151
|
Fu N, Wu F, Jiang Z, Kim W, Ruan T, Malagola E, Ochiai Y, Nápoles OC, Valenti G, White RA, Belin BR, Zamechek LB, LaBella JS, Wang TC. Acute Intestinal Inflammation Depletes/Recruits Histamine-Expressing Myeloid Cells From the Bone Marrow Leading to Exhaustion of MB-HSCs. Cell Mol Gastroenterol Hepatol 2020; 11:1119-1138. [PMID: 33249238 PMCID: PMC7903065 DOI: 10.1016/j.jcmgh.2020.11.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/10/2020] [Accepted: 11/10/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS Histidine decarboxylase (HDC), the histamine-synthesizing enzyme, is expressed in a subset of myeloid cells but also marks quiescent myeloid-biased hematopoietic stem cells (MB-HSCs) that are activated upon myeloid demand injury. However, the role of MB-HSCs in dextran sulfate sodium (DSS)-induced acute colitis has not been addressed. METHODS We investigated HDC+ MB-HSCs and myeloid cells by flow cytometry in acute intestinal inflammation by treating HDC-green fluorescent protein (GFP) male mice with 5% DSS at various time points. HDC+ myeloid cells in the colon also were analyzed by flow cytometry and immunofluorescence staining. Knockout of the HDC gene by using HDC-/-; HDC-GFP and ablation of HDC+ myeloid cells by using HDC-GFP; HDC-tamoxifen-inducible recombinase Cre system; diphtheria toxin receptor (DTR) mice was performed. The role of H2-receptor signaling in acute colitis was addressed by treatment of DSS-treated mice with the H2 agonist dimaprit dihydrochloride. Kaplan-Meier survival analysis was performed to assess the effect on survival. RESULTS In acute colitis, rapid activation and expansion of MB-HSC from bone marrow was evident early on, followed by a gradual depletion, resulting in profound HSC exhaustion, accompanied by infiltration of the colon by increased HDC+ myeloid cells. Knockout of the HDC gene and ablation of HDC+ myeloid cells enhance the early depletion of HDC+ MB-HSC, and treatment with H2-receptor agonist ameliorates the depletion of MB-HSCs and resulted in significantly increased survival of HDC-GFP mice with acute colitis. CONCLUSIONS Exhaustion of bone marrow MB-HSCs contributes to the progression of DSS-induced acute colitis, and preservation of quiescence of MB-HSCs by the H2-receptor agonist significantly enhances survival, suggesting the potential for therapeutic utility.
Collapse
Affiliation(s)
- Na Fu
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, College of Physicians and Surgeons, New York, New York; Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York; Department of Traditional and Western Medical Hepatology, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Feijing Wu
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, College of Physicians and Surgeons, New York, New York; Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York; The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Zhengyu Jiang
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, College of Physicians and Surgeons, New York, New York; Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York
| | - Woosook Kim
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, College of Physicians and Surgeons, New York, New York; Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York
| | - Tuo Ruan
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, College of Physicians and Surgeons, New York, New York; Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York; Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ermanno Malagola
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, College of Physicians and Surgeons, New York, New York; Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York
| | - Yosuke Ochiai
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, College of Physicians and Surgeons, New York, New York; Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York
| | - Osmel Companioni Nápoles
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, College of Physicians and Surgeons, New York, New York; Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York
| | - Giovanni Valenti
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, College of Physicians and Surgeons, New York, New York; Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York
| | - Ruth A White
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, College of Physicians and Surgeons, New York, New York; Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York
| | - Bryana R Belin
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, College of Physicians and Surgeons, New York, New York; Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York
| | - Leah B Zamechek
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, College of Physicians and Surgeons, New York, New York; Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York
| | - Jonathan S LaBella
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, College of Physicians and Surgeons, New York, New York; Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York
| | - Timothy C Wang
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, College of Physicians and Surgeons, New York, New York; Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York.
| |
Collapse
|
152
|
Sezaki M, Hayashi Y, Wang Y, Johansson A, Umemoto T, Takizawa H. Immuno-Modulation of Hematopoietic Stem and Progenitor Cells in Inflammation. Front Immunol 2020; 11:585367. [PMID: 33329562 PMCID: PMC7732516 DOI: 10.3389/fimmu.2020.585367] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 10/26/2020] [Indexed: 12/19/2022] Open
Abstract
Lifelong blood production is maintained by bone marrow (BM)-residing hematopoietic stem cells (HSCs) that are defined by two special properties: multipotency and self-renewal. Since dysregulation of either may lead to a differentiation block or extensive proliferation causing dysplasia or neoplasia, the genomic integrity and cellular function of HSCs must be tightly controlled and preserved by cell-intrinsic programs and cell-extrinsic environmental factors of the BM. The BM had been long regarded an immune-privileged organ shielded from immune insults and inflammation, and was thereby assumed to provide HSCs and immune cells with a protective environment to ensure blood and immune homeostasis. Recently, accumulating evidence suggests that hemato-immune challenges such as autoimmunity, inflammation or infection elicit a broad spectrum of immunological reactions in the BM, and in turn, influence the function of HSCs and BM environmental cells. Moreover, in analogy with the emerging concept of “trained immunity”, certain infection-associated stimuli are able to train HSCs and progenitors to produce mature immune cells with enhanced responsiveness to subsequent challenges, and in some cases, form an inflammatory or infectious memory in HSCs themselves. In this review, we will introduce recent findings on HSC and hematopoietic regulation upon exposure to various hemato-immune stimuli and discuss how these challenges can elicit either beneficial or detrimental outcomes on HSCs and the hemato-immune system, as well as their relevance to aging and hematologic malignancies.
Collapse
Affiliation(s)
- Maiko Sezaki
- Laboratory of Stem Cell Stress, International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
| | - Yoshikazu Hayashi
- Laboratory of Stem Cell Stress, International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan.,Laboratory of Hematopoietic Stem Cell Engineering, International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan.,Division of Functional Structure, Department of Morphological Biology, Fukuoka Dental College, Fukuoka, Japan
| | - Yuxin Wang
- Laboratory of Stem Cell Stress, International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan.,Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Alban Johansson
- Laboratory of Stem Cell Stress, International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan.,Laboratory of Hematopoietic Stem Cell Engineering, International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
| | - Terumasa Umemoto
- Laboratory of Hematopoietic Stem Cell Engineering, International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
| | - Hitoshi Takizawa
- Laboratory of Stem Cell Stress, International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan.,Center for Metabolic Regulation of Healthy Aging, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
153
|
Mitroulis I, Hajishengallis G, Chavakis T. Trained Immunity and Cardiometabolic Disease: The Role of Bone Marrow. Arterioscler Thromb Vasc Biol 2020; 41:48-54. [PMID: 33207931 DOI: 10.1161/atvbaha.120.314215] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Until recently, immunologic memory was considered an exclusive characteristic of adaptive immunity. However, recent advances suggest that the innate arm of the immune system can also mount a type of nonspecific memory responses. Innate immune cells can elicit a robust response to subsequent inflammatory challenges after initial activation by certain stimuli, such as fungal-derived agents or vaccines. This type of memory, termed trained innate immunity (also named innate immune memory), is associated with epigenetic and metabolic alterations. Hematopoietic progenitor cells, which are the cells responsible for the generation of mature myeloid cells at steady-state and during inflammation, have a critical contribution to the induction of innate immune memory. Inflammation-triggered alterations in cellular metabolism, the epigenome and transcriptome of hematopoietic progenitor cells in the bone marrow promote long-lasting functional changes, resulting in increased myelopoiesis and consequent generation of trained innate immune cells. In the present brief review, we focus on the involvement of hematopoietic progenitors in the process of trained innate immunity and its possible role in cardiometabolic disease.
Collapse
Affiliation(s)
- Ioannis Mitroulis
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine Carl Gustav Carus of TU Dresden, Germany (I.M., T.C.).,National Center for Tumor Diseases (NCT), Partner Site Dresden, German Cancer Research Center (DKFZ), Heidelberg, Germany (I.M.).,First Department of Internal Medicine, Department of Haematology and Laboratory of Molecular Hematology, Democritus University of Thrace, Alexandroupolis, Greece (I.M.)
| | - George Hajishengallis
- Laboratory of Innate Immunity and Inflammation, Department of Basic and Translational Sciences, Penn Dental Medicine, University of Pennsylvania, Philadelphia (G.H.)
| | - Triantafyllos Chavakis
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine Carl Gustav Carus of TU Dresden, Germany (I.M., T.C.).,Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, United Kingdom (T.C.)
| |
Collapse
|
154
|
Qiu H, Qian T, Wu T, Wang X, Zhu C, Chen C, Wang L. Umbilical cord blood cells for the treatment of preterm white matter injury: Potential effects and treatment options. J Neurosci Res 2020; 99:778-792. [PMID: 33207392 DOI: 10.1002/jnr.24751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 12/31/2022]
Abstract
Preterm birth is a global public health problem. A large number of preterm infants survive with preterm white matter injury (PWMI), which leads to neurological deficits, and has multifaceted etiology, clinical course, monitoring, and outcomes. The principal upstream insults leading to PWMI initiation are hypoxia-ischemia and infection and/or inflammation and the key target cells are late oligodendrocyte precursor cells. Current PWMI treatments are mainly supportive, and thus have little effect in terms of protecting the immature brain or repairing injury to improve long-term outcomes. Umbilical cord blood (UCB) cells comprise abundant immunomodulatory and stem cells, which have the potential to reduce brain injury, mainly due to anti-inflammatory and immunomodulatory mechanisms, and also through their release of neurotrophic or growth factors to promote endogenous neurogenesis. In this review, we briefly summarize PWMI pathogenesis and pathophysiology, and the specific properties of different cell types in UCB. We further explore the potential mechanism by which UCB can be used to treat PWMI, and discuss the advantages of and potential issues related to UCB cell therapy. Finally, we suggest potential future studies of UCB cell therapy in preterm infants.
Collapse
Affiliation(s)
- Han Qiu
- Key Laboratory of Neonatal Diseases of Health Commission of the People's Republic of China, Shanghai, China.,Department of Neonatology, National Children's Medical Center/Children's Hospital of Fudan University, Shanghai, China
| | - Tianyang Qian
- Key Laboratory of Neonatal Diseases of Health Commission of the People's Republic of China, Shanghai, China.,Department of Neonatology, National Children's Medical Center/Children's Hospital of Fudan University, Shanghai, China
| | - Tong Wu
- Key Laboratory of Neonatal Diseases of Health Commission of the People's Republic of China, Shanghai, China.,Department of Neonatology, National Children's Medical Center/Children's Hospital of Fudan University, Shanghai, China
| | - Xiaoyang Wang
- Center of Perinatal Medicine and Health, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Henan Key Laboratory of Child Brain Injury, Institute of Neuroscience and Third Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Changlian Zhu
- Center of Perinatal Medicine and Health, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Henan Key Laboratory of Child Brain Injury, Institute of Neuroscience and Third Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Chao Chen
- Key Laboratory of Neonatal Diseases of Health Commission of the People's Republic of China, Shanghai, China.,Department of Neonatology, National Children's Medical Center/Children's Hospital of Fudan University, Shanghai, China
| | - Laishuan Wang
- Key Laboratory of Neonatal Diseases of Health Commission of the People's Republic of China, Shanghai, China.,Department of Neonatology, National Children's Medical Center/Children's Hospital of Fudan University, Shanghai, China
| |
Collapse
|
155
|
Inflammation and hematopoietic stem cells aging. BLOOD SCIENCE 2020; 3:1-5. [PMID: 35399205 PMCID: PMC8974904 DOI: 10.1097/bs9.0000000000000063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 10/18/2020] [Indexed: 11/16/2022] Open
Abstract
Hematopoietic stem cells (HSCs) replenish all lineages of blood cells throughout the lifespan. During aging, the repopulation capacity of HSCs declined, and aged HSCs display a tendency for myeloid differentiation. Several intrinsic and extrinsic factors have been identified to promote HSCs aging. In this review, we focus on the contribution of aging-associated inflammation in provoking HSCs aging and discuss the future research direction of inflammation and HSC aging.
Collapse
|
156
|
Smith MA, Culver-Cochran AE, Adelman ER, Rhyasen GW, Ma A, Figueroa ME, Starczynowski DT. TNFAIP3 Plays a Role in Aging of the Hematopoietic System. Front Immunol 2020; 11:536442. [PMID: 33224133 PMCID: PMC7670064 DOI: 10.3389/fimmu.2020.536442] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 10/09/2020] [Indexed: 12/22/2022] Open
Abstract
Hematopoietic stem and progenitor cells (HSPC) experience a functional decline in response to chronic inflammation or aging. Haploinsufficiency of A20, or TNFAIP3, an innate immune regulator, is associated with a variety of autoimmune, inflammatory, and hematologic malignancies. Based on a prior analysis of epigenomic and transcriptomic changes during normal human aging, we find that the expression of A20 is significantly reduced in aged HSPC as compared to young HSPC. Here, we show that the partial reduction of A20 expression in young HSPC results in characteristic features of aging. Specifically, heterozygous deletion of A20 in hematopoietic cells resulted in expansion of the HSPC pool, reduced HSPC fitness, and myeloid-biased hematopoiesis. These findings suggest that altered expression of A20 in HSPC contributes to an aging-like phenotype, and that there may be a common underlying mechanism for diminished HSPC function between inflammatory states and aging.
