151
|
Wang D, Dong W, Murray J, Wang E. Innovation and appropriation in mycorrhizal and rhizobial Symbioses. THE PLANT CELL 2022; 34:1573-1599. [PMID: 35157080 PMCID: PMC9048890 DOI: 10.1093/plcell/koac039] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 01/21/2022] [Indexed: 05/20/2023]
Abstract
Most land plants benefit from endosymbiotic interactions with mycorrhizal fungi, including legumes and some nonlegumes that also interact with endosymbiotic nitrogen (N)-fixing bacteria to form nodules. In addition to these helpful interactions, plants are continuously exposed to would-be pathogenic microbes: discriminating between friends and foes is a major determinant of plant survival. Recent breakthroughs have revealed how some key signals from pathogens and symbionts are distinguished. Once this checkpoint has been passed and a compatible symbiont is recognized, the plant coordinates the sequential development of two types of specialized structures in the host. The first serves to mediate infection, and the second, which appears later, serves as sophisticated intracellular nutrient exchange interfaces. The overlap in both the signaling pathways and downstream infection components of these symbioses reflects their evolutionary relatedness and the common requirements of these two interactions. However, the different outputs of the symbioses, phosphate uptake versus N fixation, require fundamentally different components and physical environments and necessitated the recruitment of different master regulators, NODULE INCEPTION-LIKE PROTEINS, and PHOSPHATE STARVATION RESPONSES, for nodulation and mycorrhization, respectively.
Collapse
Affiliation(s)
- Dapeng Wang
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Wentao Dong
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | | | - Ertao Wang
- Authors for correspondence: (E.W) and (J.M.)
| |
Collapse
|
152
|
Launay A, Jolivet S, Clément G, Zarattini M, Dellero Y, Le Hir R, Jossier M, Hodges M, Expert D, Fagard M. DspA/E-Triggered Non-Host Resistance against E. amylovora Depends on the Arabidopsis GLYCOLATE OXIDASE 2 Gene. Int J Mol Sci 2022; 23:ijms23084224. [PMID: 35457046 PMCID: PMC9029980 DOI: 10.3390/ijms23084224] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/31/2022] [Accepted: 04/03/2022] [Indexed: 12/04/2022] Open
Abstract
DspA/E is a type three effector injected by the pathogenic bacterium Erwinia amylovora inside plant cells. In non-host Arabidopsis thaliana, DspA/E inhibits seed germination, root growth, de novo protein synthesis and triggers localized cell death. To better understand the mechanisms involved, we performed EMS mutagenesis on a transgenic line, 13-1-2, containing an inducible dspA/E gene. We identified three suppressor mutants, two of which belonged to the same complementation group. Both were resistant to the toxic effects of DspA/E. Metabolome analysis showed that the 13-1-2 line was depleted in metabolites of the TCA cycle and accumulated metabolites associated with cell death and defense. TCA cycle and cell-death associated metabolite levels were respectively increased and reduced in both suppressor mutants compared to the 13-1-2 line. Whole genome sequencing indicated that both suppressor mutants displayed missense mutations in conserved residues of Glycolate oxidase 2 (GOX2), a photorespiratory enzyme that we confirmed to be localized in the peroxisome. Leaf GOX activity increased in leaves infected with E. amylovora in a DspA/E-dependent manner. Moreover, the gox2-2 KO mutant was more sensitive to E. amylovora infection and displayed reduced JA-signaling. Our results point to a role for glycolate oxidase in type II non-host resistance and to the importance of central metabolic functions in controlling growth/defense balance.
Collapse
Affiliation(s)
- Alban Launay
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000 Versailles, France; (A.L.); (S.J.); (G.C.); (M.Z.); (R.L.H.); (D.E.)
| | - Sylvie Jolivet
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000 Versailles, France; (A.L.); (S.J.); (G.C.); (M.Z.); (R.L.H.); (D.E.)
| | - Gilles Clément
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000 Versailles, France; (A.L.); (S.J.); (G.C.); (M.Z.); (R.L.H.); (D.E.)
| | - Marco Zarattini
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000 Versailles, France; (A.L.); (S.J.); (G.C.); (M.Z.); (R.L.H.); (D.E.)
| | - Younes Dellero
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif sur Yvette, France; (Y.D.); (M.J.); (M.H.)
- Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif sur Yvette, France
| | - Rozenn Le Hir
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000 Versailles, France; (A.L.); (S.J.); (G.C.); (M.Z.); (R.L.H.); (D.E.)
| | - Mathieu Jossier
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif sur Yvette, France; (Y.D.); (M.J.); (M.H.)
- Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif sur Yvette, France
| | - Michael Hodges
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif sur Yvette, France; (Y.D.); (M.J.); (M.H.)
- Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif sur Yvette, France
| | - Dominique Expert
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000 Versailles, France; (A.L.); (S.J.); (G.C.); (M.Z.); (R.L.H.); (D.E.)
| | - Mathilde Fagard
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000 Versailles, France; (A.L.); (S.J.); (G.C.); (M.Z.); (R.L.H.); (D.E.)
- Correspondence:
| |
Collapse
|
153
|
Lang J, Genot B, Bigeard J, Colcombet J. MPK3 and MPK6 control salicylic acid signaling by up-regulating NLR receptors during pattern- and effector-triggered immunity. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:2190-2205. [PMID: 35032388 DOI: 10.1093/jxb/erab544] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
Abstract
Arabidopsis thaliana mitogen-activated protein kinases 3 and 6 (MPK3/6) are activated transiently during pathogen-associated molecular pattern-triggered immunity (PTI) and durably during effector-triggered immunity (ETI). The functional differences between these two kinds of activation kinetics and how they coordinate the two layers of plant immunity remain poorly understood. Here, by suppressor analyses, we demonstrate that ETI-mediating nucleotide-binding domain leucine-rich repeat receptors (NLRs) and the NLR signaling components NDR1 and EDS1 can promote the salicylic acid sector of defense downstream of MPK3 activity. Moreover, we provide evidence that both sustained and transient MPK3/6 activities positively control the expression of several NLR genes, including AT3G04220 and AT4G11170. We further show that NDR1 and EDS1 contribute to the up-regulation of these two NLRs in both an ETI and a PTI context. Remarkably, whereas in ETI MPK3/6 activities are dependent on NDR1 and EDS1, they are not in PTI, suggesting crucial differences in the two signaling pathways. Finally, we demonstrate that expression of the NLR AT3G04220 is sufficient to induce expression of defense genes from the salicylic acid branch. Overall, this study expands our knowledge of MPK3/6 functions during immunity and provides new insights into the intricate interplay of PTI and ETI.
Collapse
Affiliation(s)
- Julien Lang
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris Saclay (IPS2), 91405 Orsay, France
- Université de Paris, Institute of Plant Sciences Paris Saclay (IPS2), 91405 Orsay, France
| | - Baptiste Genot
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris Saclay (IPS2), 91405 Orsay, France
- Université de Paris, Institute of Plant Sciences Paris Saclay (IPS2), 91405 Orsay, France
| | - Jean Bigeard
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris Saclay (IPS2), 91405 Orsay, France
- Université de Paris, Institute of Plant Sciences Paris Saclay (IPS2), 91405 Orsay, France
| | - Jean Colcombet
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris Saclay (IPS2), 91405 Orsay, France
- Université de Paris, Institute of Plant Sciences Paris Saclay (IPS2), 91405 Orsay, France
| |
Collapse
|
154
|
Chen MM, Yang SR, Wang J, Fang YL, Peng YL, Fan J. Fungal oxysterol-binding protein-related proteins promote pathogen virulence and activate plant immunity. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:2125-2141. [PMID: 34864987 DOI: 10.1093/jxb/erab530] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 12/02/2021] [Indexed: 06/13/2023]
Abstract
Oxysterol-binding protein-related proteins (ORPs) are a conserved class of lipid transfer proteins that are closely involved in multiple cellular processes in eukaryotes, but their roles in plant-pathogen interactions are mostly unknown. We show that transient expression of ORPs of Magnaporthe oryzae (MoORPs) in Nicotiana benthamina plants triggered oxidative bursts and cell death; treatment of tobacco Bright Yellow-2 suspension cells with recombinant MoORPs elicited the production of reactive oxygen species. Despite ORPs being normally described as intracellular proteins, we detected MoORPs in fungal culture filtrates and intercellular fluids from barley plants infected with the fungus. More importantly, infiltration of Arabidopsis plants with recombinant Arabidopsis or fungal ORPs activated oxidative bursts, callose deposition, and PR1 gene expression, and enhanced plant disease resistance, implying that ORPs may function as endogenous and exogenous danger signals triggering plant innate immunity. Extracellular application of fungal ORPs exerted an opposite impact on salicylic acid and jasmonic acid/ethylene signaling pathways. Brassinosteroid Insensitive 1-associated Kinase 1 was dispensable for the ORP-activated defense. Besides, simultaneous knockout of MoORP1 and MoORP3 abolished fungal colony radial growth and conidiation, whereas double knockout of MoORP1 and MoORP2 compromised fungal virulence on barley and rice plants. These observations collectively highlight the multifaceted role of MoORPs in the modulation of plant innate immunity and promotion of fungal development and virulence in M. oryzae.
Collapse
Affiliation(s)
- Meng-Meng Chen
- Department of Plant Pathology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Si-Ru Yang
- Department of Plant Pathology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Jian Wang
- Department of Plant Pathology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Ya-Li Fang
- Department of Plant Pathology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - You-Liang Peng
- Department of Plant Pathology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| | - Jun Fan
- Department of Plant Pathology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|
155
|
Sun Y, Wang J, Li Y, Jiang B, Wang X, Xu WH, Wang YQ, Zhang PT, Zhang YJ, Kong XD. Pan-Genome Analysis Reveals the Abundant Gene Presence/Absence Variations Among Different Varieties of Melon and Their Influence on Traits. FRONTIERS IN PLANT SCIENCE 2022; 13:835496. [PMID: 35401600 PMCID: PMC8990847 DOI: 10.3389/fpls.2022.835496] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
Melon (Cucumismelo L.) is an important vegetable crop that has been subjected to domestication and improvement. Several varieties of melons with diverse phenotypes have been produced. In this study, we constructed a melon pan-genome based on 297 accessions comprising 168 Mb novel sequences and 4,325 novel genes. Based on the results, there were abundant genetic variations among different melon groups, including 364 unfavorable genes in the IMP_A vs. LDR_A group, 46 favorable genes, and 295 unfavorable genes in the IMP_M vs. LDR_M group. The distribution of 709 resistance gene analogs (RGAs) was also characterized across 297 melon lines, of which 603 were core genes. Further, 106 genes were found to be variable, 55 of which were absent in the reference melon genome. Using gene presence/absence variation (PAV)-based genome-wide association analysis (GWAS), 13 gene PAVs associated with fruit length, fruit shape, and fruit width were identified, four of which were located in pan-genome additional contigs.
Collapse
Affiliation(s)
- Yang Sun
- Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Jing Wang
- Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Yan Li
- Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, China
- Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Bin Jiang
- Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Xu Wang
- Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Wen-Hui Xu
- Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Yu-Qing Wang
- Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Pei-Tao Zhang
- Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Yong-Jun Zhang
- Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | | |
Collapse
|
156
|
Xiong J, Wan X, Ran M, Xu X, Chen L, Yang F. Brassinosteroids Positively Regulate Plant Immunity via BRI1-EMS-SUPPRESSOR 1-Mediated GLUCAN SYNTHASE-LIKE 8 Transcription. FRONTIERS IN PLANT SCIENCE 2022; 13:854899. [PMID: 35401617 PMCID: PMC8988940 DOI: 10.3389/fpls.2022.854899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
Plant hormone brassinosteroids (BRs) play key roles in plant adaptation to biotic stresses, including various pathogen infections. As a core factor in BR signaling, the transcription factor BRI1-EMS-SUPPRESSOR 1 (BES1) activates BR responses via regulating the expression of target genes. However, the molecular mechanism of BRs in regulating plant immunity is unclear, and the key components are not identified. In this study, we found that BR biosynthesis and signaling transduction are essential for plant resistance to pathogen infection, and BR biosynthesis or BR signaling-deficient mutants displayed susceptibility to Pseudomonas syringae pv. tomato DC3000 (Pst DC3000) infection [including more serious symptoms and more photosystem II (PSII) photochemistry damage]. We identified a callose synthase gene GLUCAN SYNTHASE-LIKE 8 (GSL8) as a direct target of BES1, and its expression was induced by BRs/BES1. Meanwhile, BRs induced callose accumulation after Pst DC3000 infection. Moreover, BES1 gain-of-function mutant bes1-D showed promoted Pst DC3000 resistance. GSL8 T-DNA insertion mutant gsl8-1 was susceptible to DC3000, while brassinolide (BL) treatment partially rescued gsl8-1 susceptible phenotypes. Our study suggests that BR-induced pathogen resistance partly depends on the BR-induced BES1-GSL8 cascade to mediate callose accumulation.
Collapse
Affiliation(s)
- Jiawei Xiong
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, China
| | - Xiaoping Wan
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, China
- Rice and Sorghum Research Institute, Sichuan Academy of Agricultural Sciences, Deyang, China
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Maolin Ran
- Rice and Sorghum Research Institute, Sichuan Academy of Agricultural Sciences, Deyang, China
- Vegetable Germplasm Innovation and Variety Improvement Key Laboratory of Sichuan Province, Chengdu, China
| | - Xiumei Xu
- State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Lezhang Chen
- Sichuan Huitai Agriculture Technology Co. Ltd., Chengdu, China
| | - Feng Yang
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, China
- Rice and Sorghum Research Institute, Sichuan Academy of Agricultural Sciences, Deyang, China
- Vegetable Germplasm Innovation and Variety Improvement Key Laboratory of Sichuan Province, Chengdu, China
| |
Collapse
|
157
|
Ngou BPM, Jones JDG, Ding P. Plant immune networks. TRENDS IN PLANT SCIENCE 2022; 27:255-273. [PMID: 34548213 DOI: 10.1016/j.tplants.2021.08.012] [Citation(s) in RCA: 147] [Impact Index Per Article: 73.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 08/14/2021] [Accepted: 08/26/2021] [Indexed: 05/06/2023]
Abstract
Plants have both cell-surface and intracellular receptors to recognize diverse self- and non-self molecules. Cell-surface pattern recognition receptors (PRRs) recognize extracellular pathogen-/damage-derived molecules or apoplastic pathogen-derived effectors. Intracellular nucleotide-binding leucine-rich repeat proteins (NLRs) recognize pathogen effectors. Activation of both PRRs and NLRs elevates defense gene expression and accumulation of the phytohormone salicylic acid (SA), which results in SA-dependent transcriptional reprogramming. These receptors, together with their coreceptors, form networks to mediate downstream immune responses. In addition, cell-surface and intracellular immune systems are interdependent and function synergistically to provide robust resistance against pathogens. Here, we summarize the interactions between these immune systems and attempt to provide a holistic picture of plant immune networks. We highlight current challenges and discuss potential new research directions.
