151
|
Amesho KTT, Chinglenthoiba C, Samsudin MSAB, Lani MN, Pandey A, Desa MNM, Suresh V. Microplastics in the environment: An urgent need for coordinated waste management policies and strategies. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 344:118713. [PMID: 37567004 DOI: 10.1016/j.jenvman.2023.118713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/11/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023]
Abstract
Microplastics (MPs) have become a prevalent environmental concern, exerting detrimental effects on marine and terrestrial ecosystems, as well as human health. Addressing this urgent issue necessitates the implementation of coordinated waste management policies and strategies. In this study, we present a comprehensive review focusing on key results and the underlying mechanisms associated with microplastics. We examine their sources and pathways, elucidate their ecological and human health impacts, and evaluate the current state of waste management policies. By drawing upon recent research and pertinent case studies, we propose a range of practical solutions, encompassing enhanced recycling and waste reduction measures, product redesign, and innovative technological interventions. Moreover, we emphasize the imperative for collaboration and cooperation across sectors and jurisdictions to effectively tackle this pressing environmental challenge. The findings of this study contribute to the broader understanding of microplastics and provide valuable insights for policymakers, researchers, and stakeholders alike.
Collapse
Affiliation(s)
- Kassian T T Amesho
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan; Center for Emerging Contaminants Research, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan; The International University of Management, Centre for Environmental Studies, Main Campus, Dorado Park Ext 1, Windhoek, Namibia; Destinies Biomass Energy and Farming Pty Ltd, P.O. Box 7387, Swakopmund, Namibia.
| | - Chingakham Chinglenthoiba
- School of Materials Science and Engineering, National Institute of Technology Calicut, Kozhikode, India; Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
| | - Mohd S A B Samsudin
- Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Microplastic Research Interest Group (MRIG), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Mohd Nizam Lani
- Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Microplastic Research Interest Group (MRIG), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia.
| | - Ashutosh Pandey
- Institute for Water and Wastewater Technology, Durban University of Technology, 19 Steve Biko Road, Durban 4000, South Africa; Department of Biotechnology, Faculty of Life Science and Technology, AKS University, Satna, Madhya Pradesh, 485001, India.
| | - Mohd Nasir Mohd Desa
- Halal Products Research Institute, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia; Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia
| | - Valiyaveettil Suresh
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore.
| |
Collapse
|
152
|
An Q, Zhou T, Wen C, Yan C. The effects of microplastics on heavy metals bioavailability in soils: a meta-analysis. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132369. [PMID: 37634382 DOI: 10.1016/j.jhazmat.2023.132369] [Citation(s) in RCA: 38] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/15/2023] [Accepted: 08/20/2023] [Indexed: 08/29/2023]
Abstract
The combined pollution of heavy metals and microplastics is common in natural soil environments. Here, we collected 790 data sets from 39 studies to investigate the effects of microplastics on heavy metal bioavailability. The results showed that microplastics could increase the bioavailability of Cu, Pb, Cd, Fe, and Mn. The heavy metal bioavailability was positively correlated with microplastic size, soil sand concentration, and exposure time, but negatively correlated with soil pH and organic matter. The bioavailability of heavy metals can be promoted by microplastics of all shapes. Hydrolysable microplastics, which contain N, might have less influence. Furthermore, the size of microplastics and soil organic matter were positively correlated with the acid-soluble and reducible fractions of heavy metals, while the microplastic concentration, soil pH, and exposure time were positively correlated with the oxidizable fractions of heavy metals. The interaction detector results indicated that there was an interaction between microplastic characteristics, especially polymer types, and soil physicochemical indexes on the bioavailability of heavy metals. These findings suggested that long-term combined pollution of microplastics and heavy metals might increase heavy metal bioavailability in soils, thereby extending their migratory and hazardous range and bringing further risks to the environment and public health safety.
Collapse
Affiliation(s)
- Qiuying An
- Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tong Zhou
- Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ce Wen
- Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Changzhou Yan
- Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| |
Collapse
|
153
|
Lee J, Jeong S. Approach to an answer to "How dangerous microplastics are to the human body": A systematic review of the quantification of MPs and simultaneously exposed chemicals. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132404. [PMID: 37672992 DOI: 10.1016/j.jhazmat.2023.132404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/08/2023] [Accepted: 08/24/2023] [Indexed: 09/08/2023]
Abstract
This review aims to facilitate future research on microplastics (MPs) in the environment using systematic and analytical protocols, ultimately contributing to assessment of the risk to human health due to continuous daily exposure to MPs. Despite extensive studies on MP abundance in environment, identification, and treatment, their negative effects on human health remain unknown due to the lack of proof from clinical studies and limited technology on the MP identification. To assess the risk of MPs to human health, the first step is to estimate MP intake via ingestion, inhalation, and dermal contact under standardized exposure conditions in daily life. Furthermore, rather than focusing on the sole MPs, migrating chemicals from plastic products should be quantified and their health risk be assessed concurrently with MP release. The critical factors influencing MP release and simultaneously exposed chemicals (SECs) must be investigated using a standardized identification method. This review summarises release sources, factors, and possible routes of MPs from the environment to the human body, and the quantification methods used in risk assessment. We also discussed the issues encountered in MP release and SEC migration. Consequently, this review provides directions for future MP studies that can answer questions about MP toxicity to human health.
Collapse
Affiliation(s)
- Jieun Lee
- Institute for Environment and Energy, Pusan National University, Busan 46241, South Korea
| | - Sanghyun Jeong
- Department of Environmental Engineering, Pusan National University, Busan 46241, South Korea.
| |
Collapse
|
154
|
Zantis LJ, Rombach A, Adamczyk S, Velmala SM, Adamczyk B, Vijver MG, Peijnenburg W, Bosker T. Species-dependent responses of crop plants to polystyrene microplastics. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 335:122243. [PMID: 37482341 DOI: 10.1016/j.envpol.2023.122243] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/29/2023] [Accepted: 07/20/2023] [Indexed: 07/25/2023]
Abstract
Only recently there has been a strong focus on the impacts of microplastics on terrestrial crop plants. This study aims to examine and compare the effects of microplastics on two monocotyledonous (barley, Hordeum vulgare and wheat, Triticum aestivum), and two dicotyledonous (carrot, Daucus carota and lettuce, Lactuca sativa) plant species through two complimentary experiments. First, we investigated the effects of low, medium, and high (103, 105, 107 particles per mL) concentrations of 500 nm polystyrene microplastics (PS-MPs) on seed germination and early development. We found species-dependent effects on the early development, with microplastics only significantly affecting lettuce and carrot. When acutely exposed during germination, PS-MPs significantly delayed the germination of lettuce by 24%, as well as promoted the shoot growth of carrot by 71% and decreased its biomass by 26%. No effect was recorded on monocot species. Secondly, we performed a chronic (21 d) hydroponic experiment on lettuce and wheat. We observed that PS-MPs significantly reduced the shoot growth of lettuce by up to 35% and increased its biomass by up to 64%, while no record was reported on wheat. In addition, stress level indicators and defence mechanisms were significantly up-regulated in both lettuce and wheat seedlings. Overall, this study shows that PS-MPs affect plant development: impacts were recorded on both germination and growth for dicots, and responses identified by biochemical markers of stress were increased in both lettuce and wheat. This highlights species-dependent effects as the four crops were grown under identical conditions to allow direct comparison. For future research, our study emphasizes the need to focus on crop specific effects, while also working towards knowledge of plastic-induced impacts at environmentally relevant conditions.
Collapse
Affiliation(s)
- Laura J Zantis
- Institute of Environmental Sciences, Leiden University, P.O. Box 9518, 2300, RA Leiden, the Netherlands.
| | - Annebelle Rombach
- Institute of Environmental Sciences, Leiden University, P.O. Box 9518, 2300, RA Leiden, the Netherlands.
| | - Sylwia Adamczyk
- Natural Resources Institute Finland (Luke), Latokartanonkaari 9, FI-00790, Helsinki, Finland.
| | - Sannakajsa M Velmala
- Natural Resources Institute Finland (Luke), Latokartanonkaari 9, FI-00790, Helsinki, Finland.
| | - Bartosz Adamczyk
- Natural Resources Institute Finland (Luke), Latokartanonkaari 9, FI-00790, Helsinki, Finland.
| | - Martina G Vijver
- Institute of Environmental Sciences, Leiden University, P.O. Box 9518, 2300, RA Leiden, the Netherlands.
| | - Willie Peijnenburg
- Institute of Environmental Sciences, Leiden University, P.O. Box 9518, 2300, RA Leiden, the Netherlands; National Institute of Public Health and the Environment (RIVM), Center for Safety of Substances and Products, P.O. Box 1, Bilthoven, the Netherlands.
| | - Thijs Bosker
- Institute of Environmental Sciences, Leiden University, P.O. Box 9518, 2300, RA Leiden, the Netherlands; Leiden University College, Leiden University, P.O. Box 13228, 2501 EE, The Hague, the Netherlands.
| |
Collapse
|
155
|
Kim K, Song IG, Yoon H, Park JW. Sub-micron microplastics affect nitrogen cycling by altering microbial abundance and activities in a soil-legume system. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132504. [PMID: 37703725 DOI: 10.1016/j.jhazmat.2023.132504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/25/2023] [Accepted: 09/05/2023] [Indexed: 09/15/2023]
Abstract
Recently, the environmental and agricultural impact of plastic waste has attracted considerable attention. Here, we investigated the impact of sub-micron polyethylene (PE) and polypropylene (PP) microplastics (MPs) on nitrogen cycling, with emphasis on bacterial abundance and diversity in a soil-soybean (Glycine max) system. Exposure to soil containing MPs (50 and 500 mg kg-1) did not affect soybean growth, but significantly increased plant nitrogen uptake, which was confirmed by increased activities of nitrogenase in the soil and glutamine synthetase in soybean root. Additionally, there was an increase in 16S gene copy number and carbon and nitrogen substrate utilization, indicating increased abundance and activity of rhizosphere microbial communities. Moreover, MP contamination affected the taxonomic profile of rhizosphere bacteria, especially the abundance of symbiotic and free-living bacteria involved in nitrogen cycling. Furthermore, qPCR analysis of nitrogen-related genes and Kyoto Encyclopedia of Genes and Genomes analysis of 16S rRNA gene sequencing data revealed an increased abundance of functional genes associated with nitrogen fixation and nitrification. However, the concentration and polymer type of MPs did not have a significant impact in our system. Overall, these results provide insights into the interactions between MPs and rhizosphere bacterial communities in the soil-legume system.
Collapse
Affiliation(s)
- Kanghee Kim
- Environmental Exposure & Toxicology Research Center, Korea Institute of Toxicology, 17, Jegok-gil, Jinju 52834, Republic of Korea; Human and Environmental Toxicology Program, University of Science and Technology, 217, Gajeong-ro, Daejeon 34113, Republic of Korea
| | - In-Gyu Song
- Environmental Exposure & Toxicology Research Center, Korea Institute of Toxicology, 17, Jegok-gil, Jinju 52834, Republic of Korea
| | - Hakwon Yoon
- Environmental Exposure & Toxicology Research Center, Korea Institute of Toxicology, 17, Jegok-gil, Jinju 52834, Republic of Korea.
| | - June-Woo Park
- Environmental Exposure & Toxicology Research Center, Korea Institute of Toxicology, 17, Jegok-gil, Jinju 52834, Republic of Korea; Human and Environmental Toxicology Program, University of Science and Technology, 217, Gajeong-ro, Daejeon 34113, Republic of Korea.
| |
Collapse
|
156
|
Kwon BG. Aquatic toxicity and fate of styrene oligomers in the environment. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 265:115462. [PMID: 37738771 DOI: 10.1016/j.ecoenv.2023.115462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 09/05/2023] [Accepted: 09/07/2023] [Indexed: 09/24/2023]
Abstract
Styrene oligomers (SOs) are ubiquitous contaminants that appear in the environment, sometimes to significant extent (see section 3.1). Despite the ongoing international debate on the human health risks posed by SOs, to the best of my knowledge, there are no studies on the aquatic toxicity and environmental fates (biodegradation and atmospheric degradation) of SOs in the environment. This study is to predict the aquatic toxicity and environmental fate of SOs by using the US EPA EPI suite program as an in-silico method. For better understanding, the risks and fates of SOs are compared with those of the well-known bisphenol A (BPA) and styrene monomer (SM or styrene). As a result of this study, SOs are predicted to be relatively more toxic than BPA and SM to aquatic and terrestrial organisms in the freshwater, marine, and terrestrial environments. In particular, the biodegradability of SOs is predicted to be relatively very slow in the environment, and most SOs are more likely to be effectively decomposed by hydroxyl radicals than by ozone in the atmosphere. As a result, this study can contribute to motivating understanding of the aquatic toxicity and fate of ubiquitous SOs in the environment.
Collapse
Affiliation(s)
- Bum Gun Kwon
- Department of Bioenvironmental and Chemical Engineering, Chosun College of Science and Technology, 309-1 Pilmundae-ro, Dong-gu, Gwangju 61453, Republic of Korea.
| |
Collapse
|
157
|
Li X, Zhao Y, Pu Q, He W, Yang H, Hou J, Li Y. Microplastics in cultivated soil environment: Construction of toxicity grading evaluation system, development of priority control checklist, and toxicity mechanism analysis. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132046. [PMID: 37467609 DOI: 10.1016/j.jhazmat.2023.132046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/05/2023] [Accepted: 07/10/2023] [Indexed: 07/21/2023]
Abstract
The present study aimed to comprehensively evaluate the toxicological effects of microplastics (MPs) on cultivated soil quality. Based on improved G1 evaluation method, we first constructed a grading evaluation system comprising of the indicators of toxicological effects of cultivated soil quality under MPs exposure, while focusing on types of MPs that had significant/non-significant toxicity effects. Furthermore, we verified reliability of screening results of significance-links at each level, using several data processing methods. Then, using natural breakpoint classification method, a priority control checklist of toxicological effects of 18 types of MPs on cultivated soil was developed to determine the types of MPs having significant toxicity risks and cultivated soil quality links significantly affected by the toxicity of MPs exposure. Finally, quantum-mechanics/molecular-mechanics (QM/MM) methods were used to carry out the differential toxicity mechanism analysis. The results showed that MPs with higher non-polar surface area may lead to stronger toxicity effect to the cultivated soil quality. Notably, the MPs that have abundant binding sites enhance the binding affinity, and less polar MPs bind more strongly to the non-polar amino acids of target receptors. Our study provides a new theoretical perspective for multi-dimensional analysis toxicological effects of different MPs exposure on cultivated soil quality.
