151
|
Cheng Z, Liu S, Wu X, Raza F, Li Y, Yuan W, Qiu M, Su J. Autologous erythrocytes delivery of berberine hydrochloride with long-acting effect for hypolipidemia treatment. Drug Deliv 2020; 27:283-291. [PMID: 32013620 PMCID: PMC7034074 DOI: 10.1080/10717544.2020.1716880] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Discovery of novel pharmacological effects of berberine hydrochloride (BH) has made its clinical application valuable. However, further development and applications of BH are hampered by its short half-life and the side effects associated with its intravenous (iv) injection. To improve the hypolipidemia efficacy and reduce side effects, we encapsulated BH into biocompatible red blood cells (RBCs) to explore its sustained-release effect by hypotonic pre-swelling method. From in vitro evaluation, BH loaded RBCs (BH-RBCs) presented similar morphology and osmotic fragility to native RBCs (NRBCs). After the loading process, the BH-RBCs maintained around 69% of Na+/K+-ATPase activity of NRBCs and phosphatidylserine externalization value of BH-RBCs was about 26.1 ± 2.9%. The survival test showed that the loaded cells could circulate in plasma for over 9 d. For in vivo evaluation, a series of tests including pharmacokinetics study and hypolipidemic effect were carried out to examine the long-acting effect of BH-RBCs. The results showed that the release of BH in the loaded cells could last for about 5 d and the hypolipidemic effect can still be observed on 5 d after injection. BH-loaded autologous erythrocytes seem to be a promising sustained releasing delivery system with long hypolipidemic effect.
Collapse
Affiliation(s)
- Zhongyao Cheng
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Siyu Liu
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Xinyi Wu
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Faisal Raza
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Yichen Li
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Weien Yuan
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Mingfeng Qiu
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Jing Su
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
152
|
Priya Dharshini K, Fang H, Ramya Devi D, Yang JX, Luo RH, Zheng YT, Brzeziński M, Vedha Hari BN. pH-sensitive chitosan nanoparticles loaded with dolutegravir as milk and food admixture for paediatric anti-HIV therapy. Carbohydr Polym 2020; 256:117440. [PMID: 33483020 DOI: 10.1016/j.carbpol.2020.117440] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/28/2020] [Accepted: 11/19/2020] [Indexed: 11/17/2022]
Abstract
The present study aims to develop Chitosan-based polymeric nanoparticles of anti-HIV drug Dolutegravir, to aid appropriate dose adjustment and ease of oral administration as milk and food admixture for children. The isolated Chitosan from the crab shell species Portunus Sanguinolentus has been characterized for their physicochemical properties. Nanoparticles were developed with varying ratio of drug: Chitosan and assessed for particle size (140-548 nm), zeta potential (+26.1 mV) with a maximum of 75 % drug content. Nanoparticles exhibited improved stability and drug release in the 0.1 N HCl medium compared to pure drug. The MTT assay and the Syncytia inhibition assay in C8166 (T-lymphatic cell line) infected with HIVIIIB viral strain, which showed better therapeutic efficiency and lesser cytotoxicity compared to the pure drug. In consonance with the data obtained, the use of chitosan from a novel source for drug delivery carrier has opened exceptional prospects for delivering drugs efficiently to paediatrics.
Collapse
Affiliation(s)
- K Priya Dharshini
- Pharmaceutical Technology Laboratory, ASK-II, Lab No: 214, SASTRA Deemed-to-be-University, Thanjavur 613401, Tamil Nadu, India
| | - Hao Fang
- Key Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - D Ramya Devi
- Pharmaceutical Technology Laboratory, ASK-II, Lab No: 214, SASTRA Deemed-to-be-University, Thanjavur 613401, Tamil Nadu, India
| | - Jin-Xuan Yang
- Key Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Rong-Hua Luo
- Key Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Yong-Tang Zheng
- Key Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.
| | - Marek Brzeziński
- Centre of Molecular and Macromolecular Studies in Łódź, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | - B N Vedha Hari
- Pharmaceutical Technology Laboratory, ASK-II, Lab No: 214, SASTRA Deemed-to-be-University, Thanjavur 613401, Tamil Nadu, India.
| |
Collapse
|
153
|
Xu X, Yi H, Wu J, Kuang T, Zhang J, Li Q, Du H, Xu T, Jiang G, Fan G. Therapeutic effect of berberine on metabolic diseases: Both pharmacological data and clinical evidence. Biomed Pharmacother 2020; 133:110984. [PMID: 33186794 DOI: 10.1016/j.biopha.2020.110984] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 11/01/2020] [Accepted: 11/03/2020] [Indexed: 02/07/2023] Open
Abstract
The increased incidence of metabolic diseases (e.g., diabetes and obesity) has seriously affected human health and life safety worldwide. It is of great significance to find effective drugs from natural compounds to treat metabolic diseases. Berberine (BBR), an important quaternary benzylisoquinoline alkaloid, exists in many traditional medicinal plants. In recent years, BBR has received widespread attention due to its good potential in the treatment of metabolic diseases. In order to promote the basic research and clinical application of BBR, this review provides a timely and comprehensive summary of the pharmacological and clinical advances of BBR in the treatment of five metabolic diseases, including type 2 diabetes mellitus, obesity, non-alcoholic fatty liver disease, hyperlipidemia, and gout. Both animal and clinical studies have proved that BBR has good therapeutic effects on these five metabolic diseases. The therapeutic effects of BBR are based on regulating various metabolic aspects and pathophysiological procedures. For example, it can promote insulin secretion, improve insulin resistance, inhibit lipogenesis, alleviate adipose tissue fibrosis, reduce hepatic steatosis, and improve gut microbiota disorders. Collectively, BBR may be a good and promising drug candidate for the treatment of metabolic diseases. More studies, especially clinical trials, are needed to further confirm its molecular mechanisms and targets. In addition, large-scale, long-term and multi-center clinical trials are necessary to evaluate the efficacy and safety of BBR in the treatment of these metabolic diseases.
Collapse
Affiliation(s)
- Xinmei Xu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Huan Yi
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jiasi Wu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Tingting Kuang
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jing Zhang
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Qi Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Huan Du
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Tong Xu
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Guihua Jiang
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Gang Fan
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
154
|
Gao J, Fan D, Song P, Zhang S, Liu X. Preparation and application of pH-responsive composite hydrogel beads as potential delivery carrier candidates for controlled release of berberine hydrochloride. ROYAL SOCIETY OPEN SCIENCE 2020; 7:200676. [PMID: 33391786 PMCID: PMC7735363 DOI: 10.1098/rsos.200676] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2005] [Accepted: 09/22/2020] [Indexed: 05/11/2023]
Abstract
For improving the effective concentration of berberine hydrochloride (BH) in the gastrointestinal tract, a series of pH-responsive hydrogel beads were prepared based on carboxymethylstarch-g-poly (acrylic acid)/palygorskite/starch/sodium alginate (CMS-g-PAA/PGS/ST/SA) in the present work. The developed hydrogel beads were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and thermogravimetric analysis (TG). Effect of palygorskite (PGS) content on the swelling properties of hydrogel beads and BH cumulative release were discussed. The pH responsiveness of hydrogel beads was also investigated in different media. Results illustrated that swelling of hydrogel beads and BH cumulative release from hydrogel beads were obviously affected by PGS content. The swelling ratio and BH cumulative release of composite hydrogel beads remarkably slowed down with PGS content increasing in the range from 10 to 40 wt%. The composite hydrogel beads were pH-responsive. At pH 7.4, the swelling ratio and BH cumulative release from composite hydrogel beads were the fastest among the dissolution media of pH 1.2, pH 6.8 and pH 7.4. The BH cumulative release from hydrogel beads was related to the swelling and relaxation of composite hydrogel beads and could be fitted better by the Higuchi model. The obtained composite hydrogel beads could be potentially used for the development of BH pharmaceutical dosage forms.
Collapse
Affiliation(s)
- Jiande Gao
- College of Pharmacy, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, People's Republic of China
- Author for correspondence: Jiande Gao e-mail:
| | - Dongying Fan
- Gansu Provincial Hospital of TCM, Gansu University of Traditional Chinese Medicine, Lanzhou, People's Republic of China
| | - Ping Song
- College of Pharmacy, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, People's Republic of China
| | - Shudan Zhang
- College of Pharmacy, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, People's Republic of China
| | - Xiong Liu
- College of Pharmacy, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, People's Republic of China
| |
Collapse
|
155
|
Tomar D, Singh PK, Hoque S, Modani S, Sriram A, Kumar R, Madan J, Khatri D, Dua K. Amorphous systems for delivery of nutraceuticals: challenges opportunities. Crit Rev Food Sci Nutr 2020; 62:1204-1221. [PMID: 33103462 DOI: 10.1080/10408398.2020.1836607] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Amorphous solid products have recently gained a lot of attention as key solutions to improve the solubility and bioavailability of poorly soluble nutraceuticals. A pure amorphous drug is a high-energy form; physically/chemically unstable and so easily gets recrystallized into the less soluble crystalline form limiting solubility and bioavailability issues. Amorphous solid dispersion and co-amorphous are new formulation approach that stabilized unstable amorphous form through different mechanisms such as preventing mobility, high glass transition temperature and molecular interaction. Nutraceuticals have been received the utmost importance due to their health benefits. However, most of these compounds have been associated with poor oral bioavailability due to poor solubility, high lipophilicity, high melting point, poor permeability, degradability and rapid metabolism in the gastrointestinal tract (GIT) which limits its health benefits. This review provides us a systematic application of amorphous systems to the delivery of poorly soluble nutraceuticals, with the aim of overcoming their pharmacokinetic limitations and improved pharmacological potential. In particular, it describes the challenges associated with delivery of oral nutraceuticals, various methods involved in the preparation and characterization of amorphous systems and permeability enhancement of nutraceuticals are in detail.
Collapse
Affiliation(s)
- Devendrasingh Tomar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Pankaj K Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Sajidul Hoque
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Sheela Modani
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Anitha Sriram
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Rahul Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Jitender Madan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Dharmendra Khatri
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health (GSH), The University of Technology Sydney, Ultimo, Australia
| |
Collapse
|
156
|
Kwon M, Lim DY, Lee CH, Jeon JH, Choi MK, Song IS. Enhanced Intestinal Absorption and Pharmacokinetic Modulation of Berberine and Its Metabolites through the Inhibition of P-Glycoprotein and Intestinal Metabolism in Rats Using a Berberine Mixed Micelle Formulation. Pharmaceutics 2020; 12:pharmaceutics12090882. [PMID: 32957491 PMCID: PMC7558015 DOI: 10.3390/pharmaceutics12090882] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/12/2020] [Accepted: 09/14/2020] [Indexed: 02/06/2023] Open
Abstract
We aimed to develop a berberine formulation to enhance the intestinal absorption and plasma concentrations of berberine through the inhibition of P-glycoprotein (P-gp)-mediated efflux and the intestinal metabolism of berberine in rats. We used pluronic P85 (P85) and tween 80, which have the potential to inhibit P-gp and cytochrome P450s (i.e., CYP1A2, 2C9, 2C19, 2D6, and 3A4). A berberine-loaded mixed micelle formulation with ratios of berberine: P85: tween 80 of 1:5:0.5 (w/w/w) was developed. This berberine mixed micelle formulation had a mean size of 12 nm and increased the cellular accumulation of digoxin via P-gp inhibition. It also inhibited berberine metabolism in rat intestinal microsomes, without significant cytotoxicity, up to a berberine concentration of 100 μM. Next, we compared the pharmacokinetics of berberine and its major metabolites in rat plasma following the oral administration of the berberine formulation (50 mg/kg) in rats with the oral administration of berberine alone (50 mg/kg). The plasma exposure of berberine was significantly greater in rats administered the berberine formulation compared to rats administered only berberine, which could be attributed to the increased berberine absorption by inhibiting the P-gp-mediated berberine efflux and intestinal berberine metabolism by berberine formulation. In conclusion, we successfully prepared berberine mixed micelle formulation using P85 and tween 80 that has inhibitory potential for P-gp and CYPs (CYP2C19, 2D6, and 3A4) and increased the berberine plasma exposure. Therefore, a mixed micelle formulation strategy with P85 and tween 80 for drugs with high intestinal first-pass effects could be applied to increase the oral absorption and plasma concentrations of the drugs.
Collapse
Affiliation(s)
- Mihwa Kwon
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Korea; (M.K.); (J.-H.J.)
| | - Dong Yu Lim
- College of Pharmacy, Dankook University, Cheon-an 31116, Korea; (D.Y.L.); (C.H.L.)
| | - Chul Haeng Lee
- College of Pharmacy, Dankook University, Cheon-an 31116, Korea; (D.Y.L.); (C.H.L.)
| | - Ji-Hyeon Jeon
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Korea; (M.K.); (J.-H.J.)
| | - Min-Koo Choi
- College of Pharmacy, Dankook University, Cheon-an 31116, Korea; (D.Y.L.); (C.H.L.)
