151
|
Armitage JD, Newnes HV, McDonnell A, Bosco A, Waithman J. Fine-Tuning the Tumour Microenvironment: Current Perspectives on the Mechanisms of Tumour Immunosuppression. Cells 2021; 10:E56. [PMID: 33401460 PMCID: PMC7823446 DOI: 10.3390/cells10010056] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/28/2020] [Accepted: 12/30/2020] [Indexed: 02/07/2023] Open
Abstract
Immunotherapy has revolutionised the treatment of cancers by harnessing the power of the immune system to eradicate malignant tissue. However, it is well recognised that some cancers are highly resistant to these therapies, which is in part attributed to the immunosuppressive landscape of the tumour microenvironment (TME). The contexture of the TME is highly heterogeneous and contains a complex architecture of immune, stromal, vascular and tumour cells in addition to acellular components such as the extracellular matrix. While understanding the dynamics of the TME has been instrumental in predicting durable responses to immunotherapy and developing new treatment strategies, recent evidence challenges the fundamental paradigms of how tumours can effectively subvert immunosurveillance. Here, we discuss the various immunosuppressive features of the TME and how fine-tuning these mechanisms, rather than ablating them completely, may result in a more comprehensive and balanced anti-tumour response.
Collapse
Affiliation(s)
- Jesse D. Armitage
- Telethon Kids Institute, The University of Western Australia, Nedlands, WA 6009, Australia; (J.D.A.); (H.V.N.); (A.M.)
| | - Hannah V. Newnes
- Telethon Kids Institute, The University of Western Australia, Nedlands, WA 6009, Australia; (J.D.A.); (H.V.N.); (A.M.)
| | - Alison McDonnell
- Telethon Kids Institute, The University of Western Australia, Nedlands, WA 6009, Australia; (J.D.A.); (H.V.N.); (A.M.)
- National Centre for Asbestos Related Diseases, QEII Medical Centre, The University of Western Australia, Nedlands, WA 6009, Australia
| | - Anthony Bosco
- Telethon Kids Institute, The University of Western Australia, Nedlands, WA 6009, Australia; (J.D.A.); (H.V.N.); (A.M.)
| | - Jason Waithman
- Telethon Kids Institute, The University of Western Australia, Nedlands, WA 6009, Australia; (J.D.A.); (H.V.N.); (A.M.)
| |
Collapse
|
152
|
Cardenas MA, Prokhnevska N, Kissick HT. Organized immune cell interactions within tumors sustain a productive T-cell response. Int Immunol 2021; 33:27-37. [PMID: 32827212 PMCID: PMC7771196 DOI: 10.1093/intimm/dxaa057] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 08/18/2020] [Indexed: 12/11/2022] Open
Abstract
Tumor-infiltrating CD8 T cells are associated with improved patient survival and response to immunotherapy in various cancers. Persistent antigen leads to CD8 T-cell exhaustion, where proliferation/self-renewal and killing are divided within distinct subsets of CD8 T cells in the tumor. CD8 T-cell responses in chronic antigen settings must be maintained for long periods of time, suggesting that mechanisms that regulate chronic CD8 T-cell responses may differ from those in acute settings. Currently, factors that regulate the maintenance of stem-like CD8 T cells in the tumor or their differentiation into terminally differentiated cells are unknown. In this review, we discuss the role of dendritic cells in the activation and differentiation of CD8 T-cell subsets within secondary lymphoid tissue and tumors. In addition, we examine changes in CD4 T-cell differentiation in response to chronic antigens and consider how subset-specific mechanisms could assist the stem-like and terminally differentiated CD8 T-cell subsets. Finally, we highlight how tumor-infiltrating CD4 T cells and dendritic cells interact with CD8 T cells within organized lymphoid-like areas in the tumor and propose a CD8 T-cell differentiation model that requires the collaboration of CD4 T cells and dendritic cells. These organized interactions coordinate the anti-tumor response and control disease progression by mechanisms that regulate CD8 T-cell differentiation, which permit the maintenance of an effective balance of stem-like and terminally differentiated CD8 T cells.
Collapse
Affiliation(s)
| | | | - Haydn T Kissick
- Department of Urology, Emory University, Atlanta, GA, USA
- Department of Microbiology and Immunology, Emory University, Atlanta, GA, USA
- Emory Vaccine Centre, Atlanta, GA, USA
| |
Collapse
|
153
|
Role of TGF-Beta and Smad7 in Gut Inflammation, Fibrosis and Cancer. Biomolecules 2020; 11:biom11010017. [PMID: 33375423 PMCID: PMC7823508 DOI: 10.3390/biom11010017] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/22/2020] [Accepted: 12/24/2020] [Indexed: 02/07/2023] Open
Abstract
The human gastrointestinal tract contains the largest population of immune cells in the body and this is a reflection of the fact that it is continuously exposed to a myriad of dietary and bacterial antigens. Although these cells produce a variety of inflammatory cytokines that could potentially promote tissue damage, in normal conditions the mucosal immune response is tightly controlled by counter-regulatory factors, which help induce and maintain gut homeostasis and tolerance. One such factor is transforming growth factor (TGF)-β1, a cytokine produced by multiple lineages of leukocytes, stromal cells and epithelial cells, and virtually targets all the gut mucosal cell types. Indeed, studies in animals and humans have shown that defects in TGF-β1 production and/or signaling can lead to the development of immune-inflammatory pathologies, fibrosis and cancer in the gut. Here, we review and discuss the available evidence about the role of TGF-β1 and Smad7, an inhibitor of TGF-β1 activity, in gut inflammation, fibrosis and cancer with particular regard to the contribution of these two molecules in the pathogenesis of inflammatory bowel diseases and colon cancer.
Collapse
|
154
|
DeJong CS, Maurice NJ, McCartney SA, Prlic M. Human Tissue-Resident Memory T Cells in the Maternal-Fetal Interface. Lost Soldiers or Special Forces? Cells 2020; 9:cells9122699. [PMID: 33339211 PMCID: PMC7765601 DOI: 10.3390/cells9122699] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/11/2020] [Accepted: 12/13/2020] [Indexed: 12/20/2022] Open
Abstract
The immune system plays a critical role during pregnancy, but the specific mechanisms and immune cell function needed to support pregnancy remain incompletely understood. Despite decades of research efforts, it is still unclear how the immune system maintains tolerance of fetal-derived tissues, which include most cells of the placenta and of course the fetus itself, without forfeiting the ability to protect against harmful infections. T cells recognize antigen in the context of major histocompatibility complex (MHC) encoded proteins, but classical MHC class I and II expression are diminished in fetal-derived cells. Can T cells present at the maternal–fetal interface (MFI) protect these cells from infection? Here we review what is known in regard to tissue-resident memory T (Trm) cells at the MFI. We mainly focus on how Trm cells can contribute to protection in the context of the unique features of the MFI, such as limited MHC expression as well as the temporary nature of the MFI, that are not found in other tissues.
Collapse
Affiliation(s)
- Caitlin S. DeJong
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; (C.S.D.); (N.J.M.)
| | - Nicholas J. Maurice
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; (C.S.D.); (N.J.M.)
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA 98195, USA
| | - Stephen A. McCartney
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, University of Washington, Seattle, WA 98195, USA;
| | - Martin Prlic
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; (C.S.D.); (N.J.M.)
- Department of Immunology, University of Washington, Seattle, WA 98195, USA
- Correspondence:
| |
Collapse
|
155
|
Clegg J, Soldaini E, Bagnoli F, McLoughlin RM. Targeting Skin-Resident Memory T Cells via Vaccination to Combat Staphylococcus aureus Infections. Trends Immunol 2020; 42:6-17. [PMID: 33309137 DOI: 10.1016/j.it.2020.11.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 02/07/2023]
Abstract
Tissue-resident memory T cells are important in adaptive immunity against many infections, rendering these cells attractive potential targets in vaccine development. Genetic and experimental evidence highlights the importance of cellular immunity in protection from Staphylococcus aureus skin infections, yet skin-resident memory T cells are, thus far, an untested component of immunity during such infections. Novel methods of generating and sampling vaccine-induced skin memory T cells are paralleled by discoveries of global, skin-wide immunosurveillance. We propose skin-resident memory CD4+ T cells as a potential missing link in the search for correlates of protection during S. aureus infections. A better appreciation of their phenotypes and functions could accelerate the development of preventive vaccines against this highly virulent and antibiotic-resistant pathogen.
Collapse
Affiliation(s)
- Jonah Clegg
- Host Pathogen Interactions Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland; GlaxoSmithKline, Siena, Italy
| | | | | | - Rachel M McLoughlin
- Host Pathogen Interactions Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland.
| |
Collapse
|
156
|
Goplen NP, Wu Y, Son YM, Li C, Wang Z, Cheon IS, Jiang L, Zhu B, Ayasoufi K, Chini EN, Johnson AJ, Vassallo R, Limper AH, Zhang N, Sun J. Tissue-resident CD8 + T cells drive age-associated chronic lung sequelae after viral pneumonia. Sci Immunol 2020; 5:5/53/eabc4557. [PMID: 33158975 DOI: 10.1126/sciimmunol.abc4557] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 10/15/2020] [Indexed: 12/13/2022]
Abstract
Lower respiratory viral infections, such as influenza virus and severe acute respiratory syndrome coronavirus 2 infections, often cause severe viral pneumonia in aged individuals. Here, we report that influenza viral pneumonia leads to chronic nonresolving lung pathology and exacerbated accumulation of CD8+ tissue-resident memory T cells (TRM) in the respiratory tract of aged hosts. TRM cell accumulation relies on elevated TGF-β present in aged tissues. Further, we show that TRM cells isolated from aged lungs lack a subpopulation characterized by expression of molecules involved in TCR signaling and effector function. Consequently, TRM cells from aged lungs were insufficient to provide heterologous protective immunity. The depletion of CD8+ TRM cells dampens persistent chronic lung inflammation and ameliorates tissue fibrosis in aged, but not young, animals. Collectively, our data demonstrate that age-associated TRM cell malfunction supports chronic lung inflammatory and fibrotic sequelae after viral pneumonia.
Collapse
Affiliation(s)
- Nick P Goplen
- Division of Pulmonary and Critical Medicine, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA.,The Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
| | - Yue Wu
- Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
| | - Young Min Son
- Division of Pulmonary and Critical Medicine, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Chaofan Li
- Division of Pulmonary and Critical Medicine, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Zheng Wang
- Division of Pulmonary and Critical Medicine, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - In Su Cheon
- Division of Pulmonary and Critical Medicine, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Li Jiang
- Division of Pulmonary and Critical Medicine, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Bibo Zhu
- Division of Pulmonary and Critical Medicine, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Eduardo N Chini
- The Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA.,Department of Anesthesiology, Mayo Clinic, Rochester, MN 55905, USA
| | - Aaron J Johnson
- Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
| | - Robert Vassallo
- Division of Pulmonary and Critical Medicine, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Andrew H Limper
- Division of Pulmonary and Critical Medicine, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Nu Zhang
- Long School of Medicine, Departments of Microbiology, Immunology, and Molecular Genetics, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Jie Sun
- Division of Pulmonary and Critical Medicine, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA. .,The Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA.,Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
157
|
Armentrout EI, Liu GY, Martins GA. T Cell Immunity and the Quest for Protective Vaccines against Staphylococcus aureus Infection. Microorganisms 2020; 8:microorganisms8121936. [PMID: 33291260 PMCID: PMC7762175 DOI: 10.3390/microorganisms8121936] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 11/27/2020] [Accepted: 11/30/2020] [Indexed: 12/14/2022] Open
Abstract
Staphylococcus aureus is a wide-spread human pathogen, and one of the top causative agents of nosocomial infections. The prevalence of antibiotic-resistant S. aureus strains, which are associated with higher mortality and morbidity rates than antibiotic-susceptible strains, is increasing around the world. Vaccination would be an effective preventive measure against S. aureus infection, but to date, every vaccine developed has failed in clinical trials, despite inducing robust antibody responses. These results suggest that induction of humoral immunity does not suffice to confer protection against the infection. Evidence from studies in murine models and in patients with immune defects support a role of T cell-mediated immunity in protective responses against S. aureus. Here, we review the current understanding of the mechanisms underlying adaptive immunity to S. aureus infections and discuss these findings in light of the recent S. aureus vaccine trial failures. We make the case for the need to develop anti-S. aureus vaccines that can specifically elicit robust and durable protective memory T cell subsets.
