151
|
Tian T, Dai S, Liu D, Wang Y, Qiao W, Yang M, Zhang Y. Occurrence and transfer characteristics of bla CTX-M genes among Escherichia coli in anaerobic digestion systems treating swine waste. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 834:155321. [PMID: 35452730 DOI: 10.1016/j.scitotenv.2022.155321] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/12/2022] [Accepted: 04/12/2022] [Indexed: 06/14/2023]
Abstract
Livestock waste is a known reservoir of Escherichia coli (E. coli) carrying clinically important CTX-M-type extended-spectrum β-lactamase genes (blaCTX-M), however, the occurrence and transfer characteristics of blaCTX-M genes during anaerobic digestion (AD) remain unclear. Herein, four full-scale and two parallel lab-scale AD systems treating swine waste under ambient and mesophilic conditions were investigated by both molecular- and culture-based methods to reveal the occurrence and transfer behaviors of blaCTX-M genes during AD. Real-time TaqMan polymerase chain reaction revealed 1.3 × 104-6.8 × 105 and 3.0 × 104-7.0 × 105 copies/mL of blaCTX-M groups 1 and 9 in all feeding substrates. While AD reduced the absolute abundance of groups 1 and 9 by 0.63-2.24 and 0.08-1.30 log (P < 0.05), 5.0 × 102-4.1 × 103 and 1.1 × 104-3.5 × 104 copies/mL of groups 1 and 9 remained in the anaerobic effluent, respectively. In total, 141 blaCTX-M-carrying E. coli isolates resistant to cefotaxime were obtained from the AD reactors. Whole-genome sequencing showed that blaCTX-M-65 mainly carried by E. coli ST155 was the most frequently detected group 9 subtype in the feeding substrate; whereas blaCTX-M-14 associated with the dominant clones E. coli ST6802 and ST155 became the major subtype in AD effluent. Furthermore, blaCTX-M-14 was flanked by ΔIS26 upstream and ΔIS903B downstream. The ΔIS26-blaCTX-M-14-ΔIS903B element was mainly located on the IncHI2 plasmid in E. coli ST48 and ST6802 and also the IncFIB plasmid in ST155 in anaerobic effluent. Conjugation assays showed that the plasmids harboring blaCTX-M-14 could be successfully transferred at a frequency of 10-3-10-2 cells per recipient cell. This study revealed that blaCTX-M genes remained in both the full-scale and lab-scale AD effluents of swine waste. Thus, additional efforts should be implemented to block the discharge and spread of antibiotic resistance genes to the environment.
Collapse
Affiliation(s)
- Tiantian Tian
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shiting Dai
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dejun Liu
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yang Wang
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Wei Qiao
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Min Yang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Zhang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
152
|
Identification and Characterisation of pST1023 A Mosaic, Multidrug-Resistant and Mobilisable IncR Plasmid. Microorganisms 2022; 10:microorganisms10081592. [PMID: 36014010 PMCID: PMC9412624 DOI: 10.3390/microorganisms10081592] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/01/2022] [Accepted: 08/04/2022] [Indexed: 11/22/2022] Open
Abstract
We report the identification and characterisation of a mosaic, multidrug-resistant and mobilisable IncR plasmid (pST1023) detected in Salmonella ST1023, a monophasic variant 4,[5],12:i: strain of widespread pandemic lineage, reported as a Southern European clone. pST1023 contains exogenous DNA regions, principally gained from pSLT-derivatives and IncI1 plasmids. Acquisition from IncI1 included oriT and nikAB and these conferred the ability to be mobilisable in the presence of a helper plasmid, as we demonstrated with the conjugative plasmids pST1007-1D (IncFII) or pVC1035 (IncC). A sul3-associated class 1 integron, conferring resistance to aminoglycosides, chloramphenicol and trimethoprim-sulphonamides, was also embedded in the acquired IncI1 DNA segment. pST1023 also harboured an additional site-specific recombination system (rfsF/rsdB) and IS elements of the IS1, IS5 (IS903 group) and IS6 families. Four of the six IS26 elements present constituted two pseudo-compound-transposons, named PCT-sil and PCT-Tn10 (identified here for the first time). The study further highlighted the mosaic genetic architecture and the clinical importance of IncR plasmids. Moreover, it provides the first experimental data on the ability of IncR plasmids to be mobilised and their potential role in the horizontal spread of antimicrobial-resistant genes.
Collapse
|
153
|
Assawatheptawee K, Treebupachatsakul P, Luangtongkum T, Niumsup PR. Risk Factors for Community-Acquired Urinary Tract Infections Caused by Multidrug-Resistant Enterobacterales in Thailand. Antibiotics (Basel) 2022; 11:antibiotics11081039. [PMID: 36009908 PMCID: PMC9405395 DOI: 10.3390/antibiotics11081039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/25/2022] [Accepted: 07/29/2022] [Indexed: 02/01/2023] Open
Abstract
The dissemination of multidrug-resistant Enterobacterales (MDRE) in community settings is becoming a great concern. This study aimed to assess the incidence and risk factors associated with community-acquired urinary tract infections (CA-UTIs) caused by MDRE. A prospective case−control study was undertaken among patients with UTIs visiting an outpatient department in Phitsanulok Province, Thailand. Urine samples were collected and screened to include only patients with Enterobacterales infections. Risk factors were analyzed by multivariate logistic regression analysis. Of the 284 patients with CA-UTIs, 25.7% (n = 73) and 74.3% (n = 211) were positive for MDRE (case) and non-MDRE (control), respectively. Being a farmer was identified as an independent risk factor for MDRE-associated CA-UTIs (adjusted odds ratio = 3.101; 95% confidence interval = 1.272−7.564; p = 0.013). A total of 309 Enterobacterales isolates were recovered, and Escherichia coli was the most frequently detected (86.4%). The highest resistance rate was observed for ampicillin (67.0%), followed by ciprofloxacin (34.0%) and cotrimoxazole (32.7%), while resistance to third-generation cephalosporins (cefotaxime, ceftriaxone) and levofloxacin remained <20%. Resistance to ampicillin−gentamicin−cotrimoxazole was the most common pattern among MDRE isolates. Interestingly, we detected a colistin-resistant Enterobacter cloacae harboring mcr-9 (colistin MIC = 16 µg/mL). mcr-9 was transferable at high frequency (4.5 × 10−4) and resided on IncF plasmid. This study demonstrates that being a farmer is a risk factor for MDRE-associated CA-UTIs. Interestingly, this is the first report to identify mcr-9-positive E. cloacae from a Thai patient in the community.
Collapse
Affiliation(s)
- Kanit Assawatheptawee
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand;
| | | | - Taradon Luangtongkum
- Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Pannika R. Niumsup
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand;
- Center of Excellent in Medical Biotechnology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
- Correspondence: ; Tel.: +66-55-964612
| |
Collapse
|
154
|
Torres RT, Cunha MV, Araujo D, Ferreira H, Fonseca C, Palmeira JD. A walk on the wild side: Wild ungulates as potential reservoirs of multi-drug resistant bacteria and genes, including Escherichia coli harbouring CTX-M beta-lactamases. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 306:119367. [PMID: 35489528 DOI: 10.1016/j.envpol.2022.119367] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 04/15/2022] [Accepted: 04/24/2022] [Indexed: 06/14/2023]
Abstract
Extended-spectrum β-lactamases (ESBL)-producing Enterobacterales have been classified as critical priority pathogens by the World Health Organization (WHO). ESBL are universally distributed and, in 2006, were firstly reported on a wild animal. Understanding the relative contributions of wild animals to ESBL circulation in the environment is urgently needed. In this work, we have conducted a nationwide study in Portugal to investigate the occurrence of bacteria carrying clinically significant antimicrobial resistance genes (ARG), using widely distributed wild ungulates as model species. A total of 151 antimicrobial resistant-Enterobacterales isolates were detected from 181 wild ungulates: 50% (44/88) of isolates from wild boar (Sus scrofa), 40.3% (25/62) from red deer (Cervus elaphus), 41.4% (12/29) from fallow deer (Dama dama) and 100% (2/2) from mouflon (Ovis aries subsp. musimon). Selected isolates showed a diversified resistance profile, with particularly high values corresponding to ampicillin (71.5%) and tetracycline (63.6%). Enterobacterales strains carried blaTEM, tetA, tetB, sul2, sul1 or dfrA1 ARG genes. They also carried blaCTX-M-type genes, which are prevalent in human infections, namely CTX-M-14, CTX-M-15 and CTX-M-98. Strikingly, this is the first report of CTX-M-98 in wildlife. Almost 40% (n = 59) of Enterobacterales were multi-drug resistant. The diversity of plasmids carried by ESBL isolates was remarkable, including IncF, K and P. This study highlights the potential role of wild ungulates as environmental reservoirs of CTX-M ESBL-producing E. coli and in the spill-over of AMR bacteria and their determinants. Our findings suggest that wild ungulates are useful as strategic sentinel species of AMR in terrestrial environments, especially in response to potential sources of anthropogenic pollution, providing early warning of potential risks to human, animal and environmental health.