- Correspondence: (M.-K.C.); (I.-S.S.); Tel.: 8253-950-8575 (I.-S.S.)
| | - Im-Sook Song
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Korea; (M.K.); (J.-H.J.)
- Correspondence: (M.-K.C.); (I.-S.S.); Tel.: 8253-950-8575 (I.-S.S.)
| |
Collapse
|
157
|
Yao Y, Chen H, Yan L, Wang W, Wang D. Berberine alleviates type 2 diabetic symptoms by altering gut microbiota and reducing aromatic amino acids. Biomed Pharmacother 2020; 131:110669. [PMID: 32937246 DOI: 10.1016/j.biopha.2020.110669] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 08/14/2020] [Accepted: 08/20/2020] [Indexed: 01/06/2023] Open
Abstract
OBJECTIVE Berberine (BBR), which is extracted from traditional Chinese herb, is abundant in Coptis chinensis and Berberis vulgaris, with a treatment on type 2 diabetes mellitus (T2DM). However, its oral bioavailability is poor. Therefore, the ability of BBR to regulate gut microbiota and intestinal metabolites might exist. This study aimed to investigate changes in gut microbiota and intestinal metabolites, and to reveal the potential mechanism of BBR. METHODS To observe the role of gut microbiota in the treatment of T2DM by BBR, antibiotics intervened gut microbiota was used in this study, and the therapeutic effects of BBR were evaluated. A 16S rRNA gene sequencing approach was utilized to analyze gut microbiota alterations, and UHPLC-QTOF/MS-based untargeted metabolomics analysis of colon contents was used to identity differential intestinal metabolites. Finally, serum aromatic amino acids (AAAs) were absolutely quantified using LC/MS. RESULTS Inhibition of the blood glucose levels, and improvements in glucose tolerance and serum lipid parameters were observed in the BBR treated group. Type 2 diabetic symptoms in rats in the BA group (treated with antibotics and BBR) were alleviated. However, the therapeutical effects are weaker in the BA group compared with the BBR group, indicating that BBR can be used to treat type 2 diabetic rats immediately, and modulation of gut microbiota is related to the mechanism of BBR in the treatment of T2DM. The community richness and diversity of the gut microbiota were significantly increased by BBR, and the relative abundance of Bacteroidetes was increased in the BBR group, which was accompanied by a decreased relative abundance of Proteobacteria and Verrucomicrobia at the phylum level. At the family level, a probiotic Lactobacillaceae was significantly upregulated not only in the BBR group but also in the BA group and was negatively associated with the risk of T2DM. Metabolomic analysis of colon contents identified 55 differential intestinal metabolites between the BBR group and the model group. AAAs, including tyrosine, tryptophan and phenylalanine, were obviously decreased in the BBR group not only in the colon contents but also in the serum. CONCLUSIONS These results demonstrated that BBR could alleviate symptoms in type 2 diabetic rats by affecting gut microbiota composition and reducing the concentration of AAAs.
Collapse
Affiliation(s)
- Ye Yao
- Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China; Hunan Key Laboratory of Traditional Chinese Medicine for Gan of State Administration, Central South University, Changsha, 410008, China.
| | - Han Chen
- Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China; Hunan Key Laboratory of Traditional Chinese Medicine for Gan of State Administration, Central South University, Changsha, 410008, China.
| | - Lijing Yan
- Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China; Hunan Key Laboratory of Traditional Chinese Medicine for Gan of State Administration, Central South University, Changsha, 410008, China.
| | - Wenbo Wang
- Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China; Hunan Key Laboratory of Traditional Chinese Medicine for Gan of State Administration, Central South University, Changsha, 410008, China.
| | - Dongsheng Wang
- Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China; Hunan Key Laboratory of Traditional Chinese Medicine for Gan of State Administration, Central South University, Changsha, 410008, China.
| |
Collapse
|
158
|
Zhao S, Li P, Wen X, Yang J. Study on the hepatobiliary behavior of Ermiao wan formula by microdialysis- LC-qTOF-MS. J Pharm Biomed Anal 2020; 189:113419. [PMID: 32599487 DOI: 10.1016/j.jpba.2020.113419] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 06/02/2020] [Accepted: 06/07/2020] [Indexed: 01/31/2023]
Abstract
An improved bile microdialysis sampling technique was established and coupled with liquid chromatography quadrupole time-of-flight mass spectrometry (LC-qTOF-MS) analysis. This method was successfully applied to investigate the metabolic profiles of Ermiao wan (EMW) formula in the bile of Sprague-Dawley (SD) rats. Based on accurate mass information and fragment patterns, 23 alkaloids and lactones metabolites were tentatively identified. Their metabolic pathway involved in glucuronidation, sulfation, hydroxylation and hydrolysis. Because of the high time resolution of microdialysis, the metabolic profiles of EMW were also investigated. Jatrorrhizine, columbamine and other components showed a "double-peak" profiles, suggesting the existence of enterohepatic circulation. The developed microdialysis sampling/ LC-qTOF-MS method provides a simple and efficient research tool for understanding and clarifying the mechanism of hepatobiliary excretion of complex components.
Collapse
Affiliation(s)
- Shuling Zhao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 639 Longmian Road, Nanjing, Jiangsu, 211198, China.
| | - Ping Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 639 Longmian Road, Nanjing, Jiangsu, 211198, China.
| | - Xiaodong Wen
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 639 Longmian Road, Nanjing, Jiangsu, 211198, China.
| | - Jie Yang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 639 Longmian Road, Nanjing, Jiangsu, 211198, China.
| |
Collapse
|
159
|
Calvo A, Moreno E, Larrea E, Sanmartín C, Irache JM, Espuelas S. Berberine-Loaded Liposomes for the Treatment of Leishmania infantum-Infected BALB/c Mice. Pharmaceutics 2020; 12:pharmaceutics12090858. [PMID: 32916948 PMCID: PMC7558179 DOI: 10.3390/pharmaceutics12090858] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/31/2020] [Accepted: 09/07/2020] [Indexed: 01/19/2023] Open
Abstract
Berberine (BER)—an anti-inflammatory quaternary isoquinoline alkaloid extracted from plants—has been reported to have a variety of biologic properties, including antileishmanial activity. This work addresses the preparation of BER-loaded liposomes with the aim to prevent its rapid liver metabolism and improve the drug selective delivery to the infected organs in visceral leishmaniasis (VL). BER liposomes (LP-BER) displayed a mean size of 120 nm, negative Z-potential of −38 mV and loaded 6 nmol/μmol lipid. In vitro, the loading of BER in liposomes enhanced its selectivity index more than 7-fold by decreasing its cytotoxicity to macrophages. In mice, LP-BER enhanced drug accumulation in the liver and the spleen. Consequently, the liposomal delivery of the drug reduced parasite burden in the liver and spleen by three and one logarithms (99.2 and 93.5%), whereas the free drug only decreased the infection in the liver by 1-log. The organ drug concentrations—far from IC50 values— indicate that BER immunomodulatory activity or drug metabolites also contribute to the efficacy. Although LP-BER decreased 10-fold—an extremely rapid clearance of the free drug in mice—the value remains very high. Moreover, LP-BER reduced plasma triglycerides levels.
Collapse
Affiliation(s)
- Alba Calvo
- ISTUN Institute of Tropical Health, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain; (A.C.); (E.M.); (E.L.); (C.S.)
- Chemistry and Pharmaceutical Technology Department, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain;
| | - Esther Moreno
- ISTUN Institute of Tropical Health, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain; (A.C.); (E.M.); (E.L.); (C.S.)
- Chemistry and Pharmaceutical Technology Department, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain;
- IdisNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
| | - Esther Larrea
- ISTUN Institute of Tropical Health, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain; (A.C.); (E.M.); (E.L.); (C.S.)
- IdisNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
| | - Carmen Sanmartín
- ISTUN Institute of Tropical Health, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain; (A.C.); (E.M.); (E.L.); (C.S.)
- Chemistry and Pharmaceutical Technology Department, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain;
- IdisNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
| | - Juan Manuel Irache
- Chemistry and Pharmaceutical Technology Department, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain;
- IdisNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
| | - Socorro Espuelas
- ISTUN Institute of Tropical Health, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain; (A.C.); (E.M.); (E.L.); (C.S.)
- Chemistry and Pharmaceutical Technology Department, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain;
- IdisNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
- Correspondence: ; Tel.: +34-948-425-600 (ext. 806310)
| |
Collapse
|
160
|
Sharif H, Akash MSH, Rehman K, Irshad K, Imran I. Pathophysiology of atherosclerosis: Association of risk factors and treatment strategies using plant-based bioactive compounds. J Food Biochem 2020; 44:e13449. [PMID: 32851658 DOI: 10.1111/jfbc.13449] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/15/2020] [Accepted: 08/07/2020] [Indexed: 02/06/2023]
Abstract
Under physiological conditions, endothelial cells act as protective barrier which prevents direct contact of blood with circulating factors via production of tissue plasminogen activator. Risk factors of metabolic disorders are responsible to induce endothelial dysfunction and may consequently lead to prognosis of atherosclerosis. This article summarizes the process of atherosclerosis which involves number of sequences including formation and interaction of AGE-RAGE, activation of polyol pathway, protein kinase C, and hexosamine-mediated pathway. All these mechanisms can lead to the development of oxidative stress which may further aggravate condition. Different pharmacological interventions are being used to treat atherosclerosis, however, these might be associated with mild to severe side effects. Therefore, plant-based bioactive compounds having potential to combat and prevent atherosclerosis in diabetic patients are attaining recent focus. By understanding process of development and mechanisms involved in atherosclerotic plaque formation, these bioactive compounds can be better option for future therapeutic interventions for atherosclerosis treatment. PRACTICAL APPLICATIONS: Atherosclerosis is one of major underlying disorders of cardiovascular diseases which occur through multiple mechanisms and is associated with metabolic disorders. Conventional therapeutic interventions are not only used to treat atherosclerosis, but are also commonly associated with mild to severe side effects. Therefore, nowadays, bioactive compounds having potential to combat and prevent atherosclerosis in diabetic patients are preferred. By understanding mechanisms involved in atherosclerotic plaque formation, bioactive compounds can be better understood for treatment of atherosclerosis. In this manuscript, we have focused on treatment strategies of atherosclerosis using bioactive compounds notably alkaloids and flavonoids having diverse pharmacological and therapeutic potentials with special focus on the mechanism of action of these bioactive compounds suitable for treatment of atherosclerosis. This manuscript will provide the scientific insights of bioactive compounds to researchers who are working in the area of drug discovery and development to control pathogenesis and development of atherosclerosis and its associated cardiometabolic disorders.
Collapse
Affiliation(s)
- Hina Sharif
- Department of Pharmaceutical Chemistry, Government College University, Faisalabad, Pakistan
| | | | - Kanwal Rehman
- Department of Pharmacy, University of Agriculture, Faisalabad, Pakistan
| | - Kanwal Irshad
- Department of Pharmaceutical Chemistry, Government College University, Faisalabad, Pakistan
| | - Imran Imran
- Department of Pharmacology, Bahauddin Zakariya University, Multan, Pakistan
| |
Collapse
|
161
|
Fang Z, Tang Y, Ying J, Tang C, Wang Q. Traditional Chinese medicine for anti-Alzheimer's disease: berberine and evodiamine from Evodia rutaecarpa. Chin Med 2020; 15:82. [PMID: 32774447 PMCID: PMC7409421 DOI: 10.1186/s13020-020-00359-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/20/2020] [Indexed: 12/18/2022] Open
Abstract
Alzheimer's disease (AD) is one of the most common diseases in elderly people with a high incidence of dementia at approximately 60-80%. The pathogenesis of AD was quite complicated and currently there is no unified conclusion in the academic community, so no efficiently clinical treatment is available. In recent years, with the development of traditional Chinese medicine (TCM), researchers have proposed the idea of relying on TCM to prevent and treat AD based on the characteristic of multiple targets of TCM. This study reviewed the pathological hypothesis of AD and the potential biomarkers found in the current researches. And the potential targets of berberine and evodiamine from Evodia rutaecarpa in AD were summarized and further analyzed. A compound-targets-pathway network was carried out to clarify the mechanism of action of berberine and evodiamine for AD. Furthermore, the limitations of current researches on the TCM and AD were discussed. It is hoped that this review will provide some references for development of TCM in the prevention and treatment of AD.