Collapse
Affiliation(s)
- Erin I. Armentrout
- Lung Institute, Cedars-Sinai Medical Center (CSMC), Los Angeles, CA 90048, USA;
- Division of Pulmonary and Critical Care Medicine, CSMC, Los Angeles, CA 90048, USA
| | - George Y. Liu
- Collaborative to Halt Antibiotic-Resistant Microbes, University of California, San Diego, La Jolla, CA 92161, USA;
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Gislâine A. Martins
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute (IBIRI), CSMC, Los Angeles, CA 90048, USA
- Department of Biomedical Sciences, Research Division of Immunology, CSMC, Los Angeles, CA 90048, USA
- Department of Medicine, Division of Gastroenterology, CSMC, Los Angeles, CA 90048, USA
- Correspondence:
| |
Collapse
|
158
|
Li JB, Li JJ, Li M, Gao C, Zhang L, Li M, Zhu Q. Oral immunization induces a novel CXCR6 + β7 + intraepithelial lymphocyte subset predominating in the small intestine. Scand J Immunol 2020; 93:e12996. [PMID: 33205443 DOI: 10.1111/sji.12996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 11/04/2020] [Accepted: 11/06/2020] [Indexed: 12/27/2022]
Abstract
Intestinal T cells form a central part of the front-line defence against foreign organisms and need to be situated in the mucosa where infection occurs. It is well accepted that immunization by a mucosal route favours localization of antigen-specific effector T cells in the mucosal epithelium, while systemic immunization does not. The aim of the study is to determine how homing receptors are specifically involved in retaining effector T cells in the small intestine after oral immunization. We here demonstrate that the chemokine receptor CXCR6, integrins β7 and CD29 contribute differentially to the epithelial retention phenotype of CD8+ T cells in the small intestine of mice. CD8+ intraepithelial lymphocytes (IELs) of unvaccinated mice are predominantly β7 single positives, and subcutaneous immunization-induced antigen-specific CD8+ effector IELs are mainly composed of CXCR6+ , CD29+ and CXCR6+ CD29+ cells. Strikingly, the majority of oral immunization-induced antigen-specific CD8+ effector IELs exhibit a distinct, tissue-specific CXCR6+ β7+ double-positive phenotype, cytotoxic potential and enhanced intraepithelial localization. Transfer of antigen-specific CD8+ T cells preactivated with certain immuno-stimuli (such as monophosphoryl lipid A) results in increased accumulation of donor IELs with the CXCR6+ β7+ phenotype. As β7 exclusively paired with αE on IELs, our results strongly suggest that CXCR6 may cooperate with the heterodimer αEβ7 to preferentially retain intestinally induced effector IELs in the epithelium. The identification of this novel IEL phenotype has significant implications for the development of vaccines and therapeutic strategies to enhance gut immunity.
Collapse
Affiliation(s)
- Jing B Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, and Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Chinese Academy of Medical Sciences and Peking Union Medical College Institute of Materia Medica, Beijing, China
| | - Jing J Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, and Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Chinese Academy of Medical Sciences and Peking Union Medical College Institute of Materia Medica, Beijing, China
| | - Mingyan Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, and Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Chinese Academy of Medical Sciences and Peking Union Medical College Institute of Materia Medica, Beijing, China
| | - Changxing Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, and Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Chinese Academy of Medical Sciences and Peking Union Medical College Institute of Materia Medica, Beijing, China
| | - Lingzhi Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, and Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Chinese Academy of Medical Sciences and Peking Union Medical College Institute of Materia Medica, Beijing, China
| | - Meihan Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, and Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Chinese Academy of Medical Sciences and Peking Union Medical College Institute of Materia Medica, Beijing, China
| | - Qing Zhu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, and Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Chinese Academy of Medical Sciences and Peking Union Medical College Institute of Materia Medica, Beijing, China
| |
Collapse
|
159
|
Parga-Vidal L, van Gisbergen KPJM. Area under Immunosurveillance: Dedicated Roles of Memory CD8 T-Cell Subsets. Cold Spring Harb Perspect Biol 2020; 12:cshperspect.a037796. [PMID: 32839203 DOI: 10.1101/cshperspect.a037796] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Immunological memory, defined as the ability to respond in an enhanced manner upon secondary encounter with the same pathogen, can provide substantial protection against infectious disease. The improved protection is mediated in part by different populations of memory CD8 T cells that are retained after primary infection. Memory cells persist in the absence of pathogen-derived antigens and enable secondary CD8 T-cell responses with accelerated kinetics and of larger magnitude after reencounter with the same pathogen. At least three subsets of memory T cells have been defined that are referred to as central memory CD8 T cells (Tcm), effector memory CD8 T cells (Tem), and tissue-resident memory CD8 T cells (Trm). Tcm and Tem are circulating memory T cells that mediate bodywide immune surveillance in search of invading pathogens. In contrast, Trm permanently reside in peripheral barrier tissues, where they form a stationary defensive line of sentinels that alert the immune system upon pathogen reencounter. The characterization of these different subsets has been instrumental in our understanding of the strategies that memory T cells employ to counter invading pathogens. It is clear that memory T cells not only have a numerical advantage over naive T cells resulting in improved protection in secondary responses, but also acquire distinct sets of competencies that assist in pathogen clearance. Nevertheless, inherent challenges are associated with the allocation of memory T cells to a limited number of subsets. The classification of memory T cells into Tcm, Tem, and Trm may not take into account the full extent of the heterogeneity that is observed in the memory population. Therefore, in this review, we will revisit the current classification of memory subsets, elaborate on functional and migratory properties attributed to Tcm, Tem, and Trm, and discuss how potential heterogeneity within these populations arises and persists.
Collapse
Affiliation(s)
- Loreto Parga-Vidal
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, 1066CX Amsterdam, The Netherlands
| | - Klaas P J M van Gisbergen
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, 1066CX Amsterdam, The Netherlands
| |
Collapse
|
160
|
Takamura S. Divergence of Tissue-Memory T Cells: Distribution and Function-Based Classification. Cold Spring Harb Perspect Biol 2020; 12:cshperspect.a037762. [PMID: 32816841 DOI: 10.1101/cshperspect.a037762] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Tissue-resident memory T cells (Trm) comprise the majority of memory cells in nonlymphoid tissues and play a predominant role in immunity at barrier surfaces. A better understanding of Trm cell maintenance and function is essential for the development of vaccines that confer frontline protection. However, it is currently challenging to precisely distinguish Trm cells from other T cells, and this has led to confusion in the literature. Here we highlight gaps in our understanding of tissue memory and discuss recent advances in the classification of Trm cell subsets based on their distribution and functional characteristics.
Collapse
Affiliation(s)
- Shiki Takamura
- Department of Immunology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka 589-8511, Japan
| |
Collapse
|
161
|
Niehaus CE, Strunz B, Cornillet M, Falk CS, Schnieders A, Maasoumy B, Hardtke S, Manns MP, Kraft ARM, Björkström NK, Cornberg M. MAIT Cells Are Enriched and Highly Functional in Ascites of Patients With Decompensated Liver Cirrhosis. Hepatology 2020; 72:1378-1393. [PMID: 32012321 DOI: 10.1002/hep.31153] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 01/07/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIMS Patients with advanced liver cirrhosis have an increased susceptibility to infections. As part of the cirrhosis-associated immune dysfunction, mucosal-associated invariant T (MAIT) cells, which have the capacity to respond to bacteria, are severely diminished in circulation and liver tissue. However, MAIT cell presence and function in the peritoneal cavity, a common anatomical site for infections in cirrhosis, remain elusive. In this study, we deliver a comprehensive investigation of the immune compartment present in ascites of patients with decompensated liver cirrhosis, and focus especially on MAIT cells. APPROACH AND RESULTS To study this, matched peripheral blood and ascites fluid were collected from 35 patients with decompensated cirrhosis, with or without spontaneous bacterial peritonitis (SBP). MAIT cell phenotype and function were analyzed using high-dimensional flow cytometry, and the obtained data were compared with the blood samples of healthy controls (n = 24) and patients with compensated cirrhosis (n = 11). We found circulating MAIT cells to be severely decreased in patients with cirrhosis as compared with controls. In contrast, in ascites fluid, MAIT cells were significantly increased together with CD14+ CD16+ monocytes, innate lymphoid cells, and natural killer cells. This was paralleled by elevated levels of several pro-inflammatory cytokines and chemokines in ascites fluid as compared with plasma. Peritoneal MAIT cells displayed an activated tissue-resident phenotype, and this was corroborated by increased functional responses following stimulation with E. coli or interleukin (lL)-12 + IL-18 as compared with circulating MAIT cells. During SBP, peritoneal MAIT cell frequencies increased most among all major immune cell subsets, suggestive of active homing of MAIT cells to the site of infection. CONCLUSIONS Despite severely diminished MAIT cell numbers and impaired phenotype in circulation, peritoneal MAIT cells remain abundant, activated, and highly functional in decompensated cirrhosis and are further enriched in SBP. This suggests that peritoneal MAIT cells could be of interest for immune-intervention strategies in patients with decompensated liver cirrhosis and SBP.
Collapse
Affiliation(s)
- Christian E Niehaus
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Benedikt Strunz
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institute, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Martin Cornillet
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institute, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Christine S Falk
- Institute of Transplant Immunology, Hannover Medical School, Hannover, Germany.,German Center for Infection Research, Partner-Site Hannover-Braunschweig, Hannover, Germany
| | - Ansgar Schnieders
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Benjamin Maasoumy
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany.,German Center for Infection Research, Partner-Site Hannover-Braunschweig, Hannover, Germany
| | - Svenja Hardtke
- German Center for Infection Research, HepNet Study-House German Liver Foundation, Hannover, Germany
| | - Michael P Manns
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany.,German Center for Infection Research, Partner-Site Hannover-Braunschweig, Hannover, Germany
| | - Anke R M Kraft
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany.,German Center for Infection Research, Partner-Site Hannover-Braunschweig, Hannover, Germany
| | - Niklas K Björkström
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institute, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Markus Cornberg
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany.,German Center for Infection Research, Partner-Site Hannover-Braunschweig, Hannover, Germany.,Centre for Individualised Infection Medicine (CiiM), Hannover, Germany.,TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hanover Medical School and the Helmholtz Centre for Infection Research, Braunschweig, Germany.,Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| |
Collapse
|
162
|
Becattini S, Littmann ER, Seok R, Amoretti L, Fontana E, Wright R, Gjonbalaj M, Leiner IM, Plitas G, Hohl TM, Pamer EG. Enhancing mucosal immunity by transient microbiota depletion. Nat Commun 2020; 11:4475. [PMID: 32901029 PMCID: PMC7479140 DOI: 10.1038/s41467-020-18248-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 08/04/2020] [Indexed: 02/08/2023] Open
Abstract
Tissue resident memory CD8+ T cells (Trm) are poised for immediate reactivation at sites of pathogen entry and provide optimal protection of mucosal surfaces. The intestinal tract represents a portal of entry for many infectious agents; however, to date specific strategies to enhance Trm responses at this site are lacking. Here, we present TMDI (Transient Microbiota Depletion-boosted Immunization), an approach that leverages antibiotic treatment to temporarily restrain microbiota-mediated colonization resistance, and favor intestinal expansion to high densities of an orally-delivered Listeria monocytogenes strain carrying an antigen of choice. By augmenting the local chemotactic gradient as well as the antigenic load, this procedure generates a highly expanded pool of functional, antigen-specific intestinal Trm, ultimately enhancing protection against infectious re-challenge in mice. We propose that TMDI is a useful model to dissect the requirements for optimal Trm responses in the intestine, and also a potential platform to devise novel mucosal vaccination approaches.
Collapse
Affiliation(s)
- Simone Becattini
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
| | - Eric R Littmann
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Duchossois Family Institute, University of Chicago, Chicago, IL, 60606, USA
| | - Ruth Seok
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Luigi Amoretti
- Lucille Castori Center for Microbes Inflammation and Cancer, Molecular Microbiology Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Emily Fontana
- Lucille Castori Center for Microbes Inflammation and Cancer, Molecular Microbiology Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Roberta Wright
- Lucille Castori Center for Microbes Inflammation and Cancer, Molecular Microbiology Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Mergim Gjonbalaj
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Ingrid M Leiner
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Duchossois Family Institute, University of Chicago, Chicago, IL, 60606, USA
| | - George Plitas
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Ludwig Center at Memorial Sloan Kettering Cancer Center, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Breast Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Tobias M Hohl
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Infectious Diseases Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Eric G Pamer
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Lucille Castori Center for Microbes Inflammation and Cancer, Molecular Microbiology Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Infectious Diseases Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Duchossois Family Institute, University of Chicago, Chicago, IL, 60606, USA
| |
Collapse
|
163
|
Bromley SK, Akbaba H, Mani V, Mora-Buch R, Chasse AY, Sama A, Luster AD. CD49a Regulates Cutaneous Resident Memory CD8 + T Cell Persistence and Response. Cell Rep 2020; 32:108085. [PMID: 32877667 PMCID: PMC7520726 DOI: 10.1016/j.celrep.2020.108085] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 06/15/2020] [Accepted: 08/07/2020] [Indexed: 12/12/2022] Open
Abstract
CD8+ tissue-resident memory T cells (TRM) persist at sites of previous infection, where they provide rapid local protection against pathogen challenge. CD8+ TRM expressing the α1 chain (CD49a) of integrin VLA-1 have been identified within sites of resolved skin infection and in vitiligo lesions. We demonstrate that CD49a is expressed early following T cell activation in vivo, and TGF-β and IL-12 induce CD49a expression by CD8+ T cells in vitro. Despite this rapid expression, CD49a is not required for the generation of a primary CD8+ T cell response to cutaneous herpes simplex virus (HSV) infection, migration of CD8+ T cells across the epidermal basement membrane, or positioning of TRM within basal epidermis. Rather, CD49a supports CD8+ TRM persistence within skin, regulates epidermal CD8+ TRM dendritic extensions, and increases the frequency of IFN-γ+ CD8+ TRM following local antigen challenge. Our results suggest that CD49a promotes optimal cutaneous CD8+ TRM-mediated immunity.