Collapse
Affiliation(s)
- Rita Tinoco Torres
- Departament of Biology & CESAM, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal.
| | - Mónica V Cunha
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisbon, Portugal; Biosystems & Integrative Sciences Institute (BioISI), Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisbon, Portugal
| | - Débora Araujo
- Faculty of Engineering of University of Porto, Porto, Portugal
| | - Helena Ferreira
- UCIBIO - Applied Molecular Biosciences Unit, REQUIMTE - University of Porto, Porto, Portugal; Microbiology, Biological Sciences Department, Faculty of Pharmacy of University of Porto, Porto, Portugal
| | - Carlos Fonseca
- Departament of Biology & CESAM, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal; ForestWISE - Collaborative Laboratory for Integrated Forest & Fire Management, Quinta de Prados, 5001-801, Vila Real, Portugal
| | - Josman Dantas Palmeira
- Departament of Biology & CESAM, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| |
Collapse
|
155
|
Jaradat ZW, Al-Mousa WA, Elbetieha AM, Ababneh QO, Al-Nabulsi AA, Jang H, Gangiredla J, Patel IR, Gopinath GR, Tall BD. Virulence, antimicrobial susceptibility, and phylogenetic analysis of Cronobacter sakazakii isolates of food origins from Jordan. J Appl Microbiol 2022; 133:2528-2546. [PMID: 35858752 DOI: 10.1111/jam.15723] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 11/26/2022]
Abstract
AIMS to characterize a collection of Cronobacter sakazakii isolates collected from various origins in Jordan. METHODS AND RESULTS the isolates were characterized using 16S rRNA sequencing, DNA microarray, multi-locus sequence typing (MLST), O-serotyping, virulence gene identification, and antibiotic susceptibility testing. The identities and phylogenetic relatedness revealed that C. sakazakii sequence type 4 (ST4) and Csak O:1 serotype was the most prevalent STs and serovars among these C. sakazakii strains. PCR screening of putative virulence genes showed that the siderophore-interacting protein gene (sip) and iron acquisition gene clusters (eitCBAD and iucABCD/iutA) were the most detected genes with noticeable variability in the type 6 secretion system (T6SS) and filamentous hemagglutinin/adhesion (FHA) gene loci. The antibiotic resistance profiles revealed that the majority of the isolates were susceptible to all antibiotics used despite harboring a class C β-lactamase resistance gene. CONCLUSIONS the results described in this report provide additional insights about the considerable genotypic and phenotypic heterogeneity within C. sakazakii. SIGNIFICANCE AND IMPACT OF THE STUDY the information reported in this study might be of great value in understanding the origins of C. sakazakii isolates, in addition to their diversity and variability, which might be helpful in preventing future outbreaks of this pathogen.
Collapse
Affiliation(s)
- Ziad W Jaradat
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid, P. O Box 3030, 22110, Jordan
| | - Waseem A Al-Mousa
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid, P. O Box 3030, 22110, Jordan
| | - Ahmed M Elbetieha
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid, P. O Box 3030, 22110, Jordan
| | - Qutaiba O Ababneh
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid, P. O Box 3030, 22110, Jordan
| | - Anas A Al-Nabulsi
- Department of Nutrition and Food Technology, Jordan University of Science and Technology, P. O Box 3030, 22110, Irbid, Jordan
| | - Hyein Jang
- US Food and Drug Administration, Center for Food Safety and Applied Nutrition, 20708, Laurel, MD
| | - Jayanthi Gangiredla
- US Food and Drug Administration, Center for Food Safety and Applied Nutrition, 20708, Laurel, MD
| | - Isha R Patel
- US Food and Drug Administration, Center for Food Safety and Applied Nutrition, 20708, Laurel, MD
| | - Gopal R Gopinath
- US Food and Drug Administration, Center for Food Safety and Applied Nutrition, 20708, Laurel, MD
| | - Ben D Tall
- US Food and Drug Administration, Center for Food Safety and Applied Nutrition, 20708, Laurel, MD
| |
Collapse
|
156
|
Chowdhury G, Ramamurthy T, Das B, Ghosh D, Okamoto K, Miyoshi SI, Dutta S, Mukhopadhyay AK. Characterization of NDM-5 Carbapenemase-Encoding Gene ( bla NDM-5) - Positive Multidrug Resistant Commensal Escherichia coli from Diarrheal Patients. Infect Drug Resist 2022; 15:3631-3642. [PMID: 35837541 PMCID: PMC9275505 DOI: 10.2147/idr.s364526] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/21/2022] [Indexed: 12/12/2022] Open
Abstract
Purpose The multidrug resistance Enterobacteriaceae cause many serious infections resulting in prolonged hospitalization, increased treatment charges and mortality rate. In this study, we characterized bla NDM-5-positive multidrug resistance commensal Escherichia coli (CE) isolated from diarrheal patients in Kolkata, India. Methods Three CE strains were isolated from diarrheal stools, which were negative for different pathogroups of diarrheagenic E. coli (DEC). The presence of carbapenemases encoding genes and other antimicrobial resistance genes (ARGs) was detected using PCR. The genetic arrangement adjoining bla NDM-5 was investigated by plasmid genome sequencing. The genetic relatedness of the strains was determined by pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST) methods. Results In addition to colistin, the bla NDM-5-positive CE strains showed resistance to most of the antibiotics. Higher MICs were detected for ciprofloxacin (>32 mg/L) and imipenem (8 mg/L). Molecular typing revealed that three CE strains belonged to two different STs (ST 101 and ST 648) but they were 95% similar in the PFGE analysis. Screening for ARGs revealed that CE strains harbored Int-1, bla TEM, blaC TX-M3, bla OXA-1, bla OXA-7, bla OXA-9, tetA, strA, aadA1, aadB, sul2, floR, mph(A), and aac(6´)-Ib-cr. In conjugation experiment, transfer frequencies ranged from 2.5×10-3 to 8.4x10-5. The bla NDM-5 gene was located on a 94-kb pNDM-TC-CE-89 type plasmid, which is highly similar to the IncFII plasmid harboring an IS26-IS30-bla NDM-5-ble MBL-trpF-dsbd-IS91-dhps structure. Conclusion To the best of our knowledge, this is the first report on carbapenem resistance involving the bla NDM-5 gene in CE from diarrheal patients. The circulation of bla NDM-5 gene in CE is worrisome, since it has the potential to transfer bla NDM-5 gene to other enteric pathogens.
Collapse
Affiliation(s)
- Goutam Chowdhury
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India.,Collaborative Research Centre of Okayama University for Infectious Diseases, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Thandavarayan Ramamurthy
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Bhabatosh Das
- Department of Infection and Immunology, Translational Health Science and Technology Institute, Faridabad, India
| | - Debjani Ghosh
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Keinosuke Okamoto
- Collaborative Research Centre of Okayama University for Infectious Diseases, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Shin-Ichi Miyoshi
- Collaborative Research Centre of Okayama University for Infectious Diseases, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India.,Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Shanta Dutta
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Asish K Mukhopadhyay
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| |
Collapse
|
157
|
Screening and Characterization of Multidrug-Resistant Enterobacterales among Hospitalized Patients in the African Archipelago of Cape Verde. Microorganisms 2022; 10:microorganisms10071426. [PMID: 35889144 PMCID: PMC9318797 DOI: 10.3390/microorganisms10071426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 12/10/2022] Open
Abstract
This study aimed to investigate, for the first time, the occurrence and characteristics of extended-spectrum β-lactamase (ESBL)- and carbapenemase-producing Enterobacterales in Cape Verde. A total of 98 inpatients hospitalized at Hospital Universitário Agostinho Neto were screened for rectal colonization. All ESBL- and carbapenemase-producing isolates were tested for antimicrobial susceptibility and characterized by multilocus sequence typing. Mating-out assay followed by PCR-based replicon typing were performed to characterize the plasmids harboring carbapenemase encoding genes. A large proportion of patients carried ESBL- or carbapenemase-producing Enterobacterales (56% and 6%, respectively). Among 93 ESBL-producing isolates, there were mainly Klebsiella pneumoniae (58%) and Escherichia coli (37%). Five different ESBLs were detected, with CTX-M-15 being highly predominant (92%). Six carbapenemase-producing isolates (five E. coli and one K. pneumoniae) were recovered, and all of the OXA-48-like type (four OXA-181, one OXA-48, and one OXA-244). The blaOXA-48 gene was located on an IncFI-type plasmid, the blaOXA-181 gene on IncFI or IncX3 plasmids, and the blaOXA-244 gene was found to be chromosomally located. The five carbapenemase-producing E. coli isolates belonged to five distinct sequence types. This study overall showed a very high prevalence of ESBL-producing Enterobacterales, as well as the emergence of carbapenemase producers in this hospital.