Collapse
Affiliation(s)
- Bruno Pok Man Ngou
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK.
| | - Jonathan D G Jones
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK.
| | - Pingtao Ding
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK; Institute of Biology Leiden, Leiden University, Sylviusweg 72, Leiden 2333, BE, The Netherlands.
| |
Collapse
|
158
|
Kiselevsky DB, Il'ina AV, Lunkov AP, Varlamov VP, Samuilov VD. Investigation of the Antioxidant Properties of the Quaternized Chitosan Modified with a Gallic Acid Residue Using Peroxidase that Produces Reactive Oxygen Species. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:141-149. [PMID: 35508903 DOI: 10.1134/s0006297922020067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/15/2021] [Accepted: 12/22/2021] [Indexed: 06/14/2023]
Abstract
Chitosan modified with a (2-hydroxy-3-trimethylammonium) propyl group and gallic acid residue, or quaternized chitosan with gallic acid (QCG), was synthesized. Antioxidant properties of the produced QCG have been investigated. Peroxidase in combination with NADH and salicyl hydroxamate (SHAM) caused consumption of oxygen and production of H2O2 in aqueous solution as a result of O2 reduction in the peroxidase-oxidase reactions. The rates of O2 consumption and H2O2 generation were reduced in the presence of QCG. The antioxidant propyl gallate (PG) and superoxide dismutase (SOD) had the same effect, but not the quaternized chitosan (QC) without gallic acid. The effect of chitosan derivatives on the production of reactive oxygen species (ROS) in the cells of pea leaf epidermis and on the cell death detected by the destruction of cell nuclei, was investigated. QCG, QC, and SOD had no effect, while PG decreased the rate of ROS generation in the cells of the epidermis, which was induced by NADH with SHAM or by menadione. QCG and QC prevented destruction of the guard cell nuclei in the pea leaf epidermis that was caused by NADH with SHAM or by KCN. SOD had no effect on the destruction of nuclei, while the effect of PG depended on the inducer of the cell death. Suppression of the destruction of guard cell nuclei by chitosan derivatives was associated not with their antioxidant effect, but with the disruption of the plasma membrane of the cells. The results obtained have shown that QCG exhibits antioxidant properties in solutions, but does not prevent generation of ROS in the plant cells. The mechanism of antioxidant effect of QCG is similar to that of PG and SOD.
Collapse
Affiliation(s)
- Dmitry B Kiselevsky
- Department of Immunology, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia.
| | - Alla V Il'ina
- Laboratory of Biopolymer Engineering, Skryabin Institute of Bioengineering, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia
| | - Alexey P Lunkov
- Laboratory of Biopolymer Engineering, Skryabin Institute of Bioengineering, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia
| | - Valery P Varlamov
- Laboratory of Biopolymer Engineering, Skryabin Institute of Bioengineering, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia
| | - Vitaly D Samuilov
- Department of Immunology, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| |
Collapse
|
159
|
Ma Q, Hu Z, Mao Z, Mei Y, Feng S, Shi K. A novel leucine-rich repeat receptor-like kinase MRK1 regulates resistance to multiple stresses in tomato. HORTICULTURE RESEARCH 2022; 9:uhab088. [PMID: 35048129 PMCID: PMC9123237 DOI: 10.1093/hr/uhab088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
Leucine-rich repeat receptor-like kinases (LRR-RLKs) are ubiquitous in higher plants, which act as receptors of extracellular signals to trigger multiple physiological processes. However, the functions of the majority of LRR-RLKs remain largely unknown, especially in tomato (Solanum lycopersicum L.). Here, we found that MRK1 (Multiple resistance-associated kinase 1), encoding a novel tomato LRR-RLK, was significantly induced either by temperature stresses or bacterial pathogen attacks. Knocking out MRK1 impaired the tolerance to both cold and heat stress, accompanied with the decrease in transcripts of master regulators C-repeat binding factor 1 (CBF1) and Heat shock transcription factor a-1a (HsfA1a), respectively. Additionally, mrk1 mutants were hypersensitive to Pseudomonas syringae pv. tomato DC3000 and Ralstonia solanacearum and compromised pattern-triggered immunity (PTI) responses as evidenced by decreased reactive oxygen species production and reduced upregulation of the PTI marker genes. Moreover, bimolecular fluorescence complementation, split-luciferase assay and coimmunoprecipitation supported the existence of complex formation between the MRK1, FLS2 and Somatic embryogenesis receptor kinase (SERK3A/SERK3B) in a ligand-independent manner. This work demonstrates that tomato MRK1 as a novel positive regulator of multiple stresses, which might be a potential breeding target to improve crop stress resistance.
Collapse
Affiliation(s)
- Qiaomei Ma
- Department of Horticulture, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Zhangjian Hu
- Department of Horticulture, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Zhuo Mao
- Department of Horticulture, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Yuyang Mei
- Department of Horticulture, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Shuxian Feng
- Department of Horticulture, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Kai Shi
- Department of Horticulture, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| |
Collapse
|
160
|
Liu X, Zhou Y, Du M, Liang X, Fan F, Huang G, Zou Y, Bai J, Lu D. The calcium-dependent protein kinase CPK28 is targeted by the ubiquitin ligases ATL31 and ATL6 for proteasome-mediated degradation to fine-tune immune signaling in Arabidopsis. THE PLANT CELL 2022; 34:679-697. [PMID: 34599338 PMCID: PMC8774090 DOI: 10.1093/plcell/koab242] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 09/22/2021] [Indexed: 05/28/2023]
Abstract
Immune responses are triggered when pattern recognition receptors recognize microbial molecular patterns. The Arabidopsis (Arabidopsis thaliana) receptor-like cytoplasmic kinase BOTRYTIS-INDUCED KINASE1 (BIK1) acts as a signaling hub of plant immunity. BIK1 homeostasis is maintained by a regulatory module in which CALCIUM-DEPENDENT PROTEIN KINASE28 (CPK28) regulates BIK1 turnover via the activities of two E3 ligases. Immune-induced alternative splicing of CPK28 attenuates CPK28 function. However, it remained unknown whether CPK28 is under proteasomal control. Here, we demonstrate that CPK28 undergoes ubiquitination and 26S proteasome-mediated degradation, which is enhanced by flagellin treatment. Two closely related ubiquitin ligases, ARABIDOPSIS TÓXICOS EN LEVADURA31 (ATL31) and ATL6, specifically interact with CPK28 at the plasma membrane; this association is enhanced by flagellin elicitation. ATL31/6 directly ubiquitinate CPK28, resulting in its proteasomal degradation. Furthermore, ATL31/6 promotes the stability of BIK1 by mediating CPK28 degradation. Consequently, ATL31/6 positively regulate BIK1-mediated immunity. Our findings reveal another mechanism for attenuating CPK28 function to maintain BIK1 homeostasis and enhance immune responses.
Collapse
Affiliation(s)
- Xiaotong Liu
- State Key Laboratory of Plant Genomics, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei 050021, China
| | - Yuanyuan Zhou
- State Key Laboratory of Plant Genomics, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei 050021, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingshuo Du
- State Key Laboratory of Plant Genomics, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei 050021, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Hebei Collaboration Innovation Center for Cell Signaling, Hebei Normal University, Shijiazhuang 050024, China
| | - Xuelian Liang
- Hebei Collaboration Innovation Center for Cell Signaling, Hebei Normal University, Shijiazhuang 050024, China
| | - Fenggui Fan
- State Key Laboratory of Plant Genomics, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei 050021, China
| | - Guozhong Huang
- State Key Laboratory of Plant Genomics, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei 050021, China
| | - Yanmin Zou
- State Key Laboratory of Plant Genomics, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei 050021, China
| | - Jiaojiao Bai
- State Key Laboratory of Plant Genomics, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei 050021, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dongping Lu
- State Key Laboratory of Plant Genomics, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei 050021, China
- Hebei Collaboration Innovation Center for Cell Signaling, Hebei Normal University, Shijiazhuang 050024, China
| |
Collapse
|
161
|
Mamun MA, Islam MT, Lee BR, Bae DW, Kim TH. Interactive Regulation of Hormone and Resistance Gene in Proline Metabolism Is Involved in Effector-Triggered Immunity or Disease Susceptibility in the Xanthomonas campestris pv. campestris- Brassica napus Pathosystem. FRONTIERS IN PLANT SCIENCE 2022; 12:738608. [PMID: 35082802 PMCID: PMC8784845 DOI: 10.3389/fpls.2021.738608] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
To characterize cultivar variations in hormonal regulation of the transition between pattern-triggered immunity (PTI) and effector-triggered immunity or susceptibility (ETI or ETS), the responses of resistance (R-) genes, hydrogen peroxide, and proline metabolism in two Brassica napus cultivars to contrasting disease susceptibility (resistant cv. Capitol vs. susceptible cv. Mosa) were interpreted as being linked to those of endogenous hormonal levels and signaling genes based on a time course of disease symptom development. Disease symptoms caused by the Xanthomonas campestris pv. campestris (Xcc) infections were much more developed in cv. Mosa than in cv. Capitol, as shown by an earlier appearance (at 3 days postinoculation [3 DPI]) and larger V-shaped necrosis lesions (at 9-15 DPI) in cv. Mosa. The cultivar variations in the R-genes, hormone status, and proline metabolism were found in two different phases (early [0-3 DPI] and later [9-15 DPI]). In the early phase, Xcc significantly upregulated PTI-related cytoplasmic kinase (Botrytis-induced kinase-1 [BIK1]) expression (+6.3-fold) with salicylic acid (SA) accumulation in cv. Capitol, while relatively less (+2.6-fold) with highly increased jasmonic acid (JA) level in cv. Mosa. The Xcc-responsive proline accumulation in both cultivars was similar to upregulated expression of proline synthesis-related genes (P5CS2 and P5CR). During the later phase in cv. Capitol, Xcc-responsive upregulation of ZAR1 (a coiled-coil-nucleotide binding site-leucine-rich repeat [CC-NB-LRR-type R-gene]) was concomitant with a gradual increase in JA levels without additional proline accumulation. However, in cv. Mosa, upregulation of TAO1 (a toll/interleukin-1 receptor-nucleotide binding site-leucine-rich repeat [TIR-NB-LRR-type R-gene]) was consistent with an increase in SA and abscisic acid (ABA) levels and resulted in an antagonistic depression of JA, which led to a proline accumulation. These results indicate that Xcc-induced BIK1- and ZAR1-mediated JA signaling interactions provide resistance and confirm ETI, whereas BIK1- and TAO1-enhanced SA- and/or ABA-mediated proline accumulation is associated with disease susceptibility (ETS).
Collapse
Affiliation(s)
- Md Al Mamun
- Department of Animal Science, Institute of Agricultural Science and Technology, College of Agriculture & Life Sciences, Chonnam National University, Gwangju, South Korea
| | - Md Tabibul Islam
- Department of Animal Science, Institute of Agricultural Science and Technology, College of Agriculture & Life Sciences, Chonnam National University, Gwangju, South Korea
- Alson H. Smith Jr. Agricultural Research and Extension Center, School of Plant and Environmental Sciences, Virginia Tech, Winchester, VA, United States
| | - Bok-Rye Lee
- Department of Animal Science, Institute of Agricultural Science and Technology, College of Agriculture & Life Sciences, Chonnam National University, Gwangju, South Korea
- Asian Pear Research Institute, Chonnam National University, Gwangju, South Korea
| | - Dong-Won Bae
- Biomaterial Analytical Laboratory, Central Instruments Facility, Gyeongsang National University, Jinju, South Korea
| | - Tae-Hwan Kim
- Department of Animal Science, Institute of Agricultural Science and Technology, College of Agriculture & Life Sciences, Chonnam National University, Gwangju, South Korea
| |
Collapse
|
162
|
Yang B, Yang S, Zheng W, Wang Y. Plant immunity inducers: from discovery to agricultural application. STRESS BIOLOGY 2022; 2:5. [PMID: 37676359 PMCID: PMC10442025 DOI: 10.1007/s44154-021-00028-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/13/2021] [Indexed: 09/08/2023]
Abstract
While conventional chemical fungicides directly eliminate pathogens, plant immunity inducers activate or prime plant immunity. In recent years, considerable progress has been made in understanding the mechanisms of immune regulation in plants. The development and application of plant immunity inducers based on the principles of plant immunity represent a new field in plant protection research. In this review, we describe the mechanisms of plant immunity inducers in terms of plant immune system activation, summarize the various classes of reported plant immunity inducers (proteins, oligosaccharides, chemicals, and lipids), and review methods for the identification or synthesis of plant immunity inducers. The current situation, new strategies, and future prospects in the development and application of plant immunity inducers are also discussed.
Collapse
Affiliation(s)
- Bo Yang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China
| | - Sen Yang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wenyue Zheng
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuanchao Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China.
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
163
|
Zeiss DR, Steenkamp PA, Piater LA, Dubery IA. Metabolomic Evaluation of Ralstonia solanacearum Cold Shock Protein Peptide (csp22)-Induced Responses in Solanum lycopersicum. FRONTIERS IN PLANT SCIENCE 2022; 12:803104. [PMID: 35069661 PMCID: PMC8780328 DOI: 10.3389/fpls.2021.803104] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
Ralstonia solanacearum, the causal agent of bacterial wilt, is one of the most destructive bacterial plant pathogens. This is linked to its evolutionary adaptation to evade host surveillance during the infection process since many of the pathogen's associated molecular patterns escape recognition. However, a 22-amino acid sequence of R. solanacearum-derived cold shock protein (csp22) was discovered to elicit an immune response in the Solanaceae. Using untargeted metabolomics, the effects of csp22-elicitation on the metabolome of Solanum lycopersicum leaves were investigated. Additionally, the study set out to discover trends that may suggest that csp22 inoculation bestows enhanced resistance on tomato against bacterial wilt. Results revealed the redirection of metabolism toward the phenylpropanoid pathway and sub-branches thereof. Compared to the host response with live bacteria, csp22 induced a subset of the discriminant metabolites, but also metabolites not induced in response to R. solanacearum. Here, a spectrum of hydroxycinnamic acids (especially ferulic acid), their conjugates and derivatives predominated as signatory biomarkers. From a metabolomics perspective, the results support claims that csp22 pre-treatment of tomato plants elicits increased resistance to R. solanacearum infection and contribute to knowledge on plant immune systems operation at an integrative level. The functional significance of these specialized compounds may thus support a heightened state of defense that can be applied to ward off attacking pathogens or toward priming of defense against future infections.
Collapse
|
164
|
Song GC, Jeon J, Choi HK, Sim H, Kim S, Ryu C. Bacterial type III effector-induced plant C8 volatiles elicit antibacterial immunity in heterospecific neighbouring plants via airborne signalling. PLANT, CELL & ENVIRONMENT 2022; 45:236-247. [PMID: 34708407 PMCID: PMC9298316 DOI: 10.1111/pce.14209] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/08/2021] [Accepted: 10/15/2021] [Indexed: 05/10/2023]
Abstract
Upon sensing attack by pathogens and insect herbivores, plants release complex mixtures of volatile compounds. Here, we show that the infection of lima bean (Phaseolus lunatus L.) plants with the non-host bacterial pathogen Pseudomonas syringae pv. tomato led to the production of microbe-induced plant volatiles (MIPVs). Surprisingly, the bacterial type III secretion system, which injects effector proteins directly into the plant cytosol to subvert host functions, was found to prime both intra- and inter-specific defense responses in neighbouring wild tobacco (Nicotiana benthamiana) plants. Screening of each of 16 effectors using the Pseudomonas fluorescens effector-to-host analyser revealed that an effector, HopP1, was responsible for immune activation in receiver tobacco plants. Further study demonstrated that 1-octen-3-ol, 3-octanone and 3-octanol are novel MIPVs emitted by the lima bean plant in a HopP1-dependent manner. Exposure to synthetic 1-octen-3-ol activated immunity in tobacco plants against a virulent pathogen Pseudomonas syringae pv. tabaci. Our results show for the first time that a bacterial type III effector can trigger the emission of C8 plant volatiles that mediate defense priming via plant-plant interactions. These results provide novel insights into the role of airborne chemicals in bacterial pathogen-induced inter-specific plant-plant interactions.