Collapse
Affiliation(s)
- Xinao Li
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China; MOE Key Laboratory of Resources and Environmental System Optimization, North China Electric Power University, Beijing 102206, China
| | - Yuanyuan Zhao
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China; MOE Key Laboratory of Resources and Environmental System Optimization, North China Electric Power University, Beijing 102206, China
| | - Qikun Pu
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China; MOE Key Laboratory of Resources and Environmental System Optimization, North China Electric Power University, Beijing 102206, China
| | - Wei He
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China; MOE Key Laboratory of Resources and Environmental System Optimization, North China Electric Power University, Beijing 102206, China
| | - Hao Yang
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China; MOE Key Laboratory of Resources and Environmental System Optimization, North China Electric Power University, Beijing 102206, China
| | - Jing Hou
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China; MOE Key Laboratory of Resources and Environmental System Optimization, North China Electric Power University, Beijing 102206, China.
| | - Yu Li
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China; MOE Key Laboratory of Resources and Environmental System Optimization, North China Electric Power University, Beijing 102206, China
| |
Collapse
|
158
|
Liu H, Jiao Q, Pan T, Liu W, Li S, Zhu X, Zhang T. Aging behavior of biodegradable polylactic acid microplastics accelerated by UV/H 2O 2 processes. CHEMOSPHERE 2023; 337:139360. [PMID: 37392793 DOI: 10.1016/j.chemosphere.2023.139360] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/25/2023] [Accepted: 06/26/2023] [Indexed: 07/03/2023]
Abstract
The usage of biodegradable plastics is expanding annually due to worldwide plastic limits, resulting in a substantial number of microplastics (MPs) particles formed from biodegradable plastic products entering the aquatic environment. Until now, the environmental behaviors of these plastic product-derived MPs (PPDMPs) have remained unclear. In this work, commercially available polylactic acid (PLA) straws and PLA food bags were used to evaluate the dynamic aging process and environmental behavior of PLA PPDMPs under UV/H2O2 conditions. By combining scanning electron microscopy, two-dimensional (2D) Fourier transform infrared correlation spectroscopy (COS) and X-ray photoelectron spectroscopy, it was determined that the aging process of the PLA PPDMPs was slower than that of pure MPs. The 2D-COS analysis revealed that the response orders for the functional groups on the PLA MPs differed during the aging process. The results demonstrated that the oxygen-containing functional groups of the PLA PPDMPs were the first to react. Subsequently, the -C-H and -C-C- structural responses began, and the polymer backbone was ruptured by the aging process. However, the aging of the pure-PLA MPs started with a brief oxidation process and then breakage of the polymer backbones, followed by continuous oxidation. Moreover, compared to the PLA PPDMPs, the pure-PLA MPs exhibited a greater adsorption capacity, which was increased by 88% after aging, whereas those of the two PPDMPs only increased by 64% and 56%, respectively. This work provides new insights into the behaviors of biodegradable PLA MPs in aquatic environments, which is critical for assessing the environmental risks and management policies for degradable MPs.
Collapse
Affiliation(s)
- Hang Liu
- Department of Environmental Science and Engineering, Research Centre for Resource and Environment, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Qingxin Jiao
- Department of Environmental Science and Engineering, Research Centre for Resource and Environment, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Ting Pan
- Department of Environmental Science and Engineering, Research Centre for Resource and Environment, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Weiyi Liu
- Department of Environmental Science and Engineering, Research Centre for Resource and Environment, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Shangyi Li
- Department of Environmental Science and Engineering, Research Centre for Resource and Environment, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Xiaobiao Zhu
- Department of Environmental Science and Engineering, Research Centre for Resource and Environment, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China.
| | - Tingting Zhang
- Department of Environmental Science and Engineering, Research Centre for Resource and Environment, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China.
| |
Collapse
|
159
|
Bostan N, Ilyas N, Akhtar N, Mehmood S, Saman RU, Sayyed RZ, Shatid AA, Alfaifi MY, Elbehairi SEI, Pandiaraj S. Toxicity assessment of microplastic (MPs); a threat to the ecosystem. ENVIRONMENTAL RESEARCH 2023; 234:116523. [PMID: 37422115 DOI: 10.1016/j.envres.2023.116523] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/14/2023] [Accepted: 06/27/2023] [Indexed: 07/10/2023]
Abstract
Plastic is now considered part and parcel of daily life due to its extensive usage. Microplastic (MP) pollution is becoming a growing worry and has been ranked as the second most critical scientific problem in the realm of ecology and the environment. Microplastics are smaller in size than the plastic and are more harmful to biotic and as well as abiotic environments. The toxicity of microplastic depends upon its shape and size and increases with an increase in its adsorption capacity and their toxicity. The reason behind their harmful nature is their small size and their large surface area-to-volume ratio. Microplastic can get inside fruits, vegetables, seeds, roots, culms, and leaves. Hence microplastic enters into the food chain. There are different entry points for microplastic to enter into the food chain. Such sources can include polluted food, beverages, spices, plastic toys, and household (packing, cooking, etc.). The concentration of microplastic in terrestrial environments is increasing day by day. Microplastic causes the destruction of soil structure; destroys soil microbiota, cause depletion of nutrients in the soil, and their absorption by plants decreases plant growth. Apart from other environmental problems caused by microplastic, human health is also badly affected by microplastic pollution present in the terrestrial environment. The presence of microplastics in the human body has been confirmed. Microplastic enters into the body of humans in different possible ways. According to their way of entering the body, microplastics cause different diseases in humans. MPs also cause negative effects on the human endocrine system. At the ecosystem level, the impacts of microplastic are interconnected and can disrupt ecological processes. Although recently different papers have been published on several aspects of the microplastic present in the terrestrial environment but there is no complete overview that focus on the interrelationship of MPs in plants, and soil and their effect on higher animals like a human. This review provides a completely detailed overview of existing knowledge about sources, occurrences, transport, and effects of microplastic on the food chain and soil quality and their ecotoxicological effects on plants and humans.
Collapse
Affiliation(s)
- Nageen Bostan
- Department of Botany, PMAS Arid Agriculture University Rawalpindi, 46300, Pakistan.
| | - Noshin Ilyas
- Department of Botany, PMAS Arid Agriculture University Rawalpindi, 46300, Pakistan.
| | - Nosheen Akhtar
- Department of Botany, PMAS Arid Agriculture University Rawalpindi, 46300, Pakistan.
| | - Sabiha Mehmood
- Department of Botany, PMAS Arid Agriculture University Rawalpindi, 46300, Pakistan.
| | - Rafia Urooj Saman
- Department of Botany University of Agriculture Faisalabad, Pakistan.
| | - R Z Sayyed
- Faculty of Health and Life Sciences, INTI International University, 71800, Nilai, Negeri Sembilan, Malaysia.
| | - Ali A Shatid
- Biology Department, Faculty of Science, King Khalid University, Abha, 9004, Saudi Arabia.
| | - Mohammad Y Alfaifi
- Biology Department, Faculty of Science, King Khalid University, Abha, 9004, Saudi Arabia.
| | | | - Saravanan Pandiaraj
- Department of Self-Development Skills, King Saud University, Riyadh, 11451, Saudi Arabia.
| |
Collapse
|
160
|
Ivy N, Bhattacharya S, Dey S, Gupta K, Dey A, Sharma P. Effects of microplastics and arsenic on plants: Interactions, toxicity and environmental implications. CHEMOSPHERE 2023; 338:139542. [PMID: 37474031 DOI: 10.1016/j.chemosphere.2023.139542] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 06/25/2023] [Accepted: 07/15/2023] [Indexed: 07/22/2023]
Abstract
Microplastics are emerging pollutants that are ubiquitously present in environment. Occurrence and dispersion of microplastics in the soil can pose a considerable risk to soil health and biodiversity, including the plants grown in the soil. Uptake and bioaccumulation of microplastics can have detrimental effects on different plant species. Additionally, the co-presence of microplastics and arsenic can cause synergistic, antagonistic, or potentiating toxic impacts on plants. However, limited studies are available on the combined effects of microplastics and arsenic on plants. This paper elucidates both the individual and synergistic effects of microplastics and arsenic on plants. At the outset, the paper highlighted the presence and degradation of microplastics in soil. Subsequently, the interactions between microplastics and plants, accumulation, and influences of microplastics on plant growth and metabolism were explained with underlying mechanisms. Combined effects of microplastics and arsenic on plant growth, metabolism, and toxicity were discussed thereafter. Combined toxic effects of microplastics and arsenic on plants can have detrimental implications on environment, ecosystems and biodiversity. Further investigations on food chain and human health are needed in the context of microplastic-arsenic interactions.
Collapse
Affiliation(s)
- Nishita Ivy
- School of Ecology and Environment Studies, Nalanda University, Rajgir, Bihar, India
| | - Sayan Bhattacharya
- School of Ecology and Environment Studies, Nalanda University, Rajgir, Bihar, India.
| | - Satarupa Dey
- Department of Botany, Shyampur Siddheswari Mahavidyalaya, Howrah, West Bengal, India
| | - Kaushik Gupta
- Belur High School (H.S.), Howrah, West Bengal, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata, West Bengal, India
| | | |
Collapse
|
161
|
Palansooriya KN, Sang MK, El-Naggar A, Shi L, Chang SX, Sung J, Zhang W, Ok YS. Low-density polyethylene microplastics alter chemical properties and microbial communities in agricultural soil. Sci Rep 2023; 13:16276. [PMID: 37770500 PMCID: PMC10539289 DOI: 10.1038/s41598-023-42285-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 09/07/2023] [Indexed: 09/30/2023] Open
Abstract
Microplastic (MP) pollution in agricultural soils, resulting from the use of plastic mulch, compost, and sewage sludge, jeopardizes the soil microbial populations. However, the effects of MPs on soil chemical properties and microbial communities remain largely unknown. Here, we investigated the effects of different concentration levels (0, 0.1, 1, 3, 5, and 7%; w:w) of low-density polyethylene (LDPE) MPs on the chemical properties and bacterial communities of agricultural soil in an incubation study. The addition of LDPE MPs did not drastically change soil pH (ranging from 8.22 to 8.42). Electrical conductivity increased significantly when the LDPE MP concentrations were between 1 and 7%, whereas the total exchangeable cations (Na+, K+, Mg2+, and Ca2+) decreased significantly at higher LDPE MP concentrations (3-7%). The highest available phosphorus content (2.13 mg kg-1) was observed in 0.1% LDPE MP. Bacterial richness (Chao1 and Ace indices) was the lowest at 0.1% LDPE MP, and diversity indices (Shannon and Invsimpson) were higher at 0 and 1% LDPE MP than at other concentrations. The effect of LDPE MP concentrations on bacterial phyla remained unchanged, but the bacterial abundance varied. The relative abundance of Proteobacteria (25.8-33.0%) was the highest in all treatments. The abundance of Acidobacteria (15.8-17.2%) was also high, particularly in the 0, 0.1, and 1% LDPE MPs. With the increase in LDPE MP concentration, the abundance of Actinobacteria gradually increased from 7.80 to 31.8%. Our findings suggest that different MP concentration levels considerably alter soil chemical properties and microbial composition, which may potentially change the ecological functions of soil ecosystems.
Collapse
Affiliation(s)
- Kumuduni Niroshika Palansooriya
- Korea Biochar Research Center, APRU Sustainable Waste Management Program & Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
- Department of Renewable Resources, University of Alberta, Edmonton, AB, T6G 2E3, Canada
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China
| | - Mee Kyung Sang
- Division of Agricultural Microbiology, Rural Development Administration, National Institute of Agricultural Science, Wanju, 55365, Republic of Korea
| | - Ali El-Naggar
- Department of Soil Sciences, Faculty of Agriculture, Ain Shams University, Cairo, 11241, Egypt
| | - Liang Shi
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Scott X Chang
- Department of Renewable Resources, University of Alberta, Edmonton, AB, T6G 2E3, Canada
| | - Jwakyung Sung
- Department of Crop Science, College of Agriculture, Life Science and Environmental Chemistry, Chungbuk National University, Cheongju, 28644, Chungcheongbuk-Do, Republic of Korea
| | - Wei Zhang
- Korea Biochar Research Center, APRU Sustainable Waste Management Program & Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea.
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China.
| | - Yong Sik Ok
- Korea Biochar Research Center, APRU Sustainable Waste Management Program & Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea.
- Institute of Green Manufacturing Technology, College of Engineering, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
162
|
García-Sobrino R, Cortés A, Calderón-Villajos R, Díaz JG, Muñoz M. Novel and Accessible Physical Recycling for Expanded Polystyrene Waste with the Use of Acetone as a Solvent and Additive Manufacturing (Direct Ink-Write 3D Printing). Polymers (Basel) 2023; 15:3888. [PMID: 37835938 PMCID: PMC10575267 DOI: 10.3390/polym15193888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 10/15/2023] Open
Abstract
The current high production of plastics has prompted the exploration of alternative pathways to facilitate recycling, aiming for a progressively sustainable society. This paper presents an alternative and affordable technology for treating waste expanded polystyrene (EPS) mixed with acetone in a 100:1 volume ratio to be used as 3D printing ink for Direct Ink Write technology. In order to optimize the printing parameters, a comprehensive study was conducted, evaluating different needle diameters, printing speeds, and bed temperature values to achieve homogenous pieces and a highly repeatable 3D printing process. Results showed that the main optimum printing parameters were using needles with diameters of 14 to 16 G and printing speeds ranging from 2 to 12 mm/s, which were found to yield the most uniform ribbons. Increasing the bed temperature, despite favoring acetone evaporation, led to the generation of more heterogeneous structures due to void growth inside the printed ribbons. Thus, employing room temperature for the bed proved to be the optimal value. Lastly, a comparative study between the starting material and the EPS after the printing process was conducted using FTIR-ATR and GPC analyses, ensuring the preservation of the original polymer's integrity during physical recycling.
Collapse
Affiliation(s)
- Rubén García-Sobrino
- Department of Applied Mathematics, Materials Science and Engineering and Electronic Technology, Universidad Rey Juan Carlos, Calle Tulipán s/n, 28933 Móstoles, Spain; (R.G.-S.)
| | - Alejandro Cortés
- Department of Applied Mathematics, Materials Science and Engineering and Electronic Technology, Universidad Rey Juan Carlos, Calle Tulipán s/n, 28933 Móstoles, Spain; (R.G.-S.)
| | - Rocío Calderón-Villajos
- Department of Applied Mathematics, Materials Science and Engineering and Electronic Technology, Universidad Rey Juan Carlos, Calle Tulipán s/n, 28933 Móstoles, Spain; (R.G.-S.)
| | - Jorge G. Díaz
- School of Mechanical Engineering, Industrial University of Santander, Bucaramanga 680002, Colombia;
| | - Marta Muñoz
- Department of Applied Mathematics, Materials Science and Engineering and Electronic Technology, Universidad Rey Juan Carlos, Calle Tulipán s/n, 28933 Móstoles, Spain; (R.G.-S.)
| |
Collapse
|
163
|
Wang Y, Qian X, Chen J, Yuan X, Zhu N, Chen Y, Fan T, Li M, Toland H, Feng Z. Co-exposure of polystyrene microplastics influence cadmium trophic transfer along the "lettuce-snail" food chain: Focus on leaf age and the chemical fractionations of Cd in lettuce. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 892:164799. [PMID: 37302614 DOI: 10.1016/j.scitotenv.2023.164799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/25/2023] [Accepted: 06/08/2023] [Indexed: 06/13/2023]
Abstract
Cadmium (Cd) and polystyrene microplastics (PS) co-contamination always occurs in environment; however, the trophic transfer of Cd and PS is still poorly understood. A hydroponic experiment was conducted to investigate the behavior of Cd in lettuce, together with the root or foliar exposure of different sized PS. Accumulation and chemical form distributions of Cd in leaves were distinguished into young and mature leaves. Subsequently, a 14-day snail feeding experiment was performed. Data showed that Cd accumulation in roots, rather than in leaves, are significantly affected by PS coexistence. However, mature leaves had a higher Cd content than young leaves under the root exposure of PS, while a reverse effect was observed in the foliar exposure. There existed a positive correlation between the food-chain transfer associated Cd (CdFi+Fii+Fiii) in mature leaves and Cd content in snail soft tissue (r = 0.705, p < 0.001), but not in young leaves. Though no bio-amplification of Cd in food chain was observed, an increase of Cd transfer factor (TF) from lettuce to snail was noted in the root exposure of 5 μm PS and the foliar exposure of 0.2 μm PS. Moreover, we observed a highest increase rate of 36.8 % in TF values from lettuce to snail viscera, and a chronic inflammatory response in snail stomach tissue. Therefore, more attentions should be paid to study the ecological risks of heavy metals and microplastics co-contamination in environment.