Collapse
Affiliation(s)
- Molly A Smith
- Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Cancer Biology, University of Cincinnati, Cincinnati, OH, United States
| | - Ashley E Culver-Cochran
- Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Emmalee R Adelman
- Department of Human Genetics, University of Miami, Miami, FL, United States
| | - Garrett W Rhyasen
- Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Cancer Biology, University of Cincinnati, Cincinnati, OH, United States
| | - Averil Ma
- Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Maria E Figueroa
- Department of Human Genetics, University of Miami, Miami, FL, United States.,Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, United States
| | - Daniel T Starczynowski
- Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Cancer Biology, University of Cincinnati, Cincinnati, OH, United States.,Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| |
Collapse
|
157
|
Ratliff ML, Shankar M, Guthridge JM, James JA, Webb CF. TLR engagement induces ARID3a in human blood hematopoietic progenitors and modulates IFNα production. Cell Immunol 2020; 357:104201. [PMID: 32979763 PMCID: PMC7737244 DOI: 10.1016/j.cellimm.2020.104201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 08/25/2020] [Accepted: 08/25/2020] [Indexed: 11/19/2022]
Abstract
The DNA binding protein AT-rich interacting domain 3a (ARID3a)2 is expressed in healthy human hematopoietic cord blood progenitors where its modulation influences myeloid versus B lineage development. ARID3a is also variably expressed in subsets of adult peripheral blood hematopoietic progenitors where the consequences of ARID3a expression are unknown. In B lymphocytes, Toll-like receptor (TLR)3 signaling induces ARID3a expression in association with Type I interferon inflammatory cytokines. We hypothesized that TLR ligand stimulation of peripheral blood hematopoietic progenitors would induce ARID3a expression resulting in interferon production, and potentially influencing lineage decisions. Our data revealed that the TLR9 agonist CpG induces ARID3a expression with interferon alpha synthesis in human hematopoietic progenitors. However, ARID3a expression was not associated with increased B lineage development. These results demonstrate the need for further experiments to better define how pathogen-associated responses influence hematopoiesis.
Collapse
Affiliation(s)
- Michelle L Ratliff
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Malini Shankar
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Joel M Guthridge
- Arthritis and Clinical Immunology Program, Oklahoma Medical Resource Foundation, Oklahoma City, OK 73104, USA; Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Judith A James
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Arthritis and Clinical Immunology Program, Oklahoma Medical Resource Foundation, Oklahoma City, OK 73104, USA; Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Carol F Webb
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA; Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
158
|
Hauk P, Stephens K, Virgile C, VanArsdale E, Pottash AE, Schardt JS, Jay SM, Sintim HO, Bentley WE. Homologous Quorum Sensing Regulatory Circuit: A Dual-Input Genetic Controller for Modulating Quorum Sensing-Mediated Protein Expression in E. coli. ACS Synth Biol 2020; 9:2692-2702. [PMID: 32822530 DOI: 10.1021/acssynbio.0c00179] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We developed a hybrid synthetic circuit that co-opts the genetic regulation of the native bacterial quorum sensing autoinducer-2 and imposes an extra external controller for maintaining tightly controlled gene expression. This dual-input genetic controller was mathematically modeled and, by design, can be operated in three modes: a constitutive mode that enables consistent and high levels of expression; a tightly repressed mode in which there is very little background expression; and an inducible mode in which concentrations of two signals (arabinose and autoinducer-2) determine the net amplification of the gene(s)-of-interest. We demonstrate the utility of the circuit for the controlled expression of human granulocyte macrophage colony stimulating factor in an engineered probiotic E. coli. This dual-input genetic controller is the first homologous AI-2 quorum sensing circuit that has the ability to be operated in three different modes. We believe it has the potential for wide-ranging biotechnological applications due its versatile features.
Collapse
Affiliation(s)
- Pricila Hauk
- Institute for Bioscience and Biotechnology Research, College Park, Maryland 20742, United States
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - Kristina Stephens
- Institute for Bioscience and Biotechnology Research, College Park, Maryland 20742, United States
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
- Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, Maryland 20742, United States
| | - Chelsea Virgile
- Institute for Bioscience and Biotechnology Research, College Park, Maryland 20742, United States
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - Eric VanArsdale
- Institute for Bioscience and Biotechnology Research, College Park, Maryland 20742, United States
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
- Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, Maryland 20742, United States
| | - Alex Eli Pottash
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - John S. Schardt
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - Steven M. Jay
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - Herman O. Sintim
- Department of Chemistry and Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
| | - William E. Bentley
- Institute for Bioscience and Biotechnology Research, College Park, Maryland 20742, United States
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
- Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
159
|
Central and local controls of monocytopoiesis influence the outcome of Leishmania infection. Cytokine 2020; 147:155325. [PMID: 33039254 DOI: 10.1016/j.cyto.2020.155325] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 09/27/2020] [Accepted: 09/28/2020] [Indexed: 12/15/2022]
Abstract
Leishmaniases represent a complex of tropical and subtropical diseases caused by an intracellular protozoon of the genus Leishmania. The principal cells controlling the interaction between the host and the parasite Leishmania are monocytes and macrophages, as these cells play a decisive role in establishing the pathogenesis or cure. These cells are involved in controlling the growth of Leishmania and in modulating the adaptive immune responses. The heterogeneity and extensive plasticity of monocytes allow these cells to adjust their functional phenotypes in response to the pathogen-directed immunological cues. In Leishmania-infected host, the rate of myelopoiesis is augmented by enhanced monocytic lineage commitment and proliferation of myeloid progenitor cells both in the BM and at the site of infection. These newly generated monocytes play as "safe haven" for the parasite and also as the antigen-presenting cells for T cells to cause deregulated cytokine production. This altered monocytopoiesis is characterized by tissue-specific immune responses, spatiotemporal dynamics of immunoregulation and functional heterogeneity. In the presence of Th1 cytokines, monocytes exhibit a pro-inflammatory phenotype that protects the host from Leishmania. By contrast, in an environment of Th2 cytokines, monocytes display anti-inflammatory phenotype with pro-parasitic functions. In this review, we summarize the involvement of cytokines in the regulation of monocytopoiesis and differentiation of macrophages during leishmanial infection. Understanding the role of cytokines in regulating interactions between Leishmania and the host monocytes is key to developing new therapeutic interventions against leishmaniases.
Collapse
|
160
|
Sioud M. Microbial sensing by haematopoietic stem and progenitor cells: Vigilance against infections and immune education of myeloid cells. Scand J Immunol 2020; 92:e12957. [PMID: 32767789 DOI: 10.1111/sji.12957] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/17/2020] [Accepted: 08/04/2020] [Indexed: 12/12/2022]
Abstract
Bone marrow haematopoietic stem and progenitor cells (HSPCs) express pattern recognition receptors such as Toll-like receptors (TLRs) to sense microbial products and activation of these innate immune receptors induces cytokine expression and redirects bone marrow haematopoiesis towards the increased production of myeloid cells. Secreted cytokines by HSPCs in response to TLR ligands can act in an autocrine or paracrine manner to regulate haematopoiesis. Moreover, tonic activation of HSPCs by microbiota-derived compounds might educate HSPCs to produce superior myeloid cells equipped with innate memory responses to combat pathogens. While haematopoietic stem cell activation through TLRs meets the increased demand for blood leucocytes to protect the host against infection, persistent exposure to inflammatory cytokines or microbial products might impair their function and even induce malignant transformation. This review highlights the potential outcomes of HSPCs in response to TLR ligands.
Collapse
Affiliation(s)
- Mouldy Sioud
- Department of Cancer Immunology, Oslo University Hospital-Radiumhospitalet, Montebello, Norway
| |
Collapse
|
161
|
Enciso J, Mendoza L, Álvarez-Buylla ER, Pelayo R. Dynamical modeling predicts an inflammation-inducible CXCR7+ B cell precursor with potential implications in lymphoid blockage pathologies. PeerJ 2020; 8:e9902. [PMID: 33062419 PMCID: PMC7531334 DOI: 10.7717/peerj.9902] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 08/18/2020] [Indexed: 12/16/2022] Open
Abstract
Background The blockage at the early B lymphoid cell development pathway within the bone marrow is tightly associated with hematopoietic and immune diseases, where the disruption of basal regulatory networks prevents the continuous replenishment of functional B cells. Dynamic computational models may be instrumental for the comprehensive understanding of mechanisms underlying complex differentiation processes and provide novel prediction/intervention platforms to reinvigorate the system. Methods By reconstructing a three-module regulatory network including genetic transcription, intracellular transduction, and microenvironment communication, we have investigated the early B lineage cell fate decisions in normal and pathological settings. The early B cell differentiation network was simulated as a Boolean model and then transformed, using fuzzy logic, to a continuous model. We tested null and overexpression mutants to analyze the emergent behavior of the network. Due to its importance in inflammation, we investigated the effect of NFkB induction at different early B cell differentiation stages. Results While the exhaustive synchronous and asynchronous simulation of the early B cell regulatory network (eBCRN) reproduced the configurations of the hematopoietic progenitors and early B lymphoid precursors of the pathway, its simulation as a continuous model with fuzzy logics suggested a transient IL-7R+ ProB-to-Pre-B subset expressing pre-BCR and a series of dominant B-cell transcriptional factors. This conspicuous differentiating cell population up-regulated CXCR7 and reduced CXCR4 and FoxO1 expression levels. Strikingly, constant but intermediate NFkB signaling at specific B cell differentiation stages allowed stabilization of an aberrant CXCR7+ pre-B like phenotype with apparent affinity to proliferative signals, while under constitutive overactivation of NFkB, such cell phenotype was aberrantly exacerbated from the earliest stage of common lymphoid progenitors. Our mutant models revealed an abnormal delay in the BCR assembly upon NFkB activation, concomitant to sustained Flt3 signaling, down-regulation of Ebf1, Irf4 and Pax5 genes transcription, and reduced Ig recombination, pointing to a potential lineage commitment blockage. Discussion For the first time, an inducible CXCR7hi B cell precursor endowed with the potential capability of shifting central lymphoid niches, is inferred by computational modeling. Its phenotype is compatible with that of leukemia-initiating cells and might be the foundation that bridges inflammation with blockage-related malignancies and a wide range of immunological diseases. Besides the predicted differentiation impairment, inflammation-inducible phenotypes open the possibility of newly formed niches colonized by the reported precursor. Thus, emergent bone marrow ecosystems are predicted following a pro-inflammatory induction, that may lead to hematopoietic instability associated to blockage pathologies.
Collapse
Affiliation(s)
- Jennifer Enciso
- Centro de Investigación Biomédica de Oriente, Delegación Puebla, Instituto Mexicano del Seguro Social, Metepec, Puebla, Mexico.,Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, México.,Programa de Doctorado en Ciencias Bioquímicas, Universidad Nacional Autónoma de México, Mexico City, México
| | - Luis Mendoza
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, México
| | | | - Rosana Pelayo
- Centro de Investigación Biomédica de Oriente, Delegación Puebla, Instituto Mexicano del Seguro Social, Metepec, Puebla, Mexico
| |
Collapse
|
162
|
Pujadas G, Varin EM, Baggio LL, Mulvihill EE, Bang KWA, Koehler JA, Matthews D, Drucker DJ. The gut hormone receptor GIPR links energy availability to the control of hematopoiesis. Mol Metab 2020; 39:101008. [PMID: 32389828 PMCID: PMC7283165 DOI: 10.1016/j.molmet.2020.101008] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE Glucose-dependent insulinotropic polypeptide (GIP) conveys information from ingested nutrients to peripheral tissues, signaling energy availability. The GIP Receptor (GIPR) is also expressed in the bone marrow, notably in cells of the myeloid lineage. However, the importance of gain and loss of GIPR signaling for diverse hematopoietic responses remains unclear. METHODS We assessed the expression of the Gipr in bone marrow (BM) lineages and examined functional roles for the GIPR in control of hematopoiesis. Bone marrow responses were studied in (i) mice fed regular or energy-rich diets, (ii) mice treated with hematopoietic stressors including acute 5-fluorouracil (5-FU), pamsaccharide (LPS), and Pam3CysSerLys4 (Pam3CSK4), with or without pharmacological administration of a GIPR agonist, and (iii) mice with global (Gipr-/-) or selective deletion of the GIPR (GiprTie2-/-) with and without bone marrow transplantation (BMT). RESULTS Gipr is expressed within T cells, myeloid cells, and myeloid precursors; however, these cell populations were not different in peripheral blood, spleen, or BM of Gipr-/- and GiprTie2-/- mice. Nevertheless, gain and loss of function studies revealed that GIPR signaling controls the expression of BM Toll-like receptor (TLR) and Notch-related genes regulating hematopoiesis. Loss of the BM GIPR attenuates the extent of adipose tissue inflammation and dysregulates the hematopoietic response to BMT. GIPR agonism modified BM gene expression profiles following 5-FU and Pam3CSK4 whereas loss of the Gipr altered the hematopoietic responses to energy excess, two TLR ligands, and 5-FU. However, the magnitude of the cellular changes in hematopoiesis in response to gain or loss of GIPR signaling was relatively modest. CONCLUSION These studies identify a functional gut hormone-BM axis positioned for the transduction of signals linking nutrient availability to the control of TLR and Notch genes regulating hematopoiesis. Nevertheless, stimulation or loss of GIPR signaling has minimal impact on basal hematopoiesis or the physiological response to hematopoietic stress.
