151
|
Austad SN, Ballinger S, Buford TW, Carter CS, Smith DL, Darley-Usmar V, Zhang J. Targeting whole body metabolism and mitochondrial bioenergetics in the drug development for Alzheimer's disease. Acta Pharm Sin B 2022; 12:511-531. [PMID: 35256932 PMCID: PMC8897048 DOI: 10.1016/j.apsb.2021.06.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/26/2021] [Accepted: 06/16/2021] [Indexed: 02/07/2023] Open
Abstract
Aging is by far the most prominent risk factor for Alzheimer's disease (AD), and both aging and AD are associated with apparent metabolic alterations. As developing effective therapeutic interventions to treat AD is clearly in urgent need, the impact of modulating whole-body and intracellular metabolism in preclinical models and in human patients, on disease pathogenesis, have been explored. There is also an increasing awareness of differential risk and potential targeting strategies related to biological sex, microbiome, and circadian regulation. As a major part of intracellular metabolism, mitochondrial bioenergetics, mitochondrial quality-control mechanisms, and mitochondria-linked inflammatory responses have been considered for AD therapeutic interventions. This review summarizes and highlights these efforts.
Collapse
Key Words
- ACE2, angiotensin I converting enzyme (peptidyl-dipeptidase A) 2
- AD, Alzheimer's disease
- ADP, adenosine diphosphate
- ADRD, AD-related dementias
- Aβ, amyloid β
- CSF, cerebrospinal fluid
- Circadian regulation
- DAMPs
- DAMPs, damage-associated molecular patterns
- Diabetes
- ER, estrogen receptor
- ETC, electron transport chain
- FCCP, trifluoromethoxy carbonylcyanide phenylhydrazone
- FPR-1, formyl peptide receptor 1
- GIP, glucose-dependent insulinotropic polypeptide
- GLP-1, glucagon-like peptide-1
- HBP, hexoamine biosynthesis pathway
- HTRA, high temperature requirement A
- Hexokinase biosynthesis pathway
- I3A, indole-3-carboxaldehyde
- IRF-3, interferon regulatory factor 3
- LC3, microtubule associated protein light chain 3
- LPS, lipopolysaccharide
- LRR, leucine-rich repeat
- MAVS, mitochondrial anti-viral signaling
- MCI, mild cognitive impairment
- MRI, magnetic resonance imaging
- MRS, magnetic resonance spectroscopy
- Mdivi-1, mitochondrial division inhibitor 1
- Microbiome
- Mitochondrial DNA
- Mitochondrial electron transport chain
- Mitochondrial quality control
- NLRP3, leucine-rich repeat (LRR)-containing protein (NLR)-like receptor family pyrin domain containing 3
- NOD, nucleotide-binding oligomerization domain
- NeuN, neuronal nuclear protein
- PET, fluorodeoxyglucose (FDG)-positron emission tomography
- PKA, protein kinase A
- POLβ, the base-excision repair enzyme DNA polymerase β
- ROS, reactive oxygen species
- Reactive species
- SAMP8, senescence-accelerated mice
- SCFAs, short-chain fatty acids
- SIRT3, NAD-dependent deacetylase sirtuin-3
- STING, stimulator of interferon genes
- STZ, streptozotocin
- SkQ1, plastoquinonyldecyltriphenylphosphonium
- T2D, type 2 diabetes
- TCA, Tricarboxylic acid
- TLR9, toll-like receptor 9
- TMAO, trimethylamine N-oxide
- TP, tricyclic pyrone
- TRF, time-restricted feeding
- cAMP, cyclic adenosine monophosphate
- cGAS, cyclic GMP/AMP synthase
- hAPP, human amyloid precursor protein
- hPREP, human presequence protease
- i.p., intraperitoneal
- mTOR, mechanistic target of rapamycin
- mtDNA, mitochondrial DNA
- αkG, alpha-ketoglutarate
Collapse
Affiliation(s)
- Steven N. Austad
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Scott Ballinger
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Thomas W. Buford
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Christy S. Carter
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Daniel L. Smith
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Victor Darley-Usmar
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jianhua Zhang
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
152
|
Tran DT, Tu Z, Alawieh A, Mulligan J, Esckilsen S, Quinn K, Sundararaj K, Wallace C, Finnegan R, Allen P, Mehrotra S, Atkinson C, Nadig SN. Modulating donor mitochondrial fusion/fission delivers immunoprotective effects in cardiac transplantation. Am J Transplant 2022; 22:386-401. [PMID: 34714588 PMCID: PMC8813895 DOI: 10.1111/ajt.16882] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 10/11/2021] [Accepted: 10/20/2021] [Indexed: 01/25/2023]
Abstract
Early insults associated with cardiac transplantation increase the immunogenicity of donor microvascular endothelial cells (ECs), which interact with recipient alloreactive memory T cells and promote responses leading to allograft rejection. Thus, modulating EC immunogenicity could potentially alter T cell responses. Recent studies have shown modulating mitochondrial fusion/fission alters immune cell phenotype. Here, we assess whether modulating mitochondrial fusion/fission reduces EC immunogenicity and alters EC-T cell interactions. By knocking down DRP1, a mitochondrial fission protein, or by using the small molecules M1, a fusion promoter, and Mdivi1, a fission inhibitor, we demonstrate that promoting mitochondrial fusion reduced EC immunogenicity to allogeneic CD8+ T cells, shown by decreased T cell cytotoxic proteins, decreased EC VCAM-1, MHC-I expression, and increased PD-L1 expression. Co-cultured T cells also displayed decreased memory frequencies and Ki-67 proliferative index. For in vivo significance, we used a novel murine brain-dead donor transplant model. Balb/c hearts pretreated with M1/Mdivi1 after brain-death induction were heterotopically transplanted into C57BL/6 recipients. We demonstrate that, in line with our in vitro studies, M1/Mdivi1 pretreatment protected cardiac allografts from injury, decreased infiltrating T cell production of cytotoxic proteins, and prolonged allograft survival. Collectively, our data show promoting mitochondrial fusion in donor ECs mitigates recipient T cell responses and leads to significantly improved cardiac transplant survival.
Collapse
Affiliation(s)
- Danh T. Tran
- Department of Microbiology & ImmunologyMedical University of South CarolinaCharlestonSouth CarolinaUSA,Department of SurgeryDivision of Transplant SurgeryLee Patterson Allen Transplant Immunobiology LaboratoryMedical University of South CarolinaCharlestonSouth CarolinaUSA
| | - Zhenxiao Tu
- Department of Microbiology & ImmunologyMedical University of South CarolinaCharlestonSouth CarolinaUSA
| | - Ali Alawieh
- Department of Microbiology & ImmunologyMedical University of South CarolinaCharlestonSouth CarolinaUSA
| | - Jennifer Mulligan
- Department of Otolaryngology‐Head & Neck SurgeryMedical University of South CarolinaCharlestonSouth CarolinaUSA
| | - Scott Esckilsen
- Department of SurgeryDivision of Transplant SurgeryLee Patterson Allen Transplant Immunobiology LaboratoryMedical University of South CarolinaCharlestonSouth CarolinaUSA
| | - Kristen Quinn
- Department of SurgeryDivision of Transplant SurgeryLee Patterson Allen Transplant Immunobiology LaboratoryMedical University of South CarolinaCharlestonSouth CarolinaUSA
| | - Kamala Sundararaj
- Department of SurgeryDivision of Transplant SurgeryLee Patterson Allen Transplant Immunobiology LaboratoryMedical University of South CarolinaCharlestonSouth CarolinaUSA
| | - Caroline Wallace
- Department of SurgeryDivision of Transplant SurgeryLee Patterson Allen Transplant Immunobiology LaboratoryMedical University of South CarolinaCharlestonSouth CarolinaUSA
| | - Ryan Finnegan
- Department of SurgeryDivision of Transplant SurgeryLee Patterson Allen Transplant Immunobiology LaboratoryMedical University of South CarolinaCharlestonSouth CarolinaUSA
| | - Patterson Allen
- Department of SurgeryDivision of Transplant SurgeryLee Patterson Allen Transplant Immunobiology LaboratoryMedical University of South CarolinaCharlestonSouth CarolinaUSA
| | - Shikhar Mehrotra
- Department of SurgeryDivision of Transplant SurgeryLee Patterson Allen Transplant Immunobiology LaboratoryMedical University of South CarolinaCharlestonSouth CarolinaUSA
| | - Carl Atkinson
- Department of Microbiology & ImmunologyMedical University of South CarolinaCharlestonSouth CarolinaUSA,Department of SurgeryDivision of Transplant SurgeryLee Patterson Allen Transplant Immunobiology LaboratoryMedical University of South CarolinaCharlestonSouth CarolinaUSA,South Carolina Investigators in TransplantationDepartment of SurgeryMedical University of South CarolinaCharlestonSouth CarolinaUSA
| | - Satish N. Nadig
- Department of Microbiology & ImmunologyMedical University of South CarolinaCharlestonSouth CarolinaUSA,Department of SurgeryDivision of Transplant SurgeryLee Patterson Allen Transplant Immunobiology LaboratoryMedical University of South CarolinaCharlestonSouth CarolinaUSA,South Carolina Investigators in TransplantationDepartment of SurgeryMedical University of South CarolinaCharlestonSouth CarolinaUSA
| |
Collapse
|
153
|
Romani P, Nirchio N, Arboit M, Barbieri V, Tosi A, Michielin F, Shibuya S, Benoist T, Wu D, Hindmarch CCT, Giomo M, Urciuolo A, Giamogante F, Roveri A, Chakravarty P, Montagner M, Calì T, Elvassore N, Archer SL, De Coppi P, Rosato A, Martello G, Dupont S. Mitochondrial fission links ECM mechanotransduction to metabolic redox homeostasis and metastatic chemotherapy resistance. Nat Cell Biol 2022; 24:168-180. [PMID: 35165418 PMCID: PMC7615745 DOI: 10.1038/s41556-022-00843-w] [Citation(s) in RCA: 80] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 01/06/2022] [Indexed: 01/07/2023]
Abstract
Metastatic breast cancer cells disseminate to organs with a soft microenvironment. Whether and how the mechanical properties of the local tissue influence their response to treatment remains unclear. Here we found that a soft extracellular matrix empowers redox homeostasis. Cells cultured on a soft extracellular matrix display increased peri-mitochondrial F-actin, promoted by Spire1C and Arp2/3 nucleation factors, and increased DRP1- and MIEF1/2-dependent mitochondrial fission. Changes in mitochondrial dynamics lead to increased production of mitochondrial reactive oxygen species and activate the NRF2 antioxidant transcriptional response, including increased cystine uptake and glutathione metabolism. This retrograde response endows cells with resistance to oxidative stress and reactive oxygen species-dependent chemotherapy drugs. This is relevant in a mouse model of metastatic breast cancer cells dormant in the lung soft tissue, where inhibition of DRP1 and NRF2 restored cisplatin sensitivity and prevented disseminated cancer-cell awakening. We propose that targeting this mitochondrial dynamics- and redox-based mechanotransduction pathway could open avenues to prevent metastatic relapse.
Collapse
Affiliation(s)
- Patrizia Romani
- Department of Molecular Medicine (DMM), University of Padua, Padua, Italy
| | - Nunzia Nirchio
- Department of Molecular Medicine (DMM), University of Padua, Padua, Italy
| | - Mattia Arboit
- Department of Biology (DiBio), University of Padua, Padua, Italy
| | - Vito Barbieri
- Department of Surgery, Oncology and Gastroenterology (DiSCOG), University of Padua, Padua, Italy
- Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Anna Tosi
- Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Federica Michielin
- Institute of Child Health, NIHR Biomedical Research Centre, Great Ormond Street Institute of Child Health, UCL, London, UK
| | - Soichi Shibuya
- Institute of Child Health, NIHR Biomedical Research Centre, Great Ormond Street Institute of Child Health, UCL, London, UK
| | - Thomas Benoist
- Institute of Child Health, NIHR Biomedical Research Centre, Great Ormond Street Institute of Child Health, UCL, London, UK
| | - Danchen Wu
- Department of Medicine, Queen's University, Kingston, Ontario, Canada
| | | | - Monica Giomo
- Department of Industrial Engineering (DII), University of Padua, Padua, Italy
- Venetian Institute of Molecular Medicine (VIMM), Padua, Italy
| | - Anna Urciuolo
- Department of Molecular Medicine (DMM), University of Padua, Padua, Italy
- Fondazione Istituto di Ricerca Pediatrica (IRP), Città della Speranza, Padua, Italy
| | - Flavia Giamogante
- Department of Biomedical Sciences (DSB), University of Padua, Padua, Italy
| | - Antonella Roveri
- Department of Molecular Medicine (DMM), University of Padua, Padua, Italy
| | | | - Marco Montagner
- Department of Molecular Medicine (DMM), University of Padua, Padua, Italy
| | - Tito Calì
- Department of Biomedical Sciences (DSB), University of Padua, Padua, Italy
| | - Nicola Elvassore
- Institute of Child Health, NIHR Biomedical Research Centre, Great Ormond Street Institute of Child Health, UCL, London, UK
- Department of Industrial Engineering (DII), University of Padua, Padua, Italy
- Venetian Institute of Molecular Medicine (VIMM), Padua, Italy
| | - Stephen L Archer
- Department of Medicine, Queen's University, Kingston, Ontario, Canada
| | - Paolo De Coppi
- Institute of Child Health, NIHR Biomedical Research Centre, Great Ormond Street Institute of Child Health, UCL, London, UK
| | - Antonio Rosato
- Department of Surgery, Oncology and Gastroenterology (DiSCOG), University of Padua, Padua, Italy
- Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | | | - Sirio Dupont
- Department of Molecular Medicine (DMM), University of Padua, Padua, Italy.
| |
Collapse
|
154
|
Ojha R, Tantray I, Rimal S, Mitra S, Cheshier S, Lu B. Regulation of reverse electron transfer at mitochondrial complex I by unconventional Notch action in cancer stem cells. Dev Cell 2022; 57:260-276.e9. [PMID: 35077680 PMCID: PMC8852348 DOI: 10.1016/j.devcel.2021.12.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 10/06/2021] [Accepted: 12/21/2021] [Indexed: 01/26/2023]
Abstract
Metabolic flexibility is a hallmark of many cancers where mitochondrial respiration is critically involved, but the molecular underpinning of mitochondrial control of cancer metabolic reprogramming is poorly understood. Here, we show that reverse electron transfer (RET) through respiratory chain complex I (RC-I) is particularly active in brain cancer stem cells (CSCs). Although RET generates ROS, NAD+/NADH ratio turns out to be key in mediating RET effect on CSC proliferation, in part through the NAD+-dependent Sirtuin. Mechanistically, Notch acts in an unconventional manner to regulate RET by interacting with specific RC-I proteins containing electron-transporting Fe-S clusters and NAD(H)-binding sites. Genetic and pharmacological interference of Notch-mediated RET inhibited CSC growth in Drosophila brain tumor and mouse glioblastoma multiforme (GBM) models. Our results identify Notch as a regulator of RET and RET-induced NAD+/NADH balance, a critical mechanism of metabolic reprogramming and a metabolic vulnerability of cancer that may be exploited for therapeutic purposes.
