151
|
Benevides L, Costa RS, Tavares LA, Russo M, Martins GA, da Silva LLP, Arruda LK, Cunha FQ, Carregaro V, Silva JS. B lymphocyte-induced maturation protein 1 controls T H9 cell development, IL-9 production, and allergic inflammation. J Allergy Clin Immunol 2018; 143:1119-1130.e3. [PMID: 30096391 DOI: 10.1016/j.jaci.2018.06.046] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 05/08/2018] [Accepted: 06/29/2018] [Indexed: 12/24/2022]
Abstract
BACKGROUND The transcriptional repressor B lymphocyte-induced maturation protein 1 (Blimp-1) has a key role in terminal differentiation in various T-cell subtypes. However, whether Blimp-1 regulates TH9 differentiation and its role in allergic inflammation are unknown. OBJECTIVE We aimed to investigate the role of Blimp-1 in TH9 differentiation and in the pathogenesis of allergic airway inflammation. METHODS In vitro TH9 differentiation, flow cytometry, ELISA, and real-time PCR were used to investigate the effects of Blimp-1 on TH9 polarization. T cell-specific Blimp-1-deficient mice, a model of allergic airway inflammation, and T-cell adoptive transfer to recombination-activating gene 1 (Rag-1)-/- mice were used to address the role of Blimp-1 in the pathogenesis of allergic inflammation. RESULTS We found that Blimp-1 regulates TH9 differentiation because deleting Blimp-1 increased IL-9 production in CD4+ T cells in vitro. In addition, we showed that in T cell-specific Blimp-1-deficient mice, deletion of Blimp-1 in T cells worsened airway disease, and this worsening was inhibited by IL-9 neutralization. In asthmatic patients CD4+ T cells in response to TGF-β plus IL-4 increased IL-9 expression and downregulated Blimp-1 expression compared with expression in healthy control subjects. Blimp-1 overexpression in human TH9 cells inhibited IL-9 expression. CONCLUSION Blimp-1 is a pivotal negative regulator of TH9 differentiation and controls allergic inflammation.
Collapse
Affiliation(s)
- Luciana Benevides
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School University of São Paulo, Ribeirão Preto, Brazil
| | - Renata Sesti Costa
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School University of São Paulo, Ribeirão Preto, Brazil
| | - Lucas Alves Tavares
- Department of Cellular and Molecular Biology, Ribeirão Preto Medical School University of São Paulo, Ribeirão Preto, Brazil
| | - Momtchilo Russo
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo
| | - Gislâine A Martins
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute and Department of Medicine and Biomedical Science, Cedars-Sinai Medical Center (CSMC), Los Angeles, Calif
| | - Luis Lamberti P da Silva
- Department of Cellular and Molecular Biology, Ribeirão Preto Medical School University of São Paulo, Ribeirão Preto, Brazil
| | - L Karla Arruda
- Department of Clinical Medicine, Clinical Hospital of Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Fernando Q Cunha
- Department of Pharmacology, Ribeirão Preto Medical School University of São Paulo, Ribeirão Preto, Brazil
| | - Vanessa Carregaro
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School University of São Paulo, Ribeirão Preto, Brazil
| | - João Santana Silva
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School University of São Paulo, Ribeirão Preto, Brazil; Fiocruz-Bi-Institutional Translational Medicine Platform, Ribeirão Preto, Brazil.
| |
Collapse
|
152
|
Behr FM, Chuwonpad A, Stark R, van Gisbergen KPJM. Armed and Ready: Transcriptional Regulation of Tissue-Resident Memory CD8 T Cells. Front Immunol 2018; 9:1770. [PMID: 30131803 PMCID: PMC6090154 DOI: 10.3389/fimmu.2018.01770] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 07/17/2018] [Indexed: 11/13/2022] Open
Abstract
A fundamental benefit of immunological memory is the ability to respond in an enhanced manner upon secondary encounter with the same pathogen. Tissue-resident memory CD8 T (TRM) cells contribute to improved protection against reinfection through the generation of immediate effector responses at the site of pathogen entry. Key to the potential of TRM cells to develop rapid recall responses is their location within the epithelia of the skin, lungs, and intestines at prime entry sites of pathogens. TRM cells are among the first immune cells to respond to pathogens that have been previously encountered in an antigen-specific manner. Upon recognition of invading pathogens, TRM cells release IFN-γ and other pro-inflammatory cytokines and chemokines. These effector molecules activate the surrounding epithelial tissue and recruit other immune cells including natural killer (NK) cells, B cells, and circulating memory CD8 T cells to the site of infection. The repertoire of TRM effector functions also includes the direct lysis of infected cells through the release of cytotoxic molecules such as perforin and granzymes. The mechanisms enabling TRM cells to respond in such a rapid manner are gradually being uncovered. In this review, we will address the signals that instruct TRM generation and maintenance as well as the underlying transcriptional network that keeps TRM cells in a deployment-ready modus. Furthermore, we will discuss how TRM cells respond to reinfection of the tissue and how transcription factors may control immediate and proliferative TRM responses.
Collapse
Affiliation(s)
- Felix M Behr
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory AMC/UvA, Amsterdam, Netherlands.,Department of Experimental Immunology, Academic Medical Center, Amsterdam, Netherlands
| | - Ammarina Chuwonpad
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory AMC/UvA, Amsterdam, Netherlands
| | - Regina Stark
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory AMC/UvA, Amsterdam, Netherlands.,Department of Experimental Immunology, Academic Medical Center, Amsterdam, Netherlands
| | - Klaas P J M van Gisbergen
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory AMC/UvA, Amsterdam, Netherlands.,Department of Experimental Immunology, Academic Medical Center, Amsterdam, Netherlands
| |
Collapse
|
153
|
Interleukin-21 Induces Short-Lived Effector CD8 + T Cells but Does Not Inhibit Their Exhaustion after Mycobacterium bovis BCG Infection in Mice. Infect Immun 2018; 86:IAI.00147-18. [PMID: 29844233 DOI: 10.1128/iai.00147-18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 05/18/2018] [Indexed: 12/28/2022] Open
Abstract
Interleukin 21 (IL-21) is a pleiotropic common cytokine receptor γ chain cytokine that promotes the effector functions of NK cells and CD8+ T cells and inhibits CD8+ T cell exhaustion during chronic infection. We found that the absolute number of short-lived effector CD8+ T cells (SLECs) (KLRG1high CD127low) decreased significantly in IL-21 receptor-deficient (IL-21R-/-) mice during Mycobacterium bovis bacillus Calmette-Guérin (BCG) infection. Early effector CD8+ T cells (EECs) (KLRG1low CD127low) were normally generated in IL-21R-/- mice after infection. Exhausted CD8+ T cells (PD-1high KLRG1low) were also normally generated in IL-21R-/- mice after infection. Mixed bone marrow (BM) chimera and transfer experiments showed that IL-21R on CD8+ T cells was essential for the proliferation of EECs, allowing them to differentiate into SLECs after BCG infection. On the other hand, the number of SLECs increased significantly after infection with recombinant BCG (rBCG) that secreted an antigen 85B (Ag85B)-IL-21 fusion protein (rBCG-Ag85B-IL-21), but the number of exhausted CD8+ T cells did not change after rBCG-Ag85B-IL-21 infection. These results suggest that IL-21 signaling drives the differentiation of SLECs from EECs but does not inhibit the exhaustion of CD8+ T cells following BCG infection in mice.
Collapse
|
154
|
Regulation of H3K4me3 at Transcriptional Enhancers Characterizes Acquisition of Virus-Specific CD8 + T Cell-Lineage-Specific Function. Cell Rep 2018; 21:3624-3636. [PMID: 29262339 DOI: 10.1016/j.celrep.2017.11.097] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 08/08/2017] [Accepted: 11/28/2017] [Indexed: 12/20/2022] Open
Abstract
Infection triggers large-scale changes in the phenotype and function of T cells that are critical for immune clearance, yet the gene regulatory mechanisms that control these changes are largely unknown. Using ChIP-seq for specific histone post-translational modifications (PTMs), we mapped the dynamics of ∼25,000 putative CD8+ T cell transcriptional enhancers (TEs) differentially utilized during virus-specific T cell differentiation. Interestingly, we identified a subset of dynamically regulated TEs that exhibited acquisition of a non-canonical (H3K4me3+) chromatin signature upon differentiation. This unique TE subset exhibited characteristics of poised enhancers in the naive CD8+ T cell subset and demonstrated enrichment for transcription factor binding motifs known to be important for virus-specific CD8+ T cell differentiation. These data provide insights into the establishment and maintenance of the gene transcription profiles that define each stage of virus-specific T cell differentiation.
Collapse
|
155
|
Abstract
Transforming Growth Factor beta (TGF-β) is a pleiotropic cytokine produced in large amounts within cancer microenvironments that will ultimately promote neoplastic progression, notably by suppressing the host’s T-cell immunosurveillance. This effect is mostly due to the well-known inhibitory effect of TGF-β on T cell proliferation, activation, and effector functions. Moreover, TGF-β subverts T cell immunity by favoring regulatory T-cell differentiation, further reinforcing immunosuppression within tumor microenvironments. These findings stimulated the development of many strategies to block TGF-β or its signaling pathways, either as monotherapy or in combination with other therapies, to restore anti-cancer immunity. Paradoxically, recent studies provided evidence that TGF-β can also promote differentiation of certain inflammatory populations of T cells, such as Th17, Th9, and resident-memory T cells (Trm), which have been associated with improved tumor control in several models. Here, we review current advances in our understanding of the many roles of TGF-β in T cell biology in the context of tumor immunity and discuss the possibility to manipulate TGF-β signaling to improve cancer immunotherapy.
Collapse
Affiliation(s)
- Amina Dahmani
- Centre de Recherche de L'hôpital Maisonneuve-Rosemont, 5415 Boul. de L'Assomption, Montréal, QC H1T 2M4, Canada.
| | - Jean-Sébastien Delisle
- Centre de Recherche de L'hôpital Maisonneuve-Rosemont, 5415 Boul. de L'Assomption, Montréal, QC H1T 2M4, Canada.
- Hematology-Oncology service, Hôpital Maisonneuve-Rosemont, Department of Medicine, Université de Montréal, Montréal, QC H1T 2M4, Canada.
| |
Collapse
|
156
|
TGF-β in T Cell Biology: Implications for Cancer Immunotherapy. Cancers (Basel) 2018; 10:cancers10060194. [PMID: 29891791 PMCID: PMC6025055 DOI: 10.3390/cancers10060194] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 06/07/2018] [Accepted: 06/07/2018] [Indexed: 12/25/2022] Open
Abstract
Transforming Growth Factor beta (TGF-β) is a pleiotropic cytokine produced in large amounts within cancer microenvironments that will ultimately promote neoplastic progression, notably by suppressing the host’s T-cell immunosurveillance. This effect is mostly due to the well-known inhibitory effect of TGF-β on T cell proliferation, activation, and effector functions. Moreover, TGF-β subverts T cell immunity by favoring regulatory T-cell differentiation, further reinforcing immunosuppression within tumor microenvironments. These findings stimulated the development of many strategies to block TGF-β or its signaling pathways, either as monotherapy or in combination with other therapies, to restore anti-cancer immunity. Paradoxically, recent studies provided evidence that TGF-β can also promote differentiation of certain inflammatory populations of T cells, such as Th17, Th9, and resident-memory T cells (Trm), which have been associated with improved tumor control in several models. Here, we review current advances in our understanding of the many roles of TGF-β in T cell biology in the context of tumor immunity and discuss the possibility to manipulate TGF-β signaling to improve cancer immunotherapy.
Collapse
|
157
|
Amsen D, van Gisbergen KPJM, Hombrink P, van Lier RAW. Tissue-resident memory T cells at the center of immunity to solid tumors. Nat Immunol 2018; 19:538-546. [PMID: 29777219 DOI: 10.1038/s41590-018-0114-2] [Citation(s) in RCA: 192] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 04/17/2018] [Indexed: 02/07/2023]
Abstract
Immune responses in tissues are constrained by the physiological properties of the tissue involved. Tissue-resident memory T cells (TRM cells) are a recently discovered lineage of T cells specialized for life and function within tissues. Emerging evidence has shown that TRM cells have a special role in the control of solid tumors. A high frequency of TRM cells in tumors correlates with favorable disease progression in patients with cancer, and studies of mice have shown that TRM cells are necessary for optimal immunological control of solid tumors. Here we describe what defines TRM cells as a separate lineage and how these cells are generated. Furthermore, we discuss the properties that allow TRM cells to operate in normal and transformed tissues, as well as implications for the treatment of patients with cancer.
