is an essential link connecting inflammation to cancer. The recent reports provide several evidences, which suggest the important role of TLRs in breast cancer pathogenesis and recurrence. The current review focuses on emerging studies suggesting the strong linkages of TLR mediated regulation of inflammation during breast cancer and its metastasis emphasizing the initiation of the systematic study.
Collapse
|
153
|
Tan Y, Tseng PO, Wang D, Zhang H, Hunter K, Hertzberg J, Stenmark KR, Tan W. Stiffening-induced high pulsatility flow activates endothelial inflammation via a TLR2/NF-κB pathway. PLoS One 2014; 9:e102195. [PMID: 25029271 PMCID: PMC4100881 DOI: 10.1371/journal.pone.0102195] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2013] [Accepted: 06/16/2014] [Indexed: 12/25/2022] Open
Abstract
Stiffening of large arteries is increasingly used as an independent predictor of risk and therapeutic outcome for small artery dysfunction in many diseases including pulmonary hypertension. The molecular mechanisms mediating downstream vascular cell responses to large artery stiffening remain unclear. We hypothesize that high pulsatility flow, induced by large artery stiffening, causes inflammatory responses in downstream pulmonary artery endothelial cells (PAECs) through toll-like receptor (TLR) pathways. To recapitulate the stiffening effect of large pulmonary arteries that occurs in pulmonary hypertension, ultrathin silicone tubes of variable mechanical stiffness were formulated and were placed in a flow circulatory system. These tubes modulated the simulated cardiac output into pulsatile flows with different pulsatility indices, 0.5 (normal) or 1.5 (high). PAECs placed downstream of the tubes were evaluated for their expression of proinflammatory molecules (ICAM-1, VCAM-1, E-selectin and MCP-1), TLR receptors and intracellular NF-κB following flow exposure. Results showed that compared to flow with normal pulsatility, high pulsatility flow induced proinflammatory responses in PAECs, enhanced TLR2 expression but not TLR4, and caused NF-κB activation. Pharmacologic (OxPAPC) and siRNA inhibition of TLR2 attenuated high pulsatility flow-induced pro-inflammatory responses and NF-κB activation in PAECs. We also observed that PAECs isolated from small pulmonary arteries of hypertensive animals exhibiting proximal vascular stiffening demonstrated a durable ex-vivo proinflammatory phenotype (increased TLR2, TLR4 and MCP-1 expression). Intralobar PAECs isolated from vessels of IPAH patients also showed increased TLR2. In conclusion, this study demonstrates for the first time that TLR2/NF-κB signaling mediates endothelial inflammation under high pulsatility flow caused by upstream stiffening, but the role of TLR4 in flow pulsatility-mediated endothelial mechanotransduction remains unclear.
Collapse
Affiliation(s)
- Yan Tan
- Department of Mechanical Engineering, University of Colorado at Boulder, Boulder, Colorado, United States of America
- Department of Pediatrics, University of Colorado at Denver, Aurora, Colorado, United States of America
| | - Pi-Ou Tseng
- Department of Mechanical Engineering, University of Colorado at Boulder, Boulder, Colorado, United States of America
| | - Daren Wang
- Department of Pediatrics, University of Colorado at Denver, Aurora, Colorado, United States of America
| | - Hui Zhang
- Department of Pediatrics, University of Colorado at Denver, Aurora, Colorado, United States of America
| | - Kendall Hunter
- Department of Pediatrics, University of Colorado at Denver, Aurora, Colorado, United States of America
| | - Jean Hertzberg
- Department of Mechanical Engineering, University of Colorado at Boulder, Boulder, Colorado, United States of America
| | - Kurt R. Stenmark
- Department of Pediatrics, University of Colorado at Denver, Aurora, Colorado, United States of America
| | - Wei Tan
- Department of Mechanical Engineering, University of Colorado at Boulder, Boulder, Colorado, United States of America
| |
Collapse
|
154
|
The regulatory role of activating transcription factor 2 in inflammation. Mediators Inflamm 2014; 2014:950472. [PMID: 25049453 PMCID: PMC4090481 DOI: 10.1155/2014/950472] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2014] [Accepted: 05/30/2014] [Indexed: 01/06/2023] Open
Abstract
Activating transcription factor 2 (ATF2) is a member of the leucine zipper family of DNA-binding proteins and is widely distributed in tissues including the liver, lung, spleen, and kidney. Like c-Jun and c-Fos, ATF2 responds to stress-related stimuli and may thereby influence cell proliferation, inflammation, apoptosis, oncogenesis, neurological development and function, and skeletal remodeling. Recent studies clarify the regulatory role of ATF2 in inflammation and describe potential inhibitors of this protein. In this paper, we summarize the properties and functions of ATF2 and explore potential applications of ATF2 inhibitors as tools for research and for the development of immunosuppressive and anti-inflammatory drugs.
Collapse
|
155
|
Liu Q, Zhang J, Xu Y, Huang Y, Wu C. Effect of carvedilol on cardiomyocyte apoptosis in a rat model of myocardial infarction: a role for toll-like receptor 4. Indian J Pharmacol 2014; 45:458-63. [PMID: 24130379 PMCID: PMC3793515 DOI: 10.4103/0253-7613.117729] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 09/09/2012] [Accepted: 06/30/2013] [Indexed: 01/20/2023] Open
Abstract
OBJECTIVES Toll-like receptor 4 (TLR4) is crucial in cardiomyocyte apoptosis induced by myocardial infarction (MI) and carvedilol has been reported to have anti-apoptotic effects. We hypothesized that the effects of this agent are in part mediated through TLR4 signaling pathways. MATERIALS AND METHODS A total of 48 rats were randomized to the following groups before surgery: sham-operated group (n = 8), MI group (n = 10) and three carvedilol-treatment groups (n = 30, 2 mg/kg, 10 mg/kg and 30 mg/kg). Sham and MI groups were given vehicle and carvedilol groups received different dose carvedilol, by direct gastric gavage for 7 days. On the 4(th) day of drug or vehicle administration, MI model was produced by ligating the left anterior descending coronary artery. On day 3 after MI, apoptosis was assessed by TdT-UTP nick-end assay; the levels of expression of Bax, Bcl-2, TLR4 and nuclear factor-κB (NF-κB) in infarcted myocardium were analyzed by immunohistochemistry. RESULTS Carvedilol ameliorated MI-induced apoptosis in a dose-dependent manner. In parallel, carvedilol also decreased the ratio of Bax to Bcl-2, the expression of TLR4 and NF-κB induced by MI. The extent of apoptosis and Bax-Bcl-2 ratio was strongly correlated with the TLR4 levels. CONCLUSION This study suggests that the short-term administration of carvedilol can significantly alleviate cardiomyocyte apoptosis in the infarcted myocardium probably by inhibiting the excessive expression of TLR4 and NF-κB induced by infarction.
Collapse
Affiliation(s)
- Qingwei Liu
- Department of Cardiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, PR China
| | | | | | | | | |
Collapse
|
156
|
Green TL, Santos MF, Ejaeidi AA, Craft BS, Lewis RE, Cruse JM. Toll-like receptor (TLR) expression of immune system cells from metastatic breast cancer patients with circulating tumor cells. Exp Mol Pathol 2014; 97:44-8. [PMID: 24836676 DOI: 10.1016/j.yexmp.2014.05.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 05/07/2014] [Indexed: 12/12/2022]
Abstract
The risk posed by breast cancer represents a complex interaction among factors affecting tumor immunity of the host. Toll-like receptors (TLRs) are members of the innate immune system and generally function to attract host immune cells upon activation. However, the good intentions of TLRs are sometimes not transferred to positive long-term effects, due to their involvement in exacerbating inflammatory effects and even contributing to continued inflammation. Chronic inflammatory states are considered to favor an increased predisposition to cancer, with continuous activation of inflammatory cytokines and other hallmarks of inflammation exerting a deleterious effect. Circulating tumor cells (CTCs) are neoplastic cells present in the peripheral blood circulation that have been found to be an indicator of disease progression and long-term survival. In the present study, we examined the expression of TLRs on dendritic cells, which play a major role in eliciting anti-tumor immunity, in metastatic breast cancer patients with CTCs. Flow cytometric data showed significant differences between circulating tumor cell (CTC) positive patients and CTC negative patients in their expression of TLR2 by CD8 positive cytotoxic T cells and TLR2, TLR4, TLR3, and TLR8 by CD11c positive dendritic cells (p<0.05). Expression of TLR2, TLR4, and TLR8 was increased in CTC positive patients, whereas TLR3 expression was decreased in the dendritic cell population.
Collapse
Affiliation(s)
- Taryn L Green
- Department of Pathology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Mark F Santos
- Department of Pathology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Ahmed A Ejaeidi
- Department of Pathology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Barbara S Craft
- Division of Oncology, Department of Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Robert E Lewis
- Department of Pathology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Julius M Cruse
- Department of Pathology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| |
Collapse
|
157
|
Zhang W, Zhao L, Su SQ, Xu XX, Wu YG. Total glucosides of paeony attenuate renal tubulointerstitial injury in STZ-induced diabetic rats: role of Toll-like receptor 2. J Pharmacol Sci 2014; 125:59-67. [PMID: 24739281 DOI: 10.1254/jphs.13173fp] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Accumulating evidence suggested that macrophages induce tubulointerstitial injury. Total glucosides of paeony (TGP), extracted from Paeonia lactiflora, has presented anti-inflammatory activities in diabetic kidney disease. This research will investigate the protective effect of TGP on renal tubulointerstitium and its mechanism in streptozotocin-induced diabetic rats. TGP was administered orally at a dose of 50, 100, and 200 mg·kg(-1)·d(-1) for 8 weeks. Tubulointerstitial injury was quantified, followed by immunohistochemistry analysis of renal α-smooth muscle actin (α-SMA), E-cadherin (E-cad) expression, nuclear factor kappa B (NF-κB)-p-p-65(+), Toll-like receptor (TLR)2(+), and ED-1(+) cell infiltration in renal tubulointerstitium. Renal TLR2(+) macrophages were detected by double immunohistochemical staining. Western blotting was used to detect the TLR2 expression. Histologically, there was marked accumulation of TLR2(+), NF-κB-p-p-65(+), ED-1(+) cells, and ED-1(+)TLR2(+) cells (macrophages) in the diabetic kidney and TGP treatment could alleviate it. Accompanying with that, the tubulointerstitial injury was ameliorated, α-SMA expression was lower, and E-cad expression was higher compared with the diabetic rats. Western blot analysis showed that the expression of TLR2 protein was significantly increased in the kidney of the diabetic rats, whereas TGP treatment reduced it. Our study showed that TGP could prevent renal tubulointerstitium injury in diabetic rats through a mechanism that may be at least partly correlated with suppression of increased macrophage infiltration and the expression of TLR2.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Nephropathy, the First Affiliated Hospital of Anhui Medical University, China
| | | | | | | | | |
Collapse
|
158
|
Rapamycin inhibits Toll-like receptor 4-induced pro-oncogenic function in head and neck squamous cell carcinoma. Oncol Rep 2014; 31:2804-10. [PMID: 24737049 DOI: 10.3892/or.2014.3134] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 03/22/2014] [Indexed: 11/05/2022] Open
Abstract
Toll-like receptor 4 (TLR4) is expressed in head and neck squamous cell carcinoma (HNSCC) cells and is associated with HNSCC cancer progression. Rapamycin has been proven to be efficient for the treatment of HNSCC in vivo, yet the mechanism is not understood and rapamycin demonstrates little effect in vitro. In the present study, the HNSCC cell lines CAL27 and SCC4 were pre-treated with rapamycin then stimulated with a TLR4 ligand lipopolysaccharide (LPS). Cell proliferation, migration, invasion, resistance to TRAIL-induced apoptosis, cytokine production, NF-κB and p65 activation were determined. The results indicated that LPS significantly stimulated HNSCC cell proliferation, cytokine production, migration, invasion and resistance to apoptosis induced by tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL). Pretreatment with rapamycin significantly attenuated LPS-induced pro-oncogenic effects by inhibiting the activation of NF-κB by LPS. siRNA knockdown of TLR4 in HNSCC cells demonstrated that rapamycin attenuated LPS-induced pro-oncogenic effects via TLR4. Hence, this study suggests rapamycin may be efficient for the treatment of HNSCC by attenuating TLR4-induced pro-oncogenic effects.
