151
|
Jo I, Kim D, Bang YJ, Ahn J, Choi SH, Ha NC. The hydrogen peroxide hypersensitivity of OxyR2 in Vibrio vulnificus depends on conformational constraints. J Biol Chem 2017; 292:7223-7232. [PMID: 28264933 DOI: 10.1074/jbc.m116.743765] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 02/18/2017] [Indexed: 12/11/2022] Open
Abstract
Most Gram-negative bacteria respond to excessive levels of H2O2 using the peroxide-sensing transcriptional regulator OxyR, which can induce the expression of antioxidant genes to restore normality. Vibrio vulnificus has two distinct OxyRs (OxyR1 and OxyR2), which are sensitive to different levels of H2O2 and induce expression of two different peroxidases, Prx1 and Prx2. Although OxyR1 has both high sequence similarity and H2O2 sensitivity comparable with that of other OxyR proteins, OxyR2 exhibits limited sequence similarity and is more sensitive to H2O2 To investigate the basis for this difference, we determined crystal structures and carried out biochemical analyses of OxyR2. The determined structure of OxyR2 revealed a flipped conformation of the peptide bond before Glu-204, a position occupied by glycine in other OxyR proteins. Activity assays showed that the sensitivity to H2O2 was reduced to the level of other OxyR proteins by the E204G mutation. We solved the structure of the OxyR2-E204G mutant with the same packing environment. The structure of the mutant revealed a dual conformation of the peptide bond before Gly-204, indicating the structural flexibility of the region. This structural duality extended to the backbone atoms of Gly-204 and the imidazole ring of His-205, which interact with H2O2 and invariant water molecules near the peroxidatic cysteine, respectively. Structural comparison suggests that Glu-204 in OxyR2 provides rigidity to the region that is important in H2O2 sensing, compared with the E204G structure or other OxyR proteins. Our findings provide a structural basis for the higher sensitivity of OxyR2 to H2O2 and also suggest a molecular mechanism for bacterial regulation of expression of antioxidant genes at divergent concentrations of cellular H2O2.
Collapse
Affiliation(s)
- Inseong Jo
- From the Department of Agricultural Biotechnology, Center for Food Safety and Toxicology, Research Institute for Agriculture and Life Sciences, and
| | - Dukyun Kim
- From the Department of Agricultural Biotechnology, Center for Food Safety and Toxicology, Research Institute for Agriculture and Life Sciences, and.,the National Research Laboratory of Molecular Microbiology and Toxicology, Seoul National University, Seoul 08826, Korea
| | - Ye-Ji Bang
- From the Department of Agricultural Biotechnology, Center for Food Safety and Toxicology, Research Institute for Agriculture and Life Sciences, and.,the National Research Laboratory of Molecular Microbiology and Toxicology, Seoul National University, Seoul 08826, Korea
| | - Jinsook Ahn
- From the Department of Agricultural Biotechnology, Center for Food Safety and Toxicology, Research Institute for Agriculture and Life Sciences, and
| | - Sang Ho Choi
- From the Department of Agricultural Biotechnology, Center for Food Safety and Toxicology, Research Institute for Agriculture and Life Sciences, and .,the National Research Laboratory of Molecular Microbiology and Toxicology, Seoul National University, Seoul 08826, Korea
| | - Nam-Chul Ha
- From the Department of Agricultural Biotechnology, Center for Food Safety and Toxicology, Research Institute for Agriculture and Life Sciences, and
| |
Collapse
|
152
|
Abstract
Vibrio alginolyticus causes soft tissue and bloodstream infection; little systematically collected clinical and epidemiological information is available. In the USA, V. alginolyticus infections are reported to the Cholera and Other Vibrio Illness Surveillance system. Using data from 1988 to 2012, we categorised infections using specimen source and exposure history, analysed case characteristics, and calculated incidence rates using US Census Bureau data. Most (96%) of the 1331 V. alginolyticus infections were from coastal states. Infections of the skin and ear were most frequent (87%); ear infections occurred more commonly in children, lower extremity infections more commonly in older adults. Most (86%) infections involved water activity. Reported incidence of infections increased 12-fold over the study period, although the extent of diagnostic or surveillance bias is unclear. Prevention efforts should target waterborne transmission in coastal areas and provider education to promote more rapid diagnosis and prevent complications.
Collapse
|
153
|
Elgaml A, Miyoshi SI. Regulation systems of protease and hemolysin production inVibrio vulnificus. Microbiol Immunol 2017; 61:1-11. [DOI: 10.1111/1348-0421.12465] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 12/19/2016] [Accepted: 01/16/2017] [Indexed: 11/29/2022]
Affiliation(s)
- Abdelaziz Elgaml
- Microbiology and Immunology Department; Faculty of Pharmacy; Mansoura University; Elgomhouria Street Mansoura 35516 Egypt
| | - Shin-Ichi Miyoshi
- Graduate School of Medicine; Dentistry and Pharmaceutical Sciences; Okayama University; 1-1-1 Tsushima-Naka Kita-Ku Okayama 700-8530 Japan
| |
Collapse
|
154
|
IutB participates in the ferric-vulnibactin utilization system in Vibrio vulnificus M2799. Biometals 2017; 30:203-216. [PMID: 28150143 DOI: 10.1007/s10534-017-9994-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 01/11/2017] [Indexed: 12/19/2022]
Abstract
Vibrio vulnificus, an opportunistic pathogen that causes a serious, often fatal, infection in humans, requires iron for its growth. This bacterium utilizes iron from the environment via the vulnibactin-mediated iron uptake system. The mechanisms of vulnibactin biosynthesis, vulnibactin export, and ferric-vulnibactin uptake systems have been reported, whereas the ferric-vulnibactin reduction mechanism in the cell remains unclear. The results of our previous study showed that VuuB, a member of the flavin adenine dinucleotide-containing siderophore-interacting protein family, is a ferric-vulnibactin reductase, but there are other reductases that can complement for the defective vuuB. The aim of this study was to identify these proteins that can complement the loss of function of VuuB. We constructed mutants of genes encoding putative reductases in V. vulnificus M2799, and analyzed their growth under low-iron conditions. Complementation analyses confirmed that IutB, which functions as a ferric-aerobactin reductase, participates in ferric-vulnibactin reduction in the absence of VuuB. This is the first genetic evidence that ferric-vulnibactin is reduced by a member of the ferric-siderophore reductase protein family. In the aerobactin-utilization system, IutB plays a major role in ferric-aerobactin reduction in V. vulnificus M2799, and VuuB and DesB can compensate for the defect of IutB. Furthermore, the expression of iutB and desB was found to be regulated by iron and a ferric uptake regulator.
Collapse
|
155
|
Affiliation(s)
- Kelsey E. Phillips
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Karla J. F. Satchell
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
156
|
Gavin HE, Beubier NT, Satchell KJF. The Effector Domain Region of the Vibrio vulnificus MARTX Toxin Confers Biphasic Epithelial Barrier Disruption and Is Essential for Systemic Spread from the Intestine. PLoS Pathog 2017; 13:e1006119. [PMID: 28060924 PMCID: PMC5218395 DOI: 10.1371/journal.ppat.1006119] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 12/12/2016] [Indexed: 12/14/2022] Open
Abstract
Vibrio vulnificus causes highly lethal bacterial infections in which the Multifunctional Autoprocessing Repeats-in-Toxins (MARTX) toxin product of the rtxA1 gene is a key virulence factor. MARTX toxins are secreted proteins up to 5208 amino acids in size. Conserved MARTX N- and C-terminal repeat regions work in concert to form pores in eukaryotic cell membranes, through which the toxin's central region of modular effector domains is translocated. Upon inositol hexakisphosphate-induced activation of the of the MARTX cysteine protease domain (CPD) in the eukaryotic cytosol, effector domains are released from the holotoxin by autoproteolytic activity. We previously reported that the native MARTX toxin effector domain repertoire is dispensable for epithelial cellular necrosis in vitro, but essential for cell rounding and apoptosis prior to necrotic cell death. Here we use an intragastric mouse model to demonstrate that the effector domain region is required for bacterial virulence during intragastric infection. The MARTX effector domain region is essential for bacterial dissemination from the intestine, but dissemination occurs in the absence of overt intestinal tissue pathology. We employ an in vitro model of V. vulnificus interaction with polarized colonic epithelial cells to show that the MARTX effector domain region induces rapid intestinal barrier dysfunction and increased paracellular permeability prior to onset of cell lysis. Together, these results negate the inherent assumption that observations of necrosis in vitro directly predict bacterial virulence, and indicate a paradigm shift in our conceptual understanding of MARTX toxin function during intestinal infection. Results implicate the MARTX effector domain region in mediating early bacterial dissemination from the intestine to distal organs-a key step in V. vulnificus foodborne pathogenesis-even before onset of overt intestinal pathology.
Collapse
Affiliation(s)
- Hannah E. Gavin
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States of America
| | - Nike T. Beubier
- Department of Pathology, Northwestern University Feinberg School of Medicine and Northwestern Memorial Hospital, Chicago, IL, United States of America
| | - Karla J. F. Satchell
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States of America
| |
Collapse
|
157
|
Garrett SB, Garrison-Schilling KL, Cooke JT, Pettis GS. Capsular polysaccharide production and serum survival of Vibrio vulnificus are dependent on antitermination control by RfaH. FEBS Lett 2016; 590:4564-4572. [PMID: 27859050 DOI: 10.1002/1873-3468.12490] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 11/06/2016] [Accepted: 11/10/2016] [Indexed: 12/19/2022]
Abstract
The human pathogen Vibrio vulnificus undergoes phase variation among colonial morphotypes, including a virulent opaque form which produces capsular polysaccharide (CPS) and a translucent phenotype that produces little or no CPS and is attenuated. Here, we found that a V. vulnificus mutant defective for RfaH antitermination control showed a diminished capacity to undergo phase variation and displayed significantly reduced distal gene expression within the Group I CPS operon. Moreover, the rfaH mutant produced negligible CPS and was highly sensitive to killing by normal human serum, results which indicate that RfaH is likely essential for virulence in this bacterium.