Collapse
Affiliation(s)
- Rani Ojha
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA,These authors contributed equally
| | - Ishaq Tantray
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA,These authors contributed equally
| | - Suman Rimal
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Siddhartha Mitra
- Stem Cell Institute and Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA,Department of Pediatrics, Division of Hematology/Oncology/Bone Marrow Transplant, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Sam Cheshier
- Stem Cell Institute and Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA,Department of Neurosurgery, Division of Pediatric Neurosurgery, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Bingwei Lu
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA,Cancer Biology Program, Stanford University School of Medicine, Stanford, CA, USA,Lead Contact,Correspondence:
| |
Collapse
|
155
|
Chen Z, Chai E, Mou Y, Roda RH, Blackstone C, Li XJ. Inhibiting mitochondrial fission rescues degeneration in hereditary spastic paraplegia neurons. Brain 2022; 145:4016-4031. [PMID: 35026838 DOI: 10.1093/brain/awab488] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 11/04/2021] [Accepted: 12/03/2021] [Indexed: 11/14/2022] Open
Abstract
Abstract
Hereditary spastic paraplegias (HSPs) are characterized by lower limb spasticity resulting from degeneration of long corticospinal axons. SPG11 is one of the most common autosomal recessive HSPs, and the SPG11 protein spatacsin forms a complex with the SPG15 protein spastizin and heterotetrameric AP5 adaptor protein complex, which includes the SPG48 protein AP5Z1. Using the integration-free episomal method, we established SPG11 patient-specific induced pluripotent stem cells (iPSCs) from patient fibroblasts. We differentiated SPG11 iPSCs, as well as SPG48 iPSCs previously established, into cortical projection neurons (PNs) and examined protective effects by targeting mitochondrial dynamics using P110, a peptide that selectively inhibits mitochondrial fission GTPase Drp1. P110 treatment mitigates mitochondrial fragmentation, improves mitochondrial motility, and restores mitochondrial health and ATP levels in SPG11 and SPG48 neurons. Neurofilament (NF) aggregations are increased in SPG11 and SPG48 axons, and these are also suppressed by P110. Similarly, P110 mitigates NF disruption in both SPG11 and SPG48 knockdown cortical PNs, confirming the contribution of HSP gene deficiency to subsequent NF and mitochondrial defects. Strikingly, NF aggregations in SPG11 and SPG48 deficient neurons double stain with ubiquitin and autophagy related proteins, resembling the pathological hallmark observed in SPG11 autopsy brain sections. To confirm the cause-effect relationship between the SPG11 mutations and disease phenotypes, we knocked-in SPG11 disease mutations to human embryonic stem cells (hESCs) and differentiated these stem cells into cortical PNs. Reduced ATP levels and accumulated NF aggregations along axons are observed, and both are mitigated by P110. Furthermore, rescue experiment with expression of wildtype SPG11 in cortical PNs derived from both SPG11 patient iPSCs and SPG11 disease mutation knock-in hESCs leads to rescue of mitochondrial dysfunction and NF aggregations in these SPG11 neurons. Finally, in SPG11 and SPG48 long-term cultures, increased release of phosphoNF-H, a biomarker for nerve degeneration, is significantly reduced by inhibiting mitochondrial fission pharmacologically using P110 and genetically using Drp1 shRNA. Taken together, our results demonstrate that impaired mitochondrial dynamics underlie both cytoskeletal disorganization and axonal degeneration in SPG11 and SPG48 neurons, highlighting the importance of targeting these pathologies therapeutically.
Collapse
Affiliation(s)
- Zhenyu Chen
- Department of Biomedical Sciences, University of Illinois College of Medicine Rockford, Rockford, IL 61107, USA
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Eric Chai
- Department of Biomedical Sciences, University of Illinois College of Medicine Rockford, Rockford, IL 61107, USA
| | - Yongchao Mou
- Department of Biomedical Sciences, University of Illinois College of Medicine Rockford, Rockford, IL 61107, USA
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Ricardo H. Roda
- Cell Biology Section, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
- Department of Neurology, Johns Hopkins University of Medicine, Baltimore, MD 21205, USA
| | - Craig Blackstone
- Cell Biology Section, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
- Movement Disorders Division, Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
- MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Xue-Jun Li
- Department of Biomedical Sciences, University of Illinois College of Medicine Rockford, Rockford, IL 61107, USA
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| |
Collapse
|
156
|
Kalkhoran SB, Kriston-Vizi J, Hernandez-Resendiz S, Crespo-Avilan GE, Rosdah AA, Lees JG, Costa JRSD, Ling NXY, Holien JK, Samangouei P, Chinda K, Yap EP, Riquelme JA, Ketteler R, Yellon DM, Lim SY, Hausenloy DJ. Hydralazine protects the heart against acute ischaemia/reperfusion injury by inhibiting Drp1-mediated mitochondrial fission. Cardiovasc Res 2022; 118:282-294. [PMID: 33386841 PMCID: PMC8752357 DOI: 10.1093/cvr/cvaa343] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 12/09/2020] [Indexed: 01/01/2023] Open
Abstract
AIMS Genetic and pharmacological inhibition of mitochondrial fission induced by acute myocardial ischaemia/reperfusion injury (IRI) has been shown to reduce myocardial infarct size. The clinically used anti-hypertensive and heart failure medication, hydralazine, is known to have anti-oxidant and anti-apoptotic effects. Here, we investigated whether hydralazine confers acute cardioprotection by inhibiting Drp1-mediated mitochondrial fission. METHODS AND RESULTS Pre-treatment with hydralazine was shown to inhibit both mitochondrial fission and mitochondrial membrane depolarisation induced by oxidative stress in HeLa cells. In mouse embryonic fibroblasts (MEFs), pre-treatment with hydralazine attenuated mitochondrial fission and cell death induced by oxidative stress, but this effect was absent in MEFs deficient in the mitochondrial fission protein, Drp1. Molecular docking and surface plasmon resonance studies demonstrated binding of hydralazine to the GTPase domain of the mitochondrial fission protein, Drp1 (KD 8.6±1.0 µM), and inhibition of Drp1 GTPase activity in a dose-dependent manner. In isolated adult murine cardiomyocytes subjected to simulated IRI, hydralazine inhibited mitochondrial fission, preserved mitochondrial fusion events, and reduced cardiomyocyte death (hydralazine 24.7±2.5% vs. control 34.1±1.5%, P=0.0012). In ex vivo perfused murine hearts subjected to acute IRI, pre-treatment with hydralazine reduced myocardial infarct size (as % left ventricle: hydralazine 29.6±6.5% vs. vehicle control 54.1±4.9%, P=0.0083), and in the murine heart subjected to in vivo IRI, the administration of hydralazine at reperfusion, decreased myocardial infarct size (as % area-at-risk: hydralazine 28.9±3.0% vs. vehicle control 58.2±3.8%, P<0.001). CONCLUSION We show that, in addition to its antioxidant and anti-apoptotic effects, hydralazine, confers acute cardioprotection by inhibiting IRI-induced mitochondrial fission, raising the possibility of repurposing hydralazine as a novel cardioprotective therapy for improving post-infarction outcomes.
Collapse
Affiliation(s)
- Siavash Beikoghli Kalkhoran
- The Hatter Cardiovascular Institute, Institute of Cardiovascular Science, University College, 67 Chenies Mews, WC1E 6HX London, UK
- Cardiovascular and Metabolic Disorder Programme, Duke-NUS Medical School, 8 College Road, 169857, Singapore
- National Heart Research Institute Singapore, National Heart Centre, 5 Hospital Drive, 169609, Singapore
| | - Janos Kriston-Vizi
- MRC Laboratory for Molecular Cell Biology, University College, Gower St, Kings Cross, WC1E 6BT London, UK
| | - Sauri Hernandez-Resendiz
- Cardiovascular and Metabolic Disorder Programme, Duke-NUS Medical School, 8 College Road, 169857, Singapore
- National Heart Research Institute Singapore, National Heart Centre, 5 Hospital Drive, 169609, Singapore
| | - Gustavo E Crespo-Avilan
- Cardiovascular and Metabolic Disorder Programme, Duke-NUS Medical School, 8 College Road, 169857, Singapore
- National Heart Research Institute Singapore, National Heart Centre, 5 Hospital Drive, 169609, Singapore
- Department of Biochemistry, Medical Faculty, Justus Liebig-University, Ludwigstraße 23, 35390 Giessen, Germany
| | - Ayeshah A Rosdah
- O’Brien Institute Department, St Vincent’s Institute of Medical Research, 9 Princes Street Fitzroy Victoria, 3065, Australia
- Faculty of Medicine, Universitas Sriwijaya, Palembang, Bukit Lama, Kec. Ilir Bar. I, Kota Palembang, 30139 Sumatera Selatan, Indonesia
- Department of Surgery and Medicine, University of Melbourne, Medical Building, Cnr Grattan Street & Royal Parade, 3010 Victoria, Australia
| | - Jarmon G Lees
- O’Brien Institute Department, St Vincent’s Institute of Medical Research, 9 Princes Street Fitzroy Victoria, 3065, Australia
- Department of Surgery and Medicine, University of Melbourne, Medical Building, Cnr Grattan Street & Royal Parade, 3010 Victoria, Australia
| | | | - Naomi X Y Ling
- Metabolic Signalling Laboratory, St Vincent’s Institute of Medical Research, School of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | - Jessica K Holien
- Department of Surgery and Medicine, University of Melbourne, Medical Building, Cnr Grattan Street & Royal Parade, 3010 Victoria, Australia
- St Vincent’s Institute of Medical Research, 9 Princes Street, Fitzroy Victoria, 3065, Australia
- ACRF Rational Drug Discovery Centre, St Vincent’s Institute of Medical Research, 9 Princes Street Fitzroy Victoria, 3065, Australia
| | - Parisa Samangouei
- The Hatter Cardiovascular Institute, Institute of Cardiovascular Science, University College, 67 Chenies Mews, WC1E 6HX London, UK
- National Heart Research Institute Singapore, National Heart Centre, 5 Hospital Drive, 169609, Singapore
| | - Kroekkiat Chinda
- Department of Physiology, Faculty of Medical Science, Naresuan University, Tha Pho, Mueang Phitsanulok, 65000, Thailand
| | - En Ping Yap
- Cardiovascular and Metabolic Disorder Programme, Duke-NUS Medical School, 8 College Road, 169857, Singapore
- National Heart Research Institute Singapore, National Heart Centre, 5 Hospital Drive, 169609, Singapore
| | - Jaime A Riquelme
- The Hatter Cardiovascular Institute, Institute of Cardiovascular Science, University College, 67 Chenies Mews, WC1E 6HX London, UK
- Advanced Center for Chronic Disease (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Sergio Livingstone 1007, Independencia, Santiago, Chile
| | - Robin Ketteler
- MRC Laboratory for Molecular Cell Biology, University College, Gower St, Kings Cross, WC1E 6BT London, UK
| | - Derek M Yellon
- The Hatter Cardiovascular Institute, Institute of Cardiovascular Science, University College, 67 Chenies Mews, WC1E 6HX London, UK
| | - Shiang Y Lim
- O’Brien Institute Department, St Vincent’s Institute of Medical Research, 9 Princes Street Fitzroy Victoria, 3065, Australia
- Department of Surgery and Medicine, University of Melbourne, Medical Building, Cnr Grattan Street & Royal Parade, 3010 Victoria, Australia
| | - Derek J Hausenloy
- The Hatter Cardiovascular Institute, Institute of Cardiovascular Science, University College, 67 Chenies Mews, WC1E 6HX London, UK
- Cardiovascular and Metabolic Disorder Programme, Duke-NUS Medical School, 8 College Road, 169857, Singapore
- National Heart Research Institute Singapore, National Heart Centre, 5 Hospital Drive, 169609, Singapore
- Yong Loo Lin School of Medicine, National University Singapore, 1E Kent Ridge Road, 119228, Singapore
- Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, Lioufeng Rd., Wufeng, 41354 Taichung, Taiwan
| |
Collapse
|
157
|
MITOCHONDRIA: Mitochondrial dynamics in the regulation of stem cells. Int J Biochem Cell Biol 2022; 144:106158. [DOI: 10.1016/j.biocel.2022.106158] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 01/11/2022] [Accepted: 01/14/2022] [Indexed: 12/24/2022]
|
158
|
Mohammad G, Kowluru RA. Mitochondrial Dynamics in the Metabolic Memory of Diabetic Retinopathy. J Diabetes Res 2022; 2022:3555889. [PMID: 35399705 PMCID: PMC8989559 DOI: 10.1155/2022/3555889] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 02/18/2022] [Accepted: 02/21/2022] [Indexed: 12/16/2022] Open
Abstract
Mitochondria play a central role in the development of diabetic retinopathy and in the metabolic memory associated with its continued progression. Mitochondria have a regulated fusion fission process, which is essential for their homeostasis. One of the major fission proteins, dynamin-related protein 1 (Drp1), is recruited to the mitochondria by fission protein 1 (Fis1) to initiate fragmentation. Our aim is to investigate the role of Drp1 in the altered mitochondrial dynamics in the continued progression of diabetic retinopathy. Methods. Drp1 activation, mitochondrial transport, and Drp1-Fis1 interactions were analyzed in retinal endothelial cells incubated in 20 mM glucose (HG), followed by 5 mM glucose (NG), for four days each (HG-NG group). The results were confirmed in retinal microvessels from streptozotocin-induced diabetic rats with poor glycemia (>350 mg/dl blood glucose, PC group), followed by normal glycemia (~100 mg/dl), for four months each (PC-GC group). Results. GTPase activity of Drp1, Fis1-Drp1 interactions, mitochondrial levels of Drp1, and fragmentation of the mitochondria were elevated in HG group. Mitochondrial Division Inhibitor 1 (Mdiv) or Drp1-siRNA attenuated Drp1 activation, mitochondrial fragmentation, and DNA damage. In HG-NG group, NG failed to ameliorate Drp1 activation and Drp1-Fis1 interactions, and the mitochondria remained fragmented. However, Mdiv supplementation in normal glucose, which had followed four days of high glucose (HG-NG/Mdiv group), inhibited Drp1 activation, mitochondrial fragmentation, and increase in ROS and prevented mitochondrial damage. Retinal microvessels from the rats in PC and PC-GC groups had similar Drp1 activation. Conclusion. Thus, Drp1 plays a major role in mitochondrial homeostasis in diabetic retinopathy and in the metabolic memory phenomenon associated with its continued progression. Supplementation of normal glycemia with a Drp1 inhibitor could retard development and further progression of diabetic retinopathy.
Collapse
Affiliation(s)
- Ghulam Mohammad
- Department of Ophthalmology, Visual & Anatomical Sciences, Wayne State University, Detroit, MI, USA
| | - Renu A. Kowluru
- Department of Ophthalmology, Visual & Anatomical Sciences, Wayne State University, Detroit, MI, USA
| |
Collapse
|
159
|
Deng Y, Ngo DTM, Holien JK, Lees JG, Lim SY. Mitochondrial Dynamin-Related Protein Drp1: a New Player in Cardio-oncology. Curr Oncol Rep 2022; 24:1751-1763. [PMID: 36181612 PMCID: PMC9715477 DOI: 10.1007/s11912-022-01333-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2022] [Indexed: 01/27/2023]
Abstract
PURPOSE OF REVIEW This study is aimed at reviewing the recent progress in Drp1 inhibition as a novel approach for reducing doxorubicin-induced cardiotoxicity and for improving cancer treatment. RECENT FINDINGS Anthracyclines (e.g. doxorubicin) are one of the most common and effective chemotherapeutic agents to treat a variety of cancers. However, the clinical usage of doxorubicin has been hampered by its severe cardiotoxic side effects leading to heart failure. Mitochondrial dysfunction is one of the major aetiologies of doxorubicin-induced cardiotoxicity. The morphology of mitochondria is highly dynamic, governed by two opposing processes known as fusion and fission, collectively known as mitochondrial dynamics. An imbalance in mitochondrial dynamics is often reported in tumourigenesis which can lead to adaptive and acquired resistance to chemotherapy. Drp1 is a key mitochondrial fission regulator, and emerging evidence has demonstrated that Drp1-mediated mitochondrial fission is upregulated in both cancer cells to their survival advantage and injured heart tissue in the setting of doxorubicin-induced cardiotoxicity. Effective treatment to prevent and mitigate doxorubicin-induced cardiotoxicity is currently not available. Recent advances in cardio-oncology have highlighted that Drp1 inhibition holds great potential as a targeted mitochondrial therapy for doxorubicin-induced cardiotoxicity.
Collapse
Affiliation(s)
- Yali Deng
- Department of Surgery and Medicine, University of Melbourne, Melbourne, Victoria Australia ,O’Brien Institute Department, St Vincent’s Institute of Medical Research, Fitzroy, Victoria Australia
| | - Doan T. M. Ngo
- School of Biomedical Science and Pharmacy, College of Health, Medicine and Wellbeing, Hunter Medical Research Institute & University of Newcastle, New Lambton Heights, New South Wales Australia
| | - Jessica K. Holien
- Department of Surgery and Medicine, University of Melbourne, Melbourne, Victoria Australia ,School of Science, STEM College, RMIT University, Melbourne, Victoria Australia
| | - Jarmon G. Lees
- Department of Surgery and Medicine, University of Melbourne, Melbourne, Victoria Australia ,O’Brien Institute Department, St Vincent’s Institute of Medical Research, Fitzroy, Victoria Australia
| | - Shiang Y. Lim
- Department of Surgery and Medicine, University of Melbourne, Melbourne, Victoria Australia ,O’Brien Institute Department, St Vincent’s Institute of Medical Research, Fitzroy, Victoria Australia ,Drug Discovery Biology, Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Melbourne, Victoria Australia ,National Heart Research Institute Singapore, National Heart Centre, Singapore, Singapore
| |
Collapse
|
160
|
Nhu NT, Li Q, Liu Y, Xu J, Xiao SY, Lee SD. Effects of Mdivi-1 on Neural Mitochondrial Dysfunction and Mitochondria-Mediated Apoptosis in Ischemia-Reperfusion Injury After Stroke: A Systematic Review of Preclinical Studies. Front Mol Neurosci 2021; 14:778569. [PMID: 35002619 PMCID: PMC8740201 DOI: 10.3389/fnmol.2021.778569] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/29/2021] [Indexed: 11/17/2022] Open
Abstract
This systematic review sought to determine the effects of Mitochondrial division inhibitor-1 (Mdivi-1) on neural mitochondrial dysfunction and neural mitochondria-mediated apoptosis in ischemia/reperfusion (I/R) injury after ischemic stroke. Pubmed, Web of Science, and EMBASE databases were searched through July 2021. The studies published in English language that mentioned the effects of Mdivi-1 on neural mitochondrial dysfunction and neural mitochondria-mediated apoptosis in I/R-induced brain injury were included. The CAMARADES checklist (for in vivo studies) and the TOXRTOOL checklist (for in vitro studies) were used for study quality evaluation. Twelve studies were included (median CAMARADES score = 6; TOXRTOOL scores ranging from 16 to 18). All studies investigated neural mitochondrial functions, providing that Mdivi-1 attenuated the mitochondrial membrane potential dissipation, ATP depletion, and complexes I-V abnormalities; enhanced mitochondrial biogenesis, as well as inactivated mitochondrial fission and mitophagy in I/R-induced brain injury. Ten studies analyzed neural mitochondria-mediated apoptosis, showing that Mdivi-1 decreased the levels of mitochondria-mediated proapoptotic factors (AIF, Bax, cytochrome c, caspase-9, and caspase-3) and enhanced the level of antiapoptotic factor (Bcl-2) against I/R-induced brain injury. The findings suggest that Mdivi-1 can protect neural mitochondrial functions, thereby attenuating neural mitochondria-mediated apoptosis in I/R-induced brain injury. Our review supports Mdivi-1 as a potential therapeutic compound to reduce brain damage in ischemic stroke (PROSPERO protocol registration ID: CRD42020205808). Systematic Review Registration: [https://www.crd.york.ac.uk/prospero/], identifier [CRD42020205808].