Collapse
Affiliation(s)
- Zhiling Fang
- Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Medical School of Ningbo University, Ningbo, 315211 Zhejiang China
| | - Yuqing Tang
- Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Medical School of Ningbo University, Ningbo, 315211 Zhejiang China
| | - Jiaming Ying
- Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Medical School of Ningbo University, Ningbo, 315211 Zhejiang China
| | - Chunlan Tang
- Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Medical School of Ningbo University, Ningbo, 315211 Zhejiang China
| | - Qinwen Wang
- Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Medical School of Ningbo University, Ningbo, 315211 Zhejiang China
| |
Collapse
|
162
|
Polymeric Nanoparticles for Drug Delivery: Recent Developments and Future Prospects. NANOMATERIALS 2020; 10:nano10071403. [PMID: 32707641 PMCID: PMC7408012 DOI: 10.3390/nano10071403] [Citation(s) in RCA: 425] [Impact Index Per Article: 85.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/13/2020] [Accepted: 07/16/2020] [Indexed: 02/06/2023]
Abstract
The complexity of some diseases—as well as the inherent toxicity of certain drugs—has led to an increasing interest in the development and optimization of drug-delivery systems. Polymeric nanoparticles stand out as a key tool to improve drug bioavailability or specific delivery at the site of action. The versatility of polymers makes them potentially ideal for fulfilling the requirements of each particular drug-delivery system. In this review, a summary of the state-of-the-art panorama of polymeric nanoparticles as drug-delivery systems has been conducted, focusing mainly on those applications in which the corresponding disease involves an important morbidity, a considerable reduction in the life quality of patients—or even a high mortality. A revision of the use of polymeric nanoparticles for ocular drug delivery, for cancer diagnosis and treatment, as well as nutraceutical delivery, was carried out, and a short discussion about future prospects of these systems is included.
Collapse
|
163
|
Wong SK, Chin KY, Ima-Nirwana S. Berberine and musculoskeletal disorders: The therapeutic potential and underlying molecular mechanisms. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 73:152892. [PMID: 30902523 DOI: 10.1016/j.phymed.2019.152892] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 03/09/2019] [Accepted: 03/12/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Musculoskeletal disorders are a group of disorders that affect the joints, bones, and muscles, causing long-term disability. Berberine, an isoquinoline alkaloid, has been previously established to exhibit beneficial properties in preventing various diseases, including musculoskeletal disorders. PURPOSE This review article aims to recapitulate the therapeutic potential of berberine and its mechanism of action in treating musculoskeletal disorders. METHODS A wide range of literature illustrating the effects of berberine in ameliorating musculoskeletal disorders was retrieved from online electronic databases (PubMed and Medline) and reviewed. RESULTS Berberine may potentially retard the progression of osteoporosis, osteoarthritis and rheumatoid arthritis. Limited studies reported the effects of berberine in suppressing the proliferation of osteosarcoma cells. These beneficial properties of berberine are mediated in part through its ability to target multiple signaling pathways, including PKA, p38 MAPK, Wnt/β-catenin, AMPK, RANK/RANKL/OPG, PI3K/Akt, NFAT, NF-κB, Hedgehog, and oxidative stress signaling. In addition, berberine exhibited anti-apoptotic, anti-inflammatory, and immunosuppressive properties. CONCLUSION The current evidence indicates that berberine may be effective in preventing musculoskeletal disorders. However, findings from in vitro and in vivo investigations await further validation from human clinical trial.
Collapse
Affiliation(s)
- Sok Kuan Wong
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, 56000 Kuala Lumpur, Malaysia
| | - Kok-Yong Chin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, 56000 Kuala Lumpur, Malaysia
| | - Soelaiman Ima-Nirwana
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, 56000 Kuala Lumpur, Malaysia.
| |
Collapse
|
164
|
Shrikanth CB, Nandini CD. AMPK in microvascular complications of diabetes and the beneficial effects of AMPK activators from plants. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 73:152808. [PMID: 30935723 DOI: 10.1016/j.phymed.2018.12.031] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 12/19/2018] [Accepted: 12/23/2018] [Indexed: 05/15/2023]
Abstract
BACKGROUND Diabetes mellitus is a multifactorial disorder with the risk of micro- and macro-vascular complications. High glucose-induced derangements in metabolic pathways are primarily associated with the initiation and progression of secondary complications namely, diabetic nephropathy, neuropathy, and retinopathy. Adenosine monophosphate-activated protein kinase (AMPK) has emerged as an attractive therapeutic target to treat various metabolic disorders including diabetes mellitus. It is a master metabolic regulator that helps in maintaining cellular energy homeostasis by promoting ATP-generating catabolic pathways and inhibiting ATP-consuming anabolic pathways. Numerous pharmacological and plant-derived bioactive compounds that increase AMP-activated protein kinase activation has shown beneficial effects by mitigating secondary complications namely retinopathy, nephropathy, and neuropathy. PURPOSE The purpose of this review is to highlight current knowledge on the role of AMPK and its activators from plant origin in diabetic microvascular complications. METHODS Search engines such as Google Scholar, PubMed, Science Direct and Web of Science are used to extract papers using relevant key words. Papers mainly focusing on the role of AMPK and AMPK activators from plant origin in diabetic nephropathy, retinopathy, and neuropathy was chosen to be highlighted. RESULTS According to results, decrease in AMPK activation during diabetes play a causative role in the pathogenesis of diabetic microvascular complications. Some of the plant-derived bioactive compounds were beneficial in restoring AMPK activity and ameliorating diabetic microvascular complications. CONCLUSION AMPK activators from plant origin are beneficial in mitigating diabetic microvascular complications. These pieces of evidence will be helpful in the development of AMPK-centric therapies to mitigate diabetic microvascular complications.
Collapse
Affiliation(s)
- C B Shrikanth
- Department of Molecular Nutrition, CSIR-Central Food Technological Research Institute, Mysuru, Karnataka 570 020, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-CFTRI campus, Mysuru, Karnataka 570 020, India
| | - C D Nandini
- Department of Molecular Nutrition, CSIR-Central Food Technological Research Institute, Mysuru, Karnataka 570 020, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-CFTRI campus, Mysuru, Karnataka 570 020, India.
| |
Collapse
|
165
|
Wang A, Yang W, Yang X, Mei X, Hu T, Liang R, Meng D, Yan D. MgAl monolayer hydrotalcite increases the hypoglycemic effect of berberine by enhancing its oral bioavailability. Biomed Pharmacother 2020; 127:110140. [DOI: 10.1016/j.biopha.2020.110140] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/27/2020] [Accepted: 03/30/2020] [Indexed: 11/24/2022] Open
|
166
|
Ke X, Huang Y, Li L, Xin F, Xu L, Zhang Y, Zeng Z, Lin F, Song Y. Berberine Attenuates Arterial Plaque Formation in Atherosclerotic Rats with Damp-Heat Syndrome via Regulating Autophagy. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:2449-2460. [PMID: 32606611 PMCID: PMC7320883 DOI: 10.2147/dddt.s250524] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 05/28/2020] [Indexed: 12/18/2022]
Abstract
Purpose Berberine (BBR) is an effective component of Huanglian and has shown to attenuate atherosclerosis (AS); however, the detailed mechanism of BBR-mediated protective actions against AS remains elusive. This study was undertaken to examine the effects of BBR on aortic atherosclerotic plaque stability and the expression of autophagy-related proteins in AS rats with damp-heat syndrome or yang deficiency. Methods Thirty SD rats were randomly divided into (1) control (CON); (2) damp-heat syndrome atherosclerosis (AS + DH); (3) yang deficiency syndrome atherosclerosis (AS + YX); (4) damp-heat syndrome atherosclerosis + BBR (AS + DH + BBR); (5) yang deficiency syndrome, atherosclerosis + BBR (AS + YX + BBR); and (6) damp-heat syndrome, atherosclerosis + BBR + 3-methyladenine (AS + DH + BBR + 3-MA) (n = 5/group) groups. Pathological morphology, macrophage plaque infiltration, inflammation, and LC3-II and P62 expression were assessed. Results Compared with the CON group, the AS + DH and AS + YX groups had an increased plaque area in the aortic tissue with substantial foam cell and macrophage infiltration, and increased levels of IL-1β and TNF-α (P < 0.01). After four weeks of BBR intervention, the plaque area in the AS + DH + BBR group was reduced with decreased foam cells and macrophage infiltration, and decreased levels of TNF-α and IL-1β, whereas LC3-II protein expression was increased and P62 protein expression was decreased in the AS + DH + BBR group when compared to AS + DH group. In addition, the AS + DH + BBR + 3-MA group exhibited a significantly enlarged plaque, substantial foam cell and macrophage infiltration, increased levels of IL-1β and TNF-α, and decreased LC3-II and P62 (P < 0.01) expression when compared to the AS + DH + BBR group. Conclusion Our results indicated that the BBR could inhibit arterial plaque formation and alleviate the inflammatory response in the aortic tissues in the AS rats with damp-heat syndrome possibly via promoting autophagy. The molecular mechanisms of BBR-mediated protective effects in this animal model still require further investigation.
Collapse
Affiliation(s)
- Xiao Ke
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou, Guangdong 510632, People's Republic of China.,Department of Cardiology, Fuwai Hospital, Chinese Academy of Medical Sciences, Shenzhen, (Shenzhen Sun Yat-Sen Cardiovascular Hospital), Shenzhen, Guangdong 518057, People's Republic of China
| | - Yiteng Huang
- Department of Cardiology, Fuwai Hospital, Chinese Academy of Medical Sciences, Shenzhen, (Shenzhen Sun Yat-Sen Cardiovascular Hospital), Shenzhen, Guangdong 518057, People's Republic of China
| | - Liang Li
- Department of Cardiology, Shenzhen Bao'an Traditional Chinese Medicine Hospital Group, The Affiliated Hospital of Guangzhou University of Chinese Medicine, Shenzhen 518133, People's Republic of China
| | - Fuya Xin
- Department of Cardiology, Shenzhen Bao'an Traditional Chinese Medicine Hospital Group, The Affiliated Hospital of Guangzhou University of Chinese Medicine, Shenzhen 518133, People's Republic of China
| | - Luhua Xu
- Department of Cardiology, Shenzhen Bao'an Traditional Chinese Medicine Hospital Group, The Affiliated Hospital of Guangzhou University of Chinese Medicine, Shenzhen 518133, People's Republic of China
| | - Yuangui Zhang
- Department of Cardiology, Shenzhen Bao'an Traditional Chinese Medicine Hospital Group, The Affiliated Hospital of Guangzhou University of Chinese Medicine, Shenzhen 518133, People's Republic of China
| | - Zhicong Zeng
- Department of Cardiology, Shenzhen Bao'an Traditional Chinese Medicine Hospital Group, The Affiliated Hospital of Guangzhou University of Chinese Medicine, Shenzhen 518133, People's Republic of China
| | - Fengxia Lin
- Department of Cardiology, Shenzhen Bao'an Traditional Chinese Medicine Hospital Group, The Affiliated Hospital of Guangzhou University of Chinese Medicine, Shenzhen 518133, People's Republic of China
| | - Yinzhi Song
- Department of Cardiology, Shenzhen Bao'an Traditional Chinese Medicine Hospital Group, The Affiliated Hospital of Guangzhou University of Chinese Medicine, Shenzhen 518133, People's Republic of China
| |
Collapse
|
167
|
Golonka RM, Xiao X, Abokor AA, Joe B, Vijay-Kumar M. Altered nutrient status reprograms host inflammation and metabolic health via gut microbiota. J Nutr Biochem 2020; 80:108360. [PMID: 32163821 PMCID: PMC7242157 DOI: 10.1016/j.jnutbio.2020.108360] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 02/07/2020] [Accepted: 02/08/2020] [Indexed: 02/07/2023]
Abstract
The metabolism of macro- and micronutrients is a complex and highly regulated biological process. An imbalance in the metabolites and their signaling networks can lead to nonresolving inflammation and consequently to the development of chronic inflammatory-associated diseases. Therefore, identifying the accumulated metabolites and altered pathways during inflammatory disorders would not only serve as "real-time" markers but also help in the development of nutritional therapeutics. In this review, we explore recent research that has delved into elucidating the effects of carbohydrate/calorie restriction, protein malnutrition, lipid emulsions and micronutrient deficiencies on metabolic health and inflammation. Moreover, we describe the integrated stress response in terms of amino acid starvation and lipemia and how this modulates new age diseases such as inflammatory bowel disease and atherosclerosis. Lastly, we explain the latest research on metaflammation and inflammaging. This review focuses on multiple signaling pathways, including, but not limited to, the FGF21-β-hydroxybutryate-NLRP3 axis, the GCN2-eIF2α-ATF4 pathway, the von Hippel-Lindau/hypoxia-inducible transcription factor pathway and the TMAO-PERK-FoxO1 axis. Additionally, throughout the review, we explain how the gut microbiota responds to altered nutrient status and also how antimicrobial peptides generated from nutrient-based signaling pathways can modulate the gut microbiota. Collectively, it must be emphasized that metabolic starvation and inflammation are strongly regulated by both environmental (i.e., nutrition, gut microbiome) and nonenvironmental (i.e., genetics) factors, which can influence the susceptibility to inflammatory disorders.