Collapse
|
159
|
da Conceicao VN, Dyer WB, Gandhi K, Gupta P, Saksena NK. Genome-wide analysis of primary peripheral blood mononuclear cells from HIV + patients-pre-and post- HAART show immune activation and inflammation the main drivers of host gene expression. MOLECULAR AND CELLULAR THERAPIES 2014; 2:11. [PMID: 26056580 PMCID: PMC4451969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 02/23/2014] [Indexed: 11/21/2023]
Abstract
BACKGROUND Although the host gene expression in the context of HIV has been explored by several studies, it remains unclear how HIV is able to manipulate and subvert host gene machinery before and after highly active antiretroviral therapy (HAART) in the same individual. In order to define the underlying pharmaco-genomic basis of HIV control during HAART and genomic basis of immune deterioration prior to HAART initiation, we performed a genome-wide expression analysis using primary peripheral blood mononuclear cells (PBMC) derived from 14 HIV + subjects pre-highly active antiretroviral therapy (HAART) (time point-1 or TP1) with detectable plasma viremia and post-HAART (time point-2 or TP2) with effective control of plasma viremia (<40 HIV RNA copies/mL of plasma). METHODS Genomic RNA extracted from the PBMCs was used in microarray analysis using HT-12V3 Illumina chips. Illumina®BeadStudio Software was used to obtain differentially expressed (DE) genes. Only the genes with p value <0.01 and FDR of <5% were considered for analysis. Pathway analysis was performed in MetaCore™ to derive functional annotations. Functionally significant genes were validated by qRT-PCR. RESULTS Between TP1 and TP2, 234 genes were differentially expressed (DE). During viremic phase (TP1), there was an orchestrated and coordinated up-regulation of immune, inflammation and antiviral genes, consistent with HIV infection and immune activation, which comprised of genes mainly involved in antiviral action of interferons and their signalling. In contrast, the therapy-mediated control phase (TP2) showed systematic down-regulation of these pathways, suggesting that the reduction in plasma viremia with HAART has a considerable influence on reducing the immune activation, thereby implying a definitive role of HIV in subverting the human gene machinery. CONCLUSIONS This is the first study to show the evidence for the differential regulation of gene expression between the untreated and treated time points, suggesting that gene expression is a consequence of cellular activation during plasma viremia. Affirmation to these observations comes from down-modulation of genes involved in cellular activation and inflammation upon initiation of HAART coinciding with below detectable levels of plasma viremia.
Collapse
Affiliation(s)
- Viviane N da Conceicao
- />Centre for Virus Research, Westmead Millennium Institute, Westmead Hospital, University of Sydney, Darcy Road, Sydney, Westmead, NSW 2145 Australia
| | - Wayne B Dyer
- />Centre for Virus Research, Westmead Millennium Institute, Westmead Hospital, University of Sydney, Darcy Road, Sydney, Westmead, NSW 2145 Australia
| | - Kaushal Gandhi
- />Centre for Virus Research, Westmead Millennium Institute, Westmead Hospital, University of Sydney, Darcy Road, Sydney, Westmead, NSW 2145 Australia
| | - Priyanka Gupta
- />Centre for Virus Research, Westmead Millennium Institute, Westmead Hospital, University of Sydney, Darcy Road, Sydney, Westmead, NSW 2145 Australia
| | - Nitin K Saksena
- />Centre for Virus Research, Westmead Millennium Institute, Westmead Hospital, University of Sydney, Darcy Road, Sydney, Westmead, NSW 2145 Australia
- />Retroviral Genetics Division, Centre for Virus Research, Westmead Millennium Institute, Sydney, Westmead, NSW 2145 Australia
| |
Collapse
|
160
|
da Conceicao VN, Dyer WB, Gandhi K, Gupta P, Saksena NK. Genome-wide analysis of primary peripheral blood mononuclear cells from HIV + patients-pre-and post- HAART show immune activation and inflammation the main drivers of host gene expression. MOLECULAR AND CELLULAR THERAPIES 2014; 2:11. [PMID: 26056580 PMCID: PMC4451969 DOI: 10.1186/2052-8426-2-11] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 02/23/2014] [Indexed: 01/09/2023]
Abstract
Background Although the host gene expression in the context of HIV has been explored by several studies, it remains unclear how HIV is able to manipulate and subvert host gene machinery before and after highly active antiretroviral therapy (HAART) in the same individual. In order to define the underlying pharmaco-genomic basis of HIV control during HAART and genomic basis of immune deterioration prior to HAART initiation, we performed a genome-wide expression analysis using primary peripheral blood mononuclear cells (PBMC) derived from 14 HIV + subjects pre-highly active antiretroviral therapy (HAART) (time point-1 or TP1) with detectable plasma viremia and post-HAART (time point-2 or TP2) with effective control of plasma viremia (<40 HIV RNA copies/mL of plasma). Methods Genomic RNA extracted from the PBMCs was used in microarray analysis using HT-12V3 Illumina chips. Illumina®BeadStudio Software was used to obtain differentially expressed (DE) genes. Only the genes with p value <0.01 and FDR of <5% were considered for analysis. Pathway analysis was performed in MetaCore™ to derive functional annotations. Functionally significant genes were validated by qRT-PCR. Results Between TP1 and TP2, 234 genes were differentially expressed (DE). During viremic phase (TP1), there was an orchestrated and coordinated up-regulation of immune, inflammation and antiviral genes, consistent with HIV infection and immune activation, which comprised of genes mainly involved in antiviral action of interferons and their signalling. In contrast, the therapy-mediated control phase (TP2) showed systematic down-regulation of these pathways, suggesting that the reduction in plasma viremia with HAART has a considerable influence on reducing the immune activation, thereby implying a definitive role of HIV in subverting the human gene machinery. Conclusions This is the first study to show the evidence for the differential regulation of gene expression between the untreated and treated time points, suggesting that gene expression is a consequence of cellular activation during plasma viremia. Affirmation to these observations comes from down-modulation of genes involved in cellular activation and inflammation upon initiation of HAART coinciding with below detectable levels of plasma viremia. Electronic supplementary material The online version of this article (doi:10.1186/2052-8426-2-11) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Viviane N da Conceicao
- Centre for Virus Research, Westmead Millennium Institute, Westmead Hospital, University of Sydney, Darcy Road, Sydney, Westmead, NSW 2145 Australia
| | - Wayne B Dyer
- Centre for Virus Research, Westmead Millennium Institute, Westmead Hospital, University of Sydney, Darcy Road, Sydney, Westmead, NSW 2145 Australia
| | - Kaushal Gandhi
- Centre for Virus Research, Westmead Millennium Institute, Westmead Hospital, University of Sydney, Darcy Road, Sydney, Westmead, NSW 2145 Australia
| | - Priyanka Gupta
- Centre for Virus Research, Westmead Millennium Institute, Westmead Hospital, University of Sydney, Darcy Road, Sydney, Westmead, NSW 2145 Australia
| | - Nitin K Saksena
- Centre for Virus Research, Westmead Millennium Institute, Westmead Hospital, University of Sydney, Darcy Road, Sydney, Westmead, NSW 2145 Australia ; Retroviral Genetics Division, Centre for Virus Research, Westmead Millennium Institute, Sydney, Westmead, NSW 2145 Australia
| |
Collapse
|
161
|
Investigation of inflammation and tissue patterning in the gut using a Spatially Explicit General-purpose Model of Enteric Tissue (SEGMEnT). PLoS Comput Biol 2014; 10:e1003507. [PMID: 24675765 PMCID: PMC3967920 DOI: 10.1371/journal.pcbi.1003507] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 01/10/2014] [Indexed: 01/22/2023] Open
Abstract
The mucosa of the intestinal tract represents a finely tuned system where tissue structure strongly influences, and is turn influenced by, its function as both an absorptive surface and a defensive barrier. Mucosal architecture and histology plays a key role in the diagnosis, characterization and pathophysiology of a host of gastrointestinal diseases. Inflammation is a significant factor in the pathogenesis in many gastrointestinal diseases, and is perhaps the most clinically significant control factor governing the maintenance of the mucosal architecture by morphogenic pathways. We propose that appropriate characterization of the role of inflammation as a controller of enteric mucosal tissue patterning requires understanding the underlying cellular and molecular dynamics that determine the epithelial crypt-villus architecture across a range of conditions from health to disease. Towards this end we have developed the Spatially Explicit General-purpose Model of Enteric Tissue (SEGMEnT) to dynamically represent existing knowledge of the behavior of enteric epithelial tissue as influenced by inflammation with the ability to generate a variety of pathophysiological processes within a common platform and from a common knowledge base. In addition to reproducing healthy ileal mucosal dynamics as well as a series of morphogen knock-out/inhibition experiments, SEGMEnT provides insight into a range of clinically relevant cellular-molecular mechanisms, such as a putative role for Phosphotase and tensin homolog/phosphoinositide 3-kinase (PTEN/PI3K) as a key point of crosstalk between inflammation and morphogenesis, the protective role of enterocyte sloughing in enteric ischemia-reperfusion and chronic low level inflammation as a driver for colonic metaplasia. These results suggest that SEGMEnT can serve as an integrating platform for the study of inflammation in gastrointestinal disease.