Collapse
Affiliation(s)
- Nguyen Thanh Nhu
- Faculty of Medicine, Can Tho University of Medicine and Pharmacy, Can Tho, Vietnam
| | - Qing Li
- Department of Rehabilitation, Shanghai Xuhui Central Hospital/Zhongshan-Xuhui Hospital, Fudan University, Shanghai, China
| | - Yijie Liu
- Institute of Rehabilitation Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jian Xu
- Department of Brain and Mental Disease, Shanghai Hospital of Traditional Chinese Medicine, Shanghai, China
| | - Shu-Yun Xiao
- Department of Brain and Mental Disease, Shanghai Hospital of Traditional Chinese Medicine, Shanghai, China
| | - Shin-Da Lee
- Department of Physical Therapy, Graduate Institute of Rehabilitation Science, China Medical University, Taichung, Taiwan
- Department of Physical Therapy, Asia University, Taichung, Taiwan
- School of Rehabilitation Medicine, Weifang Medical University, Weifang, China
| |
Collapse
|
161
|
Li Y, Mei NH, Cheng GP, Yang J, Zhou LQ. Inhibition of DRP1 Impedes Zygotic Genome Activation and Preimplantation Development in Mice. Front Cell Dev Biol 2021; 9:788512. [PMID: 34926466 PMCID: PMC8675387 DOI: 10.3389/fcell.2021.788512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 11/18/2021] [Indexed: 12/01/2022] Open
Abstract
Mitochondrion plays an indispensable role during preimplantation embryo development. Dynamic-related protein 1 (DRP1) is critical for mitochondrial fission and controls oocyte maturation. However, its role in preimplantation embryo development is still lacking. In this study, we demonstrate that inhibition of DRP1 activity by mitochondrial division inhibitor-1, a small molecule reported to specifically inhibit DRP1 activity, can cause severe developmental arrest of preimplantation embryos in a dose-dependent manner in mice. Meanwhile, DRP1 inhibition resulted in mitochondrial dysfunction including decreased mitochondrial activity, loss of mitochondrial membrane potential, reduced mitochondrial copy number and inadequate ATP by disrupting both expression and activity of DRP1 and mitochondrial complex assembly, leading to excessive ROS production, severe DNA damage and cell cycle arrest at 2-cell embryo stage. Furthermore, reduced transcriptional and translational activity and altered histone modifications in DRP1-inhibited embryos contributed to impeded zygotic genome activation, which prevented early embryos from efficient development beyond 2-cell embryo stage. These results show that DRP1 inhibition has potential cytotoxic effects on mammalian reproduction, and DRP1 inhibitor should be used with caution when it is applied to treat diseases. Additionally, this study improves our understanding of the crosstalk between mitochondrial metabolism and zygotic genome activation.
Collapse
Affiliation(s)
- Yuanyuan Li
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ning-Hua Mei
- Reproductive Medical Center, Renmin Hospital, Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan University, Wuhan, China
| | - Gui-Ping Cheng
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Yang
- Reproductive Medical Center, Renmin Hospital, Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan University, Wuhan, China
| | - Li-Quan Zhou
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
162
|
Zhang KL, Li SJ, Pu XY, Wu FF, Liu H, Wang RQ, Liu BZ, Li Z, Li KF, Qian NS, Yang YL, Yuan H, Wang YY. Targeted up-regulation of Drp1 in dorsal horn attenuates neuropathic pain hypersensitivity by increasing mitochondrial fission. Redox Biol 2021; 49:102216. [PMID: 34954498 PMCID: PMC8718665 DOI: 10.1016/j.redox.2021.102216] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/11/2021] [Accepted: 12/15/2021] [Indexed: 01/02/2023] Open
Abstract
Mitochondria play an essential role in pathophysiology of both inflammatory and neuropathic pain (NP), but the mechanisms are not yet clear. Dynamin-related protein 1 (Drp1) is broadly expressed in the central nervous system and plays a role in the induction of mitochondrial fission process. Spared nerve injury (SNI), due to the dysfunction of the neurons within the spinal dorsal horn (SDH), is the most common NP model. We explored the neuroprotective role of Drp1 within SDH in SNI. SNI mice showed pain behavior and anxiety-like behavior, which was associated with elevation of Drp1, as well as increased density of mitochondria in SDH. Ultrastructural analysis showed SNI induced damaged mitochondria into smaller perimeter and area, tending to be circular. Characteristics of vacuole in the mitochondria further showed SNI induced the increased number of vacuole, widened vac-perimeter and vac-area. Stable overexpression of Drp1 via AAV under the control of the Drp1 promoter by intraspinal injection (Drp1 OE) attenuated abnormal gait and alleviated pain hypersensitivity of SNI mice. Mitochondrial ultrastructure analysis showed that the increased density of mitochondria induced by SNI was recovered by Drp1 OE which, however, did not change mitochondrial morphology and vacuole parameters within SDH. Contrary to Drp1 OE, down-regulation of Drp1 in the SDH by AAV-Drp1 shRNA (Drp1 RNAi) did not alter painful behavior induced by SNI. Ultrastructural analysis showed the treatment by combination of SNI and Drp1 RNAi (SNI + Drp1 RNAi) amplified the damages of mitochondria with the decreased distribution density, increased perimeter and area, as well as larger circularity tending to be more circular. Vacuole data showed SNI + Drp1 RNAi increased vacuole density, perimeter and area within the SDH mitochondria. Our results illustrate that mitochondria within the SDH are sensitive to NP, and targeted mitochondrial Drp1 overexpression attenuates pain hypersensitivity. Drp1 offers a novel therapeutic target for pain treatment.
Collapse
Affiliation(s)
- Kun-Long Zhang
- Specific Lab for Mitochondrial Plasticity Underlying Nervous System Diseases, National Demonstration Center for Experimental Preclinical Medicine Education, The Fourth Military Medical University, Xi'an, 710032, China; Department of Rehabilitation Medicine, Xi-Jing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Shu-Jiao Li
- Specific Lab for Mitochondrial Plasticity Underlying Nervous System Diseases, National Demonstration Center for Experimental Preclinical Medicine Education, The Fourth Military Medical University, Xi'an, 710032, China
| | - Xue-Yin Pu
- Specific Lab for Mitochondrial Plasticity Underlying Nervous System Diseases, National Demonstration Center for Experimental Preclinical Medicine Education, The Fourth Military Medical University, Xi'an, 710032, China
| | - Fei-Fei Wu
- Specific Lab for Mitochondrial Plasticity Underlying Nervous System Diseases, National Demonstration Center for Experimental Preclinical Medicine Education, The Fourth Military Medical University, Xi'an, 710032, China
| | - Hui Liu
- Department of Human Anatomy, Yan-An University, Yan'an, 716000, China
| | - Rui-Qing Wang
- Department of Human Anatomy, Yan-An University, Yan'an, 716000, China
| | - Bo-Zhi Liu
- Specific Lab for Mitochondrial Plasticity Underlying Nervous System Diseases, National Demonstration Center for Experimental Preclinical Medicine Education, The Fourth Military Medical University, Xi'an, 710032, China
| | - Ze Li
- Specific Lab for Mitochondrial Plasticity Underlying Nervous System Diseases, National Demonstration Center for Experimental Preclinical Medicine Education, The Fourth Military Medical University, Xi'an, 710032, China
| | - Kai-Feng Li
- Specific Lab for Mitochondrial Plasticity Underlying Nervous System Diseases, National Demonstration Center for Experimental Preclinical Medicine Education, The Fourth Military Medical University, Xi'an, 710032, China
| | - Nian-Song Qian
- Department of Oncology, First Medical Center, The General Hospital of the People's Liberation Army, Beijing, 100000, China
| | - Yan-Ling Yang
- Department of Liver and Gallbladder Surgery, Xi-Jing Hospital, The Fourth Military Medical University, Xi'an, 710032, China.
| | - Hua Yuan
- Department of Rehabilitation Medicine, Xi-Jing Hospital, The Fourth Military Medical University, Xi'an, 710032, China.
| | - Ya-Yun Wang
- Specific Lab for Mitochondrial Plasticity Underlying Nervous System Diseases, National Demonstration Center for Experimental Preclinical Medicine Education, The Fourth Military Medical University, Xi'an, 710032, China; State Key Laboratory of Military Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
163
|
Xie L, Zhou T, Xie Y, Bode AM, Cao Y. Mitochondria-Shaping Proteins and Chemotherapy. Front Oncol 2021; 11:769036. [PMID: 34868997 PMCID: PMC8637292 DOI: 10.3389/fonc.2021.769036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/18/2021] [Indexed: 12/23/2022] Open
Abstract
The emergence, in recent decades, of an entirely new area of “Mitochondrial dynamics”, which consists principally of fission and fusion, reflects the recognition that mitochondria play a significant role in human tumorigenesis and response to therapeutics. Proteins that determine mitochondrial dynamics are referred to as “shaping proteins”. Marked heterogeneity has been observed in the response of tumor cells to chemotherapy, which is associated with imbalances in mitochondrial dynamics and function leading to adaptive and acquired resistance to chemotherapeutic agents. Therefore, targeting mitochondria-shaping proteins may prove to be a promising approach to treat chemotherapy resistant cancers. In this review, we summarize the alterations of mitochondrial dynamics in chemotherapeutic processing and the antitumor mechanisms by which chemotherapy drugs synergize with mitochondria-shaping proteins. These might shed light on new biomarkers for better prediction of cancer chemosensitivity and contribute to the exploitation of potent therapeutic strategies for the clinical treatment of cancers.
Collapse
Affiliation(s)
- Longlong Xie
- Hunan Children's Hospital, The Pediatric Academy of University of South China, Changsha, China.,Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, Changsha, China.,Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, China
| | - Tiansheng Zhou
- Hunan Children's Hospital, The Pediatric Academy of University of South China, Changsha, China
| | - Yujun Xie
- Hunan Children's Hospital, The Pediatric Academy of University of South China, Changsha, China
| | - Ann M Bode
- The Hormel Institute, University of Minnesota, Austin, MN, United States
| | - Ya Cao
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, Changsha, China.,Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, China.,Research Center for Technologies of Nucleic Acid-Based Diagnostics and Therapeutics Hunan Province, Changsha, China.,Molecular Imaging Research Center of Central South University, Changsha, China.,National Joint Engineering Research Center for Genetic Diagnostics of Infectious Diseases and Cancer, Changsha, China
| |
Collapse
|
164
|
Sawant N, Morton H, Kshirsagar S, Reddy AP, Reddy PH. Mitochondrial Abnormalities and Synaptic Damage in Huntington's Disease: a Focus on Defective Mitophagy and Mitochondria-Targeted Therapeutics. Mol Neurobiol 2021; 58:6350-6377. [PMID: 34519969 DOI: 10.1007/s12035-021-02556-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/05/2021] [Indexed: 12/12/2022]
Abstract
Huntington's disease (HD) is a fatal and pure genetic disease with a progressive loss of medium spiny neurons (MSN). HD is caused by expanded polyglutamine repeats in the exon 1 of HD gene. Clinically, HD is characterized by chorea, seizures, involuntary movements, dystonia, cognitive decline, intellectual impairment, and emotional disturbances. Several years of intense research revealed that multiple cellular changes, including defective axonal transport, protein-protein interactions, defective bioenergetics, calcium dyshomeostasis, NMDAR activation, synaptic damage, mitochondrial abnormalities, and selective loss of medium spiny neurons are implicated in HD. Recent research on mutant huntingtin (mHtt) and mitochondria has found that mHtt interacts with the mitochondrial division protein, dynamin-related protein 1 (DRP1), enhances GTPase DRP1 enzymatic activity, and causes excessive mitochondrial fragmentation and abnormal distribution, leading to defective axonal transport of mitochondria and selective synaptic degeneration. Recent research also revealed that failure to remove dead and/or dying mitochondria is an early event in the disease progression. Currently, efforts are being made to reduce abnormal protein interactions and enhance synaptic mitophagy as therapeutic strategies for HD. The purpose of this article is to discuss recent research in HD progression. This article also discusses recent developments of cell and mouse models, cellular changes, mitochondrial abnormalities, DNA damage, bioenergetics, oxidative stress, mitophagy, and therapeutics strategies in HD.
Collapse
Affiliation(s)
- Neha Sawant
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Hallie Morton
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Sudhir Kshirsagar
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Arubala P Reddy
- Nutritional Sciences Department, College of Human Sciences, Texas Tech University, 1301 Akron Ave, Lubbock, TX, USA
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
- Neuroscience & Pharmacology, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
- Neurology, Department of School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
- Public Health Department of Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
- Department of Speech, Language and Hearing Sciences, School Health Professions, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
- Department of Internal Medicine, Cell Biology & Biochemistry, Public Health and School of Health Professions, Texas Tech University Health Sciences Center, Neuroscience & Pharmacology3601 4th Street, NeurologyLubbock, TX, 79430, USA.
| |
Collapse
|
165
|
Pangou E, Sumara I. The Multifaceted Regulation of Mitochondrial Dynamics During Mitosis. Front Cell Dev Biol 2021; 9:767221. [PMID: 34805174 PMCID: PMC8595210 DOI: 10.3389/fcell.2021.767221] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/15/2021] [Indexed: 12/01/2022] Open
Abstract
Mitosis ensures genome integrity by mediating precise segregation of the duplicated genetic material. Segregation of subcellular organelles during mitosis also needs to be tightly coordinated in order to warrant their proper inheritance and cellular homeostasis. The inheritance of mitochondria, a powerhouse of the cell, is tightly regulated in order to meet the high energy demand to fuel the mitotic machinery. Mitochondria are highly dynamic organelles, which undergo events of fission, fusion and transport during different cell cycle stages. Importantly, during mitosis several kinases phosphorylate the key mitochondrial factors and drive fragmentation of mitochondria to allow for their efficient distribution and inheritance to two daughter cells. Recent evidence suggests that mitochondrial fission can also actively contribute to the regulation of mitotic progression. This review aims at summarizing established and emerging concepts about the complex regulatory networks which couple crucial mitotic factors and events to mitochondrial dynamics and which could be implicated in human disease.
Collapse
Affiliation(s)
- Evanthia Pangou
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,Centre National de la Recherche Scientifique UMR 7104, Strasbourg, France.,Institut National de la Santé et de la Recherche Médicale U964, Strasbourg, France.,Université de Strasbourg, Strasbourg, France
| | - Izabela Sumara
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,Centre National de la Recherche Scientifique UMR 7104, Strasbourg, France.,Institut National de la Santé et de la Recherche Médicale U964, Strasbourg, France.,Université de Strasbourg, Strasbourg, France
| |
Collapse
|
166
|
Microtubule-Based Mitochondrial Dynamics as a Valuable Therapeutic Target in Cancer. Cancers (Basel) 2021; 13:cancers13225812. [PMID: 34830966 PMCID: PMC8616325 DOI: 10.3390/cancers13225812] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/14/2021] [Accepted: 11/17/2021] [Indexed: 12/11/2022] Open
Abstract
Mitochondria constitute an ever-reorganizing dynamic network that plays a key role in several fundamental cellular functions, including the regulation of metabolism, energy production, calcium homeostasis, production of reactive oxygen species, and programmed cell death. Each of these activities can be found to be impaired in cancer cells. It has been reported that mitochondrial dynamics are actively involved in both tumorigenesis and metabolic plasticity, allowing cancer cells to adapt to unfavorable environmental conditions and, thus, contributing to tumor progression. The mitochondrial dynamics include fusion, fragmentation, intracellular trafficking responsible for redistributing the organelle within the cell, biogenesis, and mitophagy. Although the mitochondrial dynamics are driven by the cytoskeleton-particularly by the microtubules and the microtubule-associated motor proteins dynein and kinesin-the molecular mechanisms regulating these complex processes are not yet fully understood. More recently, an exchange of mitochondria between stromal and cancer cells has also been described. The advantage of mitochondrial transfer in tumor cells results in benefits to cell survival, proliferation, and spreading. Therefore, understanding the molecular mechanisms that regulate mitochondrial trafficking can potentially be important for identifying new molecular targets in cancer therapy to interfere specifically with tumor dissemination processes.