Collapse
Affiliation(s)
- Derk Amsen
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | - Klaas P J M van Gisbergen
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Pleun Hombrink
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Rene A W van Lier
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
158
|
Tay C, Liu YH, Kanellakis P, Kallies A, Li Y, Cao A, Hosseini H, Tipping P, Toh BH, Bobik A, Kyaw T. Follicular B Cells Promote Atherosclerosis via T Cell–Mediated Differentiation Into Plasma Cells and Secreting Pathogenic Immunoglobulin G. Arterioscler Thromb Vasc Biol 2018; 38:e71-e84. [DOI: 10.1161/atvbaha.117.310678] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 03/14/2018] [Indexed: 12/20/2022]
Abstract
Objective—
B cells promote or protect development of atherosclerosis. In this study, we examined the role of MHCII (major histocompatibility II), CD40 (cluster of differentiation 40), and Blimp-1 (B-lymphocyte–induced maturation protein) expression by follicular B (FO B) cells in development of atherosclerosis together with the effects of IgG purified from atherosclerotic mice.
Approach and Results—
Using mixed chimeric
Ldlr
−/−
mice whose B cells are deficient in MHCII or CD40, we demonstrate that these molecules are critical for the proatherogenic actions of FO B cells. During development of atherosclerosis, these deficiencies affected T–B cell interactions, germinal center B cells, plasma cells, and IgG. As FO B cells differentiating into plasma cells require Blimp-1, we also assessed its role in the development of atherosclerosis. Blimp-1-deficient B cells greatly attenuated atherosclerosis and immunoglobulin—including IgG production, preventing IgG accumulation in atherosclerotic lesions; Blimp-1 deletion also attenuated lesion proinflammatory cytokines, apoptotic cell numbers, and necrotic core. To determine the importance of IgG for atherosclerosis, we purified IgG from atherosclerotic mice. Their transfer but not IgG from nonatherosclerotic mice into
Ldlr
−/−
mice whose B cells are Blimp-1-deficient increased atherosclerosis; transfer was associated with IgG accumulating in atherosclerotic lesions, increased lesion inflammatory cytokines, apoptotic cell numbers, and necrotic core size.
Conclusions—
The mechanism by which FO B cells promote atherosclerosis is highly dependent on their expression of MHCII, CD40, and Blimp-1. FO B cell differentiation into IgG-producing plasma cells also is critical for their proatherogenic actions. Targeting B–T cell interactions and pathogenic IgG may provide novel therapeutic strategies to prevent atherosclerosis and its adverse cardiovascular complications.
Collapse
Affiliation(s)
- Christopher Tay
- From the Vascular Biology and Atherosclerosis Lab, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (C.T., Y.-H.L., P.K., Y.L., A.C., H.H., A.B., T.K.)
| | - Yu-Han Liu
- From the Vascular Biology and Atherosclerosis Lab, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (C.T., Y.-H.L., P.K., Y.L., A.C., H.H., A.B., T.K.)
| | - Peter Kanellakis
- From the Vascular Biology and Atherosclerosis Lab, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (C.T., Y.-H.L., P.K., Y.L., A.C., H.H., A.B., T.K.)
| | - Axel Kallies
- Walter and Eliza Hall Institute, Parkville, Victoria, Australia (A.K.)
| | - Yi Li
- From the Vascular Biology and Atherosclerosis Lab, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (C.T., Y.-H.L., P.K., Y.L., A.C., H.H., A.B., T.K.)
| | - Anh Cao
- From the Vascular Biology and Atherosclerosis Lab, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (C.T., Y.-H.L., P.K., Y.L., A.C., H.H., A.B., T.K.)
| | - Hamid Hosseini
- From the Vascular Biology and Atherosclerosis Lab, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (C.T., Y.-H.L., P.K., Y.L., A.C., H.H., A.B., T.K.)
| | - Peter Tipping
- Department of Medicine, Centre for Inflammatory Diseases (P.T., B.-H.T., T.K)
| | - Ban-Hock Toh
- Department of Medicine, Centre for Inflammatory Diseases (P.T., B.-H.T., T.K)
| | - Alex Bobik
- From the Vascular Biology and Atherosclerosis Lab, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (C.T., Y.-H.L., P.K., Y.L., A.C., H.H., A.B., T.K.)
- Department of Immunology (A.B.), Monash University, Melbourne, Victoria, Australia
| | - Tin Kyaw
- From the Vascular Biology and Atherosclerosis Lab, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (C.T., Y.-H.L., P.K., Y.L., A.C., H.H., A.B., T.K.)
- Department of Medicine, Centre for Inflammatory Diseases (P.T., B.-H.T., T.K)
| |
Collapse
|
159
|
Cretney E, Leung PS, Trezise S, Newman DM, Rankin LC, Teh CE, Putoczki TL, Gray DH, Belz GT, Mielke LA, Dias S, Nutt SL. Characterization of Blimp-1 function in effector regulatory T cells. J Autoimmun 2018; 91:73-82. [PMID: 29724515 DOI: 10.1016/j.jaut.2018.04.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 04/17/2018] [Accepted: 04/22/2018] [Indexed: 12/21/2022]
Abstract
Regulatory T (Treg) cells maintain immunological tolerance in steady-state and after immune challenge. Activated Treg cells can undergo further differentiation into an effector state that highly express genes critical for Treg cell function, including ICOS, TIGIT and IL-10, although how this process is controlled is poorly understood. Effector Treg cells also specifically express the transcriptional regulator Blimp-1 whose expression overlaps with many of the canonical markers associated with effector Treg cells, although not all ICOS+TIGIT+ Treg cells express Blimp-1 or IL-10. In this study, we addressed the role of Blimp-1 in effector Treg cell function. Mice lacking Blimp-1 specifically in Treg cells mature normally, but succumb to a multi-organ inflammatory disease later in life. Blimp-1 is not required for Treg cell differentiation, with mutant mice having increased numbers of effector Treg cells, but regulated a suite of genes involved in cell signaling, communication and survival, as well as being essential for the expression of the immune modulatory cytokine IL-10. Thus, Blimp-1 is a marker of effector Treg cells in all contexts examined and is required for the full functionality of these cells during aging.
Collapse
Affiliation(s)
- Erika Cretney
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Patrick Sk Leung
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Stephanie Trezise
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Dane M Newman
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Lucille C Rankin
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Charis E Teh
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Tracy L Putoczki
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Daniel Hd Gray
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Gabrielle T Belz
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Lisa A Mielke
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Sheila Dias
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Stephen L Nutt
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
160
|
Milner JJ, Goldrath AW. Transcriptional programming of tissue-resident memory CD8 + T cells. Curr Opin Immunol 2018; 51:162-169. [PMID: 29621697 PMCID: PMC5943164 DOI: 10.1016/j.coi.2018.03.017] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 03/18/2018] [Indexed: 01/28/2023]
Abstract
Tissue-resident memory CD8+ T cells (TRM) are localized in non-lymphoid tissues throughout the body where they mediate long-lived protective immunity at common sites of pathogen exposure. As the signals controlling TRM differentiation are uncovered, it is becoming apparent that the dynamic activities of numerous transcription factors are intricately involved in TRM formation. Here, we highlight known transcriptional regulators of TRM differentiation and discuss how understanding the transcriptional programming of CD8+ T cell residency in non-lymphoid tissues can be leveraged to prevent or treat disease.
Collapse
Affiliation(s)
- J Justin Milner
- Division of Biological Sciences, University of California, San Diego , La Jolla, CA, USA
| | - Ananda W Goldrath
- Division of Biological Sciences, University of California, San Diego , La Jolla, CA, USA.
| |
Collapse
|
161
|
Zhang J, Marotel M, Fauteux-Daniel S, Mathieu AL, Viel S, Marçais A, Walzer T. T-bet and Eomes govern differentiation and function of mouse and human NK cells and ILC1. Eur J Immunol 2018; 48:738-750. [PMID: 29424438 DOI: 10.1002/eji.201747299] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 12/14/2017] [Accepted: 02/06/2018] [Indexed: 11/08/2022]
Abstract
T-bet and Eomes are T-box transcription factors that drive the differentiation and function of cytotoxic lymphocytes such as NK cells. Their DNA-binding domains are highly similar, suggesting redundant transcriptional activity. However, while these transcription factors have different patterns of expression, the phenotype of loss-of-function mouse models suggests that they play distinct roles in the development of NK cells and other innate lymphoid cells (ILCs). Recent technological advances using reporter mice and conditional knockouts were fundamental in defining the regulation and function of these factors at steady state and during pathological conditions such as various types of cancer or infection. Here, we review these recent developments, focusing on NK cells as prototypical cytotoxic lymphocytes and their development, and also discuss parallels between NK cells and T cells. We also examine the role of T-bet and Eomes in human NK cells and ILC1s. Considering divergent findings on mouse and human ILC1s, we propose that NK cells are defined by coexpression of T-bet and Eomes, while ILC1s express only one of these factors, either T-bet or Eomes, depending on the tissue or the species.
Collapse
Affiliation(s)
- Jiang Zhang
- CIRI, Centre International de Recherche en Infectiologie-International Center for Infectiology Research, Inserm, U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, CNRS, UMR5308, Lyon, France.,Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Marie Marotel
- CIRI, Centre International de Recherche en Infectiologie-International Center for Infectiology Research, Inserm, U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, CNRS, UMR5308, Lyon, France
| | - Sébastien Fauteux-Daniel
- CIRI, Centre International de Recherche en Infectiologie-International Center for Infectiology Research, Inserm, U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, CNRS, UMR5308, Lyon, France
| | - Anne-Laure Mathieu
- CIRI, Centre International de Recherche en Infectiologie-International Center for Infectiology Research, Inserm, U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, CNRS, UMR5308, Lyon, France
| | - Sébastien Viel
- CIRI, Centre International de Recherche en Infectiologie-International Center for Infectiology Research, Inserm, U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, CNRS, UMR5308, Lyon, France.,Laboratoire d'Immunologie, Centre Hospitalier Lyon Sud, Hospices Civils de Lyon, 69495, Pierre-Bénite, France
| | - Antoine Marçais
- CIRI, Centre International de Recherche en Infectiologie-International Center for Infectiology Research, Inserm, U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, CNRS, UMR5308, Lyon, France
| | - Thierry Walzer
- CIRI, Centre International de Recherche en Infectiologie-International Center for Infectiology Research, Inserm, U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, CNRS, UMR5308, Lyon, France
| |
Collapse
|
162
|
Guan T, Dominguez CX, Amezquita RA, Laidlaw BJ, Cheng J, Henao-Mejia J, Williams A, Flavell RA, Lu J, Kaech SM. ZEB1, ZEB2, and the miR-200 family form a counterregulatory network to regulate CD8 + T cell fates. J Exp Med 2018; 215:1153-1168. [PMID: 29449309 PMCID: PMC5881466 DOI: 10.1084/jem.20171352] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 12/11/2017] [Accepted: 01/23/2018] [Indexed: 01/08/2023] Open
Abstract
Guan et al. identify genetic cooperativity between the transcription factor ZEB1 and the miR-200 family in memory CD8+ T cell development, which contrasts with that observed in the EMT. This study also shows that ZEB1 and its closely related homologue, ZEB2, play functionally distinct roles in CD8+ T cell differentiation. Long-term immunity depends partly on the establishment of memory CD8+ T cells. We identified a counterregulatory network between the homologous transcription factors ZEB1 and ZEB2 and the miR-200 microRNA family, which modulates effector CD8+ T cell fates. Unexpectedly, Zeb1 and Zeb2 had reciprocal expression patterns and were functionally uncoupled in CD8+ T cells. ZEB2 promoted terminal differentiation, whereas ZEB1 was critical for memory T cell survival and function. Interestingly, the transforming growth factor β (TGF-β) and miR-200 family members, which counterregulate the coordinated expression of Zeb1 and Zeb2 during the epithelial-to-mesenchymal transition, inversely regulated Zeb1 and Zeb2 expression in CD8+ T cells. TGF-β induced and sustained Zeb1 expression in maturing memory CD8+ T cells. Meanwhile, both TGF-β and miR-200 family members selectively inhibited Zeb2. Additionally, the miR-200 family was necessary for optimal memory CD8+ T cell formation. These data outline a previously unknown genetic pathway in CD8+ T cells that controls effector and memory cell fate decisions.