Collapse
Affiliation(s)
- Shannon K Bromley
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Hasan Akbaba
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Department of Pharmaceutical Biotechnology Faculty of Pharmacy, Ege University, 35100, Bornova, Izmir, Turkey
| | - Vinidhra Mani
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Immunology Graduate Program, Harvard Medical School, Boston, MA, USA
| | - Rut Mora-Buch
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Alexandra Y Chasse
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Andrea Sama
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Andrew D Luster
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
164
|
Shepherd FR, McLaren JE. T Cell Immunity to Bacterial Pathogens: Mechanisms of Immune Control and Bacterial Evasion. Int J Mol Sci 2020; 21:E6144. [PMID: 32858901 PMCID: PMC7504484 DOI: 10.3390/ijms21176144] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 08/21/2020] [Accepted: 08/24/2020] [Indexed: 02/06/2023] Open
Abstract
The human body frequently encounters harmful bacterial pathogens and employs immune defense mechanisms designed to counteract such pathogenic assault. In the adaptive immune system, major histocompatibility complex (MHC)-restricted αβ T cells, along with unconventional αβ or γδ T cells, respond to bacterial antigens to orchestrate persisting protective immune responses and generate immunological memory. Research in the past ten years accelerated our knowledge of how T cells recognize bacterial antigens and how many bacterial species have evolved mechanisms to evade host antimicrobial immune responses. Such escape mechanisms act to corrupt the crosstalk between innate and adaptive immunity, potentially tipping the balance of host immune responses toward pathological rather than protective. This review examines the latest developments in our knowledge of how T cell immunity responds to bacterial pathogens and evaluates some of the mechanisms that pathogenic bacteria use to evade such T cell immunosurveillance, to promote virulence and survival in the host.
Collapse
Affiliation(s)
| | - James E. McLaren
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, UK;
| |
Collapse
|
165
|
Chen P, Ming S, Lao J, Li C, Wang H, Xiong L, Zhang S, Liang Z, Niu X, Deng S, Geng L, Wu M, Wu Y, Gong S. CD103 Promotes the Pro-inflammatory Response of Gastric Resident CD4 + T Cell in Helicobacter pylori-Positive Gastritis. Front Cell Infect Microbiol 2020; 10:436. [PMID: 32974219 PMCID: PMC7472738 DOI: 10.3389/fcimb.2020.00436] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 07/16/2020] [Indexed: 12/12/2022] Open
Abstract
CD103 is considered as a surface marker for the resident immune cells. However, little is known about the intrinsic function of CD103 in infection and inflammation. In this study, we found that CD103 was highly expressed in CD4+T cells of the gastric mucosa from patients with H. pylori-positive gastritis. Mucosal resident CD103+CD4+T cells exhibited an increase in the CD45RO+CCR7− effector memory phenotype and high expression of the chemokine receptors CXCR3 and CCR9 compared with those in CD103−CD4+T cells. An In vitro coculture study demonstrated that H. pylori-specific antigen CagA/VacA-primed dendritic cells (DCs) induced proliferation and IFN-γ, TNF as well as IL-17 production by CD103+CD4+T cells from patients with H. pylori-positive gastritis, while blocking CD103 with a neutralizing antibody reduced proliferation and IFN-γ, TNF, and IL-17 production by CD103+CD4+T cells cocultured with DCs. Moreover, immunoprecipitation revealed that CD103 interacted with TCR α/β and CD3ζ, and activation of CD103 enhanced the phosphorylation of ZAP70 induced by the TCR signal. Finally, increased T-bet and Blimp1 levels were also observed in CD103+CD4+T cells, and activating CD103 increased T-bet and Blimp1 expression in CD4+T cells. Our results explored the intrinsic function of CD103 in gastric T cells from patients with H. pylori-positive gastritis, which may provide a therapeutic target for the treatment of gastritis.
Collapse
Affiliation(s)
- Peiyu Chen
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Institute of Pediatrics, Guangzhou Medical University, Guangzhou, China
| | - Siqi Ming
- Center for Infection and Immunity, Zhongshan School of Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Juanfeng Lao
- Center for Infection and Immunity, Zhongshan School of Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chunna Li
- Center for Infection and Immunity, Zhongshan School of Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hongli Wang
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Institute of Pediatrics, Guangzhou Medical University, Guangzhou, China
| | - Liya Xiong
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Institute of Pediatrics, Guangzhou Medical University, Guangzhou, China
| | - Shunxian Zhang
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Institute of Pediatrics, Guangzhou Medical University, Guangzhou, China
| | - Zibin Liang
- Center for Infection and Immunity, Zhongshan School of Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaoli Niu
- Center for Infection and Immunity, Zhongshan School of Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Simei Deng
- Center for Infection and Immunity, Zhongshan School of Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lanlan Geng
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Institute of Pediatrics, Guangzhou Medical University, Guangzhou, China
| | - Minhao Wu
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Institute of Pediatrics, Guangzhou Medical University, Guangzhou, China.,Center for Infection and Immunity, Zhongshan School of Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yongjian Wu
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Institute of Pediatrics, Guangzhou Medical University, Guangzhou, China.,Center for Infection and Immunity, Zhongshan School of Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Sitang Gong
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Institute of Pediatrics, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
166
|
Cantoni C, Granata S, Bruschi M, Spaggiari GM, Candiano G, Zaza G. Recent Advances in the Role of Natural Killer Cells in Acute Kidney Injury. Front Immunol 2020; 11:1484. [PMID: 32903887 PMCID: PMC7438947 DOI: 10.3389/fimmu.2020.01484] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 06/08/2020] [Indexed: 01/18/2023] Open
Abstract
Growing evidence is revealing a central role for natural killer (NK) cells, cytotoxic cells belonging to the broad family of innate lymphoid cells (ILCs), in acute and chronic forms of renal disease. NK cell effector functions include both the recognition and elimination of virus-infected and tumor cells and the capability of sensing pathogens through Toll-like receptor (TLR) engagement. Notably, they also display immune regulatory properties, exerted thanks to their ability to secrete cytokines/chemokines and to establish interactions with different innate and adaptive immune cells. Therefore, because of their multiple functions, NK cells may have a major pathogenic role in acute kidney injury (AKI), and a better understanding of the molecular mechanisms driving NK cell activation in AKI and their downstream interactions with intrinsic renal cells and infiltrating immune cells could help to identify new potential biomarkers and to select clinically valuable novel therapeutic targets. In this review, we discuss the current literature regarding the potential involvement of NK cells in AKI.
Collapse
Affiliation(s)
- Claudia Cantoni
- Laboratory of Clinical and Experimental Immunology, Integrated Department of Services and Laboratories, IRCCS Istituto Giannina Gaslini, Genoa, Italy.,Department of Experimental Medicine (DIMES) and Center of Excellence for Biomedical Research (CEBR), University of Genoa, Genoa, Italy
| | - Simona Granata
- Renal Unit, Department of Medicine, University-Hospital of Verona, Verona, Italy
| | - Maurizio Bruschi
- Laboratory of Molecular Nephrology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Grazia Maria Spaggiari
- Department of Experimental Medicine (DIMES) and Center of Excellence for Biomedical Research (CEBR), University of Genoa, Genoa, Italy
| | - Giovanni Candiano
- Laboratory of Molecular Nephrology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Gianluigi Zaza
- Renal Unit, Department of Medicine, University-Hospital of Verona, Verona, Italy
| |
Collapse
|
167
|
Borges da Silva H, Peng C, Wang H, Wanhainen KM, Ma C, Lopez S, Khoruts A, Zhang N, Jameson SC. Sensing of ATP via the Purinergic Receptor P2RX7 Promotes CD8 + Trm Cell Generation by Enhancing Their Sensitivity to the Cytokine TGF-β. Immunity 2020; 53:158-171.e6. [PMID: 32640257 DOI: 10.1016/j.immuni.2020.06.010] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 05/01/2020] [Accepted: 06/11/2020] [Indexed: 12/14/2022]
Abstract
Tissue-resident memory (Trm) CD8+ T cells mediate protective immunity in barrier tissues, but the cues promoting Trm cell generation are poorly understood. Sensing of extracellular adenosine triphosphate (eATP) by the purinergic receptor P2RX7 is needed for recirculating CD8+ T cell memory, but its role for Trm cells is unclear. Here we showed that P2RX7 supported Trm cell generation by enhancing CD8+ T cell sensing of TGF-β, which was necessary for tissue residency. P2RX7-deficient Trm cells progressively decayed in non-lymphoid tissues and expressed dysregulated Trm-specific markers. P2RX7 was required for efficient re-expression of the receptor TGF-βRII through calcineurin signaling. Forced Tgfbr2 expression rescued P2RX7-deficient Trm cell generation, and TGF-β sensitivity was dictated by P2RX7 agonists and antagonists. Forced Tgfbr2 also rescued P2RX7-deficient Trm cell mitochondrial function. Sustained P2RX7 signaling was required for long-term Trm cell maintenance, indicating that P2RX7 signaling drives induction and CD8+ T cell durability in barrier sites.
Collapse
Affiliation(s)
- Henrique Borges da Silva
- Center for Immunology, Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Changwei Peng
- Center for Immunology, Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Haiguang Wang
- Center for Immunology, Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Kelsey M Wanhainen
- Center for Immunology, Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Chaoyu Ma
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Sharon Lopez
- Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - Alexander Khoruts
- Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - Nu Zhang
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Stephen C Jameson
- Center for Immunology, Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
168
|
Wang S, Suo X. Still naïve or primed: Anticoccidial vaccines call for memory. Exp Parasitol 2020; 216:107945. [PMID: 32615133 DOI: 10.1016/j.exppara.2020.107945] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 06/17/2020] [Accepted: 06/22/2020] [Indexed: 01/15/2023]
Abstract
Despite decades of investigation to clarify protective mechanisms of anticoccidial responses, one crucial field is neglected, that is, protective memory responses in primed birds. Protective memory immunity is critical for host resistance to reinfection and is the basis of modern vaccinology, especially in developing successful subunit vaccines. There are important differences between the immune responses induced by infections and antigens delivered either as killed, recombinant proteins or as live, replicating vector vaccines or as DNA vaccines. Animals immunized with these vaccines may fail to develop protective memory immunity, and is still naïve to Eimeria infection. This may explain why limited success is achieved in developing next-generation anticoccidial vaccines. In this review, we try to decipher the protective memory responses against Eimeria infection, assess immune responses elicited by various anticoccidial vaccine candidates, and propose possible approaches to develop rational vaccines that can induce a protective memory response to chicken coccidiosis.