Collapse
Affiliation(s)
- Geun Cheol Song
- Molecular Phytobacteriology LaboratoryInfectious Disease Research Center, KRIBBDaejeonSouth Korea
| | - Je‐Seung Jeon
- Molecular Phytobacteriology LaboratoryInfectious Disease Research Center, KRIBBDaejeonSouth Korea
| | - Hye Kyung Choi
- Molecular Phytobacteriology LaboratoryInfectious Disease Research Center, KRIBBDaejeonSouth Korea
| | - Hee‐Jung Sim
- Environmental Chemistry Research GroupKorea Institute of Toxicology (KIT)JinjuSouth Korea
| | - Sang‐Gyu Kim
- Department of Biological SciencesKorea Advanced Institute of Science and TechnologyDaejeonSouth Korea
| | - Choong‐Min Ryu
- Molecular Phytobacteriology LaboratoryInfectious Disease Research Center, KRIBBDaejeonSouth Korea
- Biosystems and Bioengineering ProgramUniversity of Science and Technology (UST)DaejeonSouth Korea
| |
Collapse
|
165
|
Eastman S, Smith T, Zaydman MA, Kim P, Martinez S, Damaraju N, DiAntonio A, Milbrandt J, Clemente TE, Alfano JR, Guo M. A phytobacterial TIR domain effector manipulates NAD + to promote virulence. THE NEW PHYTOLOGIST 2022; 233:890-904. [PMID: 34657283 PMCID: PMC9298051 DOI: 10.1111/nph.17805] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 09/15/2021] [Indexed: 05/06/2023]
Abstract
The Pseudomonas syringae DC3000 type III effector HopAM1 suppresses plant immunity and contains a Toll/interleukin-1 receptor (TIR) domain homologous to immunity-related TIR domains of plant nucleotide-binding leucine-rich repeat receptors that hydrolyze nicotinamide adenine dinucleotide (NAD+ ) and activate immunity. In vitro and in vivo assays were conducted to determine if HopAM1 hydrolyzes NAD+ and if the activity is essential for HopAM1's suppression of plant immunity and contribution to virulence. HPLC and LC-MS were utilized to analyze metabolites produced from NAD+ by HopAM1 in vitro and in both yeast and plants. Agrobacterium-mediated transient expression and in planta inoculation assays were performed to determine HopAM1's intrinsic enzymatic activity and virulence contribution. HopAM1 is catalytically active and hydrolyzes NAD+ to produce nicotinamide and a novel cADPR variant (v2-cADPR). Expression of HopAM1 triggers cell death in yeast and plants dependent on the putative catalytic residue glutamic acid 191 (E191) within the TIR domain. Furthermore, HopAM1's E191 residue is required to suppress both pattern-triggered immunity and effector-triggered immunity and promote P. syringae virulence. HopAM1 manipulates endogenous NAD+ to produce v2-cADPR and promote pathogenesis. This work suggests that HopAM1's TIR domain possesses different catalytic specificity than other TIR domain-containing NAD+ hydrolases and that pathogens exploit this activity to sabotage NAD+ metabolism for immune suppression and virulence.
Collapse
Affiliation(s)
- Samuel Eastman
- Department of Plant PathologyUniversity of Nebraska‐LincolnLincolnNE68583USA
| | - Thomas Smith
- Department of ChemistryUniversity of Nebraska‐LincolnLincolnNE68583USA
| | - Mark A. Zaydman
- Department of Pathology and ImmunologyWashington University School of MedicineSt LouisMO63110USA
| | - Panya Kim
- The Center for Plant Science InnovationUniversity of Nebraska‐LincolnLincolnNE68588USA
| | - Samuel Martinez
- School of Biological SciencesUniversity of Nebraska‐LincolnLincolnNE68583USA
| | - Neha Damaraju
- Department of Biomedical EngineeringWashington University in St LouisSt LouisMO63130USA
| | - Aaron DiAntonio
- Department of Developmental BiologyWashington University School of MedicineSt LouisMO63110USA
| | - Jeffrey Milbrandt
- Department of GeneticsWashington University School of MedicineSt LouisMO63110USA
| | - Thomas E. Clemente
- Department of Agriculture and HorticultureUniversity of Nebraska‐LincolnLincolnNE68583USA
| | - James R. Alfano
- Department of Plant PathologyUniversity of Nebraska‐LincolnLincolnNE68583USA
- The Center for Plant Science InnovationUniversity of Nebraska‐LincolnLincolnNE68588USA
| | - Ming Guo
- Department of Agriculture and HorticultureUniversity of Nebraska‐LincolnLincolnNE68583USA
| |
Collapse
|
166
|
Analyses of Lysin-motif Receptor-like Kinase ( LysM-RLK) Gene Family in Allotetraploid Brassica napus L. and Its Progenitor Species: An In Silico Study. Cells 2021; 11:cells11010037. [PMID: 35011598 PMCID: PMC8750388 DOI: 10.3390/cells11010037] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/10/2021] [Accepted: 12/20/2021] [Indexed: 12/11/2022] Open
Abstract
The LysM receptor-like kinases (LysM-RLKs) play a crucial role in plant symbiosis and response to environmental stresses. Brassica napus, B. rapa, and B. oleracea are utilized as valuable vegetables. Different biotic and abiotic stressors affect these crops, resulting in yield losses. Therefore, genome-wide analysis of the LysM-RLK gene family was conducted. From the genome of the examined species, 33 LysM-RLK have been found. The conserved domains of Brassica LysM-RLKs were divided into three groups: LYK, LYP, and LysMn. In the BrassicaLysM-RLK gene family, only segmental duplication has occurred. The Ka/Ks ratio for the duplicated pair of genes was less than one indicating that the genes’ function had not changed over time. The BrassicaLysM-RLKs contain 70 cis-elements, indicating that they are involved in stress response. 39 miRNA molecules were responsible for the post-transcriptional regulation of 12 Brassica LysM-RLKs. A total of 22 SSR loci were discovered in 16 Brassica LysM-RLKs. According to RNA-seq data, the highest expression in response to biotic stresses was related to BnLYP6. According to the docking simulations, several residues in the active sites of BnLYP6 are in direct contact with the docked chitin and could be useful in future studies to develop pathogen-resistant B. napus. This research reveals comprehensive information that could lead to the identification of potential genes for Brassica species genetic manipulation.
Collapse
|
167
|
Pretorius CJ, Zeiss DR, Dubery IA. The presence of oxygenated lipids in plant defense in response to biotic stress: a metabolomics appraisal. PLANT SIGNALING & BEHAVIOR 2021; 16:1989215. [PMID: 34968410 PMCID: PMC9208797 DOI: 10.1080/15592324.2021.1989215] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 05/31/2023]
Abstract
Recent lipid-based findings suggest more direct roles for fatty acids and their degradation products in inducing/modulating various aspects of plant defense, e.g. as signaling molecules following stress responses that may regulate plant innate immunity. The synthesis of oxylipins is a highly dynamic process and occurs in both a developmentally regulated mode and in response to abiotic and biotic stresses. This mini-review summarizes the occurrence of free - and oxygenated fatty acid derivatives in plants as part of an orchestrated metabolic defense against pathogen attack. Oxygenated C18 derived polyunsaturated fatty acids were identified by untargeted metabolomics studies of a number of different plant-microbe pathosystems and may serve as potential biomarkers of oxidative stress. Untargeted metabolomics in combination with targeted lipidomics, can uncover previously unrecognized aspects of lipid mobilization during plant defense.
Collapse
Affiliation(s)
- Chanel J. Pretorius
- Research Centre for Plant Metabolomics, Department of Biochemistry, University of Johannesburg, Auckland Park, South Africa
| | - Dylan R. Zeiss
- Research Centre for Plant Metabolomics, Department of Biochemistry, University of Johannesburg, Auckland Park, South Africa
| | - Ian A. Dubery
- Research Centre for Plant Metabolomics, Department of Biochemistry, University of Johannesburg, Auckland Park, South Africa
| |
Collapse
|
168
|
Gautam JK, Giri MK, Singh D, Chattopadhyay S, Nandi AK. MYC2 influences salicylic acid biosynthesis and defense against bacterial pathogens in Arabidopsis thaliana. PHYSIOLOGIA PLANTARUM 2021; 173:2248-2261. [PMID: 34596247 DOI: 10.1111/ppl.13575] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 08/25/2021] [Accepted: 09/27/2021] [Indexed: 05/26/2023]
Abstract
Arabidopsis MYC2 is a basic helix-loop-helix transcription factor that works both as a negative and positive regulator of light and multiple hormonal signaling pathways, including jasmonic acid and abscisic acid. Recent studies have suggested the role of MYC2 as a negative regulator of salicylic acid (SA)-mediated defense against bacterial pathogens. By using myc2 mutant and constitutively MYC2-expressing plants, we further show that MYC2 also positively influences SA-mediated defense; whereas, myc2 mutant plants are resistant to virulent pathogens only, MYC2 over-expressing plants are hyper-resistant to multiple virulent and avirulent strains of bacterial pathogens. MYC2 promotes pathogen-induced callose deposition, SA biosynthesis, expression of PR1 gene, and SA-responsiveness. Using bacterially produced MYC2 protein in electrophoretic mobility shift assay (EMSA), we have shown that MYC2 binds to the promoter of several important defense regulators, including PEPR1, MKK4, RIN4, and the second intron of ICS1. MYC2 positively regulates the expression of RIN4, MKK4, and ICS1; however, it negatively regulates the expression of PEPR1. Pathogen inoculation enhances MYC2 association at ICS1 intron and RIN4 promoter. Mutations of MYC2 binding site at ICS1 intron or RIN4 promoter abolish the associated GUS reporter expression. Hyper-resistance of MYC2 over-expressing plants is largely light-dependent, which is in agreement with the role of MYC2 in SA biosynthesis. The results altogether demonstrate that MYC2 possesses dual regulatory roles in SA biosynthesis, SA signaling, pattern-triggered immunity (PTI), and effector-triggered immunity (ETI) in Arabidopsis.
Collapse
Affiliation(s)
| | - Mrunmay Kumar Giri
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
- School of Biotechnology, KIIT Deemed University, Bhubaneswar, Odisha, India
| | - Deepjyoti Singh
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
- Department of Biology, Syracuse University, Syracuse, USA
| | - Sudip Chattopadhyay
- Department of Biotechnology, National Institute of Technology, Durgapur, West Bengal, India
| | - Ashis Kumar Nandi
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
169
|
Chepsergon J, Motaung TE, Moleleki LN. "Core" RxLR effectors in phytopathogenic oomycetes: A promising way to breeding for durable resistance in plants? Virulence 2021; 12:1921-1935. [PMID: 34304703 PMCID: PMC8516161 DOI: 10.1080/21505594.2021.1948277] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 06/11/2021] [Accepted: 06/18/2021] [Indexed: 12/30/2022] Open
Abstract
Phytopathogenic oomycetes are known to successfully infect their hosts due to their ability to secrete effector proteins. Of interest to many researchers are effectors with the N-terminal RxLR motif (Arginine-any amino acid-Leucine-Arginine). Owing to advances in genome sequencing, we can now comprehend the high level of diversity among oomycete effectors, and similarly, their conservation within and among species referred to here as "core" RxLR effectors (CREs). Currently, there is a considerable number of CREs that have been identified in oomycetes. Functional characterization of these CREs propose their virulence role with the potential of targeting central cellular processes that are conserved across diverse plant species. We reason that effectors that are highly conserved and recognized by the host, could be harnessed in engineering plants for durable as well as broad-spectrum resistance.
Collapse
Affiliation(s)
- Jane Chepsergon
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, Gauteng, South Africa
| | - Thabiso E. Motaung
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, Gauteng, South Africa
| | - Lucy Novungayo Moleleki
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, Gauteng, South Africa
| |
Collapse
|
170
|
Tang B, Liu C, Li Z, Zhang X, Zhou S, Wang G, Chen X, Liu W. Multilayer regulatory landscape during pattern-triggered immunity in rice. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:2629-2645. [PMID: 34437761 PMCID: PMC8633500 DOI: 10.1111/pbi.13688] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 08/14/2021] [Accepted: 08/18/2021] [Indexed: 05/03/2023]
Abstract
Upon fungal and bacterial pathogen attack, plants launch pattern-triggered immunity (PTI) by recognizing pathogen-associated molecular patterns (PAMPs) to defend against pathogens. Although PTI-mediated response has been widely studied, a systematic understanding of the reprogrammed cellular processes during PTI by multi-omics analysis is lacking. In this study, we generated metabolome, transcriptome, proteome, ubiquitome and acetylome data to investigate rice (Oryza sativa) PTI responses to two PAMPs, the fungi-derived chitin and the bacteria-derived flg22. Integrative multi-omics analysis uncovered convergence and divergence of rice responses to these PAMPs at multiple regulatory layers. Rice responded to chitin and flg22 in a similar manner at the transcriptome and proteome levels, but distinct at the metabolome level. We found that this was probably due to post-translational regulation including ubiquitination and acetylation, which reshaped gene expression by modulating enzymatic activities, and possibly led to distinct metabolite profiles. We constructed regulatory atlas of metabolic pathways, including the defence-related phenylpropanoid and flavonoid biosynthesis and linoleic acid derivative metabolism. The multi-level regulatory network generated in this study sets the foundation for in-depth mechanistic dissection of PTI in rice and potentially in other related poaceous crop species.