Collapse
Affiliation(s)
- Tianxia Guan
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| | - Claudia X Dominguez
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| | - Robert A Amezquita
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| | - Brian J Laidlaw
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| | - Jijun Cheng
- Department of Genetics and Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT
| | - Jorge Henao-Mejia
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| | - Adam Williams
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| | - Richard A Flavell
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT.,Howard Hughes Medical Institute, Yale University, New Haven, CT
| | - Jun Lu
- Department of Genetics and Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT
| | - Susan M Kaech
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| |
Collapse
|
163
|
Jandus C, Usatorre AM, Viganò S, Zhang L, Romero P. The Vast Universe of T Cell Diversity: Subsets of Memory Cells and Their Differentiation. Methods Mol Biol 2018; 1514:1-17. [PMID: 27787788 DOI: 10.1007/978-1-4939-6548-9_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The T cell receptor confers specificity for antigen recognition to T cells. By the first encounter with the cognate antigen, reactive T cells initiate a program of expansion and differentiation that will define not only the ultimate quantity of specific cells that will be generated, but more importantly their quality and functional heterogeneity. Recent achievements using mouse model infection systems have helped to shed light into the complex network of factors that dictate and sustain memory T cell differentiation, ranging from antigen load, TCR signal strength, metabolic fitness, transcriptional programs, and proliferative potential. The different models of memory T cell differentiation are discussed in this chapter, and key phenotypic and functional attributes of memory T cell subsets are presented, both for mouse and human cells. Therapeutic manipulation of memory T cell generation is expected to provide novel unique ways to optimize current immunotherapies, both in infection and cancer.
Collapse
Affiliation(s)
- Camilla Jandus
- Translational Tumor Immunology Group, Ludwig Cancer Research Center, University of Lausanne, Biopole III, CB02, Chemin des Boveresses 155, 1066, Epalinges, Switzerland
| | - Amaia Martínez Usatorre
- Translational Tumor Immunology Group, Ludwig Cancer Research Center, University of Lausanne, Biopole III, CB02, Chemin des Boveresses 155, 1066, Epalinges, Switzerland
| | - Selena Viganò
- Translational Tumor Immunology Group, Ludwig Cancer Research Center, University of Lausanne, Biopole III, CB02, Chemin des Boveresses 155, 1066, Epalinges, Switzerland
| | - Lianjun Zhang
- Translational Tumor Immunology Group, Ludwig Cancer Research Center, University of Lausanne, Biopole III, CB02, Chemin des Boveresses 155, 1066, Epalinges, Switzerland
| | - Pedro Romero
- Translational Tumor Immunology Group, Ludwig Cancer Research Center, University of Lausanne, Biopole III, CB02, Chemin des Boveresses 155, 1066, Epalinges, Switzerland.
| |
Collapse
|
164
|
Tokić S, Štefanić M, Glavaš-Obrovac L, Kishore A, Navratilova Z, Petrek M. miR-29a-3p/T-bet Regulatory Circuit Is Altered in T Cells of Patients With Hashimoto's Thyroiditis. Front Endocrinol (Lausanne) 2018; 9:264. [PMID: 29881372 PMCID: PMC5976757 DOI: 10.3389/fendo.2018.00264] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 05/07/2018] [Indexed: 12/28/2022] Open
Abstract
OBJECTIVE Hashimoto's thyroiditis (HT) is a common autoimmune thyroid disorder that frequently evolves from asymptomatic, T-cell mediated chronic inflammation toward overt hypothyroidism. Previously, we have demonstrated a role for T-bet, a T helper 1/CD8+ T cell transcription factor (TF), and FoxP3, a regulatory T cell TF, in disease progression and severity, but the basis behind their altered mRNA expression remains unknown. In this study, we aimed to leverage the role for microRNAs, representing negative transcriptional regulators, across the spectrum of HT clinical presentations using the same, well-characterized RNA sample cohort. METHOD Ten hypothyroid, untreated patients (hypoHT), 10 hypothyroid cases rendered euthyroid by l-thyroxine therapy (substHT), 11 spontaneously euthyroid HT subjects (euHT), and 10 healthy controls (ctrl) were probed for three candidate immunoregulatory miRNA (miR-9-5p, miR-29a-3p, and miR-210-3p) using quantitative real-time PCR measurements. Data were normalized to U6snRNA and fold difference in expression calculated by the efficiency corrected 2-ΔΔCt model. RESULTS Compared to healthy controls, peripheral blood (PB) T cells of HT patients exhibited significantly diminished miR-29a-3p expression levels [median expression levels (IQR), HT vs CTRL, 0.62 (0.44-1.01) vs 1.373 (0.63-2.7), P = 0.046], and a similar, but not significant decline in miR-210-3p abundance [HT vs CTRL, 0.64 (0.39-1.31) vs 1.2 (0.5-2.56), P = 0.24, Wilcoxon test]. A significant inverse correlation was observed between the two differentially expressed transcripts, T-bet mRNA and miR-29a-3p. Moreover, altered miR-29a-3p/T-bet expression in T cells of untreated HT patients was related to low serum FT4, high serum thyrotropin, and decreased thyroid volumes. Of note, miR-210-3p expression was positively correlated to HIF1α, and inversely to FoxP3 mRNA levels, but no evidence of differential expression for any of these miRNA-mRNA pairs was observed. Finally, miR-9-5p expression levels were no different in HT vs control comparisons, or related to clinicopathological features. CONCLUSION T cell miR-29a-3p is downregulated in HT patients and associated with clinical and biochemical parameters of progressive thyroid injury, plausibly subsequent to altered control of T-bet expression in PB T cells. As such miR-29a-3p/T-bet axis should be further explored as a biomarker or as a plausible target for therapeutic interventions in HT.
Collapse
Affiliation(s)
- Stana Tokić
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, University of Osijek, Osijek, Croatia
- Department of Pathological Physiology, Palacky University and Faculty Hospital, Olomouc, Czechia
- *Correspondence: Stana Tokić,
| | - Mario Štefanić
- Department of Nuclear Medicine and Oncology, Faculty of Medicine, University of Osijek, Osijek, Croatia
| | - Ljubica Glavaš-Obrovac
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, University of Osijek, Osijek, Croatia
| | - Amit Kishore
- Department of Pathological Physiology, Palacky University and Faculty Hospital, Olomouc, Czechia
| | - Zdenka Navratilova
- Department of Pathological Physiology, Palacky University and Faculty Hospital, Olomouc, Czechia
| | - Martin Petrek
- Department of Pathological Physiology, Palacky University and Faculty Hospital, Olomouc, Czechia
| |
Collapse
|
165
|
The Secrets of T Cell Polarization. Oncoimmunology 2018. [DOI: 10.1007/978-3-319-62431-0_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
166
|
Backer RA, Hombrink P, Helbig C, Amsen D. The Fate Choice Between Effector and Memory T Cell Lineages: Asymmetry, Signal Integration, and Feedback to Create Bistability. Adv Immunol 2018; 137:43-82. [DOI: 10.1016/bs.ai.2017.12.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
167
|
Ibitokou SA, Dillon BE, Sinha M, Szczesny B, Delgadillo A, Reda Abdelrahman D, Szabo C, Abu-Elheiga L, Porter C, Tuvdendorj D, Stephens R. Early Inhibition of Fatty Acid Synthesis Reduces Generation of Memory Precursor Effector T Cells in Chronic Infection. THE JOURNAL OF IMMUNOLOGY 2017; 200:643-656. [PMID: 29237780 DOI: 10.4049/jimmunol.1602110] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 11/09/2017] [Indexed: 01/13/2023]
Abstract
Understanding the mechanisms of CD4 memory T cell (Tmem) differentiation in malaria is critical for vaccine development. However, the metabolic regulation of CD4 Tmem differentiation is not clear, particularly in persistent infections. In this study, we investigated the role of fatty acid synthesis (FAS) in Tmem development in Plasmodium chabaudi chronic mouse malaria infection. We show that T cell-specific deletion and early pharmaceutical inhibition of acetyl CoA carboxylase 1, the rate limiting step of FAS, inhibit generation of early memory precursor effector T cells (MPEC). To compare the role of FAS during early differentiation or survival of Tmem in chronic infection, a specific inhibitor of acetyl CoA carboxylase 1, 5-(tetradecyloxy)-2-furoic acid, was administered at different times postinfection. Strikingly, the number of Tmem was only reduced when FAS was inhibited during T cell priming and not during the Tmem survival phase. FAS inhibition during priming increased effector T cell (Teff) proliferation and strongly decreased peak parasitemia, which is consistent with improved Teff function. Conversely, MPEC were decreased, in a T cell-intrinsic manner, upon early FAS inhibition in chronic, but not acute, infection. Early cure of infection also increased mitochondrial volume in Tmem compared with Teff, supporting previous reports in acute infection. We demonstrate that the MPEC-specific effect was due to the higher fatty acid content and synthesis in MPEC compared with terminally differentiated Teff. In conclusion, FAS in CD4 T cells regulates the early divergence of Tmem from Teff in chronic infection.
Collapse
Affiliation(s)
- Samad A Ibitokou
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX 77555
| | - Brian E Dillon
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX 77555
| | - Mala Sinha
- Biomedical Informatics, Institute for Translational Science, University of Texas Medical Branch, Galveston, TX 77555
| | - Bartosz Szczesny
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX 77555
| | | | | | - Csaba Szabo
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX 77555
| | - Lutfi Abu-Elheiga
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030
| | - Craig Porter
- Shriners Hospital for Children, Galveston, TX 77550
| | - Demidmaa Tuvdendorj
- Division of Endocrinology, University of Texas Medical Branch, Galveston, TX 77555; and
| | - Robin Stephens
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX 77555; .,Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555
| |
Collapse
|
168
|
Donnarumma T, Young GR, Merkenschlager J, Eksmond U, Bongard N, Nutt SL, Boyer C, Dittmer U, Le-Trilling VTK, Trilling M, Bayer W, Kassiotis G. Opposing Development of Cytotoxic and Follicular Helper CD4 T Cells Controlled by the TCF-1-Bcl6 Nexus. Cell Rep 2017; 17:1571-1583. [PMID: 27806296 PMCID: PMC5149578 DOI: 10.1016/j.celrep.2016.10.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 08/31/2016] [Accepted: 10/04/2016] [Indexed: 12/18/2022] Open
Abstract
CD4+ T cells develop distinct and often contrasting helper, regulatory, or cytotoxic activities. Typically a property of CD8+ T cells, granzyme-mediated cytotoxic T cell (CTL) potential is also exerted by CD4+ T cells. However, the conditions that induce CD4+ CTLs are not entirely understood. Using single-cell transcriptional profiling, we uncover a unique signature of Granzyme B (GzmB)+ CD4+ CTLs, which distinguishes them from other CD4+ T helper (Th) cells, including Th1 cells, and strongly contrasts with the follicular helper T (Tfh) cell signature. The balance between CD4+ CTL and Tfh differentiation heavily depends on the class of infecting virus and is jointly regulated by the Tfh-related transcription factors Bcl6 and Tcf7 (encoding TCF-1) and by the expression of the inhibitory receptors PD-1 and LAG3. This unique profile of CD4+ CTLs offers targets for their study, and its antagonism by the Tfh program separates CD4+ T cells with either helper or killer functions. Adenoviruses prime CD4 T cells with CTL potential, but retroviruses do not CD4 CTLs are transcriptionally distinguishable from other Th cells The CD4 CTL program is the direct opposite of the Tfh program CD4 CTLs are restrained by the TCF-1-Bcl6 nexus and by PD-1 and LAG3
Collapse
Affiliation(s)
- Tiziano Donnarumma
- Retroviral Immunology, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - George R Young
- Retroviral Immunology, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Retrovirus-Host Interactions, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Julia Merkenschlager
- Retroviral Immunology, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Urszula Eksmond
- Retroviral Immunology, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Nadine Bongard
- Institute for Virology, University Hospital Essen, University Duisburg-Essen, 45122 Essen, Germany
| | - Stephen L Nutt
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Claude Boyer
- Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille University, UM2, Marseille 13288, France
| | - Ulf Dittmer
- Institute for Virology, University Hospital Essen, University Duisburg-Essen, 45122 Essen, Germany
| | | | - Mirko Trilling
- Institute for Virology, University Hospital Essen, University Duisburg-Essen, 45122 Essen, Germany
| | - Wibke Bayer
- Institute for Virology, University Hospital Essen, University Duisburg-Essen, 45122 Essen, Germany
| | - George Kassiotis
- Retroviral Immunology, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Department of Medicine, Faculty of Medicine, Imperial College London, London W2 1PG, UK.