Collapse
Affiliation(s)
- Rachel M Golonka
- UT Microbiome Consortium, Department of Physiology and Pharmacology, The University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614
| | - Xia Xiao
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Ahmed A Abokor
- UT Microbiome Consortium, Department of Physiology and Pharmacology, The University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614
| | - Bina Joe
- UT Microbiome Consortium, Department of Physiology and Pharmacology, The University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614
| | - Matam Vijay-Kumar
- UT Microbiome Consortium, Department of Physiology and Pharmacology, The University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614.
| |
Collapse
|
168
|
Encapsulation of berberine into liquid crystalline nanoparticles to enhance its solubility and anticancer activity in MCF7 human breast cancer cells. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101756] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
169
|
Adedayo BC, Jesubowale OS, Adebayo AA, Oboh G. Effect of Andrographis paniculata leaves extract on neurobehavioral and biochemical indices in scopolamine-induced amnesic rats. J Food Biochem 2020; 45:e13280. [PMID: 32441354 DOI: 10.1111/jfbc.13280] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/23/2020] [Accepted: 04/24/2020] [Indexed: 12/13/2022]
Abstract
Andrographis paniculata is a medicinal herb that is used to treat various disease conditions due to its pharmacological properties. Thus, this study sought to assess the effect of A. paniculata extract on neurobehavioral and some biochemical parameters in scopolamine-induced amnesic rats. Thirty-five male rats were divided into seven groups and treated with aqueous extract of A. paniculata (50 and 500 mg/kg) and donepezil (5 mg/kg) for 14 days before administration of scopolamine. Behavioral studies (Morris water maze and Y-maze) were carried out to evaluate cognitive dysfunction in scopolamine-induced rats. Biochemical assays such as cholinesterases (AChE and BChE), monoamine oxidase (MAO), and purinergic activities were determined. Results revealed the presence of orientin, quercetin, caffeic acid, apigenin, and gallic acid in A. paniculata. Also, findings from this study showed that aqueous extract of A. paniculata had a modulatory effect on scopolamine-induced cognitive impairment and could be used in the management of memory loss. PRACTICAL APPLICATIONS: Aqueous extract of A. paniculata characterized revealed the presence of polyphenols which are antioxidants. The inhibitory activity possessed by A. paniculata on some enzymes linked to neurodegeneration could be due to the antioxidant activity. Given this, we recommend that results gotten from this study could be used to develop treatment therapy for neurodegeneration. However, in-depth studies should be carried out on the toxic effect of A. paniculata to ascertain a safe dose for treatment.
Collapse
Affiliation(s)
- Bukola Christiana Adedayo
- Functional Foods and Nutraceutical Unit, Department of Biochemistry, Federal University of Technology, Akure, Nigeria
| | - Oluwapelumi S Jesubowale
- Functional Foods and Nutraceutical Unit, Department of Biochemistry, Federal University of Technology, Akure, Nigeria
| | - Adeniyi Abiodun Adebayo
- Functional Foods and Nutraceutical Unit, Department of Biochemistry, Federal University of Technology, Akure, Nigeria.,Department of Chemical Sciences (Biochemistry Option), Joseph Ayo Babalola University, Ikeji-Arakeji, Nigeria
| | - Ganiyu Oboh
- Functional Foods and Nutraceutical Unit, Department of Biochemistry, Federal University of Technology, Akure, Nigeria
| |
Collapse
|
170
|
Palma TV, Lenz LS, Bottari NB, Pereira A, Schetinger MRC, Morsch VM, Ulrich H, Pillat MM, de Andrade CM. Berberine induces apoptosis in glioblastoma multiforme U87MG cells via oxidative stress and independent of AMPK activity. Mol Biol Rep 2020; 47:4393-4400. [PMID: 32410137 DOI: 10.1007/s11033-020-05500-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 05/06/2020] [Indexed: 12/21/2022]
Abstract
Glioblastoma multiforme (GM) is the most prevalent tumor among gliomas and presents the highest mortality rate among brain tumors. Berberine (BBR) is an alkaloid isoquinoline found in medicinal plants such as Coptis chinensis. Studies have been showed that BBR presents protective activity in mesenchymal cells and neurons, and antitumor properties in breast cancer and hepatocarcinoma. The aim of this study was to investigate the antitumor effects of BBR in GM U87MG cells, as well as to identify, whether such effects are mediated by oxidative stress and canonical apoptotic pathways. After treatment with several concentrations of BBR (10, 25, 100 and 250 µM) for 24, 48 and 72 h of exposure, BBR reduce cell viability of U87MG cells in a concentration- and time-dependent manner. Afterwards, it was observed that BBR, starting at a concentration of 25 µM of 24 h exposure, significantly suppressed proliferation and increased early apoptosis (53.5% ± 11.15 of annexin V+ propidium iodide- cells) compared to untreated cells (7.5% ± 4.6). BBR-induced apoptosis was independent from AMPK activity and did not change total caspase-3 and p-p53 levels. Moreover, BBR (25 μM/24 h) increased oxidative stress in U87MG cells, evidenced by high levels of reactive oxygen species, thiobarbituric acid reactive substance and protein carbonylation. Considering the antitumor effects of BBR in U87MG cells, this compound may be a potential candidate for adjuvant GM treatment.
Collapse
Affiliation(s)
- Taís Vidal Palma
- Postgraduate Program in Biological Sciences: Biochemistry Toxicology, Biochemistry and Oxidative Stress Section of the Therapy Laboratory Cellular, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Luana Suéling Lenz
- Postgraduate Program in Biological Sciences: Biochemistry Toxicology, Biochemistry and Oxidative Stress Section of the Therapy Laboratory Cellular, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Nathiele Bianchin Bottari
- Postgraduate Program in Biological Sciences: Biochemistry Toxicological, Department of Chemistry, Center for Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Aline Pereira
- Postgraduate Program in Biological Sciences: Biochemistry Toxicological, Department of Chemistry, Center for Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Maria Rosa Chitolina Schetinger
- Postgraduate Program in Biological Sciences: Biochemistry Toxicological, Department of Chemistry, Center for Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Vera Maria Morsch
- Postgraduate Program in Biological Sciences: Biochemistry Toxicological, Department of Chemistry, Center for Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Henning Ulrich
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP, Brazil
| | - Micheli Mainardi Pillat
- Department of Microbiology and Parasitology, Health Sciences Center, Federal University of Santa Maria, Santa Maria, RS, Brazil.
| | - Cinthia Melazzo de Andrade
- Department of Small Animal Clinic, Center of Rural Sciences, Federal University of Santa Maria-RS, Room 121, Veterinary Hospital Building, Avenue Roraima No. 1000, Santa Maria, RS, 97105900, Brazil.
| |
Collapse
|
171
|
Rusmini P, Cristofani R, Tedesco B, Ferrari V, Messi E, Piccolella M, Casarotto E, Chierichetti M, Cicardi ME, Galbiati M, Geroni C, Lombardi P, Crippa V, Poletti A. Enhanced Clearance of Neurotoxic Misfolded Proteins by the Natural Compound Berberine and Its Derivatives. Int J Mol Sci 2020; 21:ijms21103443. [PMID: 32414108 PMCID: PMC7279252 DOI: 10.3390/ijms21103443] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/08/2020] [Accepted: 05/11/2020] [Indexed: 12/17/2022] Open
Abstract
Background: Accumulation of misfolded proteins is a common hallmark of several neurodegenerative disorders (NDs) which results from a failure or an impairment of the protein quality control (PQC) system. The PQC system is composed by chaperones and the degradative systems (proteasome and autophagy). Mutant proteins that misfold are potentially neurotoxic, thus strategies aimed at preventing their aggregation or at enhancing their clearance are emerging as interesting therapeutic targets for NDs. Methods: We tested the natural alkaloid berberine (BBR) and some derivatives for their capability to enhance misfolded protein clearance in cell models of NDs, evaluating which degradative pathway mediates their action. Results: We found that both BBR and its semisynthetic derivatives promote degradation of mutant androgen receptor (ARpolyQ) causative of spinal and bulbar muscular atrophy, acting mainly via proteasome and preventing ARpolyQ aggregation. Overlapping effects were observed on other misfolded proteins causative of amyotrophic lateral sclerosis, frontotemporal-lobar degeneration or Huntington disease, but with selective and specific action against each different mutant protein. Conclusions: BBR and its analogues induce the clearance of misfolded proteins responsible for NDs, representing potential therapeutic tools to counteract these fatal disorders.
Collapse
Affiliation(s)
- Paola Rusmini
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Dipartimento di Eccellenza 2018-2022, Centro di Eccellenza sulle Malattie Neurodegenerative, Università degli Studi di Milano, 20133 Milan, Italy; (P.R.); (R.C.); (B.T.); (V.F.); (E.M.); (M.P.); (E.C.); (M.C.); (M.E.C.); (M.G.); (V.C.)
| | - Riccardo Cristofani
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Dipartimento di Eccellenza 2018-2022, Centro di Eccellenza sulle Malattie Neurodegenerative, Università degli Studi di Milano, 20133 Milan, Italy; (P.R.); (R.C.); (B.T.); (V.F.); (E.M.); (M.P.); (E.C.); (M.C.); (M.E.C.); (M.G.); (V.C.)
| | - Barbara Tedesco
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Dipartimento di Eccellenza 2018-2022, Centro di Eccellenza sulle Malattie Neurodegenerative, Università degli Studi di Milano, 20133 Milan, Italy; (P.R.); (R.C.); (B.T.); (V.F.); (E.M.); (M.P.); (E.C.); (M.C.); (M.E.C.); (M.G.); (V.C.)
| | - Veronica Ferrari
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Dipartimento di Eccellenza 2018-2022, Centro di Eccellenza sulle Malattie Neurodegenerative, Università degli Studi di Milano, 20133 Milan, Italy; (P.R.); (R.C.); (B.T.); (V.F.); (E.M.); (M.P.); (E.C.); (M.C.); (M.E.C.); (M.G.); (V.C.)
| | - Elio Messi
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Dipartimento di Eccellenza 2018-2022, Centro di Eccellenza sulle Malattie Neurodegenerative, Università degli Studi di Milano, 20133 Milan, Italy; (P.R.); (R.C.); (B.T.); (V.F.); (E.M.); (M.P.); (E.C.); (M.C.); (M.E.C.); (M.G.); (V.C.)
| | - Margherita Piccolella
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Dipartimento di Eccellenza 2018-2022, Centro di Eccellenza sulle Malattie Neurodegenerative, Università degli Studi di Milano, 20133 Milan, Italy; (P.R.); (R.C.); (B.T.); (V.F.); (E.M.); (M.P.); (E.C.); (M.C.); (M.E.C.); (M.G.); (V.C.)
| | - Elena Casarotto
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Dipartimento di Eccellenza 2018-2022, Centro di Eccellenza sulle Malattie Neurodegenerative, Università degli Studi di Milano, 20133 Milan, Italy; (P.R.); (R.C.); (B.T.); (V.F.); (E.M.); (M.P.); (E.C.); (M.C.); (M.E.C.); (M.G.); (V.C.)
| | - Marta Chierichetti
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Dipartimento di Eccellenza 2018-2022, Centro di Eccellenza sulle Malattie Neurodegenerative, Università degli Studi di Milano, 20133 Milan, Italy; (P.R.); (R.C.); (B.T.); (V.F.); (E.M.); (M.P.); (E.C.); (M.C.); (M.E.C.); (M.G.); (V.C.)
| | - Maria Elena Cicardi
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Dipartimento di Eccellenza 2018-2022, Centro di Eccellenza sulle Malattie Neurodegenerative, Università degli Studi di Milano, 20133 Milan, Italy; (P.R.); (R.C.); (B.T.); (V.F.); (E.M.); (M.P.); (E.C.); (M.C.); (M.E.C.); (M.G.); (V.C.)
- Jefferson Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Mariarita Galbiati
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Dipartimento di Eccellenza 2018-2022, Centro di Eccellenza sulle Malattie Neurodegenerative, Università degli Studi di Milano, 20133 Milan, Italy; (P.R.); (R.C.); (B.T.); (V.F.); (E.M.); (M.P.); (E.C.); (M.C.); (M.E.C.); (M.G.); (V.C.)
| | - Cristina Geroni
- Naxospharma srl, Novate Milanese, 20026 Milan, Italy; (C.G.); (P.L.)
| | - Paolo Lombardi
- Naxospharma srl, Novate Milanese, 20026 Milan, Italy; (C.G.); (P.L.)
| | - Valeria Crippa
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Dipartimento di Eccellenza 2018-2022, Centro di Eccellenza sulle Malattie Neurodegenerative, Università degli Studi di Milano, 20133 Milan, Italy; (P.R.); (R.C.); (B.T.); (V.F.); (E.M.); (M.P.); (E.C.); (M.C.); (M.E.C.); (M.G.); (V.C.)
| | - Angelo Poletti
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Dipartimento di Eccellenza 2018-2022, Centro di Eccellenza sulle Malattie Neurodegenerative, Università degli Studi di Milano, 20133 Milan, Italy; (P.R.); (R.C.); (B.T.); (V.F.); (E.M.); (M.P.); (E.C.); (M.C.); (M.E.C.); (M.G.); (V.C.)