Collapse
Affiliation(s)
- Shana B Garrett
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | | | - Jeffrey T Cooke
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - Gregg S Pettis
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| |
Collapse
|
158
|
Serratore P, Ostanello F, Passalacqua PL, Zavatta E, Bignami G, Serraino A, Giacometti F. First Multi-Year Retrospective Study on Vibrio Parhaemolyticus and Vibrio Vulnificus Prevalence in Ruditapes Philippinarum Harvested in Sacca Di Goro, Italy. Ital J Food Saf 2016; 5:6161. [PMID: 28058248 PMCID: PMC5178842 DOI: 10.4081/ijfs.2016.6161] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 09/21/2016] [Indexed: 12/29/2022] Open
Abstract
The present work describes a retrospective study aiming to verify a possible correlation between the environmental conditions (temperature, salinity and dissolved oxygen), the abundance of Vibrio spp., and the prevalence of V. parahaemolyticus and V. vulnificus in the Manila clam R. philippinarum harvested in Sacca di Goro, Emilia-Romagna Region, Northern Italy. On the whole, 104 samples, collected in the period 2007-2015 and submitted to microbiological analyses (isolation and genotyping), have been reconsidered for Vibrio spp. load, V. parahaemolyticus prevalence (total, gene marker toxRP; potentially pathogenic, gene markers tdh and/or trh) and V. vulnificus prevalence (total, gene markers vvhA and hsp) together with environmental data obtained from the monitoring activity of the Emilia-Romagna Regional Agency for the Prevention, the Environment and the Energy. Environmental data have been processed to calculate the median of each, assessing the seasonal range of seawater temperature (warmer months: April-October, T°C >16.45°C; cooler months November-March, T°C <16.45°C), salinity (<or>27 psu), and dissolved oxygen (< or >8.2 mg/L). Total V. vulnificus, total and potentially pathogenic V. parahaemolyticus were present respectively in the 11.5, 29.8 and 6.7% of the samples. The Vibrio spp. load (mean value of 4.69±0.65 log10 colony forming unit g-1) and the prevalence of potentially pathogenic V. parahaemolyticus, were not significantly correlated to the environmental conditions (P>0.05), whereas the prevalence of both total V. vulnificus and total V. parahaemolyticus was significantly higher in the warmer period (P<0.05), without correlation with salinity and dissolved oxygen values (P>0.05).
Collapse
Affiliation(s)
- Patrizia Serratore
- Department of Veterinary Medical Sciences, Alma Mater Studiorum-University of Bologna , Ozzano dell'Emilia (BO) Italy
| | - Fabio Ostanello
- Department of Veterinary Medical Sciences, Alma Mater Studiorum-University of Bologna , Ozzano dell'Emilia (BO) Italy
| | - Pier Luca Passalacqua
- Department of Veterinary Medical Sciences, Alma Mater Studiorum-University of Bologna , Ozzano dell'Emilia (BO) Italy
| | - Emanuele Zavatta
- Department of Veterinary Medical Sciences, Alma Mater Studiorum-University of Bologna , Ozzano dell'Emilia (BO) Italy
| | - Giorgia Bignami
- Department of Veterinary Medical Sciences, Alma Mater Studiorum-University of Bologna , Ozzano dell'Emilia (BO) Italy
| | - Andrea Serraino
- Department of Veterinary Medical Sciences, Alma Mater Studiorum-University of Bologna , Ozzano dell'Emilia (BO) Italy
| | - Federica Giacometti
- Department of Veterinary Medical Sciences, Alma Mater Studiorum-University of Bologna , Ozzano dell'Emilia (BO) Italy
| |
Collapse
|
159
|
Yamamoto M, Kashimoto T, Yoshimura Y, Tachibana N, Kuroda S, Miki Y, Kitabayashi S, Tong P, Xiao J, Tanaka K, Hamamoto H, Sekimizu K, Yamamoto K. A silkworm infection model to investigate Vibrio vulnificus virulence genes. Mol Med Rep 2016; 14:4243-4247. [PMID: 27748924 DOI: 10.3892/mmr.2016.5782] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 08/26/2016] [Indexed: 02/05/2023] Open
Abstract
The halophilic marine bacterium, Vibrio vulnificus, occasionally causes fatal septicemia in immunocompromised patients. Mice are commonly used as experimental animals to investigate the virulence of V. vulnificus, however, a large number of mice are generally required for bioassays. The present study examined whether the invertebrate species, silkworms, can be used instead of mice to investigate V. vulnificus virulence. When the silkworms were inoculated with 1.2x107 colony forming units of V. vulnificus OPU1‑Rf, a virulent strain of V. vulnificus, all injected silkworms died within 48 h, however, those injected with culture filtrate or diluent did not. This silkworm infection model was then used to isolate attenuated V. vulnificus mutants from 1,016 transposon‑inserted mutants. Consequently, a harmless mutant, SW998, was isolated. In this strain, the transposon was inserted into the rtxA gene, which is a known V. vulnificus virulence gene. In conclusion, the present study demonstrated that silkworms are useful animals for investigating the virulence of V. vulnificus.
Collapse
Affiliation(s)
- Mai Yamamoto
- Department of Nutritional Science, Okayama Prefectural University, Soja, Okayama 719‑1197, Japan
| | - Takashige Kashimoto
- School of Veterinary Medicine, Kitasato University, Towada, Aomori 034‑8628, Japan
| | - Yukihiro Yoshimura
- Department of Nutritional Science, Okayama Prefectural University, Soja, Okayama 719‑1197, Japan
| | - Nao Tachibana
- Department of Nutritional Science, Okayama Prefectural University, Soja, Okayama 719‑1197, Japan
| | - Shiho Kuroda
- Department of Nutritional Science, Okayama Prefectural University, Soja, Okayama 719‑1197, Japan
| | - Yoshiko Miki
- Department of Nutritional Science, Okayama Prefectural University, Soja, Okayama 719‑1197, Japan
| | - Sou Kitabayashi
- Department of Nutritional Science, Okayama Prefectural University, Soja, Okayama 719‑1197, Japan
| | - Ping Tong
- Department of Nutritional Science, Okayama Prefectural University, Soja, Okayama 719‑1197, Japan
| | - Jianbo Xiao
- Department of Nutritional Science, Okayama Prefectural University, Soja, Okayama 719‑1197, Japan
| | - Koichi Tanaka
- Department of Nutritional Science, Okayama Prefectural University, Soja, Okayama 719‑1197, Japan
| | - Hiroshi Hamamoto
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo‑ku, Tokyo 113‑0033, Japan
| | - Kazuhisa Sekimizu
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo‑ku, Tokyo 113‑0033, Japan
| | - Koichiro Yamamoto
- Department of Nutritional Science, Okayama Prefectural University, Soja, Okayama 719‑1197, Japan
| |
Collapse
|
160
|
Selected Topics in Aerobic Bacteriology. Microbiol Spectr 2016; 4. [PMID: 27726805 DOI: 10.1128/microbiolspec.dmih2-0027-2016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Aerobic Gram-positive and Gram-negative bacteria can be important pathogens in the immunocompromised host. These bacteria can be found in many environments, as part of the normal microbiota of the human host and animals, in soil and water, on plants, on fomites in the hospital, and on hospital equipment. This review provides information from relevant studies about what are the most common aerobic bacteria associated with patients who have cancer and/or are being treated for it, or who have other diseases which lead to immunodeficiencies, such as HIV, multiple myeloma, aplastic anemia, chronic diseases, and aging. A discussion of the appropriate laboratory tests needed for diagnosis of aerobic infections and information about antibiotics and susceptibility testing are also included.
Collapse
|
161
|
Raszl S, Froelich B, Vieira C, Blackwood A, Noble R. Vibrio parahaemolyticusandVibrio vulnificusin South America: water, seafood and human infections. J Appl Microbiol 2016; 121:1201-1222. [DOI: 10.1111/jam.13246] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 06/27/2016] [Accepted: 07/24/2016] [Indexed: 11/29/2022]
Affiliation(s)
- S.M. Raszl
- Department of Food Science and Technology; Federal University of Santa Catarina (UFSC); Florianopolis Brazil
| | - B.A. Froelich
- Institute of Marine Sciences; The University of North Carolina at Chapel Hill (UNC-CH); Morehead City NC USA
| | - C.R.W. Vieira
- Department of Food Science and Technology; Federal University of Santa Catarina (UFSC); Florianopolis Brazil
| | - A.D. Blackwood
- Institute of Marine Sciences; The University of North Carolina at Chapel Hill (UNC-CH); Morehead City NC USA
| | - R.T. Noble
- Institute of Marine Sciences; The University of North Carolina at Chapel Hill (UNC-CH); Morehead City NC USA
| |
Collapse
|
162
|
Guo Z, Sha Y, Hu Y, Yu Z, Tao Y, Wu Y, Zeng M, Wang S, Li X, Zhou J, Su X. Faraday cage-type electrochemiluminescence immunosensor for ultrasensitive detection of Vibrio vulnificus based on multi-functionalized graphene oxide. Anal Bioanal Chem 2016; 408:7203-11. [PMID: 27565793 DOI: 10.1007/s00216-016-9851-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 07/01/2016] [Accepted: 07/29/2016] [Indexed: 12/19/2022]
Abstract
A novel Faraday cage-type electrochemiluminescence (ECL) immunosensor devoted to the detection of Vibrio vulnificus (VV) was fabricated. The sensing strategy was presented by a unique Faraday cage-type immunocomplex based on immunomagnetic beads (IMBs) and multi-functionalized graphene oxide (GO) labeled with (2,2'-bipyridine)(5-aminophenanthroline)ruthenium (Ru-NH2). The multi-functionalized GO could sit on the electrode surface directly due to the large surface area, abundant functional groups, and good electronic transport property. It ensures that more Ru-NH2 is entirely caged and become "effective," thus improving sensitivity significantly, which resembles extending the outer Helmholtz plane (OHP) of the electrode. Under optimal conditions, the developed immunosensor achieves a limit of detection as low as 1 CFU/mL. Additionally, the proposed immunosensor with high sensitivity and selectivity can be used for the detection of real samples. The novel Faraday cage-type method has shown potential application for the diagnosis of VV and opens up a new avenue in ECL immunoassay. Graphical abstract Faraday cage-type immunoassay mode for ultrasensitive detection by extending OHP.
Collapse
Affiliation(s)
- Zhiyong Guo
- Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhèjiāng, 315211, China.
| | - Yuhong Sha
- Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhèjiāng, 315211, China
| | - Yufang Hu
- Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhèjiāng, 315211, China
| | - Zhongqing Yu
- Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhèjiāng, 315211, China
| | - Yingying Tao
- Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhèjiāng, 315211, China
| | - Yanjie Wu
- Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhèjiāng, 315211, China
| | - Min Zeng
- Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhèjiāng, 315211, China
| | - Sui Wang
- Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhèjiāng, 315211, China
| | - Xing Li
- Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhèjiāng, 315211, China
| | - Jun Zhou
- School of Marine Sciences, Ningbo University, Ningbo, Zhèjiāng, 315211, China
| | - Xiurong Su
- School of Marine Sciences, Ningbo University, Ningbo, Zhèjiāng, 315211, China.