Collapse
Affiliation(s)
- Bozeng Tang
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
| | - Caiyun Liu
- State Key Laboratory of Agricultural Microbiology and Provincial Hubei Key Laboratory of Plant PathologyCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Zhiqiang Li
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
| | - Xixi Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
| | - Shaoqun Zhou
- Shenzhen BranchGuangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural AffairsAgricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhenChina
| | - Guo‐Liang Wang
- Department of Plant PathologyThe Ohio State UniversityColumbusOHUSA
| | - Xiao‐Lin Chen
- State Key Laboratory of Agricultural Microbiology and Provincial Hubei Key Laboratory of Plant PathologyCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Wende Liu
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
| |
Collapse
|
171
|
Alam M, Tahir J, Siddiqui A, Magzoub M, Shahzad-Ul-Hussan S, Mackey D, Afzal AJ. RIN4 homologs from important crop species differentially regulate the Arabidopsis NB-LRR immune receptor, RPS2. PLANT CELL REPORTS 2021; 40:2341-2356. [PMID: 34486076 DOI: 10.1007/s00299-021-02771-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
KEY MESSAGE RIN4 homologs from important crop species differ in their ability to prevent ectopic activity of the nucleotide binding-leucine rich repeat resistance protein, RPS2. Pathogens deploy virulence effectors to perturb host processes. Plants utilize intracellular resistance (R) proteins to recognize pathogen effectors either by direct interaction or indirectly via effector-mediated perturbations of host components. RPM1-INTERACTING PROTEIN4 (RIN4) is a plant immune regulator that mediates the indirect activation of multiple, independently evolved R-proteins by multiple, unrelated effector proteins. One of these, RPS2 (RESISTANT TO P. SYRINGAE2), is activated upon cleavage of Arabidopsis (At)RIN4 by the Pseudomonas syringae effector AvrRpt2. To gain insight into the AvrRpt2-RIN4-RPS2 defense-activation module, we compared the function of AtRIN4 with RIN4 homologs present in a diverse range of plant species. We selected seven homologs containing conserved features of AtRIN4, including two NOI (Nitrate induced) domains, each containing a predicted cleavage site for AvrRpt2, and a C-terminal palmitoylation site predicted to mediate membrane tethering of the proteins. Palmitoylation-mediated tethering of AtRIN4 to the plasma membrane and cleavage by AvrRpt2 are required for suppression and activation of RPS2, respectively. While all seven homologs are localized at the plasma membrane, only four suppress RPS2 when transiently expressed in Nicotiana benthamiana. All seven homologs are cleaved by AvrRpt2 and, for those homologs that are able to suppress RPS2, cleavage relieves suppression of RPS2. Further, we demonstrate that the membrane-tethered, C-terminal AvrRpt2-generated cleavage fragment is sufficient for the suppression of RPS2. Lastly, we show that the membrane localization of RPS2 is unaffected by its suppression or activation status.
Collapse
Affiliation(s)
- Maheen Alam
- Department of Biology, Lahore University of Management Sciences, Sector U, DHA, Lahore, Pakistan
- Department of Horticulture and Crop Science, The Ohio State University, Columbus, OH, 43210, USA
| | - Jibran Tahir
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 92-169, Auckland, 1025, New Zealand
| | - Anam Siddiqui
- Department of Plant Sciences, Rothamsted Research, West Common, Harpenden, AL52JQ, UK
| | - Mazin Magzoub
- Biology Program, New York University Abu Dhabi, Abu Dhabi, UAE
| | - Syed Shahzad-Ul-Hussan
- Department of Biology, Lahore University of Management Sciences, Sector U, DHA, Lahore, Pakistan
| | - David Mackey
- Department of Horticulture and Crop Science, The Ohio State University, Columbus, OH, 43210, USA
- Department of Molecular Genetics and Center for Applied Plant Sciences, The Ohio State University, Columbus, OH, 43210, USA
| | - A J Afzal
- Biology Program, New York University Abu Dhabi, Abu Dhabi, UAE.
| |
Collapse
|
172
|
Zehra A, Raytekar NA, Meena M, Swapnil P. Efficiency of microbial bio-agents as elicitors in plant defense mechanism under biotic stress: A review. CURRENT RESEARCH IN MICROBIAL SCIENCES 2021; 2:100054. [PMID: 34841345 PMCID: PMC8610294 DOI: 10.1016/j.crmicr.2021.100054] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/29/2021] [Accepted: 07/29/2021] [Indexed: 12/14/2022] Open
Abstract
MBCAs played beneficial role to protect plants from harmful pathogens to control plant diseases. MBCAs also support in plant growth promotion and stress tolerance. MBCAs act as elicitors to induce a signal to stimulate the plant defense mechanism against pathogens. Reticine A-induced hypersensitive reaction, systemic accumulation of H2O2 and salicylic acid.
Numerous harmful microorganisms and insect pests have the ability to cause plant infections or damage, which is mostly controlled by toxic chemical agents. These chemical compounds and their derivatives exhibit hazardous effects on habitats and human life too. Hence, there's a need to develop novel, more effective and safe bio-control agents. A variety of microbes such as viruses, bacteria, and fungi possess a great potential to fight against phytopathogens and thus can be used as bio-control agents instead of harmful chemical compounds. These naturally occurring microorganisms are applied to the plants in order to control phytopathogens. Moreover, practicing them appropriately for agriculture management can be a way towards a sustainable approach. The MBCAs follow various modes of action and act as elicitors where they induce a signal to activate plant defense mechanisms against a variety of pathogens. MBCAs control phytopathogens and help in disease suppression through the production of enzymes, antimicrobial compounds, antagonist activity involving hyper-parasitism, induced resistance, competitive inhibition, etc. Efficient recognition of pathogens and prompt defensive response are key factors of induced resistance in plants. This resistance phenomenon is pertaining to a complex cascade that involves an increased amount of defensive proteins, salicylic acid (SA), or induction of signaling pathways dependent on plant hormones. Although, there's a dearth of information about the exact mechanism of plant-induced resistance, the studies conducted at the physiological, biochemical and genetic levels. These studies tried to explain a series of plant defensive responses triggered by bio-control agents that may enhance the defensive capacity of plants. Several natural and recombinant microorganisms are commercially available as bio-control agents that mainly include strains of Bacillus, Pseudomonads and Trichoderma. However, the complete understanding of microbial bio-control agents and their interactions at cellular and molecular levels will facilitate the screening of effective and eco-friendly bio-agents, thereby increasing the scope of MBCAs. This article is a comprehensive review that highlights the importance of microbial agents as elicitors in the activation and regulation of plant defense mechanisms in response to a variety of pathogens.
Collapse
Key Words
- ABA, Abscisic acid
- BABA, β-Aminobutyric acid
- BTH, Benzothiadiazole
- CKRI, Cross kingdom RNA interference
- DAMPs, Damage-associated molecular patterns
- Defense mechanism
- ET, Ethylene
- ETI, Effector-triggered immunity
- Elicitors
- Fe, Iron
- GSH, Glutathione
- HAMP, Herbivore-associated molecular patterns
- HG, Heptaglucan
- HIR, Herbivore induced resistance
- HRs, Hormonal receptors
- ISR, Induced systemic resistance
- ISS, Induced systemic susceptibility
- Induced resistance
- JA, Jasmonic acid
- LAR, Local acquired resistance
- LPS, Lipopolysaccharides
- MAMPs, Microbe-associated molecular patterns
- MBCAs, Microbial biological control agents
- Microbiological bio-control agent
- N, Nitrogen
- NO, Nitric oxide
- P, Phosphorous
- PAMPs, Pathogen-associated molecular patterns
- PGP, Plant growth promotion
- PGPB, Plant growth promoting bacteria
- PGPF, Plant growth promoting fungi
- PGPR, Plant growth promoting rhizobacteria
- PRPs, Pathogenesis-related proteins
- PRRs, Pattern recognition receptors
- PTI, Pattern triggered immunity
- Plant defense
- Plant disease
- RLKs, Receptor-like-kinases
- RLPs, Receptor-like-proteins
- ROS, Reactive oxygen species
- SA, Salicylic acid
- SAR, Systemic acquired resistance
- TFs, Transcription factors
- TMV, Tobacco mosaic virus
- VOCs, Volatile organic compounds
Collapse
Affiliation(s)
- Andleeb Zehra
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi - 221005, India
| | | | - Mukesh Meena
- Laboratory of Phytopathology and Microbial Biotechnology, Department of Botany, Mohanlal Sukhadia University, Udaipur - 313001, Rajasthan, India
| | - Prashant Swapnil
- Department of Botany, University of Delhi, New Delhi - 110007, India
| |
Collapse
|
173
|
Harith-Fadzilah N, Lam SD, Haris-Hussain M, Ghani IA, Zainal Z, Jalinas J, Hassan M. Proteomics and Interspecies Interaction Analysis Revealed Abscisic Acid Signalling to Be the Primary Driver for Oil Palm's Response against Red Palm Weevil Infestation. PLANTS (BASEL, SWITZERLAND) 2021; 10:2574. [PMID: 34961045 PMCID: PMC8709180 DOI: 10.3390/plants10122574] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 10/29/2021] [Accepted: 11/10/2021] [Indexed: 06/14/2023]
Abstract
The red palm weevil (RPW; Rhynchophorus ferrugineus Olivier (Coleoptera Curculionidae)) is an invasive insect pest that is difficult to manage due to its nature of infesting the host palm trees from within. A holistic, molecular-based approach to identify proteins that correlate with RPW infestation could give useful insights into the vital processes that are prevalent to the host's infestation response and identify the potential biomarkers for an early detection technique. Here, a shotgun proteomic analysis was performed on oil palm (Elaeis guineensis; OP) under untreated (control), wounding by drilling (wounded), and artificial larval infestation (infested) conditions at three different time points to characterise the RPW infestation response at three different stages. KEGG pathway enrichment analysis revealed many overlapping pathways between the control, wounded, and infested groups. Further analysis via literature searches narrowed down biologically relevant proteins into categories, which were photosynthesis, growth, and stress response. Overall, the patterns of protein expression suggested abscisic acid (ABA) hormone signalling to be the primary driver of insect herbivory response. Interspecies molecular docking analysis between RPW ligands and OP receptor proteins provided putative interactions that result in ABA signalling activation. Seven proteins were selected as candidate biomarkers for early infestation detection based on their relevance and association with ABA signalling. The MS data are available via ProteomeXchange with identifier PXD028986. This study provided a deeper insight into the mechanism of stress response in OP in order to develop a novel detection method or improve crop management.
Collapse
Affiliation(s)
- Nazmi Harith-Fadzilah
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (N.H.-F.); (Z.Z.)
| | - Su Datt Lam
- Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia;
- Institute of Structural and Molecular Biology, University College London, London WC1E 6BT, UK
| | - Mohammad Haris-Hussain
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (M.H.-H.); (I.A.G.); (J.J.)
| | - Idris Abd Ghani
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (M.H.-H.); (I.A.G.); (J.J.)
| | - Zamri Zainal
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (N.H.-F.); (Z.Z.)
| | - Johari Jalinas
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (M.H.-H.); (I.A.G.); (J.J.)
| | - Maizom Hassan
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (N.H.-F.); (Z.Z.)
| |
Collapse
|
174
|
Courbier S, Snoek BL, Kajala K, Li L, van Wees SCM, Pierik R. Mechanisms of far-red light-mediated dampening of defense against Botrytis cinerea in tomato leaves. PLANT PHYSIOLOGY 2021; 187:1250-1266. [PMID: 34618050 PMCID: PMC8566310 DOI: 10.1093/plphys/kiab354] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 06/30/2021] [Indexed: 06/13/2023]
Abstract
Plants detect neighboring competitors through a decrease in the ratio between red and far-red light (R:FR). This decreased R:FR is perceived by phytochrome photoreceptors and triggers shade avoidance responses such as shoot elongation and upward leaf movement (hyponasty). In addition to promoting elongation growth, low R:FR perception enhances plant susceptibility to pathogens: the growth-defense tradeoff. Although increased susceptibility in low R:FR has been studied for over a decade, the associated timing of molecular events is still unknown. Here, we studied the chronology of FR-induced susceptibility events in tomato (Solanum lycopersicum) plants pre-exposed to either white light (WL) or WL supplemented with FR light (WL+FR) prior to inoculation with the necrotrophic fungus Botrytis cinerea (B.c.). We monitored the leaf transcriptional changes over a 30-h time course upon infection and followed up with functional studies to identify mechanisms. We found that FR-induced susceptibility in tomato is linked to a general dampening of B.c.-responsive gene expression, and a delay in both pathogen recognition and jasmonic acid-mediated defense gene expression. In addition, we found that the supplemental FR-induced ethylene emissions affected plant immune responses under the WL+FR condition. This study improves our understanding of the growth-immunity tradeoff, while simultaneously providing leads to improve tomato resistance against pathogens in dense cropping systems.
Collapse
Affiliation(s)
- Sarah Courbier
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, The Netherlands
| | - Basten L Snoek
- Theoretical Biology and Bioinformatics, Institute of Biodynamics and Biocomplexity, Utrecht University, The Netherlands
| | - Kaisa Kajala
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, The Netherlands
| | - Linge Li
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, The Netherlands
| | - Saskia C M van Wees
- Plant-Microbe Interactions, Institute of Environmental Biology, Utrecht University, The Netherlands
| | - Ronald Pierik
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, The Netherlands
| |
Collapse
|
175
|
Wen T, Wu X, Hu L, Qiu Y, Rui L, Zhang Y, Ding X, Ye J. A novel pine wood nematode effector, BxSCD1, suppresses plant immunity and interacts with an ethylene-forming enzyme in pine. MOLECULAR PLANT PATHOLOGY 2021; 22:1399-1412. [PMID: 34396673 PMCID: PMC8518578 DOI: 10.1111/mpp.13121] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 05/13/2023]
Abstract
The plant-parasitic nematode Bursaphelenchus xylophilus, the causal agent of pine wilt disease (PWD), causes enormous economic loss every year. Currently, little is known about the pathogenic mechanisms of PWD. Several effectors have been identified in B. xylophilus, but their functions and host targets have yet to be elucidated. Here, we demonstrated that BxSCD1 suppresses cell death and inhibits B. xylophilus PAMP BxCDP1-triggered immunity in Nicotiana benthamiana and Pinus thunbergii. BxSCD1 was transcriptionally upregulated in the early stage of B. xylophilus infection. In situ hybridization experiments showed that BxSCD1 was specifically expressed in the dorsal glands and intestine. Cysteine residues are essential for the function of BxSCD1. Transient expression of BxSCD1 in N. benthamiana revealed that it was primarily targeted to the cytoplasm and nucleus. The morbidity was significantly reduced in P. thunbergii infected with B. xylophilus when BxSCD1 was silenced. We identified 1-aminocyclopropane-1-carboxylate oxidase 1, the actual ethylene-forming enzyme, as a host target of BxSCD1 by yeast two-hybrid and coimmunoprecipitation. Overall, this study illustrated that BxSCD1 played a critical role in the B. xylophilus-plant interaction.