Collapse
Affiliation(s)
- Si Wang
- National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China Agricultural University, Beijing, 100193, China
| | - Xun Suo
- National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
169
|
Matyushenko V, Kotomina T, Kudryavtsev I, Mezhenskaya D, Prokopenko P, Matushkina A, Sivak K, Muzhikyan A, Rudenko L, Isakova-Sivak I. Conserved T-cell epitopes of respiratory syncytial virus (RSV) delivered by recombinant live attenuated influenza vaccine viruses efficiently induce RSV-specific lung-localized memory T cells and augment influenza-specific resident memory T-cell responses. Antiviral Res 2020; 182:104864. [PMID: 32585323 PMCID: PMC7313889 DOI: 10.1016/j.antiviral.2020.104864] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/30/2020] [Accepted: 06/16/2020] [Indexed: 12/14/2022]
Abstract
Respiratory syncytial virus (RSV) can cause recurrent infection in people because it does not stimulate a long-lived immunological memory. There is an urgent need to develop a safe and efficacious vaccine against RSV that would induce immunological memory without causing immunopathology following natural RSV infection. We have previously generated two recombinant live attenuated influenza vaccine (LAIV) viruses that encode immunodominant T-cell epitopes of RSV M2 protein in the neuraminidase or NS1 genes. These chimeric vaccines afforded protection against influenza and RSV infection in mice, without causing pulmonary eosinophilia or inflammatory RSV disease. The current study assessed the formation of influenza-specific and RSV-specific CD4 and CD8 T-cell responses in the lungs of mice, with special attention to the lung tissue-resident memory T cell subsets (TRM). The RSV epitopes did not affect influenza-specific CD4 effector memory T cell (Tem) levels in the lungs. The majority of these cells formed by LAIV or LAIV-RSV viruses had CD69+CD103- phenotype. Both LAIV+NA/RSV and LAIV+NS/RSV recombinant viruses induced significant levels of RSV M282 epitope-specific lung-localized CD8 Tem cells expressing both CD69 and CD103 TRM markers. Surprisingly, the CD69+CD103+ influenza-specific CD8 Tem responses were augmented by the addition of RSV epitopes, possibly as a result of the local microenvironment formed by the RSV-specific memory T cells differentiating to TRM in the lungs of mice immunized with LAIV-RSV chimeric viruses. This study provides evidence that LAIV vector-based vaccination can induce robust lung-localized T-cell immunity to the inserted T-cell epitope of a foreign pathogen, without altering the immunogenicity of the viral vector itself. Two LAIV-RSV vaccine viruses induced RSV M282-specific effector memory CD8 T cells producing both IFNγ and TNFα cytokines. The inserted RSV epitopes did not affect influenza-specific CD4 Tem levels in the lungs of immunized mice. LAIV-RSV viruses induced RSV M282-specific lung-localized CD8 Tem cells expressing both CD69 and CD103 TRM markers. The magnitude of RSV M282-specific CD8 Tem responses correlates with protection against RSV-induced lung pathology. The addition of RSV epitopes into the LAIV strain augmented CD69+CD103+ influenza-specific CD8 Tem responses in the lungs.
Collapse
Affiliation(s)
- Victoria Matyushenko
- Department of Virology, Institute of Experimental Medicine, Saint Petersburg, Russia
| | - Tatiana Kotomina
- Department of Virology, Institute of Experimental Medicine, Saint Petersburg, Russia
| | - Igor Kudryavtsev
- Department of Immunology, Institute of Experimental Medicine, Saint Petersburg, Russia
| | - Daria Mezhenskaya
- Department of Virology, Institute of Experimental Medicine, Saint Petersburg, Russia
| | - Polina Prokopenko
- Department of Virology, Institute of Experimental Medicine, Saint Petersburg, Russia
| | - Anastasia Matushkina
- Department of Virology, Institute of Experimental Medicine, Saint Petersburg, Russia
| | - Konstantin Sivak
- Smorodintsev Research Institute of Influenza, Saint Petersburg, Russia
| | - Arman Muzhikyan
- Smorodintsev Research Institute of Influenza, Saint Petersburg, Russia
| | - Larisa Rudenko
- Department of Virology, Institute of Experimental Medicine, Saint Petersburg, Russia
| | - Irina Isakova-Sivak
- Department of Virology, Institute of Experimental Medicine, Saint Petersburg, Russia.
| |
Collapse
|
170
|
Mazzoni A, Maggi L, Montaini G, Ramazzotti M, Capone M, Vanni A, Locatello LG, Barra G, De Palma R, Gallo O, Cosmi L, Liotta F, Annunziato F. Human T cells interacting with HNSCC-derived mesenchymal stromal cells acquire tissue-resident memory like properties. Eur J Immunol 2020; 50:1571-1579. [PMID: 32441311 DOI: 10.1002/eji.202048544] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 04/14/2020] [Indexed: 11/06/2022]
Abstract
Tissue-resident memory (Trm) cells are specialized components of both CD4+ and CD8+ T cell subsets that persist in peripheral nonlymphoid tissues following infections and provide fast response in case of a secondary invasion by the same pathogen. Trm cells express the surface markers CD69, CD103, and the immune checkpoint molecule PD-1. Trm cells develop not only in the context of infections but also in tumors, where they can provide a line of defense as suggested by the positive correlation between the frequency of tumor-infiltrating Trm cells and patients' survival. Trm cells persistence in peripheral tissues depends on their adaptation to the local microenvironment and the presence of survival factors, mainly IL-7, IL-15, and Notch ligands. However, the cell sources of these factors are largely unknown, especially in the context of tumors. Here, we show that head-neck squamous cell carcinoma (HNSCC) is enriched in CD4+ and CD8+ T cells with a Trm phenotype. Moreover, we show that mesenchymal stromal cells that accumulate in HNSCC are a source of survival factors and allow proper expression of Trm-typical markers in a VCAM1-dependent manner.
Collapse
Affiliation(s)
- Alessio Mazzoni
- Department of Experimental and Clinical Medicine, University of Florence, Firenze, Italy
| | - Laura Maggi
- Department of Experimental and Clinical Medicine, University of Florence, Firenze, Italy
| | - Gianni Montaini
- Department of Experimental and Clinical Medicine, University of Florence, Firenze, Italy
| | - Matteo Ramazzotti
- Department of Biomedical, Experimental and Clinical Sciences, University of Florence, Firenze, Italy
| | - Manuela Capone
- Department of Experimental and Clinical Medicine, University of Florence, Firenze, Italy
| | - Anna Vanni
- Department of Experimental and Clinical Medicine, University of Florence, Firenze, Italy
| | - Luca Giovanni Locatello
- Department of Experimental and Clinical Medicine, University of Florence, Firenze, Italy.,SOD Otorinolaringoiatria, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy
| | - Giusi Barra
- Institute of Biomolecular Chemistry, National Research Council (CNR), Naples, Italy
| | - Raffaele De Palma
- Institute of Biomolecular Chemistry, National Research Council (CNR), Naples, Italy.,Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Oreste Gallo
- Department of Experimental and Clinical Medicine, University of Florence, Firenze, Italy.,SOD Otorinolaringoiatria, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy
| | - Lorenzo Cosmi
- Department of Experimental and Clinical Medicine, University of Florence, Firenze, Italy.,SOD Immunologia e Terapie Cellulari, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy
| | - Francesco Liotta
- Department of Experimental and Clinical Medicine, University of Florence, Firenze, Italy.,SOD Immunologia e Terapie Cellulari, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy.,SOD Centro diagnostico di citofluorimetria e immunoterapia, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy
| | - Francesco Annunziato
- Department of Experimental and Clinical Medicine, University of Florence, Firenze, Italy.,SOD Centro diagnostico di citofluorimetria e immunoterapia, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy
| |
Collapse
|
171
|
T RM integrins CD103 and CD49a differentially support adherence and motility after resolution of influenza virus infection. Proc Natl Acad Sci U S A 2020; 117:12306-12314. [PMID: 32439709 PMCID: PMC7275699 DOI: 10.1073/pnas.1915681117] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Current influenza vaccination strategies require annual immunizations, with fairly low efficacy rates. One technique to improve protection against a greater breadth of influenza viruses is to elicit broadly cross-reactive cell-mediated immunity and generate a local population of cytotoxic T cells to respond to conserved regions of circulating viruses. However, this approach requires improved understanding of how these cells migrate within and attach to the tissue in order to persist and offer long-term immunity. This study investigates how receptors on the T cell surface impact the cell’s ability to interact with the tissue and provide evidence of which of these receptors are essential for protection. Furthermore, these studies reveal functional in vivo mechanisms of cellular markers used to characterize TRM. Tissue-resident memory CD8 T (TRM) cells are a unique immune memory subset that develops and remains in peripheral tissues at the site of infection, providing future host resistance upon reexposure to that pathogen. In the pulmonary system, TRM are identified through S1P antagonist CD69 and expression of integrins CD103/β7 and CD49a/CD29(β1). Contrary to the established role of CD69 on CD8 T cells, the functions of CD103 and CD49a on this population are not well defined. This study examines the expression patterns and functions of CD103 and CD49a with a specific focus on their impact on T cell motility during influenza virus infection. We show that the TRM cell surface phenotype develops by 2 wk postinfection, with the majority of the population expressing CD49a and a subset that is also positive for CD103. Despite a previously established role in retaining TRM in peripheral tissues, CD49a facilitates locomotion of virus-specific CD8 T cells, both in vitro and in vivo. These results demonstrate that CD49a may contribute to local surveillance mechanisms of the TRM population.
Collapse
|
172
|
Milner JJ, Toma C, He Z, Kurd NS, Nguyen QP, McDonald B, Quezada L, Widjaja CE, Witherden DA, Crowl JT, Shaw LA, Yeo GW, Chang JT, Omilusik KD, Goldrath AW. Heterogenous Populations of Tissue-Resident CD8 + T Cells Are Generated in Response to Infection and Malignancy. Immunity 2020; 52:808-824.e7. [PMID: 32433949 PMCID: PMC7784612 DOI: 10.1016/j.immuni.2020.04.007] [Citation(s) in RCA: 166] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 01/21/2020] [Accepted: 04/17/2020] [Indexed: 11/23/2022]
Abstract
Tissue-resident memory CD8+ T cells (Trm) provide host protection through continuous surveillance of non-lymphoid tissues. Using single-cell RNA-sequencing (scRNA-seq) and genetic reporter mice, we identified discrete lineages of intestinal antigen-specific CD8+ T cells, including a Blimp1hiId3lo tissue-resident effector cell population most prominent in the early phase of acute viral and bacterial infections and a molecularly distinct Blimp1loId3hi tissue-resident memory population that subsequently accumulated at later infection time points. These Trm populations exhibited distinct cytokine production, secondary memory potential, and transcriptional programs including differential roles for transcriptional regulators Blimp1, T-bet, Id2, and Id3 in supporting and maintaining intestinal Trm. Extending our analysis to malignant tissue, we also identified discrete populations of effector-like and memory-like CD8+ T cell populations with tissue-resident gene-expression signatures that shared features of terminally exhausted and progenitor-exhausted T cells, respectively. Our findings provide insight into the development and functional heterogeneity of Trm cells, which has implications for enhancing vaccination and immunotherapy approaches.
Collapse
Affiliation(s)
- J Justin Milner
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Clara Toma
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Zhaoren He
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Nadia S Kurd
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Quynh P Nguyen
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Bryan McDonald
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Lauren Quezada
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | | | - Deborah A Witherden
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - John T Crowl
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Laura A Shaw
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - John T Chang
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Kyla D Omilusik
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA.
| | - Ananda W Goldrath
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
173
|
Type 1 T reg cells promote the generation of CD8 + tissue-resident memory T cells. Nat Immunol 2020; 21:766-776. [PMID: 32424367 DOI: 10.1038/s41590-020-0674-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 03/30/2020] [Indexed: 12/22/2022]
Abstract
Tissue-resident memory T (TRM) cells, functionally distinct from circulating memory T cells, have a critical role in protective immunity in tissues, are more efficacious when elicited after vaccination and yield more effective antitumor immunity, yet the signals that direct development of TRM cells are incompletely understood. Here we show that type 1 regulatory T (Treg) cells, which express the transcription factor T-bet, promote the generation of CD8+ TRM cells. The absence of T-bet-expressing type 1 Treg cells reduces the presence of TRM cells in multiple tissues and increases pathogen burden upon infectious challenge. Using infection models, we show that type 1 Treg cells are specifically recruited to local inflammatory sites via the chemokine receptor CXCR3. Close proximity with effector CD8+ T cells and Treg cell expression of integrin-β8 endows the bioavailability of transforming growth factor-β in the microenvironment, thereby promoting the generation of CD8+ TRM cells.
Collapse
|
174
|
Wang Z, Wang S, Goplen NP, Li C, Cheon IS, Dai Q, Huang S, Shan J, Ma C, Ye Z, Xiang M, Limper AH, Porquera EC, Kohlmeier JE, Kaplan MH, Zhang N, Johnson AJ, Vassallo R, Sun J. PD-1 hi CD8 + resident memory T cells balance immunity and fibrotic sequelae. Sci Immunol 2020; 4:4/36/eaaw1217. [PMID: 31201259 DOI: 10.1126/sciimmunol.aaw1217] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 04/17/2019] [Indexed: 12/13/2022]
Abstract
CD8+ tissue-resident memory T (TRM) cells provide frontline immunity in mucosal tissues. The mechanisms regulating CD8+ TRM maintenance, heterogeneity, and protective and pathological functions are largely elusive. Here, we identify a population of CD8+ TRM cells that is maintained by major histocompatibility complex class I (MHC-I) signaling, and CD80 and CD86 costimulation after acute influenza infection. These TRM cells have both exhausted-like phenotypes and memory features and provide heterologous immunity against secondary infection. PD-L1 blockade after the resolution of primary infection promotes the rejuvenation of these exhausted-like TRM cells, restoring protective immunity at the cost of promoting postinfection inflammatory and fibrotic sequelae. Thus, PD-1 serves to limit the pathogenic capacity of exhausted-like TRM cells at the memory phase. Our data indicate that TRM cell exhaustion is the result of a tissue-specific cellular adaptation that balances fibrotic sequelae with protective immunity.