- Correspondence:
| |
Collapse
|
172
|
|
173
|
Li Y, Zhu C. Development and In Vitro and In Vivo Evaluation of Microspheres Containing Sodium N-[8-(2-hydroxybenzoyl)amino]caprylate for the Oral Delivery of Berberine Hydrochloride. Molecules 2020; 25:molecules25081957. [PMID: 32340157 PMCID: PMC7221516 DOI: 10.3390/molecules25081957] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/18/2020] [Accepted: 04/20/2020] [Indexed: 01/29/2023] Open
Abstract
Microspheres containing absorption enhancer (sodium N-[8-(2-hydroxybenzoyl)amino]caprylate, SNAC) were developed to enhance the oral bioavailability of berberine hydrochloride (BER) with poor intestinal membrane permeability. Microspheres were prepared and characterized by particle size measurements, scanning electron microscopy, differential scanning calorimetry, BER payload and release, Caco-2 cell monolayer transport, and rat pharmacokinetics. The microspheres were spherical and had uniform size, high encapsulation efficiency and high loading capacity. In vitro release studies showed that BER-loaded microspheres had good sustained release characteristics. The Caco-2 cell monolayer transport study proved that SNAC could significantly enhance permeability of BER 2–3-fold. Pharmacokinetic studies demonstrated a 9.87-fold increase in area under the curve (AUC) of BER mixed with SNAC and a 14.14-fold increase in AUC of microspheres compared with BER alone. These findings indicate that SNAC is a promising absorption enhancer for oral delivery of BER in the form of both solution and microspheres.
Collapse
|
174
|
Syntheses and Structure-Activity Relationships in Growth Inhibition Activity against Human Cancer Cell Lines of 12 Substituted Berberine Derivatives. Molecules 2020; 25:molecules25081871. [PMID: 32325679 PMCID: PMC7221678 DOI: 10.3390/molecules25081871] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/02/2020] [Accepted: 04/05/2020] [Indexed: 01/29/2023] Open
Abstract
In this study, quaternary berberine chloride is used as a lead compound to design and synthesize a series of berberine-12-amine derivatives to evaluate the growth inhibition activity against human cancer cell lines. Forty-two compounds of several series were obtained. The quaternary berberine-12-N,N-di-n-alkylamine chlorides showed the targeted activities with the IC50 values of most active compounds being dozens of times those of the positive control. A significant structure–activity relationship (SAR) was observed. The activities of quaternary berberine-12-N,N-di-n-alkylamine chlorides are significantly stronger than those of the reduced counterparts. In the range of about 6-8 carbon atoms, the activities increase with the elongation of n-alkyl carbon chain of 12-N,N-di-n-alkylamino, and when the carbon atom numbers are more than 6-8, the activities decrease with the elongation of n-alkyl carbon chain. The activities of the tertiary amine structure are significantly higher than that of the secondary amine structure.
Collapse
|
175
|
Wan Q, Qian S, Huang Y, Zhang Y, Peng Z, Li Q, Shu B, Zhu L, Wang M. Drug Discovery for Coronary Artery Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1177:297-339. [PMID: 32246449 DOI: 10.1007/978-981-15-2517-9_8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Abstract
Cardiovascular disease is the number one cause of human morbidity and mortality worldwide. Although cholesterol-lowering drugs, including statins and recently approved PCSK9 inhibitors, together with antithrombotic drugs have been historically successful in reducing the occurrence of coronary artery disease (CAD), the high incidence of CAD remains imposing the largest disease burden on our healthcare systems. We reviewed cardiovascular drugs recently approved or under clinical development, with a particular focus on their pharmacology and limitations. New agents targeting cholesterol/triglyceride lowering bear promise of further cardiovascular risk reduction. Some new antidiabetic agents show cardiovascular benefit in patients with diabetes. Improved antithrombotic agents with diminished bleeding risk are in clinical development. The recent clinical success of the IL-1β antibody in reducing atherothrombosis opens a new era of therapeutic discovery that targets inflammation. Chinese traditional medicine and cardiac regeneration are also discussed. Human genetics studies of CAD and further delineation of key determinants/pathways underlying the residual risk of CAD under current standard therapy will continue to fuel the pipeline of cardiovascular drug discovery.
Collapse
Affiliation(s)
- Qing Wan
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Siyuan Qian
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Yonghu Huang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Yuze Zhang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Zekun Peng
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Qiaoling Li
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Bingyan Shu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Liyuan Zhu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Miao Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China. .,Clinical Pharmacology Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.
| |
Collapse
|
176
|
Dewanjee S, Chakraborty P, Mukherjee B, De Feo V. Plant-Based Antidiabetic Nanoformulations: The Emerging Paradigm for Effective Therapy. Int J Mol Sci 2020; 21:E2217. [PMID: 32210082 PMCID: PMC7139625 DOI: 10.3390/ijms21062217] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/10/2020] [Accepted: 03/19/2020] [Indexed: 12/27/2022] Open
Abstract
Diabetes mellitus is a life-threatening metabolic syndrome. Over the past few decades, the incidence of diabetes has climbed exponentially. Several therapeutic approaches have been undertaken, but the occurrence and risk still remain unabated. Several plant-derived small molecules have been proposed to be effective against diabetes and associated vascular complications via acting on several therapeutic targets. In addition, the biocompatibility of these phytochemicals increasingly enhances the interest of exploiting them as therapeutic negotiators. However, poor pharmacokinetic and biopharmaceutical attributes of these phytochemicals largely restrict their clinical usefulness as therapeutic agents. Several pharmaceutical attempts have been undertaken to enhance their compliance and therapeutic efficacy. In this regard, the application of nanotechnology has been proven to be the best approach to improve the compliance and clinical efficacy by overturning the pharmacokinetic and biopharmaceutical obstacles associated with the plant-derived antidiabetic agents. This review gives a comprehensive and up-to-date overview of the nanoformulations of phytochemicals in the management of diabetes and associated complications. The effects of nanosizing on pharmacokinetic, biopharmaceutical and therapeutic profiles of plant-derived small molecules, such as curcumin, resveratrol, naringenin, quercetin, apigenin, baicalin, luteolin, rosmarinic acid, berberine, gymnemic acid, emodin, scutellarin, catechins, thymoquinone, ferulic acid, stevioside, and others have been discussed comprehensively in this review.
Collapse
Affiliation(s)
- Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India;
| | - Pratik Chakraborty
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India;
| | - Biswajit Mukherjee
- Pharmaceutics Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India;
| | - Vincenzo De Feo
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy
| |
Collapse
|
177
|
Wang Y, Wang P, Xie J, Yin Z, Lin X, Zhao Y, Li Z, Chen T, Gu S, Lv Q, Zhao Z, Xu C. Pharmacokinetic Comparisons of Different Combinations of Yigan Jiangzhi Formula in Rats: Simultaneous Determination of Fourteen Components by UPLC-MS/MS. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2020; 2020:9353975. [PMID: 32280556 PMCID: PMC7114774 DOI: 10.1155/2020/9353975] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/26/2019] [Accepted: 02/14/2020] [Indexed: 06/11/2023]
Abstract
A rapid, specific, and sensitive analysis for simultaneous determination of fourteen components (daidzein, fermononetin, apigenin, luteolin, puerarin, ononin, calycosin-7-O-β-D-glucoside, tanshinol, rosmarinic acid, alkanoic acid, salvianolic acid B, berberine, jatrorrhizin, and palmatine) of Yigan Jiangzhi formula (YGJZF, a clinical experienced formula for damp-heat syndrome) in rat plasma was developed and validated using ultraperformance liquid chromatography coupled with mass spectrometry. Lower limit of quantitation ranged from 0.2-10.0 ng/mL, and the calibration curves showed good linearity over 500 times of measuring range. The validated method was successfully applied to the pharmacokinetics investigation of the fourteen compounds in rat plasma after oral administration of two different doses of YGJZF. Compared with the low-dose group of YGJZF, the high-dose group showed significant increase (P < 0.01 or P < 0.05) in maximum plasma concentration, maximum concentration time, and area under the plasma concentration-time curve and decrease (P < 0.01 or P < 0.05) in clearance of most of the fourteen analytes, which suggested that the bioavailability of these components could be enhanced by increasing dosage. The above results may provide useful information for cognizing the relationship between in vitro and in vivo data of the fourteen bioactive ingredients of YGJZF and further guiding rational clinical drug prescription.
Collapse
Affiliation(s)
- Yang Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300112, China
| | - Ping Wang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Jun Xie
- Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Zhaorui Yin
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300112, China
| | - Xiaoyan Lin
- Tianjin Chase Sun Pharmaceutical Co., Ltd., Tianjin 301700, China
| | - Yuanhong Zhao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300112, China
| | - Zheng Li
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300112, China
| | - Tao Chen
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300112, China
| | - Shuang Gu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300112, China
| | - Qiang Lv
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Zhili Zhao
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Changhua Xu
- Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| |
Collapse
|
178
|
Zhang JQ, Wang R, Zhou T, Zhao Q, Zhao CC, Ma BL. Pharmacokinetic incompatibility of the Huanglian-Gancao herb pair. BMC Complement Med Ther 2020; 20:61. [PMID: 32087732 PMCID: PMC7076871 DOI: 10.1186/s12906-020-2845-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 02/06/2020] [Indexed: 11/10/2022] Open
Abstract
Background Pharmacokinetic interaction is one of the most important indices for the evaluation of the compatibility of herbal medicines. Both Gancao (Glycyrrhizae Radix et Rhizoma) and Huanglian (Coptidis Rhizoma) are commonly used traditional Chinese medicines (TCMs). In this study, the influence of Gancao on the pharmacokinetics of Huanglian was systematically studied by using berberine as a pharmacokinetic marker. Methods Extracts of the herbal pieces of Huanglian and the herb pair (Huanglian plus Gancao) were prepared with boiling water. The concentration of berberine in the samples was analyzed using liquid chromatography-mass spectrometry. The total amounts of berberine in all extract samples were compared. Comparative pharmacokinetic studies of Huanglian and the herb pair were conducted in ICR mice. In vitro berberine absorption and efflux were studied using mice gut sacs. The equilibrium solubility of berberine in the extracts was determined. The in vitro dissolution of berberine was comparatively studied using a rotating basket method. Results Gancao significantly reduced berberine exposure in the portal circulation (425.8 ng·h/mL vs. 270.4 ng·h/mL) and the liver (29,500.8 ng·h/mL vs. 15,422.4 ng·h/mL) of the mice. In addition, Gancao decreased the peak concentration (Cmax) of berberine in the portal circulation (104.3 ng·h/mL vs. 76.5 ng·h/mL) and liver (4926.1 ng·h/mL vs. 2642.8 ng·h/mL) of mice. Significant influences of Gancao on the amount of berberine extracted (32% reduction), the solubility of berberine (34.7% compared with the control group), and dissolution (88.7% vs. 66.1% at 15 min in acid buffer and 68% vs. 51.8% at 15 min in phosphate buffer) were also revealed. Comparative pharmacokinetic studies in ICR mice indicated that the formation of sediment was unfavorable in terms of berberine absorption (345.3 ng·h/mL vs. 119.8 ng·h/mL). Conclusions Gancao was able to reduce intestinal absorption and in vivo exposure of berberine in Huanglian via the formation of sediment, which caused reductions in the extracted amount, solubility, and dissolution of berberine.
Collapse
Affiliation(s)
- Ji-Quan Zhang
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Rui Wang
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ting Zhou
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Cai Lun Road 1200, Shanghai, 201203, China
| | - Qing Zhao
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Cai Lun Road 1200, Shanghai, 201203, China
| | - Chun-Cao Zhao
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Bing-Liang Ma
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Cai Lun Road 1200, Shanghai, 201203, China.
| |
Collapse
|
179
|
Synthesis and In Vitro Photocytotoxicity of 9-/13-Lipophilic Substituted Berberine Derivatives as Potential Anticancer Agents. Molecules 2020; 25:molecules25030677. [PMID: 32033326 PMCID: PMC7036939 DOI: 10.3390/molecules25030677] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 01/29/2020] [Accepted: 02/02/2020] [Indexed: 12/14/2022] Open
Abstract
The objective of this study was to synthesize the 9-/13-position substituted berberine derivatives and evaluate their cytotoxic and photocytotoxic effects against three human cancer cell lines. Among all the synthesized compounds, 9-O-dodecyl- (5e), 13-dodecyl- (6e), and 13-O-dodecyl-berberine (7e) exhibited stronger growth inhibition against three human cancer cell lines, (HepG2, HT-29 and BFTC905), in comparison with structurally related berberine (1). These three compounds also showed the photocytotoxicity in human cancer cells in a concentration-dependent and light dose-dependent manner. Through flow cytometry analysis, we found out a lipophilic group at the 9-/13-position of berberine may have facilitated its penetration into test cells and hence enhanced its photocytotoxicity on the human liver cancer cell HepG2. Further, in cell cycle analysis, 5e, 6e, and 7e induced HepG2 cells to arrest at the S phase and caused apoptosis upon irradiation. In addition, photodynamic treatment of berberine derivatives 5e, 6e, and 7e again showed a significant photocytotoxic effects on HepG2 cells, induced remarkable cell apoptosis, greatly increased intracellular ROS level, and the loss of mitochondrial membrane potential. These results over and again confirmed that berberine derivatives 5e, 6e, and 7e greatly enhanced photocytotoxicity. Taken together, the test data led us to conclude that berberine derivatives with a dodecyl group at the 9-/13-position could be great candidates for the anti-liver cancer medicines developments.