Collapse
Affiliation(s)
- Yimin Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Xinyue Qian
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Juan Chen
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Xuyin Yuan
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Ningyuan Zhu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China.
| | - Yudong Chen
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of China, Nanjing 210042, PR China
| | - Tingting Fan
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of China, Nanjing 210042, PR China
| | - Ming Li
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of China, Nanjing 210042, PR China
| | - Harry Toland
- Geography & Earth Sciences, Aberystwyth University, Llandinam Building, Penglais Campus, Aberystwyth, Wales SY23 3DB, United Kingdom
| | - Zhiwang Feng
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| |
Collapse
|
164
|
Abstract
Plastic pollution and climate change are two major environmental focuses. Having the forming potential due to ambient plastic pollution, the environmental fate of microplastics shall be inevitably impacted by global warming. This manuscript discusses the destiny of environmental microplastics and characterizes their fate considering the framework of the planetary boundary. The major routes for microplastic discharge include the release of microplastic stored in the ice into the sea when the ice melts as a result of global temperature increase, flushing of the plastic/microplastic debris from the shorelines into the adjacent water bodies as a result of increased rainfall, redistribution of the microplastics away from the source of plastic debris as a result of increased wind, and accumulation of microplastics in the soil as a result of drought. A perspective on the impact of climate change and microplastic pollution on aquatic and soil organisms was discussed as well.
Collapse
Affiliation(s)
- Fatima Haque
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, Taiwan
| | - Chihhao Fan
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
165
|
Wang Y, Zhao Y, Liang H, Ma C, Cui N, Cao H, Wei W, Liu Y. Single and combined effects of polyethylene microplastics and acetochlor on accumulation and intestinal toxicity of zebrafish (Danio rerio). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 333:122089. [PMID: 37364755 DOI: 10.1016/j.envpol.2023.122089] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/15/2023] [Accepted: 06/20/2023] [Indexed: 06/28/2023]
Abstract
The co-exposure of microplastics (MPs) and other contaminants has aroused extensive attention, but the combined impacts of MPs and pesticides remain poorly understood. Acetochlor (ACT), a widely used chloroacetamide herbicide, has raised concerns for its potential bio-adverse effects. This study evaluated the influences of polyethylene microplastics (PE-MPs) for acute toxicity, bioaccumulation, and intestinal toxicity in zebrafish to ACT. We found that PE-MPs significantly enhanced ACT acute toxicity. Also, PE-MPs increased the accumulation of ACT in zebrafish and aggravate the oxidative stress damage of ACT in intestines. Exposure to PE-MPs or/and ACT causes mild damage to the gut tissue of zebrafish and altered gut microbial composition. In terms of gene transcription, ACT exposure triggered a significant increase in inflammatory response-related gene expressions in the intestines, while some pro-inflammatory factors were found to be inhibited by PE-MPs. This study provides a new perspective on the fate of MPs in the environment and on the assessment of the combined effects of MPs and pesticides on organisms.
Collapse
Affiliation(s)
- Yang Wang
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010030, China
| | - Yuexing Zhao
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010030, China
| | - Hongwu Liang
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010030, China.
| | - Chaofan Ma
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010030, China
| | - Naqi Cui
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010030, China
| | - Huihui Cao
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010030, China
| | - Wei Wei
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010030, China
| | - Yu Liu
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010030, China
| |
Collapse
|
166
|
Astel AM, Piskuła P. Application of Pattern Recognition and Computer Vision Tools to Improve the Morphological Analysis of Microplastic Items in Biological Samples. TOXICS 2023; 11:779. [PMID: 37755788 PMCID: PMC10537546 DOI: 10.3390/toxics11090779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 08/25/2023] [Accepted: 09/11/2023] [Indexed: 09/28/2023]
Abstract
Since, in many routine analytical laboratories, a stereomicroscope coupled with a digital camera is not equipped with advanced software enabling automatic detection of features of observed objects, in the present study, a procedure of feature detection using open-source software was proposed and validated. Within the framework of applying microscopic expertise coupled with image analysis, a set of digital images of microplastic (MP) items identified in organs of fish was used to determine shape descriptors (such as length, width, item area, etc.). The edge points required to compute shape characteristics were set manually in digital images acquired by the camera coupled with a binocular, and respective values were computed via the use of built-in MotiConnect software. As an alternative, a new approach consisting of digital image thresholding, binarization, the use of connected-component labeling, and the computation of shape descriptors on a pixel level via using the functions available in an OpenCV library or self-written in C++ was proposed. Overall, 74.4% of the images were suitable for thresholding without any additional pretreatment. A significant correlation was obtained between the shape descriptors computed by the software and computed using the proposed approach. The range of correlation coefficients at a very high level of significance, according to the pair of correlated measures, was higher than 0.69. The length of fibers can be satisfactorily approximated using a value of half the length of the outer perimeter (r higher than 0.75). Compactness and circularity significantly differ for particles and fibers.
Collapse
Affiliation(s)
- Aleksander Maria Astel
- Environmental Chemistry Research Unit, Institute of Geography, Pomeranian University in Słupsk, 22a Arciszewskiego Str., 76-200 Słupsk, Poland;
| | | |
Collapse
|
167
|
Malafeev KV, Apicella A, Incarnato L, Scarfato P. Understanding the Impact of Biodegradable Microplastics on Living Organisms Entering the Food Chain: A Review. Polymers (Basel) 2023; 15:3680. [PMID: 37765534 PMCID: PMC10534621 DOI: 10.3390/polym15183680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/02/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Microplastics (MPs) pollution has emerged as one of the world's most serious environmental issues, with harmful consequences for ecosystems and human health. One proposed solution to their accumulation in the environment is the replacement of nondegradable plastics with biodegradable ones. However, due to the lack of true biodegradability in some ecosystems, they also give rise to biodegradable microplastics (BioMPs) that negatively impact different ecosystems and living organisms. This review summarizes the current literature on the impact of BioMPs on some organisms-higher plants and fish-relevant to the food chain. Concerning the higher plants, the adverse effects of BioMPs on seed germination, plant biomass growth, penetration of nutrients through roots, oxidative stress, and changes in soil properties, all leading to reduced agricultural yield, have been critically discussed. Concerning fish, it emerged that BioMPs are more likely to be ingested than nonbiodegradable ones and accumulate in the animal's body, leading to impaired skeletal development, oxidative stress, and behavioral changes. Therefore, based on the reviewed pioneering literature, biodegradable plastics seem to be a new threat to environmental health rather than an effective solution to counteract MP pollution, even if serious knowledge gaps in this field highlight the need for additional rigorous investigations to understand the potential risks associated to BioMPs.
Collapse
Affiliation(s)
| | - Annalisa Apicella
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II n. 132, 84084 Fisciano, SA, Italy; (K.V.M.); (L.I.); (P.S.)
| | | | | |
Collapse
|
168
|
Tran TV, Jalil AA, Nguyen TM, Nguyen TTT, Nabgan W, Nguyen DTC. A review on the occurrence, analytical methods, and impact of microplastics in the environment. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 102:104248. [PMID: 37598982 DOI: 10.1016/j.etap.2023.104248] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/08/2023] [Accepted: 08/15/2023] [Indexed: 08/22/2023]
Abstract
Nowadays, microplastic pollution is one of the globally urgent concerns as a result of discharging plastic products into the atmosphere, aquatic and soil environments. Microplastics have average size of less than 5 mm, are non-biodegradable, accumulative, and highly persistent substances. Thousands of tons of microplastics are still accumulated in various environments, posing an enormous threat to human health and living creatures. Here, we review the occurrence and analytical methods, and impact of microplastics in the environments including soil, aquatic media, and atmosphere. Analytical methods including visual observation, Fourier-transform infrared spectroscopy, Raman spectroscopy, scanning electron microscopy, and pyrolysis-gas chromatography-mass spectrometry were evaluated. We elucidated the environmental and human health impacts of microplastics with emphasis on life malfunction, immune disruption, neurotoxicity, diseases and other tangible health risks. This review also found some shortages of analytical equivalence and/or standardization, inconsistence in sampling collection and limited knowledge of microplastic toxicity. It is hopeful that the present work not only affords a more insight into the potential dangers of microplastics on human health but also urges future researches to establish new standardizations in analytical methods.
Collapse
Affiliation(s)
- Thuan Van Tran
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Vietnam; NTT Hi-Tech Institute, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Vietnam.
| | - A A Jalil
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia; Centre of Hydrogen Energy, Institute of Future Energy, 81310 UTM Johor Bahru, Johor, Malaysia
| | - Tung M Nguyen
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Vietnam; NTT Hi-Tech Institute, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Vietnam
| | - Thuy Thi Thanh Nguyen
- Faculty of Science, Nong Lam University, Thu Duc District, Ho Chi Minh City 700000, Vietnam
| | - Walid Nabgan
- Departament d'Enginyeria Química, Universitat Rovira i Virgili, Av Països Catalans 26, 43007 Tarragona, Spain.
| | - Duyen Thi Cam Nguyen
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Vietnam; NTT Hi-Tech Institute, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Vietnam.
| |
Collapse
|
169
|
Lin YD, Huang PH, Chen YW, Hsieh CW, Tain YL, Lee BH, Hou CY, Shih MK. Sources, Degradation, Ingestion and Effects of Microplastics on Humans: A Review. TOXICS 2023; 11:747. [PMID: 37755757 PMCID: PMC10534390 DOI: 10.3390/toxics11090747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/24/2023] [Accepted: 08/30/2023] [Indexed: 09/28/2023]
Abstract
Celluloid, the predecessor to plastic, was synthesized in 1869, and due to technological advancements, plastic products appear to be ubiquitous in daily life. The massive production, rampant usage, and inadequate disposal of plastic products have led to severe environmental pollution. Consequently, reducing the employment of plastic has emerged as a pressing concern for governments globally. This review explores microplastics, including their origins, absorption, and harmful effects on the environment and humans. Several methods exist for breaking down plastics, including thermal, mechanical, light, catalytic, and biological processes. Despite these methods, microplastics (MPs, between 1 and 5 mm in size) continue to be produced during degradation. Acknowledging the significant threat that MPs pose to the environment and human health is imperative. This form of pollution is pervasive in the air and food and infiltrates our bodies through ingestion, inhalation, or skin contact. It is essential to assess the potential hazards that MPs can introduce. There is evidence suggesting that MPs may have negative impacts on different areas of human health. These include the respiratory, gastrointestinal, immune, nervous, and reproductive systems, the liver and organs, the skin, and even the placenta and placental barrier. It is encouraging to see that most of the countries have taken steps to regulate plastic particles. These measures aim to reduce plastic usage, which is essential today. At the same time, this review summarizes the degradation mechanism of plastics, their impact on human health, and plastic reduction policies worldwide. It provides valuable information for future research on MPs and regulatory development.
Collapse
Affiliation(s)
- Yan-Duan Lin
- Department of Seafood Science, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan; (Y.-D.L.); (C.-Y.H.)
| | - Ping-Hsiu Huang
- School of Food, Jiangsu Food and Pharmaceutical Science College, No.4, Meicheng Road, Higher Education Park, Huai’an 223003, China;
| | - Yu-Wei Chen
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan; (Y.-W.C.); (C.-W.H.)
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan;
| | - Chang-Wei Hsieh
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan; (Y.-W.C.); (C.-W.H.)
- Department of Medical Research, China Medical University Hospital, Taichung 40447, Taiwan
| | - You-Lin Tain
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan;
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 33305, Taiwan
| | - Bao-Hong Lee
- Department of Horticulture, National Chiayi University, Chiayi 60004, Taiwan;
| | - Chih-Yao Hou
- Department of Seafood Science, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan; (Y.-D.L.); (C.-Y.H.)
| | - Ming-Kuei Shih
- Graduate Institute of Food Culture and Innovation, National Kaohsiung University of Hospitality and Tourism, Kaohsiung 812301, Taiwan
| |
Collapse
|
170
|
Daghighi E, Shah T, Chia RW, Lee JY, Shang J, Rodríguez-Seijo A. The forgotten impacts of plastic contamination on terrestrial micro- and mesofauna: A call for research. ENVIRONMENTAL RESEARCH 2023; 231:116227. [PMID: 37244494 DOI: 10.1016/j.envres.2023.116227] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/16/2023] [Accepted: 05/22/2023] [Indexed: 05/29/2023]
Abstract
Microplastics (MP) and nanoplastics (NP) contamination of the terrestrial environment is a growing concern worldwide and is thought to impact soil biota, particularly the micro and mesofauna community, by various processes that may contribute to global change in terrestrial systems. Soils act as a long-term sink for MP, accumulating these contaminants and increasing their adverse impacts on soil ecosystems. Consequently, the whole terrestrial ecosystem is impacted by microplastic pollution, which also threatens human health by their potential transfer to the soil food web. In general, the ingestion of MP in different concentrations by soil micro and mesofauna can adversely affect their development and reproduction, impacting terrestrial ecosystems. MP in soil moves horizontally and vertically because of the movement of soil organisms and the disturbance caused by plants. However, the effects of MP on terrestrial micro-and mesofauna are largely overlooked. Here, we give the most recent information on the forgotten impacts of MP contamination of soil on microfauna and mesofauna communities (protists, tardigrades, soil rotifers, nematodes, collembola and mites). More than 50 studies focused on the impact of MP on these organisms between 1990 and 2022 have been reviewed. In general, plastic pollution does not directly affect the survival of organisms, except under co-contaminated plastics that can increase adverse effects (e.g. tire-tread particles on springtails). Besides, they can have adverse effects at oxidative stress and reduced reproduction (protists, nematodes, potworms, springtails or mites). It was observed that micro and mesofauna could act as passive plastic transporters, as shown for springtails or mites. Finally, this review discusses how soil micro- and mesofauna play a key role in facilitating the (bio-)degradation and movement of MP and NP through soil systems and, therefore, the potential transfer to soil depths. More research should be focused on plastic mixtures, community level and long-term experiments.