| |
Collapse
|
163
|
Pajuelo D, Hernández-Cabanyero C, Sanjuan E, Lee CT, Silva-Hernández FX, Hor LI, MacKenzie S, Amaro C. Iron and Fur in the life cycle of the zoonotic pathogenVibrio vulnificus. Environ Microbiol 2016; 18:4005-4022. [DOI: 10.1111/1462-2920.13424] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 06/17/2016] [Indexed: 11/29/2022]
Affiliation(s)
- David Pajuelo
- Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED); University of Valencia; Dr. Moliner, 50 Valencia 46100 Spain
| | - Carla Hernández-Cabanyero
- Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED); University of Valencia; Dr. Moliner, 50 Valencia 46100 Spain
| | - Eva Sanjuan
- Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED); University of Valencia; Dr. Moliner, 50 Valencia 46100 Spain
| | - Chung-Te Lee
- Department of Microbiology and Immunology; Institute of Basic Medical Sciences; Tainan Taiwan Republic of China
| | - Francisco Xavier Silva-Hernández
- Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED); University of Valencia; Dr. Moliner, 50 Valencia 46100 Spain
| | - Lien-I Hor
- Department of Microbiology and Immunology; Institute of Basic Medical Sciences; Tainan Taiwan Republic of China
- College of Medicine; National Cheng Kung University; Tainan 701 Taiwan Republic of China
| | - Simon MacKenzie
- Institute of Aquaculture; University of Stirling; Stirling UK
| | - Carmen Amaro
- Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED); University of Valencia; Dr. Moliner, 50 Valencia 46100 Spain
| |
Collapse
|
164
|
Madiyal M, Eshwara VK, Halim I, Stanley W, Prabhu M, Mukhopadhyay C. A rare glimpse into the morbid world of necrotising fasciitis: Flesh-eating bacteria Vibrio vulnificus. Indian J Med Microbiol 2016; 34:384-6. [DOI: 10.4103/0255-0857.188361] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
165
|
Vibrio vulnificus VvhA induces autophagy-related cell death through the lipid raft-dependent c-Src/NOX signaling pathway. Sci Rep 2016; 6:27080. [PMID: 27250250 PMCID: PMC4890043 DOI: 10.1038/srep27080] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 05/15/2016] [Indexed: 12/22/2022] Open
Abstract
VvhA, a virulent factor of Vibrio (V.) vulnificus, induces acute cell death in a destructive manner. Autophagy plays an important role in cell death, but the functional role of VvhA in autophagy-related cell death has not been elucidated yet. We found that rVvhA significantly increased LC3 puncta formation and autophagic flux in promoting the cell death of human intestinal epithelial Caco-2 cells. The cell death induced by rVvhA was independent of lysosomal permeabilizaton and caspase activation. rVvhA induced rapid phosphorylation of c-Src in the membrane lipid raft, which resulted in an increased interaction between lipid raft molecule caveolin-1 and NADPH oxidase (NOX) complex Rac1 for ROS production. NOX-mediated ROS signaling induced by rVvhA increased the phosphorylation of extracellular signal-regulated kinase (ERK) and eukaryotic translation initiation factor 2α (eIF2α) which are required for mRNA expression of Atg5 and Atg16L1 involved in autophagosome formation. In an in vivo model, VvhA increased autophagy activation and paracellular permeabilization in intestinal epithelium. Collectively, the results here show that VvhA plays a pivotal role in the pathogenesis and dissemination of V. vulnificus by autophagy upregulation, through the lipid raft-mediated c-Src/NOX signaling pathway and ERK/eIF2α activation.
Collapse
|
166
|
Tiruvayipati S, Bhassu S. Host, pathogen and the environment: the case of Macrobrachium rosenbergii, Vibrio parahaemolyticus and magnesium. Gut Pathog 2016; 8:15. [PMID: 27114742 PMCID: PMC4843205 DOI: 10.1186/s13099-016-0097-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 03/18/2016] [Indexed: 12/18/2022] Open
Abstract
Macrobrachium rosenbergii is well-known as the giant freshwater prawn, and is a commercially significant source of seafood. Its production can be affected by various bacterial contaminations. Among which, the genus Vibrio shows a higher prevalence in aquatic organisms, especially M. rosenbergii, causing food-borne illnesses. Vibrio parahaemolyticus, a species of Vibrio is reported as the main causative of the early mortality syndrome. Vibrio parahaemolyticus infection in M. rosenbergii was studied previously in relation to the prawn's differentially expressed immune genes. In the current review, we will discuss the growth conditions for both V. parahaemolyticus and M. rosenbergii and highlight the role of magnesium in common, which need to be fully understood. Till date, there has not been much research on this aspect of magnesium. We postulate a model that screens a magnesium-dependent pathway which probably might take effect in connection with N-acetylglucosamine binding protein and chitin from V. parahaemolyticus and M. rosenbergii, respectively. Further studies on magnesium as an environment for V. parahaemolyticus and M. rosenbergii interaction studies will provide seafood industry with completely new strategies to employ and to avoid seafood related contaminations.
Collapse
Affiliation(s)
- Suma Tiruvayipati
- Department of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Subha Bhassu
- Department of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia ; Centre of Biotechnology for Agriculture (CEBAR), University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
167
|
Baker GL. Food Safety Impacts from Post-Harvest Processing Procedures of Molluscan Shellfish. Foods 2016; 5:E29. [PMID: 28231124 PMCID: PMC5302340 DOI: 10.3390/foods5020029] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 04/01/2016] [Accepted: 04/07/2016] [Indexed: 11/22/2022] Open
Abstract
Post-harvest Processing (PHP) methods are viable food processing methods employed to reduce human pathogens in molluscan shellfish that would normally be consumed raw, such as raw oysters on the half-shell. Efficacy of human pathogen reduction associated with PHP varies with respect to time, temperature, salinity, pressure, and process exposure. Regulatory requirements and PHP molluscan shellfish quality implications are major considerations for PHP usage. Food safety impacts associated with PHP of molluscan shellfish vary in their efficacy and may have synergistic outcomes when combined. Further research for many PHP methods are necessary and emerging PHP methods that result in minimal quality loss and effective human pathogen reduction should be explored.
Collapse
Affiliation(s)
- George L Baker
- University of Florida, 104 Aquatic Food Products Laboratory, Gainesville, FL 32611-0370, USA.
| |
Collapse
|
168
|
Siboni N, Balaraju V, Carney R, Labbate M, Seymour JR. Spatiotemporal Dynamics of Vibrio spp. within the Sydney Harbour Estuary. Front Microbiol 2016; 7:460. [PMID: 27148171 PMCID: PMC4829023 DOI: 10.3389/fmicb.2016.00460] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Accepted: 03/21/2016] [Indexed: 01/22/2023] Open
Abstract
Vibrio are a genus of marine bacteria that have substantial environmental and human health importance, and there is evidence that their impact may be increasing as a consequence of changing environmental conditions. We investigated the abundance and composition of the Vibrio community within the Sydney Harbour estuary, one of the most densely populated coastal areas in Australia, and a region currently experiencing rapidly changing environmental conditions. Using quantitative PCR (qPCR) and Vibrio-specific 16S rRNA amplicon sequencing approaches we observed significant spatial and seasonal variation in the abundance and composition of the Vibrio community. Total Vibrio spp. abundance, derived from qPCR analysis, was higher during the late summer than winter and within locations with mid-range salinity (5-26 ppt). In addition we targeted three clinically important pathogens: Vibrio cholerae, V. Vulnificus, and V. parahaemolyticus. While toxigenic strains of V. cholerae were not detected in any samples, non-toxigenic strains were detected in 71% of samples, spanning a salinity range of 0-37 ppt and were observed during both late summer and winter. In contrast, pathogenic V. vulnificus was only detected in 14% of samples, with its occurrence restricted to the late summer and a salinity range of 5-26 ppt. V. parahaemolyticus was not observed at any site or time point. A Vibrio-specific 16S rRNA amplicon sequencing approach revealed clear shifts in Vibrio community composition across sites and between seasons, with several Vibrio operational taxonomic units (OTUs) displaying marked spatial patterns and seasonal trends. Shifts in the composition of the Vibrio community between seasons were primarily driven by changes in temperature, salinity and NO2, while a range of factors including pH, salinity, dissolved oxygen (DO) and NOx (Nitrogen Oxides) explained the observed spatial variation. Our evidence for the presence of a spatiotemporally dynamic Vibrio community within Sydney Harbour is notable given the high levels of human use of this waterway, and the significant increases in seawater temperature predicted for this region.
Collapse
Affiliation(s)
- Nachshon Siboni
- Plant Functional Biology and Climate Change Cluster, University of Technology Sydney, UltimoNSW, Australia
| | - Varunan Balaraju
- Plant Functional Biology and Climate Change Cluster, University of Technology Sydney, UltimoNSW, Australia
- School of Life Sciences, The ithree institute, University of Technology Sydney, UltimoNSW, Australia
| | - Richard Carney
- Plant Functional Biology and Climate Change Cluster, University of Technology Sydney, UltimoNSW, Australia
| | - Maurizio Labbate
- School of Life Sciences, The ithree institute, University of Technology Sydney, UltimoNSW, Australia
| | - Justin R. Seymour
- Plant Functional Biology and Climate Change Cluster, University of Technology Sydney, UltimoNSW, Australia
| |
Collapse
|
169
|
Huang KC, Weng HH, Yang TY, Chang TS, Huang TW, Lee MS. Distribution of Fatal Vibrio Vulnificus Necrotizing Skin and Soft-Tissue Infections: A Systematic Review and Meta-Analysis. Medicine (Baltimore) 2016; 95:e2627. [PMID: 26844475 PMCID: PMC4748892 DOI: 10.1097/md.0000000000002627] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 12/17/2015] [Accepted: 01/05/2016] [Indexed: 12/14/2022] Open
Abstract
Vibrio vulnificus necrotizing skin and soft tissue infections (VNSSTIs), which have increased significantly over the past few decades, are still highly lethal and disabling diseases despite advancing antibiotic and infection control practices. We, therefore, examined the spatiotemporal distribution of worldwide reported episodes and associated mortality rates of VNSSTIs between 1966 and 2014. The PubMed and Cochrane Library databases were systematically searched for observational studies on patients with VNSSTIs. The primary outcome was all-cause mortality. We did random-effects meta-analysis to obtain estimates for primary outcomes; the estimates are presented as means plus a 95% confidence interval (CI). Data from the selected studies were also extracted and pooled for correlation analyses.Nineteen studies of 2227 total patients with VNSSTIs were analyzed. More than 95% of the episodes occurred in the subtropical western Pacific and Atlantic coastal regions of the northern hemisphere. While the number of cases and the number of deaths were not correlated with the study period (rs = 0.476 and 0.310, P = 0.233 and 0.456, respectively), the 5-year mortality rate was significantly negatively correlated with them (rs = -0.905, P = 0.002). Even so, the pooled estimate of total mortality rates from the random-effects meta-analysis was as high as 37.2% (95% CI: 0.265-0.479).These data suggest that VNSSTIs are always an important public health problem and will become more critical and urgent because of global warming. Knowing the current distribution of VNSSTIs will help focus education, policy measures, early clinical diagnosis, and appropriate medical and surgical treatment for them.