Collapse
|
162
|
Maiti A, Jiranek WA. Inhibition of Methicillin-resistant Staphylococcus aureus-induced cytokines mRNA production in human bone marrow derived mesenchymal stem cells by 1,25-dihydroxyvitamin D3. BMC Cell Biol 2014; 15:11. [PMID: 24661536 PMCID: PMC3987888 DOI: 10.1186/1471-2121-15-11] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 03/18/2014] [Indexed: 11/26/2022] Open
Abstract
Background Methicillin-resistant Staphylococcus aureus (MRSA) is the predominant cause of bone infection. Toll like receptors (TLRs) are an important segments of host response to infection and are expressed by a variety of cells including human mesenchymal stem cells (hMSCs). The active form of Vitamin D, 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) has potent immunoregulatory properties, but the mechanism remains poorly understood. The genomic action of 1,25(OH)2D3 is mediated by vitamin D receptor (VDR), hormone-regulated transcription factor. VDR interacts with co-activators and co-repressors are associated with chromatin histone modifications and transcriptional regulation. The aim of our study is to explore MRSA-induced TLRs-mediated pro-inflammatory cytokines expression in hMSCs. Further, we hypothesized that 1,25(OH)2D3 inhibits MRSA-induced cytokines synthesis in hMSCs via inhibition of NF-кB transcription factor. Finally, we explored the regulatory role of 1,25(OH)2D3 in MRSA-mediated global epigenetic histone H3 mark, such as, trimethylated histone H3 lysine 9 (H3K9me3), which is linked to gene silencing. Results Quantitative PCR data revealed that MRSA-infection predominantly induced expression of TLRs 1, 2, 6, NR4A2, and inflammatory cytokines IL-8, IL-6, TNFα in hMSCs. MRSA-mediated TLR ligands reduced osteoblast differentiation and increased hMSCs proliferation, indicating the disrupted multipotency function of hMSCs. Pretreatment of 1,25(OH)2D3 followed by MRSA co-culture inhibited nuclear translocation of NF-кB-p65, reduced expression of NR4A2 and pro-inflammatory cytokines IL-8, IL-6, and TNFα in hMSCs. Further, NF-κB-p65, VDR, and NR4A2 were present in the same nuclear protein complex, indicating that VDR is an active part of the nuclear protein complexes for transcriptional regulation. Finally, 1,25(OH)2D3 activated VDR, restores the global level of H3K9me3, to repress MRSA-stimulated inflammatory cytokine IL-8 expression. Pretreatment of 5-dAZA, DNA methylatransferases (Dnmts) inhibitor, dramatically re-expresses 1,25(OH)2D3-MRSA-mediated silenced IL-8 gene. Conclusions This data indicates that TLR 1, 2, and 6 can be used as markers for localized S. aureus bone infection. 1,25(OH)2D3-VDR may exhibits its anti-inflammatory properties in MRSA-stimulated infection by inhibiting nuclear translocation of NF-kB-p65 and transcripts of IL-8, IL-6, TNFα, and NR4A2 in hMSCs. Finally, 1,25(OH)2D3-activated VDR, acting as an epigenetic regulator, inhibits synthesis of cytokines in MRSA-stimulated infection by restoring the global level of H3K9me3, a histone H3 mark for gene silencing.
Collapse
Affiliation(s)
- Aparna Maiti
- Department of Orthopaedic Surgery, Orthopaedic Research Laboratory, 1112 East Clay Street, Richmond, USA.
| | | |
Collapse
|
163
|
Jiang D, Li D, Cao L, Wang L, Zhu S, Xu T, Wang C, Pan D. Positive feedback regulation of proliferation in vascular smooth muscle cells stimulated by lipopolysaccharide is mediated through the TLR 4/Rac1/Akt pathway. PLoS One 2014; 9:e92398. [PMID: 24667766 PMCID: PMC3965409 DOI: 10.1371/journal.pone.0092398] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 02/22/2014] [Indexed: 12/21/2022] Open
Abstract
Toll-like receptor 4 (TLR4) are important in inflammation and regulating vascular smooth muscle cells (VSMCs) proliferation, which are related to atherosclerosis and restenosis. We have investigated the mechanisms involved in Lipopolysaccharide (LPS)-induced proliferation of VSMCs. Stimulation of rat aortic VSMCs with LPS significantly increases the proliferation of VSMCs. This effect is regulated by Rac1 (Ras-related C3 botulinum toxin substrate l), which mediates the activation of phosphatidylinositol 3-kinase/Akt (PI3K/Akt) signaling pathways. Inhibition of Rac1 activity by NSC23766 is associated with inhibition of Akt activity. Treatment with NSC23766 or LY294002 significantly decreases LPS-induced TLR4 protein and mRNA expression. The data show that positive feedback regulation of proliferation in VSMCs is mediated through the TLR4/Rac1/Akt pathway.
Collapse
MESH Headings
- Animals
- Aorta/cytology
- Aorta/drug effects
- Aorta/metabolism
- Blotting, Western
- Cell Proliferation/drug effects
- Cells, Cultured
- Female
- Immunoprecipitation
- Lipopolysaccharides/pharmacology
- Male
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Phosphatidylinositol 3-Kinases/metabolism
- Proto-Oncogene Proteins c-akt/metabolism
- RNA, Messenger/genetics
- Rats
- Rats, Sprague-Dawley
- Real-Time Polymerase Chain Reaction
- Reverse Transcriptase Polymerase Chain Reaction
- Signal Transduction/drug effects
- Toll-Like Receptor 4/genetics
- Toll-Like Receptor 4/metabolism
- rac1 GTP-Binding Protein/metabolism
Collapse
Affiliation(s)
- Dehua Jiang
- Institute of Cardiovascular Disease Research, Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Dongye Li
- Institute of Cardiovascular Disease Research, Xuzhou Medical College, Xuzhou, Jiangsu, China
- Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China
- * E-mail: (DL); (CW)
| | - Lijuan Cao
- Institute of Cardiovascular Disease Research, Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Lele Wang
- Institute of Cardiovascular Disease Research, Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Shasha Zhu
- Institute of Cardiovascular Disease Research, Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Tongda Xu
- Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Cheng Wang
- Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China
- * E-mail: (DL); (CW)
| | - Defeng Pan
- Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China
| |
Collapse
|
164
|
Pan Q, Liu Y, Zhu X, Liu H. Chloral hydrate-dependent reduction in the peptidoglycan-induced inflammatory macrophage response is associated with lower expression levels of toll-like receptor 2. Exp Ther Med 2014; 7:1305-1310. [PMID: 24940429 PMCID: PMC3991540 DOI: 10.3892/etm.2014.1587] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 02/21/2014] [Indexed: 12/24/2022] Open
Abstract
The aim of this study was to investigate the effect and mechanism of action of chloral hydrate on the peptidoglycan (PGN)-induced inflammatory macrophage response. The effect of chloral hydrate on the production of tumor necrosis factor α (TNF-α) and interleukin-6 (IL-6) by murine peritoneal macrophages with PGN-stimulation was investigated. In addition, RAW264.7 cells transfected with a nuclear factor-κB (NF-κB) luciferase reporter plasmid stimulated by PGN were used to study the effect of chloral hydrate on the levels NF-κB activity. Flow cytometry and western blotting were performed to investigate the expression levels of toll-like receptor 2 (TLR2) in the treated RAW264.7 cells. It was identified that chloral hydrate reduced the levels of IL-6 and TNF-α produced by the peritoneal macrophages stimulated with PGN. The levels of NF-κB activity of the RAW264.7 cells stimulated by PGN decreased following treatment with chloral hydrate, which was associated with a reduction in the expression levels of TLR2 and reduced levels of TLR2 signal transduction. These data demonstrate that chloral hydrate reduced the magnitude of the PGN-induced inflammatory macrophage response associated with lower expression levels of TLR2.
Collapse
Affiliation(s)
- Qingjun Pan
- Institute of Nephrology, Affiliated Hospital of Guangdong Medical College, Zhangjiang, Guangdong 524001, P.R. China
| | - Yuan Liu
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, SAR 999077, P.R. China
| | - Xuezhi Zhu
- Guangdong Yuehai Feed Group Co. Ltd., Zhangjiang, Guangdong 524001, P.R. China
| | - Huafeng Liu
- Institute of Nephrology, Affiliated Hospital of Guangdong Medical College, Zhangjiang, Guangdong 524001, P.R. China
| |
Collapse
|
165
|
Role of toll-like receptor 2 in ischemic demyelination and oligodendrocyte death. Neurobiol Aging 2014; 35:1643-53. [PMID: 24589120 DOI: 10.1016/j.neurobiolaging.2014.01.146] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 01/23/2014] [Accepted: 01/30/2014] [Indexed: 02/07/2023]
Abstract
White matter is frequently involved in ischemic stroke, and progressive ischemic white matter injuries are associated with various neurologic dysfunctions in the elderly population. Demyelination and oligodendrocyte (OL) loss are prominent features of ischemic white matter injury. Endothelin-1 injection into the internal capsule resulted in a localized demyelinating lesion in mice, where loss of OL lineage cells and inflammatory cell infiltration were observed accompanied by upregulation of toll-like receptor 2 (TLR2). Intriguingly, the extent of demyelinating pathology was markedly larger in TLR2 deficient mice than that of wild-type (WT) mice. TLR2 deficient mice showed enhanced OL death and decreased phosphorylation of ERK1/2 compared with WT animals. Cultured OLs from TLR2 deficient mice were more vulnerable to oxygen-glucose deprivation than WT OLs. Applying TLR2 agonists Pam3CSK4 or Zymosan after oxygen-glucose deprivation substantially rescued WT OL death with augmentation of ERK1/2 phosphorylation. Treatment with Pam3CSK4 also reduced the extent of endothelin-1 induced ischemic demyelination in vivo. Our data indicate TLR2 may provide endogenous protective effects on ischemic demyelination and OL degeneration.