| |
Collapse
|
169
|
Carty SA, Gohil M, Banks LB, Cotton RM, Johnson ME, Stelekati E, Wells AD, Wherry EJ, Koretzky GA, Jordan MS. The Loss of TET2 Promotes CD8 + T Cell Memory Differentiation. THE JOURNAL OF IMMUNOLOGY 2017; 200:82-91. [PMID: 29150566 DOI: 10.4049/jimmunol.1700559] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 10/10/2017] [Indexed: 12/20/2022]
Abstract
T cell differentiation requires appropriate regulation of DNA methylation. In this article, we demonstrate that the methylcytosine dioxygenase ten-eleven translocation (TET)2 regulates CD8+ T cell differentiation. In a murine model of acute viral infection, TET2 loss promotes early acquisition of a memory CD8+ T cell fate in a cell-intrinsic manner without disrupting Ag-driven cell expansion or effector function. Upon secondary recall, TET2-deficient memory CD8+ T cells demonstrate superior pathogen control. Genome-wide methylation analysis identified a number of differentially methylated regions in TET2-deficient versus wild-type CD8+ T cells. These differentially methylated regions did not occur at the loci of differentially expressed memory markers; rather, several hypermethylated regions were identified in known transcriptional regulators of CD8+ T cell memory fate. Together, these data demonstrate that TET2 is an important regulator of CD8+ T cell fate decisions.
Collapse
Affiliation(s)
- Shannon A Carty
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Mercy Gohil
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Lauren B Banks
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Renee M Cotton
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | | | - Erietta Stelekati
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104.,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104; and
| | - Andrew D Wells
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104.,The Children's Hospital of Philadelphia, Philadelphia, PA 19104.,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104; and
| | - E John Wherry
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104.,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104; and
| | - Gary A Koretzky
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104; .,Department of Medicine, Weill Cornell Medicine, New York, NY 10065
| | - Martha S Jordan
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104; .,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104; and
| |
Collapse
|
170
|
Constitutive expression of NF-κB inducing kinase in regulatory T cells impairs suppressive function and promotes instability and pro-inflammatory cytokine production. Sci Rep 2017; 7:14779. [PMID: 29116141 PMCID: PMC5677020 DOI: 10.1038/s41598-017-14965-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 10/16/2017] [Indexed: 12/22/2022] Open
Abstract
CD4+Foxp3+ regulatory T cells (Tregs) are indispensable negative regulators of immune responses. To understand Treg biology in health and disease, it is critical to elucidate factors that affect Treg homeostasis and suppressive function. Tregs express several costimulatory TNF receptor family members that activate non-canonical NF-κB via accumulation of NF-κB inducing kinase (NIK). We previously showed that constitutive NIK expression in all T cells causes fatal multi-organ autoimmunity associated with hyperactive conventional T cell responses and poor Treg-mediated suppression. Here, we show that constitutive NIK expression that is restricted to Tregs via a Cre-inducible transgene causes an autoimmune syndrome. We found that constitutive NIK expression decreased expression of numerous Treg signature genes and microRNAs involved in Treg homeostasis and suppressive phenotype. NIK transgenic Tregs competed poorly with WT Tregs in vivo and produced pro-inflammatory cytokines upon stimulation. Lineage tracing experiments revealed accumulation of ex-Foxp3+ T cells in mice expressing NIK constitutively in Tregs, and these former Tregs produced copious IFNγ and IL-2. Our data indicate that under inflammatory conditions in which NIK is activated, Tregs may lose suppressive function and may actively contribute to inflammation.
Collapse
|
171
|
Boehm D, Ott M. Host Methyltransferases and Demethylases: Potential New Epigenetic Targets for HIV Cure Strategies and Beyond. AIDS Res Hum Retroviruses 2017; 33:S8-S22. [PMID: 29140109 DOI: 10.1089/aid.2017.0180] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
A successful HIV cure strategy may require reversing HIV latency to purge hidden viral reservoirs or enhancing HIV latency to permanently silence HIV transcription. Epigenetic modifying agents show promise as antilatency therapeutics in vitro and ex vivo, but also affect other steps in the viral life cycle. In this review, we summarize what we know about cellular DNA and protein methyltransferases (PMTs) as well as demethylases involved in HIV infection. We describe the biology and function of DNA methyltransferases, and their controversial role in HIV infection. We further explain the biology of PMTs and their effects on lysine and arginine methylation of histone and nonhistone proteins. We end with a focus on protein demethylases, their unique modes of action and their emerging influence on HIV infection. An outlook on the use of methylation-modifying agents in investigational HIV cure strategies is provided.
Collapse
Affiliation(s)
- Daniela Boehm
- Gladstone Institute of Virology and Immunology, San Francisco, California
- Department of Medicine, University of California, San Francisco, California
| | - Melanie Ott
- Gladstone Institute of Virology and Immunology, San Francisco, California
- Department of Medicine, University of California, San Francisco, California
| |
Collapse
|
172
|
Yang G, Yang X, Zhang J, Li G, Zheng D, Peng A, Hu J, Xu L, Yang B, Yang H, Zhou W, Tuzun E, Li J. Transcriptional repressor Blimp1 regulates follicular regulatory T-cell homeostasis and function. Immunology 2017; 153:105-117. [PMID: 28833081 DOI: 10.1111/imm.12815] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Accepted: 07/18/2017] [Indexed: 01/23/2023] Open
Abstract
The B-lymphocyte-induced maturation protein 1 (Blimp1) regulates T-cell homeostasis and function. Loss of Blimp1 could double the proportion of follicular regulatory T (Tfr) cells. However, the effects that Blimp1 may have on the function of Tfr cells remain unknown. Here we document the function for Blimp1 in Tfr cells in vitro and in vivo. Data presented in this study demonstrate that Tfr cells indirectly inhibit the activation and differentiation of B cells by negatively regulating follicular helper T cells, so lowering the secretion of antibody. Lack of Blimp1 makes the immune suppression function of Tfr cells impaired in vitro. In the in vivo study, adoptive transfer of Tfr cells could reduce immune responses in germinal centres and relieve the muscle weakness symptoms of mice with experimental autoimmune myasthenia gravis. Blimp1 deficiency resulted in reduced suppressive ability of Tfr cells. This study identifies that Tfr cells are potent suppressors of immunity and are controlled by Blimp1.
Collapse
Affiliation(s)
- Guang Yang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaosu Yang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Junmei Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Guancheng Li
- Cancer Research Institute, Central South University, Changsha, China
| | - Dandan Zheng
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Anjiao Peng
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Jue Hu
- Department of Neurology, Changsha Central Hospital, Changsha, China
| | - Liqun Xu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Baifeng Yang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Huan Yang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Wenbin Zhou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Erdem Tuzun
- Department of Neurology, University of Istanbul, Istanbul, Turkey
| | - Jing Li
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
173
|
Perdomo-Celis F, Taborda NA, Rugeles MT. Follicular CD8 + T Cells: Origin, Function and Importance during HIV Infection. Front Immunol 2017; 8:1241. [PMID: 29085360 PMCID: PMC5649150 DOI: 10.3389/fimmu.2017.01241] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 09/19/2017] [Indexed: 12/14/2022] Open
Abstract
The lymphoid follicle is critical for the development of humoral immune responses. Cell circulation to this site is highly regulated by the differential expression of chemokine receptors. This feature contributes to the establishment of viral reservoirs in lymphoid follicles and the development of some types of malignancies that are able to evade immune surveillance, especially conventional CD8+ T cells. Interestingly, a subtype of CD8+ T cells located within the lymphoid follicle (follicular CD8+ T cells) was recently described; these cells have been proposed to play an important role in viral and tumor control, as well as to modulate humoral and T follicular helper cell responses. In this review, we summarize the knowledge on this novel CD8+ T cell population, its origin, function, and potential role in health and disease, in particular, in the context of the infection by the human immunodeficiency virus.
Collapse
Affiliation(s)
- Federico Perdomo-Celis
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia (UdeA), Medellín, Colombia
| | - Natalia Andrea Taborda
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia (UdeA), Medellín, Colombia.,Grupo de Investigaciones Biomédicas Uniremington, Programa de Medicina, Facultad de Ciencias de la Salud, Corporación Universitaria Remington, Medellín, Colombia
| | - María Teresa Rugeles
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia (UdeA), Medellín, Colombia
| |
Collapse
|
174
|
Attanasio J, Wherry EJ. Costimulatory and Coinhibitory Receptor Pathways in Infectious Disease. Immunity 2017; 44:1052-68. [PMID: 27192569 DOI: 10.1016/j.immuni.2016.04.022] [Citation(s) in RCA: 192] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Indexed: 12/16/2022]
Abstract
Costimulatory and inhibitory receptors play a key role in regulating immune responses to infections. Recent translation of knowledge about inhibitory receptors such as CTLA-4 and PD-1 into the cancer clinic highlights the opportunities to manipulate these pathways to treat human disease. Studies in infectious disease have provided key insights into the specific roles of these pathways and the effects of their manipulation. Here, recent studies are discussed that have addressed how major inhibitory and costimulatory pathways play a role in regulating immune responses during acute and chronic infections. Mechanistic insights from studies of infectious disease provide opportunities to further expand our toolkit to treat cancer and chronic infections in the clinic.
Collapse
Affiliation(s)
- John Attanasio
- Institute for Immunology and Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - E John Wherry
- Institute for Immunology and Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
175
|
Shin HM, Kapoor VN, Kim G, Li P, Kim HR, Suresh M, Kaech SM, Wherry EJ, Selin LK, Leonard WJ, Welsh RM, Berg LJ. Transient expression of ZBTB32 in anti-viral CD8+ T cells limits the magnitude of the effector response and the generation of memory. PLoS Pathog 2017; 13:e1006544. [PMID: 28827827 PMCID: PMC5578684 DOI: 10.1371/journal.ppat.1006544] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 08/31/2017] [Accepted: 07/20/2017] [Indexed: 01/02/2023] Open
Abstract
Virus infections induce CD8+ T cell responses comprised of a large population of terminal effector cells and a smaller subset of long-lived memory cells. The transcription factors regulating the relative expansion versus the long-term survival potential of anti-viral CD8+ T cells are not completely understood. We identified ZBTB32 as a transcription factor that is transiently expressed in effector CD8+ T cells. After acute virus infection, CD8+ T cells deficient in ZBTB32 showed enhanced virus-specific CD8+ T cell responses, and generated increased numbers of virus-specific memory cells; in contrast, persistent expression of ZBTB32 suppressed memory cell formation. The dysregulation of CD8+ T cell responses in the absence of ZBTB32 was catastrophic, as Zbtb32-/- mice succumbed to a systemic viral infection and showed evidence of severe lung pathology. We found that ZBTB32 and Blimp-1 were co-expressed following CD8+ T cell activation, bound to each other, and cooperatively regulated Blimp-1 target genes Eomes and Cd27. These findings demonstrate that ZBTB32 is a key transcription factor in CD8+ effector T cells that is required for the balanced regulation of effector versus memory responses to infection. CD8+ T lymphocytes are essential for immune protection against viruses. In response to an infection, these cells are activated, proliferate, and generate antiviral effector cells that eradicate the infection. Following this, the majority of these effector cells die, leaving a small subset of long-lived virus-specific memory T cells. Our study identifies a transcription factor, ZBTB32, that is required for the regulation of CD8+ T cell responses. In its absence, antiviral CD8+ T cell numbers increase to abnormally high levels, and generate an overabundance of memory T cells. When this dysregulated response occurs following infection with a virus that cannot be rapidly eliminated by the immune system, the infected animals die from immune-mediated tissue damage, indicating the importance of this pathway.