Collapse
Affiliation(s)
- Gemma Pujadas
- Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, University of Toronto, ON, M5G 1X5, Canada
| | - Elodie M Varin
- Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, University of Toronto, ON, M5G 1X5, Canada
| | - Laurie L Baggio
- Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, University of Toronto, ON, M5G 1X5, Canada
| | - Erin E Mulvihill
- Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, University of Toronto, ON, M5G 1X5, Canada
| | - K W Annie Bang
- Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, University of Toronto, ON, M5G 1X5, Canada
| | - Jacqueline A Koehler
- Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, University of Toronto, ON, M5G 1X5, Canada
| | - Dianne Matthews
- Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, University of Toronto, ON, M5G 1X5, Canada
| | - Daniel J Drucker
- Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, University of Toronto, ON, M5G 1X5, Canada.
| |
Collapse
|
163
|
Horev Y, Salameh R, Nassar M, Capucha T, Saba Y, Barel O, Zubeidat K, Matanes D, Leibovich A, Heyman O, Eli-Berchoer L, Hanhan S, Betser-Cohen G, Shapiro H, Elinav E, Bercovier H, Wilensky A, Hovav AH. Niche rather than origin dysregulates mucosal Langerhans cells development in aged mice. Mucosal Immunol 2020; 13:767-776. [PMID: 32457449 DOI: 10.1038/s41385-020-0301-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 04/02/2020] [Accepted: 04/19/2020] [Indexed: 02/04/2023]
Abstract
Unlike epidermal Langerhans cells (LCs) that originate from embryonic precursors and are self-renewed locally, mucosal LCs arise and are replaced by circulating bone marrow (BM) precursors throughout life. While the unique lifecycle of epidermal LCs is associated with an age-dependent decrease in their numbers, whether and how aging has an impact on mucosal LCs remains unclear. Focusing on gingival LCs we found that mucosal LCs are reduced with age but exhibit altered morphology with that observed in aged epidermal LCs. The reduction of gingival but not epidermal LCs in aged mice was microbiota-dependent; nevertheless, the impact of the microbiota on gingival LCs was indirect. We next compared the ability of young and aged BM precursors to differentiate to mucosal LCs. Mixed BM chimeras, as well as differentiation cultures, demonstrated that aged BM has intact if not superior capacity to differentiate into LCs than young BM. This was in line with the higher percentages of mucosal LC precursors, pre-DCs, and monocytes, detected in aged BM. These findings suggest that while aging is associated with reduced LC numbers, the niche rather than the origin controls this process in mucosal barriers.
Collapse
Affiliation(s)
- Yael Horev
- The Institute of Dental Sciences, Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel.,Department of Periodontology, Faculty of Dental Medicine, Hebrew University-Hadassah Medical Center, Jerusalem, Israel
| | - Rana Salameh
- The Institute of Dental Sciences, Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel
| | - Maria Nassar
- The Institute of Dental Sciences, Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel
| | - Tal Capucha
- The Institute of Dental Sciences, Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel
| | - Yasmin Saba
- The Institute of Dental Sciences, Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel
| | - Or Barel
- The Institute of Dental Sciences, Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel
| | - Khaled Zubeidat
- The Institute of Dental Sciences, Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel
| | - Daniela Matanes
- The Institute of Dental Sciences, Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel
| | - Amit Leibovich
- The Institute of Dental Sciences, Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel
| | - Oded Heyman
- Department of Periodontology, Faculty of Dental Medicine, Hebrew University-Hadassah Medical Center, Jerusalem, Israel
| | - Luba Eli-Berchoer
- The Institute of Dental Sciences, Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel
| | - Salem Hanhan
- The Institute of Dental Sciences, Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel
| | - Gili Betser-Cohen
- The Lautenberg Center for Immunology and Cancer Research, Faculty of Medicine, Hebrew University, Jerusalem, Israel
| | - Hagit Shapiro
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Eran Elinav
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Herve Bercovier
- Department of Microbiology and Molecular Genetics, Faculty of Medicine, Hebrew University, Jerusalem, Israel
| | - Asaf Wilensky
- Department of Periodontology, Faculty of Dental Medicine, Hebrew University-Hadassah Medical Center, Jerusalem, Israel.
| | - Avi-Hai Hovav
- The Institute of Dental Sciences, Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel.
| |
Collapse
|
164
|
Renga G, Bellet MM, Pariano M, Gargaro M, Stincardini C, D'Onofrio F, Mosci P, Brancorsini S, Bartoli A, Goldstein AL, Garaci E, Romani L, Costantini C. Thymosin α1 protects from CTLA-4 intestinal immunopathology. Life Sci Alliance 2020; 3:3/10/e202000662. [PMID: 32817121 PMCID: PMC7441522 DOI: 10.26508/lsa.202000662] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 08/07/2020] [Accepted: 08/07/2020] [Indexed: 12/21/2022] Open
Abstract
This study demonstrates that Tα1 protects mice from anti–CTLA-4–induced colitis and sustains its antitumor activity, thus suggesting that Tα1 may be used in combination protocols. The advent of immune checkpoint inhibitors has represented a major boost in cancer therapy, but safety concerns are increasingly being recognized. Indeed, although beneficial at the tumor site, unlocking a safeguard mechanism of the immune response may trigger autoimmune-like effects at the periphery, thus making the safety of immune checkpoint inhibitors a research priority. Herein, we demonstrate that thymosin α1 (Tα1), an endogenous peptide with immunomodulatory activities, can protect mice from intestinal toxicity in a murine model of immune checkpoint inhibitor–induced colitis. Specifically, Tα1 efficiently prevented immune adverse pathology in the gut by promoting the indoleamine 2,3-dioxygenase (IDO) 1–dependent tolerogenic immune pathway. Notably, Tα1 did not induce IDO1 in the tumor microenvironment, but rather modulated the infiltration of T-cell subsets by inverting the ratio between CD8+ and Treg cells, an effect that may depend on Tα1 ability to regulate the differentiation and chemokine expression profile of DCs. Thus, through distinct mechanisms that are contingent upon the context, Tα1 represents a plausible candidate to improve the safety/efficacy profile of immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Giorgia Renga
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Marina M Bellet
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Marilena Pariano
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Marco Gargaro
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | | | - Fiorella D'Onofrio
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Paolo Mosci
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | | | - Andrea Bartoli
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Allan L Goldstein
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC, USA
| | - Enrico Garaci
- University San Raffaele and Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele, Rome, Italy
| | - Luigina Romani
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Claudio Costantini
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| |
Collapse
|
165
|
Carpenter RS, Marbourg JM, Brennan FH, Mifflin KA, Hall JCE, Jiang RR, Mo XM, Karunasiri M, Burke MH, Dorrance AM, Popovich PG. Spinal cord injury causes chronic bone marrow failure. Nat Commun 2020; 11:3702. [PMID: 32710081 PMCID: PMC7382469 DOI: 10.1038/s41467-020-17564-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 07/01/2020] [Indexed: 12/15/2022] Open
Abstract
Spinal cord injury (SCI) causes immune dysfunction, increasing the risk of infectious morbidity and mortality. Since bone marrow hematopoiesis is essential for proper immune function, we hypothesize that SCI disrupts bone marrow hematopoiesis. Indeed, SCI causes excessive proliferation of bone marrow hematopoietic stem and progenitor cells (HSPC), but these cells cannot leave the bone marrow, even after challenging the host with a potent inflammatory stimulus. Sequestration of HSPCs in bone marrow after SCI is linked to aberrant chemotactic signaling that can be reversed by post-injury injections of Plerixafor (AMD3100), a small molecule inhibitor of CXCR4. Even though Plerixafor liberates HSPCs and mature immune cells from bone marrow, competitive repopulation assays show that the intrinsic long-term functional capacity of HSPCs is still impaired in SCI mice. Together, our data suggest that SCI causes an acquired bone marrow failure syndrome that may contribute to chronic immune dysfunction.
Collapse
Affiliation(s)
- Randall S Carpenter
- Neuroscience Graduate Program, The Ohio State University, Columbus, OH, USA
- Department of Neuroscience, The Ohio State University, Columbus, OH, USA
- Belford Center for Spinal Cord Injury, The Ohio State University, Columbus, OH, USA
- Center for Brain and Spinal Cord Repair, The Ohio State University, Columbus, OH, USA
| | - Jessica M Marbourg
- Neuroscience Graduate Program, The Ohio State University, Columbus, OH, USA
- Department of Neuroscience, The Ohio State University, Columbus, OH, USA
- Belford Center for Spinal Cord Injury, The Ohio State University, Columbus, OH, USA
- Center for Brain and Spinal Cord Repair, The Ohio State University, Columbus, OH, USA
| | - Faith H Brennan
- Department of Neuroscience, The Ohio State University, Columbus, OH, USA
- Belford Center for Spinal Cord Injury, The Ohio State University, Columbus, OH, USA
- Center for Brain and Spinal Cord Repair, The Ohio State University, Columbus, OH, USA
| | - Katherine A Mifflin
- Department of Neuroscience, The Ohio State University, Columbus, OH, USA
- Belford Center for Spinal Cord Injury, The Ohio State University, Columbus, OH, USA
- Center for Brain and Spinal Cord Repair, The Ohio State University, Columbus, OH, USA
| | - Jodie C E Hall
- Department of Neuroscience, The Ohio State University, Columbus, OH, USA
- Belford Center for Spinal Cord Injury, The Ohio State University, Columbus, OH, USA
- Center for Brain and Spinal Cord Repair, The Ohio State University, Columbus, OH, USA
| | - Roselyn R Jiang
- Department of Neuroscience, The Ohio State University, Columbus, OH, USA
- Belford Center for Spinal Cord Injury, The Ohio State University, Columbus, OH, USA
- Center for Brain and Spinal Cord Repair, The Ohio State University, Columbus, OH, USA
| | - Xiaokui M Mo
- Center for Biostatistics and Bioinformatics, The Ohio State University, Columbus, OH, USA
| | - Malith Karunasiri
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Matthew H Burke
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Adrienne M Dorrance
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
- Division of Hematology, The Ohio State University, Columbus, OH, USA
| | - Phillip G Popovich
- Department of Neuroscience, The Ohio State University, Columbus, OH, USA.
- Belford Center for Spinal Cord Injury, The Ohio State University, Columbus, OH, USA.
- Center for Brain and Spinal Cord Repair, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
166
|
Seyfried AN, Maloney JM, MacNamara KC. Macrophages Orchestrate Hematopoietic Programs and Regulate HSC Function During Inflammatory Stress. Front Immunol 2020; 11:1499. [PMID: 32849512 PMCID: PMC7396643 DOI: 10.3389/fimmu.2020.01499] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 06/08/2020] [Indexed: 12/14/2022] Open
Abstract
The bone marrow contains distinct cell types that work in coordination to generate blood and immune cells, and it is the primary residence of hematopoietic stem cells (HSCs) and more committed multipotent progenitors (MPPs). Even at homeostasis the bone marrow is a dynamic environment where billions of cells are generated daily to replenish short-lived immune cells and produce the blood factors and cells essential for hemostasis and oxygenation. In response to injury or infection, the marrow rapidly adapts to produce specific cell types that are in high demand revealing key insight to the inflammatory nature of "demand-adapted" hematopoiesis. Here we focus on the role that resident and monocyte-derived macrophages play in driving these hematopoietic programs and how macrophages impact HSCs and downstream MPPs. Macrophages are exquisite sensors of inflammation and possess the capacity to adapt to the environment, both promoting and restraining inflammation. Thus, macrophages hold great potential for manipulating hematopoietic output and as potential therapeutic targets in a variety of disease states where macrophage dysfunction contributes to or is necessary for disease. We highlight essential features of bone marrow macrophages and discuss open questions regarding macrophage function, their role in orchestrating demand-adapted hematopoiesis, and mechanisms whereby they regulate HSC function.
Collapse
Affiliation(s)
- Allison N Seyfried
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, United States
| | - Jackson M Maloney
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, United States
| | - Katherine C MacNamara
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, United States
| |
Collapse
|
167
|
Mitroulis I, Kalafati L, Bornhäuser M, Hajishengallis G, Chavakis T. Regulation of the Bone Marrow Niche by Inflammation. Front Immunol 2020; 11:1540. [PMID: 32849521 PMCID: PMC7396603 DOI: 10.3389/fimmu.2020.01540] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 06/11/2020] [Indexed: 12/19/2022] Open
Abstract
Hematopoietic stem cells (HSC) reside in the bone marrow (BM) within a specialized micro-environment, the HSC niche, which comprises several cellular constituents. These include cells of mesenchymal origin, endothelial cells and HSC progeny, such as megakaryocytes and macrophages. The BM niche and its cell populations ensure the functional preservation of HSCs. During infection or systemic inflammation, HSCs adapt to and respond directly to inflammatory stimuli, such as pathogen-derived signals and elicited cytokines, in a process termed emergency myelopoiesis, which includes HSC activation, expansion, and enhanced myeloid differentiation. The cell populations of the niche participate in the regulation of emergency myelopoiesis, in part through secretion of paracrine factors in response to pro-inflammatory stimuli, thereby indirectly affecting HSC function. Here, we review the crosstalk between HSCs and cell populations in the BM niche, specifically focusing on the adaptation of the HSC niche to inflammation and how this inflammatory adaptation may, in turn, regulate emergency myelopoiesis.
Collapse
Affiliation(s)
- Ioannis Mitroulis
- First Department of Internal Medicine, Department of Haematology and Laboratory of Molecular Hematology, Democritus University of Thrace, Alexandroupolis, Greece.,National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Lydia Kalafati
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine Carl Gustav Carus of TU Dresden, Dresden, Germany
| | - Martin Bornhäuser
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Internal Medicine I, University Hospital and Faculty of Medicine Carl Gustav Carus of TU Dresden, Dresden, Germany
| | - George Hajishengallis
- Laboratory of Innate Immunity and Inflammation, Department of Basic and Translational Sciences, Penn Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Triantafyllos Chavakis
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine Carl Gustav Carus of TU Dresden, Dresden, Germany
| |
Collapse
|
168
|
Abstract
PURPOSE OF REVIEW The innate immune system is essential in the protection against microbial infection and facilitating tissue repair mechanisms. During these stresses, the maintenance of innate immune cell numbers through stress-induced or emergency hematopoiesis is key for our survival. One major mechanism to recognize danger signals is through the activation of Toll-like receptors (TLRs) on the surface of hematopoietic cells, including hematopoietic stem cell (HSC) and hematopoietic progenitor cell (HPC), and nonhematopoietic cells, which recognize pathogen-derived or damaged-induced compounds and can influence the emergency hematopoietic response. This review explores how direct pathogen-sensing by HSC/HPC regulates hematopoiesis, and the positive and negative consequences of these signals. RECENT FINDINGS Recent studies have highlighted new roles for TLRs in regulating HSC and HPC differentiation to innate immune cells of both myeloid and lymphoid origin and augmenting HSC and HPC migration capabilities. Most interestingly, new insights as to how acute versus chronic stimulation of TLR signaling regulates HSC and HPC function has been explored. SUMMARY Recent evidence suggests that TLRs may play an important role in many inflammation-associated diseases. This suggests a possible use for TLR agonists or antagonists as potential therapeutics. Understanding the direct effects of TLR signaling by HSC and HPC may help regulate inflammatory/danger signal-driven emergency hematopoiesis.