Collapse
|
166
|
TLR3 plays significant roles against hepatitis B virus. Mol Biol Rep 2014; 41:3279-86. [DOI: 10.1007/s11033-014-3190-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 01/21/2014] [Indexed: 01/30/2023]
|
167
|
Liu Y, Jiang XL, Liu Y, Jiang DS, Zhang Y, Zhang R, Chen Y, Yang Q, Zhang XD, Fan GC, Li H. Toll-interacting protein (Tollip) negatively regulates pressure overload-induced ventricular hypertrophy in mice. Cardiovasc Res 2013; 101:87-96. [PMID: 24285748 DOI: 10.1093/cvr/cvt232] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
AIMS Toll-interacting protein (Tollip) is a critical regulator of the Toll-like receptor-mediated signalling pathway. However, the role of Tollip in chronic pressure overload-induced cardiac hypertrophy remains unclear. This study aimed to determine the functional significance of Tollip in the regulation of aortic banding-induced cardiac remodelling and its underlying mechanisms. METHODS AND RESULTS First, we observed that Tollip was down-regulated in human failing hearts and murine hypertrophic hearts, as determined by western blotting and RT-PCR. Using cultured neonatal rat cardiomyocytes, we found that adenovirus vector-mediated overexpression of Tollip limited angiotensin II-induced cell hypertrophy; whereas knockdown of Tollip by shRNA exhibited the opposite effects. We then generated a transgenic (TG) mouse model with cardiac specific-overexpression of Tollip and subjected them to aortic banding (AB) for 8 weeks. When compared with AB-treated wild-type mouse hearts, Tollip-TGs showed a significant attenuation of cardiac hypertrophy, fibrosis, and dysfunction, as measured by echocardiography, immune-staining, and molecular/biochemical analysis. Conversely, a global Tollip-knockout mouse model revealed an aggravated cardiac hypertrophy and accelerated maladaptation to chronic pressure overloading. Mechanistically, we discovered that Tollip interacted with AKT and suppressed its downstream signalling pathway. Pre-activation of AKT in cardiomyocytes largely offset the Tollip-elicited anti-hypertrophic effects. CONCLUSION Our results provide the first evidence that Tollip serves as a negative regulator of pathological cardiac hypertrophy by blocking the AKT signalling pathway.
Collapse
Affiliation(s)
- Yi Liu
- College of Life Sciences, Wuhan University, Wuhan 430072, PR China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
168
|
Lin H, Liu XB, Yu JJ, Hua F, Hu ZW. Antioxidant N-acetylcysteine attenuates hepatocarcinogenesis by inhibiting ROS/ER stress in TLR2 deficient mouse. PLoS One 2013; 8:e74130. [PMID: 24098333 PMCID: PMC3788783 DOI: 10.1371/journal.pone.0074130] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 07/29/2013] [Indexed: 12/19/2022] Open
Abstract
Hepatocellular carcinoma (HCC) remains one of the most deadly solid tumor malignancies worldwide. We recently find that the loss of toll-like receptor 2 (TLR2) activities promotes the diethylnitrosamine (DEN) induced hepatocellular carcinogenesis and tumor progression, which associates with an abundant accumulation of reactive oxygen species (ROS) and endoplasmic reticulum (ER) stress. This finding suggests that the ROS/ER stress plays a role in TLR2 modulated carcinogenesis of HCC. To investigate the mechanism of TLR2 activity defending against hepatocarcinogenesis, the TLR2-deficient mice were treated with or without antioxidant N-acetylcysteine (NAC) before DEN administration. We found that pretreatment of these animals with NAC attenuated carcinogenesis and progression of HCC in the TLR2-deficient mice, declined ROS/ER stress, and alleviated the unfold protein response and inflammatory response in TLR2-deficient liver tissue. Moreover, the NAC treatment significantly reduced the enhanced aggregation of p62 and Mallory-Denk bodies in the DEN-induced HCC liver tissue, suggesting that NAC treatment improves the suppressive autophagic flux in the TLR2-deficient liver. These findings indicate that TLR2 activity defends against hepatocarcinogenesis through diminishing the accumulation of ROS and alleviating ER stress and unfold protein response mediated inflammatory response in the liver.
Collapse
Affiliation(s)
- Heng Lin
- Molecular Immunology and Pharmacology Group, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study (NO. BZ0150), Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Xiao-bo Liu
- Molecular Immunology and Pharmacology Group, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study (NO. BZ0150), Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Jiao-jiao Yu
- Molecular Immunology and Pharmacology Group, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study (NO. BZ0150), Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Fang Hua
- Molecular Immunology and Pharmacology Group, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study (NO. BZ0150), Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Zhuo-wei Hu
- Molecular Immunology and Pharmacology Group, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study (NO. BZ0150), Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
169
|
Modulation of murine macrophage TLR7/8-mediated cytokine expression by mesenchymal stem cell-conditioned medium. Mediators Inflamm 2013; 2013:264260. [PMID: 24191131 PMCID: PMC3804401 DOI: 10.1155/2013/264260] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 09/04/2013] [Indexed: 12/16/2022] Open
Abstract
Increasing evidence suggests that mesenchymal stem cells (MSCs) play anti-inflammatory roles during innate immune responses. However, little is known about the effect of MSCs or their secretions on the ligand response of Toll-like receptor (TLR) 7 and TLR8, receptors that recognize viral single-stranded RNA (ssRNA). Macrophages play a critical role in the innate immune response to ssRNA virus infection; therefore, we investigated the effect of MSC-conditioned medium on cytokine expression in macrophages following stimulation with TLR7/8 ligands. After stimulation with TLR7/8 ligand, bone marrow-derived macrophages cultured with MSCs or in MSC-conditioned medium expressed lower levels of tumor necrosis factor (TNF) α and interleukin (IL) 6 and higher levels of IL-10 compared to macrophages cultured without MSCs or in control medium, respectively. The modulations of cytokine expression were associated with prostaglandin E2 (PGE2) secreted by the MSCs. PGE2 enhanced extracellular signal-related kinase (ERK) signaling and suppressed nuclear factor-κB (NF-κB) signaling. Enhanced ERK signaling contributed to enhanced IL-10 production, and suppression of NF-κB signaling contributed to the low production of TNF-α. Collectively, these results indicate that MSCs and MSC-conditioned medium modulate the cytokine expression profile in macrophages following TLR7/8-mediated stimulation, which suggests that MSCs play an immunomodulatory role during ssRNA virus infection.
Collapse
|
170
|
Melnik BC, Plewig G. Impaired Notch-MKP-1 signalling in hidradenitis suppurativa: an approach to pathogenesis by evidence from translational biology. Exp Dermatol 2013; 22:172-7. [PMID: 23489419 DOI: 10.1111/exd.12098] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2013] [Indexed: 12/13/2022]
Abstract
Recent findings in familial hidradenitis suppurativa (HS) demonstrated loss-of-function mutations of components of the γ-secretase (GS) complex leading to decreased protease cleaving activity, which may compromise canonical Notch signalling. Appropriate Notch signalling is of pivotal importance for maintaining the inner and outer root sheath of the hair follicle and skin appendages. This viewpoint on the pathogenesis of HS is primarily supported by circumstantial evidence derived from translational biology. Impaired Notch signalling is proposed to be the major pathogenic mechanism of HS. Deficient Notch signalling switches the fate of outer root sheath cells, resulting in conversion of hair follicles to keratin-enriched epidermal cysts. Impaired Notch signalling may compromise apocrine gland homoeostasis as well. Damage-associated molecular pattern molecules released by either ruptured epidermal cysts exposing keratin fibres or altered structural components of less maintained apocrine glands may both stimulate TLR-mediated innate immunity. All aggravating factors of HS, that is, smoking, obesity, skin occlusion, androgens and progesterone, may further promote inflammation by release of proinflammatory cytokines derived from activated monocyte/macrophages. Inappropriate Notch signalling may not only initiate inflammation in HS but may lead to insufficient feedback inhibition of overstimulated innate immunity. Regular Notch signalling via induction of MAPK phosphatase-1 (MKP-1) terminates TLR-MAPK-signalling in macrophages and IL-23 secreting DCs, the key players for Th17 cell polarization. Thus, impaired Notch signalling links HS to other Th17-driven comorbidities. All major therapeutic interventions in HS appear to attenuate increased MAPK activation of innate immune cells due to impaired Notch-mediated feedback regulation of innate immunity.
Collapse
Affiliation(s)
- Bodo C Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, Osnabrück, Germany.
| | | |
Collapse
|
171
|
He H, Mao L, Xu P, Xi Y, Xu N, Xue M, Yu J, Ye X. Ossification of the posterior longitudinal ligament related genes identification using microarray gene expression profiling and bioinformatics analysis. Gene 2013; 533:515-9. [PMID: 24055420 DOI: 10.1016/j.gene.2013.09.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 08/28/2013] [Accepted: 09/02/2013] [Indexed: 12/13/2022]
Abstract
Ossification of the posterior longitudinal ligament (OPLL) is a kind of disease with physical barriers and neurological disorders. The objective of this study was to explore the differentially expressed genes (DEGs) in OPLL patient ligament cells and identify the target sites for the prevention and treatment of OPLL in clinic. Gene expression data GSE5464 was downloaded from Gene Expression Omnibus; then DEGs were screened by limma package in R language, and changed functions and pathways of OPLL cells compared to normal cells were identified by DAVID (The Database for Annotation, Visualization and Integrated Discovery); finally, an interaction network of DEGs was constructed by string. A total of 1536 DEGs were screened, with 31 down-regulated and 1505 up-regulated genes. Response to wounding function and Toll-like receptor signaling pathway may involve in the development of OPLL. Genes, such as PDGFB, PRDX2 may involve in OPLL through response to wounding function. Toll-like receptor signaling pathway enriched genes such as TLR1, TLR5, and TLR7 may involve in spine cord injury in OPLL. PIK3R1 was the hub gene in the network of DEGs with the highest degree; INSR was one of the most closely related genes of it. OPLL related genes screened by microarray gene expression profiling and bioinformatics analysis may be helpful for elucidating the mechanism of OPLL.