Collapse
|
167
|
Birla H, Keswani C, Singh SS, Zahra W, Dilnashin H, Rathore AS, Singh R, Rajput M, Keshri P, Singh SP. Unraveling the Neuroprotective Effect of Tinospora cordifolia in a Parkinsonian Mouse Model through the Proteomics Approach. ACS Chem Neurosci 2021; 12:4319-4335. [PMID: 34747594 DOI: 10.1021/acschemneuro.1c00481] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Stress-induced dopaminergic (DAergic) neuronal death in the midbrain region is the primary cause of Parkinson's disease (PD). Following the discovery of l-dopa, multiple drugs have been developed to improve the lifestyle of PD patients; however, none have been suitable for clinical use due to their multiple side effects. Tinospora cordifolia has been used in traditional medicines to treat neurodegenerative diseases. Previously, we reported the neuroprotective role of Tc via inhibition of NF-κB-associated proinflammatory cytokines against MPTP-intoxicated Parkinsonian mice. In the present study, we investigated the neuroprotective molecular mechanism of Tc in a rotenone (ROT)-intoxicated mouse model, using a proteomics approach. Mice were pretreated with Tc extract by oral administration, followed by ROT intoxication. Behavioral tests were performed to check motor functions of mice. Protein was isolated, and label-free quantification (LFQ) was carried out to identify differentially expressed protein (DEP) in control vs PD and PD vs treatment groups. Results were validated by qRT-PCR with the expression of target genes correlating with the proteomics data. In this study, we report 800 DEPs in control vs PD and 133 in PD vs treatment groups. In silico tools demonstrate significant enrichment of biochemical and molecular pathways with DEPs, which are known to be important for PD progression including mitochondrial gene expression, PD pathways, TGF-β signaling, and Alzheimer's disease. This study provides novel insights into the PD progression as well as new therapeutic targets. More importantly, it demonstrates that Tc can exert therapeutic effects by regulating multiple pathways, resulting in neuroprotection.
Collapse
Affiliation(s)
- Hareram Birla
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Chetan Keswani
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Saumitra Sen Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Walia Zahra
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Hagera Dilnashin
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Aaina Singh Rathore
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Richa Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Monika Rajput
- Department of Bioinformatics, Mahila Maha Vidhyalaya, Banaras Hindu University, Varanasi 221005, India
| | - Priyanka Keshri
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Surya Pratap Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
168
|
Yin CF, Chang YW, Huang HC, Juan HF. Targeting protein interaction networks in mitochondrial dynamics for cancer therapy. Drug Discov Today 2021; 27:1077-1087. [PMID: 34774766 DOI: 10.1016/j.drudis.2021.11.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 10/07/2021] [Accepted: 11/03/2021] [Indexed: 11/16/2022]
Abstract
Mitochondria are crucial organelles that provide energy via oxidative phosphorylation in eukaryotic cells and also have critical roles in growth, division, and the cell cycle, as well as the rapid adaptation required to meet the metabolic needs of the cell. Mitochondrial processes are highly dynamic; fusion and fission can vary with cell type, cellular context, and stress levels. Accumulating evidence demonstrates that an imbalance in mitochondrial dynamics leads to death in numerous types of human cancer cells. Therefore, modulating mitochondrial dynamics could be a therapeutic target. In this review, we provide an overview of the protein interaction networks involved in mitochondrial dynamics as effective and feasible drug targets and discuss the related potential therapeutic strategies for cancer.
Collapse
Affiliation(s)
- Chieh-Fan Yin
- Department of Life Science, Institute of Molecular and Cellular Biology, National Taiwan University, Taipei 106, Taiwan
| | - Yi-Wen Chang
- Department of Life Science, Institute of Molecular and Cellular Biology, National Taiwan University, Taipei 106, Taiwan
| | - Hsuan-Cheng Huang
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei 112, Taiwan.
| | - Hsueh-Fen Juan
- Department of Life Science, Institute of Molecular and Cellular Biology, National Taiwan University, Taipei 106, Taiwan; Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 106, Taiwan; Center for Computational and Systems Biology, National Taiwan University, Taipei 106, Taiwan; Taiwan AI Labs, Taipei 103, Taiwan.
| |
Collapse
|
169
|
Petrozziello T, Bordt EA, Mills AN, Kim SE, Sapp E, Devlin BA, Obeng-Marnu AA, Farhan SMK, Amaral AC, Dujardin S, Dooley PM, Henstridge C, Oakley DH, Neueder A, Hyman BT, Spires-Jones TL, Bilbo SD, Vakili K, Cudkowicz ME, Berry JD, DiFiglia M, Silva MC, Haggarty SJ, Sadri-Vakili G. Targeting Tau Mitigates Mitochondrial Fragmentation and Oxidative Stress in Amyotrophic Lateral Sclerosis. Mol Neurobiol 2021; 59:683-702. [PMID: 34757590 DOI: 10.1007/s12035-021-02557-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 09/09/2021] [Indexed: 11/29/2022]
Abstract
Understanding the mechanisms underlying amyotrophic lateral sclerosis (ALS) is crucial for the development of new therapies. Previous studies have demonstrated that mitochondrial dysfunction is a key pathogenetic event in ALS. Interestingly, studies in Alzheimer's disease (AD) post-mortem brain and animal models link alterations in mitochondrial function to interactions between hyperphosphorylated tau and dynamin-related protein 1 (DRP1), the GTPase involved in mitochondrial fission. Recent evidence suggest that tau may be involved in ALS pathogenesis, therefore, we sought to determine whether hyperphosphorylated tau may lead to mitochondrial fragmentation and dysfunction in ALS and whether reducing tau may provide a novel therapeutic approach. Our findings demonstrated that pTau-S396 is mis-localized to synapses in post-mortem motor cortex (mCTX) across ALS subtypes. Additionally, the treatment with ALS synaptoneurosomes (SNs), enriched in pTau-S396, increased oxidative stress, induced mitochondrial fragmentation, and altered mitochondrial connectivity without affecting cell survival in vitro. Furthermore, pTau-S396 interacted with DRP1, and similar to pTau-S396, DRP1 accumulated in SNs across ALS subtypes, suggesting increases in mitochondrial fragmentation in ALS. As previously reported, electron microscopy revealed a significant decrease in mitochondria density and length in ALS mCTX. Lastly, reducing tau levels with QC-01-175, a selective tau degrader, prevented ALS SNs-induced mitochondrial fragmentation and oxidative stress in vitro. Collectively, our findings suggest that increases in pTau-S396 may lead to mitochondrial fragmentation and oxidative stress in ALS and decreasing tau may provide a novel strategy to mitigate mitochondrial dysfunction in ALS. pTau-S396 mis-localizes to synapses in ALS. ALS synaptoneurosomes (SNs), enriched in pTau-S396, increase oxidative stress and induce mitochondrial fragmentation in vitro. pTau-S396 interacts with the pro-fission GTPase DRP1 in ALS. Reducing tau with a selective degrader, QC-01-175, mitigates ALS SNs-induced mitochondrial fragmentation and increases in oxidative stress in vitro.
Collapse
Affiliation(s)
- Tiziana Petrozziello
- Sean M. Healey & AMG Center for ALS at Mass General, Massachusetts General Hospital, Boston, MA, 02129, USA
| | - Evan A Bordt
- Department of Pediatrics, Lurie Center for Autism, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129, USA
| | - Alexandra N Mills
- Sean M. Healey & AMG Center for ALS at Mass General, Massachusetts General Hospital, Boston, MA, 02129, USA
| | - Spencer E Kim
- Sean M. Healey & AMG Center for ALS at Mass General, Massachusetts General Hospital, Boston, MA, 02129, USA
| | - Ellen Sapp
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Benjamin A Devlin
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| | - Abigail A Obeng-Marnu
- Department of Pediatrics, Lurie Center for Autism, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129, USA
| | - Sali M K Farhan
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA.,Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, MA, 02142, USA
| | - Ana C Amaral
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Simon Dujardin
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Patrick M Dooley
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Christopher Henstridge
- Centre for Discovery Brain Sciences, UK Dementia Research Institute, University of Edinburgh, Edinburgh, UK.,Division of Systems Medicine, Neuroscience, Ninewells hospital & Medical School, University of Dundee, Dundee, UK
| | - Derek H Oakley
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Andreas Neueder
- Department of Neurology, Ulm University, 89081, Ulm, Germany
| | - Bradley T Hyman
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Tara L Spires-Jones
- Centre for Discovery Brain Sciences, UK Dementia Research Institute, University of Edinburgh, Edinburgh, UK
| | - Staci D Bilbo
- Department of Pediatrics, Lurie Center for Autism, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129, USA.,Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| | - Khashayar Vakili
- Department of Surgery, Boston Children's Hospital, Boston, MA, 02125, USA
| | - Merit E Cudkowicz
- Sean M. Healey & AMG Center for ALS at Mass General, Massachusetts General Hospital, Boston, MA, 02129, USA
| | - James D Berry
- Sean M. Healey & AMG Center for ALS at Mass General, Massachusetts General Hospital, Boston, MA, 02129, USA
| | - Marian DiFiglia
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - M Catarina Silva
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA.,Chemical Neurobiology Laboratory, Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Stephen J Haggarty
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA.,Chemical Neurobiology Laboratory, Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA.,Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02114, USA
| | - Ghazaleh Sadri-Vakili
- Sean M. Healey & AMG Center for ALS at Mass General, Massachusetts General Hospital, Boston, MA, 02129, USA. .,MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Bldg 114 16th Street, R2200, Charlestown, MA, 02129, USA.
| |
Collapse
|
170
|
Disentangling Mitochondria in Alzheimer's Disease. Int J Mol Sci 2021; 22:ijms222111520. [PMID: 34768950 PMCID: PMC8583788 DOI: 10.3390/ijms222111520] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) is a major cause of dementia in older adults and is fast becoming a major societal and economic burden due to an increase in life expectancy. Age seems to be the major factor driving AD, and currently, only symptomatic treatments are available. AD has a complex etiology, although mitochondrial dysfunction, oxidative stress, inflammation, and metabolic abnormalities have been widely and deeply investigated as plausible mechanisms for its neuropathology. Aβ plaques and hyperphosphorylated tau aggregates, along with cognitive deficits and behavioral problems, are the hallmarks of the disease. Restoration of mitochondrial bioenergetics, prevention of oxidative stress, and diet and exercise seem to be effective in reducing Aβ and in ameliorating learning and memory problems. Many mitochondria-targeted antioxidants have been tested in AD and are currently in development. However, larger streamlined clinical studies are needed to provide hard evidence of benefits in AD. This review discusses the causative factors, as well as potential therapeutics employed in the treatment of AD.
Collapse
|
171
|
Kumar S, Ashraf R, C K A. Mitochondrial dynamics regulators: implications for therapeutic intervention in cancer. Cell Biol Toxicol 2021; 38:377-406. [PMID: 34661828 DOI: 10.1007/s10565-021-09662-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 09/24/2021] [Indexed: 02/06/2023]
Abstract
Regardless of the recent advances in therapeutic developments, cancer is still among the primary causes of death globally, indicating the need for alternative therapeutic strategies. Mitochondria, a dynamic organelle, continuously undergo the fusion and fission processes to meet cell requirements. The balanced fission and fusion processes, referred to as mitochondrial dynamics, coordinate mitochondrial shape, size, number, energy metabolism, cell cycle, mitophagy, and apoptosis. An imbalance between these opposing events alters mitochondWangrial dynamics, affects the overall mitochondrial shape, and deregulates mitochondrial function. Emerging evidence indicates that alteration of mitochondrial dynamics contributes to various aspects of tumorigenesis and cancer progression. Therefore, targeting the mitochondrial dynamics regulator could be a potential therapeutic approach for cancer treatment. This review will address the role of imbalanced mitochondrial dynamics in mitochondrial dysfunction during cancer progression. We will outline the clinical significance of mitochondrial dynamics regulators in various cancer types with recent updates in cancer stemness and chemoresistance and its therapeutic potential and clinical utility as a predictive biomarker.
Collapse
Affiliation(s)
- Sanjay Kumar
- Division of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Karkambadi Road, Rami Reddy Nagar, Mangalam, Tirupati, Andhra Pradesh, 517507, India.
| | - Rahail Ashraf
- Division of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Karkambadi Road, Rami Reddy Nagar, Mangalam, Tirupati, Andhra Pradesh, 517507, India
| | - Aparna C K
- Division of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Karkambadi Road, Rami Reddy Nagar, Mangalam, Tirupati, Andhra Pradesh, 517507, India
| |
Collapse
|
172
|
Banerjee R, Mukherjee A, Nagotu S. Mitochondrial dynamics and its impact on human health and diseases: inside the DRP1 blackbox. J Mol Med (Berl) 2021; 100:1-21. [PMID: 34657190 DOI: 10.1007/s00109-021-02150-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/24/2021] [Accepted: 10/06/2021] [Indexed: 01/01/2023]
Abstract
Mitochondria are essential organelles that play a significant role in various cellular processes apart from providing energy in eukaryotic cells. An intricate link between mitochondrial structure and function is now unequivocally accepted. Several molecular players have been identified, which are important in maintaining the structure of the organelle. Dynamin-related protein 1 (DRP1) is one such conserved protein that is a vital regulator of mitochondrial dynamics. Multidisciplinary studies have helped elucidate the structure of the protein and its mechanism of action in great detail. Mutations in various domains of the protein have been identified that are associated with debilitating conditions in patients. The involvement of the protein in disease conditions such as neurodegeneration, cancer, and cardiovascular disorders is also gaining attention. The purpose of this review is to highlight recent findings on the role of DRP1 in human disease conditions and address its importance as a therapeutic target.
Collapse
Affiliation(s)
- Riddhi Banerjee
- Organelle Biology and Cellular Ageing Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India
| | - Agradeep Mukherjee
- Organelle Biology and Cellular Ageing Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India
| | - Shirisha Nagotu
- Organelle Biology and Cellular Ageing Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India.
| |
Collapse
|
173
|
Mdivi-1 Modulates Macrophage/Microglial Polarization in Mice with EAE via the Inhibition of the TLR2/4-GSK3β-NF-κB Inflammatory Signaling Axis. Mol Neurobiol 2021; 59:1-16. [PMID: 34618332 DOI: 10.1007/s12035-021-02552-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 09/01/2021] [Indexed: 12/12/2022]
Abstract
Macrophage/microglial modulation plays a critical role in the pathogenesis of multiple sclerosis (MS), which is an inflammatory disorder of the central nervous system. Dynamin-related protein 1 is a cytoplasmic molecule that regulates mitochondrial fission. It has been proven that mitochondrial fission inhibitor 1 (Mdivi-1), a small molecule inhibitor of Drp1, can relieve experimental autoimmune encephalomyelitis (EAE), a preclinical animal model of MS. Whether macrophages/microglia are involved in the pathological process of Mdivi-1-treated EAE remains to be determined. Here, we studied the anti-inflammatory effect of Mdivi-1 on mice with oligodendrocyte glycoprotein peptide35-55 (MOG35-55)-induced EAE. We found that Drp1 phosphorylation at serine 616 in macrophages/microglia was decreased with Mdivi-1 treatment, which was accompanied by decreased antigen presentation capacity of the macrophages/microglia in the EAE mouse spinal cord. The Mdivi-1 treatment caused macrophage/microglia to produce low levels of proinflammatory molecules, such as CD16/32, iNOS, and TNF-α, and high levels of anti-inflammatory molecules, such as CD206, IL-10, and Arginase-1, suggesting that Mdivi-1 promoted the macrophage/microglia shift from the inflammatory M1 phenotype to the anti-inflammatory M2 phenotype. Moreover, Mdivi-1 was able to downregulate the expression of TRL2, TRL4, GSK-3β, and phosphorylated NF-κB-p65 and prevent NF-κB-mediated IL-1β and IL-6 production. In conclusion, these results indicate that Mdivi-1 significantly alleviates inflammation in mice with EAE by promoting M2 polarization by inhibiting TLR2/4- and GSK3β-mediated NF-κB activation.