Collapse
|
169
|
Yang X, Chen D, Long H, Zhu B. The mechanisms of pathological extramedullary hematopoiesis in diseases. Cell Mol Life Sci 2020; 77:2723-2738. [PMID: 31974657 PMCID: PMC11104806 DOI: 10.1007/s00018-020-03450-w] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 12/24/2019] [Accepted: 01/02/2020] [Indexed: 02/06/2023]
Abstract
Extramedullary hematopoiesis (EMH) is the expansion and differentiation of hematopoietic stem and progenitor cells outside of the bone marrow. In postnatal life, as a compensatory mechanism for ineffective hematopoiesis of the bone marrow, pathological EMH is triggered by hematopoietic disorders, insufficient hematopoietic compensation, and other pathological stress conditions, such as infection, advanced tumors, anemia, and metabolic stress. Pathological EMH has been reported in many organs, and the sites of pathological EMH may be related to reactivation of the embryonic hematopoietic structure in these organs. As a double-edged sword (blood and immune cell supplementation as well as clinical complications), pathological EMH has been widely studied in recent years. In particular, pathological EMH induced by late-stage tumors contributes to tumor immunosuppression. Thus, a deeper understanding of the mechanism of pathological EMH may be conducive to the development of therapies against the pathological processes that induce EMH. This article reviews the recent progress of research on the cellular and molecular mechanisms of pathological EMH in specific diseases.
Collapse
Affiliation(s)
- Xinxin Yang
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Degao Chen
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Haixia Long
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China.
| | - Bo Zhu
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China.
- Chongqing Key Laboratory of Immunotherapy, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China.
| |
Collapse
|
170
|
Perez de Acha O, Rossi M, Gorospe M. Circular RNAs in Blood Malignancies. Front Mol Biosci 2020; 7:109. [PMID: 32676504 PMCID: PMC7333357 DOI: 10.3389/fmolb.2020.00109] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 05/08/2020] [Indexed: 12/30/2022] Open
Abstract
Circular (circ)RNAs influence a wide range of biological processes at least in part by interacting with proteins and microRNAs. CircRNAs expressed in the hematopoietic compartment have been increasingly recognized as modulators of physiological and pathological features of hematopoetic stem cell (HSC)-derived populations. In particular, several circRNAs were found to enhance or suppress tumor progression in blood malignancies such as leukemias and lymphomas. Moreover, numerous circRNAs have been proposed to help confer resistance to the conventional treatments used in hematopoietic cancers. Here, we review the most important circRNAs described thus far in acute myeloid leukemia (AML), chronic myeloid leukemia (CML), acute lymphoblastic leukemia (ALL), chronic lymphocytic leukemia (CLL), lymphomas, and multiple myeloma (MM). We discuss the usefulness of circRNAs as diagnostic and prognostic markers and their potential value as therapeutic targets.
Collapse
Affiliation(s)
- Olivia Perez de Acha
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD, United States
| | - Martina Rossi
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD, United States
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD, United States
| |
Collapse
|
171
|
Charles-Messance H, Sheedy FJ. Train to Lose: Innate Immune Memory in Metaflammation. Mol Nutr Food Res 2020; 65:e1900480. [PMID: 32529783 DOI: 10.1002/mnfr.201900480] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 06/02/2020] [Indexed: 01/21/2023]
Abstract
Westernized diets and lifestyle are linked to the development of metabolic syndrome, characterized by obesity, type 2 diabetes, and increased cardiovascular disease risk. Systemic low-grade inflammation is a common feature of chronic metabolic disorders and is believed to promote disease progression. Therefore, modulating inflammation is a commonly explored strategy to prevent obesity-associated co-morbidities. In this review, how current knowledge on the recently described concept of innate immune memory could underline metaflammation in the context of metabolic syndrome is explored. It is hoped that these insights provide a new perspective to address the question of innate immune activation during disease progression.
Collapse
Affiliation(s)
- Hugo Charles-Messance
- Macrophage Homeostasis Research Group, School of Biochemistry and Immunology, Trinity College, Dublin, D02 R590, Ireland.,Trinity Biomedical Sciences Institute, Trinity College, Dublin, D02 R590, Ireland
| | - Frederick J Sheedy
- Macrophage Homeostasis Research Group, School of Biochemistry and Immunology, Trinity College, Dublin, D02 R590, Ireland.,Trinity Biomedical Sciences Institute, Trinity College, Dublin, D02 R590, Ireland
| |
Collapse
|
172
|
Pucella JN, Upadhaya S, Reizis B. The Source and Dynamics of Adult Hematopoiesis: Insights from Lineage Tracing. Annu Rev Cell Dev Biol 2020; 36:529-550. [PMID: 32580566 DOI: 10.1146/annurev-cellbio-020520-114601] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The generation of all blood cell lineages (hematopoiesis) is sustained throughout the entire life span of adult mammals. Studies using cell transplantation identified the self-renewing, multipotent hematopoietic stem cells (HSCs) as the source of hematopoiesis in adoptive hosts and delineated a hierarchy of HSC-derived progenitors that ultimately yield mature blood cells. However, much less is known about adult hematopoiesis as it occurs in native hosts, i.e., without transplantation. Here we review recent advances in our understanding of native hematopoiesis, focusing in particular on the application of genetic lineage tracing in mice. The emerging evidence has established HSCs as the major source of native hematopoiesis, helped to define the kinetics of HSC differentiation, and begun exploring native hematopoiesis in stress conditions such as aging and inflammation. Major outstanding questions about native hematopoiesis still remain, such as its clonal composition, the nature of lineage commitment, and the dynamics of the process in humans.
Collapse
Affiliation(s)
- Joseph N Pucella
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA; , ,
| | - Samik Upadhaya
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA; , ,
| | - Boris Reizis
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA; , ,
| |
Collapse
|
173
|
Dectin-1 Stimulation of Hematopoietic Stem and Progenitor Cells Occurs In Vivo and Promotes Differentiation Toward Trained Macrophages via an Indirect Cell-Autonomous Mechanism. mBio 2020; 11:mBio.00781-20. [PMID: 32576672 PMCID: PMC7315119 DOI: 10.1128/mbio.00781-20] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Invasive candidiasis is an increasingly frequent cause of serious and often fatal infections. Understanding host defense is essential to design novel therapeutic strategies to boost immune protection against Candida albicans. In this article, we delve into two new concepts that have arisen over the last years: (i) the delivery of myelopoiesis-inducing signals by microbial components directly sensed by hematopoietic stem and progenitor cells (HSPCs) and (ii) the concept of “trained innate immunity” that may also apply to HSPCs. We demonstrate that dectin-1 ligation in vivo activates HSPCs and induces their differentiation to trained macrophages by a cell-autonomous indirect mechanism. This points to new mechanisms by which pathogen detection by HSPCs may modulate hematopoiesis in real time to generate myeloid cells better prepared to deal with the infection. Manipulation of this process may help to boost the innate immune response during candidiasis. Toll-like receptor (TLR) agonists drive hematopoietic stem and progenitor cells (HSPCs) to differentiate along the myeloid lineage. In this study, we used an HSPC transplantation model to investigate the possible direct interaction of β-glucan and its receptor (dectin-1) on HSPCs in vivo. Purified HSPCs from bone marrow of B6Ly5.1 mice (CD45.1 alloantigen) were transplanted into dectin-1−/− mice (CD45.2 alloantigen), which were then injected with β-glucan (depleted zymosan). As recipient mouse cells do not recognize the dectin-1 agonist injected, interference by soluble mediators secreted by recipient cells is negligible. Transplanted HSPCs differentiated into macrophages in response to depleted zymosan in the spleens and bone marrow of recipient mice. Functionally, macrophages derived from HSPCs exposed to depleted zymosan in vivo produced higher levels of inflammatory cytokines (tumor necrosis factor alpha [TNF-α] and interleukin 6 [IL-6]). These results demonstrate that trained immune responses, already described for monocytes and macrophages, also take place in HSPCs. Using a similar in vivo model of HSPC transplantation, we demonstrated that inactivated yeasts of Candida albicans induce differentiation of HSPCs through a dectin-1- and MyD88-dependent pathway. Soluble factors produced following exposure of HSPCs to dectin-1 agonists acted in a paracrine manner to induce myeloid differentiation and to influence the function of macrophages derived from dectin-1-unresponsive or β-glucan-unexposed HSPCs. Finally, we demonstrated that an in vitro transient exposure of HSPCs to live C. albicans cells, prior to differentiation, is sufficient to induce a trained phenotype of the macrophages they produce in a dectin-1- and Toll-like receptor 2 (TLR2)-dependent manner.
Collapse
|
174
|
Paracatu LC, Schuettpelz LG. Contribution of Aberrant Toll Like Receptor Signaling to the Pathogenesis of Myelodysplastic Syndromes. Front Immunol 2020; 11:1236. [PMID: 32625214 PMCID: PMC7313547 DOI: 10.3389/fimmu.2020.01236] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 05/18/2020] [Indexed: 12/12/2022] Open
Abstract
Toll like receptors (TLRs) are a family of pattern recognition receptors that play a central role in the innate immune response. These receptors are expressed on a wide variety of immune and non-immune cells, and they help shape the immune response to infection and injury through the recognition of pathogen-associated molecular patterns (PAMPs) as well as endogenous damage-associated molecular patterns (DAMPs). Accumulating evidence suggests that, in addition to regulating mature effector immune cells, TLRs can influence the immune response from the level of the hematopoietic stem cell (HSC). HSCs express TLRs, and exposure to TLR ligands influences the cycling, differentiation, and function of HSCs, with chronic TLR stimulation leading to impairment of normal HSC repopulating activity. Moreover, enhanced TLR expression and signaling is associated with myelodysplastic syndromes (MDS), a heterogenous group of HSC disorders characterized by ineffective hematopoiesis and a high risk of transformation to acute leukemias. In this review, we will discuss the role of TLR signaling in the pathogenesis of MDS, focusing on the known direct and indirect effects of this type of signaling on HSCs, the mechanisms of TLR signaling upregulation in MDS, the changes in TLR expression with disease progression, and the therapeutic implications for modulating TLR signaling in the treatment of MDS.
Collapse
Affiliation(s)
- Luana Chiquetto Paracatu
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, United States
| | - Laura G Schuettpelz
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
175
|
TLR2 and Dectin-1 Signaling in Mouse Hematopoietic Stem and Progenitor Cells Impacts the Ability of the Antigen Presenting Cells They Produce to Activate CD4 T Cells. Cells 2020; 9:cells9051317. [PMID: 32466296 PMCID: PMC7290964 DOI: 10.3390/cells9051317] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/19/2020] [Accepted: 05/22/2020] [Indexed: 12/25/2022] Open
Abstract
Microbial recognition by pattern recognition receptors (PRRs) expressed on hematopoietic stem and progenitor cells (HSPCs) not only activates myelopoiesis but also programs the function of the monocytes and macrophages they produce. For instance, changes in HSPC programming modify the ability of macrophages derived from them to produce inflammatory cytokines. While HSPCs exposed to a TLR2 agonist give rise to tolerized macrophages (lower proinflammatory cytokine production), HSPCs treated with Dectin-1 ligands produce trained macrophages (higher proinflammatory cytokine production). However, nothing is known about the impact of HSPC exposure to microbes on the function of antigen presenting cells (APCs). In this study we evaluated whether treatment of murine bone marrow HSPCs with a TLR2 or Dectin-1 ligand impacts the antigen presenting capacity of APCs derived from them in vitro. Following activation with microbial ligands or Candida albicans yeasts, APCs derived from TLR2/Dectin-1-programed HSPCs exhibit altered expression of MHCII (signal 1), co-stimulatory molecules (CD40, CD80 and CD86; signal 2) and cytokines (TNF-α, IL-6, IL-12 p40 and IL-2; signal 3). Moreover, APCs derived from TLR2/Dectin-1-programed HSPCs prime enhanced Th1 and Th17 responses, which are important for antifungal defense, in CD4 T cell cocultures. Overall, these results demonstrate for the first time that microbial detection by bone marrow HSPCs can modulate the adaptive immune response by inducing the production of APCs with an altered phenotype.
Collapse
|
176
|
Luo F, Yu S, Jin LH. The Posterior Signaling Center Is an Important Microenvironment for Homeostasis of the Drosophila Lymph Gland. Front Cell Dev Biol 2020; 8:382. [PMID: 32509789 PMCID: PMC7253591 DOI: 10.3389/fcell.2020.00382] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 04/28/2020] [Indexed: 01/02/2023] Open
Abstract
Hematopoiesis is a necessary process for development and immune defense in Drosophila from the embryonic period to adulthood. There are two main stages in this process: the first stage occurs in the head mesoderm during the embryonic stage, and the second occurs in a specialized hematopoietic organ along the dorsal vessel, the lymph gland, during the larval stage. The lymph gland consists of paired lobes, each of which has distinct regions: the cortical zone (CZ), which contains mature hemocytes; the medullary zone (MZ), which contains hematopoietic progenitors; and the posterior signaling center (PSC), which specifically expresses the early B-cell factor (EBF) transcription factor Collier (Col) and the HOX factor Antennapedia (Antp) to form a microenvironment similar to that of the mammalian bone marrow hematopoietic stem cell niche. The PSC plays a key role in regulating hematopoietic progenitor differentiation. Moreover, the PSC contributes to the cellular immune response to wasp parasitism triggered by elevated ROS levels. Two recent studies have revealed that hematopoietic progenitor maintenance is directly regulated by Col expressed in the MZ and is independent of the PSC, challenging the traditional model. In this review, we summarize the regulatory networks of PSC cell proliferation, the controversy regarding PSC-mediated regulation of hematopoietic progenitor differentiation, and the wasp egg infection response. In addition, we discuss why the PSC is an ideal model for investigating mammalian hematopoietic stem cell niches and leukemia.