Collapse
Affiliation(s)
- Zheng Wang
- Thoracic Diseases Research Unit, Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Shaohua Wang
- Thoracic Diseases Research Unit, Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Nick P Goplen
- Thoracic Diseases Research Unit, Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Chaofan Li
- Thoracic Diseases Research Unit, Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - In Su Cheon
- Thoracic Diseases Research Unit, Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Qigang Dai
- Thoracic Diseases Research Unit, Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA.,Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Su Huang
- Thoracic Diseases Research Unit, Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Jinjun Shan
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Chaoyu Ma
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, University of Texas Health Science Center, San Antonio, San Antonio, TX 78229, USA
| | - Zhenqing Ye
- Division of Biomedical Statistics and Informatics, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Min Xiang
- Thoracic Diseases Research Unit, Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Andrew H Limper
- Thoracic Diseases Research Unit, Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Eva-Carmona Porquera
- Thoracic Diseases Research Unit, Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Jacob E Kohlmeier
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Mark H Kaplan
- HB Wells Pediatric Research Center, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Nu Zhang
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, University of Texas Health Science Center, San Antonio, San Antonio, TX 78229, USA
| | - Aaron J Johnson
- Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Robert Vassallo
- Thoracic Diseases Research Unit, Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Jie Sun
- Thoracic Diseases Research Unit, Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA. .,Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| |
Collapse
|
175
|
Qu QX, Zhu XY, Du WW, Wang HB, Shen Y, Zhu YB, Chen C. 4-1BB Agonism Combined With PD-L1 Blockade Increases the Number of Tissue-Resident CD8+ T Cells and Facilitates Tumor Abrogation. Front Immunol 2020; 11:577. [PMID: 32391001 PMCID: PMC7193033 DOI: 10.3389/fimmu.2020.00577] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 03/12/2020] [Indexed: 12/23/2022] Open
Abstract
Although the milestone discovery of immune checkpoint blockade (ICB) has been translated into clinical practice, only a fraction of patients can benefit from it with durable responses and subsequent long-term survival. Here, we tested the anti-tumor effect of combining PD-L1 blockade with 4-1BB costimulation in 3LL and 4T1.2 murine tumor models. Dual treatment induced further tumor regression and enhanced survival in tumor-bearing mice more so than PD-L1 and 4-1BB mAb alone. It was demonstrated that dual anti-PD-L1/anti-4-1BB immunotherapy increased the number of intratumoral CD103+CD8+ T cells and altered their distribution. Phenotypically, CD103+CD8+ T cells expressed a higher level of 4-1BB and PD-1 than their CD103− counterparts. Administration of PD-L1 mAb and 4-1BB mAb further increased the cytolytic capacity of CD103+CD8+ T cells. In vivo, CD103−CD8+ T cells could differentiate into CD103+CD8+ progeny cells. In a human setting, more CD8+ T cells differentiated into CD103+CD8+ T cells in the peripheral tumor region of lung cancer tissues than in the central tumor region. Collectively, infiltrated CD103+CD8+ T cells served as a potential effector T cell population. Combining 4-1BB agonism with PD-L1 blockade could increase tumor-infiltrated CD103+CD8+T cells, thereby facilitating tumor regression.
Collapse
Affiliation(s)
- Qiu-Xia Qu
- Clinical Immunology Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China
| | - Xin-Yun Zhu
- Department of Respiratory and Critical Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Wen-Wen Du
- Department of Respiratory and Critical Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Hong-Bin Wang
- Department of Respiratory and Critical Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yu Shen
- Clinical Immunology Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China
| | - Yi-Bei Zhu
- Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China
| | - Cheng Chen
- Department of Respiratory and Critical Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
176
|
Kandasamy M, Furlong K, Perez JT, Manicassamy S, Manicassamy B. Suppression of Cytotoxic T Cell Functions and Decreased Levels of Tissue-Resident Memory T Cells during H5N1 Infection. J Virol 2020; 94:e00057-20. [PMID: 32075925 PMCID: PMC7163117 DOI: 10.1128/jvi.00057-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 02/11/2020] [Indexed: 02/07/2023] Open
Abstract
Seasonal influenza virus infections cause mild illness in healthy adults, as timely viral clearance is mediated by the functions of cytotoxic T cells. However, avian H5N1 influenza virus infections can result in prolonged and fatal illness across all age groups, which has been attributed to the overt and uncontrolled activation of host immune responses. Here, we investigate how excessive innate immune responses to H5N1 impair subsequent adaptive T cell responses in the lungs. Using recombinant H1N1 and H5N1 strains sharing 6 internal genes, we demonstrate that H5N1 (2:6) infection in mice causes higher stimulation and increased migration of lung dendritic cells to the draining lymph nodes, resulting in greater numbers of virus-specific T cells in the lungs. Despite robust T cell responses in the lungs, H5N1 (2:6)-infected mice showed inefficient and delayed viral clearance compared with H1N1-infected mice. In addition, we observed higher levels of inhibitory signals, including increased PD-1 and interleukin-10 (IL-10) expression by cytotoxic T cells in H5N1 (2:6)-infected mice, suggesting that delayed viral clearance of H5N1 (2:6) was due to the suppression of T cell functions in vivo Importantly, H5N1 (2:6)-infected mice displayed decreased numbers of tissue-resident memory T cells compared with H1N1-infected mice; however, despite the decreased number of tissue-resident memory T cells, H5N1 (2:6) was protected against a heterologous challenge from H3N2 virus (X31). Taken together, our study provides mechanistic insight for the prolonged viral replication and protracted illness observed in H5N1-infected patients.IMPORTANCE Influenza viruses cause upper respiratory tract infections in humans. In healthy adults, seasonal influenza virus infections result in mild disease. Occasionally, influenza viruses endemic in domestic birds can cause severe and fatal disease even in healthy individuals. In avian influenza virus-infected patients, the host immune system is activated in an uncontrolled manner and is unable to control infection in a timely fashion. In this study, we investigated why the immune system fails to effectively control a modified form of avian influenza virus. Our studies show that T cell functions important for clearing virally infected cells are impaired by higher negative regulatory signals during modified avian influenza virus infection. In addition, memory T cell numbers were decreased in modified avian influenza virus-infected mice. Our studies provide a possible mechanism for the severe and prolonged disease associated with avian influenza virus infections in humans.
Collapse
Affiliation(s)
| | - Kevin Furlong
- Department of Microbiology, The University of Chicago, Chicago, Illinois, USA
| | - Jasmine T Perez
- Department of Microbiology, The University of Chicago, Chicago, Illinois, USA
| | - Santhakumar Manicassamy
- Cancer Immunology, Inflammation, and Tolerance Program, GRU Cancer Center, Augusta University, Augusta, Georgia, USA
| | - Balaji Manicassamy
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
177
|
Szabo PA, Miron M, Farber DL. Location, location, location: Tissue resident memory T cells in mice and humans. Sci Immunol 2020; 4:4/34/eaas9673. [PMID: 30952804 DOI: 10.1126/sciimmunol.aas9673] [Citation(s) in RCA: 383] [Impact Index Per Article: 95.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 03/04/2019] [Indexed: 12/13/2022]
Abstract
The discovery of T cells resident in diverse tissues has altered our understanding of adaptive immunity to encompass site-specific responses mediated by tissue-adapted memory T cells throughout the body. Here, we discuss the key phenotypic, transcriptional, and functional features of these tissue-resident memory T cells (TRM) as established in mouse models of infection and translated to humans by novel tissue sampling approaches. Integration of findings from mouse and human studies may hold the key to unlocking the potential of TRM for promoting tissue immunity and preventing infection.
Collapse
Affiliation(s)
- Peter A Szabo
- Columbia Center for Translational Immunology, Columbia University, New York, NY, USA
| | - Michelle Miron
- Columbia Center for Translational Immunology, Columbia University, New York, NY, USA.,Department of Microbiology and Immunology, Columbia University, New York, NY, USA
| | - Donna L Farber
- Columbia Center for Translational Immunology, Columbia University, New York, NY, USA. .,Department of Microbiology and Immunology, Columbia University, New York, NY, USA.,Department of Surgery, Columbia University, New York, NY, USA
| |
Collapse
|
178
|
Kimura S, Rickert CG, Kojima L, Aburawi M, Tanimine N, Fontan F, Deng K, Tector H, Mi Lee K, Yeh H, Markmann JF. Regulatory B cells require antigen recognition for effective allograft tolerance induction. Am J Transplant 2020; 20:977-987. [PMID: 31823520 PMCID: PMC7372932 DOI: 10.1111/ajt.15739] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 10/25/2019] [Accepted: 11/11/2019] [Indexed: 01/25/2023]
Abstract
Through multiple mechanisms, regulatory B cells (Breg) have been shown to play an important role in the development of allograft tolerance. However, a careful understanding of the role of antigen-specificity in Breg-mediated allograft tolerance has remained elusive. In experimental models of islet and cardiac transplantation, it has been established that Bregs can be induced in vivo by anti-CD45RB ± anti-TIM1antibody treatment, resulting in prolonged, Breg-dependent allograft tolerance. The importance of Breg antigen recognition has been suggested but not confirmed through adoptive transfer experiments, using tolerant WT C57BL/6 animals challenged with either BALB/c or C3H grafts. However, the importance of receptor-specificity has not been formally tested. Here, we utilize the novel ovalbumin-specific B cell receptor transnuclear (OBI) mice in multiple primary tolerance and adoptive transfer experiments to establish that Breg-dependent allograft tolerance relies on antigen recognition by B cells. Additionally, we identify that this Breg-dependent tolerance relies on the function of transforming growth factor-β. Together, these experiments mark important progress toward understanding how best to improve Breg-mediated allograft tolerance.
Collapse
Affiliation(s)
- Shoko Kimura
- Transplantation Unit, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Charles G Rickert
- Transplantation Unit, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Lisa Kojima
- Transplantation Unit, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Mohamed Aburawi
- Transplantation Unit, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Naoki Tanimine
- Transplantation Unit, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Fermin Fontan
- Transplantation Unit, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Kevin Deng
- Transplantation Unit, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Haley Tector
- Transplantation Unit, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Kang Mi Lee
- Transplantation Unit, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Heidi Yeh
- Transplantation Unit, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - James F Markmann
- Transplantation Unit, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
179
|
T Cell Factor 1 Suppresses CD103+ Lung Tissue-Resident Memory T Cell Development. Cell Rep 2020; 31:107484. [DOI: 10.1016/j.celrep.2020.03.048] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 01/07/2020] [Accepted: 03/13/2020] [Indexed: 01/31/2023] Open
|
180
|
Establishment and Maintenance of the Macrophage Niche. Immunity 2020; 52:434-451. [DOI: 10.1016/j.immuni.2020.02.015] [Citation(s) in RCA: 183] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/21/2020] [Accepted: 02/24/2020] [Indexed: 01/22/2023]
|
181
|
Cho HS, Ha S, Shin HM, Reboldi A, Hall JA, Huh JR, Usherwood EJ, Berg LJ. CD8 + T Cells Require ITK-Mediated TCR Signaling for Migration to the Intestine. Immunohorizons 2020; 4:57-71. [PMID: 32034085 PMCID: PMC7521019 DOI: 10.4049/immunohorizons.1900093] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 01/12/2020] [Indexed: 12/21/2022] Open
Abstract
The Tec kinase IL-2–inducible T cell kinase (ITK) regulates the expression of TCR-induced genes. Itk−/− T cell responses are impaired but not absent. ITK inhibition prevented colitis disease progression and impaired T cell migration to the colon in mice. To examine the function of ITK in T cell migration to the intestine, we examined the number of gut T cells in Itk−/− mice and then evaluated their expression of gut-homing receptors. Combined with in vitro murine T cell stimulation and in vivo migration assay using congenic B6 mice, we demonstrated an essential role for ITK in T cell migration to the intestine in mice. Reconstitution of Itk−/− mouse CD8+ T cells with IFN regulatory factor 4 restored gut-homing properties, providing mechanistic insight into the function of ITK-mediated signaling in CD8+ T cell migration to the intestinal mucosa in mice.