Collapse
Affiliation(s)
- Hailong He
- Department of Orthopaedics, Changzheng Hospital, The Second Military Medical University, No. 415, Fengyang Road, Huangpu District, Shanghai 200003, China.
| | | | | | | | | | | | | | | |
Collapse
|
172
|
Bisabolangelone inhibits dendritic cell functions by blocking MAPK and NF-κB signaling. Food Chem Toxicol 2013; 59:26-33. [DOI: 10.1016/j.fct.2013.05.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 04/26/2013] [Accepted: 05/03/2013] [Indexed: 01/22/2023]
|
173
|
LaRue H, Ayari C, Bergeron A, Fradet Y. Toll-like receptors in urothelial cells—targets for cancer immunotherapy. Nat Rev Urol 2013; 10:537-45. [DOI: 10.1038/nrurol.2013.153] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
174
|
Coskun M, Bjerrum JT, Seidelin JB, Troelsen JT, Olsen J, Nielsen OH. miR-20b, miR-98, miR-125b-1*, and let-7e* as new potential diagnostic biomarkers in ulcerative colitis. World J Gastroenterol 2013; 19:4289-4299. [PMID: 23885139 PMCID: PMC3718896 DOI: 10.3748/wjg.v19.i27.4289] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 03/15/2013] [Accepted: 05/10/2013] [Indexed: 02/06/2023] Open
Abstract
AIM: To use microarray-based miRNA profiling of colonic mucosal biopsies from patients with ulcerative colitis (UC), Crohn’s disease (CD), and controls in order to identify new potential miRNA biomarkers in inflammatory bowel disease.
METHODS: Colonic mucosal pinch biopsies from the descending part were obtained endoscopically from patients with active UC or CD, quiescent UC or CD, as well as healthy controls. Total RNA was isolated and miRNA expression assessed using the miRNA microarray Geniom Biochip miRNA Homo sapiens (Febit GmbH, Heidelberg, Germany). Data analysis was carried out by principal component analysis and projection to latent structure-discriminant analysis using the SIMCA-P+12 software package (Umetrics, Umea, Sweden). The microarray data were subsequently validated by quantitative real-time polymerase chain reaction (qPCR) performed on colonic tissue samples from active UC patients (n = 20), patients with quiescent UC (n = 19), and healthy controls (n = 20). The qPCR results were analyzed with Mann-Whitney U test. In silico prediction analysis were performed to identify potential miRNA target genes and the predicted miRNA targets were then compared with all UC associated susceptibility genes reported in the literature.
RESULTS: The colonic mucosal miRNA transcriptome differs significantly between UC and controls, UC and CD, as well as between UC patients with mucosal inflammation and those without. However, no clear differences in the transcriptome of patients with CD and controls were found. The miRNAs with the strongest differential power were identified (miR-20b, miR-99a, miR-203, miR-26b, and miR-98) and found to be up-regulated more than a 10-fold in active UC as compared to quiescent UC, CD, and controls. Two miRNAs, miR-125b-1* and let-7e*, were up-regulated more than 5-fold in quiescent UC compared to active UC, CD, and controls. Four of the seven miRNAs (miR-20b, miR-98, miR-125b-1*, and let-7e*) were validated by qPCR and found to be specifically upregulated in patients with UC. Using in silico analysis we found several predicted pro-inflammatory target genes involved in various pathways, such as mitogen-activated protein kinase and cytokine signaling, which are both key signaling pathways in UC.
CONCLUSION: The present study provides the first evidence that miR-20b, miR-98, miR-125b-1*, and let-7e* are deregulated in patients with UC. The level of these miRNAs may serve as new potential biomarkers for this chronic disease.
Collapse
|
175
|
Badley AD, Sainski A, Wightman F, Lewin SR. Altering cell death pathways as an approach to cure HIV infection. Cell Death Dis 2013; 4:e718. [PMID: 23846220 PMCID: PMC3730421 DOI: 10.1038/cddis.2013.248] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 05/22/2013] [Accepted: 05/29/2013] [Indexed: 12/13/2022]
Abstract
Recent cases of successful control of human immunodeficiency virus (HIV) by bone marrow transplant in combination with suppressive antiretroviral therapy (ART) and very early initiation of ART have provided proof of concept that HIV infection might now be cured. Current efforts focusing on gene therapy, boosting HIV-specific immunity, reducing inflammation and activation of latency have all been the subject of recent excellent reviews. We now propose an additional avenue of research towards a cure for HIV: targeting HIV apoptosis regulatory pathways. The central enigma of HIV disease is that HIV infection kills most of the CD4 T cells that it infects, but those cells that are spared subsequently become a latent reservoir for HIV against which current medications are ineffective. We propose that if strategies could be devised which would favor the death of all cells which HIV infects, or if all latently infected cells that release HIV would succumb to viral-induced cytotoxicity, then these approaches combined with effective ART to prevent spreading infection, would together result in a cure for HIV. This premise is supported by observations in other viral systems where the relationship between productive infection, apoptosis resistance, and the development of latency or persistence has been established. Therefore we propose that research focused at understanding the mechanisms by which HIV induces apoptosis of infected cells, and ways that some cells escape the pro-apoptotic effects of productive HIV infection are critical to devising novel and rational approaches to cure HIV infection.
Collapse
Affiliation(s)
- A D Badley
- Division of Infectious Diseases, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA.
| | | | | | | |
Collapse
|
176
|
Green TL, Cruse JM, Lewis RE, Craft BS. Circulating tumor cells (CTCs) from metastatic breast cancer patients linked to decreased immune function and response to treatment. Exp Mol Pathol 2013; 95:174-9. [PMID: 23831428 DOI: 10.1016/j.yexmp.2013.06.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 06/26/2013] [Indexed: 12/12/2022]
Abstract
We aimed to examine the use of circulating tumor cells (CTCs) as an effective measure of treatment efficacy and immune system function in metastatic breast cancer patients. CTCs are believed to be indicators of residual disease and thus pose an increased risk of metastasis and poorer outcomes to those patients who are CTC-positive. We obtained peripheral blood samples from 45 patients previously diagnosed with metastatic disease originating in the breast. Using TLR agonists that bind TLR ligands and upregulate immune effects versus unstimulated cells, we calculated a percent specific lysis using chromium-51 assay to illustrate the functional abilities of patient natural killer (NK) cells. We found those with greater than 5 CTCs per 7.5 mL blood had significantly decreased responses by their immune cells when compared with those patients who had 5 CTCs or less. We furthermore found a correlation between disease progression and CTC-positive patients, indicating that those who have a positive test should be closely monitored by their clinician. CTCs represent an exciting new clinical opportunity that will ideally utilize their low invasiveness and quick turnaround time to best benefit clinical scenarios.
Collapse
Affiliation(s)
- Taryn L Green
- Department of Pathology, University of Mississippi Medical Center, Jackson, MS 39216, USA.
| | | | | | | |
Collapse
|
177
|
Kidd LCR, Rogers EN, Yeyeodu ST, Jones DZ, Kimbro KS. Contribution of toll-like receptor signaling pathways to breast tumorigenesis and treatment. BREAST CANCER-TARGETS AND THERAPY 2013; 5:43-51. [PMID: 24648757 DOI: 10.2147/bctt.s29172] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Mounting evidence indicates that anomalies in the inflammatory and immune response pathways are essential to tumorigenesis. However, tumor-based innate immunity initiated by transformed breast epithelia tissues has received much less attention. This review summarizes published reports on the role of the toll-like receptor signaling pathway on breast cancer risk, disease progression, survival, and disease recurrence. Specifically, we discuss the underlying biological mechanisms that contribute to the tumorigenic and/or anti-tumorigenic properties of toll-like receptors and their associated agonists in relation to breast tumorigenesis and cancer treatment. Further, we use results from preclinical, clinical, and population-based studies as prompts for the exploration of new and more effective breast cancer therapies. As the knowledge base of innate immunity's involvement in breast cancer progression increases, current and new immune-modifying strategies will be refined to effectively treat breast cancer.
Collapse
Affiliation(s)
- La Creis R Kidd
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA
| | - Erica N Rogers
- Biomedical/Biotechnology Research Institute (BBRI), North Carolina Central University, Durham, NC, USA
| | - Susan T Yeyeodu
- Biomedical/Biotechnology Research Institute (BBRI), North Carolina Central University, Durham, NC, USA
| | - Dominique Z Jones
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA
| | - K Sean Kimbro
- Biomedical/Biotechnology Research Institute (BBRI), North Carolina Central University, Durham, NC, USA
| |
Collapse
|
178
|
Wang J, Dong B, Tan Y, Yu S, Bao YX. A study on the immunomodulation of polysaccharopeptide through the TLR4-TIRAP/MAL-MyD88 signaling pathway in PBMCs from breast cancer patients. Immunopharmacol Immunotoxicol 2013; 35:497-504. [DOI: 10.3109/08923973.2013.805764] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
179
|
Abstract
The tumor necrosis factor receptor (TNF-R)-associated factor (TRAF) family of intracellular proteins were originally identified as signaling adaptors that bind directly to the cytoplasmic regions of receptors of the TNF-R superfamily. The past decade has witnessed rapid expansion of receptor families identified to employ TRAFs for signaling. These include Toll-like receptors (TLRs), NOD-like receptors (NLRs), RIG-I-like receptors (RLRs), T cell receptor, IL-1 receptor family, IL-17 receptors, IFN receptors and TGFβ receptors. In addition to their role as adaptor proteins, most TRAFs also act as E3 ubiquitin ligases to activate downstream signaling events. TRAF-dependent signaling pathways typically lead to the activation of nuclear factor-κBs (NF-κBs), mitogen-activated protein kinases (MAPKs), or interferon-regulatory factors (IRFs). Compelling evidence obtained from germ-line and cell-specific TRAF-deficient mice demonstrates that each TRAF plays indispensable and non-redundant physiological roles, regulating innate and adaptive immunity, embryonic development, tissue homeostasis, stress response, and bone metabolism. Notably, mounting evidence implicates TRAFs in the pathogenesis of human diseases such as cancers and autoimmune diseases, which has sparked new appreciation and interest in TRAF research. This review presents an overview of the current knowledge of TRAFs, with an emphasis on recent findings concerning TRAF molecules in signaling and in human diseases.