Collapse
Affiliation(s)
- Elaheh Daghighi
- BetterSoil e. V., Lise-Meitner-Straße 9, D-89081, Ulm, Germany
| | - Tufail Shah
- College of Land Science and Technology, China Agricultural University, Beijing, 100193, China
| | - R W Chia
- Department of Geology, Kangwon National University, Chuncheon, 24341, Republic of Korea; Research Institute for Earth Resources, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Jin-Yong Lee
- Department of Geology, Kangwon National University, Chuncheon, 24341, Republic of Korea; Research Institute for Earth Resources, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Jianying Shang
- College of Land Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Andrés Rodríguez-Seijo
- Área de Edafoloxía e Química Agrícola, Departamento de Bioloxía Vexetal e Ciencia Do Solo, Facultade de Ciencias de Ourense, Universidade de Vigo, As Lagoas S/n, Ourense, 32004, Spain; Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Terminal de Cruzeiros Do Porto de Leixões, Av. General Norton de Matos S/n, 4450-208, Matosinhos, Portugal.
| |
Collapse
|
171
|
Li X, Wu H, Gong J, Li Q, Li Z, Zhang J. Improvement of biodegradation of PET microplastics with whole-cell biocatalyst by interface activation reinforcement. ENVIRONMENTAL TECHNOLOGY 2023; 44:3121-3130. [PMID: 35293270 DOI: 10.1080/09593330.2022.2052359] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 02/17/2022] [Indexed: 06/14/2023]
Abstract
Polyethylene terephthalate (PET) is an important basic polymer, which was used widely in variety of fields. Due to its high crystallinity, compact structure and strong surface hydrophobicity, PET has prominent resistance to biodegradation. In recent years, microplastics, especially polyethylene terephthalate (PET) microplastics, was considered as serious threaten to ecosystems. In this study, alkali-resistant bacteria were used as whole-cell catalysts to try to improve the biodegradation of PET microplastics by increasing the bio-interfacial activity of the polymer substrate. Surfactants were applicated to enhance interfacial activation of enzyme and PET interactions. And an integrated strategy was constructed based on alkali resistant bacteria to catalysis the hydrolysis of PET. The results showed that Tween 20 had the most obvious promoting effect among the four interfacial biocatalysts on biological-chemical combined hydrolysis of PET microplastics with whole-cell biocatalysts in alkaline environment. Obvious etching and fracture were observed on the PET fibre surface after biodegradation in presence of surfactant. The weight loss rate of PET substrate can reach 11.04% after 5 days of biodegradation. Thus, this research provides a promising method for efficient degradation of PET microplastics.
Collapse
Affiliation(s)
- Xin Li
- Key Laboratory for Advanced Textile Composites of the Education Ministry, School of Textile Science and Engineering, Tiangong University, Tianjin, People's Republic of China
- Collaborative Innovation Center for Eco-Textiles of Shandong Province, Qingdao, People's Republic of China
| | - Haodong Wu
- Key Laboratory for Advanced Textile Composites of the Education Ministry, School of Textile Science and Engineering, Tiangong University, Tianjin, People's Republic of China
- Collaborative Innovation Center for Eco-Textiles of Shandong Province, Qingdao, People's Republic of China
| | - Jixian Gong
- Key Laboratory for Advanced Textile Composites of the Education Ministry, School of Textile Science and Engineering, Tiangong University, Tianjin, People's Republic of China
- Collaborative Innovation Center for Eco-Textiles of Shandong Province, Qingdao, People's Republic of China
| | - Qiujin Li
- Key Laboratory for Advanced Textile Composites of the Education Ministry, School of Textile Science and Engineering, Tiangong University, Tianjin, People's Republic of China
- Collaborative Innovation Center for Eco-Textiles of Shandong Province, Qingdao, People's Republic of China
| | - Zheng Li
- Key Laboratory for Advanced Textile Composites of the Education Ministry, School of Textile Science and Engineering, Tiangong University, Tianjin, People's Republic of China
- Collaborative Innovation Center for Eco-Textiles of Shandong Province, Qingdao, People's Republic of China
| | - Jianfei Zhang
- Key Laboratory for Advanced Textile Composites of the Education Ministry, School of Textile Science and Engineering, Tiangong University, Tianjin, People's Republic of China
- Collaborative Innovation Center for Eco-Textiles of Shandong Province, Qingdao, People's Republic of China
- National Manufacturing Innovation Center of Advanced Dyeing and Finishing Technology, Tai'an, People's Republic of China
| |
Collapse
|
172
|
Li Z, Zeng X, Sun F, Feng T, Xu Y, Li Z, Wu J, Wang-Pruski G, Zhang Z. Physiological analysis and transcriptome profiling reveals the impact of microplastic on melon (Cucumis melo L.) seed germination and seedling growth. JOURNAL OF PLANT PHYSIOLOGY 2023; 287:154039. [PMID: 37329743 DOI: 10.1016/j.jplph.2023.154039] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 06/08/2023] [Accepted: 06/11/2023] [Indexed: 06/19/2023]
Abstract
The wide application of agricultural plastics leads to microplastic (MP) accumulation in the soil and inevitably result in MP pollution. Melon is an economically important horticultural crop that is widely cultivated with plastic film mulching. However, the impact of MP pollution on plant growth remains largely unclear. Here we reported the morphological, physiological, biochemical responses and transcriptome re-programing of melon responses to MP on seed germination and seedling growth. Polyvinyl chloride particles were added to potting mix to simulate MP exposure environment (MEE). The results showed that low and medium concentrations (1-4 g kg-1) of MEE had a significant adverse effect on seed germination and seedling growth. In both cases, the germination potential was decreased, young root forks increased, and tips decreased; and the dry weight of seedlings, the total length, surface area, forks and tips of root were also decreased. However, the root activity was increased. The concentration of MEE to give the best parameters was at 2 g kg-1. Catalase enzymatic activity and reactive oxygen species (ROS) in roots were decreased continuously with increased MEE concentrations. The peak values of peroxidase activity, O2.- content and generation rate, ROS enrichment and malondialdehyde content all reached the highest at 2 g kg-1. MEE also increased the proline content and decreased the contents of ascorbic acid, soluble sugar and soluble protein in these seedlings. Medium and high concentrations of MEE (4-8 g kg-1) also increased the chlorophyll b content. Low concentrations MEE (1-2 g kg-1) inhibited actual photochemical efficiency of photosystem II and photochemical quenching, two key chlorophyll fluorescence parameters. Transcriptome analysis showed that the differentially expressed genes caused by the MEE were mainly belonged to defense response, signal transduction, hormone metabolism, plant-pathogen interaction, and phenylpropanoid biosynthesis. The results of this study will help to understand the ecotoxicological effects of MEE on melons and provide data for ecological risk assessment of Cucurbitaceae vegetable cultivation.
Collapse
Affiliation(s)
- Zhiying Li
- Joint FAFU-Dalhousie Lab, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiaolei Zeng
- Joint FAFU-Dalhousie Lab, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Fenghang Sun
- Joint FAFU-Dalhousie Lab, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Taojie Feng
- Joint FAFU-Dalhousie Lab, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Fujian Yongan Vegetable Science and Technology Backyard, Sanming, 366000, China
| | - Yuxuan Xu
- Joint FAFU-Dalhousie Lab, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Fujian Yongan Vegetable Science and Technology Backyard, Sanming, 366000, China
| | - Zewei Li
- Joint FAFU-Dalhousie Lab, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jinghua Wu
- Joint FAFU-Dalhousie Lab, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Gefu Wang-Pruski
- Joint FAFU-Dalhousie Lab, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS, B2N 5E3, Canada
| | - Zhizhong Zhang
- Joint FAFU-Dalhousie Lab, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Fujian Yongan Vegetable Science and Technology Backyard, Sanming, 366000, China.
| |
Collapse
|
173
|
Zhao S, Zhang J. Microplastics in soils during the COVID-19 pandemic: Sources, migration and transformations, and remediation technologies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 883:163700. [PMID: 37105487 PMCID: PMC10125914 DOI: 10.1016/j.scitotenv.2023.163700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/26/2023] [Accepted: 04/19/2023] [Indexed: 05/03/2023]
Abstract
The COVID-19 pandemic has led to a notable upsurge of 5-10 % in global plastic production, which could have potential implications on the soil quality through increased microplastics (MPs) content. The elevated levels of MPs in the soil poses a significant threat to both the environment and human health, hence necessitating the remediation of MPs in the environment. Despite the significant attention given to MPs remediation in aqueous environments, less consideration has been given to MPs remediation in the soil. Consequently, this review highlights the major sources of MPs in the soil, their migration and transformation behaviors during the COVID-19 pandemic, and emphasizes the importance of utilizing remediation technologies such as phytoremediation, thermal treatment, microbial degradation, and photodegradation for MPs in the soil. Furthermore, this review provides a prospective outlook on potential future remediation methods for MPs in the soil. Although the COVID-19 pandemic is nearing its end, the long-term impact of MPs on the soil remains, making this review a valuable reference for the remediation of MPs in the post-pandemic soil.
Collapse
Affiliation(s)
- Shan Zhao
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China; College of Civil Engineering, Tongji University, Shanghai 200092, China.
| | - Jian Zhang
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China
| |
Collapse
|
174
|
Barili S, Bernetti A, Sannino C, Montegiove N, Calzoni E, Cesaretti A, Pinchuk I, Pezzolla D, Turchetti B, Buzzini P, Emiliani C, Gigliotti G. Impact of PVC microplastics on soil chemical and microbiological parameters. ENVIRONMENTAL RESEARCH 2023; 229:115891. [PMID: 37059323 DOI: 10.1016/j.envres.2023.115891] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 03/15/2023] [Accepted: 04/11/2023] [Indexed: 05/21/2023]
Abstract
Microplastics (MPs) are emerging pollutants whose occurrence is a global problem in natural ecosystems including soil. Among MPs, polyvinyl chloride (PVC) is a well-known polymer with remarkable resistance to degradation, and because its recalcitrant nature serious environmental concerns are created during manufacturing and waste disposal. The effect of PVC (0.021% w/w) on chemical and microbial parameters of an agricultural soil was tested by a microcosm experiment at different incubation times (from 3 to 360 days). Among chemical parameters, soil CO2 emission, fluorescein diacetate (FDA) activity, total organic C (TOC), total N, water extractable organic C (WEOC), water extractable N (WEN) and SUVA254 were considered, while the structure of soil microbial communities was studied at different taxonomic levels (phylum and genus) by sequencing bacterial 16S and fungal ITS2 rDNA (Illumina MiSeq). Although some fluctuations were found, chemical and microbiological parameters exhibited some significant trends. Significant (p < 0.05) variations of soil CO2 emission, FDA hydrolysis, TOC, WEOC and WEN were found in PVC-treated soils over different incubation times. Considering the structure of soil microbial communities, the presence of PVC significantly (p < 0.05) affected the abundances of specific bacterial and fungal taxa: Candidatus_Saccharibacteria, Proteobacteria, Actinobacteria, Acidobacteria and Bacteroides among bacteria, and Basidiomycota, Mortierellomycota and Ascomycota among fungi. After one year of experiment, a reduction of the number and the dimensions of PVC was detected supposing a possible role of microorganisms on PVC degradation. The abundance of both bacterial and fungal taxa at phylum and genus level was also affected by PVC, suggesting that the impact of this polymer could be taxa-dependent.
Collapse
Affiliation(s)
- Sofia Barili
- Department of Civil and Environmental Engineering, University of Perugia, Italy
| | - Alessandro Bernetti
- Department of Agricultural, Food and Environmental Science, University of Perugia, Italy
| | - Ciro Sannino
- Department of Agricultural, Food and Environmental Science, University of Perugia, Italy.
| | - Nicolò Montegiove
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Italy
| | - Eleonora Calzoni
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Italy
| | - Alessio Cesaretti
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Italy
| | - Irina Pinchuk
- Department of Agricultural, Food and Environmental Science, University of Perugia, Italy
| | - Daniela Pezzolla
- Department of Civil and Environmental Engineering, University of Perugia, Italy
| | - Benedetta Turchetti
- Department of Agricultural, Food and Environmental Science, University of Perugia, Italy
| | - Pietro Buzzini
- Department of Agricultural, Food and Environmental Science, University of Perugia, Italy
| | - Carla Emiliani
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Italy
| | - Giovanni Gigliotti
- Department of Civil and Environmental Engineering, University of Perugia, Italy
| |
Collapse
|
175
|
Kedzierski M, Cirederf-Boulant D, Palazot M, Yvin M, Bruzaud S. Continents of plastics: An estimate of the stock of microplastics in agricultural soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 880:163294. [PMID: 37028674 DOI: 10.1016/j.scitotenv.2023.163294] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/28/2023] [Accepted: 04/01/2023] [Indexed: 05/27/2023]
Abstract
While there are estimates of the stock of microplastics in the marine environment, there are no estimates for soils. The main objective of this work is to estimate the total mass of microplastics in global agricultural soils. Microplastic abundance data from 442 sampling sites were collected from 43 articles. From these, the median of the abundance values, as well as the abundance profile of microplastics in soils were calculated. Thus, 1.5 to 6.6 Mt of microplastics would be present in soils on a global scale, i.e. one to two orders of magnitude higher than the estimated ocean surface microplastic stock. However, many limitations exist to accurately calculate these stocks. This work should therefore be considered as a first step in addressing this question. In the long term, in order to better assess this stock, it seems important to obtain more diversified data, e.g. better representing certain countries, or certain land uses.
Collapse
Affiliation(s)
- Mikaël Kedzierski
- Université Bretagne Sud, UMR CNRS 6027, IRDL, F-56100 Lorient, France.
| | | | - Maialen Palazot
- Université Bretagne Sud, UMR CNRS 6027, IRDL, F-56100 Lorient, France
| | - Marion Yvin
- Université Bretagne Sud, UMR CNRS 6027, IRDL, F-56100 Lorient, France
| | - Stéphane Bruzaud
- Université Bretagne Sud, UMR CNRS 6027, IRDL, F-56100 Lorient, France
| |
Collapse
|
176
|
Ji M, Giangeri G, Yu F, Sessa F, Liu C, Sang W, Canu P, Li F, Treu L, Campanaro S. An integrated metagenomic model to uncover the cooperation between microbes and magnetic biochar during microplastics degradation in paddy soil. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131950. [PMID: 37421863 DOI: 10.1016/j.jhazmat.2023.131950] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 06/20/2023] [Accepted: 06/25/2023] [Indexed: 07/10/2023]
Abstract
The free radicals released from the advanced oxidation processes can enhance microplastics degradation, however, the existence of microbes acting synergistically in this process is still uncertain. In this study, magnetic biochar was used to initiate the advanced oxidation process in flooded soil. paddy soil was contaminated with polyethylene and polyvinyl chloride microplastics in a long-term incubation experiment, and subsequently subjected to bioremediation with biochar or magnetic biochar. After incubation, the total organic matter present in the samples containing polyvinyl chloride or polyethylene, and treated with magnetic biochar, significantly increased compared to the control. In the same samples there was an accumulation of "UVA humic" and "protein/phenol-like" substances. The integrated metagenomic investigation revealed that the relative abundance of some key genes involved in fatty acids degradation and in dehalogenation changed in different treatments. Results from genome-centric investigation suggest that a Nocardioides species can cooperate with magnetic biochar in the degradation of microplastics. In addition, a species assigned to the Rhizobium taxon was identified as a candidate in the dehalogenation and in the benzoate metabolism. Overall, our results suggest that cooperation between magnetic biochar and some microbial species involved in microplastic degradation is relevant in determining the fate of microplastics in soil.