Collapse
|
174
|
DNMT1 maintains metabolic fitness of adipocytes through acting as an epigenetic safeguard of mitochondrial dynamics. Proc Natl Acad Sci U S A 2021; 118:2021073118. [PMID: 33836591 DOI: 10.1073/pnas.2021073118] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
White adipose tissue (WAT) is a key regulator of systemic energy metabolism, and impaired WAT plasticity characterized by enlargement of preexisting adipocytes associates with WAT dysfunction, obesity, and metabolic complications. However, the mechanisms that retain proper adipose tissue plasticity required for metabolic fitness are unclear. Here, we comprehensively showed that adipocyte-specific DNA methylation, manifested in enhancers and CTCF sites, directs distal enhancer-mediated transcriptomic features required to conserve metabolic functions of white adipocytes. Particularly, genetic ablation of adipocyte Dnmt1, the major methylation writer, led to increased adiposity characterized by increased adipocyte hypertrophy along with reduced expansion of adipocyte precursors (APs). These effects of Dnmt1 deficiency provoked systemic hyperlipidemia and impaired energy metabolism both in lean and obese mice. Mechanistically, Dnmt1 deficiency abrogated mitochondrial bioenergetics by inhibiting mitochondrial fission and promoted aberrant lipid metabolism in adipocytes, rendering adipocyte hypertrophy and WAT dysfunction. Dnmt1-dependent DNA methylation prevented aberrant CTCF binding and, in turn, sustained the proper chromosome architecture to permit interactions between enhancer and dynamin-1-like protein gene Dnm1l (Drp1) in adipocytes. Also, adipose DNMT1 expression inversely correlated with adiposity and markers of metabolic health but positively correlated with AP-specific markers in obese human subjects. Thus, these findings support strategies utilizing Dnmt1 action on mitochondrial bioenergetics in adipocytes to combat obesity and related metabolic pathology.
Collapse
|
175
|
Richard K, Piepenbrink KH, Shirey KA, Gopalakrishnan A, Nallar S, Prantner DJ, Perkins DJ, Lai W, Vlk A, Toshchakov VY, Feng C, Fanaroff R, Medvedev AE, Blanco JCG, Vogel SN. A mouse model of human TLR4 D299G/T399I SNPs reveals mechanisms of altered LPS and pathogen responses. J Exp Med 2021; 218:211550. [PMID: 33216117 PMCID: PMC7685774 DOI: 10.1084/jem.20200675] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 09/01/2020] [Accepted: 10/09/2020] [Indexed: 12/12/2022] Open
Abstract
Two cosegregating single-nucleotide polymorphisms (SNPs) in human TLR4, an A896G transition at SNP rs4986790 (D299G) and a C1196T transition at SNP rs4986791 (T399I), have been associated with LPS hyporesponsiveness and differential susceptibility to many infectious or inflammatory diseases. However, many studies failed to confirm these associations, and transfection experiments resulted in conflicting conclusions about the impact of these SNPs on TLR4 signaling. Using advanced protein modeling from crystallographic data of human and murine TLR4, we identified homologous substitutions of these SNPs in murine Tlr4, engineered a knock-in strain expressing the D298G and N397I TLR4 SNPs homozygously, and characterized in vivo and in vitro responses to TLR4 ligands and infections in which TLR4 is implicated. Our data provide new insights into cellular and molecular mechanisms by which these SNPs decrease the TLR4 signaling efficiency and offer an experimental approach to confirm or refute human data possibly confounded by variables unrelated to the direct effects of the SNPs on TLR4 functionality.
Collapse
Affiliation(s)
- Katharina Richard
- Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, MD
| | - Kurt H Piepenbrink
- Department of Food Science and Technology, Department of Biochemistry, University of Nebraska, Lincoln, NE
| | - Kari Ann Shirey
- Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, MD
| | - Archana Gopalakrishnan
- Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, MD
| | - Shreeram Nallar
- Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, MD
| | - Daniel J Prantner
- Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, MD
| | - Darren J Perkins
- Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, MD
| | - Wendy Lai
- Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, MD
| | - Alexandra Vlk
- Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, MD
| | - Vladimir Y Toshchakov
- Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, MD
| | - Chiguang Feng
- Center for Vaccine Development, University of Maryland, School of Medicine, Baltimore, MD
| | - Rachel Fanaroff
- Department of Anatomical Pathology, University of Maryland Medical Center, Baltimore, MD
| | - Andrei E Medvedev
- Department of Immunology, University of Connecticut Health Center, Farmington, CT
| | | | - Stefanie N Vogel
- Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, MD
| |
Collapse
|
176
|
Cervantes‐Silva MP, Cox SL, Curtis AM. Alterations in mitochondrial morphology as a key driver of immunity and host defence. EMBO Rep 2021; 22:e53086. [PMID: 34337844 PMCID: PMC8447557 DOI: 10.15252/embr.202153086] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/09/2021] [Accepted: 07/09/2021] [Indexed: 02/06/2023] Open
Abstract
Mitochondria are dynamic organelles whose architecture changes depending on the cell's energy requirements and other signalling events. These structural changes are collectively known as mitochondrial dynamics. Mitochondrial dynamics are crucial for cellular functions such as differentiation, energy production and cell death. Importantly, it has become clear in recent years that mitochondrial dynamics are a critical control point for immune cell function. Mitochondrial remodelling allows quiescent immune cells to rapidly change their metabolism and become activated, producing mediators, such as cytokines, chemokines and even metabolites to execute an effective immune response. The importance of mitochondrial dynamics in immunity is evident, as numerous pathogens have evolved mechanisms to manipulate host cell mitochondrial remodelling in order to promote their own survival. In this review, we comprehensively address the roles of mitochondrial dynamics in immune cell function, along with modulation of host cell mitochondrial morphology during viral and bacterial infections to facilitate either pathogen survival or host immunity. We also speculate on what the future may hold in terms of therapies targeting mitochondrial morphology for bacterial and viral control.
Collapse
Affiliation(s)
- Mariana P Cervantes‐Silva
- School of Pharmacy and Biomedical Sciences and Tissue Engineering Research GroupRoyal College of Surgeons in IrelandDublinIreland
| | - Shannon L Cox
- School of Pharmacy and Biomedical Sciences and Tissue Engineering Research GroupRoyal College of Surgeons in IrelandDublinIreland
| | - Annie M Curtis
- School of Pharmacy and Biomedical Sciences and Tissue Engineering Research GroupRoyal College of Surgeons in IrelandDublinIreland
| |
Collapse
|
177
|
Zhou W, Zhang Y, Jiao Y, Yin W, Dong H, Xu S, Tang D, Jiang J, Shao J, Wang Z, Yu W. Dexmedetomidine maintains blood-brain barrier integrity by inhibiting Drp1-related endothelial mitochondrial dysfunction in ischemic stroke. Acta Biochim Biophys Sin (Shanghai) 2021; 53:1177-1188. [PMID: 34244711 DOI: 10.1093/abbs/gmab092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Indexed: 12/17/2022] Open
Abstract
Stroke is the second leading cause of death and long-term disability worldwide, which lacks effective treatment. Perioperative stroke is associated with much higher rates of mortality and disability. The neuroprotective role of dexmedetomidine (Dex), a highly selective agonist of alpha2-adrenergic receptor, has been reported in a stroke rat model, and it was found that pretreatment of Dex before stroke could alleviate blood-brain barrier (BBB) breakdown. However, the underlying mechanisms are still unknown. As the brain endothelial cells are the main constituents of BBB and in high demand of energy, mitochondrial function of endothelial cells plays an important role in the maintenance of BBB. Given that dynamin-related protein 1 (Drp1) is a protein mediating mitochondrial fission, with mitochondrial fusion that balances mitochondrial morphology and ensures mitochondria function, the present study was designed to investigate the possible role of Drp1 in endothelial cells involved in the neuroprotective effects of Dex in ischemic stroke. Our results showed that preconditioning with Dex reduced infarction volume, alleviated brain water content and BBB damage, and improved neurological scores in middle cerebral artery occlusion rats. Meanwhile, Dex enhanced cell activity and decreased cell apoptosis in oxygen-glucose deprivation human brain microvascular endothelial cells in vitro. These protective effects of Dex were correlated with the mitochondrial morphology integrality of endothelial cells, mediated by increased phosphorylation of serine 637 in Drp1, and could be reversed by α2-adrenergic receptor antagonist Yohimbine and AMP-activated protein kinase inhibitor Compound C. These findings suggest new molecular pathways involved in the neuroprotective effects of Dex in ischemic stroke. As Dex is routinely used as a sedative drug clinically, our findings provide molecular evidence that it has perioperative neuroprotection from ischemic stroke.
Collapse
Affiliation(s)
- Wei Zhou
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yunchun Zhang
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yingfu Jiao
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Wen Yin
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Haiping Dong
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Saihong Xu
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Dan Tang
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Junli Jiang
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Jianlin Shao
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, No.1 School of Clinical Medicine, Kunming Medical University, Kunming 650011, China
| | - Zhenhong Wang
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Weifeng Yu
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| |
Collapse
|
178
|
Aoyagi Y, Hayashi Y, Harada Y, Choi K, Matsunuma N, Sadato D, Maemoto Y, Ito A, Yanagi S, Starczynowski DT, Harada H. Mitochondrial Fragmentation Triggers Ineffective Hematopoiesis in Myelodysplastic Syndromes. Cancer Discov 2021; 12:250-269. [PMID: 34462274 DOI: 10.1158/2159-8290.cd-21-0032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 07/04/2021] [Accepted: 08/24/2021] [Indexed: 11/16/2022]
Abstract
Ineffective hematopoiesis is a fundamental process leading to the pathogenesis of myelodysplastic syndromes (MDS). However, the pathobiological mediators of ineffective hematopoiesis in MDS remain unclear. Here, we demonstrated that overwhelming mitochondrial fragmentation in mutant hematopoietic stem cells and progenitors (HSC/Ps) triggers ineffective hematopoiesis in MDS. Mouse modeling of CBL exon-deletion with RUNX1 mutants, previously unreported co-mutations in MDS patients, recapitulated not only clinically relevant MDS phenotypes but also a distinct MDS-related gene signature. Mechanistically, dynamin-related protein 1 (DRP1)-dependent excessive mitochondrial fragmentation in HSC/Ps led to excessive ROS production, induced inflammatory signaling activation, and promoted subsequent dysplasia formation and impairment of granulopoiesis. Mitochondrial fragmentation was generally observed in patients with MDS. Pharmacological inhibition of DRP1 attenuated mitochondrial fragmentation and rescued ineffective hematopoiesis phenotypes in MDS mice. These findings provide mechanistic insights into ineffective hematopoiesis and indicate that dysregulated mitochondrial dynamics could be a therapeutic target for bone marrow failure in MDS.
Collapse
Affiliation(s)
- Yasushige Aoyagi
- Laboratory of Oncology, Tokyo University of Pharmacy and Life Sciences
| | - Yoshihiro Hayashi
- Laboratory of Oncology, Tokyo University of Pharmacy and Life Sciences
| | - Yuka Harada
- Clinical Laboratory Medicine, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital
| | - Kwangmin Choi
- Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center
| | - Natsumi Matsunuma
- Laboratory of Oncology, Tokyo University of Pharmacy and Life Sciences
| | - Daichi Sadato
- Clinical Research Center, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital
| | - Yuki Maemoto
- Laboratory of Cell Signaling, School of Life Sciences,, Tokyo University of Pharmacy and Life Sciences
| | - Akihiro Ito
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences
| | - Shigeru Yanagi
- School of Life Science, Tokyo University of Pharmacy and Life Sciences
| | - Daniel T Starczynowski
- Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center
| | - Hironori Harada
- Laboratory of Oncology, School of Life Science, Tokyo University of Pharmacy and Life Sciences
| |
Collapse
|
179
|
DeLiberty JM, Robb R, Gates CE, Bryant KL. Unraveling and targeting RAS-driven metabolic signaling for therapeutic gain. Adv Cancer Res 2021; 153:267-304. [PMID: 35101233 DOI: 10.1016/bs.acr.2021.07.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
RAS mutations are among the most frequent oncogenic drivers observed in human cancers. With a lack of available treatment options, RAS-mutant cancers account for many of the deadliest cancers in the United States. Recent studies established that altered metabolic requirements are a hallmark of cancer, and many of these alterations are driven by aberrant RAS signaling. Specifically, RAS-driven cancers are characterized by upregulated glycolysis, the differential channeling of glycolytic intermediates, upregulated nutrient scavenging pathways such as autophagy and macropinocytosis, and altered glutamine utilization and mitochondrial function. This unique metabolic landscape promotes tumorigenesis, proliferation, survival in nutrient deficient environments and confers resistance to conventional cytotoxic and targeted therapies. Emerging work demonstrates how these dependencies can be therapeutically exploited in vitro and in vivo with many metabolic inhibitors currently in clinical trials. This review aims to outline the unique metabolic requirements induced by aberrant RAS signaling and how these altered dependencies present opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Jonathan M DeLiberty
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Ryan Robb
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Claire E Gates
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Kirsten L Bryant
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.
| |
Collapse
|
180
|
Mao X, Gu Y, Sui X, Shen L, Han J, Wang H, Xi Q, Zhuang Q, Meng Q, Wu G. Phosphorylation of Dynamin-Related Protein 1 (DRP1) Regulates Mitochondrial Dynamics and Skeletal Muscle Wasting in Cancer Cachexia. Front Cell Dev Biol 2021; 9:673618. [PMID: 34422804 PMCID: PMC8375307 DOI: 10.3389/fcell.2021.673618] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 07/09/2021] [Indexed: 12/12/2022] Open
Abstract
Background Cancer-associated cachexia (CAC) is a syndrome characterized by skeletal muscle atrophy, and the underlying mechanisms are still unclear. Recent research studies have shed light on a noteworthy link between mitochondrial dynamics and muscle physiology. In the present study, we investigate the role of dynamin-related protein 1 (DRP1), a pivotal factor of mitochondrial dynamics, in myotube atrophy during cancer-associated cachexia. Methods Seventy-six surgical patients, including gastrointestinal tumor and benign disease, were enrolled in the study and divided to three groups: control, non-cachexia, and cancer-associated cachexia. Demographic data were collected. Their rectus abdominis samples were acquired intraoperatively. Muscle fiber size, markers of ubiquitin proteasome system (UPS), mitochondrial ultrastructure, and markers of mitochondrial function and dynamics were assayed. A cachexia model in vitro was established via coculturing a C2C12 myotube with media from C26 colon cancer cells. A specific DRP1 inhibitor, Mdivi-1, and a lentivirus of DRP1 knockdown/overexpression were used to regulate the expression of DRP1. Muscle diameter, mitochondrial morphology, mass, reactive oxygen species (ROS), membrane potential, and markers of UPS, mitochondrial function, and dynamics were determined. Results Patients of cachexia suffered from a conspicuous worsened nutrition status and muscle loss compared to patients of other groups. Severe mitochondrial swelling and enlarged area were observed, and partial alterations in mitochondrial function were found in muscle. Analysis of mitochondrial dynamics indicated an upregulation of phosphorylated DRP1 at the ser616 site. In vitro, cancer media resulted in the atrophy of myotube. This was accompanied with a prominent unbalance of mitochondrial dynamics, as well as enhanced mitochondrial ROS and decreased mitochondrial function and membrane potential. However, certain concentrations of Mdivi-1 and DRP1 knockdown rebalanced the mitochondrial dynamics, mitigating this negative phenotype caused by cachexia. Moreover, overexpression of DRP1 aggravated these phenomena. Conclusion In clinical patients, cachexia induces abnormal mitochondrial changes and possible fission activation for the atrophied muscle. Our cachexia model in vitro further demonstrates that unbalanced mitochondrial dynamics contributes to this atrophy and mitochondrial impairment, and rebuilding the balance by regulating of DRP1 could ameliorate these alterations.