Collapse
|
180
|
Oxyberberine, a novel gut microbiota-mediated metabolite of berberine, possesses superior anti-colitis effect: Impact on intestinal epithelial barrier, gut microbiota profile and TLR4-MyD88-NF-κB pathway. Pharmacol Res 2020; 152:104603. [DOI: 10.1016/j.phrs.2019.104603] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 12/11/2019] [Accepted: 12/13/2019] [Indexed: 12/12/2022]
|
181
|
Gao Y, Wang F, Song Y, Liu H. The status of and trends in the pharmacology of berberine: a bibliometric review [1985-2018]. Chin Med 2020; 15:7. [PMID: 31988653 PMCID: PMC6971869 DOI: 10.1186/s13020-020-0288-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 01/09/2020] [Indexed: 12/20/2022] Open
Abstract
Berberine has significant antibacterial and antipyretic effects and is a commonly used drug for treating infectious diarrhoea. The current research data show that the pharmacological effects of berberine are numerous and complex, and researchers have been enthusiastic about this field. To allow researchers to quickly understand the field and to provide references for the direction of research, using bibliometrics, we analysed 1426 articles, dating from 1985 to 2018, in the field of berberine pharmacology. The research articles we found came from 69 countries/regions, 1381 institutions, 5675 authors, and 325 journals; they contained 3794 key words; they were written in 7 languages; and they were of 2 article types. This study summarizes and discusses the evolution of the historical themes of berberine pharmacology as well as the status quo and the future development directions from a holistic perspective.
Collapse
Affiliation(s)
- Yu Gao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Fengxue Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yanjun Song
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Haibo Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| |
Collapse
|
182
|
Enhanced antibacterial potential of berberine via synergism with chitosan nanoparticles. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.matpr.2020.05.506] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
183
|
Dang Y, An Y, He J, Huang B, Zhu J, Gao M, Zhang S, Wang X, Yang B, Xie Z. Berberine ameliorates cellular senescence and extends the lifespan of mice via regulating p16 and cyclin protein expression. Aging Cell 2020; 19:e13060. [PMID: 31773901 PMCID: PMC6974710 DOI: 10.1111/acel.13060] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 09/15/2019] [Accepted: 10/04/2019] [Indexed: 01/05/2023] Open
Abstract
Although aging and senescence have been extensively studied in the past few decades, however, there is lack of clinical treatment available for anti‐aging. This study presents the effects of berberine (BBR) on the aging process resulting in a promising extension of lifespan in model organisms. BBR extended the replicative lifespan, improved the morphology, and boosted rejuvenation markers of replicative senescence in human fetal lung diploid fibroblasts (2BS and WI38). BBR also rescued senescent cells with late population doubling (PD). Furthermore, the senescence‐associated β‐galactosidase (SA‐β‐gal)‐positive cell rates of late PD cells grown in the BBR‐containing medium were ~72% lower than those of control cells, and its morphology resembled that of young cells. Mechanistically, BBR improved cell growth and proliferation by promoting entry of cell cycles from the G0 or G1 phase to S/G2‐M phase. Most importantly, BBR extended the lifespan of chemotherapy‐treated mice and naturally aged mice by ~52% and ~16.49%, respectively. The residual lifespan of the naturally aged mice was extended by 80%, from 85.5 days to 154 days. The oral administration of BBR in mice resulted in significantly improved health span, fur density, and behavioral activity. Therefore, BBR may be an ideal candidate for the development of an anti‐aging medicine.
Collapse
Affiliation(s)
- Yao Dang
- State Key Laboratory of Natural and Biomimetic Drugs Department of Pharmacology School of Basic Medical Sciences Peking University Beijing China
| | - Yongpan An
- State Key Laboratory of Natural and Biomimetic Drugs Department of Pharmacology School of Basic Medical Sciences Peking University Beijing China
| | - Jinzhao He
- State Key Laboratory of Natural and Biomimetic Drugs Department of Pharmacology School of Basic Medical Sciences Peking University Beijing China
| | - Boyue Huang
- State Key Laboratory of Natural and Biomimetic Drugs Department of Pharmacology School of Basic Medical Sciences Peking University Beijing China
| | - Jie Zhu
- State Key Laboratory of Natural and Biomimetic Drugs Department of Pharmacology School of Basic Medical Sciences Peking University Beijing China
| | - Miaomiao Gao
- State Key Laboratory of Natural and Biomimetic Drugs Department of Pharmacology School of Basic Medical Sciences Peking University Beijing China
| | - Shun Zhang
- State Key Laboratory of Natural and Biomimetic Drugs Department of Pharmacology School of Basic Medical Sciences Peking University Beijing China
| | - Xin Wang
- State Key Laboratory of Natural and Biomimetic Drugs Department of Pharmacology School of Basic Medical Sciences Peking University Beijing China
| | - Baoxue Yang
- State Key Laboratory of Natural and Biomimetic Drugs Department of Pharmacology School of Basic Medical Sciences Peking University Beijing China
- Key Laboratory of Molecular Cardiovascular Sciences Ministry of Education Beijing China
| | - Zhengwei Xie
- State Key Laboratory of Natural and Biomimetic Drugs Department of Pharmacology School of Basic Medical Sciences Peking University Beijing China
| |
Collapse
|
184
|
Zheng Y, Gou X, Zhang L, Gao H, Wei Y, Yu X, Pang B, Tian J, Tong X, Li M. Interactions Between Gut Microbiota, Host, and Herbal Medicines: A Review of New Insights Into the Pathogenesis and Treatment of Type 2 Diabetes. Front Cell Infect Microbiol 2020; 10:360. [PMID: 32766169 PMCID: PMC7379170 DOI: 10.3389/fcimb.2020.00360] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 06/10/2020] [Indexed: 12/12/2022] Open
Abstract
Herbal medicines (HMs) are a major subset of complementary and alternative medicine. They have been employed for the efficient clinical management of type 2 diabetes mellitus (T2DM) for centuries. However, the related underlying mechanisms still remain to be elucidated. It has been found out that microbiota is implicated in the pathogenesis and treatment of T2DM. An interplay between gut microbiota and host occurs mainly at the gastrointestinal mucosal barrier. The host movements influence the composition and abundance of gut microbiota, whereas gut microbiota in turn modulate the metabolic and immunological activities of the host. Intestinal dysbiosis, endotoxin-induced metabolic inflammation, immune response disorder, bacterial components and metabolites, and decreased production of short-chain fatty acids are considered significant pathogenic mechanisms underlying T2DM. The interaction between gut microbiota and HMs during T2DM treatment has been investigated in human, animal, and in vitro studies. HMs regulate the composition of beneficial and harmful bacteria and decrease the inflammation caused by gut microbiota. Furthermore, the metabolism of gut microbiota modulates HM biotransformation. In this review, we have summarized such research findings, with the aim to improve our understanding of the pathogenesis and potential therapeutic mechanisms of HMs in T2DM and to provide new insights into specific targeted HM-based therapies and drug discovery.
Collapse
Affiliation(s)
- Yujiao Zheng
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaowen Gou
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Lili Zhang
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hanjia Gao
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Yu Wei
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaotong Yu
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Bing Pang
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiaxing Tian
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Jiaxing Tian
| | - Xiaolin Tong
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Xiaolin Tong
| | - Min Li
- Molecular Biology Laboratory, Guang'anmen Hospital, Chinese Academy of Traditional Chinese Medicine, Beijing, China
- Min Li
| |
Collapse
|
185
|
Xu B, Yan Y, Huang J, Yin B, Pan Y, Ma L. Cortex Phellodendri extract's anti-diarrhea effect in mice related to its modification of gut microbiota. Biomed Pharmacother 2019; 123:109720. [PMID: 31884345 DOI: 10.1016/j.biopha.2019.109720] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 11/30/2019] [Accepted: 12/04/2019] [Indexed: 12/20/2022] Open
Abstract
Cortex Phellodendri extract (CPE) has been used in China to treat diarrhea whereas the underlying mechanisms remain poorly understood. Given that dysbiosis of gut microbiota is a potential reason for diarrhea, and that oral CPE has a low absorption rate in intestine, we hypothesized that modification of gut microbiota is an important factor in CPE's anti-diarrhea effect. To test this hypothesis, we established a diarrhea model by challenging post-weaning mice with oral Enterotoxigenic-Escherichia coli (ETEC), and then the mice were treated with two doses of CPE (80 mg/kg bodyweight and 160 mg/kg bodyweight) or the vehicle control (phosphate buffered saline). Diarrhea indices, inflammatory factors, morphology of jejunum, short-chain fatty acids (SCFAs), and serum endocrine were determined. Modification of gut microbiota was analyzed using 16S rDNA high-throughput sequencing. The changes in functional profiles of gut microbiota were predicted using software PICRUSt. We then explored the association between CPE-responding bacteria and the symptoms indices with the spearman's rank correlation coefficient and significance test. Compared with diarrheal mice, CPE decreased Gut/Carcass ratio and water content of stool, increased goblet cell density and villus height/crypt depth of jejunum, as well as decreased inflammatory indices (Tumour Necrosis Factor-α, Myeloperoxidase and Interleukin-1α). CPE shifted the gut microbiota significantly by increasing alpha diversity (observed species, ace, Shannon, and Simpson) and restoring the gut microbiota. CPE increased Firmicutes and decreased Bacteroidetes. The reduced genus Prevotella, Acinetobacter, and Morganella were positively associated with the diarrhea indices, whereas increased genus Odoribacter, Rikenella, and Roseburia were negatively associated with the diarrhea indices. The abundance of carbohydrate metabolism-related gene and SCFAs-producing bacteria were increased, which was evidenced by increased butyric acid and total SCFAs concentration in the caecum. Consequently, endocrine peptides glucagon-like peptide-1, epidermal growth factor, and peptide tyrosine tyrosine in serum were elevated. CONCLUSIONS: CPE shows a shift function on the gut microbiota in alleviating the diarrhea of mice in a dose-dependent manner. In addition, the microbial metabolites SCFAs may mediate CPE's anti-diarrhea effect by enhancing endocrine secretion in mice.
Collapse
Affiliation(s)
- Baoyang Xu
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China; Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, 430070, Hubei, China
| | - Yiqin Yan
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China; Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, 430070, Hubei, China
| | - Juncheng Huang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China; Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, 430070, Hubei, China
| | - Boqi Yin
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China; Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, 430070, Hubei, China
| | - Yunxin Pan
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China; Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, 430070, Hubei, China
| | - Libao Ma
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China; Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, 430070, Hubei, China.
| |
Collapse
|
186
|
Sun W, Zuo L, Zhao T, Zhu Z, Shan G. Five solvates of a multicomponent pharmaceutical salt formed by berberine and diclofenac. ACTA CRYSTALLOGRAPHICA SECTION C-STRUCTURAL CHEMISTRY 2019; 75:1644-1651. [PMID: 31802754 DOI: 10.1107/s2053229619015432] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 11/14/2019] [Indexed: 11/10/2022]
Abstract
A multicomponent pharmaceutical salt formed by the isoquinoline alkaloid berberine (5,6-dihydro-9,10-dimethoxybenzo[g]-1,3-benzodioxolo[5,6-a]quinolizinium, BBR) and the nonsteroidal anti-inflammatory drug diclofenac {2-[2-(2,6-dichloroanilino)phenyl]acetic acid, DIC} was discovered. Five solvates of the pharmaceutical salt form were obtained by solid-form screening. These five multicomponent solvates are the dihydrate (BBR-DIC·2H2O or C20H18NO4+·C14H10Cl2NO2-·2H2O), the dichloromethane hemisolvate dihydrate (BBR-DIC·0.5CH2Cl2·2H2O or C20H18NO4+·C14H10Cl2NO2-·0.5CH2Cl2·2H2O), the ethanol monosolvate (BBR-DIC·C2H5OH or C20H18NO4+·C14H10Cl2NO2-·C2H5OH), the methanol monosolvate (BBR-DIC·CH3OH or C20H18NO4+·C14H10Cl2NO2-·CH3OH) and the methanol disolvate (BBR-DIC·2CH3OH or C20H18NO4+·C14H10Cl2NO2-·2CH3OH), and their crystal structures were determined. All five solvates of BBR-DIC (1:1 molar ratio) were crystallized from different organic solvents. Solvent molecules in a pharmaceutical salt are essential components for the formation of crystalline structures and stabilization of the crystal lattices. These solvates have strong intermolecular O...H hydrogen bonds between the DIC anions and solvent molecules. The intermolecular hydrogen-bond interactions were visualized by two-dimensional fingerprint plots. All the multicomponent solvates contained intramolecular N-H...O hydrogen bonds. Various π-π interactions dominate the packing structures of the solvates.