Collapse
|
158
|
Pandemic Clones of CTX-M-15 Producing Klebsiella pneumoniae ST15, ST147, and ST307 in Companion Parrots. Microorganisms 2022; 10:microorganisms10071412. [PMID: 35889131 PMCID: PMC9320316 DOI: 10.3390/microorganisms10071412] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/07/2022] [Accepted: 07/12/2022] [Indexed: 12/22/2022] Open
Abstract
Psittacine birds are commonly kept as companion birds and the maintenance of these birds in captivity may represent a zoonotic risk and contribute to the propagation of multidrug-resistant and β-lactamase extended-spectrum (ESBLs)-producing pathogens. This study aimed to identify and characterize strains of the Klebsiella pneumoniae complex isolated from diseased psittacine birds, determining virulence and resistance profiles. K. pneumoniae strains were isolated from 16 birds (16/46). All strains carried more than three virulence genes, with a high frequency of fimH and kpn (93.75%), uge (87.52%), and irp-2 (81.25%) genes. The antimicrobial susceptibility revealed that 3/16 strains were ESBL producers. Genomic analysis revealed that CTX-M-15-positive strains belonged to sequence types (STs) ST15, ST147, and ST307, characterized as international clones associated with outbreaks of healthcare-associated infections (HAIs) worldwide.
Collapse
|
159
|
Sun H, Schnürer A, Müller B, Mößnang B, Lebuhn M, Makarewicz O. Uncovering antimicrobial resistance in three agricultural biogas plants using plant-based substrates. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 829:154556. [PMID: 35306061 DOI: 10.1016/j.scitotenv.2022.154556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/09/2022] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
Antimicrobial resistance (AMR) is becoming an increasing global concern and the anaerobic digestion (AD) process represents a potential transmission route when digestates are used as fertilizing agents. AMR contaminants, e.g. antibiotic-resistant bacteria (ARB) and plasmid-mediated antibiotic resistance genes (ARGs) have been found in different substrates and AD systems, but not yet been investigated in plant-based substrates. AMR transfer from soils to vegetable microbiomes has been observed, and thus crop material potentially represents a so far neglected AMR load in agricultural AD processes, contributing to AMR spread. In order to test this hypothesis, this study examined the AMR situation throughout the process of three biogas plants using plant-based substrates only, or a mixture of plant-based and manure substrates. The evaluation included a combination of culture-independent and -dependent methods, i.e., identification of ARGs, plasmids, and pathogenic bacteria by DNA arrays, and phylogenetic classification of bacterial isolates and their phenotypic resistance pattern. To our knowledge, this is the first study on AMR in plant-based substrates and the corresponding biogas plant. The results showed that the bacterial community isolated from the investigated substrates and the AD processing facilities were mainly Gram-positive Bacillus spp. Apart from Pantoea agglomerans, no other Gram-negative species were found, either by bacteria culturing or by DNA typing array. In contrast, the presence of ARGs and plasmids clearly indicated the existence of Gram-negative pathogenic bacteria, in both substrate and AD process. Compared with substrates, digestates had lower levels of ARGs, plasmids, and culturable ARB. Thus, digestate could pose a lower risk of spreading AMR than substrates per se. In conclusion, plant-based substrates are associated with AMR, including culturable Gram-positive ARB and Gram-negative pathogenic bacteria-associated ARGs and plasmids. Thus, the AMR load from plant-based substrates should be taken into consideration in agricultural biogas processing.
Collapse
Affiliation(s)
- He Sun
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, BioCenter, Box 7025, SE-750 07 Uppsala, Sweden
| | - Anna Schnürer
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, BioCenter, Box 7025, SE-750 07 Uppsala, Sweden.
| | - Bettina Müller
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, BioCenter, Box 7025, SE-750 07 Uppsala, Sweden
| | - Bettina Mößnang
- Bavarian State Research Center for Agriculture, Central Department for Quality Assurance and Analytics, Lange Point 6, 85354 Freising, Germany
| | - Michael Lebuhn
- Bavarian State Research Center for Agriculture, Central Department for Quality Assurance and Analytics, Lange Point 6, 85354 Freising, Germany
| | - Oliwia Makarewicz
- Institute of Infectious Diseases and Infection Control, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany
| |
Collapse
|
160
|
Ballaben AS, Galetti R, Ferreira JC, Paziani MH, Kress MRVZ, Garcia DDO, Silva PD, Doi Y, Darini ALC, Andrade LN. Different virulence genetic context of multidrug-resistant CTX-M- and KPC-producing Klebsiella pneumoniae isolated from cerebrospinal fluid. Diagn Microbiol Infect Dis 2022; 104:115784. [DOI: 10.1016/j.diagmicrobio.2022.115784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 06/30/2022] [Accepted: 07/22/2022] [Indexed: 11/03/2022]
|
161
|
Sellera FP, Cardoso B, Fuentes-Castillo D, Esposito F, Sano E, Fontana H, Fuga B, Goldberg DW, Seabra LAV, Antonelli M, Sandri S, Kolesnikovas CKM, Lincopan N. Genomic Analysis of a Highly Virulent NDM-1-Producing Escherichia coli ST162 Infecting a Pygmy Sperm Whale ( Kogia breviceps) in South America. Front Microbiol 2022; 13:915375. [PMID: 35755998 PMCID: PMC9231830 DOI: 10.3389/fmicb.2022.915375] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/18/2022] [Indexed: 11/29/2022] Open
Abstract
Carbapenemase-producing Enterobacterales are rapidly spreading and adapting to different environments beyond hospital settings. During COVID-19 lockdown, a carbapenem-resistant NDM-1-positive Escherichia coli isolate (BA01 strain) was recovered from a pygmy sperm whale (Kogia breviceps), which was found stranded on the southern coast of Brazil. BA01 strain belonged to the global sequence type (ST) 162 and carried the blaNDM–1, besides other medically important antimicrobial resistance genes. Additionally, genes associated with resistance to heavy metals, biocides, and glyphosate were also detected. Halophilic behavior (tolerance to > 10% NaCl) of BA01 strain was confirmed by tolerance tests of NaCl minimal inhibitory concentration, whereas halotolerance associated genes katE and nhaA, which encodes for catalase and Na+/H+ antiporter cytoplasmic membrane, respectively, were in silico confirmed. Phylogenomics clustered BA01 with poultry- and human-associated ST162 lineages circulating in European and Asian countries. Important virulence genes, including the astA (a gene encoding an enterotoxin associated with human and animal infections) were detected, whereas in vivo experiments using the Galleria mellonella infection model confirmed the virulent behavior of the BA01 strain. WHO critical priority carbapenemase-producing pathogens in coastal water are an emerging threat that deserves the urgent need to assess the role of the aquatic environment in its global epidemiology.