Collapse
Affiliation(s)
- Tong‐Yue Wen
- Co‐Innovation Center for Sustainable Forestry in Southern ChinaCollege of ForestryNanjing Forestry UniversityNanjingChina
- Jiangsu Key Laboratory for Prevention and Management of Invasive SpeciesNanjing Forestry UniversityNanjingChina
| | - Xiao‐Qin Wu
- Co‐Innovation Center for Sustainable Forestry in Southern ChinaCollege of ForestryNanjing Forestry UniversityNanjingChina
- Jiangsu Key Laboratory for Prevention and Management of Invasive SpeciesNanjing Forestry UniversityNanjingChina
| | - Long‐Jiao Hu
- Co‐Innovation Center for Sustainable Forestry in Southern ChinaCollege of ForestryNanjing Forestry UniversityNanjingChina
- Jiangsu Key Laboratory for Prevention and Management of Invasive SpeciesNanjing Forestry UniversityNanjingChina
| | - Yi‐Jun Qiu
- Co‐Innovation Center for Sustainable Forestry in Southern ChinaCollege of ForestryNanjing Forestry UniversityNanjingChina
- Jiangsu Key Laboratory for Prevention and Management of Invasive SpeciesNanjing Forestry UniversityNanjingChina
| | - Lin Rui
- Co‐Innovation Center for Sustainable Forestry in Southern ChinaCollege of ForestryNanjing Forestry UniversityNanjingChina
- Jiangsu Key Laboratory for Prevention and Management of Invasive SpeciesNanjing Forestry UniversityNanjingChina
| | - Yan Zhang
- Co‐Innovation Center for Sustainable Forestry in Southern ChinaCollege of ForestryNanjing Forestry UniversityNanjingChina
- Jiangsu Key Laboratory for Prevention and Management of Invasive SpeciesNanjing Forestry UniversityNanjingChina
| | - Xiao‐Lei Ding
- Co‐Innovation Center for Sustainable Forestry in Southern ChinaCollege of ForestryNanjing Forestry UniversityNanjingChina
- Jiangsu Key Laboratory for Prevention and Management of Invasive SpeciesNanjing Forestry UniversityNanjingChina
| | - Jian‐Ren Ye
- Co‐Innovation Center for Sustainable Forestry in Southern ChinaCollege of ForestryNanjing Forestry UniversityNanjingChina
- Jiangsu Key Laboratory for Prevention and Management of Invasive SpeciesNanjing Forestry UniversityNanjingChina
| |
Collapse
|
176
|
Rahman A, Sinha KV, Sopory SK, Sanan-Mishra N. Influence of virus-host interactions on plant response to abiotic stress. PLANT CELL REPORTS 2021; 40:2225-2245. [PMID: 34050797 DOI: 10.1007/s00299-021-02718-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/19/2021] [Indexed: 06/12/2023]
Abstract
Environmental factors play a significant role in controlling growth, development and defense responses of plants. Changes in the abiotic environment not only significantly alter the physiological and molecular pathways in plants, but also result in attracting the insect pests that carry a payload of viruses. Invasion of plants by viruses triggers the RNA silencing based defense mechanism in plants. In counter defense the viruses have gained the ability to suppress the host RNA silencing activities. A new paradigm has emerged, with the recognition that plant viruses also have the intrinsic capacity to modulate host plant response to environmental cues, in an attempt to favour their own survival. Thus, plant-virus interactions provide an excellent system to understand the signals in crosstalk between biotic (virus) and abiotic stresses. In this review, we have summarized the basal plant defense responses to pathogen invasion while emphasizing on the role of RNA silencing as a front line of defense response to virus infection. The emerging knowledge indicates overlap between RNA silencing with the innate immune responses during antiviral defense. The suppressors of RNA silencing serve as Avr proteins, which can be recognized by the host R proteins. The defense signals also function in concert with the phytohormones to influence plant responses to abiotic stresses. The current evidence on the role of virus induced host tolerance to abiotic stresses is also discussed.
Collapse
Affiliation(s)
- Adeeb Rahman
- Plant RNAi Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Kumari Veena Sinha
- Plant RNAi Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Sudhir K Sopory
- Plant RNAi Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Neeti Sanan-Mishra
- Plant RNAi Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India.
| |
Collapse
|
177
|
Saleem M, Fariduddin Q, Castroverde CDM. Salicylic acid: A key regulator of redox signalling and plant immunity. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 168:381-397. [PMID: 34715564 DOI: 10.1016/j.plaphy.2021.10.011] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/30/2021] [Accepted: 10/03/2021] [Indexed: 05/04/2023]
Abstract
In plants, the reactive oxygen species (ROS) formed during normal conditions are essential in regulating several processes, like stomatal physiology, pathogen immunity and developmental signaling. However, biotic and abiotic stresses can cause ROS over-accumulation leading to oxidative stress. Therefore, a suitable equilibrium is vital for redox homeostasis in plants, and there have been major advances in this research arena. Salicylic acid (SA) is known as a chief regulator of ROS; however, the underlying mechanisms remain largely unexplored. SA plays an important role in establishing the hypersensitive response (HR) and systemic acquired resistance (SAR). This is underpinned by a robust and complex network of SA with Non-Expressor of Pathogenesis Related protein-1 (NPR1), ROS, calcium ions (Ca2+), nitric oxide (NO) and mitogen-activated protein kinase (MAPK) cascades. In this review, we summarize the recent advances in the regulation of ROS and antioxidant defense system signalling by SA at the physiological and molecular levels. Understanding the molecular mechanisms of how SA controls redox homeostasis would provide a fundamental framework to develop approaches that will improve plant growth and fitness, in order to meet the increasing global demand for food and bioenergy.
Collapse
Affiliation(s)
- Mohd Saleem
- Plant Physiology and Biochemistry Section, Department of Botany, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India
| | - Qazi Fariduddin
- Plant Physiology and Biochemistry Section, Department of Botany, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India.
| | | |
Collapse
|
178
|
Goyal N, Bhatia G, Garewal N, Upadhyay A, Singh K. Identification of defense related gene families and their response against powdery and downy mildew infections in Vitis vinifera. BMC Genomics 2021; 22:776. [PMID: 34717533 PMCID: PMC8556916 DOI: 10.1186/s12864-021-08081-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/10/2021] [Indexed: 12/04/2022] Open
Abstract
Background Grapevine (Vitis vinifera) productivity has been severely affected by various bacterial, viral and fungal diseases worldwide. When a plant is infected with the pathogen, various defense mechanisms are subsequently activated in plants at various molecular levels. Thus, for substantiating the disease control in an eco-friendly way, it is essential to understand the molecular mechanisms governing pathogen resistance in grapes. Results In our study, we performed genome-wide identification of various defensive genes expressed during powdery mildew (PM) and downy mildew (DM) infections in grapevine. Consequently, we identified 6, 21, 2, 5, 3 and 48 genes of Enhanced Disease Susceptibility 1 (EDS1), Non-Race-specific Disease Resistance (NDR1), Phytoalexin deficient 4 (PAD4), Nonexpressor of PR Gene (NPR), Required for Mla-specified resistance (RAR) and Pathogenesis Related (PR), respectively, in the grapevine genome. The phylogenetic study revealed that V. vinifera defensive genes are evolutionarily related to Arabidopsis thaliana. Differential expression analysis resulted in identification of 2, 4, 7, 2, 4, 1 and 7 differentially expressed Nucleotide-binding leucine rich repeat receptor (NLR), EDS1, NDR1, PAD4, NPR, RAR1 and PR respectively against PM infections and 28, 2, 5, 4, 1 and 19 differentially expressed NLR, EDS1, NDR1, NPR, RAR1 and PR respectively against DM infections in V. vinifera. The co-expression study showed the occurrence of closely correlated defensive genes that were expressed during PM and DM stress conditions. Conclusion The PM and DM responsive defensive genes found in this study can be characterized in future for impelling studies relaying fungal and oomycete resistance in plants, and the functionally validated genes would then be available for conducting in-planta transgenic gene expression studies for grapes. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08081-4.
Collapse
Affiliation(s)
- Neetu Goyal
- Department of Biotechnology, Panjab University, BMS Block I, Sector 25, Chandigarh, -160014, India
| | - Garima Bhatia
- Department of Biotechnology, Panjab University, BMS Block I, Sector 25, Chandigarh, -160014, India
| | - Naina Garewal
- Department of Biotechnology, Panjab University, BMS Block I, Sector 25, Chandigarh, -160014, India
| | - Anuradha Upadhyay
- National Research Centre for Grapes, Solapur Road, Pune, Maharashtra, 412 307, India
| | - Kashmir Singh
- Department of Biotechnology, Panjab University, BMS Block I, Sector 25, Chandigarh, -160014, India.
| |
Collapse
|
179
|
Ramakrishna B, Sarma PVSRN, Ankati S, Bhuvanachandra B, Podile AR. Elicitation of defense response by transglycosylated chitooligosaccharides in rice seedlings. Carbohydr Res 2021; 510:108459. [PMID: 34700217 DOI: 10.1016/j.carres.2021.108459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 12/31/2022]
Abstract
Long-chain chitooligosaccharides (COS) with degree of polymerization (DP) more than 4 are known to have potential biological activities. A hyper-transglycosylating mutant of an endo-chitinase from Serratia proteamaculans (SpChiD-Y28A) was used to synthesize COS with DP6 and DP7 using COS DP5 as substrate. Purified COS with DP5-7 were tested to elicit the defense response in rice seedlings. Among the COS used, DP7 strongly induced oxidative burst response as well as peroxidase, and phenylalanine ammonia lyase activites. A few selected marker genes in salicylic acid (SA)- and jasmonic acid-dependent pathways were evaluated by real-time PCR. The expression levels of pathogenesis-related (PR) genes PR1a and PR10 and defense response genes (chitinase1, peroxidase and β -1,3-glucanase) were up regulated upon COS treatment in rice seedlings. The DP7 induced Phenylalanine ammonia lyase and Isochorismate synthase 1 genes, with concomitant increase of Mitogen-activated protein kinase 6 and WRKY45 transcription factor genes indicated the possible role of phosphorylation in the transmission of a signal to induce SA-mediated defense response in rice.
Collapse
Affiliation(s)
- Bellamkonda Ramakrishna
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, 500046, Telangana, India
| | - P V S R N Sarma
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, 500046, Telangana, India
| | - Sravani Ankati
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, 500046, Telangana, India
| | - Bhoopal Bhuvanachandra
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, 500046, Telangana, India
| | - Appa Rao Podile
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, 500046, Telangana, India.
| |
Collapse
|
180
|
Tzipilevich E, Russ D, Dangl JL, Benfey PN. Plant immune system activation is necessary for efficient root colonization by auxin-secreting beneficial bacteria. Cell Host Microbe 2021; 29:1507-1520.e4. [PMID: 34610294 DOI: 10.1016/j.chom.2021.09.005] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/07/2021] [Accepted: 08/24/2021] [Indexed: 12/13/2022]
Abstract
Although plant roots encounter a plethora of microorganisms in the surrounding soil, at the rhizosphere, plants exert selective forces on their bacterial colonizers. Unlike immune recognition of pathogenic bacteria, the mechanisms by which beneficial bacteria are selected and how they interact with the plant immune system are not well understood. To better understand this process, we studied the interaction of auxin-producing Bacillus velezensis FZB42 with Arabidopsis roots and found that activation of the plant immune system is necessary for efficient bacterial colonization and auxin secretion. A feedback loop is established in which bacterial colonization triggers an immune reaction and production of reactive oxygen species, which, in turn, stimulate auxin production by the bacteria. Auxin promotes bacterial survival and efficient root colonization, allowing the bacteria to inhibit fungal infection and promote plant health. Thus, a feedback loop between bacteria and the plant immune system promotes the fitness of both partners.
Collapse
Affiliation(s)
- Elhanan Tzipilevich
- Department of Biology, Duke University, Durham, NC 27708, USA; Howard Hughes Medical Institute Duke University, Durham, NC 27708, USA
| | - Dor Russ
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Howard Hughes Medical Institute. University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jeffery L Dangl
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Howard Hughes Medical Institute. University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Philip N Benfey
- Department of Biology, Duke University, Durham, NC 27708, USA; Howard Hughes Medical Institute Duke University, Durham, NC 27708, USA.
| |
Collapse
|
181
|
Ogawa T, Chen J, Mise K, Takano Y. Multiple Colletotrichum species commonly exhibit focal effector accumulation in a biotrophic interface at the primary invasion sites in their host plants. PLANT SIGNALING & BEHAVIOR 2021; 16:1935604. [PMID: 34120570 PMCID: PMC8331012 DOI: 10.1080/15592324.2021.1935604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/23/2021] [Accepted: 05/24/2021] [Indexed: 06/12/2023]
Abstract
Fungal plant pathogens deploy a suite of secreted proteins, called effectors, to facilitate successful infection. Several fungal pathogens have been reported to secrete and accumulate their effector proteins in the host-pathogen interfacial spaces. Previously, we reported that the strain 104-T of the cucurbit anthracnose pathogen Colletotrichum orbiculare secretes and accumulates mCherry-tagged effectors along with the formation of ring-shaped fluorescence signals beneath the appressoria. However, it was unclear whether these effector accumulation patterns occur in other C. orbiculare isolates and other species belonging to the Colletotrichum genus. Here, we investigated the effector localization during host infection of C. orbiculare MAFF306589, C. trifolii MAFF305078, which infects alfalfa, and C. higginsianum MAFF305635, which infects Brassicaceae plants. We generated effector-reporter lines of each species, which constitutively expressed mCherry-tagged CoDN3 effector (CoDN3:mCherry). Immunoblotting analysis of the liquid culture fluids of the generated lines detected CoDN3:mCherry, which confirmed secretion of CoDN3:mCherry by fungal cells. Via inoculation assays in the corresponding host plants, we detected ring-shaped CoDN3:mCherry fluorescence around the appressorial invasion sites in all tested reporter lines. These results suggest that pathogens in the Colletotrichum genus have evolutionarily conserved the trait of effector secretion in the infection stage irrespective of differences in their hosts.
Collapse
Affiliation(s)
- Taiki Ogawa
- Laboratory of Plant Pathology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Jinlian Chen
- Laboratory of Plant Pathology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Kazuyuki Mise
- Laboratory of Plant Pathology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Yoshitaka Takano
- Laboratory of Plant Pathology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| |
Collapse
|
182
|
Li T, Chen G, Zhang Q. VvXYLP02 confers gray mold resistance by amplifying jasmonate signaling pathway in Vitis vinifera. PLANT SIGNALING & BEHAVIOR 2021; 16:1940019. [PMID: 34254885 PMCID: PMC8331025 DOI: 10.1080/15592324.2021.1940019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 05/22/2023]
Abstract
Xylogen-like proteins (XYLPs) are essential for plant growth, development, and stress responses. However, little is known about the XYLP gene family in grape and its protective effects against gray mold a destructive disease caused by Botrytis cinerea. We identified and characterized six common XYLPs in the Vitis vinifera genome (VvXYLPs). VvXYLP expression pattern analyses with B. cinerea infection showed that VvXYLP02 was significantly up-regulated in the resistant genotype but down-regulated or only slightly up-regulated in the susceptible genotype. VvXYLP02 overexpression in Arabidopsis thaliana significantly increased resistance to B. cinerea, indicating that the candidate gene has functional importance. Furthermore, JA treatment significantly up-regulated VvXYLP02 expression in V. vinifera. JA-responsive genes were also up-regulated in VvXYLP02 overexpression lines in A. thaliana under B. cinerea inoculation. These findings suggest that VvXYLP02, which is induced by JA upon the pathogen infection, enhances JA dependent response to enforce plant resistance against gray mold disease.