Collapse
Affiliation(s)
- Ping Xie
- Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Nelson Labs Room B336, Piscataway, New Jersey 08854.
| |
Collapse
|
180
|
Mansell A, Jenkins BJ. Dangerous liaisons between interleukin-6 cytokine and toll-like receptor families: A potent combination in inflammation and cancer. Cytokine Growth Factor Rev 2013; 24:249-56. [DOI: 10.1016/j.cytogfr.2013.03.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
181
|
Hu D, Denney J, Liang M, Javer A, Yang X, Zhu R, Yin D. Stimulatory Toll-like receptor 2 suppresses restraint stress-induced immune suppression. Cell Immunol 2013; 283:18-24. [PMID: 23850672 DOI: 10.1016/j.cellimm.2013.05.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 04/30/2013] [Accepted: 05/21/2013] [Indexed: 10/26/2022]
Abstract
Stress can enhance or suppress immune functions depending on a variety of factors. Our previous studies observed that Toll-like receptor 2 (TLR2) participates in chronic restraint stress-induced immune dysfunction. However, the mechanism by which TLR2 prevents immune suppression remains elusive. Our investigation found that stimulation of TLR2 by peptidoglycan (PGN) significantly attenuates splenocyte apoptosis and markedly blocks alterations of anti-apoptotic and apoptotic proteins. Activation of TLR2 inhibits chronic stress-reduced phosphorylation of c-Jun N-terminal kinase (JNK) and diminishes chronic stress-induced up-regulation of corticosterone production. Additionally, our data show that chronic stress causes a dramatic decrease of cytokine IL-2 level but an increase of IL-4 and IL-17 in CD4(+) T cells. Interestingly, PGN could block these alterations of cytokine levels. Collectively, our studies demonstrate that stimulation of TLR2 attenuates chronic stress-induced immune suppression by modulating apoptosis-related proteins and immunoregulatory agents.
Collapse
Affiliation(s)
- Dan Hu
- Department of Internal Medicine, College of Medicine, East Tennessee State University, Johnson City, TN 37604, USA.
| | | | | | | | | | | | | |
Collapse
|
182
|
Resler AJ, Malone KE, Johnson LG, Malkki M, Petersdorf EW, McKnight B, Madeleine MM. Genetic variation in TLR or NFkappaB pathways and the risk of breast cancer: a case-control study. BMC Cancer 2013; 13:219. [PMID: 23634849 PMCID: PMC3651307 DOI: 10.1186/1471-2407-13-219] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 04/25/2013] [Indexed: 01/01/2023] Open
Abstract
Background Toll-like receptors (TLRs) and the transcription factor nuclear factor-κB (NFκB) are important in inflammation and cancer. Methods We examined the association between breast cancer risk and 233 tagging single nucleotide polymorphisms within 31 candidate genes involved in TLR or NFκB pathways. This population-based study in the Seattle area included 845 invasive breast cancer cases, diagnosed between 1997 and 1999, and 807 controls aged 65–79. Results Variant alleles in four genes were associated with breast cancer risk based on gene-level tests: MAP3K1, MMP9, TANK, and TLR9. These results were similar when the risk of breast cancer was examined within ductal and luminal subtypes. Subsequent exploratory pathway analyses using the GRASS algorithm found no associations for genes in TLR or NFκB pathways. Using publicly available CGEMS GWAS data to validate significant findings (N = 1,145 cases, N = 1,142 controls), rs889312 near MAP3K1 was confirmed to be associated with breast cancer risk (P = 0.04, OR 1.15, 95% CI 1.01–1.30). Further, two SNPs in TANK that were significant in our data, rs17705608 (P = 0.05) and rs7309 (P = 0.04), had similar risk estimates in the CGEMS data (rs17705608 OR 0.83, 95% CI 0.72–0.96; CGEMS OR 0.90, 95% CI 0.80–1.01 and rs7309 OR 0.83, 95% CI 0.73–0.95; CGEMS OR 0.91, 95% CI 0.81–1.02). Conclusions Our findings suggest plausible associations between breast cancer risk and genes in TLR or NFκB pathways. Given the few suggestive associations in our data and the compelling biologic rationale for an association between genetic variation in these pathways and breast cancer risk, further studies are warranted that examine these effects.
Collapse
Affiliation(s)
- Alexa J Resler
- Program in Epidemiology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | | | | | | | | | | | |
Collapse
|
183
|
Zhang X, Ding R, Zhou Y, Zhu R, Liu W, Jin L, Yao W, Gao X. Toll-like receptor 2 and Toll-like receptor 4-dependent activation of B cells by a polysaccharide from marine fungus Phoma herbarum YS4108. PLoS One 2013; 8:e60781. [PMID: 23556003 PMCID: PMC3612108 DOI: 10.1371/journal.pone.0060781] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 03/02/2013] [Indexed: 11/19/2022] Open
Abstract
Various natural polysaccharides are capable of activating the immune system and therefore can be employed as biological response modifiers in anti-tumor therapy. We previously found a homogenous polysaccharide from the mycelium of marine fungus Phoma herbarum YS4108, named YCP, exhibiting strong in vivo antitumor ability via enhancement of the host immune responses. To further elucidate the role of YCP as a biological response modifier, the immunomoduating activities of YCP in B cells was investigated in the current study. We demonstrated that stimulation of YCP with murine splenic B cells resulted in cell proliferation and generation of IgM antibody response. Binding of YCP to B cells was a direct, saturable and reversible event and required TLR2 and TLR4 involvement. TLR2 and TLR4 defunctionalization by either antibody blocking or allele-specific mutation significantly impaired the B-cell proliferative and IgM responses to YCP. YCP interaction with TLR2 and TLR4 led to the activation of intracellular p38, ERK and JNK, as well as the translocation of transcriptional factor NF-κB into nucleus. Furthermore, specific inhibitors of p38, ERK, JNK and NF-κB could attenuate the ability of YCP to induce B cell proliferation and IgM production. Taken together, this study has indicated for the first time the immunostimulating properties of YCP on B cells through a receptor-mediated mechanism, which involves TLR2 and TLR4 and resultant activation of MAPK and NF-κB signaling pathways, thereby highlighting the role of YCP as an efficacious biological response modifier in oncologic immunotherapy.
Collapse
Affiliation(s)
- Xian Zhang
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, P.R. China
| | - Ran Ding
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, P.R. China
| | - Yan Zhou
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, P.R. China
| | - Rui Zhu
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, P.R. China
| | - Wei Liu
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, P.R. China
| | - Lei Jin
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, P.R. China
| | - Wenbing Yao
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, P.R. China
- * E-mail: (XG); (WY)
| | - Xiangdong Gao
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, P.R. China
- * E-mail: (XG); (WY)
| |
Collapse
|
184
|
Gui B, Su M, Chen J, Jin L, Wan R, Qian Y. Neuroprotective effects of pretreatment with propofol in LPS-induced BV-2 microglia cells: role of TLR4 and GSK-3β. Inflammation 2013; 35:1632-40. [PMID: 22588329 DOI: 10.1007/s10753-012-9478-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Surgery often leads to neuroinflammation, which mainly acts as the activation of microglia cells. Propofol is always used for induction and maintenance of anesthesia prior to surgical trauma, whereas whether or not it could attenuate neuroinflammation used prophylactically is not well defined. In the present study, we incubated BV-2 microglia cells with 1 μg/ml lipopolysaccharide (LPS) to mimic neuroinflammation in vitro. Firstly, cell viability was measured using 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay and the data indicated that propofol would not reduce cell viability unless its concentration reached 300 μM. Secondly, BV-2 microglia cells were pretreated with 30 μM propofol (clinically relevant concentration), and then stimulated with LPS. The results showed that the production of tumor necrosis factor-α (TNF-α), interleukin (IL)-1β and IL-10 was considerably increased by LPS, but the change could be markedly attenuated by pretreatment with propofol. Meanwhile, pretreatment with propofol inhibited LPS-induced augmentation of toll-like receptor 4 (TLR4) expression at both mRNA and protein levels and further upregulated LPS-induced inactivation of glycogen synthase kinase-3β (GSK-3β) in BV-2 microglia cells. These results indicated, at least in part, that pretreatment with propofol can protect BV-2 microglia cells against LPS-induced inflammation. Downregulation of TLR4 expression and inactivation of GSK-3β may be involved in its protective effect.
Collapse
Affiliation(s)
- Bo Gui
- Department of Anesthesiology, The First Affiliated Hospital, Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China
| | | | | | | | | | | |
Collapse
|
185
|
Velegraki M, Papakonstanti E, Mavroudi I, Psyllaki M, Tsatsanis C, Oulas A, Iliopoulos I, Katonis P, Papadaki HA. Impaired clearance of apoptotic cells leads to HMGB1 release in the bone marrow of patients with myelodysplastic syndromes and induces TLR4-mediated cytokine production. Haematologica 2013; 98:1206-15. [PMID: 23403315 DOI: 10.3324/haematol.2012.064642] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Excessive pro-inflammatory cytokine production in the bone marrow has been associated with the pathogenesis of myelodysplastic syndromes. We herein investigated the involvement of toll-like receptors and their endogenous ligands in the induction/maintenance of the inflammatory process in the marrow of patients with myelodysplastic syndromes. We evaluated the expression of toll-like receptors in marrow monocytes of patients (n=27) and healthy controls (n=25) by flow-cytometry and also assessed the activation of the respective signaling using a real-time polymerase chain reaction-based array. We measured the high mobility group box-1 protein, a toll-like receptor-4 ligand, in marrow plasma and long-term bone marrow culture supernatants by an enzyme-linked immunosorbent assay and we performed cross-over experiments using marrow plasma from patients and controls in the presence/absence of a toll-like receptor-4 inhibitor to evaluate the pro-inflammatory cytokine production by chemiluminescence. We assessed the apoptotic cell clearance capacity of patients' macrophages using a fluorescence microscopy-based assay. We found over-expression of toll-like receptor-4 in patients' marrow monocytes compared to that in controls; this over-expression was associated with up-modulation of 53 genes related to the respective signaling. Incubation of patients' monocytes with autologous, but not with normal, marrow plasma resulted in over-production of pro-inflammatory cytokines, an effect that was abrogated by the toll-like receptor-4 inhibitor suggesting that the pro-inflammatory cytokine production in myelodysplastic syndromes is largely mediated through toll-like receptor-4. The levels of high mobility group box-1 protein were increased in patients' marrow plasma and culture supernatants compared to the levels in controls. Patients' macrophages displayed an impaired capacity to engulf apoptotic cells and this defect was associated with excessive release of high mobility group box-1 protein by dying cells. A primary apoptotic cell clearance defect of marrow macrophages in myelodysplastic syndromes may contribute to the induction/maintenance of the inflammatory process through aberrant release of molecules inducing toll-like receptor-4 such as high mobility group box-1 protein.