Collapse
Affiliation(s)
- Fábio P Sellera
- Department of Internal Medicine, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil.,One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil.,School of Veterinary Medicine, Metropolitan University of Santos, Santos, Brazil
| | - Brenda Cardoso
- One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil.,Department of Microbiology, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Danny Fuentes-Castillo
- One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil.,Departamento de Patología y Medicina Preventiva, Facultad de Ciencias Veterinarias, Universidad de Concepción, Chillán, Chile
| | - Fernanda Esposito
- One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil.,Department of Clinical Analysis, School of Pharmacy, University of São Paulo, São Paulo, Brazil
| | - Elder Sano
- One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil.,Department of Microbiology, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Herrison Fontana
- One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil.,Department of Clinical Analysis, School of Pharmacy, University of São Paulo, São Paulo, Brazil
| | - Bruna Fuga
- One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil.,Department of Microbiology, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil.,Department of Clinical Analysis, School of Pharmacy, University of São Paulo, São Paulo, Brazil
| | | | - Lourdes A V Seabra
- School of Veterinary Medicine, Metropolitan University of Santos, Santos, Brazil
| | | | | | | | - Nilton Lincopan
- One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil.,Department of Microbiology, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil.,Department of Clinical Analysis, School of Pharmacy, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
162
|
Sultan I, Siddiqui MT, Gogry FA, Haq QMR. Molecular characterization of resistance determinants and mobile genetic elements of ESBL producing multidrug-resistant bacteria from freshwater lakes in Kashmir, India. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 827:154221. [PMID: 35245551 DOI: 10.1016/j.scitotenv.2022.154221] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Antibiotic resistance conceded as a global concern is a phenomenon that emerged from the bacterial response to the extensive utilization of antimicrobials. The expansion of resistance determinants through horizontal transfer is linked with mobile genetic elements (MGEs) like transposons, insertion sequences, and integrons. Heavy metals also create consequential health hazards. Metal resistance gene in alliance with antibiotic resistance genes (ARGs) and MGEs is assisting bacteria to attain exalted quantity of resistance. METHODOLOGY The present work was carried out to study ARGs blaCTX-M, AmpC, qnrS, MGEs like ISecp1, TN3, TN21, and Int I by performing PCR and sequencing from Wular and Dal lakes of Kashmir; India. The genetic environment analysis of blaCTX-M-15 was carried out using PCR amplification, and sequencing approach followed by in-silico docking and mutational studies. Co-occurrence of ARGs and HMRGs was determined. Plasmid typing was done using PCR-based replicon typing (PBRT) and conjugation assay was also performed. RESULTS Out of 201 isolates attained from 16 locations, 33 were ESBLs producers. 30 ESBL displaying isolates were perceived positive for CTX-M gene, followed by AmpC (17), qnrS (13), ISecp1 (15), TN3 (11), TN21 (11), Int I (18), and SulI (14). The genetic environment of blaCTX-M-15 was observed as (ISEcp1-blaCTX-M-15-orf477), classical promoter-10 TACAAT and -35 TTGAA was found at the 3' region. The 3D structure of CTX-M-15 and ISEcp1 was generated and CTX-M-15-ISEcp1 (R299L) docking and mutation showed a reduction in hydrogen bonds. Co-occurrence of antibiotics and HMRGs (mer, sil, and ars) was found in 18, 14, and 8 isolates. PBRT analysis showed the presence of Inc. groups- B/O, F, I1, HI1, FIA, HI2, N, FIB, L/M. Molecular analysis of transconjugants showed the successful transfer of ARGs, MGEs, and HMRGs in the E. coli J53 AZR strain. CONCLUSION This study highlights the occurrence of ESBL producing bacteria in the aquatic environment of Kashmir India that can serve as a reservoir of ARGs. It also discussed the molecular mechanisms of MGEs which can help in containing the spread of antibiotic resistance.
Collapse
Affiliation(s)
- Insha Sultan
- Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India
| | | | | | | |
Collapse
|
163
|
Bello Gonzalez TD, Kant A, Dijkstra Q, Marcato F, van Reenen K, Veldman KT, Brouwer MSM. Changes in Fecal Carriage of Extended-Spectrum β-Lactamase Producing Enterobacterales in Dutch Veal Calves by Clonal Spread of Klebsiella pneumoniae. Front Microbiol 2022; 13:866674. [PMID: 35814663 PMCID: PMC9260047 DOI: 10.3389/fmicb.2022.866674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 05/31/2022] [Indexed: 01/14/2023] Open
Abstract
This study aimed to characterize the changes in fecal carriage of Extended-Spectrum β-Lactamase (ESBL) producing Enterobacterales (ESBL-PE) in a single Dutch veal calves. During the rearing period at the Dutch veal farm, a decrease in fecal carriage of cefotaxime-resistant Escherichia coli isolates was observed after 2 weeks at the veal farm, while an increase of cefotaxime-resistant Klebsiella pneumoniae isolates was demonstrated. E. coli and K. pneumoniae were isolated from rectal swabs collected from 110 veal calves in week 2, 6, 10, 18, and 24 after their arrival at the farm. ESBL-PE isolates were selectively cultured and identified by MALDI-TOF. ESBL genes were characterized by RT-PCR, PCRs, and amplicon sequencing. A total of 80 E. coli and 174 K. pneumoniae strains were isolated from 104 out of 110 veal calves. The prevalence of ESBL-E. coli decreased from week 2 (61%) to week 6 (7%), while an unexpected increase in ESBL-K. pneumoniae colonization was detected in week 6 (80%). The predominant ESBL genes detected in E. coli isolates were blaCTX-M-15 and the non-ESBL gene blaTEM-1a, while in K. pneumoniae blaCTX-M-14 gene was detected in all isolates. Four cefotaxime-resistant K. pneumoniae isolates were randomly selected and characterized in deep by transformation, PCR-based replicon typing, and whole-genome sequencing (WGS). The clonal relatedness of a subgroup of nine animals carrying K. pneumoniae ESBL genes was investigated by Multi Locus sequence typing (MLST). In four ESBL-K. pneumoniae isolates, blaCTX-M-14 was located on IncFIIK and IncFIINK plasmid replicons and the isolates were multi-drug resistant (MDR). MLST demonstrated a clonal spread of ESBL-K. pneumoniae ST107. To the best of our knowledge, this is the first study to report a change in fecal carriage of ESBL-PE over time in the same veal calf during the rearing period.
Collapse
Affiliation(s)
- Teresita d.J. Bello Gonzalez
- Department of Bacteriology, Host-Pathogen Interaction, and Diagnostics Development, Wageningen Bioveterinary Research, Lelystad, Netherlands
- *Correspondence: Teresita d.J. Bello Gonzalez,
| | - Arie Kant
- Department of Bacteriology, Host-Pathogen Interaction, and Diagnostics Development, Wageningen Bioveterinary Research, Lelystad, Netherlands
| | - Quillan Dijkstra
- Department of Bacteriology, Host-Pathogen Interaction, and Diagnostics Development, Wageningen Bioveterinary Research, Lelystad, Netherlands
| | - Francesca Marcato
- Wageningen Livestock Research, Wageningen University and Research, Wageningen, Netherlands
| | - Kees van Reenen
- Wageningen Livestock Research, Wageningen University and Research, Wageningen, Netherlands
| | - Kees T. Veldman
- Department of Bacteriology, Host-Pathogen Interaction, and Diagnostics Development, Wageningen Bioveterinary Research, Lelystad, Netherlands
| | - Michael S. M. Brouwer
- Department of Bacteriology, Host-Pathogen Interaction, and Diagnostics Development, Wageningen Bioveterinary Research, Lelystad, Netherlands
| |
Collapse
|
164
|
Ribeiro-Almeida M, Mourão J, Novais Â, Pereira S, Freitas-Silva J, Ribeiro S, Martins da Costa P, Peixe L, Antunes P. High diversity of pathogenic Escherichia coli clones carrying mcr-1 among gulls underlines the need for strategies at the environment-livestock-human interface. Environ Microbiol 2022; 24:4702-4713. [PMID: 35726894 DOI: 10.1111/1462-2920.16111] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/17/2022] [Accepted: 06/19/2022] [Indexed: 11/30/2022]
Abstract