Collapse
Affiliation(s)
- Kuo-Chin Huang
- From the College of Medicine, Chang Gung University, Taoyuan (K-CH, H-HW, T-SC, T-WH, MSL); Department of Orthopaedic Surgery (K-CH, T-YY, T-WH); Department of Diagnostic Radiology (H-HW); Department of Gastroenterology, Chang Gung Memorial Hospital, Chaiyi (T-SC); and Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, Kaohsiung, Taiwan (MSL)
| | | | | | | | | | | |
Collapse
|
170
|
Murciano C, Hor LI, Amaro C. Host-pathogen interactions in Vibrio vulnificus: responses of monocytes and vascular endothelial cells to live bacteria. Future Microbiol 2016; 10:471-87. [PMID: 25865188 DOI: 10.2217/fmb.14.136] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM To demonstrate that Vibrio vulnificus, a sepsis-related aquatic pathogen, can provoke a strong pro-inflammatory reaction in blood-associated target cells. MATERIALS & METHODS We selected two strains of the two main phylogenetic lineages, two human cell lines, monocytes and vascular endothelial cells and designed an in vitro infection model simulating early septicemia. RESULTS Both strains caused a strong cell-specific pro-inflammatory response and produced a high degree of cell damage that ended with death by lysis (endothelial cells) or apoptosis/lysis (monocytes). The interaction with endothelial cells was stronger than expected and significantly different for both lineages. CONCLUSION The early interaction with endothelial cells could have a direct role in sepsis and could explain, at least partially, the differences in pathogenicity between both lineages.
Collapse
Affiliation(s)
- Celia Murciano
- Estructura de Investigación Interdisciplinar en Biotecnología y Medicina (ERI BIOTECMED). Department of Microbiology & Ecology, University of Valencia, 46100 Burjassot, Valencia, Spain
| | | | | |
Collapse
|
171
|
Kitamura C, Yamauchi Y, Yamaguchi T, Aida Y, Ito K, Ishizawa Y, Saitoh K, Kasai T, Ohnishi M. Successful Treatment of a Case of Necrotizing Fasciitis due to Vibrio vulnificus in a Cold Climate in Japan. Intern Med 2016; 55:1007-10. [PMID: 27086822 DOI: 10.2169/internalmedicine.55.5231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Vibrio vulnificus infection often occurs in warm regions, frequently leading to necrotizing fasciitis, sepsis, and death. We herein report a rare case presenting in a cold climate region in northern Japan, Aomori district, of a V. vulnificus infection complicated by necrotizing fasciitis and septic shock. The patient's prior history of injury and typical clinical course were helpful clues to the diagnosis of V. vulnificus infection, and early initiation of antimicrobial treatment saved his life. V. vulnificus infection should be considered even in cold regions, particularly if patients have risk factors.
Collapse
Affiliation(s)
- Chiho Kitamura
- Department of General Medicine, Aomori Prefectural Central Hospital, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
172
|
Emamifar A, Asmussen Andreasen R, Skaarup Andersen N, Jensen Hansen IM. Septic arthritis and subsequent fatal septic shock caused by Vibrio vulnificus infection. BMJ Case Rep 2015; 2015:bcr-2015-212014. [PMID: 26604231 DOI: 10.1136/bcr-2015-212014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Vibrio vulnificus is a rare but potential fatal bacterium that can cause severe infections. Wound infections, primary sepsis and gastroenteritis are the most common clinical features. Septic arthritis caused by V. vulnificus is an atypical presentation that has been reported in only two case reports; however, it has not been previously noted in Denmark. The authors report a case of septic arthritis caused by V. vulnificus in an immunocompromised patient. The disease progressed to severe sepsis and subsequent death within 10 h of admission.
Collapse
Affiliation(s)
- Amir Emamifar
- Department of Rheumatology, University Hospital of Odense, Svendborg Hospital, Svendborg, Denmark
| | - Rikke Asmussen Andreasen
- Department of Rheumatology, University Hospital of Odense, Svendborg Hospital, Svendborg, Denmark
| | - Nanna Skaarup Andersen
- Department of Clinical Microbiology, University Hospital of Odense, Svendborg Hospital, Odense, Denmark
| | - Inger Marie Jensen Hansen
- Department of Clinical Microbiology, University Hospital of Odense, Svendborg Hospital, Odense, Denmark
| |
Collapse
|
173
|
Genotypic Diversity and Population Structure of Vibrio vulnificus Strains Isolated in Taiwan and Korea as Determined by Multilocus Sequence Typing. PLoS One 2015; 10:e0142657. [PMID: 26599487 PMCID: PMC4658092 DOI: 10.1371/journal.pone.0142657] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 10/26/2015] [Indexed: 12/18/2022] Open
Abstract
The genetic diversity and population structure of Vibrio vulnificus isolates from Korea and Taiwan were investigated using PCR-based assays targeting putative virulence-related genes and multilocus sequence typing (MLST). BOX-PCR genomic fingerprinting identified 52 unique genotypes in 84 environmental and clinical V. vulnificus isolates. The majority (> 50%) of strains had pathogenic genotypes for all loci tested; moreover, many environmental strains had pathogenic genotypes. Although significant (p < 0.05) inter-relationships among the genotypes were observed, the association between genotype and strain source (environmental or clinical) was not significant, indicating that genotypic characteristics alone are not sufficient to predict the isolation source or the virulence of a given V. vulnificus strain and vice versa. MLST revealed 23–35 allelic types per locus analyzed, resulting in a total of 44 unique sequence types (STs). Two major monophyletic groups (lineages A and B) corresponding to the two known lineages of V. vulnificus were observed; lineage A had six STs that were exclusively environmental, whereas lineage B had STs from both environmental and clinical sources. Pathogenic and nonpathogenic genotypes predominated in MLST lineages B and A, respectively. In addition, V. vulnificus was shown to be in linkage disequilibrium (p < 0.05), although two different recombination tests (PHI and Sawyer’s tests) detected significant evidence of recombination. Tajima’s D test also indicated that V. vulnificus might be comprised of recently sub-divided lineages. These results suggested that the two lineages revealed by MLST correspond to two distinct ecotypes of V. vulnificus.
Collapse
|
174
|
Caruso G, La Ferla R, Azzaro M, Zoppini A, Marino G, Petochi T, Corinaldesi C, Leonardi M, Zaccone R, Fonda Umani S, Caroppo C, Monticelli L, Azzaro F, Decembrini F, Maimone G, Cavallo RA, Stabili L, Hristova Todorova N, K. Karamfilov V, Rastelli E, Cappello S, Acquaviva MI, Narracci M, De Angelis R, Del Negro P, Latini M, Danovaro R. Microbial assemblages for environmental quality assessment: Knowledge, gaps and usefulness in the European Marine Strategy Framework Directive. Crit Rev Microbiol 2015; 42:883-904. [DOI: 10.3109/1040841x.2015.1087380] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
175
|
Transgenic expression of omega-3 PUFA synthesis genes improves zebrafish survival during Vibrio vulnificus infection. J Biomed Sci 2015; 22:103. [PMID: 26572495 PMCID: PMC4647518 DOI: 10.1186/s12929-015-0208-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 10/16/2015] [Indexed: 02/04/2023] Open
Abstract
Background Highly desaturated n-3 polyunsaturated fatty acids (PUFAs), such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are synthesized by desaturases and elongase. They exert hepatoprotective effects to prevent alcoholic fatty liver syndrome or cholestatic liver injury. However, it is unclear how n-3 PUFAs improve immune function in liver. Vibrio vulnificus, a gram-negative bacterial pathogen, causes high mortality of aquaculture fishes upon infection. Humans can become infected with V. vulnificus through open wounds or by eating raw seafood, and such infections may result in systemic septicemia. Moreover, patients with liver diseases are vulnerable to infection, and are more likely than healthy persons to present with liver inflammation following infection. This study quantified n-3 PUFAs and their anti-bacterial effects in Fadsd6 and Elvol5a transgenic zebrafish. Results Two transgenic zebrafish strains with strong liver specific expression of Fadsd6 and Elvol5a (driven by the zebrafish Fabp10 promoter) were established using the Tol2 system. Synthesis of n-3 PUFAs in these strains were increased by 2.5-fold as compared to wild type (Wt) fish. The survival rate in 24 h following challenge with V. vulnificus was 20 % in Wt, but 70 % in the transgenic strains. In addition, the bacteria counts in transgenic fish strains were significantly decreased. The expression levels of pro-inflammatory genes, such as TNF-α, IL-1β, and NF-κB, were suppressed between 9 and 12 h after challenge. This study confirms the anti-bacterial function of n-3 PUFAs in a transgenic zebrafish model. Conclusions Fadsd6 and Elvol5a transgenic zebrafish are more resistant to V. vulnificus infection, and enhance survival by diminishing the attendant inflammatory response. Electronic supplementary material The online version of this article (doi:10.1186/s12929-015-0208-1) contains supplementary material, which is available to authorized users.
Collapse
|
176
|
Kim CS, Bae EH, Ma SK, Kim SW. Severe septicemia, necrotizing fasciitis, and peritonitis due to Vibrio vulnificus in a patient undergoing continuous ambulatory peritoneal dialysis: a case report. BMC Infect Dis 2015; 15:422. [PMID: 26467000 PMCID: PMC4606901 DOI: 10.1186/s12879-015-1163-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 10/01/2015] [Indexed: 12/18/2022] Open
Abstract
Background Chronic kidney disease, including end-stage renal disease, has been identified as a possible risk factor for primary septicemia and wound infection by Vibrio vulnificus. However, cases of severe septicemia, necrotizing fasciitis, and peritonitis caused by V. vulnificus in patients undergoing continuous ambulatory peritoneal dialysis (CAPD) have not been described. We report a case of severe septicemia, necrotizing fasciitis, and peritonitis due to V. vulnificus in a patient undergoing CAPD after ingesting raw seafood. Case presentation A 37-year-old woman undergoing CAPD was admitted to the emergency room due to general weakness, fever, diarrhea, and abdominal pain. Although empirical intraperitoneal antibiotics were administered for the diagnosis of CAPD-related peritonitis, her fever did not subside. On hospital day 3, she had hemorrhagic bullae on both lower legs. We evaluated her recent food history, and found that she ate raw seafood before admission. She underwent emergency fasciotomy on the suspicion of necrotizing fasciitis by V. vulnificus infection. Finally, V. vulnificus was confirmed by 16S ribosomal ribonucleic acid gene sequencing using blood and peritoneal effluent fluid cultures. The administration of intraperitoneal ceftazidime and intravenous ciprofloxacin/ceftriaxone was continued for 4 weeks, and the patient completely recovered. Conclusions Suspicion of V. vulnificus infection in vulnerable patients who ingest raw seafood is essential for prompt diagnosis, which could significantly improve patient outcomes.