Collapse
Affiliation(s)
- Mengyuan Ji
- Department of Biology, University of Padova, Via U. Bassi 58/b, 35121 Padova, Italy
| | - Ginevra Giangeri
- Department of Biology, University of Padova, Via U. Bassi 58/b, 35121 Padova, Italy
| | - Fengbo Yu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Filippo Sessa
- Department of Industrial Engineering, University of Padova, Via Marzolo 9, 35131 Padova, Italy
| | - Chao Liu
- Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Wenjing Sang
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Paolo Canu
- Department of Industrial Engineering, University of Padova, Via Marzolo 9, 35131 Padova, Italy
| | - Fangbai Li
- Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Laura Treu
- Department of Biology, University of Padova, Via U. Bassi 58/b, 35121 Padova, Italy
| | - Stefano Campanaro
- Department of Biology, University of Padova, Via U. Bassi 58/b, 35121 Padova, Italy.
| |
Collapse
|
177
|
Qiu Y, Zhou S, Zhang C, Qin W, Lv C, Zou M. Identification of potentially contaminated areas of soil microplastic based on machine learning: A case study in Taihu Lake region, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 877:162891. [PMID: 36940748 DOI: 10.1016/j.scitotenv.2023.162891] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/10/2023] [Accepted: 03/12/2023] [Indexed: 05/06/2023]
Abstract
Soil microplastic (MP) pollution has recently become increasingly aggravated, with severe consequences being generated. Understanding the spatial distribution characteristics of soil MPs is an important prerequisite for protecting and controlling soil pollution. However, determining the spatial distribution of soil MPs through a large number of soil field sampling and laboratory test analyses is unrealistic. In this study, we compared the accuracy and applicability of different machine learning models for predicting the spatial distribution of soil MPs. The support vector machine regression model with radial basis function (RBF) as kernel function (SVR-RBF) has a high prediction accuracy (R2 = 0.8934). Among the six ensemble models, random forest (R2 = 0.9007) could better explain the significance of source and sink factors affecting the occurrence of soil MPs. Soil texture, population density, and MPs point of interest (MPs-POI) were the main source-sink factors affecting the occurrence of soil MPs. Furthermore, the accumulation of MPs in soil was significantly affected by human activity. The spatial distribution map of soil MP pollution in the study area was drawn based on the bivariate local Moran's I model of soil MP pollution and the normalized difference vegetation index (NDVI) variation trend. A total of 48.74 km2 of soil was in an area of serious MP pollution, mainly concentrated in urban soil. This study provides a hybrid framework that includes spatial distribution prediction of MPs, source-sink analysis, and pollution risk area identification, providing scientific and systematic methods and techniques for pollution management in other soil environments.
Collapse
Affiliation(s)
- Yifei Qiu
- School of Geography and Ocean Science, Nanjing University, Nanjing 210023, China; Key Laboratory of Coastal Zone Exploitation and Protection, Ministry of Natural Resources, Nanjing 210024, China
| | - Shenglu Zhou
- School of Geography and Ocean Science, Nanjing University, Nanjing 210023, China; Key Laboratory of Coastal Zone Exploitation and Protection, Ministry of Natural Resources, Nanjing 210024, China.
| | - Chuchu Zhang
- School of Geography and Ocean Science, Nanjing University, Nanjing 210023, China; Ministry of Education Key Laboratory for Coast and Island Development, Nanjing University, Nanjing 210093, China
| | - Wendong Qin
- School of Geography and Ocean Science, Nanjing University, Nanjing 210023, China; Key Laboratory of Coastal Zone Exploitation and Protection, Ministry of Natural Resources, Nanjing 210024, China
| | - Chengxiang Lv
- School of Geography and Ocean Science, Nanjing University, Nanjing 210023, China; Key Laboratory of Coastal Zone Exploitation and Protection, Ministry of Natural Resources, Nanjing 210024, China
| | - Mengmeng Zou
- School of Geography and Ocean Science, Nanjing University, Nanjing 210023, China; Key Laboratory of Coastal Zone Exploitation and Protection, Ministry of Natural Resources, Nanjing 210024, China
| |
Collapse
|
178
|
Qiu Y, Zhou S, Zhang C, Qin W, Lv C. A framework for systematic microplastic ecological risk assessment at a national scale. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 327:121631. [PMID: 37058862 DOI: 10.1016/j.envpol.2023.121631] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/25/2023] [Accepted: 04/11/2023] [Indexed: 06/19/2023]
Abstract
Microplastic pollution is widespread in terrestrial and aquatic environments; however, a systematic assessment of the ecological risks of microplastics is lacking. This study collected research studies on microplastics in soil, aquatic and sediment environments, and screened 128 articles including 3459 sites to assess the ecological risks posed by microplastics in China following a literature quality assessment. We developed a systematic ecological risk assessment framework for microplastics in terms of spatial characterization, biotoxicity and anthropogenic impacts. The results of the pollution load index indicated that 74% and 47% of the soil and aquatic environments studied, respectively, faced a medium or higher level of pollution. Comparing predicted no effect concentrations (PNEC) and measured environmental concentrations (MECs), revealed that soil (97.70%) and aquatic (50.77%) environmental studies were at serious ecological risk from microplastics. The results of the pressure-state-response model showed that the microplastic pollution in Pearl River Delta was in a high-risk state. In addition, we found that ultraviolet radiation and rainfall exacerbate soil microplastic pollution, and higher river runoff may carry large amounts of microplastic from the source. The framework developed in this study will help assess the ecological risks of microplastics in the region to promote the mitigation of plastic pollution.
Collapse
Affiliation(s)
- Yifei Qiu
- School of Geography and Ocean Science, Nanjing University, Nanjing, 210023, China; Key Laboratory of Coastal Zone Exploitation and Protection, Ministry of Natural Resources, Nanjing, 210024, China
| | - Shenglu Zhou
- School of Geography and Ocean Science, Nanjing University, Nanjing, 210023, China; Key Laboratory of Coastal Zone Exploitation and Protection, Ministry of Natural Resources, Nanjing, 210024, China.
| | - Chuchu Zhang
- School of Geography and Ocean Science, Nanjing University, Nanjing, 210023, China; Ministry of Education Key Laboratory for Coast and Island Development, Nanjing University, Nanjing, 210093, China
| | - Wendong Qin
- School of Geography and Ocean Science, Nanjing University, Nanjing, 210023, China; Key Laboratory of Coastal Zone Exploitation and Protection, Ministry of Natural Resources, Nanjing, 210024, China
| | - Chengxiang Lv
- School of Geography and Ocean Science, Nanjing University, Nanjing, 210023, China; Key Laboratory of Coastal Zone Exploitation and Protection, Ministry of Natural Resources, Nanjing, 210024, China
| |
Collapse
|
179
|
Chang DY, Jeong S, Shin J, Park J, Park CR, Choi S, Chun CH, Chae MY, Lim BC. First quantification and chemical characterization of atmospheric microplastics observed in Seoul, South Korea. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 327:121481. [PMID: 37003584 DOI: 10.1016/j.envpol.2023.121481] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/20/2023] [Accepted: 03/20/2023] [Indexed: 06/19/2023]
Abstract
This study is the first report on atmospheric microplastics (MPs) observed in five outdoor environments, including an urban forest, a business center, commercial areas, and a public transportation hub in Seoul, South Korea. Air samples were collected using an active air pump sampler for 24 h in each area only on days without rainfall. All observed microplastics are secondary microplastics, in the form of irregularly-shaped fragments or fibers produced through various degradation processes, rather than being primarily produced like microbeads. The abundance of atmospheric MPs varied depending on the environment (i.e., region, height, and time) from 0.33 to 1.21 MP m-3, with the average number of MPs being 0.72 MP m-3 (standard deviation ± 0.39). MPs in the urban forest was observed to be 27% lower in abundance than that in the urban center which is ∼3 km away. The central business district was observed to have a 25% higher abundance during weekdays than on weekends. Our results show the ubiquity of MPs in various areas from high-rise buildings to forests tens of kilometers away from their direct sources, and a positive correlation between the abundance of MP and human activity. Morphologically, the fragment type (87.4%) predominated over the fiber type (12.6%), and chemically, polypropylene (PP) and polyethylene terephthalate (PET) components accounted for 65% of the total MP. PP polymers were found in all observation sites and contributed to 59% of the total MP fragments. The observed fibrous MPs were mainly composed of PET (72.7%) and PP (18.2%) polymers. Compared to other large cities (Shanghai, Beijing, Paris), Seoul is exposed to low levels of atmospheric MPs and high proportions of PP polymers. This study is limited to atmospheric MPs observed in summer and further investigation of MPs is needed to comprehensively understand the distribution and cycle of MPs based on long-term monitoring of atmospheric MPs.
Collapse
Affiliation(s)
- Dong Yeong Chang
- Department of Environmental Planning, Graduate School of Environmental Studies, Seoul National University, Seoul, Republic of Korea
| | - Sujong Jeong
- Department of Environmental Planning, Graduate School of Environmental Studies, Seoul National University, Seoul, Republic of Korea.
| | - Jaewon Shin
- Department of Environmental Planning, Graduate School of Environmental Studies, Seoul National University, Seoul, Republic of Korea
| | - Jungmin Park
- Department of Environmental Planning, Graduate School of Environmental Studies, Seoul National University, Seoul, Republic of Korea
| | - Chan Ryul Park
- Urban Forests Division, National Institute of Forest Science, Seoul, Republic of Korea
| | - Sumin Choi
- Urban Forests Division, National Institute of Forest Science, Seoul, Republic of Korea
| | - Chi-Hwan Chun
- Institute of Technology, CESCO Co., Seoul, Republic of Korea
| | - Min-Young Chae
- Institute of Technology, CESCO Co., Seoul, Republic of Korea
| | - Byung Chul Lim
- Institute of Technology, CESCO Co., Seoul, Republic of Korea
| |
Collapse
|
180
|
Ma YB, Xie ZY, Hamid N, Tang QP, Deng JY, Luo L, Pei DS. Recent advances in micro (nano) plastics in the environment: Distribution, health risks, challenges and future prospects. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 261:106597. [PMID: 37311378 DOI: 10.1016/j.aquatox.2023.106597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 06/02/2023] [Accepted: 06/03/2023] [Indexed: 06/15/2023]
Abstract
Environmental micro(nano)plastics have become a significant global pollution problem due to the widespread use of plastic products. In this review, we summarized the latest research advances on micro(nano)plastics in the environment, including their distribution, health risks, challenges, and future prospect. Micro(nano)plastics have been found in a variety of environmental media, such as the atmosphere, water bodies, sediment, and especially marine systems, even in remote places like Antarctica, mountain tops, and the deep sea. The accumulation of micro(nano)plastics in organisms or humans through ingestion or other passive ways poses a series of negative impacts on metabolism, immune function, and health. Moreover, due to their large specific surface area, micro(nano)plastics can also adsorb other pollutants, causing even more serious effects on animal and human health. Despite the significant health risks posed by micro(nano)plastics, there are limitations in the methods used to measure their dispersion in the environment and their potential health risks to organisms. Therefore, further research is needed to fully understand these risks and their impacts on the environment and human health. Taken together, the challenges of micro(nano)plastics analysis in the environment and organisms must be addressed, and future research prospects need to be identified. Governments and individuals must take action to reduce plastic waste and minimize the negative impact of micro(nano)plastics on the environment and human health.
Collapse
Affiliation(s)
- Yan-Bo Ma
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Zhuo-Yuan Xie
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; College of Architecture and Urban Planning, Chongqing Jiaotong University, Chongqing 400074, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China
| | - Naima Hamid
- Faculty of Science and Marine Environment, University Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - Qi-Ping Tang
- School of Public Health and Management, Chongqing Medical University, Chongqing 400016, China
| | - Jiao-Yun Deng
- School of Public Health and Management, Chongqing Medical University, Chongqing 400016, China
| | - Lin Luo
- School of Public Health and Management, Chongqing Medical University, Chongqing 400016, China
| | - De-Sheng Pei
- School of Public Health and Management, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
181
|
Ya H, Zhang T, Xing Y, Lv M, Wang X, Jiang B. Co-existence of polyethylene microplastics and tetracycline on soil microbial community and ARGs. CHEMOSPHERE 2023; 335:139082. [PMID: 37285974 DOI: 10.1016/j.chemosphere.2023.139082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/15/2023] [Accepted: 05/29/2023] [Indexed: 06/09/2023]
Abstract
Microplastics are plastic particles with particle size less than 5 mm in the environment. As an emerging organic pollutant, the presence of microplastics in the soil environment has been widely noticed. Secondly, due to the overuse of antibiotics, a large amount of antibiotics that cannot be fully absorbed by humans and livestock enter the soil environment in the form of urine or manure, making the soil suffer from serious antibiotic contamination problems. To address the environmental problems of microplastics and antibiotic contamination in soil, this study was conducted to investigate the effects of PE microplastics on antibiotic degradation, microbial community characteristics and ARGs in tetracycline-contaminated soils. The results showed that the addition of PE microplastics inhibited the degradation of tetracycline, and significantly increased the organic carbon content and decreased the neutral phosphatase activity. The addition of PE microplastics significantly reduced the alpha diversity of soil microbial community. Compared to the single tetracycline contamination. In addition, combined contamination with PE microplastics and tetracycline significantly affected bacterial genera such as Aeromicrobium, Rhodococcus, Mycobacterium and Intrasporangium. Metagenome sequencing studies revealed that the addition of PE microplastics inhibited the dissipation of ARGs in tetracycline-contaminated soils. There were strong positive correlations between Multidrug, Aminoglycoside and Clycopeptide resistance genes and Chloroflexi and Proteobacteria in tetracycline contaminated soils, and there was a strong positive correlation between Aminoglycoside resistance genes and Actinobacteria in combined contamination of PE microplastics and tetracycline. This study will provide some data support for the current environmental risk assessment of the coexistence of multiple contaminants in soil.