Collapse
Affiliation(s)
- Tinggang Li
- Shandong Academy of Grape, Shandong Academy of Agricultural Sciences, Jinan, China
- CONTACT Li Tinggang Shandong Academy of Grape, Shandong Academy of Agricultural Sciences, No. 1-27, Shanda South Road, Jinan250100, China
| | - Guangxia Chen
- Shandong Academy of Grape, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Qianqian Zhang
- Shandong Academy of Grape, Shandong Academy of Agricultural Sciences, Jinan, China
| |
Collapse
|
183
|
Mishchenko L, Nazarov T, Dunich A, Mishchenko I, Ryshchakova O, Motsnyi I, Dashchenko A, Bezkrovna L, Fanin Y, Molodchenkova O, Smertenko A. Impact of Wheat Streak Mosaic Virus on Peroxisome Proliferation, Redox Reactions, and Resistance Responses in Wheat. Int J Mol Sci 2021; 22:ijms221910218. [PMID: 34638559 PMCID: PMC8508189 DOI: 10.3390/ijms221910218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/15/2021] [Accepted: 09/19/2021] [Indexed: 02/07/2023] Open
Abstract
Although peroxisomes play an essential role in viral pathogenesis, and viruses are known to change peroxisome morphology, the role of genotype in the peroxisomal response to viruses remains poorly understood. Here, we analyzed the impact of wheat streak mosaic virus (WSMV) on the peroxisome proliferation in the context of pathogen response, redox homeostasis, and yield in two wheat cultivars, Patras and Pamir, in the field trials. We observed greater virus content and yield losses in Pamir than in Patras. Leaf chlorophyll and protein content measured at the beginning of flowering were also more sensitive to WSMV infection in Pamir. Patras responded to the WSMV infection by transcriptional up-regulation of the peroxisome fission genes PEROXIN 11C (PEX11C), DYNAMIN RELATED PROTEIN 5B (DRP5B), and FISSION1A (FIS1A), greater peroxisome abundance, and activation of pathogenesis-related proteins chitinase, and β-1,3-glucanase. Oppositely, in Pamir, WMSV infection suppressed transcription of peroxisome biogenesis genes and activity of chitinase and β-1,3-glucanase, and did not affect peroxisome abundance. Activity of ROS scavenging enzymes was higher in Patras than in Pamir. Thus, the impact of WMSV on peroxisome proliferation is genotype-specific and peroxisome abundance can be used as a proxy for the magnitude of plant immune response.
Collapse
Affiliation(s)
- Lidiya Mishchenko
- Institute of Biology and Medicine, Educational and Scientific Center, Taras Shevchenko National University of Kyiv, 01601 Kyiv, Ukraine;
- Correspondence: (L.M.); (O.M.); (A.S.); Tel.: +38-097-917-80-51 (L.M.); +38-067-557-73-20 (O.M.); +1-509-335-5795 (A.S.)
| | - Taras Nazarov
- Institute of Biological Chemistry, Washington State University, Pullman, WA 991641, USA;
| | - Alina Dunich
- Institute of Biology and Medicine, Educational and Scientific Center, Taras Shevchenko National University of Kyiv, 01601 Kyiv, Ukraine;
| | - Ivan Mishchenko
- Faculty of Agricultural Management, National University of Life and Environmental Sciences of Ukraine, 15 Heroyiv Oborony, 03041 Kyiv, Ukraine; (I.M.); (A.D.)
| | - Olga Ryshchakova
- Laboratory of Plant Biochemistry, National Center of Seed and Cultivar Investigation, Plant Breeding & Genetics Institute, 65036 Odessa, Ukraine; (O.R.); (I.M.); (L.B.); (Y.F.)
| | - Ivan Motsnyi
- Laboratory of Plant Biochemistry, National Center of Seed and Cultivar Investigation, Plant Breeding & Genetics Institute, 65036 Odessa, Ukraine; (O.R.); (I.M.); (L.B.); (Y.F.)
| | - Anna Dashchenko
- Faculty of Agricultural Management, National University of Life and Environmental Sciences of Ukraine, 15 Heroyiv Oborony, 03041 Kyiv, Ukraine; (I.M.); (A.D.)
| | - Lidiya Bezkrovna
- Laboratory of Plant Biochemistry, National Center of Seed and Cultivar Investigation, Plant Breeding & Genetics Institute, 65036 Odessa, Ukraine; (O.R.); (I.M.); (L.B.); (Y.F.)
| | - Yaroslav Fanin
- Laboratory of Plant Biochemistry, National Center of Seed and Cultivar Investigation, Plant Breeding & Genetics Institute, 65036 Odessa, Ukraine; (O.R.); (I.M.); (L.B.); (Y.F.)
| | - Olga Molodchenkova
- Laboratory of Plant Biochemistry, National Center of Seed and Cultivar Investigation, Plant Breeding & Genetics Institute, 65036 Odessa, Ukraine; (O.R.); (I.M.); (L.B.); (Y.F.)
- Correspondence: (L.M.); (O.M.); (A.S.); Tel.: +38-097-917-80-51 (L.M.); +38-067-557-73-20 (O.M.); +1-509-335-5795 (A.S.)
| | - Andrei Smertenko
- Institute of Biological Chemistry, Washington State University, Pullman, WA 991641, USA;
- Correspondence: (L.M.); (O.M.); (A.S.); Tel.: +38-097-917-80-51 (L.M.); +38-067-557-73-20 (O.M.); +1-509-335-5795 (A.S.)
| |
Collapse
|
184
|
Zeiss DR, Steenkamp PA, Piater LA, Dubery IA. Altered metabolomic states elicited by Flg22 and FlgII-28 in Solanum lycopersicum: intracellular perturbations and metabolite defenses. BMC PLANT BIOLOGY 2021; 21:429. [PMID: 34548030 PMCID: PMC8456652 DOI: 10.1186/s12870-021-03200-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 08/31/2021] [Indexed: 05/13/2023]
Abstract
BACKGROUND Surveillance of potential pathogens is a key feature of plant innate immunity. For non-self-recognition plants rely on the perception of pathogen-derived molecules. Early post-perception events activate signaling cascades, leading to the synthesis of defense-related proteins and specialized metabolites, thereby providing a broad-spectrum antimicrobial coverage. This study was concerned with tracking changes in the tomato plant metabolome following perception of the flagellum-derived elicitors (Flg22 and FlgII-28). RESULTS Following an untargeted metabolomics workflow, the metabolic profiles of a Solanum lycopersicum cultivar were monitored over a time range of 16-32 h post-treatment. Liquid chromatography was used to resolve the complex mixture of metabolites and mass spectrometry for the detection of differences associated with the elicitor treatments. Stringent data processing and multivariate statistical tools were applied to the complex dataset to extract relevant metabolite features associated with the elicitor treatments. Following perception of Flg22 and FlgII-28, both elicitors triggered an oxidative burst, albeit with different kinetic responses. Signatory biomarkers were annotated from diverse metabolite classes which included amino acid derivatives, lipid species, steroidal glycoalkaloids, hydroxybenzoic acids, hydroxycinnamic acids and derivatives, as well as flavonoids. CONCLUSIONS An untargeted metabolomics approach adequately captured the subtle and nuanced perturbations associated with elicitor-linked plant defense responses. The shared and unique features characterizing the metabolite profiles suggest a divergence of signal transduction events following perception of Flg22 vs. FlgII-28, leading to a differential reorganization of downstream metabolic pathways.
Collapse
Affiliation(s)
- Dylan R Zeiss
- Research Centre for Plant Metabolomics, Department of Biochemistry, University of Johannesburg, P.O. Box 524, Auckland Park, 2006, Johannesburg, South Africa
| | - Paul A Steenkamp
- Research Centre for Plant Metabolomics, Department of Biochemistry, University of Johannesburg, P.O. Box 524, Auckland Park, 2006, Johannesburg, South Africa
| | - Lizelle A Piater
- Research Centre for Plant Metabolomics, Department of Biochemistry, University of Johannesburg, P.O. Box 524, Auckland Park, 2006, Johannesburg, South Africa
| | - Ian A Dubery
- Research Centre for Plant Metabolomics, Department of Biochemistry, University of Johannesburg, P.O. Box 524, Auckland Park, 2006, Johannesburg, South Africa.
| |
Collapse
|
185
|
Ochoa-Meza LC, Quintana-Obregón EA, Vargas-Arispuro I, Falcón-Rodríguez AB, Aispuro-Hernández E, Virgen-Ortiz JJ, Martínez-Téllez MÁ. Oligosaccharins as Elicitors of Defense Responses in Wheat. Polymers (Basel) 2021; 13:3105. [PMID: 34578006 PMCID: PMC8470072 DOI: 10.3390/polym13183105] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/11/2021] [Accepted: 09/12/2021] [Indexed: 11/16/2022] Open
Abstract
Wheat is a highly relevant crop worldwide, and like other massive crops, it is susceptible to foliar diseases, which can cause devastating losses. The current strategies to counteract wheat diseases include global monitoring of pathogens, developing resistant genetic varieties, and agrochemical applications upon diseases' appearance. However, the suitability of these strategies is far from permanent, so other alternatives based on the stimulation of the plants' systemic responses are being explored. Plants' defense mechanisms can be elicited in response to the perception of molecules mimicking the signals triggered upon the attack of phytopathogens, such as the release of plant and fungal cell wall-derived oligomers, including pectin and chitin derivatives, respectively. Among the most studied cell wall-derived bioelicitors, oligogalacturonides and oligochitosans have received considerable attention in recent years due to their ability to trigger defense responses and enhance the synthesis of antipathogenic compounds in plants. Particularly, in wheat, the application of bioelicitors induces lignification and accumulation of polyphenolic compounds and increases the gene expression of pathogenesis-related proteins, which together reduce the severity of fungal infections. Therefore, exploring the use of cell wall-derived elicitors, known as oligosaccharins, stands as an attractive option for the management of crop diseases by improving plant readiness for responding promptly to potential infections. This review explores the potential of plant- and fungal-derived oligosaccharins as a practical means to be implemented in wheat crops.
Collapse
Affiliation(s)
- Laura Celina Ochoa-Meza
- Coordination of Food Technology of Vegetal Origin, Research Center for Food and Development (CIAD), Ave. Gustavo E. Astiazarán #46, Hermosillo 83304, Sonora, Mexico; (L.C.O.-M.); (E.A.-H.)
| | - Eber Addí Quintana-Obregón
- CONACYT—Research Center for Food and Development (CIAD), Hermosillo 83304, Sonora, Mexico; (E.A.Q.-O.); (J.J.V.-O.)
| | - Irasema Vargas-Arispuro
- Coordination of Food Sciences, Research Center for Food and Development (CIAD), Hermosillo 83304, Sonora, Mexico;
| | | | - Emmanuel Aispuro-Hernández
- Coordination of Food Technology of Vegetal Origin, Research Center for Food and Development (CIAD), Ave. Gustavo E. Astiazarán #46, Hermosillo 83304, Sonora, Mexico; (L.C.O.-M.); (E.A.-H.)
| | - José J. Virgen-Ortiz
- CONACYT—Research Center for Food and Development (CIAD), Hermosillo 83304, Sonora, Mexico; (E.A.Q.-O.); (J.J.V.-O.)
- Center of Innovation and Agroalimentary Development of Michoacán (CIDAM), Morelia 58341, Michoacán, Mexico
| | - Miguel Ángel Martínez-Téllez
- Coordination of Food Technology of Vegetal Origin, Research Center for Food and Development (CIAD), Ave. Gustavo E. Astiazarán #46, Hermosillo 83304, Sonora, Mexico; (L.C.O.-M.); (E.A.-H.)
| |
Collapse
|
186
|
Xu Y, Zhang Y, Zhu J, Sun Y, Guo B, Liu F, Huang J, Wang H, Dong S, Wang Y, Wang Y. Phytophthora sojae apoplastic effector AEP1 mediates sugar uptake by mutarotation of extracellular aldose and is recognized as a MAMP. PLANT PHYSIOLOGY 2021; 187:321-335. [PMID: 34618132 PMCID: PMC8418418 DOI: 10.1093/plphys/kiab239] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 05/04/2021] [Indexed: 05/03/2023]
Abstract
Diseases caused by Phytophthora pathogens devastate many crops worldwide. During infection, Phytophthora pathogens secrete effectors, which are central molecules for understanding the complex plant-Phytophthora interactions. In this study, we profiled the effector repertoire secreted by Phytophthora sojae into the soybean (Glycine max) apoplast during infection using liquid chromatography-mass spectrometry. A secreted aldose 1-epimerase (AEP1) was shown to induce cell death in Nicotiana benthamiana, as did the other two AEP1s from different Phytophthora species. AEP1 could also trigger immune responses in N. benthamiana, other Solanaceae plants, and Arabidopsis (Arabidopsis thaliana). A glucose dehydrogenase assay revealed AEP1 encodes an active AEP1. The enzyme activity of AEP1 is dispensable for AEP1-triggered cell death and immune responses, while AEP-triggered immune signaling in N. benthamiana requires the central immune regulator BRASSINOSTEROID INSENSITIVE 1-associated receptor kinase 1. In addition, AEP1 acts as a virulence factor that mediates P. sojae extracellular sugar uptake by mutarotation of extracellular aldose from the α-anomer to the β-anomer. Taken together, these results revealed the function of a microbial apoplastic effector, highlighting the importance of extracellular sugar uptake for Phytophthora infection. To counteract, the key effector for sugar conversion can be recognized by the plant membrane receptor complex to activate plant immunity.
Collapse
Affiliation(s)
- Yuanpeng Xu
- Department of Plant Pathology, the Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, the Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
| | - Yunhuan Zhang
- Department of Plant Pathology, the Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, the Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
| | - Jinyin Zhu
- Department of Plant Pathology, the Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, the Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
| | - Yujing Sun
- Department of Plant Pathology, the Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, the Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
| | - Baodian Guo
- Department of Plant Pathology, the Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, the Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
| | - Fan Liu
- Department of Plant Pathology, the Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, the Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
| | - Jie Huang
- Department of Plant Pathology, the Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, the Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
| | - Haonan Wang
- Department of Plant Pathology, the Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, the Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
| | - Suomeng Dong
- Department of Plant Pathology, the Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, the Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
| | - Yan Wang
- Department of Plant Pathology, the Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, the Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuanchao Wang
- Department of Plant Pathology, the Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, the Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
- Author for communication:
| |
Collapse
|
187
|
Su C, Li H, Chen B, Li C, Zhang C, Xu L, Lan M, Shen Y. Pharmacological effects of Pugionium cornutum (L.) Gaertn. extracts on gastrointestinal motility are partially mediated by quercetin. BMC Complement Med Ther 2021; 21:223. [PMID: 34479558 PMCID: PMC8417984 DOI: 10.1186/s12906-021-03395-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 08/17/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The majority of global population suffer from various functional gastrointestinal disorders. Pugionium cornutum (L.) Gaertn. (PCG) is used to relieve indigestive symptoms in traditional Chinese medicine. However, little is known about the effects of bioactive components from PCG extracts on gastrointestinal motility. METHODS Crude ethanol extract of PCG (EEP) was prepared from Pugionium cornutum (L.) Gaertn. Different solvents were used to prepare fine extracts from EEP, including water extract of PCG (WEP), petroleum ether extract of PCG (PEEP), dichloromethane extract of PCG (DEP) and ethyl acetate extract of PCG (EAEP). Smooth muscle cell model and colonic smooth muscle stripe model were used to test the bioactive effects and mechanisms of different PCG extracts on contraction and relaxation. Diverse chromatographic methods were used to identify bioactive substances from PCG extracts. RESULTS EEP was found to promote the relaxation of gastric smooth muscle cell and inhibit the contraction of colonic smooth muscle strip. Among the fractions of EEP, EAEP mainly mediated the relaxation effect by stimulating intracellular calcium influx. Further evidences revealed that EAEP was antagonistic to acetylcholine. In addition, COX and NO-GC-PKC pathways may be also involved in EAEP-mediated relaxation effect. Quercetin was identified as a bioactive compound from PCG extract for the relaxation effect. CONCLUSION Our research supports the notion that PCG extracts promote relaxation and inhibits contraction of gastrointestinal smooth muscle at least partially through the effect from quercetin.