Collapse
Affiliation(s)
- Chang Seong Kim
- Department of Internal Medicine, Chonnam National University Medical School, 42 Jebongro, Gwangju, 501-757, South Korea.
| | - Eun Hui Bae
- Department of Internal Medicine, Chonnam National University Medical School, 42 Jebongro, Gwangju, 501-757, South Korea.
| | - Seong Kwon Ma
- Department of Internal Medicine, Chonnam National University Medical School, 42 Jebongro, Gwangju, 501-757, South Korea.
| | - Soo Wan Kim
- Department of Internal Medicine, Chonnam National University Medical School, 42 Jebongro, Gwangju, 501-757, South Korea.
| |
Collapse
|
177
|
Yun NR, Kim DM, Lee J, Han MA. pH level as a marker for predicting death among patients with Vibrio vulnificus infection, South Korea, 2000-2011. Emerg Infect Dis 2015; 21:259-64. [PMID: 25627847 PMCID: PMC4313626 DOI: 10.3201/eid2102.131249] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Initial pH level at hospital admission was the most accurate and simple predictor of death. Vibrio vulnificus infection can progress to necrotizing fasciitis and death. To improve the likelihood of patient survival, an early prognosis of patient outcome is clinically important for emergency/trauma department doctors. To identify an accurate and simple predictor for death among V. vulnificus–infected persons, we reviewed clinical data for 34 patients at a hospital in South Korea during 2000–2011; of the patients, 16 (47%) died and 18 (53%) survived. For nonsurvivors, median time from hospital admission to death was 15 h (range 4–70). For predicting death, the areas under the receiver operating characteristic curves of the Acute Physiology and Chronic Health Evaluation (APACHE) II score and initial pH were 0.746 and 0.972, respectively (p = 0.005). An optimal cutoff pH of <7.35 had a sensitivity of 100% and specificity of 83%. Compared with the APACHE II score, the initial arterial blood pH level in V. vulnificus-infected patients was a more accurate predictive marker for death.
Collapse
|
178
|
Hepcidin-induced hypoferremia is a critical host defense mechanism against the siderophilic bacterium Vibrio vulnificus. Cell Host Microbe 2015; 17:47-57. [PMID: 25590758 DOI: 10.1016/j.chom.2014.12.001] [Citation(s) in RCA: 182] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 10/13/2014] [Accepted: 11/06/2014] [Indexed: 12/21/2022]
Abstract
Hereditary hemochromatosis, an iron overload disease caused by a deficiency in the iron-regulatory hormone hepcidin, is associated with lethal infections by siderophilic bacteria. To elucidate the mechanisms of this susceptibility, we infected wild-type and hepcidin-deficient mice with the siderophilic bacterium Vibrio vulnificus and found that hepcidin deficiency results in increased bacteremia and decreased survival of infected mice, which can be partially ameliorated by dietary iron depletion. Additionally, timely administration of hepcidin agonists to hepcidin-deficient mice induces hypoferremia that decreases bacterial loads and rescues these mice from death, regardless of initial iron levels. Studies of Vibrio vulnificus growth ex vivo show that high iron sera from hepcidin-deficient mice support extraordinarily rapid bacterial growth and that this is inhibited in hypoferremic sera. Our findings demonstrate that hepcidin-mediated hypoferremia is a host defense mechanism against siderophilic pathogens and suggest that hepcidin agonists may improve infection outcomes in patients with hereditary hemochromatosis or thalassemia.
Collapse
|
179
|
Hydrogen peroxide causes Vibrio vulnificus bacteriolysis accelerated by sulfonyl fluoride compounds. Arch Microbiol 2015; 197:1075-85. [PMID: 26316164 DOI: 10.1007/s00203-015-1144-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 08/17/2015] [Accepted: 08/19/2015] [Indexed: 10/23/2022]
Abstract
Induction of bacteriolysis of Vibrio vulnificus cells by 10 mM hydrogen peroxide (H(2)O(2)) was analyzed. All Vibrio species examined, except for Vibrio hollisae, were lysed by 10 mM H(2)O(2). Bacteriophage induction was not the cause of H(2)O(2)-induced bacteriolysis. Autolysis is also known to cause bacteriolysis. VvpS protein is a serine protease of V. vulnificus essential for autolysis. vvpS mutant underwent H(2)O(2)-induced bacteriolysis in the same manner as the wild type. Protease inhibitors including serine protease inhibitors did not inhibit H(2)O(2)-induced bacteriolysis, which means that bacteriolysis is not due to autolysis. Unexpectedly, H(2)O(2)-induced bacteriolysis was accelerated by adding 4-(2-aminoethyl) benzenesulfonyl fluoride hydrochloride (AEBSF) and phenylmethylsulfonyl fluoride which are serine protease inhibitors. The hydroxyl radical was generated by H(2)O(2)-AEBSF interaction. It was considered that H(2)O(2)-induced bacteriolysis was caused by the hydroxyl radical which was generated by Fenton reaction, and possibly mediated by AEBSF. Deferoxamine, an agent chelating ferric ion and Fenton reaction inhibitor, suppressed both H(2)O(2)-induced bacteriolysis and its acceleration by AEBSF. This suggests that both phenomena were Fenton reaction dependent, and hydroxyl radical generated by Fenton reaction caused bacteriolysis of V. vulnificus though the reason for high susceptibility of Vibrio species to hydroxyl radical is not known.
Collapse
|
180
|
The Fish Pathogen
Vibrio vulnificus
Biotype 2: Epidemiology, Phylogeny, and Virulence Factors Involved in Warm-Water Vibriosis. Microbiol Spectr 2015; 3. [DOI: 10.1128/microbiolspec.ve-0005-2014] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
ABSTRACT
Vibrio vulnificus
biotype 2 is the etiological agent of warm-water vibriosis, a disease that affects eels and other teleosts, especially in fish farms. Biotype 2 is polyphyletic and probably emerged from aquatic bacteria by acquisition of a transferable virulence plasmid that encodes resistance to innate immunity of eels and other teleosts. Interestingly, biotype 2 comprises a zoonotic clonal complex designated as serovar E that has extended worldwide. One of the most interesting virulence factors produced by serovar E is RtxA1
3
, a multifunctional protein that acts as a lethal factor for fish, an invasion factor for mice, and a survival factor outside the host. Two practically identical copies of
rtxA1
3
are present in all biotype 2 strains regardless of the serovar, one in the virulence plasmid and the other in chromosome II. The plasmid also contains other genes involved in survival and growth in eel blood:
vep07
, a gene for an outer membrane (OM) lipoprotein involved in resistance to eel serum and
vep20
, a gene for an OM receptor specific for eel-transferrin and, probably, other related fish transferrins. All the three genes are highly conserved within biotype 2, which suggests that they are under a strong selective pressure. Interestingly, the three genes are related with transferable plasmids, which emphasizes the role of horizontal gene transfer in the evolution of
V. vulnificus
in nutrient-enriched aquatic environments, such as fish farms.
Collapse
|
181
|
Wong KC, Brown AM, Luscombe GM, Wong SJ, Mendis K. Antibiotic use for Vibrio infections: important insights from surveillance data. BMC Infect Dis 2015; 15:226. [PMID: 26062903 PMCID: PMC4464855 DOI: 10.1186/s12879-015-0959-z] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 05/21/2015] [Indexed: 12/18/2022] Open
Abstract
Background There is a paucity of data on the in vivo efficacy of antibiotics for lethal Vibrio species. Analyses of long-term surveillance datasets may provide insights into use of antibiotics to decrease mortality. Methods The United States Centers for Disease Control and Prevention (CDC) Cholera and Other Vibrio Illness Surveillance (COVIS) dataset from 1990 to 2010, with 8056 records, was analysed to ascertain trends in antibiotics use and mortality. Results Two-thirds of patients (5243) were prescribed antibiotics - quinolones (56.1 %), cephalosporins (24.1 %), tetracyclines (23.5 %), and penicillins (15.4 %). Considering all Vibrio species, the only class of antibiotic associated with reduced odds of mortality was quinolone (odds ratio 0.56, 95 % CI 0.46-0.67). Patients with V. vulnificus treated according to CDC recommendations had lower mortality (quinolone alone: 16.7 %, 95 % CI 10.2-26.1; tetracycline plus cephalosporin: 21.7 %, 16.8-27.5; no antibiotic: 51.1 %, 45.6-56.7; each p < 0.001). Cephalosporin alone was associated with higher mortality (36.8 %, 28.2-46.3). For V. cholerae non-O1, non-O139, mortality rates were lower for quinolone (0 %, 0–2.0) or tetracycline (4.3 %, 1.2-14.5) compared to no antibiotic (9.3 %, 6.4-13.3). For all Vibrio species, mortality rates increased with number of antibiotics in the treatment regimen (p < 0.001). Treatment regimens that included quinolone were associated with lower mortality rates regardless of the number of antibiotics used. The main clinical syndromes of patients with V. vulnificus infection were septicaemia (53.1 %) and wound infections (30.6 %). Mortality among V. vulnificus patients with septicaemia was significantly higher than for other clinical syndromes (p < 0.001). In a multivariate regression model, mortality in cases with V. vulnificus was associated with presence of pre-existing conditions (ORs ranged from 4.52 to 10.30), septicaemia (OR 2.64, 95 % CI 1.92-3.63) and no antibiotic treatment (OR 7.89, 95 % CI 3.94-15.80). Conclusion In view of the lack of randomized control trials, surveillance data may inform treatment decisions for potentially lethal Vibriosis. Considering all Vibrio species, use of quinolones is associated with lower mortality and penicillin alone is not particularly effective. For the most lethal species, V. vulnificus, treatment that includes either quinolone or tetracycline is associated with lower mortality than cephalosporin alone. We recommend treating patients who present with a clinical syndrome suggestive of V. vulnificus infection with a treatment regimen that includes a quinolone.
Collapse
Affiliation(s)
- Kam Cheong Wong
- Bathurst Rural Clinical School, School of Medicine, University of Western Sydney, PO Box 9008, Bathurst, NSW, 2795, Australia. .,School of Rural Health, Sydney Medical School, University of Sydney, PO Box 1191, Orange, 2800, NSW, Australia.
| | - Anthony M Brown
- School of Rural Health, Sydney Medical School, University of Sydney, PO Box 1191, Orange, 2800, NSW, Australia.
| | - Georgina M Luscombe
- School of Rural Health, Sydney Medical School, University of Sydney, PO Box 1191, Orange, 2800, NSW, Australia.
| | - Shin Jie Wong
- Bathurst Rural Clinical School, School of Medicine, University of Western Sydney, PO Box 9008, Bathurst, NSW, 2795, Australia.
| | - Kumara Mendis
- Bathurst Rural Clinical School, School of Medicine, University of Western Sydney, PO Box 9008, Bathurst, NSW, 2795, Australia.
| |
Collapse
|
182
|
Kim IH, Kim IJ, Wen Y, Park NY, Park J, Lee KW, Koh A, Lee JH, Koo SH, Kim KS. Vibrio vulnificus Secretes an Insulin-degrading Enzyme That Promotes Bacterial Proliferation in Vivo. J Biol Chem 2015; 290:18708-20. [PMID: 26041774 DOI: 10.1074/jbc.m115.656306] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Indexed: 12/23/2022] Open
Abstract
We describe a novel insulin-degrading enzyme, SidC, that contributes to the proliferation of the human bacterial pathogen Vibrio vulnificus in a mouse model. SidC is phylogenetically distinct from other known insulin-degrading enzymes and is expressed and secreted specifically during host infection. Purified SidC causes a significant decrease in serum insulin levels and an increase in blood glucose levels in mice. A comparison of mice infected with wild type V. vulnificus or an isogenic sidC-deletion strain showed that wild type bacteria proliferated to higher levels. Additionally, hyperglycemia leads to increased proliferation of V. vulnificus in diabetic mice. Consistent with these observations, the sid operon was up-regulated in response to low glucose levels through binding of the cAMP-receptor protein (CRP) complex to a region upstream of the operon. We conclude that glucose levels are important for the survival of V. vulnificus in the host, and that this pathogen uses SidC to actively manipulate host endocrine signals, making the host environment more favorable for bacterial survival and growth.