Collapse
Affiliation(s)
| | | | - Li Hua Jin
- Department of Genetics, College of Life Sciences, Northeast Forestry University, Harbin, China
| |
Collapse
|
177
|
Sjövall D, Staffas A. The origin of leukemia: Genetic alterations and inflammatory factors in the development of premalignant clonal hematopoiesis. Semin Hematol 2020; 57:7-12. [PMID: 32690142 DOI: 10.1053/j.seminhematol.2020.05.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 05/07/2020] [Accepted: 05/07/2020] [Indexed: 12/17/2022]
Abstract
Clonal hematopoiesis of indetermined potential (CHIP) is increasingly common with age and identified in more than 1 in 10 healthy individuals at the age of 70. Mutations in epigenetic and splicing factors are recurrent genetic events in CHIP, and experimental data suggest that microbial and inflammatory factors may contribute to the selective expansion of hematopoietic stem cells carrying these mutations. In parallel, CHIP is associated with an increased incidence of cardiovascular disease and studies in mice support a causal relationship where mutated hematopoietic cells contribute to inflammation and atherosclerotic plaque formation. Collectively, current clinical and experimental data suggest a complex network where genetic alterations and inflammatory factors contribute to the development of the early stages of hematological malignancy.
Collapse
Affiliation(s)
- Daniel Sjövall
- Sahlgrenska Cancer Center, University of Gothenburg, Sweden; Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Sweden
| | - Anna Staffas
- Sahlgrenska Cancer Center, University of Gothenburg, Sweden; Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Sweden; Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Gothenburg, Sweden.
| |
Collapse
|
178
|
de Laval B, Maurizio J, Kandalla PK, Brisou G, Simonnet L, Huber C, Gimenez G, Matcovitch-Natan O, Reinhardt S, David E, Mildner A, Leutz A, Nadel B, Bordi C, Amit I, Sarrazin S, Sieweke MH. C/EBPβ-Dependent Epigenetic Memory Induces Trained Immunity in Hematopoietic Stem Cells. Cell Stem Cell 2020; 26:657-674.e8. [PMID: 32169166 DOI: 10.1016/j.stem.2020.01.017] [Citation(s) in RCA: 183] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 08/23/2019] [Accepted: 01/23/2020] [Indexed: 02/08/2023]
Abstract
Hematopoietic stem cells (HSCs) maintain life-long production of immune cells and can directly respond to infection, but sustained effects on the immune response remain unclear. We show that acute immune stimulation with lipopolysaccharide (LPS) induced only transient changes in HSC abundance, composition, progeny, and gene expression, but persistent alterations in accessibility of specific myeloid lineage enhancers occurred, which increased responsiveness of associated immune genes to secondary stimulation. Functionally, this was associated with increased myelopoiesis of pre-exposed HSCs and improved innate immunity against the gram-negative bacterium P. aeruginosa. The accessible myeloid enhancers were enriched for C/EBPβ targets, and C/EBPβ deletion erased the long-term inscription of LPS-induced epigenetic marks and gene expression. Thus, short-term immune signaling can induce C/EBPβ-dependent chromatin accessibility, resulting in HSC-trained immunity, during secondary infection. This establishes a mechanism for how infection history can be epigenetically inscribed in HSCs as an integral memory function of innate immunity.
Collapse
Affiliation(s)
| | - Julien Maurizio
- Aix Marseille University, CNRS, INSERM, CIML, 13009 Marseille, France; Inovarion, 75005 Paris, France
| | - Prashanth K Kandalla
- Aix Marseille University, CNRS, INSERM, CIML, 13009 Marseille, France; Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, 01307 Dresden, Germany
| | - Gabriel Brisou
- Aix Marseille University, CNRS, INSERM, CIML, 13009 Marseille, France
| | - Louise Simonnet
- Aix Marseille University, CNRS, INSERM, CIML, 13009 Marseille, France
| | - Caroline Huber
- Aix Marseille University, CNRS, INSERM, CIML, 13009 Marseille, France
| | - Gregory Gimenez
- Aix Marseille University, CNRS, INSERM, CIML, 13009 Marseille, France; Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtzgemeinschaft (MDC), 13125 Berlin, Germany
| | | | - Susanne Reinhardt
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, 01307 Dresden, Germany
| | - Eyal David
- Department of Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Alexander Mildner
- Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtzgemeinschaft (MDC), 13125 Berlin, Germany
| | - Achim Leutz
- Institute of Biology, Humboldt University of Berlin, 10115 Berlin, Germany; Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtzgemeinschaft (MDC), 13125 Berlin, Germany
| | - Bertrand Nadel
- Aix Marseille University, CNRS, INSERM, CIML, 13009 Marseille, France
| | - Christophe Bordi
- Institut de Microbiologie de la Méditerranée, CNRS, 13009 Marseille, France
| | - Ido Amit
- Department of Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Sandrine Sarrazin
- Aix Marseille University, CNRS, INSERM, CIML, 13009 Marseille, France.
| | - Michael H Sieweke
- Aix Marseille University, CNRS, INSERM, CIML, 13009 Marseille, France; Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, 01307 Dresden, Germany; Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtzgemeinschaft (MDC), 13125 Berlin, Germany.
| |
Collapse
|
179
|
Ferluga J, Yasmin H, Al-Ahdal MN, Bhakta S, Kishore U. Natural and trained innate immunity against Mycobacterium tuberculosis. Immunobiology 2020; 225:151951. [PMID: 32423788 DOI: 10.1016/j.imbio.2020.151951] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/05/2020] [Accepted: 04/20/2020] [Indexed: 12/14/2022]
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb) infection, remains a major global health emergency. It is estimated that one third of global population are affected, predominantly with latent granuloma form of the disease. Mtb co-evolved with humans, for its obligatory intra-macrophage phagosome habitat and slow replication, balanced against unique mycobacterial innate immunity, which appears to be highly complex. TB is transmitted via cough aerosol Mtb inhalation. Bovine TB attenuated Bacillus Calmette Guerin (BCG) live vaccine has been in practice for protection of young children from severe disseminated Mtb infection, but not sufficiently for their lungs, as obtained by trials in TB endemic community. To augment BCG vaccine-driven innate and adaptive immunity for neonates and better protection against adult pulmonary TB, a number of BCG pre-vaccination based, subset vaccine candidates have been tested via animal preclinical, followed by safe clinical trials. BCG also enhances innate macrophage trained immunity and memory, through primordial intracellular Toll-like receptors (TLRs) 7 and 9, which recognise distinct mycobacterial molecular pattern signature. This signature is transmitted by TLR signalling via nuclear factor-κB, for activating innate immune transcription and expression of gene profiling in a mycobacterial signature-specific manner. These are epigenetically imprinted in reprogramming of distinct chromatin areas for innate immune memory, to be recalled following lung reinfection. Unique TB innate immunity and its trained memory are considered independent from adaptive immune B and T cells. On the other hand, adaptive immunity is crucial in Mtb containment in granulomatous latency, supported by innate immune cell infiltration. In nearly 5-10 % of susceptible people, latent TB may be activated due to immune evasion by Mtb from intracellular phagosome within macrophage, perpetrating TB. However, BCG and new recombinant BCG vaccines have the capacity, as indicated in pre- and clinical trials, to overcome such Mtb evasion. Various strategies include pro-inflammatory-bactericidal type 1 polarisation (M1) phenotype of the infected macrophage, involving thrombospondin-TLR pathway. Saprophytic M. smegmatis-based recombinant vaccines are also promising candidates against TB. BCG vaccination of neonates/infants in TB endemic countries also reduced their pneumonia caused by various microbes independent of TB immunity. Here, we discuss host immune response against Mtb, its immune evasion strategies, and the important role innate immunity plays in the development of protection against TB.
Collapse
Affiliation(s)
- Janez Ferluga
- Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge UB8 3PH, United Kingdom
| | - Hadida Yasmin
- Immunology and Cell Biology Laboratory, Department of Zoology, Cooch Behar Panchanan Barma University, Cooch Behar, West Bengal, India
| | - Mohammed N Al-Ahdal
- Department of Infection and Immunity, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Sanjib Bhakta
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, London WC1E 7HX, United Kingdom
| | - Uday Kishore
- Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge UB8 3PH, United Kingdom.
| |
Collapse
|
180
|
Zhang X, Karatepe K, Chiewchengchol D, Zhu H, Guo R, Liu P, Yu H, Ren Q, Luo X, Cheng T, Ma F, Xu Y, Han M, Luo HR. Bacteria-Induced Acute Inflammation Does Not Reduce the Long-Term Reconstitution Capacity of Bone Marrow Hematopoietic Stem Cells. Front Immunol 2020; 11:626. [PMID: 32373117 PMCID: PMC7179742 DOI: 10.3389/fimmu.2020.00626] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 03/19/2020] [Indexed: 12/04/2022] Open
Abstract
Pathogen-initiated chronic inflammation or autoimmune diseases accelerate proliferation and promote differentiation of hematopoietic stem cells (HSCs) but simultaneously reduce reconstitution capacity. Nevertheless, the effect of acute infection and inflammation on functional HSCs is still largely unknown. Here we found that acute infection elicited by heat-inactivated Escherichia coli (HIEC) expanded bone marrow lineage-negative (Lin)− stem-cell antigen 1 (Sca-1)+cKit+ (LSK) cell population, leading to reduced frequency of functional HSCs in LSK population. However, the total number of BM phenotypic HSCs (Flk2−CD48−CD150+ LSK cells) was not altered in HIEC-challenged mice. Additionally, the reconstitution capacity of the total BM between infected and uninfected mice was similar by both the competitive repopulation assay and measurement of functional HSCs by limiting dilution. Thus, occasionally occurring acute inflammation, which is critical for host defenses, is unlikely to affect HSC self-renewal and maintenance of long-term reconstitution capacity. During acute bacterial infection and inflammation, the hematopoietic system can replenish hematopoietic cells consumed in the innate inflammatory response by accelerating hematopoietic stem and progenitor cell proliferation, but preserving functional HSCs in the BM.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Department of Pathology, Harvard Stem Cell Institute (HSCI), Harvard Medical School, Boston, MA, United States.,Department of Lab Medicine, The Stem Cell Program, Children's Hospital Boston, Boston, MA, United States.,Dana-Farber/Harvard Cancer Center, Boston, MA, United States.,The State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Kutay Karatepe
- Department of Pathology, Harvard Stem Cell Institute (HSCI), Harvard Medical School, Boston, MA, United States.,Department of Lab Medicine, The Stem Cell Program, Children's Hospital Boston, Boston, MA, United States.,Dana-Farber/Harvard Cancer Center, Boston, MA, United States
| | - Direkrit Chiewchengchol
- Department of Pathology, Harvard Stem Cell Institute (HSCI), Harvard Medical School, Boston, MA, United States.,Department of Lab Medicine, The Stem Cell Program, Children's Hospital Boston, Boston, MA, United States.,Dana-Farber/Harvard Cancer Center, Boston, MA, United States
| | - Haiyan Zhu
- The State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Rongxia Guo
- The State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Peng Liu
- The State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Hongbo Yu
- Department of Pathology and Laboratory Medicine, VA Boston Healthcare System, West Roxbury, MA, United States
| | - Qian Ren
- The State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Xiao Luo
- Department of Pathology, Harvard Stem Cell Institute (HSCI), Harvard Medical School, Boston, MA, United States.,Department of Lab Medicine, The Stem Cell Program, Children's Hospital Boston, Boston, MA, United States.,Dana-Farber/Harvard Cancer Center, Boston, MA, United States
| | - Tao Cheng
- The State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Fengxia Ma
- The State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Yuanfu Xu
- The State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Mingzhe Han
- Department of Hematopoietic Stem Cell Transplantation, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Hongbo R Luo
- Department of Pathology, Harvard Stem Cell Institute (HSCI), Harvard Medical School, Boston, MA, United States.,Department of Lab Medicine, The Stem Cell Program, Children's Hospital Boston, Boston, MA, United States.,Dana-Farber/Harvard Cancer Center, Boston, MA, United States
| |
Collapse
|
181
|
Jaeger-Ruckstuhl CA, Hinterbrandner M, Höpner S, Correnti CE, Lüthi U, Friedli O, Freigang S, Al Sayed MF, Bührer ED, Amrein MA, Schürch CM, Radpour R, Riether C, Ochsenbein AF. TNIK signaling imprints CD8 + T cell memory formation early after priming. Nat Commun 2020; 11:1632. [PMID: 32242021 PMCID: PMC7118140 DOI: 10.1038/s41467-020-15413-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 03/04/2020] [Indexed: 01/15/2023] Open
Abstract
Co-stimulatory signals, cytokines and transcription factors regulate the balance between effector and memory cell differentiation during T cell activation. Here, we analyse the role of the TRAF2-/NCK-interacting kinase (TNIK), a signaling molecule downstream of the tumor necrosis factor superfamily receptors such as CD27, in the regulation of CD8+ T cell fate during acute infection with lymphocytic choriomeningitis virus. Priming of CD8+ T cells induces a TNIK-dependent nuclear translocation of β-catenin with consecutive Wnt pathway activation. TNIK-deficiency during T cell activation results in enhanced differentiation towards effector cells, glycolysis and apoptosis. TNIK signaling enriches for memory precursors by favouring symmetric over asymmetric cell division. This enlarges the pool of memory CD8+ T cells and increases their capacity to expand after re-infection in serial re-transplantation experiments. These findings reveal that TNIK is an important regulator of effector and memory T cell differentiation and induces a population of stem cell-like memory T cells. Coordinate expression of multiple factors play critical roles in the regulation between effector and memory CD8+ T cell differentiation. Here the authors show upon acute viral infection TNIK is critically required as a regulator of effector and memory T cell differentiation.