Collapse
Affiliation(s)
- Chencan Su
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, 229 North Taibai Avenue, Xi'an, 710127, Shaanxi, China
| | - Haoyu Li
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, 229 North Taibai Avenue, Xi'an, 710127, Shaanxi, China.,College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, 716000, Shaanxi, China
| | - Bang Chen
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, 229 North Taibai Avenue, Xi'an, 710127, Shaanxi, China
| | - Cong Li
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, 229 North Taibai Avenue, Xi'an, 710127, Shaanxi, China.
| | - Chunxiao Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, 229 North Taibai Avenue, Xi'an, 710127, Shaanxi, China
| | - Long Xu
- Shaanxi Provincial Academy of Environmental Science, Xi'an, 710061, Shaanxi, China
| | - Mei Lan
- Digestive Internal Medicine Department, Shaoxing Paojiang Hospital, Shaoxing, 312000, Zhejiang, China
| | - Yehua Shen
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, 229 North Taibai Avenue, Xi'an, 710127, Shaanxi, China.
| |
Collapse
|
188
|
Solis-Miranda J, Quinto C. The CrRLK1L subfamily: One of the keys to versatility in plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 166:88-102. [PMID: 34091211 DOI: 10.1016/j.plaphy.2021.05.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/18/2021] [Indexed: 06/12/2023]
Abstract
Catharanthus roseous kinase 1L receptors (CrRLK1Ls) are a subfamily of membrane receptors unique to plant cells that perceive internal and external signals, integrate metabolic, physiological, and molecular processes, and regulate plant development. Recent genomic studies have suggested that this receptor subfamily arose during the emergence of terrestrial plants and has since diversified, preserving its essential functions. Participation of some of these CrRLK1Ls in different processes is presented and discussed herein, as well as the increasing number of interactors necessary for their function. At least five different responses have been detected after activating these receptors, such as physiological changes, formation or disassembly of protein complexes, metabolic responses, modification of gene expression, and modulation of phytohormone activity. To date, a common response mechanism for all processes involving CrRLK1Ls has not been described. In this review, the information available on the different functions of CrRLK1Ls was compiled. Additionally, the physiological and/or molecular mechanisms involved in the signaling processes triggered by these receptors are also discussed. In this review, we propose a possible common signaling mechanism for all processes regulated by CrRLK1Ls and pose questions to be answered in the future.
Collapse
Affiliation(s)
- Jorge Solis-Miranda
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Colonia Chamilpa, Cuernavaca, Morelos, 62210, Mexico.
| | - Carmen Quinto
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Colonia Chamilpa, Cuernavaca, Morelos, 62210, Mexico.
| |
Collapse
|
189
|
Li YH, Ke TY, Shih WC, Liou RF, Wang CW. NbSOBIR1 Partitions Into Plasma Membrane Microdomains and Binds ER-Localized NbRLP1. FRONTIERS IN PLANT SCIENCE 2021; 12:721548. [PMID: 34539715 PMCID: PMC8442688 DOI: 10.3389/fpls.2021.721548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
The receptor-like kinase Suppressor of BIR1 (SOBIR1) binds various receptor-like proteins (RLPs) that perceive microbe-associated molecular patterns (MAMPs) at the plasma membrane, which is thought to activate plant pattern-triggered immunity (PTI) against pathogen invasion. Despite its potentially crucial role, how SOBIR1 transmits immune signaling to ultimately elicit PTI remains largely unresolved. Herein, we report that a Nicotiana benthamiana gene NbRLP1, like NbSOBIR1, was highly induced upon Phytophthora parasitica infection. Intriguingly, NbRLP1 is characterized as a receptor-like protein localizing to the endoplasmic reticulum (ER) membrane rather than the plasma membrane. Using bimolecular fluorescence complementation and affinity purification assays, we established that NbRLP1 is likely to associate with NbSOBIR1 through the contact between the ER and plasma membrane. We further found that NbSOBIR1 at the plasma membrane partitions into mobile microdomains that undergo frequent lateral movement and internalization. Remarkably, the dynamics of NbSOBIR1 microdomain is coupled to the remodeling of the cortical ER network. When NbSOBIR1 microdomains were induced by the P. parasitica MAMP ParA1, tobacco cells overexpressing NbRLP1 accelerated NbSOBIR1 internalization. Overexpressing NbRLP1 in tobacco further exaggerated the ParA1-induced necrosis. Together, these findings have prompted us to propose that ER and the ER-localized NbRLP1 may play a role in transmitting plant immune signals by regulating NbSOBIR1 internalization.
Collapse
Affiliation(s)
- Yi-Hua Li
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Tai-Yu Ke
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan
| | - Wei-Che Shih
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan
| | - Ruey-Fen Liou
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan
| | - Chao-Wen Wang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
190
|
Li X, Li S, Liu Y, He Q, Liu W, Lin C, Miao W. HbLFG1, a Rubber Tree ( Hevea brasiliensis) Lifeguard Protein, Can Facilitate Powdery Mildew Infection by Suppressing Plant Immunity. PHYTOPATHOLOGY 2021; 111:1648-1659. [PMID: 34047620 DOI: 10.1094/phyto-08-20-0362-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Powdery mildew causes substantial losses in crop and economic plant yields worldwide. Although powdery mildew infection of rubber trees (Hevea brasiliensis), caused by the biotrophic fungus Erysiphe quercicola, severely threatens natural rubber production, little is known about the mechanism by which E. quercicola adapts to H. brasiliensis to invade the host plant. In barley and Arabidopsis thaliana, lifeguard (LFG) proteins, which have topological similarity to BAX INHIBITOR-1, are involved in host plant susceptibility to powdery mildew infection. In this study, we characterized an H. brasiliensis LFG protein (HbLFG1) with a focus on its function in regulating defense against powdery mildew. HbLFG1 gene expression was found to be upregulated during E. quercicola infection. HbLFG1 showed conserved functions in cell death inhibition and membrane localization. Expression of HbLFG1 in Nicotiana benthamiana leaves and A. thaliana Col-0 was demonstrated to significantly suppress callose deposition induced by conserved pathogen-associated molecular patterns chitin and flg22. Furthermore, we found that overexpression of HbLFG1 in H. brasiliensis mesophyll protoplasts significantly suppressed the chitin-induced burst of reactive oxygen species. Although A. thaliana Col-0 and E. quercicola displayed an incompatible interaction, Col-0 transformants overexpressing HbLFG1 were shown to be susceptible to E. quercicola. Collectively, the findings of this study provide evidence that HbLFG1 acts as a negative regulator of plant immunity that facilitates E. quercicola infection in H. brasiliensis.
Collapse
Affiliation(s)
- Xiao Li
- College of Plant Protection, Hainan University, Haikou 570228, China
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou 570228, China
| | - Sipeng Li
- College of Plant Protection, Hainan University, Haikou 570228, China
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou 570228, China
| | - Yuhan Liu
- College of Plant Protection, Hainan University, Haikou 570228, China
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou 570228, China
| | - Qiguang He
- College of Plant Protection, Hainan University, Haikou 570228, China
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou 570228, China
| | - Wenbo Liu
- College of Plant Protection, Hainan University, Haikou 570228, China
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou 570228, China
| | - Chunhua Lin
- College of Plant Protection, Hainan University, Haikou 570228, China
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou 570228, China
| | - Weiguo Miao
- College of Plant Protection, Hainan University, Haikou 570228, China
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou 570228, China
| |
Collapse
|
191
|
Piazza S, Campa M, Pompili V, Costa LD, Salvagnin U, Nekrasov V, Zipfel C, Malnoy M. The Arabidopsis pattern recognition receptor EFR enhances fire blight resistance in apple. HORTICULTURE RESEARCH 2021; 8:204. [PMID: 34465763 PMCID: PMC8408165 DOI: 10.1038/s41438-021-00639-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/28/2021] [Accepted: 07/05/2021] [Indexed: 05/12/2023]
Abstract
Fire blight disease, caused by the bacterium Erwinia amylovora (E. amylovora), is responsible for substantial losses in cultivated apples worldwide. An important mechanism of plant immunity is based on the recognition of conserved microbial molecules, named pathogen-associated or microbe-associated molecular patterns (PAMPs or MAMPs), through pattern recognition receptors (PRRs), leading to pattern-triggered immunity (PTI). The interspecies transfer of PRRs represents a promising strategy to engineer broad-spectrum and durable disease resistance in crops. EFR, the Arabidopsis thaliana PRR for the PAMP elf18 derived from the elongation factor thermal unstable (EF-Tu) proved to be effective in improving bacterial resistance when expressed into Solanaceae and other plant species. In this study, we tested whether EFR can affect the interaction of apple with E. amylovora by its ectopic expression in the susceptible apple rootstock M.26. Stable EFR expression led to the activation of PAMP-triggered immune response in apple leaves upon treatment with supernatant of E. amylovora, as measured by the production of reactive oxygen species and the induction of known defense genes. The amount of tissue necrosis associated with E. amylovora infection was significantly reduced in the EFR transgenic rootstock compared to the wild-type. Our results show that the expression of EFR in apple rootstock may be a valuable biotechnology strategy to improve the resistance of apple to fire blight.
Collapse
Affiliation(s)
- Stefano Piazza
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele a/Adige, Italy
| | - Manuela Campa
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele a/Adige, Italy
- Genetics Department, Faculty of AgriSciences, Stellenbosch University, Stellenbosch, South Africa
| | - Valerio Pompili
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele a/Adige, Italy
| | - Lorenza Dalla Costa
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele a/Adige, Italy
| | - Umberto Salvagnin
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele a/Adige, Italy
| | - Vladimir Nekrasov
- The Sainsbury Laboratory, University of East Anglia, Norwich, United Kingdom
- Plant Sciences Department, Rothamsted Research, Harpenden, UK
| | - Cyril Zipfel
- The Sainsbury Laboratory, University of East Anglia, Norwich, United Kingdom
- Institute of Plant and Microbial Biology and Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland
| | - Mickael Malnoy
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele a/Adige, Italy.
| |
Collapse
|
192
|
Chae HB, Kim MG, Kang CH, Park JH, Lee ES, Lee SU, Chi YH, Paeng SK, Bae SB, Wi SD, Yun BW, Kim WY, Yun DJ, Mackey D, Lee SY. Redox sensor QSOX1 regulates plant immunity by targeting GSNOR to modulate ROS generation. MOLECULAR PLANT 2021; 14:1312-1327. [PMID: 33962063 DOI: 10.1016/j.molp.2021.05.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 02/25/2021] [Accepted: 05/03/2021] [Indexed: 05/22/2023]
Abstract
Reactive oxygen signaling regulates numerous biological processes, including stress responses in plants. Redox sensors transduce reactive oxygen signals into cellular responses. Here, we present biochemical evidence that a plant quiescin sulfhydryl oxidase homolog (QSOX1) is a redox sensor that negatively regulates plant immunity against a bacterial pathogen. The expression level of QSOX1 is inversely correlated with pathogen-induced reactive oxygen species (ROS) accumulation. Interestingly, QSOX1 both senses and regulates ROS levels by interactingn with and mediating redox regulation of S-nitrosoglutathione reductase, which, consistent with previous findings, influences reactive nitrogen-mediated regulation of ROS generation. Collectively, our data indicate that QSOX1 is a redox sensor that negatively regulates plant immunity by linking reactive oxygen and reactive nitrogen signaling to limit ROS production.
Collapse
Affiliation(s)
- Ho Byoung Chae
- Division of Applied Life Sciences (BK21) and PMBBRC, Gyeongsang National University, Jinju 52828, Korea
| | - Min Gab Kim
- College of Pharmacy, Research Institute of Pharmaceutical Science, Gyeongsang National University, Jinju 52828, Korea
| | - Chang Ho Kang
- Division of Applied Life Sciences (BK21) and PMBBRC, Gyeongsang National University, Jinju 52828, Korea
| | - Joung Hun Park
- Division of Applied Life Sciences (BK21) and PMBBRC, Gyeongsang National University, Jinju 52828, Korea
| | - Eun Seon Lee
- Division of Applied Life Sciences (BK21) and PMBBRC, Gyeongsang National University, Jinju 52828, Korea
| | - Sang-Uk Lee
- School of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Korea
| | - Yong Hun Chi
- Plant Propagation Team, Plant Production Division, Sejong National Arboretum, Sejong 30106, Korea
| | - Seol Ki Paeng
- Division of Applied Life Sciences (BK21) and PMBBRC, Gyeongsang National University, Jinju 52828, Korea
| | - Su Bin Bae
- Division of Applied Life Sciences (BK21) and PMBBRC, Gyeongsang National University, Jinju 52828, Korea
| | - Seong Dong Wi
- Division of Applied Life Sciences (BK21) and PMBBRC, Gyeongsang National University, Jinju 52828, Korea
| | - Byung-Wook Yun
- School of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Korea
| | - Woe-Yeon Kim
- Division of Applied Life Sciences (BK21) and PMBBRC, Gyeongsang National University, Jinju 52828, Korea
| | - Dae-Jin Yun
- Department of Biomedical Science and Engineering, Konkuk University, Seoul 05029, Korea
| | - David Mackey
- Department of Horticulture and Crop Science, Department of Molecular Genetics, and Center for Applied Plant Sciences, The Ohio State University, Columbus, OH 43210, USA.
| | - Sang Yeol Lee
- Division of Applied Life Sciences (BK21) and PMBBRC, Gyeongsang National University, Jinju 52828, Korea; College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, P.R. China.
| |
Collapse
|
193
|
Ceulemans E, Ibrahim HMM, De Coninck B, Goossens A. Pathogen Effectors: Exploiting the Promiscuity of Plant Signaling Hubs. TRENDS IN PLANT SCIENCE 2021; 26:780-795. [PMID: 33674173 DOI: 10.1016/j.tplants.2021.01.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 01/21/2021] [Accepted: 01/29/2021] [Indexed: 05/27/2023]
Abstract
Pathogens produce effectors to overcome plant immunity, thereby threatening crop yields and global food security. Large-scale interactomic studies have revealed that pathogens from different kingdoms of life target common plant proteins during infection, the so-called effector hubs. These hubs often play central roles in numerous plant processes through their ability to interact with multiple plant proteins. This ability arises partly from the presence of intrinsically disordered domains (IDDs) in their structure. Here, we highlight the role of the TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR (TCP) and JASMONATE-ZIM DOMAIN (JAZ) transcription regulator families as plant signaling and effector hubs. We consider different evolutionary hypotheses to rationalize the existence of diverse effectors sharing common targets and the possible role of IDDs in this interaction.