Collapse
Affiliation(s)
- In Hwang Kim
- From the Department of Life Science, Sogang University, Seoul 121-742, Korea
| | - Ik-Jung Kim
- From the Department of Life Science, Sogang University, Seoul 121-742, Korea
| | - Yancheng Wen
- From the Department of Life Science, Sogang University, Seoul 121-742, Korea
| | - Na-Young Park
- From the Department of Life Science, Sogang University, Seoul 121-742, Korea
| | - Jinyoung Park
- the Division of Life Science, Korea University, Seoul 136-701, Korea
| | - Keun-Woo Lee
- From the Department of Life Science, Sogang University, Seoul 121-742, Korea
| | - Ara Koh
- From the Department of Life Science, Sogang University, Seoul 121-742, Korea
| | - Ji-Hyun Lee
- the Division of Life Science, Korea University, Seoul 136-701, Korea
| | - Seung-Hoi Koo
- the Division of Life Science, Korea University, Seoul 136-701, Korea
| | - Kun-Soo Kim
- From the Department of Life Science, Sogang University, Seoul 121-742, Korea,
| |
Collapse
|
183
|
Skin, soft tissue and systemic bacterial infections following aquatic injuries and exposures. Am J Med Sci 2015; 349:269-75. [PMID: 25374398 DOI: 10.1097/maj.0000000000000366] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
: Bacterial infections following aquatic injuries occur commonly in fishermen and vacationers after freshwater and saltwater exposures. Internet search engines were queried with the key words to describe the epidemiology, clinical manifestations, diagnostic and treatment strategies and outcomes of both the superficial and the deeper invasive infections caused by more common, newly emerging and unusual aquatic bacterial pathogens. Main findings included the following: (1) aquatic injuries often result in gram-negative polymicrobial infections with marine bacteria; (2) most marine bacteria are resistant to 1st- and 2nd-generation penicillins and cephalosporins; (3) nontuberculous, mycobacterial infections should be considered in late-onset, culture-negative and antibiotic-resistant marine infections; (4) superficial marine infections and pre-existing wounds exposed to seawater may result in deeply invasive infections and sepsis in immunocompromised patients. With the exception of minor marine wounds demonstrating localized cellulitis, most other marine infections and all gram-negative and mycobacterial marine infections will require therapy with antibiotic combinations.
Collapse
|
184
|
Hygiene and health risks associated with the consumption of edible lamellibranch molluscs. Int J Food Microbiol 2015; 201:52-7. [DOI: 10.1016/j.ijfoodmicro.2015.02.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 02/08/2015] [Accepted: 02/13/2015] [Indexed: 11/18/2022]
|
185
|
Abstract
Vibriosis is a group of intestinal and extraintestinal infections caused by marine-dwelling bacteria of the genus Vibrio. Infections range from indolent illnesses to fulminant diseases, including cholera and necrotizing fasciitis. Most illnesses result from direct contact with the marine environment or consumption of shellfish, especially oysters. In the United States vibrio infections are increasing but are underreported because of lack of clinical recognition and appropriate detection in the microbiology laboratory. Recent advances to aid in the detection and identification of vibrio illnesses in the laboratory include rapid identification tests, new media, and molecular identification systems.
Collapse
Affiliation(s)
- J Michael Janda
- Department of Public Health, Alameda County Public Health Laboratory, 1000 Broadway, Suite 500, Oakland, CA 94607, USA
| | - Anna E Newton
- Enteric Diseases Epidemiology Branch, Division of Foodborne, Waterborne and Environmental Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA 30333, USA
| | - Cheryl A Bopp
- Enteric Diseases Laboratory Branch, Division of Foodborne, Waterborne and Environmental Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA 30333, USA.
| |
Collapse
|
186
|
Distinct roles of the repeat-containing regions and effector domains of the Vibrio vulnificus multifunctional-autoprocessing repeats-in-toxin (MARTX) toxin. mBio 2015; 6:mBio.00324-15. [PMID: 25827415 PMCID: PMC4453568 DOI: 10.1128/mbio.00324-15] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Vibrio vulnificus is a seafood-borne pathogen that destroys the intestinal epithelium, leading to rapid bacterial dissemination and death. The most important virulence factor is the multifunctional-autoprocessing repeats-in-toxin (MARTX) toxin comprised of effector domains in the center region flanked by long repeat-containing regions which are well conserved among MARTX toxins and predicted to translocate effector domains. Here, we examined the role of the repeat-containing regions using a modified V. vulnificus MARTX (MARTXVv) toxin generated by replacing all the internal effector domains with β-lactamase (Bla). Bla activity was detected in secretions from the bacterium and also in the cytosol of intoxicated epithelial cells. The modified MARTXVv toxin without effector domains retained its necrotic activity but lost its cell-rounding activity. Further, deletion of the carboxyl-terminal repeat-containing region blocked toxin secretion from the bacterium. Deletion of the amino-terminal repeat-containing region had no effect on secretion but completely abolished translocation and necrosis. Neither secretion nor translocation was affected by enzymatically inactivating the cysteine protease domain of the toxin. These data demonstrate that the amino-terminal and carboxyl-terminal repeat-containing regions of the MARTXVv toxin are necessary and sufficient for the delivery of effector domains and epithelial cell lysis in vitro but that effector domains are required for other cytopathic functions. Furthermore, Ca2+-dependent secretion of the modified MARTXVv toxin suggests that nonclassical RTX-like repeats found in the carboxyl-terminal repeat-containing region are functionally similar to classical RTX repeats found in other RTX proteins. Up to 95% of deaths from seafood-borne infections in the United States are due solely to one pathogen, V. vulnificus. Among its various virulence factors, the MARTXVv toxin has been characterized as a critical exotoxin for successful pathogenesis of V. vulnificus in mouse infection models. Similarly to MARTX toxins of other pathogens, MARTXVv toxin is comprised of repeat-containing regions, central effector domains, and an autoprocessing cysteine protease domain. Yet how each of these regions contributes to essential activities of the toxins has not been fully identified for any of MARTX toxins. Using modified MARTXVv toxin fused with β-lactamase as a reporter enzyme, the portion(s) responsible for toxin secretion from bacteria, effector domain translocation into host cells, rapid host cell rounding, and necrotic host cell death was identified. The results are relevant for understanding how MARTXVv toxin serves as both a necrotic pore-forming toxin and an effector delivery platform.
Collapse
|
187
|
Pajuelo D, Lee CT, Roig FJ, Hor LI, Amaro C. Novel host-specific iron acquisition system in the zoonotic pathogenVibrio vulnificus. Environ Microbiol 2015; 17:2076-89. [DOI: 10.1111/1462-2920.12782] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 01/08/2015] [Accepted: 01/13/2015] [Indexed: 12/17/2022]
Affiliation(s)
- David Pajuelo
- Estructura de Investigación Interdisciplinar en Biotecnología y Medicina (ERI BIOTECMED); Department of Microbiology and Ecology; University of Valencia; Dr. Moliner 50 Valencia 46100 Spain
| | - Chung-Te Lee
- Department of Microbiology and Immunology; Institute of Basic Medical Sciences; Tainan 701 Taiwan
| | - Francisco J. Roig
- Estructura de Investigación Interdisciplinar en Biotecnología y Medicina (ERI BIOTECMED); Department of Microbiology and Ecology; University of Valencia; Dr. Moliner 50 Valencia 46100 Spain
| | - Lien-I. Hor
- Department of Microbiology and Immunology; Institute of Basic Medical Sciences; Tainan 701 Taiwan
- College of Medicine; National Cheng-Kung University; Tainan 701 Taiwan
| | - Carmen Amaro
- Estructura de Investigación Interdisciplinar en Biotecnología y Medicina (ERI BIOTECMED); Department of Microbiology and Ecology; University of Valencia; Dr. Moliner 50 Valencia 46100 Spain
| |
Collapse
|
188
|
Hellberg RS, Chu E. Effects of climate change on the persistence and dispersal of foodborne bacterial pathogens in the outdoor environment: A review. Crit Rev Microbiol 2015; 42:548-72. [PMID: 25612827 DOI: 10.3109/1040841x.2014.972335] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
According to the Intergovernmental Panel on Climate Change (IPCC), warming of the climate system is unequivocal. Over the coming century, warming trends such as increased duration and frequency of heat waves and hot extremes are expected in some areas, as well as increased intensity of some storm systems. Climate-induced trends will impact the persistence and dispersal of foodborne pathogens in myriad ways, especially for environmentally ubiquitous and/or zoonotic microorganisms. Animal hosts of foodborne pathogens are also expected to be impacted by climate change through the introduction of increased physiological stress and, in some cases, altered geographic ranges and seasonality. This review article examines the effects of climatic factors, such as temperature, rainfall, drought and wind, on the environmental dispersal and persistence of bacterial foodborne pathogens, namely, Bacillus cereus, Brucella, Campylobacter, Clostridium, Escherichia coli, Listeria monocytogenes, Salmonella, Staphylococcus aureus, Vibrio and Yersinia enterocolitica. These relationships are then used to predict how future climatic changes will impact the activity of these microorganisms in the outdoor environment and associated food safety issues. The development of predictive models that quantify these complex relationships will also be discussed, as well as the potential impacts of climate change on transmission of foodborne disease from animal hosts.
Collapse
Affiliation(s)
- Rosalee S Hellberg
- a Food Science and Nutrition Program, Schmid College of Science and Technology, Chapman University , Orange , CA , USA
| | - Eric Chu
- a Food Science and Nutrition Program, Schmid College of Science and Technology, Chapman University , Orange , CA , USA
| |
Collapse
|
189
|
Cyclo(Phe-Pro) produced by the human pathogen Vibrio vulnificus inhibits host innate immune responses through the NF-κB pathway. Infect Immun 2015; 83:1150-61. [PMID: 25561711 DOI: 10.1128/iai.02878-14] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Cyclo(Phe-Pro) (cFP) is a secondary metabolite produced by certain bacteria and fungi. Although recent studies highlight the role of cFP in cell-to-cell communication by bacteria, its role in the context of the host immune response is poorly understood. In this study, we investigated the role of cFP produced by the human pathogen Vibrio vulnificus in the modulation of innate immune responses toward the pathogen. cFP suppressed the production of proinflammatory cytokines, nitric oxide, and reactive oxygen species in a lipopolysaccharide (LPS)-stimulated monocyte/macrophage cell line and in bone marrow-derived macrophages. Specifically, cFP inhibited inhibitory κB (IκB) kinase (IKK) phosphorylation, IκBα degradation, and nuclear factor κB (NF-κB) translocation to the cell nucleus, indicating that cFP affects the NF-κB pathway. We searched for genes that are responsible for cFP production in V. vulnificus and identified VVMO6_03017 as a causative gene. A deletion of VVMO6_03017 diminished cFP production and decreased virulence in subcutaneously inoculated mice. In summary, cFP produced by V. vulnificus actively suppresses the innate immune responses of the host, thereby facilitating its survival and propagation in the host environment.