Collapse
Affiliation(s)
- Xiangyu Mao
- Department of General Surgery/Shanghai Clinical Nutrition Research Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yihua Gu
- Shanghai Institute of Planned Parenthood Research, Shanghai, China
| | - Xiangyu Sui
- Department of General Surgery/Shanghai Clinical Nutrition Research Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lei Shen
- Department of General Surgery/Shanghai Clinical Nutrition Research Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jun Han
- Department of General Surgery/Shanghai Clinical Nutrition Research Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Haiyu Wang
- Department of General Surgery/Shanghai Clinical Nutrition Research Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qiulei Xi
- Department of General Surgery/Shanghai Clinical Nutrition Research Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qiulin Zhuang
- Department of General Surgery/Shanghai Clinical Nutrition Research Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qingyang Meng
- Department of General Surgery/Shanghai Clinical Nutrition Research Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Guohao Wu
- Department of General Surgery/Shanghai Clinical Nutrition Research Center, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
181
|
Jayashankar V, Selwan E, Hancock SE, Verlande A, Goodson MO, Eckenstein KH, Milinkeviciute G, Hoover BM, Chen B, Fleischman AG, Cramer KS, Hanessian S, Masri S, Turner N, Edinger AL. Drug-like sphingolipid SH-BC-893 opposes ceramide-induced mitochondrial fission and corrects diet-induced obesity. EMBO Mol Med 2021; 13:e13086. [PMID: 34231322 PMCID: PMC8350895 DOI: 10.15252/emmm.202013086] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 06/02/2021] [Accepted: 06/09/2021] [Indexed: 02/06/2023] Open
Abstract
Ceramide-induced mitochondrial fission drives high-fat diet (HFD)-induced obesity. However, molecules targeting mitochondrial dynamics have shown limited benefits in murine obesity models. Here, we reveal that these compounds are either unable to block ceramide-induced mitochondrial fission or require extended incubation periods to be effective. In contrast, targeting endolysosomal trafficking events important for mitochondrial fission rapidly and robustly prevented ceramide-induced disruptions in mitochondrial form and function. By simultaneously inhibiting ARF6- and PIKfyve-dependent trafficking events, the synthetic sphingolipid SH-BC-893 blocked palmitate- and ceramide-induced mitochondrial fission, preserved mitochondrial function, and prevented ER stress in vitro. Similar benefits were observed in the tissues of HFD-fed mice. Within 4 h of oral administration, SH-BC-893 normalized mitochondrial morphology in the livers and brains of HFD-fed mice, improved mitochondrial function in white adipose tissue, and corrected aberrant plasma leptin and adiponectin levels. As an interventional agent, SH-BC-893 restored normal body weight, glucose disposal, and hepatic lipid levels in mice consuming a HFD. In sum, the sphingolipid analog SH-BC-893 robustly and acutely blocks ceramide-induced mitochondrial dysfunction, correcting diet-induced obesity and its metabolic sequelae.
Collapse
Affiliation(s)
- Vaishali Jayashankar
- Department of Developmental and Cell BiologyUniversity of California IrvineIrvineCAUSA
| | - Elizabeth Selwan
- Department of Developmental and Cell BiologyUniversity of California IrvineIrvineCAUSA
| | - Sarah E Hancock
- School of Medical SciencesUniversity of New South WalesSydneyNSWAustralia
| | - Amandine Verlande
- Department of Biological ChemistryUniversity of California IrvineIrvineCAUSA
| | - Maggie O Goodson
- Department of Biological ChemistryUniversity of California IrvineIrvineCAUSA
| | - Kazumi H Eckenstein
- Department of Developmental and Cell BiologyUniversity of California IrvineIrvineCAUSA
| | | | - Brianna M Hoover
- Division of Hematology/OncologyDepartment of MedicineUniversity of CaliforniaIrvineCAUSA
| | - Bin Chen
- Department of ChemistryUniversité de MontréalMontréalQCCanada
| | - Angela G Fleischman
- Division of Hematology/OncologyDepartment of MedicineUniversity of CaliforniaIrvineCAUSA
| | - Karina S Cramer
- Department of Neurobiology and BehaviorUniversity of California IrvineIrvineCAUSA
| | | | - Selma Masri
- Department of Biological ChemistryUniversity of California IrvineIrvineCAUSA
| | - Nigel Turner
- School of Medical SciencesUniversity of New South WalesSydneyNSWAustralia
| | - Aimee L Edinger
- Department of Developmental and Cell BiologyUniversity of California IrvineIrvineCAUSA
| |
Collapse
|
182
|
Li H, Doric Z, Berthet A, Jorgens DM, Nguyen MK, Hsieh I, Margulis J, Fang R, Debnath J, Sesaki H, Finkbeiner S, Huang E, Nakamura K. Longitudinal tracking of neuronal mitochondria delineates PINK1/Parkin-dependent mechanisms of mitochondrial recycling and degradation. SCIENCE ADVANCES 2021; 7:7/32/eabf6580. [PMID: 34362731 PMCID: PMC8346224 DOI: 10.1126/sciadv.abf6580] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 06/17/2021] [Indexed: 06/13/2023]
Abstract
Altered mitochondrial quality control and dynamics may contribute to neurodegenerative diseases, including Parkinson's disease, but we understand little about these processes in neurons. We combined time-lapse microscopy and correlative light and electron microscopy to track individual mitochondria in neurons lacking the fission-promoting protein dynamin-related protein 1 (Drp1) and delineate the kinetics of PINK1-dependent pathways of mitochondrial quality control. Depolarized mitochondria recruit Parkin to the outer mitochondrial membrane, triggering autophagosome formation, rapid lysosomal fusion, and Parkin redistribution. Unexpectedly, these mitolysosomes are dynamic and persist for hours. Some are engulfed by healthy mitochondria, and others are deacidified before bursting. In other cases, Parkin is directly recruited to the matrix of polarized mitochondria. Loss of PINK1 blocks Parkin recruitment, causes LC3 accumulation within mitochondria, and exacerbates Drp1KO toxicity to dopamine neurons. These results define a distinct neuronal mitochondrial life cycle, revealing potential mechanisms of mitochondrial recycling and signaling relevant to neurodegeneration.
Collapse
Affiliation(s)
- Huihui Li
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Zak Doric
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA
- Graduate Program in Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Amandine Berthet
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Danielle M Jorgens
- Electron Microscope Laboratory, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Mai K Nguyen
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Ivy Hsieh
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Julia Margulis
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Rebecca Fang
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA
- Graduate Program in Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jayanta Debnath
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA
- Graduate Program in Biomedical Sciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Hiromi Sesaki
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Steve Finkbeiner
- Graduate Program in Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA
- Graduate Program in Biomedical Sciences, University of California, San Francisco, San Francisco, CA 94143, USA
- Center for Systems and Therapeutics, Gladstone Institutes, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Eric Huang
- Graduate Program in Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA
- Graduate Program in Biomedical Sciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Ken Nakamura
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA.
- Graduate Program in Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA
- Graduate Program in Biomedical Sciences, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
183
|
Li M, Zhu Y, Jaiswal SK, Liu NF. Mitochondria Homeostasis and Vascular Medial Calcification. Calcif Tissue Int 2021; 109:113-120. [PMID: 33660037 DOI: 10.1007/s00223-021-00828-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 02/18/2021] [Indexed: 12/25/2022]
Abstract
Vascular calcification occurs highly prevalent, which commonly predicts adverse cardiovascular events. The pathogenesis of calcification, a complicated and multifactorial process, is incompletely characterized. Accumulating evidence shows that mitochondrial dysfunction may ultimately be more detrimental in the vascular smooth muscle cells (VSMCs) calcification. This review summarizes the role of mitochondrial dysfunction and metabolic reprogramming in vascular calcification, and indicates that metabolic regulation may be a therapeutic target in vascular calcification.
Collapse
Affiliation(s)
- Min Li
- Department of Cardiology, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009, People's Republic of China
| | - Yi Zhu
- Department of Cardiology, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009, People's Republic of China
| | - Sandip Kumar Jaiswal
- Department of Neurology, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009, People's Republic of China
| | - Nai-Feng Liu
- Department of Cardiology, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009, People's Republic of China.
| |
Collapse
|
184
|
Burnap SA, Mayr M. DRP1-a Novel Regulator of PCSK9 Secretion and Degradation. Cardiovasc Res 2021; 117:2289-2290. [PMID: 34264313 DOI: 10.1093/cvr/cvab227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Sean A Burnap
- King's College London British Heart Foundation Centre, School of Cardiovascular Medicine and Sciences, London, United Kingdom
| | - Manuel Mayr
- King's College London British Heart Foundation Centre, School of Cardiovascular Medicine and Sciences, London, United Kingdom
| |
Collapse
|
185
|
Yang SG, Joe SY, Bae JW, Heo GD, Park HJ, Koo DB. Melatonin Protects Against Mdivi-1-Induced Abnormal Spindle Assembly and Mitochondrial Superoxide Production During Porcine Oocyte Maturation. Front Cell Dev Biol 2021; 9:693969. [PMID: 34307369 PMCID: PMC8297652 DOI: 10.3389/fcell.2021.693969] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/07/2021] [Indexed: 01/04/2023] Open
Abstract
Mitochondrial division inhibitor 1 (Mdivi-1) reportedly provides a close connection between oocyte maturation and mitochondrial function in pigs. N-acetyl-5-methoxy-tryptamine (melatonin) is known to be a representative antioxidant with the ability to rehabilitate meiotic maturation of porcine oocytes. However, the ability of melatonin to recover Mdivi-1-mediated disruption of spindle formation during meiotic maturation of porcine oocytes during in vitro maturation (IVM) has not been studied. Here, we first investigated changes in mitochondrial length, such as fragmentation and elongation form, in mature porcine oocytes during IVM. Mature oocytes require appropriate mitochondrial fission for porcine oocyte maturation. We identified a dose-dependent reduction in meiotic maturation in porcine oocytes following Mdivi-1 treatment (50, 75, and 100 μM). We also confirmed changes in mitochondrial fission protein levels [dynamin-related protein 1 phosphorylation at serine 616 (pDRP1-Ser616) and dynamin-related protein 1 (DRP1)], mitochondrial membrane potential, and ATP production in 75 μM Mdivi-1-treated oocytes. As expected, Mdivi-1 significantly reduced mitochondrial function and DRP1 protein levels and increased spindle abnormalities in porcine oocytes. In addition, we confirmed that melatonin restores abnormal spindle assembly and reduces meiotic maturation rates by Mdivi-1 during porcine oocyte maturation. Interestingly, the expression levels of genes that reduce DNA damage and improve tubulin formation were enhanced during porcine meiotic maturation. Taken together, these results suggest that melatonin has direct beneficial effects on meiotic maturation through tubulin formation factors during porcine oocyte maturation.
Collapse
Affiliation(s)
- Seul-Gi Yang
- Department of Biotechnology, College of Engineering, Daegu University, Gyeongsan, South Korea.,Institute of Infertility, Daegu University, Gyeongsan, South Korea
| | - Seung-Yeon Joe
- Department of Biotechnology, College of Engineering, Daegu University, Gyeongsan, South Korea.,Institute of Infertility, Daegu University, Gyeongsan, South Korea
| | - Jin-Wook Bae
- Department of Biotechnology, College of Engineering, Daegu University, Gyeongsan, South Korea.,Institute of Infertility, Daegu University, Gyeongsan, South Korea
| | - Gyeong-Deok Heo
- Department of Biotechnology, College of Engineering, Daegu University, Gyeongsan, South Korea.,Institute of Infertility, Daegu University, Gyeongsan, South Korea
| | - Hyo-Jin Park
- Department of Biotechnology, College of Engineering, Daegu University, Gyeongsan, South Korea.,Institute of Infertility, Daegu University, Gyeongsan, South Korea
| | - Deog-Bon Koo
- Department of Biotechnology, College of Engineering, Daegu University, Gyeongsan, South Korea.,Institute of Infertility, Daegu University, Gyeongsan, South Korea
| |
Collapse
|
186
|
Wu D, Dasgupta A, Read AD, Bentley RET, Motamed M, Chen KH, Al-Qazazi R, Mewburn JD, Dunham-Snary KJ, Alizadeh E, Tian L, Archer SL. Oxygen sensing, mitochondrial biology and experimental therapeutics for pulmonary hypertension and cancer. Free Radic Biol Med 2021; 170:150-178. [PMID: 33450375 PMCID: PMC8217091 DOI: 10.1016/j.freeradbiomed.2020.12.452] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/24/2020] [Accepted: 12/30/2020] [Indexed: 02/06/2023]
Abstract
The homeostatic oxygen sensing system (HOSS) optimizes systemic oxygen delivery. Specialized tissues utilize a conserved mitochondrial sensor, often involving NDUFS2 in complex I of the mitochondrial electron transport chain, as a site of pO2-responsive production of reactive oxygen species (ROS). These ROS are converted to a diffusible signaling molecule, hydrogen peroxide (H2O2), by superoxide dismutase (SOD2). H2O2 exits the mitochondria and regulates ion channels and enzymes, altering plasma membrane potential, intracellular Ca2+ and Ca2+-sensitization and controlling acute, adaptive, responses to hypoxia that involve changes in ventilation, vascular tone and neurotransmitter release. Subversion of this O2-sensing pathway creates a pseudohypoxic state that promotes disease progression in pulmonary arterial hypertension (PAH) and cancer. Pseudohypoxia is a state in which biochemical changes, normally associated with hypoxia, occur despite normal pO2. Epigenetic silencing of SOD2 by DNA methylation alters H2O2 production, activating hypoxia-inducible factor 1α, thereby disrupting mitochondrial metabolism and dynamics, accelerating cell proliferation and inhibiting apoptosis. Other epigenetic mechanisms, including dysregulation of microRNAs (miR), increase pyruvate dehydrogenase kinase and pyruvate kinase muscle isoform 2 expression in both diseases, favoring uncoupled aerobic glycolysis. This Warburg metabolic shift also accelerates cell proliferation and impairs apoptosis. Disordered mitochondrial dynamics, usually increased mitotic fission and impaired fusion, promotes disease progression in PAH and cancer. Epigenetic upregulation of dynamin-related protein 1 (Drp1) and its binding partners, MiD49 and MiD51, contributes to the pathogenesis of PAH and cancer. Finally, dysregulation of intramitochondrial Ca2+, resulting from impaired mitochondrial calcium uniporter complex (MCUC) function, links abnormal mitochondrial metabolism and dynamics. MiR-mediated decreases in MCUC function reduce intramitochondrial Ca2+, promoting Warburg metabolism, whilst increasing cytosolic Ca2+, promoting fission. Epigenetically disordered mitochondrial O2-sensing, metabolism, dynamics, and Ca2+ homeostasis offer new therapeutic targets for PAH and cancer. Promoting glucose oxidation, restoring the fission/fusion balance, and restoring mitochondrial calcium regulation are promising experimental therapeutic strategies.
Collapse
Affiliation(s)
- Danchen Wu
- Department of Medicine, Queen's University, 94 Stuart St., Kingston, Ontario, K7L 3N6, Canada
| | - Asish Dasgupta
- Department of Medicine, Queen's University, 94 Stuart St., Kingston, Ontario, K7L 3N6, Canada
| | - Austin D Read
- Department of Medicine, Queen's University, 94 Stuart St., Kingston, Ontario, K7L 3N6, Canada
| | - Rachel E T Bentley
- Department of Medicine, Queen's University, 94 Stuart St., Kingston, Ontario, K7L 3N6, Canada
| | - Mehras Motamed
- Department of Medicine, Queen's University, 94 Stuart St., Kingston, Ontario, K7L 3N6, Canada
| | - Kuang-Hueih Chen
- Department of Medicine, Queen's University, 94 Stuart St., Kingston, Ontario, K7L 3N6, Canada
| | - Ruaa Al-Qazazi
- Department of Medicine, Queen's University, 94 Stuart St., Kingston, Ontario, K7L 3N6, Canada
| | - Jeffrey D Mewburn
- Department of Medicine, Queen's University, 94 Stuart St., Kingston, Ontario, K7L 3N6, Canada
| | - Kimberly J Dunham-Snary
- Department of Medicine, Queen's University, 94 Stuart St., Kingston, Ontario, K7L 3N6, Canada; Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Elahe Alizadeh
- Queen's Cardiopulmonary Unit (QCPU), Department of Medicine, Queen's University, 116 Barrie Street, Kingston, ON, K7L 3J9, Canada
| | - Lian Tian
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, G4 0RE, UK
| | - Stephen L Archer
- Department of Medicine, Queen's University, 94 Stuart St., Kingston, Ontario, K7L 3N6, Canada.
| |
Collapse
|
187
|
Lima AR, Correia M, Santos L, Tavares C, Rios E, Canberk S, Soares P, Sobrinho-Simões M, Melo M, Máximo V. S616-p-DRP1 associates with locally invasive behavior of follicular cell-derived thyroid carcinoma. Endocrine 2021; 73:85-97. [PMID: 33219495 DOI: 10.1007/s12020-020-02546-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 11/02/2020] [Indexed: 12/14/2022]
Abstract
PURPOSE Dynamin-related protein 1 (DRP1), a mitochondrial fission protein, and its active form phosphorylated at Serine 616 (S616-p-DRP1) have been increasingly associated with tumorigenesis and invasion in various tumor models, including oncocytic thyroid cancer (TC). In this study, the expression of DRP1 and S616-p-DRP1 and its relationship with patients' clinicopathological characteristics, tumor genetic profiles, and clinical outcomes were assessed in a large series of follicular cell-derived TC (FCDTC). METHODS Retrospective biomarker study characterizing the clinicopathological and immunochemistry DRP1 and S616-p-DRP1 expression of a series of 259 patients with FCDTC followed in two University Hospitals. RESULTS DRP1 expression was positive in 65.3% (169/259) of the cases, while the expression of the S616-p-DRP1 was positive in only 17.3% (17/98). DRP1-positive expression was significantly associated with differentiated tumors (67.7 vs. 48.0%; P = 0.049), non-encapsulated tumors (73.8 vs. 57.4%; P = 0.011) and thyroid capsule invasion (73.4 vs. 57.5%; P = 0.013). S616-p-DRP1-positive expression was significantly associated with tumor infiltrative margins (88.9 vs. 11.1%; P = 0.033), thyroid capsule invasion (29.8 vs. 3.1%; P = 0.043), lymph node metastases (23.3 vs. 8.1%; P = 0.012), and higher mean cumulative radioiodine dosage (317.4 ± 265.0 mCi vs. 202.5 ± 217.7 mCi; P = 0.038). S616-p-DRP1 expression was negatively associated with oncocytic phenotype (0.0 vs. 26.2%; P = 0.028). CONCLUSIONS S616-p-DRP1 is a better candidate than DRP1 to identify tumors with locally invasive behavior. Prospective studies should be pursued to assess S616-p-DRP1 role as a molecular marker of malignancy in TC and in patients' risk assessment.