Collapse
Affiliation(s)
- Carla A Jaeger-Ruckstuhl
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, 3010, Switzerland.,Department of BioMedical Research (DBMR), University of Bern, Bern, 3008, Switzerland.,Graduate School of Cellular and Biomedical Sciences, University of Bern, Bern, 3012, Switzerland.,Program in Immunology, Fred Hutchinson Cancer Research Center (FHCRC), Seattle, WA, 98109, USA
| | - Magdalena Hinterbrandner
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, 3010, Switzerland.,Department of BioMedical Research (DBMR), University of Bern, Bern, 3008, Switzerland.,Graduate School of Cellular and Biomedical Sciences, University of Bern, Bern, 3012, Switzerland
| | - Sabine Höpner
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, 3010, Switzerland.,Department of BioMedical Research (DBMR), University of Bern, Bern, 3008, Switzerland
| | - Colin E Correnti
- Clinical Research Division, Fred Hutchinson Cancer Research Center (FHCRC), Seattle, WA, 98109, USA
| | - Ursina Lüthi
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, 3010, Switzerland.,Department of BioMedical Research (DBMR), University of Bern, Bern, 3008, Switzerland
| | - Olivier Friedli
- Graduate School of Cellular and Biomedical Sciences, University of Bern, Bern, 3012, Switzerland.,Institute of Pathology, University of Bern, Bern, 3008, Switzerland
| | - Stefan Freigang
- Institute of Pathology, University of Bern, Bern, 3008, Switzerland
| | - Mohamad F Al Sayed
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, 3010, Switzerland.,Department of BioMedical Research (DBMR), University of Bern, Bern, 3008, Switzerland.,Graduate School of Cellular and Biomedical Sciences, University of Bern, Bern, 3012, Switzerland
| | - Elias D Bührer
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, 3010, Switzerland.,Department of BioMedical Research (DBMR), University of Bern, Bern, 3008, Switzerland.,Graduate School of Cellular and Biomedical Sciences, University of Bern, Bern, 3012, Switzerland
| | - Michael A Amrein
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, 3010, Switzerland.,Department of BioMedical Research (DBMR), University of Bern, Bern, 3008, Switzerland.,Graduate School of Cellular and Biomedical Sciences, University of Bern, Bern, 3012, Switzerland
| | - Christian M Schürch
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, 3010, Switzerland.,Department of BioMedical Research (DBMR), University of Bern, Bern, 3008, Switzerland.,Institute of Pathology, University of Bern, Bern, 3008, Switzerland
| | - Ramin Radpour
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, 3010, Switzerland.,Department of BioMedical Research (DBMR), University of Bern, Bern, 3008, Switzerland
| | - Carsten Riether
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, 3010, Switzerland.,Department of BioMedical Research (DBMR), University of Bern, Bern, 3008, Switzerland
| | - Adrian F Ochsenbein
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, 3010, Switzerland. .,Department of BioMedical Research (DBMR), University of Bern, Bern, 3008, Switzerland.
| |
Collapse
|
182
|
Rosales C. Neutrophils at the crossroads of innate and adaptive immunity. J Leukoc Biol 2020; 108:377-396. [DOI: 10.1002/jlb.4mir0220-574rr] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 02/17/2020] [Accepted: 02/26/2020] [Indexed: 12/13/2022] Open
Affiliation(s)
- Carlos Rosales
- Departamento de Inmunología Instituto de Investigaciones Biomédicas Universidad Nacional Autónoma de México Mexico City Mexico
| |
Collapse
|
183
|
Bieber K, Autenrieth SE. Dendritic cell development in infection. Mol Immunol 2020; 121:111-117. [PMID: 32199210 DOI: 10.1016/j.molimm.2020.02.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 02/03/2020] [Accepted: 02/20/2020] [Indexed: 01/21/2023]
Abstract
The immune system protects from infections primarily by detecting and eliminating invading pathogens. This is predominantly mediated by innate immune cells like neutrophils, monocytes and dendritic cells (DCs) expressing specific receptors recognizing pathogen-associated molecular patterns. DC activation by pathogens leads to the initiation of antigen-specific adaptive immune responses, thereby bridging the innate and adaptive immune systems. However, various pathogens have evolved immune evasion strategies to ensure their survival. In this review, we highlight recent findings on how various microorganisms or their structural features affect or modulate DC development and whether this has any consequences for a protective immune response.
Collapse
Affiliation(s)
- Kristin Bieber
- Department of Internal Medicine II, University of Tübingen, Germany
| | | |
Collapse
|
184
|
Stress Erythropoiesis is a Key Inflammatory Response. Cells 2020; 9:cells9030634. [PMID: 32155728 PMCID: PMC7140438 DOI: 10.3390/cells9030634] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 02/27/2020] [Accepted: 03/03/2020] [Indexed: 12/21/2022] Open
Abstract
Bone marrow medullary erythropoiesis is primarily homeostatic. It produces new erythrocytes at a constant rate, which is balanced by the turnover of senescent erythrocytes by macrophages in the spleen. Despite the enormous capacity of the bone marrow to produce erythrocytes, there are times when it is unable to keep pace with erythroid demand. At these times stress erythropoiesis predominates. Stress erythropoiesis generates a large bolus of new erythrocytes to maintain homeostasis until steady state erythropoiesis can resume. In this review, we outline the mechanistic differences between stress erythropoiesis and steady state erythropoiesis and show that their responses to inflammation are complementary. We propose a new hypothesis that stress erythropoiesis is induced by inflammation and plays a key role in maintaining erythroid homeostasis during inflammatory responses.
Collapse
|
185
|
Courties G, Frodermann V, Honold L, Zheng Y, Herisson F, Schloss MJ, Sun Y, Presumey J, Severe N, Engblom C, Hulsmans M, Cremer S, Rohde D, Pittet MJ, Scadden DT, Swirski FK, Kim DE, Moskowitz MA, Nahrendorf M. Glucocorticoids Regulate Bone Marrow B Lymphopoiesis After Stroke. Circ Res 2020; 124:1372-1385. [PMID: 30782088 DOI: 10.1161/circresaha.118.314518] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE After a stroke, patients frequently experience altered systemic immunity resulting in peripheral immunosuppression and higher susceptibility to infections, which is at least partly attributed to lymphopenia. The mechanisms that profoundly change the systemic leukocyte repertoire after stroke are incompletely understood. Emerging evidence indicates that stroke alters hematopoietic output of the bone marrow. OBJECTIVE To explore the mechanisms that lead to defects of B lymphopoiesis after ischemic stroke. METHODS AND RESULTS We here report that ischemic stroke triggers brain-bone marrow communication via hormonal long-range signals that regulate hematopoietic B lineage decisions. Bone marrow fluorescence-activated cell sorter analyses and serial intravital microscopy indicate that transient middle cerebral artery occlusion in mice arrests B-cell development beginning at the pro-B-cell stage. This phenotype was not rescued in Myd88-/- and TLR4-/- mice with disrupted TLR (Toll-like receptor) signaling or after blockage of peripheral sympathetic nerves. Mechanistically, we identified stroke-induced glucocorticoid release as the main instigator of B lymphopoiesis defects. B-cell lineage-specific deletion of the GR (glucocorticoid receptor) in CD19-Cre loxP Nr3c1 mice attenuated lymphocytopenia after transient middle cerebral artery. In 20 patients with acute stroke, increased cortisol levels inversely correlated with blood lymphocyte numbers. CONCLUSIONS Our data demonstrate that the hypothalamic-pituitary-adrenal axis mediates B lymphopoiesis defects after ischemic stroke.
Collapse
Affiliation(s)
- Gabriel Courties
- From the Center for Systems Biology and Radiology Department (G.C., V.F., L.H., F.H., M.J.S., Y.S., C.E., M.H., S.C., D.R., M.J.P., F.K.S., M.N.), Harvard Medical School, Boston
| | - Vanessa Frodermann
- From the Center for Systems Biology and Radiology Department (G.C., V.F., L.H., F.H., M.J.S., Y.S., C.E., M.H., S.C., D.R., M.J.P., F.K.S., M.N.), Harvard Medical School, Boston
| | - Lisa Honold
- From the Center for Systems Biology and Radiology Department (G.C., V.F., L.H., F.H., M.J.S., Y.S., C.E., M.H., S.C., D.R., M.J.P., F.K.S., M.N.), Harvard Medical School, Boston
| | - Yi Zheng
- From the Center for Systems Biology and Radiology Department (G.C., V.F., L.H., F.H., M.J.S., Y.S., C.E., M.H., S.C., D.R., M.J.P., F.K.S., M.N.), Harvard Medical School, Boston
| | - Fanny Herisson
- From the Center for Systems Biology and Radiology Department (G.C., V.F., L.H., F.H., M.J.S., Y.S., C.E., M.H., S.C., D.R., M.J.P., F.K.S., M.N.), Harvard Medical School, Boston
| | - Maximilian J Schloss
- From the Center for Systems Biology and Radiology Department (G.C., V.F., L.H., F.H., M.J.S., Y.S., C.E., M.H., S.C., D.R., M.J.P., F.K.S., M.N.), Harvard Medical School, Boston
| | - Yuan Sun
- From the Center for Systems Biology and Radiology Department (G.C., V.F., L.H., F.H., M.J.S., Y.S., C.E., M.H., S.C., D.R., M.J.P., F.K.S., M.N.), Harvard Medical School, Boston
| | - Jessy Presumey
- Massachusetts General Hospital and Program in Cellular and Molecular Medicine, Boston Children's Hospital and Department of Pediatrics (J.P.), Harvard Medical School, Boston
| | - Nicolas Severe
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston (N.S., D.T.S.).,Harvard Stem Cell Institute, Cambridge, MA (N.S., D.T.S.).,Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA (N.S., D.T.S.)
| | - Camilla Engblom
- From the Center for Systems Biology and Radiology Department (G.C., V.F., L.H., F.H., M.J.S., Y.S., C.E., M.H., S.C., D.R., M.J.P., F.K.S., M.N.), Harvard Medical School, Boston
| | - Maarten Hulsmans
- From the Center for Systems Biology and Radiology Department (G.C., V.F., L.H., F.H., M.J.S., Y.S., C.E., M.H., S.C., D.R., M.J.P., F.K.S., M.N.), Harvard Medical School, Boston
| | - Sebastian Cremer
- From the Center for Systems Biology and Radiology Department (G.C., V.F., L.H., F.H., M.J.S., Y.S., C.E., M.H., S.C., D.R., M.J.P., F.K.S., M.N.), Harvard Medical School, Boston
| | - David Rohde
- From the Center for Systems Biology and Radiology Department (G.C., V.F., L.H., F.H., M.J.S., Y.S., C.E., M.H., S.C., D.R., M.J.P., F.K.S., M.N.), Harvard Medical School, Boston
| | - Mikael J Pittet
- From the Center for Systems Biology and Radiology Department (G.C., V.F., L.H., F.H., M.J.S., Y.S., C.E., M.H., S.C., D.R., M.J.P., F.K.S., M.N.), Harvard Medical School, Boston
| | - David T Scadden
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston (N.S., D.T.S.).,Harvard Stem Cell Institute, Cambridge, MA (N.S., D.T.S.).,Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA (N.S., D.T.S.)
| | - Filip K Swirski
- From the Center for Systems Biology and Radiology Department (G.C., V.F., L.H., F.H., M.J.S., Y.S., C.E., M.H., S.C., D.R., M.J.P., F.K.S., M.N.), Harvard Medical School, Boston
| | - Dong-Eog Kim
- Molecular Imaging and Neurovascular Research Laboratory, Department of Neurology, Dongguk University College of Medicine, Goyang, South Korea (D.-E.K.)
| | - Michael A Moskowitz
- Stroke and Neurovascular Regulation Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown (M.A.M.)
| | - Matthias Nahrendorf
- From the Center for Systems Biology and Radiology Department (G.C., V.F., L.H., F.H., M.J.S., Y.S., C.E., M.H., S.C., D.R., M.J.P., F.K.S., M.N.), Harvard Medical School, Boston.,Cardiovascular Research Center (M.N.), Harvard Medical School, Boston
| |
Collapse
|
186
|
Apostol AC, Jensen KDC, Beaudin AE. Training the Fetal Immune System Through Maternal Inflammation-A Layered Hygiene Hypothesis. Front Immunol 2020; 11:123. [PMID: 32117273 PMCID: PMC7026678 DOI: 10.3389/fimmu.2020.00123] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 01/17/2020] [Indexed: 12/14/2022] Open
Abstract
Over the last century, the alarming surge in allergy and autoimmune disease has led to the hypothesis that decreasing exposure to microbes, which has accompanied industrialization and modern life in the Western world, has fundamentally altered the immune response. In its current iteration, the “hygiene hypothesis” suggests that reduced microbial exposures during early life restricts the production and differentiation of immune cells suited for immune regulation. Although it is now well-appreciated that the increase in hypersensitivity disorders represents a “perfect storm” of many contributing factors, we argue here that two important considerations have rarely been explored. First, the window of microbial exposure that impacts immune development is not limited to early childhood, but likely extends into the womb. Second, restricted microbial interactions by an expectant mother will bias the fetal immune system toward hypersensitivity. Here, we extend this discussion to hypothesize that the cell types sensing microbial exposures include fetal hematopoietic stem cells, which drive long-lasting changes to immunity.