The expansion of mcr-carrying bacteria is a well-recognized public health problem. Measures to contain mcr spread have mainly been focused on the food-animal production sector. Nevertheless, the spread of MCR-producers at the environmental interface particularly driven by the increasing population of gulls in coastal cities has been less explored. Occurrence of mcr-carrying Escherichia coli in gull's colonies faeces on a Portuguese beach was screened over 7-months. Cultural, molecular, and genomic approaches were used to characterize their diversity, mcr plasmids and adaptive features. Multidrug-resistant mcr-1-carrying E. coli were detected for three consecutive months. Over time, multiple strains were recovered, including zoonotic-related pathogenic E. coli clones (e.g., B2-ST131-H22, A-ST10, and B1-ST162). Diverse mcr-1.1 genetic environments were mainly associated with ST2/ST4-HI2 (ST10, ST131, ST162, ST354 and ST4204) but also IncI2 (ST12990) plasmids or in the chromosome (ST656). Whole-genome sequencing revealed enrichment of these strains on antibiotic resistance, virulence, and metal tolerance genes. Our results underscore gulls as important spreaders of high priority bacteria and genes that may affect the environment, food-animals and/or humans, potentially undermining One-Health strategies to reduce colistin resistance. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Marisa Ribeiro-Almeida
- UCIBIO - Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal.,Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, Portugal.,School of Medicine and Biomedical Sciences, University of Porto (ICBAS-UP), Porto, Portugal
| | - Joana Mourão
- Faculty of Sciences and Technology, University of Algarve, Gambelas Campus, Faro, Portugal
| | - Ângela Novais
- UCIBIO - Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal.,Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Sofia Pereira
- School of Medicine and Biomedical Sciences, University of Porto (ICBAS-UP), Porto, Portugal
| | - Joana Freitas-Silva
- School of Medicine and Biomedical Sciences, University of Porto (ICBAS-UP), Porto, Portugal.,CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Matosinhos, Portugal
| | - Sofia Ribeiro
- UCIBIO - Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Paulo Martins da Costa
- School of Medicine and Biomedical Sciences, University of Porto (ICBAS-UP), Porto, Portugal.,CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Matosinhos, Portugal
| | - Luísa Peixe
- UCIBIO - Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal.,Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Patrícia Antunes
- UCIBIO - Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal.,Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, Portugal.,Faculty of Nutrition and Food Sciences, University of Porto, Porto, Portugal
| |
Collapse
|
165
|
Carmosino I, Bonardi S, Rega M, Luppi A, Lamperti L, Ossiprandi MC, Bacci C. Evolution of β-lactams, fluroquinolones and colistin resistance and genetic profiles in <em>Salmonella</em> isolates from pork in northern Italy. Ital J Food Saf 2022; 11:9972. [PMID: 35795463 PMCID: PMC9251873 DOI: 10.4081/ijfs.2022.9972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 02/15/2022] [Indexed: 11/23/2022] Open
Abstract
The European Food Safety Authority and European Centre of Disease Prevention and Control antimicrobial resistance report published in 2021 shows increasing levels of antimicrobial resistance in Salmonella against antibiotics of choice for human salmonellosis (s-lactams and fluoroquinolones). The aim of the study was to follow the evolution of resistance against some Critical Important Antimicrobials in Salmonella isolates from fresh pork collected in Emilia-Romagna region, northern Italy, over two decades. Emilia-Romagna region is characterized by production of well-known pork derived products, as Parma Ham. The samples were collected in three different periods, ranging from 2000 to 2003, 2012 to 2016 and 2018 to 2021. After serotyping, the isolates were phenotypically tested for resistance to three classes of antibiotics: s-lactams, fluoroquinolones and polymyxins. End-point polymerase chain reaction (PCR) and PCRReal Time were used for genotypical analyses. The phenotypical resistance to s-lactams and fluoroquinolones were clearly increasing when comparing the results obtained from isolates collected in the first period (16.7% and 16.7%, respectively) with those of the third period (29.7% and 32.4%, respectively). On the contrary, the resistance to colistin decreased from 33.3% to 5.4%. Genotypically, the 71.4% and 83.3% of the strains harboured s-lactams and fluoroquinolones genes, respectively, while colistin resistance genes were not detected in the phenotypically resistant strains.
Collapse
|
166
|
Sacco F, Raponi G, Oliva A, Bibbolino G, Mauro V, Lella FMD, Volpicelli L, Antonelli G, Venditti M, Carattoli A, Arcari G. An outbreak sustained by ST15 Klebsiella pneumoniae carrying 16S rRNA methyltransferases and bla NDM: evaluation of the global dissemination of these resistance determinants. Int J Antimicrob Agents 2022; 60:106615. [PMID: 35691602 DOI: 10.1016/j.ijantimicag.2022.106615] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 05/25/2022] [Accepted: 05/30/2022] [Indexed: 11/05/2022]
Abstract
The spread of extremely-drug resistant Klebsiella pneumoniae has become a major health threat worldwide. This is largely mediated by certain lineages, recognized as high-risk clones dispersed in all the world. The analysis of an outbreak of nine ST15, NDM-1 metallo-β-lactamase producing K. pneumoniae was performed. An IncC plasmid carrying the blaNDM-1 gene also carried the rare rmtC gene, encoding for a 16S rRNA methyltransferases (16RMTases), conferring resistance to all aminoglycosides. We studied the global spread of NDM variants and their association with the 16RMTases among K. pneumoniae complete genomes available in GenBank, producing a complete overview of the association of 16RMTases and NDM in K. pneumoniae genomics. NDM is more and more often associated with16RMTases and both are spreading in K. pneumoniae, conferring resistance to every beta-lactam and aminoglycoside. Our analysis suggest that aminoglycosides have limited future as second line treatment against NDM-producing K. pneumoniae.
Collapse
Affiliation(s)
- Federica Sacco
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Giammarco Raponi
- Department of Public Health and Infectious Diseases, Sapienza University of Rome; Microbiology and Virology Unit, University Hospital Policlinico Umberto I, Rome, Italy
| | - Alessandra Oliva
- Department of Public Health and Infectious Diseases, Sapienza University of Rome
| | - Giulia Bibbolino
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples
| | - Vera Mauro
- Department of Public Health and Infectious Diseases, Sapienza University of Rome
| | | | - Lorenzo Volpicelli
- Department of Public Health and Infectious Diseases, Sapienza University of Rome
| | - Guido Antonelli
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Mario Venditti
- Department of Public Health and Infectious Diseases, Sapienza University of Rome
| | | | - Gabriele Arcari
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
167
|
Chen H, Mai H, Lopes B, Wen F, Patil S. Novel Pseudomonas aeruginosa Strains Co-Harbouring bla NDM-1 Metallo β-Lactamase and mcr-1 Isolated from Immunocompromised Paediatric Patients. Infect Drug Resist 2022; 15:2929-2936. [PMID: 35706928 PMCID: PMC9189156 DOI: 10.2147/idr.s368566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/27/2022] [Indexed: 12/13/2022] Open
Abstract
Background The rising resistance to carbapenems in Gram-negative bacteria worldwide poses a major clinical and public health risk. This study aimed to characterise carbapenem- and colistin-resistance genes, bla NDM-1 and mcr-1 located on IncX4 plasmid in MDR Pseudomonas aeruginosa, isolated from paediatric patients undergoing chemotherapy as a result of leukaemia. Methods In this study, six carbapenem-resistant strains of P. aeruginosa were isolated from two paediatric patients under chemotherapy treatment (1.8 years old female and 2.1 years male) from the Shenzhen Hospital, China, in the year 2019. Isolates were screened for conventional antibiotics such as tobramycin, cefepime, imipenem, and ciprofloxacin in additional colistin by using the broth dilution method. Furthermore, resistance determinants: mcr-1, bla NDM-1, bla KPC-1, and bla GES were screened using PCR and sequencing followed by multi-locus sequence typing. The horizontal gene transfer and location of mcr-1 and bla NDM-1 were determined by a liquid mating assay. In addition, Incompatibility type (Inc), PCR-based replicon type, and subgroup (MOB) of plasmid were studied. Results The screening for conventional antibiotics isolates showed 100% resistance to all the tested antibiotics except tobramycin. All isolates harboured carbapenemase encoding bla NDM-1, of which three also had mcr-1 located on a single IncX4 transferable plasmid. MLST typing revealed that four strains had a novel (new) STs type, while two belonged to ST1966. Conclusion This study identified for the first time colistin- and carbapenem-resistant MDR P. aeruginosa in paediatric patients with leukaemia in Shenzhen, China. It highlights the need for continuous surveillance in high-risk clones of MDR P. aeruginosa. Prudent use of antibiotics based on local antimicrobial susceptibility and clinical characteristics can help in reducing mortality in immunocompromised patients.