Collapse
Affiliation(s)
- Wei Sun
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Limin Zuo
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Ting Zhao
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Zhiling Zhu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Guangzhi Shan
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| |
Collapse
|
187
|
Wang JT, Peng JG, Zhang JQ, Wang ZX, Zhang Y, Zhou XR, Miao J, Tang L. Novel berberine-based derivatives with potent hypoglycemic activity. Bioorg Med Chem Lett 2019; 29:126709. [PMID: 31629632 DOI: 10.1016/j.bmcl.2019.126709] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/30/2019] [Accepted: 09/16/2019] [Indexed: 12/24/2022]
Abstract
Four series of berberine derivatives were designed and synthesized. All the synthetic compounds were screened for in vitro glucose consumption activity in HepG2 cell lines. The results showed that most of the tested compounds exhibited potent hypoglycemic activity, and the most potent compound 20b exhibited its potency by 3.23-fold of berberine, 1.39-fold of metformin and 1.20-fold of rosiglitazone, respectively. Western blot assay indicated these novel berberine-based derivatives executed their glucose-decreasing activity via the activation of AMPK pathway.
Collapse
Affiliation(s)
- Jian-Ta Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmacy, Guizhou Medical University, Guiyang 550004, China; School of Basic Medical Sciences, Guizhou Medical University, Guiyang 550004, China; Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guiyang 550004, China
| | - Jin-Gang Peng
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmacy, Guizhou Medical University, Guiyang 550004, China
| | - Ji-Quan Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmacy, Guizhou Medical University, Guiyang 550004, China; Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guiyang 550004, China
| | - Zhong-Xiao Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmacy, Guizhou Medical University, Guiyang 550004, China
| | - Yi Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmacy, Guizhou Medical University, Guiyang 550004, China; Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guiyang 550004, China
| | - Xun-Rong Zhou
- The Second Affiliated Hospital of Guizhou Chinese Traditional Medicine University, Guiyang 550001, China
| | - Jing Miao
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmacy, Guizhou Medical University, Guiyang 550004, China
| | - Lei Tang
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmacy, Guizhou Medical University, Guiyang 550004, China; Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guiyang 550004, China.
| |
Collapse
|
188
|
Xu HY, Liu CS, Huang CL, Chen L, Zheng YR, Huang SH, Long XY. Nanoemulsion improves hypoglycemic efficacy of berberine by overcoming its gastrointestinal challenge. Colloids Surf B Biointerfaces 2019; 181:927-934. [DOI: 10.1016/j.colsurfb.2019.06.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 06/03/2019] [Accepted: 06/04/2019] [Indexed: 12/19/2022]
|
189
|
Rezaee R, Monemi A, SadeghiBonjar MA, Hashemzaei M. Berberine Alleviates Paclitaxel-Induced Neuropathy. J Pharmacopuncture 2019; 22:90-94. [PMID: 31338248 PMCID: PMC6645340 DOI: 10.3831/kpi.2019.22.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 02/11/2019] [Accepted: 03/21/2019] [Indexed: 01/23/2023] Open
Abstract
Objectives Paclitaxel (PTX) as an anticancer drug used against solid cancers, possesses adverse reactions such as neuropathic pain which has confined its use. PTX-induced neuropathic pain is mediated via activation of oxidative stress. Berberine (BER), an isoquinoline phytochemical found in several plants, exerts strong antioxidant and painkilling properties. In the current study, we aimed to evaluate pain-relieving effect of BER in a mouse model of PTX-induced neuropathic pain. Methods This study was done using 42 male albino mice that were randomly divided into 6 groups (n = 7) as follow: Sham-operated (not treated with PTX), negative control group (PTX-treated mice receiving normal saline), BER 5, 10, and 20 mg/kg (PTX-treated mice receiving BER) and positive control group (PTX-treated mice receiving imipramine 10 mg/kg). Neuropathic pain was induced by intraperitoneal administration of four doses of PTX (2 mg/kg/day) on days 1, 3, 5 and 7. Then, on day 7, hot plate test was done to assess latency to heat to measure possible anti-neuropathic pain effect of BER. Results Four doses of PTX 2 mg/kg/day induced neuropathy that was reduced by BER at all time-points (i.e. 0, 30, 60, 90 and 120 min) after injection (P < 0.001 in comparison to control). The statistical analysis of data showed significant differences between groups (P < 0.001 in comparison to negative control), at 30, 60, 90 and 120 min after injection of BER 5, 10 and 20 mg/kg; in other words, 30, 60, 90 and 120 min after BER administration, neuropathic pain was significantly reduced as compared to normal saline-treated mice. Conclusion Altogether, our results showed that PTX could induce neuropathic pain as reflected by hyperalgesia and BER could alleviate PTX-induced thermal hyperalgesia.
Collapse
Affiliation(s)
- Ramin Rezaee
- Clinical Research Unit, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Aristotle University of Thessaloniki, Department of Chemical Engineering, Environmental Engineering Laboratory, University Campus, Thessaloniki 54124, Greece.,HERACLES Research Center on the Exposome and Health, Center for Interdisciplinary Research and Innovation, Balkan Center, Bldg. B, 10th km Thessaloniki-Thermi, Greece
| | - Alireza Monemi
- Students research Committee, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Mohammad Amin SadeghiBonjar
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Zabol University of Medical Sciences, Zabol, Iran
| | - Mahmoud Hashemzaei
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Zabol University of Medical Sciences, Zabol, Iran
| |
Collapse
|
190
|
Berberine-loaded solid proliposomes prepared using solution enhanced dispersion by supercritical CO2: Sustained release and bioavailability enhancement. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.03.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
191
|
Milata V, Svedova A, Barbierikova Z, Holubkova E, Cipakova I, Cholujova D, Jakubikova J, Panik M, Jantova S, Brezova V, Cipak L. Synthesis and Anticancer Activity of Novel 9- O-Substituted Berberine Derivatives. Int J Mol Sci 2019; 20:ijms20092169. [PMID: 31052469 PMCID: PMC6539820 DOI: 10.3390/ijms20092169] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 04/25/2019] [Accepted: 04/30/2019] [Indexed: 01/05/2023] Open
Abstract
Berberine is a bioactive isoquinoline alkaloid derived from many plants. Although berberine has been shown to inhibit growth and induce apoptosis of several tumor cell lines, its poor absorption and moderate activity hamper its full therapeutic potential. Here, we describe the synthesis of a series of 9-O-substituted berberine derivatives with improved antiproliferative and apoptosis-inducing activities. An analysis of novel berberine derivatives by EPR spectroscopy confirmed their similar photosensitivity and analogous behavior upon UVA irradiation as berberine, supporting their potential to generate ROS. Improved antitumor activity of novel berberine derivatives was revealed by MTT assay, by flow cytometry and by detection of apoptotic DNA fragmentation and caspase-3 activation, respectively. We showed that novel berberine derivatives are potent inhibitors of growth of HeLa and HL-60 tumor cell lines with IC50 values ranging from 0.7 to 16.7 µM for HL-60 cells and 36 to >200 µM for HeLa cells after 48 h treatment. Further cell cycle analysis showed that the observed inhibition of growth of HL-60 cells treated with berberine derivatives was due to arresting these cells in the G2/M and S phases. Most strikingly, we found that berberine derivative 3 (9-(3-bromopropoxy)-10-methoxy-5,6-dihydro-[1,3]dioxolo[4,5-g]isoquino[3,2-a] isoquinolin-7-ylium bromide) possesses 30-fold superior antiproliferative activity with an IC50 value of 0.7 µM and 6-fold higher apoptosis-inducing activity in HL-60 leukemia cells compared to berberine. Therefore, further studies are merited of the antitumor activity in leukemia cells of this berberine derivative.
Collapse
Affiliation(s)
- Viktor Milata
- Institute of Organic Chemistry, Catalysis and Petrochemistry, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinskeho 9, 812 37 Bratislava, Slovakia.
| | - Alexandra Svedova
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinskeho 9, 812 37 Bratislava, Slovakia.
| | - Zuzana Barbierikova
- Institute of Physical Chemistry and Chemical Physics, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinskeho 9, 812 37 Bratislava, Slovakia.
| | - Eva Holubkova
- Institute of Organic Chemistry, Catalysis and Petrochemistry, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinskeho 9, 812 37 Bratislava, Slovakia.
| | - Ingrid Cipakova
- Cancer Research Institute, Biomedical Research Center, University Science Park for Biomedicine, Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia.
| | - Dana Cholujova
- Cancer Research Institute, Biomedical Research Center, University Science Park for Biomedicine, Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia.
| | - Jana Jakubikova
- Cancer Research Institute, Biomedical Research Center, University Science Park for Biomedicine, Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia.
| | - Miroslav Panik
- Institute of Management, Slovak University of Technology, 812 33 Bratislava, Slovakia.
| | - Sona Jantova
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinskeho 9, 812 37 Bratislava, Slovakia.
| | - Vlasta Brezova
- Institute of Physical Chemistry and Chemical Physics, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinskeho 9, 812 37 Bratislava, Slovakia.
| | - Lubos Cipak
- Cancer Research Institute, Biomedical Research Center, University Science Park for Biomedicine, Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia.
| |
Collapse
|
192
|
Jia Q, Zhang L, Zhang J, Pei F, Zhu S, Sun Q, Duan L. Fecal Microbiota of Diarrhea-Predominant Irritable Bowel Syndrome Patients Causes Hepatic Inflammation of Germ-Free Rats and Berberine Reverses It Partially. BIOMED RESEARCH INTERNATIONAL 2019; 2019:4530203. [PMID: 31073525 PMCID: PMC6470425 DOI: 10.1155/2019/4530203] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 12/20/2018] [Accepted: 12/26/2018] [Indexed: 02/06/2023]
Abstract
Effects of the microbiome associated with diarrhea-predominant irritable bowel syndrome (IBS-D) on the gut have been reported, but no study has reported the effects of the IBS-D gut microbiome on the liver. We transplanted the fecal microbiota from an IBS-D patient and from a healthy volunteer to GF rats. The hepatic inflammation, serum biochemical parameters and metabolome, fecal microbiota profile, fecal short-chain fatty acids (SCFAs), and correlations among them before and after berberine intervention were assessed. Compared with the healthy control fecal microbiome transplantation (FMT) rats, the fecal microbiota of IBS-D patients induces significant Kupffer cell hyperplasia, hepatic sinusoid hypertrophy, and elevated levels of hepatic tumor necrosis factor-α and interferon-γ and decreases the synthesis of ALB in GF rats. This is possibly related to Faecalibacterium and Bifidobacterium attributable to fecal formate, acetate, and propionate levels, which are associated with the host linoleic acid pathway. Berberine can partially reverse the Kupffer cell hyperplasia, Faecalibacterium, fecal formate, acetate, and propionate by modulating the gut microbiome composition. These results may imply that IBS-D not only is an intestinal functional disorder but can cause liver inflammation, thus providing some implications regarding the clinical cognition and treatment of IBS-D.
Collapse
Affiliation(s)
- Qiong Jia
- Department of Gastroenterology, Peking University Third Hospital, No. 49 North Garden Rd., Haidian District, Beijing 100191, China
| | - Lu Zhang
- Department of Gastroenterology, Peking University Third Hospital, No. 49 North Garden Rd., Haidian District, Beijing 100191, China
| | - Jindong Zhang
- Department of Gastroenterology, Peking University Third Hospital, No. 49 North Garden Rd., Haidian District, Beijing 100191, China
| | - Fei Pei
- Department of Pathology, Peking University Health Science Center, No. 38 Xueyuan Rd., Haidian District, Beijing 100191, China
| | - Shiwei Zhu
- Department of Gastroenterology, Peking University Third Hospital, No. 49 North Garden Rd., Haidian District, Beijing 100191, China
| | - Qinghua Sun
- Department of Gastroenterology, Peking University Third Hospital, No. 49 North Garden Rd., Haidian District, Beijing 100191, China
| | - Liping Duan
- Department of Gastroenterology, Peking University Third Hospital, No. 49 North Garden Rd., Haidian District, Beijing 100191, China
| |
Collapse
|
193
|
Fogacci F, Grassi D, Rizzo M, Cicero AF. Metabolic effect of berberine-silymarin association: A meta-analysis of randomized, double-blind, placebo-controlled clinical trials. Phytother Res 2019; 33:862-870. [PMID: 30632209 PMCID: PMC6590227 DOI: 10.1002/ptr.6282] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 11/17/2018] [Accepted: 12/12/2018] [Indexed: 01/13/2023]
Abstract
The aim of this study is to assess the impact of a combination of berberine and silymarin on serum lipids and fasting plasma glucose (FPG) through a systematic review of literature and meta-analysis of the available randomized, double-blind, placebo-controlled clinical trials (RCTs). A systematic literature search in SCOPUS, PubMed-Medline, ISI Web of Science, and Google Scholar databases was conducted up to October 2, 2018, in order to identify RCTs assessing changes in plasma concentrations of total cholesterol (TC), triglycerides (TG), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C) and FPG during treatment with berberine and silymarin in combination. Two review authors independently extracted data on study characteristics, methods, and outcomes. Quantitative data synthesis was performed using a random-effects model. We identified five eligible RCTs, with 497 subjects overall included. Berberine and silymarin combination treatment exerted a positive effect on TC (mean difference [MD]: -25.3, 95% CI [-39.2, -11.4] mg/dl; p < 0.001), TG (MD: -28, 95% CI [-35.3, -20.6] mg/dl; p < 0.001), HDL-C [MD: 6, 95% CI [3.2, 8.8] mg/dl; p < 0.001), LDL-C (MD: -29.1, 95% CI [-39.7, -18.6] mg/dl; p < 0.001), and FPG (MD: -7.5, 95% CI [-13, -1.9] mg/dl; p = 0.008). The present findings suggest that the coadministration of berberine and silymarin is associated with an advantageous improvement in lipid and glucose profile, suggesting the possible use of this nutraceutical combination in order to promote the cardiometabolic health.