Collapse
Affiliation(s)
- Evi Ceulemans
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium; VIB, Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Heba M M Ibrahim
- Division of Crop Biotechnics, Department of Biosystems, Katholieke Universiteit (KU) Leuven, 3001 Leuven, Belgium
| | - Barbara De Coninck
- Division of Crop Biotechnics, Department of Biosystems, Katholieke Universiteit (KU) Leuven, 3001 Leuven, Belgium.
| | - Alain Goossens
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium; VIB, Center for Plant Systems Biology, 9052 Ghent, Belgium.
| |
Collapse
|
194
|
Zeier J. Metabolic regulation of systemic acquired resistance. CURRENT OPINION IN PLANT BIOLOGY 2021; 62:102050. [PMID: 34058598 DOI: 10.1016/j.pbi.2021.102050] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/29/2021] [Accepted: 04/11/2021] [Indexed: 05/03/2023]
Abstract
Plants achieve an optimal balance between growth and defense by a fine-tuned biosynthesis and metabolic inactivation of immune-stimulating small molecules. Recent research illustrates that three common hubs are involved in the cooperative regulation of systemic acquired resistance (SAR) by the defense hormones N-hydroxypipecolic acid (NHP) and salicylic acid (SA). First, a common set of regulatory proteins is involved in their biosynthesis. Second, NHP and SA are glucosylated by the same glycosyltransferase, UGT76B1, and thereby inactivated in concert. And third, NHP confers immunity via the SA receptor NPR1 to reprogram plants at the level of transcription and primes plants for an enhanced defense capacity. An overview of SA and NHP metabolism is provided, and their contribution to long-distance signaling in SAR is discussed.
Collapse
Affiliation(s)
- Jürgen Zeier
- Institute for Molecular Ecophysiology of Plants, Department of Biology, Heinrich Heine University, Universitätsstraße 1, D-40225 Düsseldorf, Germany; Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University, Universitätsstraße 1, D-40225 Düsseldorf, Germany.
| |
Collapse
|
195
|
Campos MD, Félix MDR, Patanita M, Materatski P, Varanda C. High throughput sequencing unravels tomato-pathogen interactions towards a sustainable plant breeding. HORTICULTURE RESEARCH 2021; 8:171. [PMID: 34333540 PMCID: PMC8325677 DOI: 10.1038/s41438-021-00607-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/08/2021] [Accepted: 06/15/2021] [Indexed: 05/24/2023]
Abstract
Tomato (Solanum lycopersicum) is one of the most economically important vegetables throughout the world. It is one of the best studied cultivated dicotyledonous plants, often used as a model system for plant research into classical genetics, cytogenetics, molecular genetics, and molecular biology. Tomato plants are affected by different pathogens such as viruses, viroids, fungi, oomycetes, bacteria, and nematodes, that reduce yield and affect product quality. The study of tomato as a plant-pathogen system helps to accelerate the discovery and understanding of the molecular mechanisms underlying disease resistance and offers the opportunity of improving the yield and quality of their edible products. The use of functional genomics has contributed to this purpose through both traditional and recently developed techniques, that allow the identification of plant key functional genes in susceptible and resistant responses, and the understanding of the molecular basis of compatible interactions during pathogen attack. Next-generation sequencing technologies (NGS), which produce massive quantities of sequencing data, have greatly accelerated research in biological sciences and offer great opportunities to better understand the molecular networks of plant-pathogen interactions. In this review, we summarize important research that used high-throughput RNA-seq technology to obtain transcriptome changes in tomato plants in response to a wide range of pathogens such as viruses, fungi, bacteria, oomycetes, and nematodes. These findings will facilitate genetic engineering efforts to incorporate new sources of resistance in tomato for protection against pathogens and are of major importance for sustainable plant-disease management, namely the ones relying on the plant's innate immune mechanisms in view of plant breeding.
Collapse
Affiliation(s)
- Maria Doroteia Campos
- MED - Mediterranean Institute for Agriculture, Environment and Development, Instituto de Investigação e Formação Avançada, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554, Évora, Portugal.
| | - Maria do Rosário Félix
- MED - Mediterranean Institute for Agriculture, Environment and Development & Departamento de Fitotecnia, Escola de Ciências e Tecnologia, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554, Évora, Portugal
| | - Mariana Patanita
- MED - Mediterranean Institute for Agriculture, Environment and Development, Instituto de Investigação e Formação Avançada, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554, Évora, Portugal
| | - Patrick Materatski
- MED - Mediterranean Institute for Agriculture, Environment and Development, Instituto de Investigação e Formação Avançada, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554, Évora, Portugal
| | - Carla Varanda
- MED - Mediterranean Institute for Agriculture, Environment and Development, Instituto de Investigação e Formação Avançada, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554, Évora, Portugal
| |
Collapse
|
196
|
De A, Maity A, Mazumder M, Mondal B, Mukherjee A, Ghosh S, Ray P, Polley S, Dastidar SG, Basu D. Overexpression of LYK4, a lysin motif receptor with non-functional kinase domain, enhances tolerance to Alternaria brassicicola and increases trichome density in Brassica juncea. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 309:110953. [PMID: 34134846 DOI: 10.1016/j.plantsci.2021.110953] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/17/2021] [Accepted: 05/20/2021] [Indexed: 06/12/2023]
Abstract
Lysin motif receptor-like kinases (LYKs) are involved in the recognition of chitin and activation of plant immune response. In this study, we found LYK4 to be strongly induced in resistant Sinapis alba compared with susceptible Brassica juncea on challenge with Alternaria brassicicola. In silico analysis and in vitro kinase assay revealed that despite the presence of canonical protein kinase fold, B.juncea LYK4 (BjLYK4) lacks several key residues of a prototype protein kinase which renders it catalytically inactive. Transient expression analysis confirmed that fluorescently tagged BjLYK4 localizes specifically to the plasma membrane. Overexpression (OE) of BjLYK4 in B. juncea enhanced tolerance against A. brassicicola. Interestingly, the OE lines also exhibited a novel trichome dense phenotype and increased jasmonic acid (JA) responsiveness. We further showed that many chitin responsive WRKY transcription factors and JA biosynthetic genes were strongly induced in the OE lines on challenge with the pathogen. Moreover, several JA inducible trichome developmental genes constituting the WD-repeat/bHLH/MYB activator complex were also upregulated in the OE lines compared with vector control and RNA interference line. These results suggest that BjLYK4 plays an essential role in chitin-dependent activation of defense response and chitin independent trichome development likely by influencing the JA signaling pathway.
Collapse
Affiliation(s)
- Aishee De
- Division of Plant Biology, Bose Institute, P1/12 C.I.T. Scheme-VIIM, Kankurgachi, Kolkata, 700054, India.
| | - Atanu Maity
- Division of Bioinformatics, Bose Institute, P1/12 C.I.T. Scheme-VIIM, Kankurgachi, Kolkata, 700054, India.
| | - Mrinmoy Mazumder
- Department of Biological Sciences, National University of Singapore (NUS), Singapore, 119077.
| | - Banani Mondal
- Division of Plant Biology, Bose Institute, P1/12 C.I.T. Scheme-VIIM, Kankurgachi, Kolkata, 700054, India.
| | - Amrita Mukherjee
- Division of Plant Biology, Bose Institute, P1/12 C.I.T. Scheme-VIIM, Kankurgachi, Kolkata, 700054, India.
| | - Swagata Ghosh
- Division of Plant Biology, Bose Institute, P1/12 C.I.T. Scheme-VIIM, Kankurgachi, Kolkata, 700054, India.
| | - Pranita Ray
- Department of Biophysics, Bose Institute, P1/12 C.I.T. Scheme-VIIM, Kankurgachi, Kolkata, 700054, India.
| | - Smarajit Polley
- Department of Biophysics, Bose Institute, P1/12 C.I.T. Scheme-VIIM, Kankurgachi, Kolkata, 700054, India.
| | - Shubhra Ghosh Dastidar
- Division of Bioinformatics, Bose Institute, P1/12 C.I.T. Scheme-VIIM, Kankurgachi, Kolkata, 700054, India.
| | - Debabrata Basu
- Division of Plant Biology, Bose Institute, P1/12 C.I.T. Scheme-VIIM, Kankurgachi, Kolkata, 700054, India.
| |
Collapse
|
197
|
Lee DH, Lee HS, Belkhadir Y. Coding of plant immune signals by surface receptors. CURRENT OPINION IN PLANT BIOLOGY 2021; 62:102044. [PMID: 33979769 DOI: 10.1016/j.pbi.2021.102044] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/11/2021] [Accepted: 03/16/2021] [Indexed: 06/12/2023]
Abstract
The detection of molecular signals derived from other organisms is central to the evolutionary success of plants in the colonization of Earth. The sensory coding of these signals is critical for marshaling local and systemic immune responses that keep most invading organisms at bay. Plants detect immune signals inside and outside their cells using receptors. Here, we focus on receptors that function at the cell surface. We present recent work that expands our understanding of the repertoire of immune signals sensed by this family of receptors.
Collapse
Affiliation(s)
- Du-Hwa Lee
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, Vienna, Austria
| | - Ho-Seok Lee
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, Vienna, Austria
| | - Youssef Belkhadir
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, Vienna, Austria.
| |
Collapse
|
198
|
Gough C, Sadanandom A. Understanding and Exploiting Post-Translational Modifications for Plant Disease Resistance. Biomolecules 2021; 11:1122. [PMID: 34439788 PMCID: PMC8392720 DOI: 10.3390/biom11081122] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/23/2021] [Accepted: 07/26/2021] [Indexed: 12/27/2022] Open
Abstract
Plants are constantly threatened by pathogens, so have evolved complex defence signalling networks to overcome pathogen attacks. Post-translational modifications (PTMs) are fundamental to plant immunity, allowing rapid and dynamic responses at the appropriate time. PTM regulation is essential; pathogen effectors often disrupt PTMs in an attempt to evade immune responses. Here, we cover the mechanisms of disease resistance to pathogens, and how growth is balanced with defence, with a focus on the essential roles of PTMs. Alteration of defence-related PTMs has the potential to fine-tune molecular interactions to produce disease-resistant crops, without trade-offs in growth and fitness.
Collapse
Affiliation(s)
| | - Ari Sadanandom
- Department of Biosciences, Durham University, Stockton Road, Durham DH1 3LE, UK;
| |
Collapse
|
199
|
Zhang H, Li H, Zhang X, Yan W, Deng P, Zhang Y, Peng S, Wang Y, Wang C, Ji W. Wall-associated Receptor Kinase and The Expression Profiles in Wheat Responding to Fungal Stress.. [PMID: 0 DOI: 10.1101/2021.07.11.451968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
AbstractCell wall-associated kinases (WAKs), which are encoded by conserved gene families in plants, are crucial for development and responses to diverse stresses. However, the wheat (Triticum aestivum L.) WAKs have not been systematically classified, especially those involved in protecting plants from disease. Here, we classified 129 WAK proteins (encoded by 232 genes) and 75 WAK-Like proteins (WAKLs; encoded by 109 genes) into four groups, via a phylogenetic analysis. An examination of protein sequence alignment revealed diversity in the GUB-domain of WAKs structural organization, but it was usually characterized by a PYPFG motif followed by CxGxGCC motifs, while the EGF-domain was usually initiated with a YAC motif, and eight cysteine residues were spliced by GNPY motif. The expression profiles of WAK-encoding homologous genes varied in response to Blumeria graminis f. sp. tritici (Bgt), Puccinia striiformis f. sp. tritici (Pst) and Puccinia triticina (Pt) stress. A quantitative real-time polymerase chain reaction (qRT-PCR) analysis proved that TaWAK75 and TaWAK76b were involved in wheat resistance to Bgt. This study revealed the structure of the WAK-encoding genes in wheat, which may be useful for future functional elucidation of wheat WAKs responses to fungal infections.
Collapse
|
200
|
Yildiz I, Mantz M, Hartmann M, Zeier T, Kessel J, Thurow C, Gatz C, Petzsch P, Köhrer K, Zeier J. The mobile SAR signal N-hydroxypipecolic acid induces NPR1-dependent transcriptional reprogramming and immune priming. PLANT PHYSIOLOGY 2021; 186:1679-1705. [PMID: 33871649 PMCID: PMC8260123 DOI: 10.1093/plphys/kiab166] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/29/2021] [Indexed: 05/07/2023]
Abstract
N-hydroxypipecolic acid (NHP) accumulates in the plant foliage in response to a localized microbial attack and induces systemic acquired resistance (SAR) in distant leaf tissue. Previous studies indicated that pathogen inoculation of Arabidopsis (Arabidopsis thaliana) systemically activates SAR-related transcriptional reprogramming and a primed immune status in strict dependence of FLAVIN-DEPENDENT MONOOXYGENASE 1 (FMO1), which mediates the endogenous biosynthesis of NHP. Here, we show that elevations of NHP by exogenous treatment are sufficient to induce a SAR-reminiscent transcriptional response that mobilizes key components of immune surveillance and signal transduction. Exogenous NHP primes Arabidopsis wild-type and NHP-deficient fmo1 plants for a boosted induction of pathogen-triggered defenses, such as the biosynthesis of the stress hormone salicylic acid (SA), accumulation of the phytoalexin camalexin and branched-chain amino acids, as well as expression of defense-related genes. NHP also sensitizes the foliage systemically for enhanced SA-inducible gene expression. NHP-triggered SAR, transcriptional reprogramming, and defense priming are fortified by SA accumulation, and require the function of the transcriptional coregulator NON-EXPRESSOR OF PR GENES1 (NPR1). Our results suggest that NPR1 transduces NHP-activated immune signaling modes with predominantly SA-dependent and minor SA-independent features. They further support the notion that NHP functions as a mobile immune regulator capable of moving independently of active SA signaling between leaves to systemically activate immune responses.
Collapse
Affiliation(s)
- Ipek Yildiz
- Department of Biology, Institute for Molecular Ecophysiology of Plants, Heinrich Heine University, Düsseldorf D-40225, Germany
| | - Melissa Mantz
- Department of Biology, Institute for Molecular Ecophysiology of Plants, Heinrich Heine University, Düsseldorf D-40225, Germany
| | - Michael Hartmann
- Department of Biology, Institute for Molecular Ecophysiology of Plants, Heinrich Heine University, Düsseldorf D-40225, Germany
| | - Tatyana Zeier
- Department of Biology, Institute for Molecular Ecophysiology of Plants, Heinrich Heine University, Düsseldorf D-40225, Germany
| | - Jana Kessel
- Department of Biology, Institute for Molecular Ecophysiology of Plants, Heinrich Heine University, Düsseldorf D-40225, Germany
| | - Corinna Thurow
- Department of Plant Molecular Biology and Physiology, Albrecht-von-Haller Institute for Plant Sciences, University of Göttingen, Göttingen D-37077, Germany
| | - Christiane Gatz
- Department of Plant Molecular Biology and Physiology, Albrecht-von-Haller Institute for Plant Sciences, University of Göttingen, Göttingen D-37077, Germany
| | - Patrick Petzsch
- Medical Faculty, Biological and Medical Research Center (BMFZ), Heinrich Heine University, Düsseldorf D-40225, Germany
| | - Karl Köhrer
- Medical Faculty, Biological and Medical Research Center (BMFZ), Heinrich Heine University, Düsseldorf D-40225, Germany
| | - Jürgen Zeier
- Department of Biology, Institute for Molecular Ecophysiology of Plants, Heinrich Heine University, Düsseldorf D-40225, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Düsseldorf D-40225, Germany
- Author for communication:
| |
Collapse
|