Collapse
Affiliation(s)
- Hongyu Chen
- Department of Laboratory Medicine, Shenzhen Children’s Hospital, Shenzhen, Guangdong, 518038, People’s Republic of China
| | - Huirong Mai
- Department of Haematology and Oncology, Shenzhen Children’s Hospital, Shenzhen, Guangdong, 518038, People’s Republic of China
| | - Bruno Lopes
- Department of Microbiology, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - Feiqiu Wen
- Department of Haematology and Oncology, Shenzhen Children’s Hospital, Shenzhen, Guangdong, 518038, People’s Republic of China
| | - Sandip Patil
- Department of Haematology and Oncology, Shenzhen Children’s Hospital, Shenzhen, Guangdong, 518038, People’s Republic of China
- Paediatric Research Institute, Shenzhen Children’s Hospital, Shenzhen, Guangdong, 518038, People’s Republic of China
| |
Collapse
|
168
|
Gruel G, Couvin D, Guyomard-Rabenirina S, Arlet G, Bambou JC, Pot M, Roy X, Talarmin A, Tressieres B, Ferdinand S, Breurec S. High Prevalence of bla CTXM-1/IncI1-Iγ/ST3 Plasmids in Extended-Spectrum β-Lactamase-Producing Escherichia coli Isolates Collected From Domestic Animals in Guadeloupe (French West Indies). Front Microbiol 2022; 13:882422. [PMID: 35651489 PMCID: PMC9149308 DOI: 10.3389/fmicb.2022.882422] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/07/2022] [Indexed: 11/13/2022] Open
Abstract
Extended-spectrum β-lactamase-producing Enterobacteriaceae (ESBL-E) have been classified in the group of resistant bacteria of highest priority. We determined the prevalence of ESBL-E collected in feces from household and shelter pets in Guadeloupe (French West Indies). A single rectal swab was taken from 125 dogs and 60 cats between June and September 2019. The prevalence of fecal carriage of ESBL-E was 7.6% (14/185, 95% CI: 4.2-12.4), within the range observed worldwide. The only risk factor associated with a higher prevalence of ESBL-E rectal carriage was a stay in a shelter, suggesting that refuges could be hotspots for their acquisition. All but one (Klebsiella pneumoniae from a cat) were Escherichia coli. We noted the presence of a bla CTX-M-1/IncI1-Iγ/sequence type (ST3) plasmid in 11 ESBL-producing E. coli isolates belonging to ST328 (n = 6), ST155 (n = 4) and ST953 (n = 1). A bla CTX-M-15 gene was identified in the three remaining ESBL-E isolates. The bla CTX-M-1 and most of the antimicrobial resistance genes were present in a well-conserved large conjugative IncI1-Iγ/ST3 plasmid characterized by two accessory regions containing antibiotic resistance genes. The plasmid has been detected worldwide in E. coli isolates from humans and several animal species, such as food-producing animals, wild birds and pets, and from the environment. This study shows the potential role of pets as a reservoir of antimicrobial-resistant bacteria or genes for humans and underlines the importance of basic hygiene measures by owners of companion animals.
Collapse
Affiliation(s)
- Gaëlle Gruel
- Transmission, Reservoir and Diversity of Pathogens Unit, Pasteur Institute of Guadeloupe, Pointe-à-Pitre, France
| | - David Couvin
- Transmission, Reservoir and Diversity of Pathogens Unit, Pasteur Institute of Guadeloupe, Pointe-à-Pitre, France
| | | | | | | | - Matthieu Pot
- Transmission, Reservoir and Diversity of Pathogens Unit, Pasteur Institute of Guadeloupe, Pointe-à-Pitre, France
| | | | - Antoine Talarmin
- Transmission, Reservoir and Diversity of Pathogens Unit, Pasteur Institute of Guadeloupe, Pointe-à-Pitre, France
| | - Benoit Tressieres
- INSERM 1424, Center for Clinical Investigation, University Hospital Center of Guadeloupe, Pointe-à-Pitre, France
| | - Séverine Ferdinand
- Transmission, Reservoir and Diversity of Pathogens Unit, Pasteur Institute of Guadeloupe, Pointe-à-Pitre, France
| | - Sébastien Breurec
- Transmission, Reservoir and Diversity of Pathogens Unit, Pasteur Institute of Guadeloupe, Pointe-à-Pitre, France.,INSERM 1424, Center for Clinical Investigation, University Hospital Center of Guadeloupe, Pointe-à-Pitre, France.,Faculty of Medicine Hyacinthe Bastaraud, University of the Antilles, Pointe-à-Pitre, France
| |
Collapse
|
169
|
Cejas D, Magariños F, Elena A, Ferrara M, Ormazábal C, Yernazian MV, Gutkind G, Radice M. Emergence and clonal expansion of Klebsiella pneumoniae ST307, simultaneously producing KPC-3 and NDM-1. Rev Argent Microbiol 2022; 54:288-292. [DOI: 10.1016/j.ram.2022.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 12/02/2021] [Accepted: 04/18/2022] [Indexed: 11/27/2022] Open
|
170
|
Sallem N, Hammami A, Mnif B. Trends in human intestinal carriage of ESBL- and carbapenemase-producing Enterobacterales among food handlers in Tunisia: emergence of C1-M27-ST131 subclades, blaOXA-48 and blaNDM. J Antimicrob Chemother 2022; 77:2142-2152. [PMID: 35640660 DOI: 10.1093/jac/dkac167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 05/06/2022] [Indexed: 01/03/2023] Open
Abstract
OBJECTIVES To determine the prevalence of community intestinal carriage of ESBL-producing Enterobacterales (ESBL-E), acquired-AmpC-producing Enterobacterales (aAmpC-E) and carbapenemase-producing Enterobacterales (CPE) in Tunisia. METHODS From November 2012 to September 2017, stool samples from food handlers in Sfax, Tunisia, were screened for ESBL-E, AmpC-E and CPE using antibiotic-containing media. The genes encoding these β-lactamases were characterized by PCR, sequencing, and transfer assays. ST131 clonal groups were detected by PCR and characterized for antibiotic resistance, virulence genes and PFGE patterns. RESULTS Of 2135 participants, ESBL-E, aAmpC-E, and CPE carriage were detected in 419 (19.63%), 35 (1.63%) and 7 (0.33%) participants, respectively. CTX-M-15 (60%), CTX-M-1 (16.8%) and CTX-M-27 (12.8%) were the most common ESBL determinants. The ESBL-E carriage was significantly higher in summer (33%) and autumn (25.7%) than in winter (12.1%) and spring (11.4%). ST131 was detected in 50 (13.2%) of the 378 ESBL-producing Escherichia coli isolates; most of them (35; 70%) belonged to subclade C1 (cluster C1-M27: 23 isolates, 46%; cluster C1-non-M27: 12 isolates, 24%) followed by those belonging to subclade C2 (11; 22%). Although subclade C2 isolates, all harbouring blaCTX-M-15, had the highest resistance rates and virulence factor and addiction system scores, the subclade C1 isolates, mainly harbouring blaCTX-M-27 (94%), were predominant since 2015. The most frequently detected carbapenemase-encoding gene was blaOXA-48-like (85%) and acquired AmpC-encoding genes were blaDHA-1 (54%) and blaCMY-2 (46%). CONCLUSIONS This is the first large Tunisian study to reveal a high faecal ESBL carriage rate, a low CPE carriage rate, and the predominance of CTX-M-27-producing subclade C1 among faecal ESBL-ST131 isolates in the Tunisian community.
Collapse
Affiliation(s)
- Nesrine Sallem
- Habib Bourguiba University Hospital, Research Laboratory Microorganisms and Human Disease, University of Sfax, Route El Ain Km 0.5, 3029, Sfax, Tunisia
| | - Adnene Hammami
- Habib Bourguiba University Hospital, Research Laboratory Microorganisms and Human Disease, University of Sfax, Route El Ain Km 0.5, 3029, Sfax, Tunisia.,Faculty of Medicine Sfax, Laboratory of Microbiology, University of Sfax, Avenue Majida Boulila, 3027, Sfax, Tunisia
| | - Basma Mnif
- Habib Bourguiba University Hospital, Research Laboratory Microorganisms and Human Disease, University of Sfax, Route El Ain Km 0.5, 3029, Sfax, Tunisia.,Faculty of Medicine Sfax, Laboratory of Microbiology, University of Sfax, Avenue Majida Boulila, 3027, Sfax, Tunisia
| |
Collapse
|
171
|
Teixeira P, Pinto N, Henriques I, Tacão M. KPC-3-, GES-5-, and VIM-1-Producing Enterobacterales Isolated from Urban Ponds. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19105848. [PMID: 35627386 PMCID: PMC9141432 DOI: 10.3390/ijerph19105848] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/05/2022] [Accepted: 05/07/2022] [Indexed: 01/27/2023]
Abstract
Carbapenems are antibiotics of pivotal importance in human medicine, the efficacy of which is threatened by the increasing prevalence of carbapenem-resistant Enterobacterales (CRE). Urban ponds may be reservoirs of CRE, although this hypothesis has been poorly explored. We assessed the proportion of CRE in urban ponds over a one-year period and retrieved 23 isolates. These were submitted to BOX-PCR, PFGE, 16S rDNA sequencing, antibiotic susceptibility tests, detection of carbapenemase-encoding genes, and conjugation assays. Isolates were affiliated with Klebsiella (n = 1), Raoultella (n = 11), Citrobacter (n = 8), and Enterobacter (n = 3). Carbapenemase-encoding genes were detected in 21 isolates: blaKPC (n = 20), blaGES-5 (n = 6), and blaVIM (n = 1), with 7 isolates carrying two carbapenemase genes. Clonal isolates were collected from different ponds and in different campaigns. Citrobacter F6, Raoultella N9, and Enterobacter N10 were predicted as pathogens from whole-genome sequence analysis, which also revealed the presence of several resistance genes and mobile genetic elements. We found that blaKPC-3 was located on Tn4401b (Citrobacter F6 and Enterobacter N10) or Tn4401d (Raoultella N9). The former was part of an IncFIA-FII pBK30683-like plasmid. In addition, blaGES-5 was in a class 3 integron, either chromosomal (Raoultella N9) or plasmidic (Enterobacter N10). Our findings confirmed the role of urban ponds as reservoirs and dispersal sites for CRE.