Collapse
Affiliation(s)
- April C Apostol
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, Merced, CA, United States
| | - Kirk D C Jensen
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, Merced, CA, United States
| | - Anna E Beaudin
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, Merced, CA, United States
| |
Collapse
|
187
|
Bone marrow CX3CR1+ mononuclear cells relay a systemic microbiota signal to control hematopoietic progenitors in mice. Blood 2020; 134:1312-1322. [PMID: 31387916 DOI: 10.1182/blood.2019000495] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 07/15/2019] [Indexed: 12/16/2022] Open
Abstract
The microbiota regulate hematopoiesis in the bone marrow (BM); however, the detailed mechanisms remain largely unknown. In this study, we explored how microbiota-derived molecules (MDMs) were transferred to the BM and sensed by the local immune cells to control hematopoiesis under steady-state conditions. We reveal that MDMs, including bacterial DNA (bDNA), reach the BM via systemic blood circulation and are captured by CX3CR1+ mononuclear cells (MNCs). CX3CR1+ MNCs sense MDMs via endolysosomal Toll-like receptors (TLRs) to produce inflammatory cytokines, which control the basal expansion of hematopoietic progenitors, but not hematopoietic stem cells, and their differentiation potential toward myeloid lineages. CX3CR1+ MNCs colocate with hematopoietic progenitors at the perivascular region, and the depletion of CX3CR1+ MNCs impedes bDNA influx into the BM. Moreover, the abrogation of TLR pathways in CX3CR1+ MNCs abolished the microbiota effect on hematopoiesis. These studies demonstrate that systemic MDMs control BM hematopoiesis by producing CX3CR1+ MNC-mediated cytokines in the steady-state.
Collapse
|
188
|
Cyclosporine H Improves the Multi-Vector Lentiviral Transduction of Murine Haematopoietic Progenitors and Stem Cells. Sci Rep 2020; 10:1812. [PMID: 32020016 PMCID: PMC7000727 DOI: 10.1038/s41598-020-58724-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 01/13/2020] [Indexed: 01/14/2023] Open
Abstract
Haematopoietic stem cells (HSCs) have the potential for lifetime production of blood and immune cells. The introduction of transgenes into HSCs is important for basic research, as well as for multiple clinical applications, because HSC transplantation is an already established procedure. Recently, a major advancement has been reported in the use of cyclosporine H (CsH), which can significantly enhance the lentivirus (LV) transduction of human haematopoietic stem and progenitor cells (HSPCs). In this study, we employed CsH for LV transduction of murine HSCs and defined haematopoietic progenitors, confirming previous findings in more specific subsets of primitive haematopoietic cells. Our data confirm increased efficiencies, in agreement with the published data. We further experimented with the transduction with the simultaneous use of several vectors. The use of CsH yielded an even more robust increase in rates of multi-vector infection than the increase for a single-vector. CsH was reported to reduce the innate resistance mechanism against LV infection. We indeed found that additional pretreatment could increase the efficiency of transduction, in agreement with the originally reported results. Our data also suggest that CsH does not reduce the efficiency of transplantation into immune-competent hosts or the differentiation of HSCs while enhancing stable long-term expression in vivo. This new additive will surely help many studies in animal models and might be very useful for the development of novel HSC gene therapy approaches.
Collapse
|
189
|
Guo SS, Li BX, Zou DB, Yang SJ, Sheng LX, Ouyang GF, Mu QT, Huang H. Tip of the iceberg: roles of circRNAs in hematological malignancies. Am J Cancer Res 2020; 10:367-382. [PMID: 32195014 PMCID: PMC7061755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 09/23/2019] [Indexed: 06/10/2023] Open
Abstract
Circular RNAs (circRNAs) are a new class of covalently closed RNA molecules whose 3'- and 5'-ends are linked by a back-splicing event. Emerging evidence has shown that circRNAs play a vital role in the occurrence and development of many diseases and are promising biomarkers and therapeutic targets. However, knowledge of circRNAs in hematological malignancies is limited. In this review, the biogenesis, categories, characteristics, and functions of circRNAs are summarized, especially the roles of circRNAs in hematopoiesis and hematological malignancies.
Collapse
Affiliation(s)
- Shan-Shan Guo
- Ningbo Hospital, School of Medicine, Zhejiang UniversityNingbo, Zhejiang, PR China
| | - Bi-Xia Li
- Ningbo University School of MedicineNingbo, Zhejiang, PR China
| | - Duo-Bing Zou
- Laboratory of Stem Cell Transplantation, Ningbo Hospital, School of Medicine, Zhejiang UniversityNingbo, Zhejiang, PR China
| | - Shu-Jun Yang
- Laboratory of Stem Cell Transplantation, Ningbo Hospital, School of Medicine, Zhejiang UniversityNingbo, Zhejiang, PR China
- Department of Hematology, Ningbo Hospital, School of Medicine, Zhejiang UniversityNingbo, Zhejiang, PR China
| | - Li-Xia Sheng
- Department of Hematology, Ningbo Hospital, School of Medicine, Zhejiang UniversityNingbo, Zhejiang, PR China
| | - Gui-Fang Ouyang
- Department of Hematology, Ningbo Hospital, School of Medicine, Zhejiang UniversityNingbo, Zhejiang, PR China
| | - Qi-Tian Mu
- Laboratory of Stem Cell Transplantation, Ningbo Hospital, School of Medicine, Zhejiang UniversityNingbo, Zhejiang, PR China
| | - He Huang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhou, Zhejiang, PR China
| |
Collapse
|
190
|
Garcia MM, Goicoechea C, Molina-Álvarez M, Pascual D. Toll-like receptor 4: A promising crossroads in the diagnosis and treatment of several pathologies. Eur J Pharmacol 2020; 874:172975. [PMID: 32017939 DOI: 10.1016/j.ejphar.2020.172975] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 12/20/2019] [Accepted: 01/29/2020] [Indexed: 12/26/2022]
Abstract
Toll-like receptor 4 (TLR4) is expressed in a wide variety of cells and is the central component of the mammalian innate immune system. Since its discovery in 1997, TLR4 has been assigned an ever-increasing number of functions that extend from pathogen recognition to tissue damage identification and promotion of the intrinsic "damage repair response" in pain, intestinal, respiratory and vascular disorders. Precisely, the finding of conserved sequence homology among species along with the molecular and functional characterisation of the TLR4 gene enabled researchers to envisage a common operating system in the activation of innate immunity and the initiation of plastic changes at the onset of chronic pain. Malfunctioning in other conditions was conceived in parallel. In this respect, "pivot" proteins and pathway redundancy are not just evolutionary leftovers but essential for normal functioning or cell survival. Indeed, at present, TLR4 single nucleotide polymorphisms (SNP) and their association with certain dysfunctions and diseases are being confirmed in different pools of patients. However, despite its ability to trigger pathogen infection or alternatively tissue injury communications to immune system, TLR4 targeting might not be considered a panacea. This review article represents a compilation of what we know about TLR4 from clinics and basic research on the 20th anniversary of its discovery. Understanding how to fine-tune the interaction between TLR4 and its specific ligands may lead in the next decades to the development of promising new treatments, reducing polypharmacy and probably having an impact on drug use in numerous pathologies.
Collapse
Affiliation(s)
- Miguel M Garcia
- Area of Pharmacology, Nutrition and Bromatology, Department of Basic Health Sciences, Universidad Rey Juan Carlos, Avda, Atenas S/n, 28922, Alcorcón, Spain
| | - Carlos Goicoechea
- Area of Pharmacology, Nutrition and Bromatology, Department of Basic Health Sciences, Universidad Rey Juan Carlos, Avda, Atenas S/n, 28922, Alcorcón, Spain
| | - Miguel Molina-Álvarez
- Area of Pharmacology, Nutrition and Bromatology, Department of Basic Health Sciences, Universidad Rey Juan Carlos, Avda, Atenas S/n, 28922, Alcorcón, Spain
| | - David Pascual
- Area of Pharmacology, Nutrition and Bromatology, Department of Basic Health Sciences, Universidad Rey Juan Carlos, Avda, Atenas S/n, 28922, Alcorcón, Spain.
| |
Collapse
|
191
|
Abstract
PURPOSE OF REVIEW We reviewed recent progress on the role of sclerostin (SOST) and its effects on the immune system in order to summarize the current state of knowledge in osteoimmunology, in regard to hematopoiesis, lymphopoiesis, and inflammation. RECENT FINDINGS Changes in sclerostin levels affect distinct niches within the bone marrow that support hematopoietic stem cells and B cell development. Sclerostin's regulation of adipogenesis could also be important for immune cell maintenance with age. Surprisingly, B cell development in the bone marrow is influenced by Sost produced by mesenchymal stem cells and osteoblasts, but not by osteocytes. Additionally, extramedullary hematopoiesis in the spleen and increased pro-inflammatory cytokine levels in the bone marrow are observed in global Sost-/- mice. In addition to changes in bone marrow density, sclerostin depletion affects B lymphopoiesis and myelopoiesis, as well as other changes within the bone marrow cavity that could affect hematopoiesis. It is therefore important to monitor for hematopoietic changes in patients receiving sclerostin-depleting therapies.
Collapse
Affiliation(s)
- Cristine Donham
- Quantitative and Systems Biology Graduate Program, University of California, Merced, Merced, CA, 95343, USA
| | - Jennifer O Manilay
- Quantitative and Systems Biology Graduate Program, University of California, Merced, Merced, CA, 95343, USA.
- Dept. of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, 5200, Lake Road Merced, North, CA, 95343, USA.
| |
Collapse
|
192
|
Histone lysine demethylase KDM5B maintains chronic myeloid leukemia via multiple epigenetic actions. Exp Hematol 2020; 82:53-65. [PMID: 32007477 DOI: 10.1016/j.exphem.2020.01.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 01/17/2020] [Accepted: 01/18/2020] [Indexed: 11/23/2022]
Abstract
The histone lysine demethylase KDM5 family is implicated in normal development and stem cell maintenance by epigenetic modulation of histone methylation status. Deregulation of the KDM5 family has been reported in various types of cancers, including hematological malignancies. However, their transcriptional regulatory roles in the context of leukemia remain unclear. Here, we find that KDM5B is strongly expressed in normal CD34+ hematopoietic stem/progenitor cells and chronic myeloid leukemia (CML) cells. Knockdown of KDM5B in K562 CML cells reduced leukemia colony-forming potential. Transcriptome profiling of KDM5B knockdown K562 cells revealed the deregulation of genes involved in myeloid differentiation and Toll-like receptor signaling. Through the integration of transcriptome and ChIP-seq profiling data, we show that KDM5B is enriched at the binding sites of the GATA and AP-1 transcription factor families, suggesting their collaborations in the regulation of transcription. Even though the binding of KDM5B substantially overlapped with H3K4me1 or H3K4me3 mark at gene promoters, only a small subset of the KDM5B targets showed differential expression in association with the histone demethylation activity. By characterizing the interacting proteins in K562 cells, we discovered that KDM5B recruits protein complexes involved in the mRNA processing machinery, implying an alternative epigenetic action mediated by KDM5B in gene regulation. Our study highlights the oncogenic functions of KDM5B in CML cells and suggests that KDM5B is vital to the transcriptional regulation via multiple epigenetic mechanisms.
Collapse
|
193
|
Defective negative regulation of Toll-like receptor signaling leads to excessive TNF-α in myeloproliferative neoplasm. Blood Adv 2020; 3:122-131. [PMID: 30647074 PMCID: PMC6341195 DOI: 10.1182/bloodadvances.2018026450] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 12/12/2018] [Indexed: 12/12/2022] Open
Abstract
Patients with myeloproliferative neoplasms (MPN) have high levels of inflammatory cytokines, some of which drive many of the debilitating constitutional symptoms associated with the disease and may also promote expansion of the neoplastic clone. We report here that monocytes from patients with MPN have defective negative regulation of Toll-like receptor (TLR) signaling that leads to unrestrained production of the inflammatory cytokine tumor necrosis factor α (TNF-α) after TLR activation. Specifically, monocytes of patients with MPN are insensitive to the anti-inflammatory cytokine interleukin 10 (IL-10) that negatively regulates TLR-induced TNF-α production. This inability to respond to IL-10 is a not a direct consequence of JAK2 V617F , as the phenotype of persistent TNF-α production is a feature of JAK2 V617F and wild-type monocytes alike from JAK2 V617F -positive patients. Moreover, persistent TNF-α production was also discovered in the unaffected identical twin of a patient with MPN, suggesting it could be an intrinsic feature of those predisposed to acquire MPN. This work implicates sustained TLR signaling as not only a contributor to the chronic inflammatory state of MPN patients but also a potential predisposition to acquire MPN.
Collapse
|
194
|
Benova A, Tencerova M. Obesity-Induced Changes in Bone Marrow Homeostasis. Front Endocrinol (Lausanne) 2020; 11:294. [PMID: 32477271 PMCID: PMC7235195 DOI: 10.3389/fendo.2020.00294] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 04/20/2020] [Indexed: 12/24/2022] Open
Abstract
Obesity is characterized by low-grade inflammation, which is accompanied by increased accumulation of immune cells in peripheral tissues including adipose tissue (AT), skeletal muscle, liver and pancreas, thereby impairing their primary metabolic functions in the regulation of glucose homeostasis. Obesity has also shown to have a detrimental effect on bone homeostasis by altering bone marrow and hematopoietic stem cell differentiation and thus impairing bone integrity and immune cell properties. The origin of immune cells arises in the bone marrow, which has been shown to be affected with the obesogenic condition via increased cellularity and shifting differentiation and function of hematopoietic and bone marrow mesenchymal stem cells in favor of myeloid progenitors and increased bone marrow adiposity. These obesity-induced changes in the bone marrow microenvironment lead to dramatic bone marrow remodeling and compromising immune cell functions, which in turn affect systemic inflammatory conditions and regulation of whole-body metabolism. However, there is limited information on the inflammatory secretory factors creating the bone marrow microenvironment and how these factors changed during metabolic complications. This review summarizes recent findings on inflammatory and cellular changes in the bone marrow in relation to obesity and further discuss whether dietary intervention or physical activity may have beneficial effects on the bone marrow microenvironment and whole-body metabolism.