Collapse
Affiliation(s)
- Federica Fogacci
- Medical and Surgical Sciences DepartmentAlma Mater Studiorum University of BolognaBolognaItaly
| | - Davide Grassi
- Department of Life, Health, and Environmental SciencesUniversity of L'AquilaL'AquilaItaly
- Italian Nutraceutical Society (SINut)BolognaItaly
| | - Manfredi Rizzo
- Department of Internal Medicine and Medical SpecialtiesUniversity of PalermoPalermoItaly
- Italian Nutraceutical Society (SINut)BolognaItaly
| | - Arrigo F.G. Cicero
- Medical and Surgical Sciences DepartmentAlma Mater Studiorum University of BolognaBolognaItaly
- Italian Nutraceutical Society (SINut)BolognaItaly
| |
Collapse
|
194
|
Feng X, Sureda A, Jafari S, Memariani Z, Tewari D, Annunziata G, Barrea L, Hassan ST, Šmejkal K, Malaník M, Sychrová A, Barreca D, Ziberna L, Mahomoodally MF, Zengin G, Xu S, Nabavi SM, Shen AZ. Berberine in Cardiovascular and Metabolic Diseases: From Mechanisms to Therapeutics. Theranostics 2019; 9:1923-1951. [PMID: 31037148 PMCID: PMC6485276 DOI: 10.7150/thno.30787] [Citation(s) in RCA: 255] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 02/05/2019] [Indexed: 12/11/2022] Open
Abstract
Cardiovascular and metabolic diseases (CVMD) are the leading causes of death worldwide, underscoring the urgent necessity to develop new pharmacotherapies. Berberine (BBR) is an eminent component of traditional Chinese and Ayurvedic medicine for more than 2000 years. Recently, BBR has attracted much interest for its pharmacological actions in treating and/or managing CVMD. Recent discoveries of basic, translational and clinical studies have identified many novel molecular targets of BBR (such as AMPK, SIRT1, LDLR, PCSK9, and PTP1B) and provided novel evidences supporting the promising therapeutic potential of BBR to combat CVMD. Thus, this review provides a timely overview of the pharmacological properties and therapeutic application of BBR in CVMD, and underlines recent pharmacological advances which validate BBR as a promising lead drug against CVMD.
Collapse
|
195
|
Madeo F, Carmona-Gutierrez D, Hofer SJ, Kroemer G. Caloric Restriction Mimetics against Age-Associated Disease: Targets, Mechanisms, and Therapeutic Potential. Cell Metab 2019; 29:592-610. [PMID: 30840912 DOI: 10.1016/j.cmet.2019.01.018] [Citation(s) in RCA: 374] [Impact Index Per Article: 62.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The increase in life expectancy has boosted the incidence of age-related pathologies beyond social and economic sustainability. Consequently, there is an urgent need for interventions that revert or at least prevent the pathogenic age-associated deterioration. The permanent or periodic reduction of calorie intake without malnutrition (caloric restriction and fasting) is the only strategy that reliably extends healthspan in mammals including non-human primates. However, the strict and life-long compliance with these regimens is difficult, which has promoted the emergence of caloric restriction mimetics (CRMs). We define CRMs as compounds that ignite the protective pathways of caloric restriction by promoting autophagy, a cytoplasmic recycling mechanism, via a reduction in protein acetylation. Here, we describe the current knowledge on molecular, cellular, and organismal effects of known and putative CRMs in mice and humans. We anticipate that CRMs will become part of the pharmacological armamentarium against aging and age-related cardiovascular, neurodegenerative, and malignant diseases.
Collapse
Affiliation(s)
- Frank Madeo
- Institute of Molecular Biosciences, University of Graz, Graz, Austria; BioTechMed Graz, Graz, Austria.
| | | | - Sebastian J Hofer
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Guido Kroemer
- Equipe 11 labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, INSERM U 1138, Paris, France; Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Center, Villejuif, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France; Université Pierre et Marie Curie, Paris, France; Pôle de Biologie, Hôpital Européen Georges Pompidou, Paris, France; Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden; Center of Systems Medicine, Chinese Academy of Science, Suzhou, China.
| |
Collapse
|
196
|
Abstract
Summary
Introduction: Parkinson’s disease is a chronic debilitating disease and many patients use Levodopa as a major treatment. However, this drug in long-term use causes a serious condition that is known as Levodopa-induced dyskinesia (LID). Berberis vulgaris (BV) has been known to be a good potential medication for neurologic diseases such as movement disorders. The aim of this study is to investigate the usefulness of BV for LID in mice.
Material and methods: In this study, 48 adult male mice were randomly divided into six groups: 1) saline group, 2) MPTP + LID, 3) MPTP + LID + BV (5 mg/kg), 4) MPTP + LID + BV (10 mg/kg), 5) MPTP + LID + BV (20 mg/kg). MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) (30 mg/kg/day/i.p.) was used to induce Parkinson’s disease and Levodopa (50 mg/kg/day/i.p.) was used to induce LID. After induction of LID, mice received intraperitoneally (i.p.) different dosages of BV for 25 days. To investigate movement disorder improvement (dyskinesia), AIMS (Abnormal Involuntary Movement Scale) and cylinder tests were used.
Results: Mice that received BV at dosages of 10 and 20 mg/kg/day showed improvement in AIMS and the cylinder test.
Conclusion: BV is a useful drug for treating LID. So, parkinsonian disease patients may get a beneficial effect after treatment with BV for LID.
Collapse
|
197
|
Preparation and Characterization of Erythrocyte Membrane-Camouflaged Berberine Hydrochloride-Loaded Gelatin Nanoparticles. Pharmaceutics 2019; 11:pharmaceutics11020093. [PMID: 30813270 PMCID: PMC6410052 DOI: 10.3390/pharmaceutics11020093] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/11/2019] [Accepted: 02/11/2019] [Indexed: 01/28/2023] Open
Abstract
The discovery of a new pharmacological application of berberine hydrochloride (BH) made it more clinically valuable. However, the further development of BH was hampered by its short half-life and side effects after intravenous injection. To overcome these problems, a novel BH delivery system was developed using natural red blood cell membrane-camouflaged BH-loaded gelatin nanoparticles (RBGPs) to reduce the toxicity associated with injections and achieve sustained release. The size of the RBGPs was 260.3 ± 4.1 nm, with an obvious core⁻shell structure, and the membrane proteins of the RBGPs were mostly retained. The RBGP system showed significant immune-evading capabilities and little cytotoxicity to human embryonic kidney (HEK) 293T cells and LO2 cells. Finally, RBGPs improved the sustained releasing effect of BH significantly. When the cumulative release time reached 120 h, the cumulative release rate of RBGPs was 78.42%. In brief, RBGPs hold the potential to achieve long circulation and sustained-release of BH, avoid side effects caused by high plasma concentration in common injection formulations, and broaden the clinical applications of BH.
Collapse
|
198
|
Tian X, Liu F, Li Z, Lin Y, Liu H, Hu P, Chen M, Sun Z, Xu Z, Zhang Y, Han L, Zhang Y, Pan G, Huang C. Enhanced Anti-diabetic Effect of Berberine Combined With Timosaponin B2 in Goto-Kakizaki Rats, Associated With Increased Variety and Exposure of Effective Substances Through Intestinal Absorption. Front Pharmacol 2019; 10:19. [PMID: 30733676 PMCID: PMC6353801 DOI: 10.3389/fphar.2019.00019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 01/08/2019] [Indexed: 12/28/2022] Open
Abstract
Objective: Inspired by the traditionally clinical application of herb pair Zhimu-Huangbo to treat diabetes, a combination of plant ingredients, timosaponin B2 (TB-2) and berberine (BBR), was evaluated for their anti-diabetic efficacy and cooperative mechanisms. Methods: The efficacy and pharmacokinetics of orally administered TB-2 (33.3 mg/kg/day), BBR (66.7 mg/kg/day), and TB-2+BBR (100 mg/kg/day) were evaluated in spontaneously non-obese diabetic Goto-Kakizaki (GK) rats, and metformin (200 mg/kg/day) was used as a positive control. The comparative exposure of the parent drugs, timosaponin A3 (TB-2 metabolite), and M1–M5 (BBR metabolites) was quantified in the portal vein plasma (before hepatic disposition), liver, and systemic plasma (after hepatic disposition) of normal rats on single and combination treatments. Cooperative mechanism of TB-2 and BBR on intestinal absorption and hepatic metabolism was investigated in Caco-2 cells and primary hepatocytes, respectively. Results: After a 6-week experiment, non-fasting and fasting blood glucose levels and oral glucose tolerance test results showed that TB-2+BBR treatments (100 mg/kg/day) displayed significantly anti-diabetic efficacy in GK rats, comparable to that on metformin treatments. However, no significant improvement was observed on TB-2 or BBR treatments alone. Compared to single treatments, combination treatments led to the increased circulating levels of BBR by 107% in GK rats. In normal rats, the hepatic exposure of BBR, timosaponin A3, and M1–M5 was several hundred folds higher than their circulating levels. Co-administration also improved the levels in the plasma and liver by 41–114% for BBR, 141–230% for TB-2, and 12–282% for M1–M5. In vitro, the interaction between TB-2 and BBR was mediated by intestinal absorption, rather than hepatic metabolism. Conclusion: Combining TB-2 and BBR enhanced the anti-diabetic efficacy by increasing the in vivo variety of effective substances, including the parent compounds and active metabolites, and improving the levels of those substances through intestinal absorption. This study is a new attempt to assess the effects of combined plant ingredients on diabetes by scientifically utilizing clinical experience of an herb pair.
Collapse
Affiliation(s)
- Xiaoting Tian
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Fang Liu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zhixiong Li
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yunfei Lin
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Huan Liu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Pei Hu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Mingcang Chen
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zhaolin Sun
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zhou Xu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yiting Zhang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Li Han
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yuanyuan Zhang
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Guoyu Pan
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Chenggang Huang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
199
|
Imenshahidi M, Hosseinzadeh H. Berberine and barberry (Berberis vulgaris): A clinical review. Phytother Res 2019; 33:504-523. [PMID: 30637820 DOI: 10.1002/ptr.6252] [Citation(s) in RCA: 194] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 10/20/2018] [Accepted: 11/03/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Mohsen Imenshahidi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy; Mashhad University of Medical Sciences; Mashhad Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute; Mashhad University of Medical Sciences; Mashhad Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy; Mashhad University of Medical Sciences; Mashhad Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute; Mashhad University of Medical Sciences; Mashhad Iran
| |
Collapse
|
200
|
Zhang YT, Yu YQ, Yan XX, Wang WJ, Tian XT, Wang L, Zhu WL, Gong LK, Pan GY. Different structures of berberine and five other protoberberine alkaloids that affect P-glycoprotein-mediated efflux capacity. Acta Pharmacol Sin 2019; 40:133-142. [PMID: 30442987 DOI: 10.1038/s41401-018-0183-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 10/10/2018] [Indexed: 11/09/2022]
Abstract
Berberine, berberrubine, thalifendine, demethyleneberberine, jatrorrhizine, and columbamine are six natural protoberberine alkaloid (PA) compounds that display extensive pharmacological properties and share the same protoberberine molecular skeleton with only slight substitution differences. The oral delivery of most PAs is hindered by their poor bioavailability, which is largely caused by P-glycoprotein (P-gp)-mediated drug efflux. Meanwhile, P-gp undergoes large-scale conformational changes (from an inward-facing to an outward-facing state) when transporting substrates, and these changes might strongly affect the P-gp-binding specificity. To confirm whether these six compounds are substrates of P-gp, to investigate the differences in efflux capacity caused by their trivial structural differences and to reveal the key to increasing their binding affinity to P-gp, we conducted a series of in vivo, in vitro, and in silico assays. Here, we first confirmed that all six compounds were substrates of P-gp by comparing the drug concentrations in wild-type and P-gp-knockout mice in vivo. The efflux capacity (net efflux) ranked as berberrubine > berberine > columbamine ~ jatrorrhizine > thalifendine > demethyleneberberine based on in vitro transport studies in Caco-2 monolayers. Using molecular dynamics simulation and molecular docking techniques, we determined the transport pathways of the six compounds and their binding affinities to P-gp. The results suggested that at the early binding stage, different hydrophobic and electrostatic interactions collectively differentiate the binding affinities of the compounds to P-gp, whereas electrostatic interactions are the main determinant at the late release stage. In addition to hydrophobic interactions, hydrogen bonds play an important role in discriminating the binding affinities.
Collapse
|