Collapse
Affiliation(s)
- Ana Rita Lima
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal.
- Cancer Signaling and Metabolism Group, Institute of Molecular Pathology and Immunology of the University of Porto (Ipatimup), Rua Júlio Amaral de Carvalho 45, 4200-135, Porto, Portugal.
- Faculty of Medicine of the University of Porto (FMUP), Alameda Professor Hernâni Monteiro, 4200-319, Porto, Portugal.
| | - Marcelo Correia
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- Cancer Signaling and Metabolism Group, Institute of Molecular Pathology and Immunology of the University of Porto (Ipatimup), Rua Júlio Amaral de Carvalho 45, 4200-135, Porto, Portugal
| | - Liliana Santos
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- CIBB Consortium, University of Coimbra, Coimbra, Portugal
| | - Catarina Tavares
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- Cancer Signaling and Metabolism Group, Institute of Molecular Pathology and Immunology of the University of Porto (Ipatimup), Rua Júlio Amaral de Carvalho 45, 4200-135, Porto, Portugal
| | - Elisabete Rios
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- Cancer Signaling and Metabolism Group, Institute of Molecular Pathology and Immunology of the University of Porto (Ipatimup), Rua Júlio Amaral de Carvalho 45, 4200-135, Porto, Portugal
- Faculty of Medicine of the University of Porto (FMUP), Alameda Professor Hernâni Monteiro, 4200-319, Porto, Portugal
- Department of Pathology, Faculty of Medicine of the University of Porto (FMUP), Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
- Department of Pathology, Centro Hospitalar São João, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
| | - Sule Canberk
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- Cancer Signaling and Metabolism Group, Institute of Molecular Pathology and Immunology of the University of Porto (Ipatimup), Rua Júlio Amaral de Carvalho 45, 4200-135, Porto, Portugal
- Faculty of Medicine of the University of Porto (FMUP), Alameda Professor Hernâni Monteiro, 4200-319, Porto, Portugal
- Abel Salazar Institute of Biomedical Sciences (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Paula Soares
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- Cancer Signaling and Metabolism Group, Institute of Molecular Pathology and Immunology of the University of Porto (Ipatimup), Rua Júlio Amaral de Carvalho 45, 4200-135, Porto, Portugal
- Faculty of Medicine of the University of Porto (FMUP), Alameda Professor Hernâni Monteiro, 4200-319, Porto, Portugal
- Department of Pathology, Faculty of Medicine of the University of Porto (FMUP), Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
| | - Manuel Sobrinho-Simões
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- Cancer Signaling and Metabolism Group, Institute of Molecular Pathology and Immunology of the University of Porto (Ipatimup), Rua Júlio Amaral de Carvalho 45, 4200-135, Porto, Portugal
- Department of Pathology, Faculty of Medicine of the University of Porto (FMUP), Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
- Department of Pathology, Centro Hospitalar São João, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
| | - Miguel Melo
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- Cancer Signaling and Metabolism Group, Institute of Molecular Pathology and Immunology of the University of Porto (Ipatimup), Rua Júlio Amaral de Carvalho 45, 4200-135, Porto, Portugal
- Department of Endocrinology, Diabetes and Metabolism, Centro Hospitalar e Universitário de Coimbra (CHUC), Praceta Prof. Mota Pinto, 3000-075, Coimbra, Portugal
- Faculty of Medicine of the University of Coimbra (FMUC), Rua Larga, 3004-504, Coimbra, Portugal
| | - Valdemar Máximo
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- Cancer Signaling and Metabolism Group, Institute of Molecular Pathology and Immunology of the University of Porto (Ipatimup), Rua Júlio Amaral de Carvalho 45, 4200-135, Porto, Portugal
- Faculty of Medicine of the University of Porto (FMUP), Alameda Professor Hernâni Monteiro, 4200-319, Porto, Portugal
- Department of Pathology, Faculty of Medicine of the University of Porto (FMUP), Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
| |
Collapse
|
188
|
Zhang L, Cao H, Tao H, Yang J, Gong W, Hu Q. Effect of the interference with DRP1 expression on the biological characteristics of glioma stem cells. Exp Ther Med 2021; 22:696. [PMID: 33986860 PMCID: PMC8111867 DOI: 10.3892/etm.2021.10128] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 01/28/2021] [Indexed: 12/13/2022] Open
Abstract
In the present study, a model of glioma stem cells (GSCs) was established and combined with molecular targeting drugs in order to observe its inhibitory effect on the proliferation and biological characteristics of GSCs, with the aim of providing a potential target for the treatment of glioma. On the basis of a relatively classical induction strategy with neuron induction medium, a large number of GSC-like cells in good condition and globular growth were amplified in vitro, which had the potential to differentiate into neurons, oligodendrocytes and astrocytes/glioma cells. It was observed that the interference with dynamin-related protein 1 expression using Mdivi-1, a mitochondrial mitotic inhibitor, at the optimal concentration, decreased the expression level of stem cell-associated genes, inhibited proliferation and promoted apoptosis in GSCs. The present study provided an experimental basis for a novel strategy of cancer treatment with tumor stem cells as the target.
Collapse
Affiliation(s)
- Linna Zhang
- Department of Physiology, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Huimei Cao
- Department of Physiology, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Hong Tao
- Department of Physiology, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Jijuan Yang
- Department of Physiology, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Wei Gong
- Department of Orthopedics, Ningxia People's Hospital, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Qikuan Hu
- Department of Physiology, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
- Ningxia Key Laboratory of Cerebrocranial Diseases, Basic Medical School of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| |
Collapse
|
189
|
Pascucci B, Spadaro F, Pietraforte D, Nuccio CD, Visentin S, Giglio P, Dogliotti E, D’Errico M. DRP1 Inhibition Rescues Mitochondrial Integrity and Excessive Apoptosis in CS-A Disease Cell Models. Int J Mol Sci 2021; 22:ijms22137123. [PMID: 34281194 PMCID: PMC8268695 DOI: 10.3390/ijms22137123] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 06/25/2021] [Accepted: 06/28/2021] [Indexed: 11/16/2022] Open
Abstract
Cockayne syndrome group A (CS-A) is a rare recessive progeroid disorder characterized by sun sensitivity and neurodevelopmental abnormalities. Cells derived from CS-A patients present as pathological hallmarks excessive oxidative stress, mitochondrial fragmentation and apoptosis associated with hyperactivation of the mitochondrial fission dynamin related protein 1 (DRP1). In this study, by using human cell models we further investigated the interplay between DRP1 and CSA and we determined whether pharmacological or genetic inhibition of DRP1 affects disease progression. Both reactive oxygen and nitrogen species are in excess in CS-A cells and when the mitochondrial translocation of DRP1 is inhibited a reduction of these species is observed together with a recovery of mitochondrial integrity and a significant decrease of apoptosis. This study indicates that the CSA-driven modulation of DRP1 pathway is key to control mitochondrial homeostasis and apoptosis and suggests DRP1 as a potential target in the treatment of CS patients.
Collapse
Affiliation(s)
- Barbara Pascucci
- Institute of Crystallography, Consiglio Nazionale delle Ricerche, 00015 Rome, Italy;
- Department of Environment and Health, Istituto Superiore di Sanità, 00161 Rome, Italy;
| | - Francesca Spadaro
- Core Facilities, Istituto Superiore di Sanità, 00161 Rome, Italy; (F.S.); (D.P.)
| | | | - Chiara De Nuccio
- Research Coordination and Support Service, Istituto Superiore di Sanità, 00161 Rome, Italy;
| | - Sergio Visentin
- National Center for Research and Preclinical and Clinical Evaluation of Drugs, Istituto Superiore di Sanità, 00161 Rome, Italy;
| | - Paola Giglio
- Department of Biology, Tor Vergata University, 00133 Rome, Italy;
| | - Eugenia Dogliotti
- Department of Environment and Health, Istituto Superiore di Sanità, 00161 Rome, Italy;
| | - Mariarosaria D’Errico
- Department of Environment and Health, Istituto Superiore di Sanità, 00161 Rome, Italy;
- Correspondence:
| |
Collapse
|
190
|
The role of mitochondria in cocaine addiction. Biochem J 2021; 478:749-764. [PMID: 33626141 DOI: 10.1042/bcj20200615] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 01/03/2023]
Abstract
The incidence of cocaine abuse is increasing especially in the U.K. where the rates are among the highest in Europe. In addition to its role as a psychostimulant, cocaine has profound effect on brain metabolism, impacting glycolysis and impairing oxidative phosphorylation. Cocaine exposure alters metabolic gene expression and protein networks in brain regions including the prefrontal cortex, the ventral tegmental area and the nucleus accumbens, the principal nuclei of the brain reward system. Here, we focus on how cocaine impacts mitochondrial function, in particular through alterations in electron transport chain function, reactive oxygen species (ROS) production and oxidative stress (OS), mitochondrial dynamics and mitophagy. Finally, we describe the impact of cocaine on brain energy metabolism in the developing brain following prenatal exposure. The plethora of mitochondrial functions altered following cocaine exposure suggest that therapies maintaining mitochondrial functional integrity may hold promise in mitigating cocaine pathology and addiction.
Collapse
|
191
|
Mitochondrial dynamics and reactive oxygen species initiate thrombopoiesis from mature megakaryocytes. Blood Adv 2021; 5:1706-1718. [PMID: 33720340 DOI: 10.1182/bloodadvances.2020002847] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 01/20/2021] [Indexed: 02/07/2023] Open
Abstract
Blood platelets are essential for controlling hemostasis. They are released by megakaryocytes (MKs) located in the bone marrow, upon extension of cytoplasmic protrusions into the lumen of bone marrow sinusoids. Their number increases in postpulmonary capillaries, suggesting a role for oxygen gradient in thrombopoiesis (ie, platelet biogenesis). In this study, we show that initiation of thrombopoiesis from human mature MKs was enhanced under hyperoxia or during pro-oxidant treatments, whereas antioxidants dampened it. Quenching mitochondrial reactive oxygen species (mtROS) with MitoTEMPO decreased thrombopoiesis, whereas genetically enhancing mtROS by deacetylation-null sirtuin-3 expression increased it. Blocking cytosolic ROS production by NOX inhibitors had no impact. Classification according to the cell roundness index delineated 3 stages of thrombopoiesis in mature MKs. Early-stage round MKs exhibited the highest index, which correlated with low mtROS levels, a mitochondrial tubular network, and the mitochondrial recruitment of the fission activator Drp1. Intermediate MKs at the onset of thrombopoiesis showed high mtROS levels and small, well-delineated mitochondria. Terminal MKs showed the lowest roundness index and long proplatelet extensions. Inhibiting Drp1-dependent mitochondrial fission of mature MKs by Mdivi-1 favored a tubular mitochondrial network and lowered both mtROS levels and intermediate MKs proportion, whereas enhancing Drp1 activity genetically had opposite effects. Reciprocally, quenching mtROS limited mitochondrial fission in round MKs. These data demonstrate a functional coupling between ROS and mitochondrial fission in MKs, which is crucial for the onset of thrombopoiesis. They provide new molecular cues that control initiation of platelet biogenesis and may help elucidate some unexplained thrombocytopenia.
Collapse
|
192
|
Li K, van Delft MF, Dewson G. Too much death can kill you: inhibiting intrinsic apoptosis to treat disease. EMBO J 2021; 40:e107341. [PMID: 34037273 DOI: 10.15252/embj.2020107341] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/11/2021] [Accepted: 03/18/2021] [Indexed: 02/06/2023] Open
Abstract
Apoptotic cell death is implicated in both physiological and pathological processes. Since many types of cancerous cells intrinsically evade apoptotic elimination, induction of apoptosis has become an attractive and often necessary cancer therapeutic approach. Conversely, some cells are extremely sensitive to apoptotic stimuli leading to neurodegenerative disease and immune pathologies. However, due to several challenges, pharmacological inhibition of apoptosis is still only a recently emerging strategy to combat pathological cell loss. Here, we describe several key steps in the intrinsic (mitochondrial) apoptosis pathway that represent potential targets for inhibitors in disease contexts. We also discuss the mechanisms of action, advantages and limitations of small-molecule and peptide-based inhibitors that have been developed to date. These inhibitors serve as important research tools to dissect apoptotic signalling and may foster new treatments to reduce unwanted cell loss.
Collapse
Affiliation(s)
- Kaiming Li
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Royal Parade, Melbourne, VIC, Australia
| | - Mark F van Delft
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Royal Parade, Melbourne, VIC, Australia
| | - Grant Dewson
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Royal Parade, Melbourne, VIC, Australia
| |
Collapse
|
193
|
Mdivi-1 induces spindle abnormalities and augments taxol cytotoxicity in MDA-MB-231 cells. Cell Death Discov 2021; 7:118. [PMID: 34016960 PMCID: PMC8137698 DOI: 10.1038/s41420-021-00495-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/03/2021] [Accepted: 04/23/2021] [Indexed: 01/19/2023] Open
Abstract
Taxol is a first-line chemotherapeutic for numerous cancers, including the highly refractory triple-negative breast cancer (TNBC). However, it is often associated with toxic side effects and chemoresistance in breast cancer patients, which greatly limits the clinical utility of the drug. Hence, compounds that act in concert with taxol to promote cytotoxicity may be useful to improve the efficacy of taxol-based chemotherapy. In this study, we demonstrated that mdivi-1, a putative inhibitor of mitochondrial fission protein Drp1, enhances the anticancer effects of taxol and overcomes taxol resistance in a TNBC cell line (MDA-MB-231). Not only did mdivi-1 induce mitotic spindle abnormalities and mitotic arrest when used alone, but it also enhanced taxol-induced antimitotic effects when applied in combination. In addition, mdivi-1 induced pronounced spindle abnormalities and cytotoxicity in a taxol-resistant cell line, indicating that it can overcome taxol resistance. Notably, the antimitotic effects of mdivi-1 were not accompanied by prominent morphological or functional alterations in mitochondria and were Drp1-independent. Instead, mdivi-1 exhibited affinity to tubulin at μM level, inhibited tubulin polymerization, and immediately disrupted spindle assembly when cells entered mitosis. Together, our results show that mdivi-1 associates with tubulin and impedes tubulin polymerization, actions which may underlie its antimitotic activity and its ability to enhance taxol cytotoxicity and overcome taxol resistance in MDA-MB-231 cells. Furthermore, our data imply a possibility that mdivi-1 could be useful to improve the therapeutic efficacy of taxol in breast cancer.
Collapse
|
194
|
Deng Y, Li S, Chen Z, Wang W, Geng B, Cai J. Mdivi-1, a mitochondrial fission inhibitor, reduces angiotensin-II- induced hypertension by mediating VSMC phenotypic switch. Biomed Pharmacother 2021; 140:111689. [PMID: 34004510 DOI: 10.1016/j.biopha.2021.111689] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/28/2021] [Accepted: 04/29/2021] [Indexed: 01/17/2023] Open
Abstract
Vascular smooth muscle cell (VSMC) phenotypic switch plays an essential role in the pathogenesis of hypertension. Mitochondrial dynamics, such as mitochondrial fission, can also contribute to VSMC phenotypic switch. Whether mitochondrial fission act as a novel target for anti-hypertensive drug development remains unknown. In the present study, we confirmed that angiotensin II (AngII) rapidly and continuously induced mitochondrial fission in VSMCs. We also detected the phosphorylation status of dynamin-related protein-1 (Drp1), a key protein involved in mitochondrial fission, at Ser616 site; and observed Drp1 mitochondrial translocation in VSMCs or arteries of AngII-induced hypertensive mice. The Drp1 inhibitor mitochondrial division inhibitor-1 (Mdivi-1) dramatically reversed AngII-induced Drp1 phosphorylation, mitochondrial fission, and reactive oxidative species generation. Treatment with Mdivi-1 (20 mg/kg/every other day) significantly attenuated AngII-induced hypertension (22 mmHg), arterial remodeling, and cardiac hypertrophy, in part by preventing VSMC phenotypic switch. In addition, Mdivi-1 treatment was not associated with liver or renal functional injury. Collectively, these results indicate that Mdivi-1 inhibited mitochondrial fission, recovered mitochondrial activity, and prevented AngII-induced VSMC phenotypic switch, resulting in reduced hypertension.