Collapse
|
195
|
Batsivari A, Haltalli MLR, Passaro D, Pospori C, Lo Celso C, Bonnet D. Dynamic responses of the haematopoietic stem cell niche to diverse stresses. Nat Cell Biol 2020; 22:7-17. [PMID: 31907409 DOI: 10.1038/s41556-019-0444-9] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 11/27/2019] [Indexed: 01/01/2023]
Abstract
Adult haematopoietic stem cells (HSCs) mainly reside in the bone marrow, where stromal and haematopoietic cells regulate their function. The steady state HSC niche has been extensively studied. In this Review, we focus on how bone marrow microenvironment components respond to different insults including inflammation, malignant haematopoiesis and chemotherapy. We highlight common and unique patterns among multiple cell types and their environment and discuss current limitations in our understanding of this complex and dynamic tissue.
Collapse
Affiliation(s)
- Antoniana Batsivari
- Haematopoietic Stem Cell Laboratory, The Francis Crick Institute , London, UK
| | - Myriam Luydmila Rachelle Haltalli
- Department of Life Sciences, Imperial College London, South Kensington campus, London, UK
- Lo Celso Laboratory, The Francis Crick Institute, London, UK
| | - Diana Passaro
- Haematopoietic Stem Cell Laboratory, The Francis Crick Institute , London, UK
| | - Constandina Pospori
- Haematopoietic Stem Cell Laboratory, The Francis Crick Institute , London, UK
- Department of Life Sciences, Imperial College London, South Kensington campus, London, UK
- Lo Celso Laboratory, The Francis Crick Institute, London, UK
| | - Cristina Lo Celso
- Haematopoietic Stem Cell Laboratory, The Francis Crick Institute , London, UK.
- Department of Life Sciences, Imperial College London, South Kensington campus, London, UK.
- Lo Celso Laboratory, The Francis Crick Institute, London, UK.
| | - Dominique Bonnet
- Haematopoietic Stem Cell Laboratory, The Francis Crick Institute , London, UK.
| |
Collapse
|
196
|
Alkie TN, Yitbarek A, Hodgins DC, Kulkarni RR, Taha-Abdelaziz K, Sharif S. Development of innate immunity in chicken embryos and newly hatched chicks: a disease control perspective. Avian Pathol 2019; 48:288-310. [PMID: 31063007 DOI: 10.1080/03079457.2019.1607966] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Newly hatched chickens are confronted by a wide array of pathogenic microbes because their adaptive immune defences have limited capabilities to control these pathogens. In such circumstances, and within this age group, innate responses provide a degree of protection. Moreover, as the adaptive immune system is relatively naïve to foreign antigens, synergy with innate defences is critical. This review presents knowledge on the ontogeny of innate immunity in chickens pre-hatch and early post-hatch and provides insights into possible interventions to modulate innate responses early in the life of the bird. As in other vertebrate species, the chicken innate immune system which include cellular mediators, cytokine and chemokine repertoires and molecules involved in antigen detection, develop early in life. Comparison of innate immune systems in newly hatched chickens and mature birds has revealed differences in magnitude and quality, but responses in younger chickens can be boosted using innate immune system modulators. Functional expression of pattern recognition receptors and several defence molecules by innate immune system cells of embryos and newly hatched chicks suggests that innate responses can be modulated at this stage of development to combat pathogens. Improved understanding of innate immune system ontogeny and functionality in chickens is critical for the implementation of sound and safe interventions to provide long-term protection against pathogens. Next-generation tools for studying genetic and epigenetic regulation of genes, functional metagenomics and gene knockouts can be used in the future to explore and dissect the contributions of signalling pathways of innate immunity and to devise more efficacious disease control strategies.
Collapse
Affiliation(s)
- Tamiru N Alkie
- a Department of Pathobiology, Ontario Veterinary College , University of Guelph , Guelph , ON , Canada
| | - Alexander Yitbarek
- a Department of Pathobiology, Ontario Veterinary College , University of Guelph , Guelph , ON , Canada
| | - Douglas C Hodgins
- a Department of Pathobiology, Ontario Veterinary College , University of Guelph , Guelph , ON , Canada
| | - Raveendra R Kulkarni
- a Department of Pathobiology, Ontario Veterinary College , University of Guelph , Guelph , ON , Canada
| | - Khaled Taha-Abdelaziz
- a Department of Pathobiology, Ontario Veterinary College , University of Guelph , Guelph , ON , Canada.,b Pathology Department, Faculty of Veterinary Medicine , Beni-Suef University , Beni-Suef , Egypt
| | - Shayan Sharif
- a Department of Pathobiology, Ontario Veterinary College , University of Guelph , Guelph , ON , Canada
| |
Collapse
|
197
|
Mann M, Mehta A, de Boer CG, Kowalczyk MS, Lee K, Haldeman P, Rogel N, Knecht AR, Farouq D, Regev A, Baltimore D. Heterogeneous Responses of Hematopoietic Stem Cells to Inflammatory Stimuli Are Altered with Age. Cell Rep 2019; 25:2992-3005.e5. [PMID: 30540934 DOI: 10.1016/j.celrep.2018.11.056] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 10/05/2018] [Accepted: 11/13/2018] [Indexed: 12/30/2022] Open
Abstract
Long-term hematopoietic stem cells (LT-HSCs) maintain hematopoietic output throughout an animal's lifespan. However, with age, the balance is disrupted, and LT-HSCs produce a myeloid-biased output, resulting in poor immune responses to infectious challenge and the development of myeloid leukemias. Here, we show that young and aged LT-HSCs respond differently to inflammatory stress, such that aged LT-HSCs produce a cell-intrinsic, myeloid-biased expression program. Using single-cell RNA sequencing (scRNA-seq), we identify a myeloid-biased subset within the LT-HSC population (mLT-HSCs) that is prevalent among aged LT-HSCs. We identify CD61 as a marker of mLT-HSCs and show that CD61-high LT-HSCs are uniquely primed to respond to acute inflammatory challenge. We predict that several transcription factors regulate the mLT-HSCs gene program and show that Klf5, Ikzf1, and Stat3 play an important role in age-related inflammatory myeloid bias. We have therefore identified and isolated an LT-HSC subset that regulates myeloid versus lymphoid balance under inflammatory challenge and with age.
Collapse
Affiliation(s)
- Mati Mann
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| | - Arnav Mehta
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; David Geffen School of Medicine, UCLA, Los Angeles, CA 90025, USA
| | - Carl G de Boer
- Broad Institute of MIT and Harvard University, Cambridge, MA 02142, USA
| | | | - Kevin Lee
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Pearce Haldeman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Noga Rogel
- Broad Institute of MIT and Harvard University, Cambridge, MA 02142, USA
| | - Abigail R Knecht
- Broad Institute of MIT and Harvard University, Cambridge, MA 02142, USA
| | - Daneyal Farouq
- Broad Institute of MIT and Harvard University, Cambridge, MA 02142, USA
| | - Aviv Regev
- Broad Institute of MIT and Harvard University, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Koch Institute of Integrative Cancer Biology, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02140, USA.
| | - David Baltimore
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
198
|
D'Atri LP, Rodríguez CS, Miguel CP, Pozner RG, Ortiz Wilczyñski JM, Negrotto S, Carrera-Silva EA, Heller PG, Schattner M. Activation of toll-like receptors 2 and 4 on CD34 + cells increases human megakaryo/thrombopoiesis induced by thrombopoietin. J Thromb Haemost 2019; 17:2196-2210. [PMID: 31397069 DOI: 10.1111/jth.14605] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 08/07/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND Platelet Toll-like receptor (TLR)2/4 are key players in amplifying the host immune response; however, their role in human megakaryo/thrombopoiesis has not yet been defined. OBJECTIVES We evaluated whether Pam3CSK4 or lipopolysaccharide (LPS), TLR2/4 ligands respectively, modulate human megakaryocyte development and platelet production. METHODS CD34+ cells from human umbilical cord were stimulated with LPS or Pam3CSK4 with or without thrombopoietin (TPO). RESULTS CD34+ cells and megakaryocytes express TLR2 and TLR4 at both RNA and protein level; however, direct stimulation of CD34+ cells with LPS or Pam3CSK4 had no effect on cell growth. Interestingly, both TLR ligands markedly increased TPO-induced CD34+ cell proliferation, megakaryocyte number and maturity, proplatelet and platelet production when added at day 0. In contrast, this synergism was not observed when TLR agonists were added 7 days after TPO addition. Interleukin-6 (IL-6) release was observed upon CD34+ or megakaryocyte stimulation with LPS or Pam3CSK4 but not with TPO and this effect was potentiated in combination with TPO. The increased proliferation and IL-6 production induced by TPO + LPS or Pam3CSK4 were suppressed by TLR2/4 or IL-6 neutralizing antibodies, as well as by PI3K/AKT and nuclear factor-κB inhibitors. Additionally, increased proplatelet and platelet production were associated with enhanced nuclear translocation of nuclear factor-E2. Finally, the supernatants of CD34+ cells stimulated with TPO+LPS-induced CFU-M colonies. CONCLUSIONS Our data suggest that the activation of TLR2 and TLR4 in CD34+ cells and megakaryocytes in the presence of TPO may contribute to warrant platelet provision during infection episodes by an autocrine IL-6 loop triggered by PI3K/NF-κB axes.
Collapse
Affiliation(s)
- Lina Paola D'Atri
- Laboratory of Experimental Thrombosis, Institute of Experimental Medicine-CONICET-National Academy of Medicine, Buenos Aires, Argentina
| | - Camila Sofía Rodríguez
- Laboratory of Experimental Thrombosis, Institute of Experimental Medicine-CONICET-National Academy of Medicine, Buenos Aires, Argentina
| | - Carolina Paula Miguel
- Laboratory of Experimental Thrombosis, Institute of Experimental Medicine-CONICET-National Academy of Medicine, Buenos Aires, Argentina
| | - Roberto Gabriel Pozner
- Laboratory of Experimental Thrombosis, Institute of Experimental Medicine-CONICET-National Academy of Medicine, Buenos Aires, Argentina
| | - Juan Manuel Ortiz Wilczyñski
- Laboratory of Experimental Thrombosis, Institute of Experimental Medicine-CONICET-National Academy of Medicine, Buenos Aires, Argentina
| | - Soledad Negrotto
- Laboratory of Experimental Thrombosis, Institute of Experimental Medicine-CONICET-National Academy of Medicine, Buenos Aires, Argentina
| | - Eugenio Antonio Carrera-Silva
- Laboratory of Experimental Thrombosis, Institute of Experimental Medicine-CONICET-National Academy of Medicine, Buenos Aires, Argentina
| | - Paula Graciela Heller
- Institute of Medical Research Dr. Alfredo Lanari, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
- Department of Hematology Research, National Scientific and Technical Research Council (CONICET), University of Buenos Aires, Institute of Medical Research (IDIM), Buenos Aires, Argentina
| | - Mirta Schattner
- Laboratory of Experimental Thrombosis, Institute of Experimental Medicine-CONICET-National Academy of Medicine, Buenos Aires, Argentina
| |
Collapse
|
199
|
Abstract
Genetic defects that accumulate in haematopoietic stem cells (HSCs) are thought to be responsible for age-related changes in haematopoiesis that include a decline in lymphopoiesis and skewing towards the myeloid lineage. This HSC-centric view is based largely on studies showing that HSCs from aged mice exhibit these lineage biases following transplantation into irradiated young recipient mice. In this Opinion article, we make the case that the reliance on this approach has led to inaccurate conclusions regarding the effects of ageing on blood-forming stem cells; we suggest instead that changes in the environment contribute to haematopoietic system ageing. We propose that a complete understanding of how ageing affects haematopoiesis depends on the analysis of blood cell production in unperturbed mice. We describe how this can be achieved using in situ fate mapping. This approach indicates that changes in downstream progenitors, in addition to any HSC defects, may explain the reduced lymphopoiesis and sustained myelopoiesis that occur during ageing.
Collapse
|
200
|
Toll-like receptor 2 expression on c-kit + cells tracks the emergence of embryonic definitive hematopoietic progenitors. Nat Commun 2019; 10:5176. [PMID: 31729371 PMCID: PMC6858454 DOI: 10.1038/s41467-019-13150-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 10/21/2019] [Indexed: 12/27/2022] Open
Abstract
Hematopoiesis in mammalian embryos proceeds through three successive waves of hematopoietic progenitors. Since their emergence spatially and temporally overlap and phenotypic markers are often shared, the specifics regarding their origin, development, lineage restriction and mutual relationships have not been fully determined. The identification of wave-specific markers would aid to resolve these uncertainties. Here, we show that toll-like receptors (TLRs) are expressed during early mouse embryogenesis. We provide phenotypic and functional evidence that the expression of TLR2 on E7.5 c-kit+ cells marks the emergence of precursors of erythro-myeloid progenitors (EMPs) and provides resolution for separate tracking of EMPs from primitive progenitors. Using in vivo fate mapping, we show that at E8.5 the Tlr2 locus is already active in emerging EMPs and in progenitors of adult hematopoietic stem cells (HSC). Together, this data demonstrates that the activation of the Tlr2 locus tracks the earliest events in the process of EMP and HSC specification. There is limited knowledge of markers to identify various waves of murine embryonic hematopoiesis. Here, the authors show that the expression of toll-like receptor 2 (TLR2) on E7.5 c-kit+ cells marks the emergence of erythro-myeloid progenitor precursors and that the Tlr2 locus is active in E8.5 precursors of adult HSCs.
Collapse
|