Collapse
Affiliation(s)
- Maria Velegraki
- Department of Hematology, University of Crete School of Medicine, Heraklion, Greece
| | | | | | | | | | | | | | | | | |
Collapse
|
186
|
Mansour MK, Tam JM, Vyas JM. The cell biology of the innate immune response to Aspergillus fumigatus. Ann N Y Acad Sci 2013; 1273:78-84. [PMID: 23230841 DOI: 10.1111/j.1749-6632.2012.06837.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The development of invasive aspergillosis is a feared complication for immunocompromised patients. Despite the use of antifungal agents with excellent bioactivity, the morbidity and mortality rates for invasive aspergillosis remain unacceptably high. Defects within the innate immune response portend the highest risk for patients, but detailed knowledge of molecular pathways in neutrophils and macrophages in response to this fungal pathogen is lacking. Phagocytosis of fungal spores is a key step that places the pathogen into a phagosome, a membrane-delimited compartment that undergoes maturation and ultimately delivers antigenic material to the class II MHC pathway. We review the role of Toll-like receptor 9 (TLR9) in phagosome maturation of Aspergillus fumigates-containing phagosomes. Advanced imaging modalities and the development of fungal-like particles are promising tools that will aid in the dissection of the molecular mechanism to fungal immunity.
Collapse
Affiliation(s)
- Michael K Mansour
- Division of Infectious Disease, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | | | | |
Collapse
|
187
|
Abstract
Dendritic cells (DCs) are specialized sentinels responsible for coordinating adaptive immunity. This function is dependent upon coupled sensitivity to environmental signs of inflammation and infection to cellular maturation-the programmed alteration of DC phenotype and function to enhance immune cell activation. Although DCs are thus well equipped to respond to pathogens, maturation triggers are not unique to infection. Given that immune cells are exquisitely sensitive to the biological functions of DCs, we now appreciate that multiple layers of suppression are required to restrict the environmental sensitivity, cellular maturation, and even life span of DCs to prevent aberrant immune activation during the steady state. At the same time, steady-state DCs are not quiescent but rather perform key functions that support homeostasis of numerous cell types. Here we review these functions and molecular mechanisms of suppression that control steady-state DC maturation. Corruption of these steady-state operatives has diverse immunological consequences and pinpoints DCs as potent drivers of autoimmune and inflammatory disease.
Collapse
Affiliation(s)
- Gianna Elena Hammer
- Department of Medicine, University of California, San Francisco, California 94143
| | - Averil Ma
- Department of Medicine, University of California, San Francisco, California 94143
| |
Collapse
|
188
|
Montegudo AE, Palilonis MA, Moore CC, Huynh T, McKillop IH, Evans SL. Pyrrolidine dithiocarbamate improves mortality in a rat model of severe hemorrhage. J Surg Res 2013; 179:e149-55. [DOI: 10.1016/j.jss.2012.01.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Revised: 12/14/2011] [Accepted: 01/03/2012] [Indexed: 11/26/2022]
|
189
|
Ridnour LA, Cheng RYS, Switzer CH, Heinecke JL, Ambs S, Glynn S, Young HA, Trinchieri G, Wink DA. Molecular pathways: toll-like receptors in the tumor microenvironment--poor prognosis or new therapeutic opportunity. Clin Cancer Res 2012; 19:1340-6. [PMID: 23271799 DOI: 10.1158/1078-0432.ccr-12-0408] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Numerous reports have described Toll-like receptor (TLR) expression in the tumor microenvironment as it relates to cancer progression, as well as their involvement in inflammation. While TLRs mediate immune surveillance, clinical studies have associated TLR expression in the tumor with poor patient survival, indicating that TLR expression may affect cancer treatment and survival. This review will examine mechanisms in which TLR activation upregulates protumorigenic pathways, including the induction of inducible nitric oxide synthase (iNOS2) and COX2, which in turn increase TLR expression and promote a feed-forward loop leading to tumor progression and the development of more aggressive tumor phenotypes. These propagating loops involve cancer cell, stroma, and/or immune cell TLR expression. Because of abundant TLR expression in many human tumors, several TLR agonists are now in clinical and preclinical trials and some have shown enhanced efficacy when used as adjuvant with radiation, chemotherapy, or cancer vaccines. These findings suggest that TLR expression influences cancer biology and therapeutic response, which may involve specific interactions within the tumor microenvironment, including mediators of inflammation such as nitric oxide and the arachidonic acid signaling pathways.
Collapse
Affiliation(s)
- Lisa A Ridnour
- Radiation Biology Branch, National Cancer Institute, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
190
|
Zgair AK, Chhibber S. Stenotrophomonas maltophiliaflagellin restricts bacterial colonization in BALB/c mouse lungin vivo. ACTA ACUST UNITED AC 2012; 66:191-200. [DOI: 10.1111/j.1574-695x.2012.00999.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2012] [Revised: 04/28/2012] [Accepted: 06/11/2012] [Indexed: 11/27/2022]
|
191
|
Anti-inflammatory aminoacetylenic isoindoline-1,3-dione derivatives modulate cytokines production from different spleen cell populations. Int Immunopharmacol 2012; 14:296-301. [DOI: 10.1016/j.intimp.2012.07.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Revised: 07/05/2012] [Accepted: 07/24/2012] [Indexed: 11/21/2022]
|
192
|
Srivastava R, Geng D, Liu Y, Zheng L, Li Z, Joseph MA, McKenna C, Bansal N, Ochoa A, Davila E. Augmentation of therapeutic responses in melanoma by inhibition of IRAK-1,-4. Cancer Res 2012; 72:6209-16. [PMID: 23041547 DOI: 10.1158/0008-5472.can-12-0337] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Toll-like receptors (TLR) are expressed by a variety of cancers, including melanoma, but their functional contributions in cancer cells are uncertain. To approach this question, we evaluated the effects of stimulating or inhibiting the TLR/IL-1 receptor-associated kinases IRAK-1 and IRAK-4 in melanoma cells where their functions are largely unexplored. TLRs and TLR-related proteins were variably expressed in melanoma cell lines, with 42% expressing activated phospho-IRAK-1 constitutively and 85% expressing high levels of phospho-IRAK-4 in the absence of TLR stimulation. Immunohistochemical evaluation of melanoma tumor biopsies (n = 242) revealed two distinct patient populations, one that expressed p-IRAK-4 levels similar to normal skin (55%) and one with significantly higher levels than normal skin (45%). Levels of p-IRAK-4 levels did not correlate with clinical stage, gender, or age, but attenuated IRAK-1,-4 signaling with pharmacologic inhibitors or siRNA-enhanced cell death in vitro in combination with vinblastine. Moreover, in a xenograft mouse model of melanoma, the combined pharmacologic treatment delayed tumor growth and prolonged survival compared with subjects receiving single agent therapy. We propose p-IRAK-4 as a novel inflammation and prosurvival marker in melanoma with the potential to serve as a therapeutic target to enhance chemotherapeutic responses.
Collapse
Affiliation(s)
- Ratika Srivastava
- Marlene and Stewart Greenebaum NCI Cancer Center, University of Maryland, Baltimore, MD 21201-1559, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
193
|
Troutman TD, Bazan JF, Pasare C. Toll-like receptors, signaling adapters and regulation of the pro-inflammatory response by PI3K. Cell Cycle 2012; 11:3559-67. [PMID: 22895011 PMCID: PMC3478307 DOI: 10.4161/cc.21572] [Citation(s) in RCA: 151] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
TLRs are a family of pattern recognition receptors that recognize conserved molecular structures/products from a wide variety of microbes. Following recognition of ligands, TLRs recruit signaling adapters to initiate a pro-inflammatory signaling cascade culminating in the activation of several transcription factor families. Additionally, TLR signals lead to activation of PI3K, affecting many aspects of the cellular response, including cell survival, proliferation and regulation of the pro-inflammatory response. The recent discovery of BCAP as a TLR signaling adaptor, crucial for linking TLRs to PI3K activation, allows new questions of the importance of PI3K activation downstream of TLRs. Here, we summarize the current understanding of signaling pathways activated by TLRs and provide our perspective on TLR mediated activation of PI3K and its impact on regulating cellular processes.
Collapse
Affiliation(s)
- Ty Dale Troutman
- Department of Immunology; University of Texas Southwestern Medical Center; Dallas, TX USA
| | | | - Chandrashekhar Pasare
- Department of Immunology; University of Texas Southwestern Medical Center; Dallas, TX USA
| |
Collapse
|
194
|
Lee GL, Chang YW, Wu JY, Wu ML, Wu KK, Yet SF, Kuo CC. TLR 2 induces vascular smooth muscle cell migration through cAMP response element-binding protein-mediated interleukin-6 production. Arterioscler Thromb Vasc Biol 2012; 32:2751-60. [PMID: 22995520 DOI: 10.1161/atvbaha.112.300302] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Migration of vascular smooth muscle cells (VSMCs) from the media into intima contributes to the development of atherosclerosis. Gene deletion experiments implicate a role for toll-like receptor 2 (TLR2) in atherogenesis. However, the underlying mechanisms remain unclear. We postulate that TLR2 promotes VSMC migration by enhancing interleukin (IL)-6 production. METHODS AND RESULTS Migration assays revealed that TLR2 agonists promoted VSMC migration but not cell proliferation or viability. TLR2 deficiency or inhibition of TLR2 signaling with anti-TLR2 antibody suppressed TLR2 agonist-induced VSMC migration and IL-6 production, which was mediated via p38 mitogen-associated protein kinase and extracellular signal-regulated kinase 1/2 signaling pathways. Neutralizing anti-IL-6 antibodies impaired TLR2-mediated VSMC migration and formation of filamentous actin fiber and lamellipodia. Blockade of p38 mitogen-associated protein kinase or extracellular signal-regulated kinase 1/2 activation inhibited TLR2 agonist pam3CSK4-induced phosphorylation of cAMP response element-binding protein, which regulates IL-6 promoter activity through the cAMP response element site. Moreover, cAMP response element-binding protein small interfering RNA inhibited pam3CSK4-induced IL-6 production and VSMC migration. Additionally, Rac1 small interfering RNA inhibited pam3CSK4-induced VSMC migration but not IL-6 production. CONCLUSIONS Our results suggest that on ligand binding, TLR2 activates p38 mitogen-associated protein kinase and extracellular signal-regulated kinase 1/2 signaling in VSMCs. These signaling pathways act in concert to activate cAMP response element-binding protein and subsequent IL-6 production, which in turn promotes VSMC migration via Rac1-mediated actin cytoskeletal reorganization.