Collapse
Affiliation(s)
- Haobo Ya
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, PR China; Zhejiang Development & Planning Institute, Hangzhou, 310030, PR China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing, 100083, PR China
| | - Tian Zhang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, PR China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing, 100083, PR China
| | - Yi Xing
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, PR China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing, 100083, PR China
| | - Mingjie Lv
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, PR China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing, 100083, PR China
| | - Xin Wang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, PR China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing, 100083, PR China
| | - Bo Jiang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, PR China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing, 100083, PR China; National Engineering Laboratory for Site Remediation Technologies, Beijing, 100015, PR China.
| |
Collapse
|
182
|
Kim YI, Jeong E, Lee JY, Chia RW, Raza M. Microplastic contamination in groundwater on a volcanic Jeju Island of Korea. ENVIRONMENTAL RESEARCH 2023; 226:115682. [PMID: 36921785 DOI: 10.1016/j.envres.2023.115682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/20/2023] [Accepted: 03/10/2023] [Indexed: 06/18/2023]
Abstract
Microplastic (MPs) contamination in groundwater has received massive attention since plastic waste has been released directly into the environment. This study investigates MPs contamination in groundwater on the Jeju volcanic Island, Korea. To the best of our knowledge, this is the first study to identify MPs in groundwater from volcanic islands. A total of 21 sites were sampled for groundwater wells and springs in July and September (2021). Sampling was performed without cross-contamination through quality assurance and quality control. The results showed that MPs abundance ranged from 0.006 to 0.192 particles/L in groundwater samples. Additionally, MPs were detected in deep groundwater wells where the groundwater level was 143 m below ground surface. Eight MPs polymer types, including polypropylene, polyethylene, polyethylene terephthalate, polyvinyl chloride, polystyrene, polyamide, acrylonitrile butadiene styrene, and polyurethane, were detected using Micro-Fourier Transform Infrared Spectroscopy (μ-FT-IR). Most of the detected MPs size ranged from 20 to 100 μm, accounting for 95% of the total. Fragments and fiber shaped MPs were detected, with the majority of them being fragmented in groundwater samples. The concentrations of MPs and major ions in groundwater showed a positive correlation. A negative correlation was observed between MPs concentration and topographic elevation (r = -0.59, p = 0.01). The source of MPs contamination is most likely attributed to agricultural activities, such as plastic mulching and greenhouses, which account for most of the land use in the study area. In this study, MPs entered the aquifer through the soil at the surface and seeped through cracks in fractured rock on basalt with sealed groundwater wells. This study takes 500 L of samples to prevent sample bias, reveal plastic contamination in groundwater, and indicating the characteristics and sources of contaminated plastics.
Collapse
Affiliation(s)
- Young-In Kim
- Department of Geology, Kangwon National University, Chuncheon, 24341, Republic of Korea; Research on Microplastics in Groundwater (RMPG), Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Eunju Jeong
- Department of Geology, Kangwon National University, Chuncheon, 24341, Republic of Korea; Research on Microplastics in Groundwater (RMPG), Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Jin-Yong Lee
- Department of Geology, Kangwon National University, Chuncheon, 24341, Republic of Korea; Research on Microplastics in Groundwater (RMPG), Kangwon National University, Chuncheon, 24341, Republic of Korea.
| | - Rogers Wainkwa Chia
- Department of Geology, Kangwon National University, Chuncheon, 24341, Republic of Korea; Research Institute for Earth Resources, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Maimoona Raza
- Department of Geology, Kangwon National University, Chuncheon, 24341, Republic of Korea
| |
Collapse
|
183
|
Ju H, Yang X, Osman R, Geissen V. The role of microplastic aging on chlorpyrifos adsorption-desorption and microplastic bioconcentration. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023:121910. [PMID: 37247767 DOI: 10.1016/j.envpol.2023.121910] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 05/31/2023]
Abstract
Microplastics (MPs) in soil undergo different aging processes such as photoaging, mechanical abrasion and biodegradation, leading to alterations in the surface properties of MPs. In this study, we investigated the adsorption-desorption of chlorpyrifos (CPF) on pristine and UV light-aged low-density polyethylene (LDPE) and biodegradable (Bio) MPs that were derived from plastic mulch films. We also tested the bioconcentration of pristine and aged MPs (LDPE- and Bio-MPs aged under UV light and LDPE-MPs aged in three different soils) associated with CPF by earthworms (Lumbricus terrestris). The results showed that UV-aged MPs showed higher CPF adsorption capacities than pristine MPs, with the adsorption capacities at 184.9 ± 5.3, 200.5 ± 1.8, 193.0 ± 8.7, and 215.9 ± 1.1 μg g-1 for pristine LDPE-, UV-aged LDPE-, pristine Bio- and UV-aged Bio-MPs, respectively. The desorption rate of CPF from UV-aged LDPE-MPs within 48 h was lower than the desorption from pristine ones (28.8 ± 7.7% vs. 40.0 ± 3.9%), while both pristine and UV-aged Bio-MPs showed very low CPF desorption rates. A 4-day Petri dish experiment showed that UV-aged MPs were significantly less concentrated in earthworm casts than pristine counterparts (52% and 36% lower for UV-aged LDPE- and Bio-MPs), while UV-aged MPs with adsorbed CPF were concentrated significantly more than UV-aged MPs without CPF. Interestingly, LDPE-MPs aged in soil with a high carbon, nitrogen, and carbon-to-nitrogen ratio were significantly more concentrated in earthworm casts than pristine LDPE-MPs. In conclusion, UV-aged MPs acted as stronger vectors for CPF than pristine MPs. The bioconcentration of MPs differed significantly due to microplastic aging, as well as the combined effect with CPF. Moreover, LDPE-MPs aged in soil with enriched carbon and nitrogen were significantly concentrated in earthworm casts. Further studies on the environmental behaviours of aged MPs associated with other pollutants in soil, especially soils high in carbon and nitrogen, are needed.
Collapse
Affiliation(s)
- Hui Ju
- Soil Physics and Land Management, Wageningen University & Research, 6700AA, Wageningen, the Netherlands
| | - Xiaomei Yang
- Soil Physics and Land Management, Wageningen University & Research, 6700AA, Wageningen, the Netherlands; College of Natural Resources and Environment, Northwest A&F University, 712100, Yangling, China.
| | - Rima Osman
- Soil Physics and Land Management, Wageningen University & Research, 6700AA, Wageningen, the Netherlands
| | - Violette Geissen
- Soil Physics and Land Management, Wageningen University & Research, 6700AA, Wageningen, the Netherlands
| |
Collapse
|
184
|
Wang T, Qu L, Luo D, Ji X, Ma Z, Wang Z, Dahlgren RA, Zhang M, Shang X. Microplastic pollution characteristics and its future perspectives in the Tibetan Plateau. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131711. [PMID: 37257387 DOI: 10.1016/j.jhazmat.2023.131711] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/09/2023] [Accepted: 05/24/2023] [Indexed: 06/02/2023]
Abstract
Microplastics are an emerging and persistent pollutant due to their threat to global ecological systems and human health. Recent studies showed that microplastics have infiltrated the remote Third Pole - the Tibetan Plateau. Here, we summarize the current evidence for microplastic pollution in the different environments (rivers/lakes, sediment, soil, ice/snow and atmosphere) of the Tibetan Plateau. We assess the spatial distribution, source, fate, and potential ecological effects of microplastics in this broad plateau. The integrated results show that microplastics were pervasive in biotic and abiotic components of the Tibetan Plateau, even at the global highest-altitude, Mt. Everest. Although the concentration of microplastics in the Tibetan Plateau was far below that found in the densely populated lowlands, it showed a higher concentration than that in the ocean system. Tourist populations are identified as a substantial source of anthropogenic plastic input rather than local residents due to the rapid development of the tourism industry. In the sparsely inhabited remote area of the Tibetan Plateau, long-range atmospheric transport facilitates allochthonous microplastic diffusion. Robust solar radiation in the Tibetan Plateau might enhanced production of secondary microplastics by weathering (UV-photooxidation) of abandoned plastic waste. A rough estimation showed that the microplastic export flux from melting glaciers was higher than that measured in most of the world's largest rivers, which affects local and downstream areas. Since the Tibetan Plateau is vital for Asian water supply and numerous endangered wildlife, the potential human and ecological risk of microplastics to these fragile ecosystems needs to be fully evaluated within the context of climate-change impacts.
Collapse
Affiliation(s)
- Ting Wang
- Zhejiang Provincial Key Laboratory of Watershed Sciences and Health, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China; Institute of Eco-Environmental Sciences, Wenzhou Academy of Agricultural Sciences, Wenzhou 325006, Zhejiang, China
| | - Liyin Qu
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Zhejiang Provincial Key Lab for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China.
| | - Dehua Luo
- Zhejiang Provincial Key Laboratory of Watershed Sciences and Health, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China
| | - Xiaoliang Ji
- Zhejiang Provincial Key Laboratory of Watershed Sciences and Health, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China
| | - Zengling Ma
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Zhejiang Provincial Key Lab for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China
| | - Zhonggen Wang
- Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Randy A Dahlgren
- Zhejiang Provincial Key Laboratory of Watershed Sciences and Health, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China; Department of Land, Air and Water Resources, University of California, Davis, CA 95616, USA
| | - Minghua Zhang
- Zhejiang Provincial Key Laboratory of Watershed Sciences and Health, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China; Department of Land, Air and Water Resources, University of California, Davis, CA 95616, USA
| | - Xu Shang
- Zhejiang Provincial Key Laboratory of Watershed Sciences and Health, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China.
| |
Collapse
|
185
|
Jiménez-Skrzypek G, Hernández-Expósito OM, Hernández-Borges J, González-Sálamo J. Sorption of levonorgestrel on polyethylene, polystyrene and polypropylene microplastics. CHEMOSPHERE 2023:139042. [PMID: 37244556 DOI: 10.1016/j.chemosphere.2023.139042] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 04/23/2023] [Accepted: 05/24/2023] [Indexed: 05/29/2023]
Abstract
Sorption studies involving microplastics (MPs) are essential to understand the mechanisms implicated in contaminant retention. In this research, a complete study of the sorption behaviour of a hormonal contraceptive -levonorgestrel- in MPs of different composition in two distinct matrices was performed, using high-performance liquid chromatography coupled to a UV detector for the determination of levonorgestrel. Characterization of the studied MPs was achieved by X-ray diffraction and differential scanning calorimetry, and Fourier-transformed infrared spectroscopy. Kinetic and isotherm studies were performed using a batch design under controlled conditions: 500 mg of MPs pellets of 3-5 mm diameter, agitation at 125 rpm, and 30 °C. The comparison of results in ultrapure water and artificial seawater, revealed changes in sorption capacity, and the predominant sorption mechanisms involved. Overall, all studied MPs showed sorption affinity towards levonorgestrel, being low-density polyethylene the one with the highest sorption capacity in ultrapure water and polystyrene in seawater.
Collapse
Affiliation(s)
- Gabriel Jiménez-Skrzypek
- Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias, Universidad de La Laguna (ULL). Avda. Astrofísico Fco. Sánchez, S/n., 38206, San Cristóbal de La Laguna, Spain; Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna (ULL). Avda. Astrofísico Fco. Sánchez, S/n., 38206, San Cristóbal de La Laguna, Spain
| | - Orlando Manuel Hernández-Expósito
- Centro Asociado de Tenerife de La Universidad Nacional de Educación a Distancia (UNED). C. San Agustín, 30. 38009, San Cristóbal de La Laguna, Spain
| | - Javier Hernández-Borges
- Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias, Universidad de La Laguna (ULL). Avda. Astrofísico Fco. Sánchez, S/n., 38206, San Cristóbal de La Laguna, Spain; Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna (ULL). Avda. Astrofísico Fco. Sánchez, S/n., 38206, San Cristóbal de La Laguna, Spain
| | - Javier González-Sálamo
- Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias, Universidad de La Laguna (ULL). Avda. Astrofísico Fco. Sánchez, S/n., 38206, San Cristóbal de La Laguna, Spain; Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna (ULL). Avda. Astrofísico Fco. Sánchez, S/n., 38206, San Cristóbal de La Laguna, Spain; Department of Chemistry, Sapienza University, P.le Aldo Moro, 5. 00185, Rome, Italy.
| |
Collapse
|
186
|
Mills CL, Savanagouder J, de Almeida Monteiro Melo Ferraz M, Noonan MJ. The need for environmentally realistic studies on the health effects of terrestrial microplastics. MICROPLASTICS AND NANOPLASTICS 2023; 3:11. [PMID: 37228296 PMCID: PMC10202987 DOI: 10.1186/s43591-023-00059-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 05/14/2023] [Indexed: 05/27/2023]
Abstract
Plastic pollution is now so widespread that microplastics are regularly detected in biological samples surveyed for their presence. Despite their pervasiveness, very little is known about the effects of microplastics on the health of terrestrial vertebrates. While emerging studies are showing that microplastics represent a potentially serious threat to animal health, data have been limited to in vivo studies on laboratory rodents that were force fed plastics. The extent to which these studies are representative of the conditions that animals and humans might actually experience in the real world is largely unknown. Here, we review 114 papers from the peer-reviewed literature in order to understand how the concentrations and types of microplastics being administered to rodents in lab studies compare to those found in terrestrial soils. From 73 in vivo lab studies, and 41 soil studies, we found that lab studies have heretofore fed rodents microplastics at concentrations that were hundreds of thousands of times greater than they would be exposed to in nature. Furthermore, health effects have been studied for only 20% of the microplastic polymers that are known to occur in soils. Plastic pollution is arguably one of the most pressing ecological and public health issues of our time, yet existing lab-based research on the health effects of terrestrial microplastics does not reflect the conditions that free-ranging vertebrates are actually experiencing. Going forward, performing more true-to-life research will be of the utmost importance to fully understand the impacts of microplastics and maintain the public's faith in the scientific process. Graphical Abstract Supplementary Information The online version contains supplementary material available at 10.1186/s43591-023-00059-1.
Collapse
Affiliation(s)
- C. Lauren Mills
- Department of Biology, The Irving K. Barber Faculty of Science, The University of British Columbia, Okanagan Campus, Kelowna, BC Canada
| | - Joy Savanagouder
- Department of Biology, The Irving K. Barber Faculty of Science, The University of British Columbia, Okanagan Campus, Kelowna, BC Canada
| | | | - Michael J. Noonan
- Department of Biology, The Irving K. Barber Faculty of Science, The University of British Columbia, Okanagan Campus, Kelowna, BC Canada
| |
Collapse
|
187
|
He X, Qian Y, Li Z, Yang S, Tian J, Wang Q, Lei J, Qi R, Feng C. Identification of factors influencing the microplastic distribution in agricultural soil on Hainan Island. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 874:162426. [PMID: 36842590 DOI: 10.1016/j.scitotenv.2023.162426] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/06/2023] [Accepted: 02/19/2023] [Indexed: 06/18/2023]
Abstract
Microplastics (MPs) are ubiquitous in agricultural soils, but to what extent and how environmental factors determine the source and fate of MPs in agricultural soils is not clear. In this study, Hainan Island, which has different climatic conditions, altitudes, and land uses across the island, was selected to investigate the MPs abundance and the shape, size, color, and polymer type of the MPs in agricultural soils. The main focus was on the role of land use type and the identification of environmental influencing factors. The results showed that MPs were detected in all the soil samples across the island, with an abundance range of 20 to 6790 items kg-1 and an average of 417 items kg-1. Fragments (46.8 %), MPs smaller than 0.5 mm (37.8 %), black MPs (48.3 %), and polypropylene MPs (56.8 %) were observed as the dominant MPs species. Significantly higher MPs abundance was found in mulched arable land, and higher contents of fibers and fragments were observed in woodland and paddy lands, respectively. With correlation and redundancy analyses, soil pH, soil organic matter content, and average annual temperature were found to be the main factors influencing the biotic/abiotic fragmentation of MPs. The regional population density, including tourism represented by the night light index, affects the input process of MPs. MPs transport and deposition were found to be affected by altitude, annual precipitation, and soil moisture content. This study represents the first large-scale study of MPs contamination in island agricultural soils and provides important data on the distribution, transport, and fate of MPs.