Collapse
|
190
|
Chao CM, Lai CC, Huang SH, Lin SH. Comparison of skin and soft tissue infections caused by Vibrio and Aeromonas species. Surg Infect (Larchmt) 2014; 15:576-80. [PMID: 25126885 DOI: 10.1089/sur.2013.065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The aim of this study was to compare skin and soft tissue infections (SSTIs) caused by Vibrio and Aeromonas spp. METHODS Patients whose cultures yielded Vibrio or Aeromonas spp. from July 2004 to June 2010 were retrieved from the computerized database of the bacteriology laboratory at a hospital in southern Taiwan. The medical records were reviewed for all patients fulfilling the criteria of monomicrobial Vibrio or Aeromonas spp. SSTIs and the clinical characteristics were analyzed. RESULTS During the study period, there were 28 patients with Vibrio spp. and 26 patients with Aeromonas spp., respectively. Vibrio vulnificus (n=25) and A. hydrophila (n=14) were the most common spp. There were no significant differences in age, gender, underlying diseases between patients with Vibrio and Aeromonas SSTIs. In comparison to Aeromonas SSTIs, more patients with Vibrio SSTIs were complicated with acute respiratory failure (39.3% vs. 3.8%, p=0.002) and required intensive care unit admission (50.0% vs. 7.7%, p<0.001). Furthermore, patients with Aeromonas SSTIs had a higher likelihood of discharge alone within 30 days than Vibrio SSTIs (p=0.049). The difference in in-hospital mortality among the two groups was not statistically significant (p=0.11). CONCLUSION Both Aeromonas and Vibrio spp. cause SSTIs in southern Taiwan and the pathogenicity of Vibrio spp. might be higher than Aeromonas spp.
Collapse
Affiliation(s)
- Chien-Ming Chao
- 1 Department of Intensive Care Medicine, Chi-Mei Medical Center , Liouying, Tainan, Taiwan
| | | | | | | |
Collapse
|
191
|
Primary Septicemia and Abdominal Compartment Syndrome From Vibrio parahaemolyticus Infection in a 40-Year-Old Patient With No Known Immunocompromise. INFECTIOUS DISEASES IN CLINICAL PRACTICE 2014. [DOI: 10.1097/ipc.0b013e3182a4b476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
192
|
Diaz JH. Skin and soft tissue infections following marine injuries and exposures in travelers. J Travel Med 2014; 21:207-13. [PMID: 24628985 DOI: 10.1111/jtm.12115] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 11/23/2013] [Accepted: 12/01/2013] [Indexed: 01/22/2023]
Abstract
BACKGROUND Bacterial skin and soft tissue infections (SSTIs) in travelers often follow insect bites and can present a broad spectrum of clinical manifestations ranging from impetigo to necrotizing cellulitis. Significant SSTIs can also follow marine injuries and exposures in travelers, and the etiologies are often marine bacteria. METHODS To meet the objectives of describing the pathogen-specific presenting clinical manifestations, diagnostic and treatment strategies, and outcomes of superficial and deep invasive infections in travelers caused by commonly encountered and newly emerging marine bacterial pathogens, Internet search engines were queried with the key words as MESH terms. RESULTS Travel medicine practitioners should maintain a high index of suspicion regarding potentially catastrophic, invasive bacterial infections, especially Aeromonas hydrophila, Vibrio vulnificus, Chromobacterium violaceum, and Shewanella infections, following marine injuries and exposures. CONCLUSIONS Travelers with well-known risk factors for the increasing severity of marine infections, including those with open wounds, suppressed immune systems, liver disease, alcoholism, hemochromatosis, hematological disease, diabetes, chronic renal disease, acquired immunodeficiency syndrome, and cancer, should be cautioned about the risks of marine infections through exposures to marine animals, seawater, the preparation of live or freshly killed seafood, and the accidental ingestion of seawater or consumption of raw or undercooked seafood, especially shellfish. With the exception of minor marine wounds demonstrating localized cellulitis or spreading erysipeloid-type reactions, most other marine infections and all Gram-negative and mycobacterial marine infections will require therapy with antibiotic combinations.
Collapse
Affiliation(s)
- James H Diaz
- Environmental and Occupational Health Sciences, School of Public Health; Department of Anesthesiology, School of Medicine, Louisiana State University Health Sciences Center (LSUHSC), New Orleans, LA, USA
| |
Collapse
|
193
|
Mayer AMS, Hall ML, Holland M, De Castro C, Molinaro A, Aldulescu M, Frenkel J, Ottenhoff L, Rowley D, Powell J. Vibrio vulnificus MO6-24/O lipopolysaccharide stimulates superoxide anion, thromboxane B₂, matrix metalloproteinase-9, cytokine and chemokine release by rat brain microglia in vitro. Mar Drugs 2014; 12:1732-56. [PMID: 24675728 PMCID: PMC4012467 DOI: 10.3390/md12041732] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Revised: 02/26/2014] [Accepted: 02/26/2014] [Indexed: 12/15/2022] Open
Abstract
Although human exposure to Gram-negative Vibrio vulnificus (V. vulnificus) lipopolysaccharide (LPS) has been reported to result in septic shock, its impact on the central nervous system's innate immunity remains undetermined. The purpose of this study was to determine whether V. vulnificus MO6-24/O LPS might activate rat microglia in vitro and stimulate the release of superoxide anion (O₂⁻), a reactive oxygen species known to cause oxidative stress and neuronal injury in vivo. Brain microglia were isolated from neonatal rats, and then treated with either V. vulnificus MO6-24/O LPS or Escherichia coli O26:B6 LPS for 17 hours in vitro. O₂⁻ was determined by cytochrome C reduction, and matrix metalloproteinase-2 (MMP-2) and MMP-9 by gelatinase zymography. Generation of cytokines tumor necrosis factor alpha (TNF-α), interleukin-1 alpha (IL-1α), IL-6, and transforming growth factor-beta 1 (TGF-β1), chemokines macrophage inflammatory protein (MIP-1α)/chemokine (C-C motif) ligand 3 (CCL3), MIP-2/chemokine (C-X-C motif) ligand 2 (CXCL2), monocyte chemotactic protein-1 (MCP-1)/CCL2, and cytokine-induced neutrophil chemoattractant-2alpha/beta (CINC-2α/β)/CXCL3, and brain-derived neurotrophic factor (BDNF), were determined by specific immunoassays. Priming of rat microglia by V. vulnificus MO6-24/O LPS in vitro yielded a bell-shaped dose-response curve for PMA (phorbol 12-myristate 13-acetate)-stimulated O₂⁻ generation: (1) 0.1-1 ng/mL V. vulnificus LPS enhanced O₂⁻ generation significantly but with limited inflammatory mediator generation; (2) 10-100 ng/mL V. vulnificus LPS maximized O₂⁻ generation with concomitant release of thromboxane B2 (TXB2), matrix metalloproteinase-9 (MMP-9), and several cytokines and chemokines; (3) 1000-100,000 ng/mL V. vulnificus LPS, with the exception of TXB2, yielded both attenuated O₂⁻ production, and a progressive decrease in MMP-9, cytokines and chemokines investigated. Thus concentration-dependent treatment of neonatal brain microglia with V. vulnificus MO6-24/O LPS resulted in a significant rise in O₂⁻ production, followed by a progressive decrease in O₂⁻ release, with concomitant release of lactic dehydrogenase (LDH), and generation of TXB2, MMP-9, cytokines and chemokines. We hypothesize that the inflammatory mediators investigated may be cytotoxic to microglia in vitro, by an as yet undetermined autocrine mechanism. Although V. vulnificus LPS was less potent than E. coli LPS in vitro, inflammatory mediator release by the former was clearly more efficacious. Finally, we hypothesize that should V. vulnificus LPS gain entry into the CNS, it would be possible that microglia might become activated, resulting in high levels of O₂⁻ as well as neuroinflammatory TXB2, MMP-9, cytokines and chemokines.
Collapse
Affiliation(s)
- Alejandro M S Mayer
- Department of Pharmacology, Chicago College of Osteopathic Medicine, Midwestern University, 555 31st Street, Downers Grove, IL 60515, USA.
| | - Mary L Hall
- Department of Pharmacology, Chicago College of Osteopathic Medicine, Midwestern University, 555 31st Street, Downers Grove, IL 60515, USA.
| | - Michael Holland
- Department of Pharmacology, Chicago College of Osteopathic Medicine, Midwestern University, 555 31st Street, Downers Grove, IL 60515, USA.
| | - Cristina De Castro
- Department of Chemical Sciences, University of Napoli, Via Cintia 4, 80126 Napoli, Italy.
| | - Antonio Molinaro
- Department of Chemical Sciences, University of Napoli, Via Cintia 4, 80126 Napoli, Italy.
| | - Monica Aldulescu
- Department of Pharmacology, Chicago College of Osteopathic Medicine, Midwestern University, 555 31st Street, Downers Grove, IL 60515, USA.
| | - Jeffrey Frenkel
- Department of Pharmacology, Chicago College of Osteopathic Medicine, Midwestern University, 555 31st Street, Downers Grove, IL 60515, USA.
| | - Lauren Ottenhoff
- Department of Pharmacology, Chicago College of Osteopathic Medicine, Midwestern University, 555 31st Street, Downers Grove, IL 60515, USA.
| | - David Rowley
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, 7 Greenhouse Road, Kingston, RI 02881, USA.
| | - Jan Powell
- Department of Epidemiology and Preventive Medicine, University of Maryland School of Medicine, 10 Pine St, Baltimore, MD 21201, USA.
| |
Collapse
|
194
|
Krajewski SS, Narberhaus F. Temperature-driven differential gene expression by RNA thermosensors. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:978-988. [PMID: 24657524 DOI: 10.1016/j.bbagrm.2014.03.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 02/28/2014] [Accepted: 03/14/2014] [Indexed: 12/20/2022]
Abstract
Many prokaryotic genes are organized in operons. Genes organized in such transcription units are co-transcribed into a polycistronic mRNA. Despite being clustered in a single mRNA, individual genes can be subjected to differential regulation, which is mainly achieved at the level of translation depending on initiation and elongation. Efficiency of translation initiation is primarily determined by the structural accessibility of the ribosome binding site (RBS). Structured cis-regulatory elements like RNA thermometers (RNATs) can contribute to differential regulation of individual genes within a polycistronic mRNA. RNATs are riboregulators that mediate temperature-responsive regulation of a downstream gene by modulating the accessibility of its RBS. At low temperature, the RBS is trapped by intra-molecular base pairing prohibiting translation initiation. The secondary structure melts with increasing temperature thus liberating the RBS. Here, we present an overview of different RNAT types and specifically highlight recently discovered RNATs. The main focus of this review is on RNAT-based differential control of polycistronic operons. Finally, we discuss the influence of temperature on other riboregulators and the potential of RNATs in synthetic RNA biology. This article is part of a Special Issue entitled: Riboswitches.