Collapse
Affiliation(s)
- Hyoung-Soo Cho
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Soyoung Ha
- Department of Immunology, Harvard Medical School, Boston, MA 02115
| | - Hyun Mu Shin
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Andrea Reboldi
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Jason A Hall
- The Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, NY 10016; and
| | - Jun R Huh
- Department of Immunology, Harvard Medical School, Boston, MA 02115
| | - Edward J Usherwood
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756
| | - Leslie J Berg
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605;
| |
Collapse
|
182
|
Local heroes or villains: tissue-resident memory T cells in human health and disease. Cell Mol Immunol 2020; 17:113-122. [PMID: 31969685 DOI: 10.1038/s41423-019-0359-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 12/17/2019] [Indexed: 12/14/2022] Open
Abstract
Tissue-resident memory T (TRM) cells are increasingly associated with the outcomes of health and disease. TRM cells can mediate local immune protection against infections and cancer, which has led to interest in TRM cells as targets for vaccination and immunotherapies. However, these cells have also been implicated in mediating detrimental pro-inflammatory responses in autoimmune skin diseases such as psoriasis, alopecia areata, and vitiligo. Here, we summarize the biology of TRM cells established in animal models and in translational human studies. We review the beneficial effects of TRM cells in mediating protective responses against infection and cancer and the adverse role of TRM cells in driving pathology in autoimmunity. A further understanding of the breadth and mechanisms of TRM cell activity is essential for the safe design of strategies that manipulate TRM cells, such that protective responses can be enhanced without unwanted tissue damage, and pathogenic TRM cells can be eliminated without losing local immunity.
Collapse
|
183
|
Nolte M, Margadant C. Controlling Immunity and Inflammation through Integrin-Dependent Regulation of TGF-β. Trends Cell Biol 2020; 30:49-59. [DOI: 10.1016/j.tcb.2019.10.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/08/2019] [Accepted: 10/11/2019] [Indexed: 12/21/2022]
|
184
|
van den Bulk J, Verdegaal EME, Ruano D, Ijsselsteijn ME, Visser M, van der Breggen R, Duhen T, van der Ploeg M, de Vries NL, Oosting J, Peeters KCMJ, Weinberg AD, Farina-Sarasqueta A, van der Burg SH, de Miranda NFCC. Neoantigen-specific immunity in low mutation burden colorectal cancers of the consensus molecular subtype 4. Genome Med 2019; 11:87. [PMID: 31888734 PMCID: PMC6938004 DOI: 10.1186/s13073-019-0697-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 11/20/2019] [Indexed: 12/30/2022] Open
Abstract
Background The efficacy of checkpoint blockade immunotherapies in colorectal cancer is currently restricted to a minority of patients diagnosed with mismatch repair-deficient tumors having high mutation burden. However, this observation does not exclude the existence of neoantigen-specific T cells in colorectal cancers with low mutation burden and the exploitation of their anti-cancer potential for immunotherapy. Therefore, we investigated whether autologous neoantigen-specific T cell responses could also be observed in patients diagnosed with mismatch repair-proficient colorectal cancers. Methods Whole-exome and transcriptome sequencing were performed on cancer and normal tissues from seven colorectal cancer patients diagnosed with mismatch repair-proficient tumors to detect putative neoantigens. Corresponding neo-epitopes were synthesized and tested for recognition by in vitro expanded T cells that were isolated from tumor tissues (tumor-infiltrating lymphocytes) and from peripheral mononuclear blood cells stimulated with tumor material. Results Neoantigen-specific T cell reactivity was detected to several neo-epitopes in the tumor-infiltrating lymphocytes of three patients while their respective cancers expressed 15, 21, and 30 non-synonymous variants. Cell sorting of tumor-infiltrating lymphocytes based on the co-expression of CD39 and CD103 pinpointed the presence of neoantigen-specific T cells in the CD39+CD103+ T cell subset. Strikingly, the tumors containing neoantigen-reactive TIL were classified as consensus molecular subtype 4 (CMS4), which is associated with TGF-β pathway activation and worse clinical outcome. Conclusions We have detected neoantigen-targeted reactivity by autologous T cells in mismatch repair-proficient colorectal cancers of the CMS4 subtype. These findings warrant the development of specific immunotherapeutic strategies that selectively boost the activity of neoantigen-specific T cells and target the TGF-β pathway to reinforce T cell reactivity in this patient group.
Collapse
Affiliation(s)
| | | | - Dina Ruano
- Pathology, LUMC, Postbus 9600, 2300 RC, Leiden, The Netherlands
| | | | - Marten Visser
- Medical Oncology, Oncode Institute, LUMC, Leiden, The Netherlands
| | | | | | | | | | - Jan Oosting
- Pathology, LUMC, Postbus 9600, 2300 RC, Leiden, The Netherlands
| | | | | | | | | | | |
Collapse
|
185
|
McEntee CP, Gunaltay S, Travis MA. Regulation of barrier immunity and homeostasis by integrin-mediated transforming growth factor β activation. Immunology 2019; 160:139-148. [PMID: 31792952 PMCID: PMC7218408 DOI: 10.1111/imm.13162] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/21/2019] [Accepted: 11/22/2019] [Indexed: 02/06/2023] Open
Abstract
Transforming growth factor β (TGF‐β) is a multifunctional cytokine that regulates cell growth, differentiation, adhesion, migration and death dependent on cell type, developmental stage, or tissue conditions. Various cell types secrete TGF‐β, but always as an inactive complex. Hence, for TGF‐β to function, this latent complex must somehow be activated. Work in recent years has highlighted a critical role for members of the αv integrin family, including αvβ1, αvβ3, αvβ5, αvβ6 and αvβ8 that are involved in TGF‐β activation in various contexts, particularly at barrier sites such as the gut, lung and skin. The integrins facilitating this context‐ and location‐specific regulation can be dysregulated in certain diseases, so are potential therapeutic targets in a number of disorders. In this review, we discuss the role of TGF‐β at these barrier sites with a focus on how integrin‐mediated TGF‐β activation regulates tissue and immune homeostasis, and how this is altered in disease.
Collapse
Affiliation(s)
- Craig P McEntee
- Lydia Becker Institute for Immunology and Inflammation, Manchester, UK.,Wellcome Trust Centre for Cell-Matrix Research, Manchester, UK.,Faculty of Biology, Medicine and Health, Manchester Collaborative Centre for Inflammation Research (MCCIR), Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK
| | - Sezin Gunaltay
- Lydia Becker Institute for Immunology and Inflammation, Manchester, UK.,Wellcome Trust Centre for Cell-Matrix Research, Manchester, UK.,Faculty of Biology, Medicine and Health, Manchester Collaborative Centre for Inflammation Research (MCCIR), Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK
| | - Mark A Travis
- Lydia Becker Institute for Immunology and Inflammation, Manchester, UK.,Wellcome Trust Centre for Cell-Matrix Research, Manchester, UK.,Faculty of Biology, Medicine and Health, Manchester Collaborative Centre for Inflammation Research (MCCIR), Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK
| |
Collapse
|
186
|
Affiliation(s)
- Donna L Farber
- Columbia Center for Translational Immunology, Department of Surgery, Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
187
|
Topham DJ, Reilly EC, Emo KL, Sportiello M. Formation and Maintenance of Tissue Resident Memory CD8+ T Cells after Viral Infection. Pathogens 2019; 8:E196. [PMID: 31635290 PMCID: PMC6963622 DOI: 10.3390/pathogens8040196] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/15/2019] [Accepted: 10/16/2019] [Indexed: 01/17/2023] Open
Abstract
Tissue resident memory (TRM) CD8 T cells comprise a memory population that forms in peripheral, non-lymphoid tissues after an infection that does not recirculate into the bloodstream or other tissues. TRM cells often recognize conserved peptide epitopes shared among different strains of a pathogen and so offer a protective role upon secondary encounter with the same or related pathogens. Several recent studies have begun to shed light on the intrinsic and extrinsic factors regulating TRM. In addition, work is being done to understand how canonical "markers" of TRM actually affect the function of these cells. Many of these markers regulate the generation or persistence of these TRM cells, an important point of study due to the differences in persistence of TRM between tissues, which may impact future vaccine development to cater towards these important differences. In this review, we will discuss recent advances in TRM biology that may lead to strategies designed to promote this important protective immune subset.
Collapse
Affiliation(s)
- David J Topham
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA.
| | - Emma C Reilly
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA.
| | - Kris Lambert Emo
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA.
| | - Mike Sportiello
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA.
| |
Collapse
|
188
|
Goplen NP, Huang S, Zhu B, Cheon IS, Son YM, Wang Z, Li C, Dai Q, Jiang L, Sun J. Tissue-Resident Macrophages Limit Pulmonary CD8 Resident Memory T Cell Establishment. Front Immunol 2019; 10:2332. [PMID: 31681267 PMCID: PMC6797929 DOI: 10.3389/fimmu.2019.02332] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 09/16/2019] [Indexed: 01/16/2023] Open
Abstract
Tissue resident memory CD8 T cells (TRM) serve as potent local sentinels and contribute significantly to protective immunity against intracellular mucosal pathogens. While the molecular and transcriptional underpinnings of TRM differentiation are emerging, how TRM establishment is regulated by other leukocytes in vivo is largely unclear. Here, we observed that expression of PPAR-γ in the myeloid compartment was a negative regulator of CD8 TRM establishment following influenza virus infection. Interestingly, myeloid deficiency of PPAR-γ resulted in selective impairment of the tissue-resident alveolar macrophage (AM) compartment during primary influenza infection, suggesting that AM are likely negative regulators of CD8 TRM differentiation. Indeed, influenza-specific CD8 TRM cell numbers were increased following early, but not late ablation of AM using the CD169-DTR model. Importantly, these findings were specific to the parenchyma of infected tissue as circulating memory T cell frequencies in lung and TCM and TEM in spleen were largely unaltered following macrophage ablation. Further, the magnitude of the effector response could not explain these observations. These data indicate local regulation of pulmonary TRM differentiation is alveolar macrophage dependent. These, findings could aid in vaccine design aimed at increasing TRM density to enhance protective immunity, or deflating their numbers in conditions where they cause overt or veiled chronic pathologies.
Collapse
Affiliation(s)
- Nick P Goplen
- Thoracic Diseases Research Unit, Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
| | - Su Huang
- Thoracic Diseases Research Unit, Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
| | - Bibo Zhu
- Thoracic Diseases Research Unit, Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
| | - In Su Cheon
- Thoracic Diseases Research Unit, Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
| | - Young Min Son
- Thoracic Diseases Research Unit, Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
| | - Zheng Wang
- Thoracic Diseases Research Unit, Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
| | - Chaofan Li
- Thoracic Diseases Research Unit, Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
| | - Qigang Dai
- Thoracic Diseases Research Unit, Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
| | - Li Jiang
- Thoracic Diseases Research Unit, Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
| | - Jie Sun
- Thoracic Diseases Research Unit, Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN, United States.,Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
| |
Collapse
|
189
|
Chen L, Shen Z. Tissue-resident memory T cells and their biological characteristics in the recurrence of inflammatory skin disorders. Cell Mol Immunol 2019; 17:64-75. [PMID: 31595056 DOI: 10.1038/s41423-019-0291-4] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 08/25/2019] [Indexed: 11/09/2022] Open
Abstract
The skin is the largest organ of the body. The establishment of immunological memory in the skin is a crucial component of the adaptive immune response. Once naive T cells are activated by antigen-presenting cells, a small fraction of them differentiate into precursor memory T cells. These precursor cells ultimately develop into several subsets of memory T cells, including central memory T (TCM) cells, effector memory T (TEM) cells, and tissue resident memory T (TRM) cells. TRM cells have a unique transcriptional profile, and their most striking characteristics are their long-term survival (longevity) and low migration in peripheral tissues, including the skin. Under physiological conditions, TRM cells that reside in the skin can respond rapidly to pathogenic challenges. However, there is emerging evidence to support the vital role of TRM cells in the recurrence of chronic inflammatory skin disorders, including psoriasis, vitiligo, and fixed drug eruption, under pathological or uncontrolled conditions. Clarifying and characterizing the mechanisms that are involved in skin TRM cells will help provide promising strategies for reducing the frequency and magnitude of skin inflammation recurrence. Here, we discuss recent insights into the generation, homing, retention, and survival of TRM cells and share our perspectives on the biological characteristics of TRM cells in the recurrence of inflammatory skin disorders.
Collapse
Affiliation(s)
- Ling Chen
- Department of Dermatology, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Zhu Shen
- Department of Dermatology, Institute of Dermatology and Venereology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital; School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| |
Collapse
|
190
|
Transforming Growth Factor-β Signaling in Immunity and Cancer. Immunity 2019; 50:924-940. [PMID: 30995507 DOI: 10.1016/j.immuni.2019.03.024] [Citation(s) in RCA: 1409] [Impact Index Per Article: 281.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 03/19/2019] [Accepted: 03/25/2019] [Indexed: 12/18/2022]
Abstract
Transforming growth factor (TGF)-β is a crucial enforcer of immune homeostasis and tolerance, inhibiting the expansion and function of many components of the immune system. Perturbations in TGF-β signaling underlie inflammatory diseases and promote tumor emergence. TGF-β is also central to immune suppression within the tumor microenvironment, and recent studies have revealed roles in tumor immune evasion and poor responses to cancer immunotherapy. Here, we present an overview of the complex biology of the TGF-β family and its context-dependent nature. Then, focusing on cancer, we discuss the roles of TGF-β signaling in distinct immune cell types and how this knowledge is being leveraged to unleash the immune system against the tumor.