Collapse
Affiliation(s)
- Hyun Mu Shin
- Dept of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- Department of Anatomy and Cell Biology, Department of Biomedical Sciences, and BK21Plus Biomedical Science Project, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Varun N. Kapoor
- Dept of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Gwanghun Kim
- Department of Anatomy and Cell Biology, Department of Biomedical Sciences, and BK21Plus Biomedical Science Project, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Peng Li
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health, Bethesda, Maryland, United States of America
| | - Hang-Rae Kim
- Department of Anatomy and Cell Biology, Department of Biomedical Sciences, and BK21Plus Biomedical Science Project, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - M. Suresh
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Susan M. Kaech
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - E. John Wherry
- Department of Microbiology and Institute for Immunology, University of Pennsylvania Perelman School Medicine, Philadelphia, Pennsylvania, United States of America
| | - Liisa K. Selin
- Dept of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Warren J. Leonard
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health, Bethesda, Maryland, United States of America
| | - Raymond M. Welsh
- Dept of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Leslie J. Berg
- Dept of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
176
|
Richer MJ, Lang ML, Butler NS. T Cell Fates Zipped Up: How the Bach2 Basic Leucine Zipper Transcriptional Repressor Directs T Cell Differentiation and Function. THE JOURNAL OF IMMUNOLOGY 2017; 197:1009-15. [PMID: 27496973 DOI: 10.4049/jimmunol.1600847] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 06/08/2016] [Indexed: 12/13/2022]
Abstract
Recent data illustrate a key role for the transcriptional regulator bric-a-brac, tramtrack, and broad complex and cap'n'collar homology (Bach)2 in orchestrating T cell differentiation and function. Although Bach2 has a well-described role in B cell differentiation, emerging data show that Bach2 is a prototypical member of a novel class of transcription factors that regulates transcriptional activity in T cells at super-enhancers, or regions of high transcriptional activity. Accumulating data demonstrate specific roles for Bach2 in favoring regulatory T cell generation, restraining effector T cell differentiation, and potentiating memory T cell development. Evidence suggests that Bach2 regulates various facets of T cell function by repressing other key transcriptional regulators such as B lymphocyte-induced maturation protein 1. In this review, we examine our present understanding of the role of Bach2 in T cell function and highlight the growing evidence that this transcriptional repressor functions as a key regulator involved in maintenance of T cell quiescence, T cell subset differentiation, and memory T cell generation.
Collapse
Affiliation(s)
- Martin J Richer
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec H3A 2B4, Canada; Microbiome and Disease Tolerance Centre, McGill University, Montreal, Quebec H3A 2B4, Canada;
| | - Mark L Lang
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104; and Graduate Program in Biosciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - Noah S Butler
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104; and Graduate Program in Biosciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| |
Collapse
|
177
|
Taghiloo S, Allahmoradi E, Tehrani M, Janbabaei G, Shekarriz R, Asgarian-Omran H. Blimp-1 Expression as an Exhaustion Transcription Factor in Chronic Lymphocytic Leukemia. RESEARCH IN MOLECULAR MEDICINE 2017. [DOI: 10.29252/rmm.5.3.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
178
|
Wells AC, Daniels KA, Angelou CC, Fagerberg E, Burnside AS, Markstein M, Alfandari D, Welsh RM, Pobezinskaya EL, Pobezinsky LA. Modulation of let-7 miRNAs controls the differentiation of effector CD8 T cells. eLife 2017; 6. [PMID: 28737488 PMCID: PMC5550279 DOI: 10.7554/elife.26398] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 07/21/2017] [Indexed: 12/14/2022] Open
Abstract
The differentiation of naive CD8 T cells into effector cytotoxic T lymphocytes upon antigen stimulation is necessary for successful antiviral, and antitumor immune responses. Here, using a mouse model, we describe a dual role for the let-7 microRNAs in the regulation of CD8 T cell responses, where maintenance of the naive phenotype in CD8 T cells requires high levels of let-7 expression, while generation of cytotoxic T lymphocytes depends upon T cell receptor-mediated let-7 downregulation. Decrease of let-7 expression in activated T cells enhances clonal expansion and the acquisition of effector function through derepression of the let-7 targets, including Myc and Eomesodermin. Ultimately, we have identified a novel let-7-mediated mechanism, which acts as a molecular brake controlling the magnitude of CD8 T cell responses. DOI:http://dx.doi.org/10.7554/eLife.26398.001
Collapse
Affiliation(s)
- Alexandria C Wells
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, United States
| | - Keith A Daniels
- Department of Pathology, University of Massachusetts Medical School, Worcester, United States
| | - Constance C Angelou
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, United States
| | - Eric Fagerberg
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, United States
| | - Amy S Burnside
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, United States
| | - Michele Markstein
- Department of Biology, University of Massachusetts, Amherst, United States
| | - Dominique Alfandari
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, United States
| | - Raymond M Welsh
- Department of Pathology, University of Massachusetts Medical School, Worcester, United States
| | - Elena L Pobezinskaya
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, United States
| | - Leonid A Pobezinsky
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, United States
| |
Collapse
|
179
|
Fu SH, Yeh LT, Chu CC, Yen BLJ, Sytwu HK. New insights into Blimp-1 in T lymphocytes: a divergent regulator of cell destiny and effector function. J Biomed Sci 2017; 24:49. [PMID: 28732506 PMCID: PMC5520377 DOI: 10.1186/s12929-017-0354-8] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 07/12/2017] [Indexed: 12/14/2022] Open
Abstract
B lymphocyte-induced maturation protein-1 (Blimp-1) serves as a master regulator of the development and function of antibody-producing B cells. Given that its function in T lymphocytes has been identified within the past decade, we review recent findings with emphasis on its role in coordinated control of gene expression during the development, differentiation, and function of T cells. Expression of Blimp-1 is mainly confined to activated T cells and is essential for the production of interleukin (IL)-10 by a subset of forkhead box (Fox)p3+ regulatory T cells with an effector phenotype. Blimp-1 is also required to induce cell elimination in the thymus and critically modulates peripheral T cell activation and proliferation. In addition, Blimp-1 promotes T helper (Th) 2 lineage commitment and limits Th1, Th17 and follicular helper T cell differentiation. Furthermore, Blimp-1 coordinates with other transcription factors to regulate expression of IL-2, IL-21 and IL-10 in effector T lymphocytes. In CD8+ T cells, Blimp-1 expression is distinct in heterogeneous populations at the stages of clonal expansion, differentiation, contraction and memory formation when they encounter antigens. Moreover, Blimp-1 plays a fundamental role in coordinating cytokine receptor signaling networks and transcriptional programs to regulate diverse aspects of the formation and function of effector and memory CD8+ T cells and their exhaustion. Blimp-1 also functions as a gatekeeper of T cell activation and suppression to prevent or dampen autoimmune disease, antiviral responses and antitumor immunity. In this review, we discuss the emerging roles of Blimp-1 in the complex regulation of gene networks that regulate the destiny and effector function of T cells and provide a Blimp-1-dominated transcriptional framework for T lymphocyte homeostasis.
Collapse
Affiliation(s)
- Shin-Huei Fu
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, 161, Section 6, Min-Chuan East Road, Neihu District, Taipei, 11490, Taiwan
| | - Li-Tzu Yeh
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, 161, Section 6, Min-Chuan East Road, Neihu District, Taipei, 11490, Taiwan
| | - Chin-Chen Chu
- Department of Anesthesiology, Chi Mei Medical Center, Tainan, 71104, Taiwan. .,Department of Recreation and Health-Care Management, Chia Nan University of Pharmacy and Science, Tainan, 71104, Taiwan.
| | - B Lin-Ju Yen
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, 35053, Taiwan
| | - Huey-Kang Sytwu
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, 161, Section 6, Min-Chuan East Road, Neihu District, Taipei, 11490, Taiwan.
| |
Collapse
|
180
|
Poholek AC, Jankovic D, Villarino AV, Petermann F, Hettinga A, Shouval DS, Snapper SB, Kaech SM, Brooks SR, Vahedi G, Sher A, Kanno Y, O'Shea JJ. IL-10 induces a STAT3-dependent autoregulatory loop in T H2 cells that promotes Blimp-1 restriction of cell expansion via antagonism of STAT5 target genes. Sci Immunol 2017; 1. [PMID: 28713870 DOI: 10.1126/sciimmunol.aaf8612] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Blimp-1 expression in T cells extinguishes the fate of T follicular helper cells, drives terminal differentiation, and limits autoimmunity. Although various factors have been described to control Blimp-1 expression in T cells, little is known about what regulates Blimp-1 expression in T helper 2 (TH2) cells and the molecular basis of its actions. We report that signal transducer and activator of transcription 3 (STAT3) unexpectedly played a critical role in regulating Blimp-1 in TH2 cells. Furthermore, we found that the cytokine interleukin-10 (IL-10) acted directly on TH2 cells and was necessary and sufficient to induce optimal Blimp-1 expression through STAT3. Together, Blimp-1 and STAT3 amplified IL-10 production in TH2 cells, creating a strong autoregulatory loop that enhanced Blimp-1 expression. Increased Blimp-1 in T cells antagonized STAT5-regulated cell cycle and antiapoptotic genes to limit cell expansion. These data elucidate the signals required for Blimp-1 expression in TH2 cells and reveal an unexpected mechanism of action of IL-10 in T cells, providing insights into the molecular underpinning by which Blimp-1 constrains T cell expansion to limit autoimmunity.
Collapse
Affiliation(s)
- Amanda C Poholek
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health, Bethesda, MD 20892, USA.,Department of Pediatrics and Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Dragana Jankovic
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alejandro V Villarino
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health, Bethesda, MD 20892, USA
| | - Franziska Petermann
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health, Bethesda, MD 20892, USA
| | - Angela Hettinga
- Department of Pediatrics and Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Dror S Shouval
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Boston, MA 02115, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Scott B Snapper
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Boston, MA 02115, USA.,Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Susan M Kaech
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Stephen R Brooks
- Biodata Mining and Discovery Section, NIAMS, National Institutes of Health, Bethesda, MD 20892, USA
| | - Golnaz Vahedi
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health, Bethesda, MD 20892, USA.,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alan Sher
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yuka Kanno
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health, Bethesda, MD 20892, USA
| | - John J O'Shea
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
181
|
Liu M, Barton ES, Jennings RN, Oldenburg DG, Whirry JM, White DW, Grayson JM. Unsupervised learning techniques reveal heterogeneity in memory CD8 + T cell differentiation following acute, chronic and latent viral infections. Virology 2017; 509:266-279. [PMID: 28689040 DOI: 10.1016/j.virol.2017.06.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 06/14/2017] [Accepted: 06/15/2017] [Indexed: 01/09/2023]
Abstract
CD8+ T lymphocytes are critical for the control of gammaherpesvirus latency. To determine how memory CD8+ T cells generated during latency differ from those primed during acute or chronic viral infection, we adoptively transferred naive P14 CD8+ T cells into uninfected recipients, and examined surface proteins, cytokines and transcription factors following infection with the Armstrong (acute) or Clone 13 (chronic) strains of lymphocytic choriomeningitis virus (LCMV), or murine gammaherpesvirus 68 (MHV68) expressing the LCMV epitope DbGP33-41. By performing k-means clustering and generating self organizing maps (SOM), we observed increased short-lived effector-like, CD27lo CD62Llo and Bcl-6lo CD8+ T cells following latent infection. In addition, we found that memory CD8+ T cells from latent primed mice underwent less expansion following adoptive transfer and antigen rechallenge. Data from cluster models were combined and visualized by principal component analysis (PCA) demonstrating memory CD8+ T cells from latent infection occupy an intermediate differentiation space.