Collapse
Affiliation(s)
- Pedro Teixeira
- CESAM (Centre for Marine and Environmental Studies), University of Aveiro, 3810-193 Aveiro, Portugal; (P.T.); (M.T.)
- Biology Department, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Nuno Pinto
- Biology Department, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Isabel Henriques
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, 3004-531 Coimbra, Portugal
- Correspondence:
| | - Marta Tacão
- CESAM (Centre for Marine and Environmental Studies), University of Aveiro, 3810-193 Aveiro, Portugal; (P.T.); (M.T.)
- Biology Department, University of Aveiro, 3810-193 Aveiro, Portugal;
| |
Collapse
|
172
|
Puangseree J, Prathan R, Srisanga S, Angkittitrakul S, Chuanchuen R. Plasmid profile analysis of Escherichia coli and Salmonella enterica isolated from pigs, pork and humans. Epidemiol Infect 2022; 150:e110. [PMID: 35535461 PMCID: PMC9214845 DOI: 10.1017/s0950268822000814] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 04/16/2022] [Accepted: 04/18/2022] [Indexed: 11/17/2022] Open
Abstract
This study aimed to determine the epidemiology and association of antimicrobial resistance (AMR) among Escherichia coli and Salmonella in Thailand. The E. coli (n = 1047) and Salmonella (n = 816) isolates from pigs, pork and humans were screened for 18 replicons including HI1, HI2, I1-γ, X, L/M, N, FIA, FIB, W, Y, P, FIC, A/C, T, FIIAs, F, K and B/O using polymerase chain reaction-based replicon typing. The E. coli (n = 26) and Salmonella (n = 3) isolates carrying IncF family replicons, ESBL and/or mcr genes were determined for FAB formula. IncF represented the major type of plasmids. Sixteen and eleven Inc groups were identified in E. coli (85.3%) and Salmonella (25.7%), respectively. The predominant replicon patterns between E. coli and Salmonella were IncK-F (23.7%) and IncF (46.2%). Significant correlations (P < 0.05) were observed between plasmid-replicon type and resistance phenotype. Plasmid replicon types were significantly different among sources of isolates and sampling periods. The most common FAB types between E. coli and Salmonella were F2:A-:B- (30.8%) and S1:A-:B- (66.7%), respectively. In conclusion, various plasmids present in E. coli and Salmonella. Responsible and prudent use of antimicrobials is suggested to reduce the selective pressures that favour the spread of AMR determinants. Further studies to understand the evolution of R plasmids and their contribution to the dissemination of AMR genes are warranted.
Collapse
Affiliation(s)
- Jiratchaya Puangseree
- Research Unit for Microbial Food Safety and Antimicrobial Resistance, Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Rangsiya Prathan
- Research Unit for Microbial Food Safety and Antimicrobial Resistance, Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
- Center for Antimicrobial Resistance Monitoring in Food-borne Pathogens, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Songsak Srisanga
- Research Unit for Microbial Food Safety and Antimicrobial Resistance, Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
- Center for Antimicrobial Resistance Monitoring in Food-borne Pathogens, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | | | - Rungtip Chuanchuen
- Research Unit for Microbial Food Safety and Antimicrobial Resistance, Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
- Center for Antimicrobial Resistance Monitoring in Food-borne Pathogens, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
173
|
Lee S, An JU, Woo J, Song H, Yi S, Kim WH, Lee JH, Ryu S, Cho S. Prevalence, Characteristics, and Clonal Distribution of Escherichia coli Carrying Mobilized Colistin Resistance Gene mcr-1.1 in Swine Farms and Their Differences According to Swine Production Stages. Front Microbiol 2022; 13:873856. [PMID: 35602044 PMCID: PMC9121016 DOI: 10.3389/fmicb.2022.873856] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 04/04/2022] [Indexed: 11/25/2022] Open
Abstract
Global spread of Escherichia coli strains carrying the mobilized colistin resistance gene mcr-1.1 (MCR1-EC) poses serious threats to public health. Colistin has been generally prescribed for swine colibacillosis, having made swine farms as major reservoirs of MCR1-EC. The present study aimed to understand characteristic differences of MCR1-EC, including prevalence, antimicrobial resistance, and virulence, according to swine production stages. In addition, genetic relatedness was evaluated between MCR1-EC isolated from this study as well as pig-, human-, and chicken-derived strains published in the National Center for Biotechnology Information (NCBI), based on the multi-locus sequence types (MLSTs) and whole-genome sequences (WGS). Individual fecal samples (n = 331) were collected from asymptomatic weaning-piglets, growers, finishers, and sows from 10 farrow-to-finishing farms in South Korea between 2017 and 2019. The weighted prevalence of MCR1-EC was 11.6% (95% CI: 8.9%–15.0%, 55/331), with the highest prevalence at weaning stage. The 96.2% of MCR1-EC showed multi-drug resistance. Notably, weaning stage-derived MCR1-EC showed higher resistance rates (e.g., against extended-spectrum β-lactams or quinolones) than those from other stages. MCR1-EC with virulence advantages (e.g., intestinal/extraintestinal pathogenic E. coli or robust biofilm formation) were identified from all pig stages, accounting for nearly half of the total strains. WGS-based in-depth characterization showed that intestinal pathogenic MCR1-EC harbored multi-drug resistance and multiple virulence factors, which were highly shared between strains isolated from pigs of different stages. The clonal distribution of MCR1-EC was shared within swine farms but rarely across farms. The major clonal type of MCR1-EC from swine farms and NCBI database was ST10-A. Core genomes of MCR1-EC isolated from individuals within closed environments (same farms or human hospitals) were highly shared (genetic distance < 0.01), suggesting a high probability of clonal expansion of MCR1-EC within closed environments such as livestock husbandry. To the best of our knowledge, this is the first study to analyze the differences in the characteristics and clonal distribution of MCR1-EC according to production stages in swine farms, an important reservoir of MCR1-EC. Our results highlight the need to establish MCR1-EC control plans in swine farms based on an in-depth understanding of MCR1-EC characteristics according to swine production stages, focusing especially on the weaning stages.