Collapse
Affiliation(s)
- Xiaokang He
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, PR China
| | - Yibin Qian
- Hainan Research Academy of Environmental Sciences, 571127 Haikou, PR China; National Plot Zone for Ecological Conservation (Hainan) Research Center, 571127 Haikou, PR China
| | - Zhenling Li
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, Beijing 100875, PR China
| | - Shuai Yang
- Hainan Research Academy of Environmental Sciences, 571127 Haikou, PR China; National Plot Zone for Ecological Conservation (Hainan) Research Center, 571127 Haikou, PR China
| | - Jinfei Tian
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, Beijing 100875, PR China
| | - Qixuan Wang
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, Beijing 100875, PR China
| | - Jinming Lei
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, Beijing 100875, PR China
| | - Ruifang Qi
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, Beijing 100875, PR China
| | - Chenghong Feng
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, PR China; The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, Beijing 100875, PR China.
| |
Collapse
|
188
|
Lu L, Li W, Cheng Y, Liu M. Chemical recycling technologies for PVC waste and PVC-containing plastic waste: A review. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 166:245-258. [PMID: 37196390 DOI: 10.1016/j.wasman.2023.05.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/29/2023] [Accepted: 05/07/2023] [Indexed: 05/19/2023]
Abstract
The extensive production and consumption of plastics has resulted in significant plastic waste and plastic pollution. Polyvinyl chloride (PVC) waste has a high chlorine content and is the primary source of chlorine in the plastic waste stream, potentially generating hazardous chlorinated organic pollutants if treated improperly. This review discusses PVC synthesis, applications, and the current types and challenges of PVC waste management. Dechlorination is vital for the chemical recycling of PVC waste and PVC-containing plastic waste. We review dehydrochlorination and dechlorination mechanisms of PVC using thermal degradation and wet treatments, and summarize the recent progress in chemical treatments and dechlorination principles. This review provides readers with a comprehensive analysis of chemical recycling technologies for PVC waste and PVC-containing plastic waste to transform them into chemicals, fuels, feedstock, and value-added polymers.
Collapse
Affiliation(s)
- Lihui Lu
- School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian University of Technology, Dalian 116024, Liaoning, China
| | - Weiming Li
- School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian University of Technology, Dalian 116024, Liaoning, China
| | - Ying Cheng
- School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian University of Technology, Dalian 116024, Liaoning, China
| | - Meng Liu
- School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian University of Technology, Dalian 116024, Liaoning, China.
| |
Collapse
|
189
|
Liu S, Niu SH, Xiang L, Liao XD, Xing SC. Effects of the oversized microplastic pollution layer on soil aggregates and organic carbon at different soil depths. JOURNAL OF HAZARDOUS MATERIALS 2023; 450:131014. [PMID: 36842199 DOI: 10.1016/j.jhazmat.2023.131014] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 02/02/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Soil aggregates (SAs) are the main site for soil organic carbon (SOC) fixation, and land plastic pollution is increasingly causing many soil problems. The effects of plastic on SAs and SOC seem to be significant, but there is still a lack of relevant research. This study investigated the effects of the "plastic contamination layer" (PCL) formed by the microplastic precursors (namely, oversized microplastics (OMPs)) on the content and properties of SAs of different particle sizes at different soil depths. The results showed that the PCL had an effect on SAs of different sizes at different depths: Compared with the control group, PCL mainly increased the content of SAs in 0-5 cm soil depth, about 28.08 mg macroaggregates, 13.79 mg microaggregates and 59.82 mg silt and clay aggregates per gram of soil. The presence of the PCL mainly down-regulates the organic carbon (OC) content in 0-5 cm macroaggregates, which is about 9.59 g/kg, the OC content in 10-20 cm microaggregates, which is about 16.41 g/kg, and the OC content in 0-5 cm silt and clay aggregates, which is about 4.16 g /kg, downregulated the expression of the key carbon metabolism genes (CMGs) coxL, and inhibited the contribution of the potential CMGs host bacteria Sphaerimonospora and Bacteroides to soil organic matter. This paper emphasizes that the presence of PCL reduced SOC sequestration.
Collapse
Affiliation(s)
- Shuo Liu
- College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Shi-Hua Niu
- College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Lei Xiang
- Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Guangzhou 510632, Guangdong, China
| | - Xin-Di Liao
- College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry Agriculture, Guangzhou 510642, Guangdong, China; National-Local Joint Engineering Research Center for Livestock Breeding, Guangzhou 510642, Guangdong, China
| | - Si-Cheng Xing
- Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry Agriculture, Guangzhou 510642, Guangdong, China; National-Local Joint Engineering Research Center for Livestock Breeding, Guangzhou 510642, Guangdong, China.
| |
Collapse
|
190
|
Guo JJ, Li F, Xiao HC, Liu BL, Feng LN, Yu PF, Meng C, Zhao HM, Feng NX, Li YW, Cai QY, Xiang L, Mo CH, Li QX. Polyethylene and polypropylene microplastics reduce chemisorption of cadmium in paddy soil and increase its bioaccessibility and bioavailability. JOURNAL OF HAZARDOUS MATERIALS 2023; 449:130994. [PMID: 36821898 DOI: 10.1016/j.jhazmat.2023.130994] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/15/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
Microplastics (MPs) usually coexist with heavy metals (HMs) in soil. MPs can influence HMs mobility and bioavailability, but the underlying mechanisms remain largely unexplored. Here, polyethylene and polypropylene MPs were selected to investigate their effects and mechanisms of sorption-desorption, bioaccessibility and bioavailability of cadmium (Cd) in paddy soil. Batch experiments indicated that MPs significantly reduced the Cd sorption in soil (p < 0.05). Accordingly, soil with the MPs had lower boundary diffusion constant of Cd (C1= 0.847∼1.020) and the Freundlich sorption constant (KF = 0.444-0.616) than that without the MPs (C1 = 0.894∼1.035, KF = 0.500-0.655). X-ray diffraction, X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy analyses suggested that the MPs reduced Cd chemisorption, by covering the soil active sites and thus blocking complexation of Cd with active oxygen sites and interrupting the formation of CdCO3 and Cd3P2 precipitates. Such effects of MPs enhanced about 1.2-1.5 times of Cd bioaccessibility and bioavailability in soil. Almost the same effects but different mechanisms of polyethylene and polypropylene MPs on Cd sorption in the soil indicated the complexity and pervasiveness of their effects. The findings provide new insights into impacts of MPs on the fate and risk of HMs in agricultural soil.
Collapse
Affiliation(s)
- Jing-Jie Guo
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; College of Biology and Environmental Engineering, Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Zhejiang Shuren University, Hangzhou 310015, China
| | - Fen Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Hai-Chuan Xiao
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Bai-Lin Liu
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Lin-Nan Feng
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Peng-Fei Yu
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Can Meng
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Hai-Ming Zhao
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Nai-Xian Feng
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yan-Wen Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Quan-Ying Cai
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Lei Xiang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| | - Ce-Hui Mo
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| | - Qing X Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| |
Collapse
|
191
|
Gurumoorthi K, Luis AJ. Recent trends on microplastics abundance and risk assessment in coastal Antarctica: Regional meta-analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 324:121385. [PMID: 36868550 DOI: 10.1016/j.envpol.2023.121385] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
We investigated sources, abundance and risk of microplastics (MPs) in water, sediments and biota around Antarctica. The concentration of MPs in Southern Ocean (SO) ranged from 0 to 0.56 items/m3 (mean = 0.01 items/m3) and 0-1.96 items/m3 (mean = 0.13 items/m3) in surface and sub-surface water. The distribution of fibers in water was 50%, sediments were 61%, and biota had 43%, which were followed by fragments in the water (42%), sediments (26%), and biota (28%). Shapes of film had lowest concentrations in water (2%), sediments 13%), and biota (3%). Ship traffic, drift of MPs by currents, and untreated waste water discharge contributed to the variety of MPs. The degree of pollution in all matrices was evaluated using the pollution load index (PLI), polymer hazard index (PHI), and potential ecological risk index (PERI). PLI at about 90.3% of locations were at category I followed by 5.9% at category II, 1.6% at category III, and 2.2% at category IV. Average PLI for water (3.14), sediments (6.6), and biota (2.72) had low pollution load (<10). Mean PHI for water, sediments, and biota showed hazards level V with a higher percentage of 84.6% (>1000) and 63.9% (PHI:0-1) in sediments and water, respectively. PERI for water showed 63.9% minor risk, and 36.1% extreme risk. Around 84.6% of sediments were at extreme risk, 7.7% faced minor risk, and 7.7% were at high risk. While 20% of marine organisms living in cold environments experienced minor risk, 20% were in high risk, and 60% were in extreme risk. Highest PERI was found in the water, sediments, and biota in Ross Sea, due to high hazardous polymer composition of polyvinylchloride (PVC) in the water and sediments due to human activity, particularly use of personnel care products and waste water discharge from research stations.
Collapse
Affiliation(s)
- K Gurumoorthi
- National Centre for Polar and Ocean Research, Ministry of Earth Sciences, Headland Sada, Goa, 403 804, India
| | - Alvarinho J Luis
- National Centre for Polar and Ocean Research, Ministry of Earth Sciences, Headland Sada, Goa, 403 804, India.
| |
Collapse
|
192
|
Mai H, Thien ND, Dung NT, Valentin C. Impacts of microplastics and heavy metals on the earthworm Eisenia fetida and on soil organic carbon, nitrogen, and phosphorus. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:64576-64588. [PMID: 37071353 DOI: 10.1007/s11356-023-27002-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 04/10/2023] [Indexed: 05/11/2023]
Abstract
Microplastics (MPs) are increasingly being studied because they have become ubiquitous in aquatic and terrestrial environments. However, little is known about the negative effects of co-contamination by polypropylene microplastic (PP MPs) and heavy metal mixtures on terrestrial environment and biota. This study assessed the adverse effects of co-exposure to PP MPs and heavy metal mixture (Cu2+, Cr6+, and Zn2+) on soil quality and the earthworm Eisenia fetida. Soil samples were collected in the Dong Cao catchment, near Hanoi, Vietnam, and analyzed for changes in extracellular enzyme activity and carbon, nitrogen, and phosphorus availability in the soil. We determined the survival rate of earthworms Eisenia fetida that had ingested MPs and two doses of heavy metals (the environmental level - 1 × - and its double - 2 ×). Earthworm ingestion rates were not significantly impacted by the exposure conditions, but the mortality rate for the 2 × exposure conditions was 100%. Metal-associated PP MPs stimulated the activities of β-glucosidase, β-N-acetyl glucosaminidase, and phosphatase enzymes in soil. Principle component analysis showed that these enzymes were positively correlated with Cu2+ and Cr6+ concentrations, but negatively correlated with microbial activity. Zn2+ showed no correlation with soil extracellular enzyme activity or soil microbial activity. Our results showed that co-exposure of earthworms to MPs and heavy metals had no impact on soil nitrogen and phosphorus but caused a decrease in total soil carbon content, with a possible associated risk of increased CO2 emissions.
Collapse
Affiliation(s)
- Huong Mai
- Vietnam Academy of Science and Technology, University of Science and Technology of Hanoi, Hanoi, Vietnam.
| | - Nguyen Danh Thien
- Vietnam Academy of Science and Technology, University of Science and Technology of Hanoi, Hanoi, Vietnam
| | - Nguyen Thuy Dung
- Soil Chemistry and Chemical Soil Quality Group, Wageningen University and Research, Wageningen, Netherlands
| | - Christian Valentin
- UMR 242-Institut de Recherche Pour Le Développement. 32, Av. H. Varagnat, 93143, Bondy Cedex, France
| |
Collapse
|
193
|
Zhang M, Hou J, Xia J, Zeng Y, Miao L. Influences of input concentration, media particle size, metal cation valence, and ionic concentration on the transport, long-term release, and particle breakage of polyvinyl chloride nanoplastics in saturated porous media. CHEMOSPHERE 2023; 322:138130. [PMID: 36780995 DOI: 10.1016/j.chemosphere.2023.138130] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/31/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
The environmental impact of nanoplastics has gradually attracted widespread attention; however, nanoplastics of polyvinyl chloride, one of the most commonly used plastics, have not yet been studied. In this study, we investigated the transport, long-term release behavior, and particle fracture of polyvinyl chloride nanoplastics (PVC NPs) in saturated quartz sand with different metal cations, ionic concentrations, input concentrations, and sand grain sizes by determining breakthrough, long-term release, and particle size distribution curves. The breakthrough curves and retention profiles were simulated by a mathematical model. The transport of PVC NPs increased with increased input concentration and sand grain size, which could be predicted by the Derjaguin-Landau-Verwey-Overbeek (DLVO) and colloid filtration theories. Increased ionic concentration and metal cation valence could restrain the transport of PVC NPs in saturated quartz sand owing to the decreased energy barrier between PVC NPs and sand grains. The total released amount of PVC NPs in the long-term release tests with different experimental conditions ranged from 3.91 to 21.95%. Increased sand grain size and decreased metal cation valence and ionic concentration resulted in an increased released amount of retained PVC NPs in saturated quartz sand, indicating increased release ability and mobility. The particle fracture results indicated that the PVC NPs were not broken down during long-term release under the experimental conditions of this research. This opens up a completely new and meaningful study of whether nanoplastics are broken down into smaller nanoplastics during their long-term release under various conditions.
Collapse
Affiliation(s)
- Mingzhi Zhang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| | - Jun Hou
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| | - Jun Xia
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| | - Yuan Zeng
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of the People's Republic of China, Nanjing, 210042, People's Republic of China.
| | - Lingzhan Miao
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| |
Collapse
|
194
|
Tang X, Chen M, Li M, Liu H, Tang H, Yang Y. Do differentially charged nanoplastics affect imidacloprid uptake, translocation, and metabolism in Chinese flowering cabbage? THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 871:161918. [PMID: 36736408 DOI: 10.1016/j.scitotenv.2023.161918] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/10/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Micro(nano)plastics are ubiquitous in the environment. Among the microplastics, imidacloprid (IMI) concentration has been increasing in some intensive agricultural regions, thus receiving increased attention. However, only a few studies have investigated the interaction of nanoplastics (polystyrene (PS)) and IMI in vegetable crops. We studied the effects of positively (PS-NH2) and negatively (PS-COOH) charged nanoplastics on the uptake, translocation, and degradation of IMI in Chinese flowering cabbage grown in Hoagland solution for 28 days. PS-NH2 co-exposure with IMI inhibited plant growth, resulting in decreased plant weight, height, and root length. Translocation of IMI from the roots to the shoots was significantly lower in the presence of PS-NH2, whereas PS-COOH accelerated the accumulation and translocation of IMI in plants, thus potentially affecting IMI metabolism in plants. Notably, IMI-NTG and 5-OH-IMI were the two dominant metabolites. PS-NH2 co-exposure with IMI induced significant oxidation stress and considerably affected the activities of superoxide dismutase (SOD) and peroxidase (POD), indicating that the antioxidant defense system was the main mechanism for reducing oxidative damage. Notably, both positively and negatively charged nanoplastics can accumulate in Chinese flowering cabbage. Plants in the PS-COOH alone treatment group had the highest concentration of nanoplastics in both roots and shoots. The accumulation of nanoplastics, IMI, and its metabolites in plants raises concerns about their combined potential toxicity because it compromises food safety.