Collapse
Affiliation(s)
- Mingyong Liu
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Erik S Barton
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Ryan N Jennings
- Department of Veterinary Biosciences, The Ohio State University College of Veterinary Medicine, Columbus, OH 43210, USA
| | | | | | | | - Jason M Grayson
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA.
| |
Collapse
|
182
|
Zhu L, Kong Y, Zhang J, Claxton DF, Ehmann WC, Rybka WB, Palmisiano ND, Wang M, Jia B, Bayerl M, Schell TD, Hohl RJ, Zeng H, Zheng H. Blimp-1 impairs T cell function via upregulation of TIGIT and PD-1 in patients with acute myeloid leukemia. J Hematol Oncol 2017. [PMID: 28629373 PMCID: PMC5477125 DOI: 10.1186/s13045-017-0486-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Background T cell immunoglobulin and immunoreceptor tyrosine-based inhibitory motif (ITIM) domain (TIGIT) and programmed cell death protein 1 (PD-1) are important inhibitory receptors that associate with T cell exhaustion in acute myeloid leukemia (AML). In this study, we aimed to determine the underlying transcriptional mechanisms regulating these inhibitory pathways. Specifically, we investigated the role of transcription factor B lymphocyte-induced maturation protein 1 (Blimp-1) in T cell response and transcriptional regulation of TIGIT and PD-1 in AML. Methods Peripheral blood samples collected from patients with AML were used in this study. Blimp-1 expression was examined by flow cytometry. The correlation of Blimp-1 expression to clinical characteristics of AML patients was analyzed. Phenotypic and functional studies of Blimp-1-expressing T cells were performed using flow cytometry-based assays. Luciferase reporter assays and ChIP assays were applied to assess direct binding and transcription activity of Blimp-1. Using siRNA to silence Blimp-1, we further elucidated the regulatory role of Blimp-1 in the TIGIT and PD-1 expression and T cell immune response. Results Blimp-1 expression is elevated in T cells from AML patients. Consistent with exhaustion, Blimp-1+ T cells upregulate multiple inhibitory receptors including PD-1 and TIGIT. In addition, they are functionally impaired manifested by low cytokine production and decreased cytotoxicity capacity. Importantly, the functional defect is reversed by inhibition of Blimp-1 via siRNA knockdown. Furthermore, Blimp-1 binds to the promoters of PD-1 and TIGIT and positively regulates their expression. Conclusions Our study demonstrates an important inhibitory effect of Blimp-1 on T cell response in AML; thus, targeting Blimp-1 and its regulated molecules to improve the immune response may provide effective leukemia therapeutics. Electronic supplementary material The online version of this article (doi:10.1186/s13045-017-0486-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Liuluan Zhu
- Institute of Infectious Diseases, Beijing Ditan Hospital, Beijing Key Laboratory of Emerging Infectious Diseases, Capital Medical University, Beijing, China.,Penn State Cancer Institute, Penn State University College of Medicine, Hershey, PA, USA
| | - Yaxian Kong
- Institute of Infectious Diseases, Beijing Ditan Hospital, Beijing Key Laboratory of Emerging Infectious Diseases, Capital Medical University, Beijing, China.,Penn State Cancer Institute, Penn State University College of Medicine, Hershey, PA, USA
| | - Jianhong Zhang
- Penn State Cancer Institute, Penn State University College of Medicine, Hershey, PA, USA
| | - David F Claxton
- Penn State Cancer Institute, Penn State University College of Medicine, Hershey, PA, USA
| | - W Christopher Ehmann
- Penn State Cancer Institute, Penn State University College of Medicine, Hershey, PA, USA
| | - Witold B Rybka
- Penn State Cancer Institute, Penn State University College of Medicine, Hershey, PA, USA
| | - Neil D Palmisiano
- Depatment of Medical Oncology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Ming Wang
- Department of Public Health Sciences, Penn State University College of Medicine, Hershey, PA, USA
| | - Bei Jia
- Penn State Cancer Institute, Penn State University College of Medicine, Hershey, PA, USA
| | - Michael Bayerl
- Department of Pathology, Penn State Hershey Medical Center, Penn State University College of Medicine, Hershey, PA, 17033, United States
| | - Todd D Schell
- Penn State Cancer Institute, Penn State University College of Medicine, Hershey, PA, USA.,Department of Microbiology and Immunology, Penn State University College of Medicine, Hershey, PA, USA
| | - Raymond J Hohl
- Penn State Cancer Institute, Penn State University College of Medicine, Hershey, PA, USA
| | - Hui Zeng
- Institute of Infectious Diseases, Beijing Ditan Hospital, Beijing Key Laboratory of Emerging Infectious Diseases, Capital Medical University, Beijing, China.
| | - Hong Zheng
- Penn State Cancer Institute, Penn State University College of Medicine, Hershey, PA, USA. .,Department of Microbiology and Immunology, Penn State University College of Medicine, Hershey, PA, USA.
| |
Collapse
|
183
|
Samji T, Khanna KM. Understanding memory CD8 + T cells. Immunol Lett 2017; 185:32-39. [PMID: 28274794 PMCID: PMC5508124 DOI: 10.1016/j.imlet.2017.02.012] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 02/09/2017] [Accepted: 02/20/2017] [Indexed: 12/28/2022]
Abstract
Memory CD8+ T cells were originally thought to exist as two populations (effector and central memory). In recent years, a third population called resident memory T cells has been discovered and further to this these populations are being divided into different subtypes. Understanding the function and developmental pathways of memory CD8+ T cells is key to developing effective therapies against cancer and infectious diseases. Here we have reviewed what is currently known about all three subsets of memory CD8+ T populations and as to how each population was originally discovered and the developmental pathways of each subpopulation. Each memory population appears to play a distinct role in adaptive immune responses but we are still a long way from understanding how the populations are generated and what roles they play in protection against invading pathogens and if they contribute to the pathogenesis of inflammatory diseases.
Collapse
Affiliation(s)
- Tasleem Samji
- Department of Immunology, University of Connecticut Health, Farmington, CT 06030, United States of America
| | - Kamal M Khanna
- Department of Immunology, University of Connecticut Health, Farmington, CT 06030, United States of America; Department of Pediatrics, University of Connecticut Health, Farmington, CT 06030, United States of America.
| |
Collapse
|
184
|
Dysregulation of Blimp1 transcriptional repressor unleashes p130Cas/ErbB2 breast cancer invasion. Sci Rep 2017; 7:1145. [PMID: 28442738 PMCID: PMC5430666 DOI: 10.1038/s41598-017-01332-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 03/28/2017] [Indexed: 12/29/2022] Open
Abstract
ErbB2 overexpression is detected in approximately 20% of breast cancers and is correlated with poor survival. It was previously shown that the adaptor protein p130Cas/BCAR1 is a crucial mediator of ErbB2 transformation and that its overexpression confers invasive properties to ErbB2-positive human mammary epithelial cells. We herein prove, for the first time, that the transcriptional repressor Blimp1 is a novel mediator of p130Cas/ErbB2-mediated invasiveness. Indeed, high Blimp1 expression levels are detected in invasive p130Cas/ErbB2 cells and correlate with metastatic status in human breast cancer patients. The present study, by using 2D and 3D breast cancer models, shows that the increased Blimp1 expression depends on both MAPK activation and miR-23b downmodulation. Moreover, we demonstrate that Blimp1 triggers cell invasion and metastasis formation via its effects on focal adhesion and survival signaling. These findings unravel the previously unidentified role that transcriptional repressor Blimp1 plays in the control of breast cancer invasiveness.
Collapse
|
185
|
Zhang P, Lee JS, Gartlan KH, Schuster IS, Comerford I, Varelias A, Ullah MA, Vuckovic S, Koyama M, Kuns RD, Locke KR, Beckett KJ, Olver SD, Samson LD, Montes de Oca M, de Labastida Rivera F, Clouston AD, Belz GT, Blazar BR, MacDonald KP, McColl SR, Thomas R, Engwerda CR, Degli-Esposti MA, Kallies A, Tey SK, Hill GR. Eomesodermin promotes the development of type 1 regulatory T (T R1) cells. Sci Immunol 2017; 2:2/10/eaah7152. [PMID: 28738016 DOI: 10.1126/sciimmunol.aah7152] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 01/18/2017] [Accepted: 02/22/2017] [Indexed: 12/20/2022]
Abstract
Type 1 regulatory T (TR1) cells are Foxp3- interleukin-10 (IL-10)-producing CD4+ T cells with potent immunosuppressive properties, but their requirements for lineage development have remained elusive. We show that TR1 cells constitute the most abundant regulatory population after allogeneic bone marrow transplantation (BMT), express the transcription factor Eomesodermin (Eomes), and are critical for the prevention of graft-versus-host disease. We demonstrate that Eomes is required for TR1 cell differentiation, during which it acts in concert with the transcription factor B lymphocyte-induced maturation protein-1 (Blimp-1) by transcriptionally activating IL-10 expression and repressing differentiation into other T helper cell lineages. We further show that Eomes induction in TR1 cells requires T-bet and donor macrophage-derived IL-27. Thus, we define the cellular and transcriptional control of TR1 cell differentiation during BMT, opening new avenues to therapeutic manipulation.
Collapse
Affiliation(s)
- Ping Zhang
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia.
| | - Jason S Lee
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
| | - Kate H Gartlan
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
| | - Iona S Schuster
- Immunology and Virology Program, Centre for Ophthalmology and Visual Science, University of Western Australia, Crawley, Western Australia, Australia.,Centre for Experimental Immunology, Lions Eye Institute, Perth, Western Australia, Australia
| | - Iain Comerford
- Department of Molecular and Cellular Biology, School of Biological Sciences, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Antiopi Varelias
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
| | - Md Ashik Ullah
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
| | - Slavica Vuckovic
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
| | - Motoko Koyama
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
| | - Rachel D Kuns
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
| | - Kelly R Locke
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
| | - Kirrilee J Beckett
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
| | - Stuart D Olver
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
| | - Luke D Samson
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
| | | | | | | | - Gabrielle T Belz
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria 3052, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Bruce R Blazar
- Pediatric Blood and Marrow Transplantation Program, University of Minnesota, Minneapolis, MN 55454, USA
| | - Kelli P MacDonald
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
| | - Shaun R McColl
- Department of Molecular and Cellular Biology, School of Biological Sciences, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Ranjeny Thomas
- University of Queensland Diamantina Institute, Translational Research Institute, Princess Alexandra Hospital, Woolloongabba, Queensland 4102, Australia
| | | | - Mariapia A Degli-Esposti
- Immunology and Virology Program, Centre for Ophthalmology and Visual Science, University of Western Australia, Crawley, Western Australia, Australia.,Centre for Experimental Immunology, Lions Eye Institute, Perth, Western Australia, Australia
| | - Axel Kallies
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria 3052, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Siok-Keen Tey
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia.,Royal Brisbane and Women's Hospital, Brisbane, Queensland 4006, Australia
| | - Geoffrey R Hill
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia. .,Royal Brisbane and Women's Hospital, Brisbane, Queensland 4006, Australia
| |
Collapse
|
186
|
Oja AE, Vieira Braga FA, Remmerswaal EBM, Kragten NAM, Hertoghs KML, Zuo J, Moss PA, van Lier RAW, van Gisbergen KPJM, Hombrink P. The Transcription Factor Hobit Identifies Human Cytotoxic CD4 + T Cells. Front Immunol 2017; 8:325. [PMID: 28392788 PMCID: PMC5364140 DOI: 10.3389/fimmu.2017.00325] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 03/07/2017] [Indexed: 12/23/2022] Open
Abstract
The T cell lineage is commonly divided into CD4-expressing helper T cells that polarize immune responses through cytokine secretion and CD8-expressing cytotoxic T cells that eliminate infected target cells by virtue of the release of cytotoxic molecules. Recently, a population of CD4+ T cells that conforms to the phenotype of cytotoxic CD8+ T cells has received increased recognition. These cytotoxic CD4+ T cells display constitutive expression of granzyme B and perforin at the protein level and mediate HLA class II-dependent killing of target cells. In humans, this cytotoxic profile is found within the human cytomegalovirus (hCMV)-specific, but not within the influenza- or Epstein–Barr virus-specific CD4+ T cell populations, suggesting that, in particular, hCMV infection induces the formation of cytotoxic CD4+ T cells. We have previously described that the transcription factor Homolog of Blimp-1 in T cells (Hobit) is specifically upregulated in CD45RA+ effector CD8+ T cells that arise after hCMV infection. Here, we describe the expression pattern of Hobit in human CD4+ T cells. We found Hobit expression in cytotoxic CD4+ T cells and accumulation of Hobit+ CD4+ T cells after primary hCMV infection. The Hobit+ CD4+ T cells displayed highly overlapping characteristics with Hobit+ CD8+ T cells, including the expression of cytotoxic molecules, T-bet, and CX3CR1. Interestingly, γδ+ T cells that arise after hCMV infection also upregulate Hobit expression and display a similar effector phenotype as cytotoxic CD4+ and CD8+ T cells. These findings suggest a shared differentiation pathway in CD4+, CD8+, and γδ+ T cells that may involve Hobit-driven acquisition of long-lived cytotoxic effector function.