Collapse
|
195
|
Vibrio vulnificus biotype 3 multifunctional autoprocessing RTX toxin is an adenylate cyclase toxin essential for virulence in mice. Infect Immun 2014; 82:2148-57. [PMID: 24614656 DOI: 10.1128/iai.00017-14] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Vibrio vulnificus is an environmental organism that causes both food-borne and wound infections with high morbidity and mortality in humans. The annual incidence and global distribution of infections associated with this pathogen are increasing with climate change. In the late 1990s, an outbreak of tilapia-associated wound infections in Israel was linked to a previously unrecognized variant of V. vulnificus designated biotype 3. The sudden emergence and clonality of the outbreak suggest that this strain may be a true newly emergent pathogen with novel virulence properties compared to those of other V. vulnificus strains. In a subcutaneous infection model to mimic wound infection, the multifunctional autoprocessing RTX (MARTX) toxin of biotype 3 strains was shown to be an essential virulence factor contributing to highly inflammatory skin wounds with severe damage affecting every tissue layer. We conducted a sequencing-based analysis of the MARTX toxin and found that biotype 3 MARTX toxin has an effector domain structure distinct from that of either biotype 1 or biotype 2. Of the two new domains identified, a domain similar to Pseudomonas aeruginosa ExoY was shown to confer adenylate cyclase activity on the MARTX toxin. This is the first demonstration that the biotype 3 MARTX toxin is essential for virulence and that the ExoY-like MARTX effector domain is a catalytically active adenylate cyclase.
Collapse
|
196
|
Stamm LV, Drapp RL. TLR2 and TLR4 mediate the TNFα response to Vibrio vulnificus biotype 1. Pathog Dis 2014; 71:357-61. [PMID: 24532589 DOI: 10.1111/2049-632x.12154] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 01/13/2014] [Accepted: 02/03/2014] [Indexed: 01/19/2023] Open
Abstract
Vibrio vulnificus (Vv) is a pathogenic bacterium that can cause life-threatening infections in humans. Most fatal cases are due to septic shock that results from dysregulation of cytokines, particularly TNFα, which plays a critical role in the outcome of Vv infection. The goal of this study was to investigate the Toll-like receptor (TLR)-mediated TNFα response to four Vv biotype 1 strains using mice deficient for TLR2, TLR4, and TLR2/TLR4. Ex vivo assays were performed with blood, splenocytes, and Kupffer cells (KC) from wild-type (WT) and TLR-knockout (KO) mice using formalin-inactivated Vv (f-Vv) as stimulant. All f-Vv biotype 1 strains elicited strong TNFα production by WT mouse blood and cells, which was TLR2 and TLR4 dependent. OxPAPC, an inhibitor of TLR2 and TLR4 signaling, effectively blunted the TLR-mediated TNFα response to f-Vv. Furthermore, TLR2 KO and TLR2/TLR4 KO mice were more resistant to lethal infection with Vv ATCC 27562 than WT mice, perhaps due to attenuation of the TNFα response. These data suggest that it may be possible to devise strategies to specifically target the harmful TLR-mediated TNFα response as an adjunct to antibiotic treatment of severe Vv infection.
Collapse
Affiliation(s)
- Lola V Stamm
- The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | |
Collapse
|
197
|
Lim JG, Park JH, Choi SH. Low cell density regulator AphA upregulates the expression of Vibrio vulnificus iscR gene encoding the Fe-S cluster regulator IscR. J Microbiol 2014; 52:413-21. [PMID: 24535746 DOI: 10.1007/s12275-014-3592-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 11/27/2013] [Accepted: 12/02/2013] [Indexed: 12/19/2022]
Abstract
IscR is a global transcriptional regulator that contributes to the pathogenesis of Vibrio vulnificus, a food-borne pathogen. In the present study, the regulatory mechanism for the iscR expression of V. vulnificus was evaluated. The expression of iscR was found to be upregulated by a transcriptional regulator AphA, a homologue of the low cell density regulator AphA of the Vibrio species, in the exponential phase of growth. The promoter activity of iscR appeared to be activated and repressed by AphA and IscR, respectively. EMSA and DNase I protection assay showed that both AphA and IscR bind to the iscR regulatory region and the binding site for AphA overlapped with part of the binding site for IscR. Further mutational analysis suggested that AphA upregulates the iscR expression only in the presence of functional IscR. An examination of the roles of AphA and the binding sites revealed that the binding of AphA would hinder the IscR-mediated repression of the iscR transcription. The combined results show that V. vulnificus AphA upregulates iscR expression by antagonizing its negative autoregulation.
Collapse
Affiliation(s)
- Jong Gyu Lim
- National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology, Center for Food Safety and Toxicology, Seoul National University, Seoul, 151-921, Republic of Korea
| | | | | |
Collapse
|
198
|
Host-nonspecific iron acquisition systems and virulence in the zoonotic serovar of Vibrio vulnificus. Infect Immun 2013; 82:731-44. [PMID: 24478087 DOI: 10.1128/iai.01117-13] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The zoonotic serovar of Vibrio vulnificus (known as biotype 2 serovar E) is the etiological agent of human and fish vibriosis. The aim of the present work was to discover the role of the vulnibactin- and hemin-dependent iron acquisition systems in the pathogenicity of this zoonotic serovar under the hypothesis that both are host-nonspecific virulence factors. To this end, we selected three genes for three outer membrane receptors (vuuA, a receptor for ferric vulnibactin, and hupA and hutR, two hemin receptors), obtained single and multiple mutants as well as complemented strains, and tested them in a series of in vitro and in vivo assays, using eels and mice as animal models. The overall results confirm that hupA and vuuA, but not hutR, are host-nonspecific virulence genes and suggest that a third undescribed host-specific plasmid-encoded system could also be used by the zoonotic serovar in fish. hupA and vuuA were expressed in the internal organs of the animals in the first 24 h of infection, suggesting that they may be needed to achieve the population size required to trigger fatal septicemia. vuuA and hupA were sequenced in strains representative of the genetic diversity of this species, and their phylogenies were reconstructed by multilocus sequence analysis of selected housekeeping and virulence genes as a reference. Given the overall results, we suggest that both genes might form part of the core genes essential not only for disease development but also for the survival of this species in its natural reservoir, the aquatic environment.
Collapse
|
199
|
Lee TH, Kim MH, Lee CS, Lee JH, Rhee JH, Chung KM. Protection against Vibrio vulnificus infection by active and passive immunization with the C-terminal region of the RtxA1/MARTXVv protein. Vaccine 2013; 32:271-6. [PMID: 24252692 DOI: 10.1016/j.vaccine.2013.11.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 09/27/2013] [Accepted: 11/06/2013] [Indexed: 11/29/2022]
Abstract
Vibrio vulnificus is a foodborne pathogen that is prevalent in coastal waters worldwide. Infection with V. vulnificus causes septicemia with fatality rates exceeding 50% even with aggressive antibiotic therapy. Several vaccine studies to prevent V. vulnificus infection have been performed but have had limited success. In this study, we identified the C-terminal region (amino acids 3491 to 4701) of the V. vulnificus multifunctional autoprocessing RTX (MARTXVv or RtxA1) protein, RtxA1-C, as a promising antigen that induces protective immune responses against V. vulnificus. Vaccination of mice with recombinant RtxA1-C protein with adjuvant elicited a robust antibody response and a dramatic reduction in blood bacterial load in mice infected intraperitoneally. Vaccination resulted in significant protection against lethal challenge with V. vulnificus. Furthermore, intraperitoneal passive immunization with serum raised against the recombinant RtxA1-C protein demonstrated marked efficacy in both prophylaxis and therapy. These results suggest that active and passive immunization against the C-terminal region of the RtxA1 protein may be an effective approach in the prevention and therapy of V. vulnificus infections.
Collapse
Affiliation(s)
- Tae Hee Lee
- Department of Microbiology and Immunology, Chonbuk National University Medical School, Jeonju, Jeonbuk 561-756, Republic of Korea
| | - Mi Hyun Kim
- Department of Microbiology and Immunology, Chonbuk National University Medical School, Jeonju, Jeonbuk 561-756, Republic of Korea
| | - Chang-Seop Lee
- Department of Internal Medicine, Chonbuk National University Medical School, Jeonju, Jeonbuk 561-756, Republic of Korea
| | - Ju-Hyung Lee
- Department of Preventive Medicine, Chonbuk National University Medical School, Jeonju, Jeonbuk 561-756, Republic of Korea
| | - Joon Haeng Rhee
- Clinical Vaccine R&D Center, Chonnam National University Medical School, Gwangju 520-724, Republic of Korea; Department of Microbiology, Chonnam National University Medical School, Gwangju 520-724, Republic of Korea
| | - Kyung Min Chung
- Department of Microbiology and Immunology, Chonbuk National University Medical School, Jeonju, Jeonbuk 561-756, Republic of Korea; Institute for Medical Science, Chonbuk National University Medical School, Jeonju, Jeonbuk 561-756, Republic of Korea.
| |
Collapse
|
200
|
Turner JW, Malayil L, Guadagnoli D, Cole D, Lipp EK. Detection of Vibrio parahaemolyticus, Vibrio vulnificus and Vibrio cholerae with respect to seasonal fluctuations in temperature and plankton abundance. Environ Microbiol 2013; 16:1019-28. [PMID: 24024909 DOI: 10.1111/1462-2920.12246] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 07/09/2013] [Accepted: 08/08/2013] [Indexed: 12/01/2022]
Abstract
Over a 1-year period, bi-monthly estuarine surface water and plankton samples (63-200 and > 200 μm fractions) were assayed by polymerase chain reaction for the prevalence of total Vibrio parahaemolyticus, V. vulnificus and V. cholerae and select genes associated with clinical strains found in each species. Neither temperature nor plankton abundance was a significant correlate of total V. parahaemolyticus; however, the prevalence of genes commonly associated with clinical strains (trh, tdh, ORF8) increased with temperature and copepod abundance (P < 0.05). The prevalence of total V. vulnificus and the siderophore-related viuB gene also increased with temperature and copepod and decapod abundance (P < 0.001). Temperature and copepod abundance also covaried with the prevalence of V. cholerae (P < 0.05), but there was no significant relationship with ctxA or other genes commonly found in clinical strains. Results show that genes commonly associated with clinical Vibrio strains were more frequently detected in association with chitinous plankton. We conclude that V. parahaemolyticus, V. vulnificus, V. cholerae and subpopulations that harbour genes common to clinical strains respond distinctly to seasonal changes in temperature as well as shifts in the taxonomic composition of discrete plankton fractions.
Collapse
Affiliation(s)
- Jeffrey W Turner
- Northwest Fisheries Science Center, National Oceanic and Atmospheric Administration, Seattle, WA, 98112, USA; School of Oceanography, University of Washington, Seattle, WA, 98195, USA
| | | | | | | | | |
Collapse
|