Collapse
Affiliation(s)
- Guan-Lin Lee
- Institute of Cellular and System Medicine, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli County 35053, Taiwan
| | | | | | | | | | | | | |
Collapse
|
195
|
Wang L, Zhao Y, Qian J, Sun L, Lu Y, Li H, Li Y, Yang J, Cai Z, Yi Q. Toll-like receptor-4 signaling in mantle cell lymphoma: effects on tumor growth and immune evasion. Cancer 2012; 119:782-91. [PMID: 22915070 DOI: 10.1002/cncr.27792] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 06/22/2012] [Accepted: 07/26/2012] [Indexed: 01/20/2023]
Abstract
BACKGROUND Mantle cell lymphoma (MCL) is an incurable B-cell malignancy, and patients with this disease have the poorest prognosis among all patients with B-cell lymphomas. The signaling pathways that trigger MCL escape from immune surveillance are unclear. Because Toll-like receptors (TLRs) initiate innate and adaptive immune responses against invading pathogens, the authors investigated the impact of TLR signaling in MCL cells. METHODS TLR expression was examined in MCL cell lines and in primary tumors. The examination focused on TLR4 and its ligand lipopolysaccharide (LPS) on MCL cells and their function on MCL proliferation and immune evasion. RESULTS MCL cells expressed multiple TLRs, and TLR4 was among the highest expressed molecules. The activation of TLR4 signaling in MCL cells by LPS induced MCL proliferation and up-regulated the secretion of cytokines like interleukin-6 (IL-6), IL-10, and vascular endothelial growth factor (VEGF). LPS-pretreated MCL cells inhibited the proliferation and cytolytic activity of T cells by secreted IL-10 and VEGF, and neutralizing antibodies against these cytokines restored their functions. Similar results were observed in TLR4-positive/myeloid differentiation 88 (MyD88)-positive primary lymphoma cells but not in TLR4-positive/MyD88-negative primary lymphoma cells from patients with MCL. Knockdown of TLR4 on MCL cells abrogated the effect of LPS on MCL cells in term of cell growth or secretion of the cytokines and evasion of the immune system. CONCLUSIONS The current results indicated that TLR4 signaling triggers a cascade that leads to MCL growth and evasion from immune surveillance. Thus, TLR4 signaling molecules may be novel therapeutic targets in patients with MCL.
Collapse
Affiliation(s)
- Lijuan Wang
- Department of Lymphoma/Myeloma, Center for Cancer Immunology Research, Division of Cancer Medicine, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
196
|
Plaeger SF, Collins BS, Musib R, Deeks SG, Read S, Embry A. Immune activation in the pathogenesis of treated chronic HIV disease: a workshop summary. AIDS Res Hum Retroviruses 2012; 28:469-77. [PMID: 21854232 DOI: 10.1089/aid.2011.0213] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
With the advent of highly effective antiretroviral therapy (ART), infection with human immunodeficiency virus (HIV) has become a chronic disease rather than a death sentence. Nevertheless, effectively treated individuals have a higher than normal risk for developing noninfectious comorbidities, including cardiovascular and renal disease. Although traditional risk factors of aging as well as treatment toxicity contribute to this risk, many investigators consider chronic HIV-associated inflammation a significant factor in such end-organ disease. Despite effective viral suppression, chronic inflammation persists at levels higher than in uninfected people, yet the stimuli for the inflammation and the mechanism by which inflammation persists and promotes disease pathology remain incompletely understood. This critical gap in scientific understanding complicates and hampers effective decision making about appropriate medical intervention. To better understand the mechanism(s) of chronic immune activation in treated HIV disease, three questions need answers: (1) what is the cause of persistent immune activation during treated HIV infection, (2) what are the best surrogate markers of chronic immune activation in this setting, and (3) what therapeutic intervention(s) could prevent or reverse this process? The NIH sponsored and convened a meeting to discuss the state of knowledge concerning these questions and the best course for developing effective therapeutic strategies. This report summarizes the findings of that NIH meeting.
Collapse
Affiliation(s)
- Susan F. Plaeger
- Division of AIDS, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Brenda S. Collins
- Henry M. Jackson Foundation for the Advancement of Military Medicine, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland
| | - Runa Musib
- U.S. Military HIV Research Program, Henry M. Jackson Foundation for the Advancement of Military Medicine, Rockville, Maryland
| | - Steven G. Deeks
- University of California, San Francisco, San Francisco, California
| | - Sarah Read
- Division of AIDS, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Alan Embry
- Division of AIDS, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
197
|
The role of phosphoinositide 3-kinase signaling in intestinal inflammation. JOURNAL OF SIGNAL TRANSDUCTION 2012; 2012:358476. [PMID: 22570785 PMCID: PMC3337621 DOI: 10.1155/2012/358476] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2011] [Accepted: 11/29/2011] [Indexed: 02/07/2023]
Abstract
The phosphatidylinositol 3-kinase signaling pathway plays a central role in regulating the host inflammatory response. The net effect can either be pro- or anti-inflammatory depending on the system and cellular context studied. This paper focuses on phosphatidylinositol 3-kinase signaling in innate and adaptive immune cells of the intestinal mucosa. The role of phosphatidylinositol 3-kinase signaling in mouse models of inflammatory bowel disease is also discussed. With the development of new isoform specific inhibitors, we are beginning to understand the specific role of this complex pathway, in particular the role of the γ isoform in intestinal inflammation. Continued research on this complex pathway will enhance our understanding of its role and provide rationale for the design of new approaches to intervention in chronic inflammatory conditions such as inflammatory bowel disease.
Collapse
|
198
|
Goldberg AA, Beach A, Davies GF, Harkness TAA, Leblanc A, Titorenko VI. Lithocholic bile acid selectively kills neuroblastoma cells, while sparing normal neuronal cells. Oncotarget 2012; 2:761-82. [PMID: 21992775 PMCID: PMC3248158 DOI: 10.18632/oncotarget.338] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Aging is one of the major risk factors of cancer. The onset of cancer can be postponed by pharmacological and dietary anti-aging interventions. We recently found in yeast cellular models of aging that lithocholic acid (LCA) extends longevity. Here we show that, at concentrations that are not cytotoxic to primary cultures of human neurons, LCA kills the neuroblastoma (NB) cell lines BE(2)-m17, SK-n-SH, SK-n-MCIXC and Lan-1. In BE(2)-m17, SK-n-SH and SK-n-MCIXC cells, the LCA anti-tumor effect is due to apoptotic cell death. In contrast, the LCA-triggered death of Lan-1 cells is not caused by apoptosis. While low concentrations of LCA sensitize BE(2)-m17 and SK-n-MCIXC cells to hydrogen peroxide-induced apoptotic cell death controlled by mitochondria, these LCA concentrations make primary cultures of human neurons resistant to such a form of cell death. LCA kills BE(2)-m17 and SK-n-MCIXC cell lines by triggering not only the intrinsic (mitochondrial) apoptotic cell death pathway driven by mitochondrial outer membrane permeabilization and initiator caspase-9 activation, but also the extrinsic (death receptor) pathway of apoptosis involving activation of the initiator caspase-8. Based on these data, we propose a mechanism underlying a potent and selective anti-tumor effect of LCA in cultured human NB cells. Moreover, our finding that LCA kills cultured human breast cancer and rat glioma cells implies that it has a broad anti-tumor effect on cancer cells derived from different tissues and organisms.
Collapse
|
199
|
Femia AP, Swidsinski A, Dolara P, Salvadori M, Amedei A, Caderni G. Mucin depleted foci, colonic preneoplastic lesions lacking Muc2, show up-regulation of Tlr2 but not bacterial infiltration. PLoS One 2012; 7:e29918. [PMID: 22242189 PMCID: PMC3252347 DOI: 10.1371/journal.pone.0029918] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Accepted: 12/06/2011] [Indexed: 01/09/2023] Open
Abstract
Mucin depleted foci (MDF) are precancerous lesions of the colon in carcinogen-treated rodents and humans at high risk. Since MDF show signs of inflammation we hypothesized that the defective mucous production would expose them to the risk of being penetrated by intestinal bacteria, which can be sensed by Toll-like receptors (Tlrs) and activate inflammatory pathways. To verify this hypothesis we tested the expression of 84 genes coding for Tlrs and associated pathways using RT-qPCR in MDF (n = 7) from 1,2-dimethylhydrazine (DMH)-treated rats. Among the 84 tested genes, 26 were differentially expressed in MDF with 5 genes significantly up-regulated and 21 down-regulated when compared to the normal mucosa. Tlr2, as well as other downstream genes (Map4k4, Hspd1, Irak1, Ube2n), was significantly up-regulated. Among the genes regulating the NFkB pathway, only Map4k4 was significantly up-regulated, while 19 genes were not varied and 6 were down-regulated. Tlr2 protein was weakly expressed both in normal mucosa and MDF. To determine whether inflammation observed in MDF could be caused by bacteria contacting or infiltrating crypts, we performed fluorescence in situ hybridization (FISH) experiments with a rRNA universal bacterial probe. None of the 21 MDF tested, showed bacteria inside the crypts, while among the colonic tumors (n = 15), only one had very few bacteria on the surface and on the surrounding normal mucosa. In conclusion, the up-regulation of Tlr2 in MDF, suggests a link between this receptor and carcinogenesis, possibly related to a defective barrier function of these lesions. The data of FISH experiments do not support the hypothesis that inflammation in MDF and tumors is stimulated by bacterial infiltration.
Collapse
Affiliation(s)
| | - Alexander Swidsinski
- Laboratory for Molecular Genetics, Polymicrobial Infections and Bacterial Biofilms, and Section of Gastroenterology, Department of Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Piero Dolara
- Department of Pharmacology, University of Florence, Florence, Italy
| | | | - Amedeo Amedei
- Department of Internal Medicine, University of Florence, Florence, Italy
- Department of Biomedicine, Azienda Ospedaliera Universitaria Careggi (AOUC), Florence, Italy
| | - Giovanna Caderni
- Department of Pharmacology, University of Florence, Florence, Italy
- * E-mail:
| |
Collapse
|
200
|
Abstract
Phosphoinositide 3-kinases (PI3Ks) control cell growth, proliferation, cell survival, metabolic activity, vesicular trafficking, degranulation, and migration. Through these processes, PI3Ks modulate vital physiology. When over-activated in disease, PI3K promotes tumor growth, angiogenesis, metastasis or excessive immune cell activation in inflammation, allergy and autoimmunity. This chapter will introduce molecular activation and signaling of PI3Ks, and connections to target of rapamycin (TOR) and PI3K-related protein kinases (PIKKs). The focus will be on class I PI3Ks, and extend into current developments to exploit mechanistic knowledge for therapy.
Collapse
Affiliation(s)
- Matthias Wymann
- Institute Biochemistry & Genetics, Department Biomedicine, University of Basel, Mattenstrasse 28, 4058, Basel, Switzerland,
| |
Collapse
|