Collapse
|
191
|
Gibbs A, Buggert M, Edfeldt G, Ranefall P, Introini A, Cheuk S, Martini E, Eidsmo L, Ball TB, Kimani J, Kaul R, Karlsson AC, Wählby C, Broliden K, Tjernlund A. Human Immunodeficiency Virus-Infected Women Have High Numbers of CD103-CD8+ T Cells Residing Close to the Basal Membrane of the Ectocervical Epithelium. J Infect Dis 2019; 218:453-465. [PMID: 29272532 DOI: 10.1093/infdis/jix661] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 12/18/2017] [Indexed: 12/22/2022] Open
Abstract
Background Genital mucosa is the main portal of entry for various incoming pathogens, including human immunodeficiency virus (HIV), hence it is an important site for host immune defenses. Tissue-resident memory T (TRM) cells defend tissue barriers against infections and are characterized by expression of CD103 and CD69. In this study, we describe the composition of CD8+ TRM cells in the ectocervix of healthy and HIV-infected women. Methods Study samples were collected from healthy Swedish and Kenyan HIV-infected and uninfected women. Customized computerized image-based in situ analysis was developed to assess the ectocervical biopsies. Genital mucosa and blood samples were assessed by flow cytometry. Results Although the ectocervical epithelium of healthy women was populated with bona fide CD8+ TRM cells (CD103+CD69+), women infected with HIV displayed a high frequency of CD103-CD8+ cells residing close to their epithelial basal membrane. Accumulation of CD103-CD8+ cells was associated with chemokine expression in the ectocervix and HIV viral load. CD103+CD8+ and CD103-CD8+ T cells expressed cytotoxic effector molecules in the ectocervical epithelium of healthy and HIV-infected women. In addition, women infected with HIV had decreased frequencies of circulating CD103+CD8+ T cells. Conclusions Our data provide insight into the distribution of CD8+ TRM cells in human genital mucosa, a critically important location for immune defense against pathogens, including HIV.
Collapse
Affiliation(s)
- Anna Gibbs
- Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Marcus Buggert
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia.,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia.,Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Gabriella Edfeldt
- Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Petter Ranefall
- Department of Information Technology, Centre for Image Analysis, Uppsala University, Science for Life Laboratory, Sweden
| | - Andrea Introini
- Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Stanley Cheuk
- Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Elisa Martini
- Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Liv Eidsmo
- Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Terry B Ball
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Canada.,National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg
| | - Joshua Kimani
- Department of Medical Microbiology, Kenyatta National Hospital, University of Nairobi, Kenya
| | - Rupert Kaul
- Department of Medicine and Immunology, University of Toronto, Canada
| | - Annika C Karlsson
- Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Carolina Wählby
- Department of Information Technology, Centre for Image Analysis, Uppsala University, Science for Life Laboratory, Sweden
| | - Kristina Broliden
- Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Annelie Tjernlund
- Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| |
Collapse
|
192
|
Arina A, Beckett M, Fernandez C, Zheng W, Pitroda S, Chmura SJ, Luke JJ, Forde M, Hou Y, Burnette B, Mauceri H, Lowy I, Sims T, Khodarev N, Fu YX, Weichselbaum RR. Tumor-reprogrammed resident T cells resist radiation to control tumors. Nat Commun 2019; 10:3959. [PMID: 31477729 PMCID: PMC6718618 DOI: 10.1038/s41467-019-11906-2] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 08/06/2019] [Indexed: 02/06/2023] Open
Abstract
Successful combinations of radiotherapy and immunotherapy depend on the presence of live T cells within the tumor; however, radiotherapy is believed to damage T cells. Here, based on longitudinal in vivo imaging and functional analysis, we report that a large proportion of T cells survive clinically relevant doses of radiation and show increased motility, and higher production of interferon gamma, compared with T cells from unirradiated tumors. Irradiated intratumoral T cells can mediate tumor control without newly-infiltrating T cells. Transcriptomic analysis suggests T cell reprogramming in the tumor microenvironment and similarities with tissue-resident memory T cells, which are more radio-resistant than circulating/lymphoid tissue T cells. TGFβ is a key upstream regulator of T cell reprogramming and contributes to intratumoral Tcell radio-resistance. These findings have implications for the design of radio-immunotherapy trials in that local irradiation is not inherently immunosuppressive, and irradiation of multiple tumors might optimize systemic effects of radiotherapy.
Collapse
Affiliation(s)
- Ainhoa Arina
- Department of Radiation and Cellular Oncology and Ludwig Center for Metastasis Research, The University of Chicago, Chicago, IL, 60637, USA.
| | - Michael Beckett
- Department of Radiation and Cellular Oncology and Ludwig Center for Metastasis Research, The University of Chicago, Chicago, IL, 60637, USA
| | - Christian Fernandez
- Department of Radiation and Cellular Oncology and Ludwig Center for Metastasis Research, The University of Chicago, Chicago, IL, 60637, USA
| | - Wenxin Zheng
- Department of Radiation and Cellular Oncology and Ludwig Center for Metastasis Research, The University of Chicago, Chicago, IL, 60637, USA
| | - Sean Pitroda
- Department of Radiation and Cellular Oncology and Ludwig Center for Metastasis Research, The University of Chicago, Chicago, IL, 60637, USA
| | - Steven J Chmura
- Department of Radiation and Cellular Oncology and Ludwig Center for Metastasis Research, The University of Chicago, Chicago, IL, 60637, USA
| | - Jason J Luke
- Department of Medicine, The University of Chicago, Chicago, IL, 60637, USA
| | - Martin Forde
- Department of Radiation and Cellular Oncology and Ludwig Center for Metastasis Research, The University of Chicago, Chicago, IL, 60637, USA
| | - Yuzhu Hou
- Department of Radiation and Cellular Oncology and Ludwig Center for Metastasis Research, The University of Chicago, Chicago, IL, 60637, USA
| | - Byron Burnette
- Department of Radiation and Cellular Oncology and Ludwig Center for Metastasis Research, The University of Chicago, Chicago, IL, 60637, USA
| | - Helena Mauceri
- Department of Radiation and Cellular Oncology and Ludwig Center for Metastasis Research, The University of Chicago, Chicago, IL, 60637, USA
| | - Israel Lowy
- Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | - Tasha Sims
- Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | - Nikolai Khodarev
- Department of Radiation and Cellular Oncology and Ludwig Center for Metastasis Research, The University of Chicago, Chicago, IL, 60637, USA
| | - Yang-Xin Fu
- Department of Pathology, University of Texas Southwestern, Dallas, TX, 75390, USA
| | - Ralph R Weichselbaum
- Department of Radiation and Cellular Oncology and Ludwig Center for Metastasis Research, The University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
193
|
Pattacini L, Woodward Davis A, Czartoski J, Mair F, Presnell S, Hughes SM, Hyrien O, Lentz GM, Kirby AC, Fialkow MF, Hladik F, Prlic M, Lund JM. A pro-inflammatory CD8+ T-cell subset patrols the cervicovaginal tract. Mucosal Immunol 2019; 12:1118-1129. [PMID: 31312028 PMCID: PMC6717561 DOI: 10.1038/s41385-019-0186-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 06/11/2019] [Accepted: 06/14/2019] [Indexed: 02/04/2023]
Abstract
The immune system of the cervicovaginal tract (CVT) must balance immunosurveillance and active immunity against pathogens with maintenance of tolerance to resident microbiota and to fetal and partner antigens for reproductive purposes. Thus, we predicted that CVT immunity is characterized by distinctive features compared to blood and other tissue compartments. Indeed, we found that CVT CD8+ T-cells had unique transcriptional profiles, particularly in their cytokine signature, compared to that reported for CD8+ T-cells in other tissue sites. Among these CVT CD8+ T-cells, we identified a CD69- CD103- subset that was characterized by reduced migration in response to tissue-exit signals and higher pro-inflammatory potential as compared to their blood counterpart. These inflammatory mucosal CD8+ T-cells (Tim) were increased in frequency in the CVT of individuals with chronic infection, pointing to a potential role in perpetuating inflammation. Our findings highlight the specialized nature of immunity within the CVT and identify Tim cells as potential therapeutic targets to tame tissue inflammation upon chronic infection.
Collapse
Affiliation(s)
- Laura Pattacini
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, U.S.A
| | - Amanda Woodward Davis
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, U.S.A
| | - Julie Czartoski
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, U.S.A
| | - Florian Mair
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, U.S.A
| | - Scott Presnell
- System Immunology Division, Benaroya Research Institute, Seattle, WA, U.S.A
| | - Sean M. Hughes
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, U.S.A
| | - Ollivier Hyrien
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, U.S.A.,Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, U.S.A
| | - Gretchen M. Lentz
- Departments of Obstetrics and Gynecology, and Medicine, University of Washington, Seattle, WA, U.S.A
| | - Anna C. Kirby
- Departments of Obstetrics and Gynecology, and Medicine, University of Washington, Seattle, WA, U.S.A
| | - Michael F. Fialkow
- Departments of Obstetrics and Gynecology, and Medicine, University of Washington, Seattle, WA, U.S.A
| | - Florian Hladik
- Departments of Obstetrics and Gynecology, and Medicine, University of Washington, Seattle, WA, U.S.A
| | - Martin Prlic
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, U.S.A
| | - Jennifer M. Lund
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, U.S.A.,Department of Global Health, University of Washington, Seattle, WA, U.S.A
| |
Collapse
|
194
|
Abstract
Tissue-resident memory T (TRM) cells have emerged as a major component of T cell biology. Recent investigations have greatly advanced our understanding of TRMs. Common features have been discovered to distinguish memory T cells residing in various mucosal and non-mucosal tissues from their circulating counterparts. Given that most organs and tissues contain a unique microenvironment, local signal-induced tissue-specific features are tightly associated with the differentiation, homeostasis, and protective functions of TRMs. Here, we discuss recent advances in the TRM field with a special emphasis on the interaction between local signals and TRMs in the context of individual tissue environment.
Collapse
Affiliation(s)
- Yong Liu
- Department of Microbiology, Immunology and Molecular Genetics, School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229; Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South Univeristy, Changsha, Hunan 410008, China
| | - Chaoyu Ma
- Department of Microbiology, Immunology and Molecular Genetics, School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229
| | - Nu Zhang
- Department of Microbiology, Immunology and Molecular Genetics, School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229; The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| |
Collapse
|
195
|
Bishu S, Hou G, El Zaatari M, Bishu SR, Popke D, Zhang M, Grasberger H, Zou W, Stidham RW, Higgins PDR, Spence JR, Kamada N, Kao JY. Citrobacter rodentium Induces Tissue-Resident Memory CD4 + T Cells. Infect Immun 2019; 87:e00295-19. [PMID: 31061145 PMCID: PMC6589064 DOI: 10.1128/iai.00295-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 04/18/2019] [Indexed: 12/21/2022] Open
Abstract
Tissue-resident memory T cells (TRM cells) are a novel population of tissue-restricted antigen-specific T cells. TRM cells are induced by pathogens and promote host defense against secondary infections. Although TRM cells cannot be detected in circulation, they are the major memory CD4+ and CD8+ T-cell population in tissues in mice and humans. Murine models of CD8+ TRM cells have shown that CD8+ TRM cells maintain tissue residency via CD69 and though tumor growth factor β-dependent induction of CD103. In contrast to CD8+ TRM cells, there are few models of CD4+ TRM cells. Thus, much less is known about the factors regulating the induction, maintenance, and host defense functions of CD4+ TRM cells. Citrobacter rodentium is known to induce IL-17+ and IL-22+ CD4+ T cells (Th17 and Th22 cells, respectively). Moreover, data from IL-22 reporter mice show that most IL-22+ cells in the colon 3 months after C. rodentium infection are CD4+ T cells. This collectively suggests that C. rodentium may induce CD4+ TRM cells. Here, we demonstrate that C. rodentium induces a population of IL-17A+ CD4+ T cells that are tissue restricted and antigen specific, thus meeting the criteria of CD4+ TRM cells. These cells expand and are a major source of IL-22 during secondary C. rodentium infection, even before the T-cell phase of the host response in primary infection. Finally, using FTY 720, which depletes circulating naive and effector T cells but not tissue-restricted T cells, we show that these CD4+ TRM cells can promote host defense.