Collapse
Affiliation(s)
- Xiaoyan Tang
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, Sichuan Normal University, Chengdu 610068, China; Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Institute of Hydrobiology, Jinan university, Guangzhou 510632, China; College of Geography and Resources, Sichuan Normal University, Chengdu 610101, China.
| | - Manjia Chen
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Muzi Li
- College of Geography and Resources, Sichuan Normal University, Chengdu 610101, China
| | - Huanping Liu
- Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Institute of Hydrobiology, Jinan university, Guangzhou 510632, China
| | - Hao Tang
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, Sichuan Normal University, Chengdu 610068, China; College of Geography and Resources, Sichuan Normal University, Chengdu 610101, China
| | - Yang Yang
- Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Institute of Hydrobiology, Jinan university, Guangzhou 510632, China.
| |
Collapse
|
195
|
Chang B, He B, Cao G, Zhou Z, Liu X, Yang Y, Xu C, Hu F, Lv J, Du W. Co-transport of polystyrene microplastics and kaolinite colloids in goethite-coated quartz sand: Joint effects of heteropolymerization and surface charge modification. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 884:163832. [PMID: 37121313 DOI: 10.1016/j.scitotenv.2023.163832] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/15/2023] [Accepted: 04/25/2023] [Indexed: 05/07/2023]
Abstract
This study investigated the transport behavior of polystyrene microplastics (MPs) in saturated quartz sand and goethite-coated sand in the presence of coexisting kaolinite colloids. Column experiments were conducted under a wide range of solution chemistry conditions, including pH levels of 6.0, 7.0, and 9.0, as well as background Na+ concentrations of 5 mM and 25 mM. We found that: (1) The individual transport of MPs in porous media diminished both with increasing background ion strength and decreasing pH, and its transport ability was significantly dominated by the interactions between MPs and porous media rather than the interplay between MPs, which has been further corroborated by the aggregation stability experiments of MPs particles. (2) MPs had a much lower ability to move through goethite-coated sand columns than quartz sand columns. This is because goethite coating reduces the repulsion energy barriers between porous media and MPs. The increased specific surface area and surface complexity of sand columns after goethite coating should also account for this difference. (3) MPs transport would be subjected to the differentiated impact of co-transported kaolinite colloids in the two types of porous media. The promotion effect of kaolinite colloid on MPs' transport capacity is not significantly affected by background ionic strength changes when quartz sand is served as the porous medium; however, the promotion effect is highly correlated with the background ionic strength when goethite-coated sand is served as the porous medium. In comparison with low background ionic strength conditions, kaolinite colloids under high background ionic strength conditions significantly facilitated MPs transport. This is mainly because under high background ionic conditions, kaolinite colloids are more likely to be deposited on the surface of goethite-covered sand, competing with MPs for the limited deposition sites. The extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory is applicable to describe the transport behavior of MPs.
Collapse
Affiliation(s)
- Bokun Chang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Bing He
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Gang Cao
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Soil Physics and Land Management Group, Wageningen University & Research, 6700 AA Wageningen, The Netherlands
| | - Zhiying Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Xiaoqi Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Yajun Yang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Chenyang Xu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Feinan Hu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling 712100, China
| | - Jialong Lv
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China.
| | - Wei Du
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
196
|
Feng S, Lu H, Xue Y, Yan P, Sun T. Fate, transport, and source of microplastics in the headwaters of the Yangtze River on the Tibetan Plateau. JOURNAL OF HAZARDOUS MATERIALS 2023; 455:131526. [PMID: 37167873 DOI: 10.1016/j.jhazmat.2023.131526] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/19/2023] [Accepted: 04/26/2023] [Indexed: 05/13/2023]
Abstract
Microplastics (MPs) in the Yangtze River have been drawn increasing attention recently with most merely concentrating on the plain area. This research focuses on the source area of the Yangtze River on the Qinghai-Tibet Plateau (QTP), revealing the occurrence, drivers, sources, and exposure risks of riverine MPs in the Jinsha River (JSR) basin. The results showed that average MP abundances determined were higher in the tributaries than in the of mainstreams. According to the correlation analysis, MP abundance was consistently negatively related to pH and altitude both in water and sediment. However, MPs in two media showed a contrary relationship with river width, which could be explained by the special terrain of plateau rivers and hydrological conditions. After the tributary river flow into the mainstream, the concentration of MPs in the mainstream near the tributary side were significantly lower than that before confluence temporarily. Based on the conditional fragmentation-based model, the cumulative λ value of fibers in surface water along the river divided the JSR into three stages (upstream, midstream, and downstream). Under certain assumptions, the proportions of MPs sourced from three stages were eventually revealed, respectively. This is conducive to better understanding the plateau environmental impacts of MP distribution in the large river.
Collapse
Affiliation(s)
- Sansan Feng
- Key Laboratory of Water Cycle and Related Land Surface Process, Institute of Geographic Science and Natural Resources Research, Chinese Academy of Science, Beijing 100101, China
| | - Hongwei Lu
- Key Laboratory of Water Cycle and Related Land Surface Process, Institute of Geographic Science and Natural Resources Research, Chinese Academy of Science, Beijing 100101, China.
| | - Yuxuan Xue
- Key Laboratory of Water Cycle and Related Land Surface Process, Institute of Geographic Science and Natural Resources Research, Chinese Academy of Science, Beijing 100101, China
| | - Pengdong Yan
- State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, Tianjin 300072, China
| | - Tong Sun
- State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, Tianjin 300072, China
| |
Collapse
|
197
|
Devi A, Hansa A, Gupta H, Syam K, Upadhyay M, Kaur M, Lajayer BA, Sharma R. Microplastics as an emerging menace to environment: Insights into their uptake, prevalence, fate, and sustainable solutions. ENVIRONMENTAL RESEARCH 2023; 229:115922. [PMID: 37086886 DOI: 10.1016/j.envres.2023.115922] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/06/2023] [Accepted: 04/14/2023] [Indexed: 05/03/2023]
Abstract
The inflated demand for plastic products has led to tremendous rise in plastic debris in different environmental matrices, thereby resulting in plastic pollution. This affects plants, animals, and even humans, as microplastics can enter the food chain and cause several health implications. Microplastics are the small plastic particles (size below 5 mm) that are largely debated nowadays owing to their environmental risk assessment. Their potential to interact with other toxic contaminants, their tendency to be ingested or taken up by living organisms and their longevity is a serious threat to our environment. However, despite wealth of recent information, still there is a gap, particularly in eco-toxicology studies, fate, prevalence and feasible solutions to cope up with the menace of microplastics pollution. This review unravels the environmental fate and behaviour of microplastics as well as their global distribution in the marine and terrestrial environment. Furthermore, we aim to contribute to the international debate on the microplastics global paradigm. We briefly suggest sustainable solutions and recommendations to achieve future research goals on microplastics. Our review reveals some of the newest biological (green algae and modified sponges) and physical (nano-particles and membrane treatment) remediation solutions to eradicate microplastics from different types of environment. This review presents a critical evaluation of the state of knowledge of micro-plastics and suggested some recommendations which can help in identifying some important key questions for future research.
Collapse
Affiliation(s)
- Anjali Devi
- Department of Botany, Central University of Jammu, Samba, Jammu and Kashmir, India
| | - Abish Hansa
- Department of Botany, Central University of Jammu, Samba, Jammu and Kashmir, India
| | - Hitakshi Gupta
- Department of Botany, Central University of Jammu, Samba, Jammu and Kashmir, India
| | - Karri Syam
- Department of Botany, Central University of Jammu, Samba, Jammu and Kashmir, India
| | - Manyata Upadhyay
- Department of Botany, Central University of Jammu, Samba, Jammu and Kashmir, India
| | - Mandeep Kaur
- Henan Key Laboratory of Earth System Observation and Modelling, Henan University, Kaifeng, 475004, China
| | - Behnam Asgari Lajayer
- Department of Soil Science, Faculty of Agriculture University of Tabriz, Tabriz, Iran
| | - Ritika Sharma
- Department of Botany, Central University of Jammu, Samba, Jammu and Kashmir, India.
| |
Collapse
|
198
|
Astner AF, Hayes DG, O'Neill H, Evans BR, Pingali SV, Urban VS, Schaeffer SM, Young TM. Assessment of cryogenic pretreatment for simulating environmental weathering in the formation of surrogate micro- and nanoplastics from agricultural mulch film. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 870:161867. [PMID: 36716885 DOI: 10.1016/j.scitotenv.2023.161867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 01/11/2023] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Microplastics (MPs) and nanoplastics (NPs) from mulch films and other plastic materials employed in vegetable and small fruit production pose a major threat to agricultural ecosystems. For conducting controlled studies on MPs' and NPs' (MNPs') ecotoxicity to soil organisms and plants and fate and transport in soil, surrogate MNPs are required that mimic MNPs that form in agricultural fields. We have developed a procedure to prepare MPs from plastic films or pellets using mechanical milling and sieving, and conversion of the resultant MPs into NPs through wet grinding, both steps of which mimic the degradation and fragmentation of plastics in nature. The major goal of this study was to determine if cryogenic exposure of two biodegradable mulch films effectively mimics the embrittlement caused by environmental weathering in terms of the dimensional, thermal, chemical, and biodegradability properties of the formed MNPs. We found differences in size, surface charge, thermal and chemical properties, and biodegradability in soil between MNPs prepared from cryogenically treated vs. environmentally weathered films, related to the photochemical reactions occurring in the environment that were not mimicked by cryogenic treatment, such as depolymerization and cross-link formation. We also investigated the size reduction process for NPs and found that the size distribution was bimodal, with populations centered at 50 nm and 150-300 nm, and as the size reduction process progressed, the former subpopulation's proportion increased. The biodegradability of MPs in soil was greater than for NPs, a counter-intuitive trend since greater surface area exposure for NPs would increase biodegradability. The result isassociated with differences in surface and chemical properties and to minor components that are readily leached out during the formation of NPs. In summary, the use of weathered plastics as feedstock would likely produce MNPs that are more realistic than cryogenically-treated unweathered films for use in experimental studies.
Collapse
Affiliation(s)
- A F Astner
- The University of Tennessee, Biosystems Engineering and Soil Science, 2506 E J. Chapman Dr, Knoxville, TN 37996, United States of America
| | - D G Hayes
- The University of Tennessee, Biosystems Engineering and Soil Science, 2506 E J. Chapman Dr, Knoxville, TN 37996, United States of America.
| | - H O'Neill
- Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, United States of America
| | - B R Evans
- Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, United States of America
| | - S V Pingali
- Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, United States of America
| | - V S Urban
- Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, United States of America
| | - S M Schaeffer
- The University of Tennessee, Biosystems Engineering and Soil Science, 2506 E J. Chapman Dr, Knoxville, TN 37996, United States of America
| | - T M Young
- The University of Tennessee, School of Natural Resources, 2505 E.J. Chapman Dr, Knoxville, TN 37996, United States of America
| |
Collapse
|
199
|
Qualhato G, Vieira LG, Oliveira M, Rocha TL. Plastic microfibers as a risk factor for the health of aquatic organisms: A bibliometric and systematic review of plastic pandemic. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 870:161949. [PMID: 36740053 DOI: 10.1016/j.scitotenv.2023.161949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/21/2022] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
Plastic microfibers (PMFs) are emerging pollutants widely distributed in the environment. In the early 2020s, the need for personal protection due to the COVID-19 pandemic led to increased consumption of plastic materials (e.g., facemasks and gloves) and ultimately to increased plastic pollution, especially by PMFs. The PMFs present in the environment may be released in this form (primary particles) or in larger materials, that will release them as a result of environmental conditions. Although a considerable number of studies have been addressing the effects of microplastics, most of them studied round particles, with fewer studies focusing on PMFs. Thus, the current study aimed to summarize and critically discuss the available data concerning the ecotoxicological impact of PMFs on aquatic organisms. Aquatic organisms exposed to PMFs showed accumulation, mainly in the digestive tract, and several toxic effects, such as DNA damage, physiological alterations, digestive damage and even mortality, suggesting that PMFs can pose a risk for the health of aquatic organisms. The PMFs induced toxicity to aquatic invertebrate and vertebrate organisms depends on size, shape, chemical association and composition of fibers. Regarding other size range (nm) of plastic fibers, the literature review highlighted a knowledge gap in terms of the effects of plastic nanofibers on aquatic organisms. There is a knowledge gap in terms of the interaction and modes of action of PMFs associated with other pollutants. In addition, studies addressing effects at different trophic levels as well as the use of other biological models should be considered. Overall, research gaps and recommendations for future research and trends considering the environmental impact of the COVID-19 pandemic are presented.
Collapse
Affiliation(s)
- Gabriel Qualhato
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil.; Department of Morphology, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Lucélia Gonçalves Vieira
- Department of Morphology, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Miguel Oliveira
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Thiago Lopes Rocha
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil..
| |
Collapse
|
200
|
Liu Y, Jin T, Wang L, Tang J. Polystyrene micro and nanoplastics attenuated the bioavailability and toxic effects of Perfluorooctane sulfonate (PFOS) on soybean (Glycine max) sprouts. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130911. [PMID: 36860033 DOI: 10.1016/j.jhazmat.2023.130911] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/26/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Microplastics and nanoplastics (MNPs) have attracted much attention since their wide distribution in the environment and organisms. MNPs in the environment adsorb other organic pollutants, such as Perfluorooctane sulfonate (PFOS), and cause combined effects. However, the impact of MNPs and PFOS in agricultural hydroponic systems is unclear. This study investigated the combined effects of polystyrene (PS) MNPs and PFOS on soybean (Glycine max) sprouts, which are common hydroponic vegetable. Results demonstrated that the adsorption of PFOS on PS particles transformed free PFOS into adsorbed state and reduced its bioavailability and potential migration, thus attenuating acute toxic effects such as oxidative stress. TEM and Laser confocal microscope images showed that PS nanoparticles uptake in sprout tissue was enhanced by the adsorption of PFOS which is because of changes of the particle surface properties. Transcriptome analysis showed that PS and PFOS exposure promoted soybean sprouts to adapt to environmental stress and MARK pathway might play an important role in recognition of microplastics coated by PFOS and response to enhancing plant resistance. This study provided the first evaluation about the effect of adsorption between PS particles and PFOS on their phytotoxicity and bioavailability, in order to provide new ideas for risk assessment.
Collapse
Affiliation(s)
- Yaxuan Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Tianyue Jin
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Lan Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jingchun Tang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|