Collapse
Affiliation(s)
- Anna E Oja
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory , Amsterdam , Netherlands
| | - Felipe A Vieira Braga
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory , Amsterdam , Netherlands
| | - Ester B M Remmerswaal
- Department of Experimental Immunology, Academic Medical Center, Amsterdam, Netherlands; Renal Transplant Unit, Division of Internal Medicine, Academic Medical Centre, Amsterdam-Zuidoost, Netherlands
| | - Natasja A M Kragten
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory , Amsterdam , Netherlands
| | - Kirsten M L Hertoghs
- Department of Experimental Immunology, Academic Medical Center , Amsterdam , Netherlands
| | - Jianmin Zuo
- College of Medical and Dental Sciences, Institute of Immunology and Immunotherapy, University of Birmingham , Edgbaston, Birmingham , UK
| | - Paul A Moss
- College of Medical and Dental Sciences, Institute of Immunology and Immunotherapy, University of Birmingham , Edgbaston, Birmingham , UK
| | - René A W van Lier
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory , Amsterdam , Netherlands
| | - Klaas P J M van Gisbergen
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam, Netherlands; Department of Experimental Immunology, Academic Medical Center, Amsterdam, Netherlands
| | - Pleun Hombrink
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory , Amsterdam , Netherlands
| |
Collapse
|
187
|
Mackay LK, Kallies A. Transcriptional Regulation of Tissue-Resident Lymphocytes. Trends Immunol 2017; 38:94-103. [DOI: 10.1016/j.it.2016.11.004] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 11/08/2016] [Accepted: 11/10/2016] [Indexed: 02/06/2023]
|
188
|
Marshall NB, Vong AM, Devarajan P, Brauner MD, Kuang Y, Nayar R, Schutten EA, Castonguay CH, Berg LJ, Nutt SL, Swain SL. NKG2C/E Marks the Unique Cytotoxic CD4 T Cell Subset, ThCTL, Generated by Influenza Infection. THE JOURNAL OF IMMUNOLOGY 2016; 198:1142-1155. [PMID: 28031335 DOI: 10.4049/jimmunol.1601297] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 12/05/2016] [Indexed: 01/22/2023]
Abstract
CD4 T cells can differentiate into multiple effector subsets, including ThCTL that mediate MHC class II-restricted cytotoxicity. Although CD4 T cell-mediated cytotoxicity has been reported in multiple viral infections, their characteristics and the factors regulating their generation are unclear, in part due to a lack of a signature marker. We show in this article that, in mice, NKG2C/E identifies the ThCTL that develop in the lung during influenza A virus infection. ThCTL express the NKG2X/CD94 complex, in particular the NKG2C/E isoforms. NKG2C/E+ ThCTL are part of the lung CD4 effector population, and they mediate influenza A virus-specific cytotoxic activity. The phenotype of NKG2C/E+ ThCTL indicates they are highly activated effectors expressing high levels of binding to P-selectin, T-bet, and Blimp-1, and that more of them secrete IFN-γ and readily degranulate than non-ThCTL. ThCTL also express more cytotoxicity-associated genes including perforin and granzymes, and fewer genes associated with recirculation and memory. They are found only at the site of infection and not in other peripheral sites. These data suggest ThCTL are marked by the expression of NKG2C/E and represent a unique CD4 effector population specialized for cytotoxicity.
Collapse
Affiliation(s)
- Nikki B Marshall
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Allen M Vong
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605
| | | | - Matthew D Brauner
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Yi Kuang
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Ribhu Nayar
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Elizabeth A Schutten
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Catherine H Castonguay
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Leslie J Berg
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Stephen L Nutt
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; and.,Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Susan L Swain
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605;
| |
Collapse
|
189
|
Pereira BI, Akbar AN. Convergence of Innate and Adaptive Immunity during Human Aging. Front Immunol 2016; 7:445. [PMID: 27867379 PMCID: PMC5095488 DOI: 10.3389/fimmu.2016.00445] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 10/07/2016] [Indexed: 01/06/2023] Open
Abstract
Aging is associated with profound changes in the human immune system, a phenomenon referred to as immunosenescence. This complex immune remodeling affects the adaptive immune system and the CD8+ T cell compartment in particular, leading to the accumulation of terminally differentiated T cells, which can rapidly exert their effector functions at the expenses of a limited proliferative potential. In this review, we will discuss evidence suggesting that senescent αβCD8+ T cells acquire the hallmarks of innate-like T cells and use recently acquired NK cell receptors as an alternative mechanism to mediate rapid effector functions. These cells concomitantly lose expression of co-stimulatory receptors and exhibit decreased T cell receptor signaling, suggesting a functional shift away from antigen-specific activation. The convergence of innate and adaptive features in senescent T cells challenges the classic division between innate and adaptive immune systems. Innate-like T cells are particularly important for stress and tumor surveillance, and we propose a new role for these cells in aging, where the acquisition of innate-like functions may represent a beneficial adaptation to an increased burden of malignancy with age, although it may also pose a higher risk of autoimmune disorders.
Collapse
Affiliation(s)
- Branca I Pereira
- Division of Infection and Immunity, University College London , London , UK
| | - Arne N Akbar
- Division of Infection and Immunity, University College London , London , UK
| |
Collapse
|
190
|
Yamada T, Kanoh M, Nabe S, Yasuoka T, Suzuki J, Matsumoto A, Kuwahara M, Maruyama S, Fujimoto T, Sakisuka R, Yasukawa M, Yamashita M. Menin Plays a Critical Role in the Regulation of the Antigen-Specific CD8+ T Cell Response upon Listeria Infection. THE JOURNAL OF IMMUNOLOGY 2016; 197:4079-4089. [PMID: 27798149 DOI: 10.4049/jimmunol.1502295] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 09/12/2016] [Indexed: 02/06/2023]
Abstract
Menin, a tumor suppressor protein, is encoded by the MEN1 gene in humans. Certain germinal mutations of MEN1 induce an autosomal-dominant syndrome that is characterized by concurrent parathyroid adenomas and several other tumor types. Although menin is also expressed in hematopoietic lineages, its role in CD8+ T cells remains unclear. We generated Meninflox/flox CD4-Cre (Menin-KO) mice by crossing Meninflox/flox mice with CD4-Cre transgenic (Tg) mice to determine the role of menin in CD8+ T cells. Wild-type (WT) and Menin-KO mice were infected with Listeria monocytogenes expressing OVA to analyze the immune response of Ag-specific CD8+ T cells. Menin deficiency resulted in an impaired primary immune response by CD8+ T cells. On day 7, there were fewer Menin-KO OVA-specific CD8+ T cells compared with WT cells. Next, we adoptively transferred WT and Menin-KO OT-1 Tg CD8+ T cells into congenic recipient mice and infected them with L. monocytogenes expressing OVA to determine the CD8+ T cell-intrinsic effect. Menin-KO OT-1 Tg CD8+ T cells were outcompeted by the WT cells upon infection. Increased expression of Blimp-1 and T-bet, cell cycle inhibitors, and proapoptotic genes was observed in the Menin-KO OT-1 Tg CD8+ T cells upon infection. These data suggest that menin inhibits differentiation into terminal effectors and positively controls proliferation and survival of Ag-specific CD8+ T cells that are activated upon infection. Collectively, our study uncovered an important role for menin in the immune response of CD8+ T cells to infection.
Collapse
Affiliation(s)
- Takeshi Yamada
- Department of Infection and Host Defenses, Graduate School of Medicine, Ehime University, Shitsukawa, Toon, Ehime 791-0295, Japan;
| | - Makoto Kanoh
- Department of Infection and Host Defenses, Graduate School of Medicine, Ehime University, Shitsukawa, Toon, Ehime 791-0295, Japan
| | - Shogo Nabe
- Department of Hematology, Clinical Immunology, and Infectious diseases, Graduate School of Medicine, Ehime University, Shitsukawa, Toon, Ehime 791-0295, Japan
| | - Toshiaki Yasuoka
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Ehime University, Shitsukawa, Toon, Ehime 791-0295, Japan
| | - Junpei Suzuki
- Department of Hematology, Clinical Immunology, and Infectious diseases, Graduate School of Medicine, Ehime University, Shitsukawa, Toon, Ehime 791-0295, Japan.,Department of Immunology, Graduate School of Medicine, Ehime University, Shitsukawa, Toon, Ehime 791-0295, Japan; and.,Translational Research Center, Ehime University Hospital, Shitsukawa, Toon, Ehime 791-0295, Japan
| | - Akira Matsumoto
- Department of Infection and Host Defenses, Graduate School of Medicine, Ehime University, Shitsukawa, Toon, Ehime 791-0295, Japan
| | - Makoto Kuwahara
- Department of Immunology, Graduate School of Medicine, Ehime University, Shitsukawa, Toon, Ehime 791-0295, Japan; and.,Translational Research Center, Ehime University Hospital, Shitsukawa, Toon, Ehime 791-0295, Japan
| | - Saho Maruyama
- Department of Immunology, Graduate School of Medicine, Ehime University, Shitsukawa, Toon, Ehime 791-0295, Japan; and
| | - Takuya Fujimoto
- Department of Infection and Host Defenses, Graduate School of Medicine, Ehime University, Shitsukawa, Toon, Ehime 791-0295, Japan
| | - Ryo Sakisuka
- Department of Infection and Host Defenses, Graduate School of Medicine, Ehime University, Shitsukawa, Toon, Ehime 791-0295, Japan
| | - Masaki Yasukawa
- Department of Hematology, Clinical Immunology, and Infectious diseases, Graduate School of Medicine, Ehime University, Shitsukawa, Toon, Ehime 791-0295, Japan
| | - Masakatsu Yamashita
- Department of Immunology, Graduate School of Medicine, Ehime University, Shitsukawa, Toon, Ehime 791-0295, Japan; and.,Translational Research Center, Ehime University Hospital, Shitsukawa, Toon, Ehime 791-0295, Japan
| |
Collapse
|
191
|
Zhang Z, Liang L, Li D, Nong L, Liu J, Qu L, Zheng Y, Zhang B, Li T. Hypermethylation of PRDM1/Blimp-1 promoter in extranodal NK/T-cell lymphoma, nasal type: an evidence of predominant role in its downregulation. Hematol Oncol 2016; 35:645-654. [PMID: 27704586 DOI: 10.1002/hon.2362] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 09/01/2016] [Accepted: 09/06/2016] [Indexed: 12/12/2022]
Abstract
The loss of PRDM1 expression is common in extranodal NK/T-cell lymphoma, nasal type (EN-NK/T-NT), but the role of promoter methylation in silencing PRDM1 expression remains unclear. Hence, we performed pyrosequencing analysis to evaluate the promoter methylation of PRDM1 gene in vivo and in vitro, to analyze the association between methylation and its expression, and to assess cellular effects of PRDM1 reexpression. The promoter hypermethylation of PRDM1 gene was detected in 11 of 25 EN-NK/T-NT cases (44.0%) and NK92 and NKL cells. The promoter hypermethylation of PRDM1 was significantly correlated with PRDM1 expression in vivo and in vitro, predominantly contributing to the loss of PRDM1 expression compared with genetic deletion and aberrant expression of miR-223 in EN-NK/T-NT. PRDM1 expression was significantly restored by demethylation treatment, which induced cell proliferation suppression, cell cycle arrest, and apoptosis increase. We also found that PRDM1 reexpression could downregulate the expression of Ets-1, T-bet, granzyme B, and c-myc. Our findings demonstrated that the promoter hypermethylation of PRDM1 harbored a predominant role in the downregulation of PRDM1 expression, significantly affecting the biological behavior of tumor cells in EN-NK/T-NT.