Collapse
Affiliation(s)
- S Bishu
- Division of Gastroenterology, Department of Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - G Hou
- Division of Gastroenterology, Department of Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - M El Zaatari
- Division of Gastroenterology, Department of Medicine, University of Michigan, Ann Arbor, Michigan, USA
- University of Michigan Crohn's and Colitis Program, Ann Arbor, Michigan, USA
| | - S R Bishu
- Consolidated Pathology Consultants, Northwestern Lake Forest Hospital, Lake Forest, Illinois, USA
| | - D Popke
- Division of Gastroenterology, Department of Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - M Zhang
- Division of Gastroenterology, Department of Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - H Grasberger
- Division of Gastroenterology, Department of Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - W Zou
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - R W Stidham
- Division of Gastroenterology, Department of Medicine, University of Michigan, Ann Arbor, Michigan, USA
- University of Michigan Crohn's and Colitis Program, Ann Arbor, Michigan, USA
| | - P D R Higgins
- Division of Gastroenterology, Department of Medicine, University of Michigan, Ann Arbor, Michigan, USA
- University of Michigan Crohn's and Colitis Program, Ann Arbor, Michigan, USA
| | - J R Spence
- Division of Gastroenterology, Department of Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - N Kamada
- Division of Gastroenterology, Department of Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - J Y Kao
- Division of Gastroenterology, Department of Medicine, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
196
|
Bishu S, El Zaatari M, Hayashi A, Hou G, Bowers N, Kinnucan J, Manoogian B, Muza-Moons M, Zhang M, Grasberger H, Bourque C, Zou W, Higgins PDR, Spence JR, Stidham RW, Kamada N, Kao JY. CD4+ Tissue-resident Memory T Cells Expand and Are a Major Source of Mucosal Tumour Necrosis Factor α in Active Crohn's Disease. J Crohns Colitis 2019; 13:905-915. [PMID: 30715262 PMCID: PMC6939878 DOI: 10.1093/ecco-jcc/jjz010] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIMS Tumour necrosis factor [TNF]α- and IL-17A-producing T cells are implicated in Crohn's disease [CD]. Tissue-resident memory T [TRM] cells are tissue-restricted T cells that are regulated by PR zinc finger domain 1 [PRDM1], which has been implicated in pathogenic Th17 cell responses. TRM cells provide host defence but their role in CD is unknown. We thus examined CD4+ TRM cells in CD. METHODS Colon samples were prospectively collected at endoscopy or surgery in CD and control subjects. Flow cytometry and ex vivo assays were performed to characterise CD4+ TRM cells. RESULTS CD4+ TRM cells are the most abundant memory T cell population and are the major T cell source of mucosal TNFα in CD. CD4+ TRM cells are expanded in CD and more avidly produce IL-17A and TNFα relative to control cells. There was a unique population of TNFα+IL-17A+ CD4+ TRM cells in CD which are largely absent in controls. PRDM1 was highly expressed by CD4+ TRM cells but not by other effector T cells. Suppression of PRDM1 was associated with impaired induction of IL17A and TNFA by CD4+ TRM cells. CONCLUSIONS CD4+ TRM cells are expanded in CD and are a major source of TNFα, suggesting that they are important in CD. PRDM1 is expressed by TRM cells and may regulate their function. Collectively, this argues for prospective studies tracking CD4+ TRM cells over the disease course.
Collapse
Affiliation(s)
- Shrinivas Bishu
- Division of Gastroenterology, Department of Medicine, University of Michigan, AnnArbor, MI, USA,Corresponding author: Shrinivas Bishu, MD, University of Michigan, 1500 East Medical Center Drive, Ann Arbor, MI, USA, 48104. Tel.: [734] 232–5395;
| | - Mohammed El Zaatari
- Division of Gastroenterology, Department of Medicine, University of Michigan, AnnArbor, MI, USA,University of Michigan Crohn’s and Colitis Program, University of Michigan, AnnArbor, MI, USA
| | - Atsushi Hayashi
- Division of Gastroenterology, Department of Medicine, University of Michigan, AnnArbor, MI, USA,Tokyo R&D Center, Miyarisan Pharmaceutical, Tokyo, Japan
| | - Guoqing Hou
- Division of Gastroenterology, Department of Medicine, University of Michigan, AnnArbor, MI, USA
| | - Nicole Bowers
- Division of Gastroenterology, Department of Medicine, University of Michigan, AnnArbor, MI, USA
| | - Jami Kinnucan
- Division of Gastroenterology, Department of Medicine, University of Michigan, AnnArbor, MI, USA,University of Michigan Crohn’s and Colitis Program, University of Michigan, AnnArbor, MI, USA
| | - Beth Manoogian
- Division of Gastroenterology, Department of Medicine, University of Michigan, AnnArbor, MI, USA,University of Michigan Crohn’s and Colitis Program, University of Michigan, AnnArbor, MI, USA
| | - Michelle Muza-Moons
- Division of Gastroenterology, Department of Medicine, University of Michigan, AnnArbor, MI, USA,University of Michigan Crohn’s and Colitis Program, University of Michigan, AnnArbor, MI, USA
| | - Min Zhang
- Division of Gastroenterology, Department of Medicine, University of Michigan, AnnArbor, MI, USA
| | - Helmut Grasberger
- Division of Gastroenterology, Department of Medicine, University of Michigan, AnnArbor, MI, USA
| | - Charlie Bourque
- Division of Gastroenterology, Department of Medicine, University of Michigan, AnnArbor, MI, USA
| | - Weiping Zou
- Department of Surgery, University of Michigan, AnnArbor, MI, USA
| | - Peter D R Higgins
- Division of Gastroenterology, Department of Medicine, University of Michigan, AnnArbor, MI, USA,University of Michigan Crohn’s and Colitis Program, University of Michigan, AnnArbor, MI, USA
| | - Jason R Spence
- Division of Gastroenterology, Department of Medicine, University of Michigan, AnnArbor, MI, USA,Department of Cell and Developmental Biology, University of Michigan, AnnArbor, MI, US
| | - Ryan W Stidham
- Division of Gastroenterology, Department of Medicine, University of Michigan, AnnArbor, MI, USA,University of Michigan Crohn’s and Colitis Program, University of Michigan, AnnArbor, MI, USA
| | - Nobuhiko Kamada
- Division of Gastroenterology, Department of Medicine, University of Michigan, AnnArbor, MI, USA
| | - John Y Kao
- Division of Gastroenterology, Department of Medicine, University of Michigan, AnnArbor, MI, USA
| |
Collapse
|
197
|
Huang Q, Belz GT. Parallel worlds of the adaptive and innate immune cell networks. Curr Opin Immunol 2019; 58:53-59. [PMID: 31125785 DOI: 10.1016/j.coi.2019.04.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Accepted: 04/19/2019] [Indexed: 12/17/2022]
Abstract
Adaptive and innate immune cells have typically been functionally and temporally segregated even though they share a number of salient features. Over the past decade, significant advances have been made in understanding the composition and diversity of both innate and adaptive cell populations. This has shed light on how cells from two distinct pathways are so highly complementary. Innate lymphoid cells (ILCs) are pivotally positioned in tissues to form a stable population akin to tissue-resident T cells that protects the body. Nevertheless, the pathway by which different lymphocytes enter tissues, terminally differentiate and are replenished to maintain populations remains incompletely understood. Recent evidence challenges our assumptions about the sedentary lifestyles of so called 'tissue-resident cells' and pushes us to consider their roles in orchestrating protection of the immune system beyond the classical models.
Collapse
Affiliation(s)
- Qiutong Huang
- Division of Immunology, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Melbourne 3052, Australia; Department of Medical Biology, University of Melbourne, Melbourne 3010, Australia
| | - Gabrielle T Belz
- Division of Immunology, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Melbourne 3052, Australia; Department of Medical Biology, University of Melbourne, Melbourne 3010, Australia.
| |
Collapse
|
198
|
Mediators of the homeostasis and effector functions of memory Th2 cells as novel drug targets in intractable chronic allergic diseases. Arch Pharm Res 2019; 42:754-765. [DOI: 10.1007/s12272-019-01159-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 04/23/2019] [Indexed: 12/29/2022]
|
199
|
Friedrich M, Gerbeth L, Gerling M, Rosenthal R, Steiger K, Weidinger C, Keye J, Wu H, Schmidt F, Weichert W, Siegmund B, Glauben R. HDAC inhibitors promote intestinal epithelial regeneration via autocrine TGFβ1 signalling in inflammation. Mucosal Immunol 2019; 12:656-667. [PMID: 30674988 DOI: 10.1038/s41385-019-0135-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 12/29/2018] [Accepted: 01/02/2019] [Indexed: 02/04/2023]
Abstract
Intact epithelial barrier function is pivotal for maintaining intestinal homeostasis. Current therapeutic developments aim at restoring the epithelial barrier in inflammatory bowel disease. Histone deacetylase (HDAC) inhibitors are known to modulate immune responses and to ameliorate experimental colitis. However, their direct impact on epithelial barrier function and intestinal wound healing is unknown. In human and murine colonic epithelial cell lines, the presence of the HDAC inhibitors Givinostat and Vorinostat not only improved transepithelial electrical resistance under inflammatory conditions but also attenuated the passage of macromolecules across the epithelial monolayer. Givinostat treatment mediated an accelerated wound closure in scratch assays. In vivo, Givinostat treatment resulted in improved barrier recovery and epithelial wound healing in dextran sodium sulphate-stressed mice. Mechanistically, these regenerative effects could be linked to an increased secretion of transforming growth factor beta1 and interleukin 8, paralleled by differential expression of the tight junction proteins claudin-1, claudin-2 and occludin. Our data reveal a novel tissue regenerative property of the pan-HDAC inhibitors Givinostat and Vorinostat in intestinal inflammation, which may have beneficial implications by repurposing HDAC inhibitors for therapeutic strategies for inflammatory bowel disease.
Collapse
Affiliation(s)
- Marie Friedrich
- Medical Department of Gastroenterology, Infectiology and Rheumatology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.,Fachbereich Biologie, Chemie, Pharmazie, Freie Universität Berlin, Berlin, Germany
| | - Lorenz Gerbeth
- Medical Department of Gastroenterology, Infectiology and Rheumatology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.,Department Medical Biotechnology, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Marco Gerling
- Department of Biosciences and Nutrition, Center of Innovative Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Rita Rosenthal
- Medical Department of Gastroenterology, Infectiology and Rheumatology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Katja Steiger
- Institute of Pathology, Technical University of Munich, Munich, Germany
| | - Carl Weidinger
- Medical Department of Gastroenterology, Infectiology and Rheumatology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.,Clinical Scientist Program, Berlin Institute of Health (BIH), Berlin, Germany
| | - Jacqueline Keye
- Medical Department of Gastroenterology, Infectiology and Rheumatology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.,Fachbereich Biologie, Chemie, Pharmazie, Freie Universität Berlin, Berlin, Germany
| | - Hao Wu
- Medical Department of Gastroenterology, Infectiology and Rheumatology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.,Fachbereich Biologie, Chemie, Pharmazie, Freie Universität Berlin, Berlin, Germany
| | - Franziska Schmidt
- Medical Department of Gastroenterology, Infectiology and Rheumatology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.,Fachbereich Biologie, Chemie, Pharmazie, Freie Universität Berlin, Berlin, Germany
| | - Wilko Weichert
- Institute of Pathology, Technical University of Munich, Munich, Germany
| | - Britta Siegmund
- Medical Department of Gastroenterology, Infectiology and Rheumatology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Rainer Glauben
- Medical Department of Gastroenterology, Infectiology and Rheumatology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.
| |
Collapse
|
200
|
Abstract
Resident memory T (Trm) cells stably occupy tissues and cannot be sampled in superficial venous blood. Trm cells are heterogeneous but collectively constitute the most abundant memory T cell subset. Trm cells form an integral part of the immune sensing network, monitor for local perturbations in homeostasis throughout the body, participate in protection from infection and cancer, and likely promote autoimmunity, allergy, and inflammatory diseases and impede successful transplantation. Thus Trm cells are major candidates for therapeutic manipulation. Here we review CD8+ and CD4+ Trm ontogeny, maintenance, function, and distribution within lymphoid and nonlymphoid tissues and strategies for their study. We briefly discuss other resident leukocyte populations, including innate lymphoid cells, macrophages, natural killer and natural killer T cells, nonclassical T cells, and memory B cells. Lastly, we highlight major gaps in knowledge and propose ways in which a deeper understanding could result in new methods to prevent or treat diverse human diseases.
Collapse
Affiliation(s)
- David Masopust
- Department of Microbiology and Immunology, Center for Immunology, University of Minnesota, Minneapolis, Minnesota 55455, USA; ,
| | - Andrew G Soerens
- Department of Microbiology and Immunology, Center for Immunology, University of Minnesota, Minneapolis, Minnesota 55455, USA; ,
| |
Collapse
|