Collapse
Affiliation(s)
- Yue Deng
- Hypertension Center of Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shuangyue Li
- Hypertension Center of Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhenzhen Chen
- Hypertension Center of Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wenjie Wang
- Hypertension Center of Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bin Geng
- Hypertension Center of Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Jun Cai
- Hypertension Center of Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
195
|
Anzell AR, Fogo GM, Gurm Z, Raghunayakula S, Wider JM, Maheras KJ, Emaus KJ, Bryson TD, Wang M, Neumar RW, Przyklenk K, Sanderson TH. Mitochondrial fission and mitophagy are independent mechanisms regulating ischemia/reperfusion injury in primary neurons. Cell Death Dis 2021; 12:475. [PMID: 33980811 PMCID: PMC8115279 DOI: 10.1038/s41419-021-03752-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 02/03/2023]
Abstract
Mitochondrial dynamics and mitophagy are constitutive and complex systems that ensure a healthy mitochondrial network through the segregation and subsequent degradation of damaged mitochondria. Disruption of these systems can lead to mitochondrial dysfunction and has been established as a central mechanism of ischemia/reperfusion (I/R) injury. Emerging evidence suggests that mitochondrial dynamics and mitophagy are integrated systems; however, the role of this relationship in the context of I/R injury remains unclear. To investigate this concept, we utilized primary cortical neurons isolated from the novel dual-reporter mitochondrial quality control knockin mice (C57BL/6-Gt(ROSA)26Sortm1(CAG-mCherry/GFP)Ganl/J) with conditional knockout (KO) of Drp1 to investigate changes in mitochondrial dynamics and mitophagic flux during in vitro I/R injury. Mitochondrial dynamics was quantitatively measured in an unbiased manner using a machine learning mitochondrial morphology classification system, which consisted of four different classifications: network, unbranched, swollen, and punctate. Evaluation of mitochondrial morphology and mitophagic flux in primary neurons exposed to oxygen-glucose deprivation (OGD) and reoxygenation (OGD/R) revealed extensive mitochondrial fragmentation and swelling, together with a significant upregulation in mitophagic flux. Furthermore, the primary morphology of mitochondria undergoing mitophagy was classified as punctate. Colocalization using immunofluorescence as well as western blot analysis revealed that the PINK1/Parkin pathway of mitophagy was activated following OGD/R. Conditional KO of Drp1 prevented mitochondrial fragmentation and swelling following OGD/R but did not alter mitophagic flux. These data provide novel evidence that Drp1 plays a causal role in the progression of I/R injury, but mitophagy does not require Drp1-mediated mitochondrial fission.
Collapse
Affiliation(s)
- Anthony R. Anzell
- grid.214458.e0000000086837370Department of Emergency Medicine, University of Michigan Medical School, Ann Arbor, MI 48109 USA ,grid.254444.70000 0001 1456 7807Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201 USA ,grid.21925.3d0000 0004 1936 9000Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA 15269 USA
| | - Garrett M. Fogo
- grid.214458.e0000000086837370Department of Emergency Medicine, University of Michigan Medical School, Ann Arbor, MI 48109 USA ,grid.214458.e0000000086837370Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, MI 48109 USA
| | - Zoya Gurm
- grid.214458.e0000000086837370Department of Emergency Medicine, University of Michigan Medical School, Ann Arbor, MI 48109 USA ,grid.214458.e0000000086837370Frankel Cardiovascular Center, University of Michigan Medical School, Ann Arbor, MI 48109 USA
| | - Sarita Raghunayakula
- grid.214458.e0000000086837370Department of Emergency Medicine, University of Michigan Medical School, Ann Arbor, MI 48109 USA
| | - Joseph M. Wider
- grid.214458.e0000000086837370Department of Emergency Medicine, University of Michigan Medical School, Ann Arbor, MI 48109 USA
| | - Kathleen J. Maheras
- grid.214458.e0000000086837370Department of Emergency Medicine, University of Michigan Medical School, Ann Arbor, MI 48109 USA
| | - Katlynn J. Emaus
- grid.214458.e0000000086837370Department of Emergency Medicine, University of Michigan Medical School, Ann Arbor, MI 48109 USA ,grid.214458.e0000000086837370Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, MI 48109 USA
| | - Timothy D. Bryson
- grid.214458.e0000000086837370Department of Emergency Medicine, University of Michigan Medical School, Ann Arbor, MI 48109 USA ,grid.214458.e0000000086837370Frankel Cardiovascular Center, University of Michigan Medical School, Ann Arbor, MI 48109 USA
| | - Madison Wang
- grid.254444.70000 0001 1456 7807Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201 USA
| | - Robert W. Neumar
- grid.214458.e0000000086837370Department of Emergency Medicine, University of Michigan Medical School, Ann Arbor, MI 48109 USA
| | - Karin Przyklenk
- grid.254444.70000 0001 1456 7807Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201 USA
| | - Thomas H. Sanderson
- grid.214458.e0000000086837370Department of Emergency Medicine, University of Michigan Medical School, Ann Arbor, MI 48109 USA ,grid.214458.e0000000086837370Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, MI 48109 USA ,grid.214458.e0000000086837370Frankel Cardiovascular Center, University of Michigan Medical School, Ann Arbor, MI 48109 USA ,grid.214458.e0000000086837370Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109 USA
| |
Collapse
|
196
|
Tang C, Cai J, Yin XM, Weinberg JM, Venkatachalam MA, Dong Z. Mitochondrial quality control in kidney injury and repair. Nat Rev Nephrol 2021; 17:299-318. [PMID: 33235391 PMCID: PMC8958893 DOI: 10.1038/s41581-020-00369-0] [Citation(s) in RCA: 245] [Impact Index Per Article: 81.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2020] [Indexed: 01/30/2023]
Abstract
Mitochondria are essential for the activity, function and viability of eukaryotic cells and mitochondrial dysfunction is involved in the pathogenesis of acute kidney injury (AKI) and chronic kidney disease, as well as in abnormal kidney repair after AKI. Multiple quality control mechanisms, including antioxidant defence, protein quality control, mitochondrial DNA repair, mitochondrial dynamics, mitophagy and mitochondrial biogenesis, have evolved to preserve mitochondrial homeostasis under physiological and pathological conditions. Loss of these mechanisms may induce mitochondrial damage and dysfunction, leading to cell death, tissue injury and, potentially, organ failure. Accumulating evidence suggests a role of disturbances in mitochondrial quality control in the pathogenesis of AKI, incomplete or maladaptive kidney repair and chronic kidney disease. Moreover, specific interventions that target mitochondrial quality control mechanisms to preserve and restore mitochondrial function have emerged as promising therapeutic strategies to prevent and treat kidney injury and accelerate kidney repair. However, clinical translation of these findings is challenging owing to potential adverse effects, unclear mechanisms of action and a lack of knowledge of the specific roles and regulation of mitochondrial quality control mechanisms in kidney resident and circulating cell types during injury and repair of the kidney.
Collapse
Affiliation(s)
- Chengyuan Tang
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital at Central South University, Changsha, China
| | - Juan Cai
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital at Central South University, Changsha, China
| | - Xiao-Ming Yin
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Joel M. Weinberg
- Department of Medicine, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Manjeri A. Venkatachalam
- Department of Pathology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Zheng Dong
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital at Central South University, Changsha, China.,Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood VA Medical Center, Augusta, GA, USA.,
| |
Collapse
|
197
|
Salman M, Kaushik P, Tabassum H, Parvez S. Melatonin Provides Neuroprotection Following Traumatic Brain Injury-Promoted Mitochondrial Perturbation in Wistar Rat. Cell Mol Neurobiol 2021; 41:765-781. [PMID: 32468441 DOI: 10.1007/s10571-020-00884-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 05/19/2020] [Indexed: 12/20/2022]
Abstract
Excessive mitochondrial fission has been implicated in the etiology of neuronal cell death in traumatic brain injury (TBI). In the present study, we examined the efficacy of melatonin (Mel) as a neuroprotective agent against TBI-induced oxidative damage and mitochondrial dysfunction. We assessed the impact of Mel post-treatment (10 mg/kg b.wt., i.p.) at different time intervals in TBI-subjected Wistar rats. We found that the Mel treatment significantly attenuated brain edema, oxidative damage, mitochondrial fission, and promoted mitochondrial fusion. Additionally, Mel-treated rats showed restoration of mitochondrial membrane potential and oxidative phosphorylation with a concomitant reduction in cytochrome-c release. Further, Mel treatment significantly inhibited the translocation of Bax and Drp1 proteins to mitochondria in TBI-subjected rats. The restorative role of Mel treatment in TBI rats was supported by the mitochondrial ultra-structural analysis, which showed activation of mitochondrial fusion mechanism. Mel enhanced mitochondrial biogenesis by upregulation of PGC-1α protein. Our results demonstrated the remedial role of Mel in ameliorating mitochondrial dysfunctions that are modulated in TBI-subjected rats and provided support for mitochondrial-mediated neuroprotection as a putative therapeutic agent in the brain trauma.
Collapse
Affiliation(s)
- Mohd Salman
- Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Pooja Kaushik
- Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Heena Tabassum
- Division of Basic Medical Sciences, Indian Council of Medical Research, Ministry of Health and Family Welfare, Government of India, V. Ramalingaswamy Bhawan, P.O. Box No. 4911, New Delhi, 110029, India
| | - Suhel Parvez
- Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India.
| |
Collapse
|
198
|
Genovese I, Carinci M, Modesti L, Aguiari G, Pinton P, Giorgi C. Mitochondria: Insights into Crucial Features to Overcome Cancer Chemoresistance. Int J Mol Sci 2021; 22:ijms22094770. [PMID: 33946271 PMCID: PMC8124268 DOI: 10.3390/ijms22094770] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 04/22/2021] [Accepted: 04/27/2021] [Indexed: 02/06/2023] Open
Abstract
Mitochondria are key regulators of cell survival and are involved in a plethora of mechanisms, such as metabolism, Ca2+ signaling, reactive oxygen species (ROS) production, mitophagy and mitochondrial transfer, fusion, and fission (known as mitochondrial dynamics). The tuning of these processes in pathophysiological conditions is fundamental to the balance between cell death and survival. Indeed, ROS overproduction and mitochondrial Ca2+ overload are linked to the induction of apoptosis, while the impairment of mitochondrial dynamics and metabolism can have a double-faceted role in the decision between cell survival and death. Tumorigenesis involves an intricate series of cellular impairments not yet completely clarified, and a further level of complexity is added by the onset of apoptosis resistance mechanisms in cancer cells. In the majority of cases, cancer relapse or lack of responsiveness is related to the emergence of chemoresistance, which may be due to the cooperation of several cellular protection mechanisms, often mitochondria-related. With this review, we aim to critically report the current evidence on the relationship between mitochondria and cancer chemoresistance with a particular focus on the involvement of mitochondrial dynamics, mitochondrial Ca2+ signaling, oxidative stress, and metabolism to possibly identify new approaches or targets for overcoming cancer resistance.
Collapse
Affiliation(s)
- Ilaria Genovese
- Department of Medical Sciences, Section of Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy; (I.G.); (M.C.); (L.M.); (P.P.)
| | - Marianna Carinci
- Department of Medical Sciences, Section of Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy; (I.G.); (M.C.); (L.M.); (P.P.)
| | - Lorenzo Modesti
- Department of Medical Sciences, Section of Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy; (I.G.); (M.C.); (L.M.); (P.P.)
| | - Gianluca Aguiari
- Department of Neuroscience and Rehabilitation, Section of Biochemistry, Molecular Biology and Genetics, University of Ferrara, 44121 Ferrara, Italy;
| | - Paolo Pinton
- Department of Medical Sciences, Section of Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy; (I.G.); (M.C.); (L.M.); (P.P.)
| | - Carlotta Giorgi
- Department of Medical Sciences, Section of Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy; (I.G.); (M.C.); (L.M.); (P.P.)
- Correspondence:
| |
Collapse
|
199
|
Clayton SA, MacDonald L, Kurowska-Stolarska M, Clark AR. Mitochondria as Key Players in the Pathogenesis and Treatment of Rheumatoid Arthritis. Front Immunol 2021; 12:673916. [PMID: 33995417 PMCID: PMC8118696 DOI: 10.3389/fimmu.2021.673916] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/12/2021] [Indexed: 12/22/2022] Open
Abstract
Mitochondria are major energy-producing organelles that have central roles in cellular metabolism. They also act as important signalling hubs, and their dynamic regulation in response to stress signals helps to dictate the stress response of the cell. Rheumatoid arthritis is an inflammatory and autoimmune disease with high prevalence and complex aetiology. Mitochondrial activity affects differentiation, activation and survival of immune and non-immune cells that contribute to the pathogenesis of this disease. This review outlines what is known about the role of mitochondria in rheumatoid arthritis pathogenesis, and how current and future therapeutic strategies can function through modulation of mitochondrial activity. We also highlight areas of this topic that warrant further study. As producers of energy and of metabolites such as succinate and citrate, mitochondria help to shape the inflammatory phenotype of leukocytes during disease. Mitochondrial components can directly stimulate immune receptors by acting as damage-associated molecular patterns, which could represent an initiating factor for the development of sterile inflammation. Mitochondria are also an important source of intracellular reactive oxygen species, and facilitate the activation of the NLRP3 inflammasome, which produces cytokines linked to disease symptoms in rheumatoid arthritis. The fact that mitochondria contain their own genetic material renders them susceptible to mutation, which can propagate their dysfunction and immunostimulatory potential. Several drugs currently used for the treatment of rheumatoid arthritis regulate mitochondrial function either directly or indirectly. These actions contribute to their immunomodulatory functions, but can also lead to adverse effects. Metabolic and mitochondrial pathways are attractive targets for future anti-rheumatic drugs, however many questions still remain about the precise role of mitochondrial activity in different cell types in rheumatoid arthritis.
Collapse
Affiliation(s)
- Sally A Clayton
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom.,Research into Inflammatory Arthritis Centre Versus Arthritis (RACE), Birmingham, United Kingdom
| | - Lucy MacDonald
- Research into Inflammatory Arthritis Centre Versus Arthritis (RACE), Glasgow, United Kingdom.,Institute of Infection, Immunity, and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Mariola Kurowska-Stolarska
- Research into Inflammatory Arthritis Centre Versus Arthritis (RACE), Glasgow, United Kingdom.,Institute of Infection, Immunity, and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Andrew R Clark
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom.,Research into Inflammatory Arthritis Centre Versus Arthritis (RACE), Birmingham, United Kingdom
| |
Collapse
|
200
|
Yako T, Nakamura M, Nakamura S, Hara H, Shimazawa M. Pharmacological inhibition of mitochondrial fission attenuates oxidative stress-induced damage of retinal pigmented epithelial cells. J Pharmacol Sci 2021; 146:149-159. [PMID: 34030797 DOI: 10.1016/j.jphs.2021.03.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 03/15/2021] [Accepted: 04/01/2021] [Indexed: 02/06/2023] Open
Abstract
Mitochondria maintain their function by the process of mitochondrial dynamics, which involves repeated fusion and fission. It is thought that the failure of mitochondrial dynamics, especially excessive fission, is related to the progression of several diseases. A previous study demonstrated that mitochondrial fragmentation occurs in the retinal pigmented epithelial (RPE) cells of patients with non-exudative age-related macular degeneration (AMD). We predicted that the suppression of mitochondrial fragmentation offers a novel therapeutic strategy for non-exudative AMD. We investigated whether the inhibition of mitochondrial fission was effective against the oxidative stress-induced damage of ARPE-19 cells. The treatment of ARPE-19 cells with H2O2 caused mitochondrial fragmentation, but treatment with mitochondrial division inhibitor 1 (Mdivi-1) suppressed fragmentation. Additionally, Mdivi-1 protected ARPE-19 cells against H2O2-induced damage, and suppressed the release of cytochrome c from the mitochondria. Mitochondrial function was evaluated by staining with JC-1 and measuring the production of reactive oxygen species (ROS), which revealed that mitochondrial function improved in the Mdivi-1-treated group. These findings indicated that the inhibition of mitochondrial fission would be a novel therapeutic target for non-exudative AMD.
Collapse
Affiliation(s)
- Tomohiro Yako
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Maho Nakamura
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Shinsuke Nakamura
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Hideaki Hara
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Masamitsu Shimazawa
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan.
| |
Collapse
|