Collapse
Affiliation(s)
- Zhang Zhang
- Department of Pathology, Peking University First Hospital, Beijing, 100034, China
| | - Li Liang
- Department of Pathology, Peking University First Hospital, Beijing, 100034, China
| | - Dong Li
- Department of Pathology, Peking University First Hospital, Beijing, 100034, China
| | - Lin Nong
- Department of Pathology, Peking University First Hospital, Beijing, 100034, China
| | - Jumei Liu
- Department of Pathology, Peking University First Hospital, Beijing, 100034, China
| | - Linlin Qu
- Department of Pathology, Peking University First Hospital, Beijing, 100034, China
| | - Yalin Zheng
- Department of Pathology, Peking University First Hospital, Beijing, 100034, China
| | - Bo Zhang
- Department of Pathology, Peking University Health Science Center, Beijing, 100191, China
| | - Ting Li
- Department of Pathology, Peking University First Hospital, Beijing, 100034, China
| |
Collapse
|
192
|
Abstract
Numerous risk alleles for systemic lupus erythematosus (SLE) have now been identified. Analysis of the expression of genes with risk alleles in cells of hematopoietic origin demonstrates them to be most abundantly expressed in B cells and dendritic cells (DCs), suggesting that these cell types may be the drivers of the inflammatory changes seen in SLE. DCs are of particular interest as they act to connect the innate and the adaptive immune response. Thus, DCs can transform inflammation into autoimmunity, and autoantibodies are the hallmark of SLE. In this review, we focus on mechanisms of tolerance that maintain DCs in a non‐activated, non‐immunogenic state. We demonstrate, using examples from our own studies, how alterations in DC function stemming from either DC‐intrinsic abnormalities or DC‐extrinsic regulators of function can predispose to autoimmunity.
Collapse
Affiliation(s)
- Myoungsun Son
- The Feinstein Institute for Medical Research, Center for Autoimmune and Musculoskeletal Diseases, Manhasset, NY, USA
| | - Sun Jung Kim
- The Feinstein Institute for Medical Research, Center for Autoimmune and Musculoskeletal Diseases, Manhasset, NY, USA
| | - Betty Diamond
- The Feinstein Institute for Medical Research, Center for Autoimmune and Musculoskeletal Diseases, Manhasset, NY, USA
| |
Collapse
|
193
|
IL2Rβ-dependent signals drive terminal exhaustion and suppress memory development during chronic viral infection. Proc Natl Acad Sci U S A 2016; 113:E5444-53. [PMID: 27573835 DOI: 10.1073/pnas.1604256113] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Exhaustion of CD8(+) T cells severely impedes the adaptive immune response to chronic viral infections. Despite major advances in our understanding of the molecular regulation of exhaustion, the cytokines that directly control this process during chronicity remain unknown. We demonstrate a direct impact of IL-2 and IL-15, two common gamma-chain-dependent cytokines, on CD8(+) T-cell exhaustion. Common to both cytokine receptors, the IL-2 receptor β (IL2Rβ) chain is selectively maintained on CD8(+) T cells during chronic lymphocytic choriomeningitis virus and hepatitis C virus infections. Its expression correlates with exhaustion severity and identifies terminally exhausted CD8(+) T cells both in mice and humans. Genetic ablation of the IL2Rβ chain on CD8(+) T cells restrains inhibitory receptor induction, in particular 2B4 and Tim-3; precludes terminal differentiation of highly defective PD-1(hi) effectors; and rescues memory T-cell development and responsiveness to IL-7-dependent signals. Together, we ascribe a previously unexpected role to IL-2 and IL-15 as instigators of CD8(+) T-cell exhaustion during chronic viral infection.
Collapse
|
194
|
Bally APR, Austin JW, Boss JM. Genetic and Epigenetic Regulation of PD-1 Expression. THE JOURNAL OF IMMUNOLOGY 2016; 196:2431-7. [PMID: 26945088 DOI: 10.4049/jimmunol.1502643] [Citation(s) in RCA: 174] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The inhibitory immune receptor programmed cell death-1 (PD-1) is intricately regulated. In T cells, PD-1 is expressed in response to most immune challenges, but it is rapidly downregulated in acute settings, allowing for normal immune responses. On chronically stimulated Ag-specific T cells, PD-1 expression remains high, leading to an impaired response to stimuli. Ab blockade of PD-1 interactions during chronic Ag settings partially restores immune function and is now used clinically to treat a variety of devastating cancers. Understanding the regulation of PD-1 expression may be useful for developing novel immune-based therapies. In this review, the molecular mechanisms that drive dynamic PD-1 expression during acute and chronic antigenic stimuli are discussed. An array of cis-DNA elements, transcription factors, and epigenetic components, including DNA methylation and histone modifications, control PD-1 expression. The interplay between these regulators fine-tunes PD-1 expression in different inflammatory environments and across numerous cell types to modulate immune responses.
Collapse
Affiliation(s)
- Alexander P R Bally
- Department of Microbiology and Immunology and Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322
| | - James W Austin
- Department of Microbiology and Immunology and Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322
| | - Jeremy M Boss
- Department of Microbiology and Immunology and Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322
| |
Collapse
|
195
|
CXCR5+ follicular cytotoxic T cells control viral infection in B cell follicles. Nat Immunol 2016; 17:1187-96. [DOI: 10.1038/ni.3543] [Citation(s) in RCA: 315] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 07/29/2016] [Indexed: 12/12/2022]
|
196
|
Tian Y, Zajac AJ. IL-21 and T Cell Differentiation: Consider the Context. Trends Immunol 2016; 37:557-568. [PMID: 27389961 DOI: 10.1016/j.it.2016.06.001] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 05/27/2016] [Accepted: 06/01/2016] [Indexed: 12/18/2022]
Abstract
Accumulating studies demonstrate that IL-21 modulates the differentiation of various CD4 and CD8 T cell subsets and provide insights into the underlying cellular and molecular processes that are influenced by this cytokine. Intriguingly, the effects of IL-21 on T cells can be complex and vary depending on the experimental system used. We review our current understanding of the roles of IL-21 in the generation of phenotypically distinct CD4 and CD8 T cell populations and discuss the potential environmental cues, cellular factors, and molecular mediators that impact the actions of IL-21. We propose that IL-21 acts in a context-dependent manner to accentuate T cell subset development.
Collapse
Affiliation(s)
- Yuan Tian
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294-2170, USA
| | - Allan J Zajac
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294-2170, USA.
| |
Collapse
|
197
|
Crompton JG, Narayanan M, Cuddapah S, Roychoudhuri R, Ji Y, Yang W, Patel SJ, Sukumar M, Palmer DC, Peng W, Wang E, Marincola FM, Klebanoff CA, Zhao K, Tsang JS, Gattinoni L, Restifo NP. Lineage relationship of CD8(+) T cell subsets is revealed by progressive changes in the epigenetic landscape. Cell Mol Immunol 2016; 13:502-13. [PMID: 25914936 PMCID: PMC4947817 DOI: 10.1038/cmi.2015.32] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 03/02/2015] [Accepted: 03/17/2015] [Indexed: 01/06/2023] Open
Abstract
To better elucidate epigenetic mechanisms that correlate with the dynamic gene expression program observed upon T-cell differentiation, we investigated the genomic landscape of histone modifications in naive and memory CD8(+) T cells. Using a ChIP-Seq approach coupled with global gene expression profiling, we generated genome-wide histone H3 lysine 4 (H3K4me3) and H3 lysine 27 (H3K27me3) trimethylation maps in naive, T memory stem cells, central memory cells, and effector memory cells in order to gain insight into how histone architecture is remodeled during T cell differentiation. We show that H3K4me3 histone modifications are associated with activation of genes, while H3K27me3 is negatively correlated with gene expression at canonical loci and enhancers associated with T-cell metabolism, effector function, and memory. Our results also reveal histone modifications and gene expression signatures that distinguish the recently identified T memory stem cells from other CD8(+) T-cell subsets. Taken together, our results suggest that CD8(+) lymphocytes undergo chromatin remodeling in a progressive fashion. These findings have major implications for our understanding of peripheral T-cell ontogeny and the formation of immunological memory.
Collapse
Affiliation(s)
- Joseph G. Crompton
- Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK
| | - Manikandan Narayanan
- Systems Genomics and Bioinformatics Unit, Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Suresh Cuddapah
- Department of Environmental Medicine, New York University School of Medicine,Tuxedo, NY 10987, USA
| | - Rahul Roychoudhuri
- Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yun Ji
- Experimental Transplantation and Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Wenjing Yang
- Department of Physics, The George Washington University, Washington, DC 20052, USA
| | - Shashank J. Patel
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20007, United States, Bethesda, MD 20892, USA
| | - Madhusudhanan Sukumar
- Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Douglas C. Palmer
- Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Weiqun Peng
- Department of Physics, The George Washington University, Washington, DC 20052, USA
| | - Ena Wang
- Research Branch, Sidra Medical and Research Centre, Doha, Qatar
- Infectious Disease and Immunogenetics Section, Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Francesco M. Marincola
- Research Branch, Sidra Medical and Research Centre, Doha, Qatar
- Infectious Disease and Immunogenetics Section, Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Christopher A. Klebanoff
- Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Clinical Investigator Development Program, NCI/NIH, Bethesda, MD 20892, USA
| | - Keji Zhao
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - John S. Tsang
- Systems Genomics and Bioinformatics Unit, Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Luca Gattinoni
- Experimental Transplantation and Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nicholas P. Restifo
- Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
198
|
Curci C, Sallustio F, Serino G, De Palma G, Trpevski M, Fiorentino M, Rossini M, Quaglia M, Valente M, Furian L, Toscano A, Mazzucco G, Barreca A, Bussolino S, Gesualdo L, Stratta P, Rigotti P, Citterio F, Biancone L, Schena FP. Potential role of effector memory T cells in chronic T cell-mediated kidney graft rejection. Nephrol Dial Transplant 2016; 31:2131-2142. [DOI: 10.1093/ndt/gfw245] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 05/12/2016] [Indexed: 11/14/2022] Open
|
199
|
Mackay LK, Minnich M, Kragten NAM, Liao Y, Nota B, Seillet C, Zaid A, Man K, Preston S, Freestone D, Braun A, Wynne-Jones E, Behr FM, Stark R, Pellicci DG, Godfrey DI, Belz GT, Pellegrini M, Gebhardt T, Busslinger M, Shi W, Carbone FR, van Lier RAW, Kallies A, van Gisbergen KPJM. Hobit and Blimp1 instruct a universal transcriptional program of tissue residency in lymphocytes. Science 2016; 352:459-63. [DOI: 10.1126/science.aad2035] [Citation(s) in RCA: 553] [Impact Index Per Article: 61.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 03/21/2016] [Indexed: 12/12/2022]
|
200
|
Abstract
The generation of antigen-specific neutralizing antibodies and memory B cells is one of the most important immune protections of the host and is the basis for successful vaccination strategies. The protective antibodies, secreted by preexisting long-lived plasma cells and reactivated antigen-experienced memory B cells, constitute the main humoral immune defense. Distinct from the primary antibody response, the humoral memory response is generated much faster and with greater magnitude, and it produces antibodies with higher affinity and variable isotypes. Humoral immunity is critically dependent on the germinal center where high-affinity memory B cells and plasma cells are generated. In this chapter, we focus on recent advances in our understanding of the molecular mechanisms that govern fate decision for memory B cells and plasma cells and the mechanisms that maintain the long-lived plasma-cell pool, with emphasis on how the transcription factor Blimp-1 (B lymphocyte-induced maturation protein-1) helps regulate the above-mentioned immunoregulatory steps to ensure the production and maintenance of antibody-secreting plasma cells as well as how it directs memory cell vs plasma-cell fate. We also discuss the molecular basis of Blimp-1 action and how its expression is regulated.
Collapse
|