Collapse
Affiliation(s)
- Soomin Lee
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea
| | - Jae-Uk An
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea
| | - JungHa Woo
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea
| | - Hyokeun Song
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea
| | - Saehah Yi
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea
| | - Woo-Hyun Kim
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea
| | - Ju-Hoon Lee
- Department of Food and Animal Biotechnology, Seoul National University, Seoul, South Korea
- Department of Agricultural Biotechnology, Center for Food Bioconvergence, Seoul National University, Seoul, South Korea
| | - Sangryeol Ryu
- Department of Food and Animal Biotechnology, Seoul National University, Seoul, South Korea
- Department of Agricultural Biotechnology, Center for Food Bioconvergence, Seoul National University, Seoul, South Korea
| | - Seongbeom Cho
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea
- *Correspondence: Seongbeom Cho,
| |
Collapse
|
174
|
Valat C, Haenni M, Arnaout Y, Drapeau A, Hirchaud E, Touzain F, Boyer T, Delannoy S, Vorimore F, Fach P, Madec JY. F74 plasmids are major vectors of virulence genes in bovine NTEC2. Lett Appl Microbiol 2022; 75:355-362. [PMID: 35509148 DOI: 10.1111/lam.13733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/08/2022] [Accepted: 04/29/2022] [Indexed: 11/28/2022]
Abstract
Necrotoxigenic Escherichia coli 2 (NTEC2) are defined as E. coli producing the toxin known as cytotoxic necrotizing factor 2 (CNF2), a potent toxin primarily found in bovine but also in humans. NTEC2 are mostly associated with bovine, and cnf2 is known to be carried by pVir-like plasmids. In this study, we looked for NTEC2 in a collection of E. coli collected between 2011 and 2018 in French bovine. Thirty-two isolates, collected from both sick (n=19) and healthy (n=13) animals, were identified and characterized using whole-genome sequencing. One F74 plasmid of this bacterial collection was long-read sequenced: its size was 138 121 bp and it carried the cnf2, F17cA-eG, cdtB, iutA, iucC, and ompP virulence factors (VFs), but no resistance gene. A large variety of genetic backgrounds was observed, but all cnf2-carrying plasmids belonged to the IncF family, and most of them (78.1%) were of the F74 group. Similar F74 plasmids were also reported from bovine in the United Kingdom and USA, as identified in the publically available databases. Consequently, these F74 plasmids, which are widely disseminated among E. coli from cattle in the French territory, are vectors of virulence determinants that largely went unnoticed until now.
Collapse
Affiliation(s)
- Charlotte Valat
- Unité Antibiorésistance et Virulence Bactériennes, Agence Nationale de Sécurité Sanitaire (ANSES) - Université de Lyon, Lyon, France
| | - Marisa Haenni
- Unité Antibiorésistance et Virulence Bactériennes, Agence Nationale de Sécurité Sanitaire (ANSES) - Université de Lyon, Lyon, France
| | - Youssef Arnaout
- Unité Antibiorésistance et Virulence Bactériennes, Agence Nationale de Sécurité Sanitaire (ANSES) - Université de Lyon, Lyon, France
| | - Antoine Drapeau
- Unité Antibiorésistance et Virulence Bactériennes, Agence Nationale de Sécurité Sanitaire (ANSES) - Université de Lyon, Lyon, France
| | - Edouard Hirchaud
- Unité Génétique Virale et Biosécurité, Agence Nationale de Sécurité Sanitaire (ANSES), Ploufragan, France
| | - Fabrice Touzain
- Unité Génétique Virale et Biosécurité, Agence Nationale de Sécurité Sanitaire (ANSES), Ploufragan, France
| | - Théophile Boyer
- Unité Epidémiologie et appui à la surveillance, Agence Nationale de Sécurité Sanitaire (ANSES) - Université de Lyon, Lyon, France
| | - Sabine Delannoy
- Unité COLiPATH / Plateforme d'identification et de typage des agents pathogènes (IdentyPath) du laboratoire de sécurité des aliments, Agence Nationale de Sécurité Sanitaire (ANSES), Maisons-Alfort, France
| | - Fabien Vorimore
- Unité COLiPATH / Plateforme d'identification et de typage des agents pathogènes (IdentyPath) du laboratoire de sécurité des aliments, Agence Nationale de Sécurité Sanitaire (ANSES), Maisons-Alfort, France
| | - Patrick Fach
- Unité COLiPATH / Plateforme d'identification et de typage des agents pathogènes (IdentyPath) du laboratoire de sécurité des aliments, Agence Nationale de Sécurité Sanitaire (ANSES), Maisons-Alfort, France
| | - Jean-Yves Madec
- Unité Antibiorésistance et Virulence Bactériennes, Agence Nationale de Sécurité Sanitaire (ANSES) - Université de Lyon, Lyon, France
| |
Collapse
|
175
|
Zhao X, Li W, Hou S, Wang Y, Wang S, Gao J, Zhang R, Jiang S, Zhu Y. Epidemiological investigation on drug resistance of Salmonella isolates from duck breeding farms in Shandong Province and surrounding areas, China. Poult Sci 2022; 101:101961. [PMID: 35687959 PMCID: PMC9190056 DOI: 10.1016/j.psj.2022.101961] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 05/05/2022] [Accepted: 05/07/2022] [Indexed: 11/17/2022] Open
Affiliation(s)
- Xinyuan Zhao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian 201718, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian 201718, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Taian 271018, China
| | - Wei Li
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian 201718, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian 201718, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Taian 271018, China
| | - Shaopeng Hou
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian 201718, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian 201718, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Taian 271018, China
| | - Yanjun Wang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian 201718, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian 201718, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Taian 271018, China
| | - Shuyang Wang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian 201718, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian 201718, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Taian 271018, China
| | - Jing Gao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian 201718, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian 201718, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Taian 271018, China
| | - Ruihua Zhang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian 201718, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian 201718, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Taian 271018, China
| | - Shijin Jiang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian 201718, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian 201718, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Taian 271018, China
| | - Yanli Zhu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian 201718, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian 201718, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Taian 271018, China.
| |
Collapse
|
176
|
Yao M, Zhu Q, Zou J, Shenkutie AM, Hu S, Qu J, He Z, Leung PHM. Genomic Characterization of a Uropathogenic Escherichia coli ST405 Isolate Harboring bla CTX-M-15-Encoding IncFIA-FIB Plasmid, bla CTX-M-24-Encoding IncI1 Plasmid, and Phage-Like Plasmid. Front Microbiol 2022; 13:845045. [PMID: 35479623 PMCID: PMC9037040 DOI: 10.3389/fmicb.2022.845045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 02/08/2022] [Indexed: 11/13/2022] Open
Abstract
Escherichia coli sequence type 405 is an emerging antibiotic-resistant clonal group associated with the global dissemination of extended-spectrum β-lactamase-producing E. coli. In this study, we report the genome assembly and characterization of a uropathogenic E. coli ST405 strain, SZESBLEC201, based on long and short reads obtained from the Nanopore and Illumina sequencing platforms, respectively. Whole-genome sequencing revealed that SZESBLEC201 harbors a 5,020,403 bp chromosome and three plasmids, namely, pSZESBLEC201-1, pSZESBLEC201-2, and pSZESBLEC201-3. pSZESBLEC201-1 (111,621 bp) belongs to the IncFIA-FIB type and harbors bla CTX-M-15. However, this plasmid does not harbor conjugative transfer-associated genes, rendering pSZESBLEC201-1 unable to be conjugatively transferred. pSZESBLEC201-2 (95,138 bp) is a phage-like plasmid that shows a strong genome synteny with Escherichia phage P1 but with the absence of mobile genetic elements and some regulatory genes. pSZESBLEC201-3 (92,865 bp) belongs to the IncI1 type and carries bla CTX-M-24. In contrast to pSZESBLEC201-1, pSZESBLEC201-3 retains its full active conjugation machinery and can be transferred via conjugation. The genetic features of the genome show that the SZESBLEC201 has a unique virulence pattern compared with genetically similar strains found in the same country (China). The plasmid backbones exhibit a high degree of similarity to those of geographically distant isolates, highlighting the global spread of bla CTX-M genes and the genome plasticity of this clonal group. The coexistence of two bla CTX-M variants in the same strain increases the risk of the emergence of new bla CTX-M variants. Further studies on phage-like plasmids are necessary to provide insights into their biological activities and clinical significance.
Collapse
Affiliation(s)
- Mianzhi Yao
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - Qianhui Zhu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jin Zou
- Department of Clinical Laboratory, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, National Clinical Research Center for Infectious Diseases, Shenzhen, China
| | - Abebe Mekuria Shenkutie
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China.,Department of Microbiology, Immunology, and Parasitology, St. Paul's Hospital Millennium Medical College, Addis Ababa, Ethiopia
| | - Songnian Hu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jiuxin Qu
- Department of Clinical Laboratory, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, National Clinical Research Center for Infectious Diseases, Shenzhen, China
| | - Zilong He
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Interdisciplinary Innovation Institute of Medicine and Engineering, Beihang University, Beijing, China.,School of Engineering Medicine, Beihang University, Beijing, China
| | - Polly H M Leung
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| |
Collapse
|
177
|
Belotindos LP, Tsunoda R, Villanueva MA, Nakajima C, Mingala CN, Suzuki Y. Characterisation of plasmids harbouring qnrA1, qnrS1, and qnrB4 in E. coli isolated in the Philippines from food-producing animals and their products. J Glob Antimicrob Resist 2022; 30:38-46. [PMID: 35447382 DOI: 10.1016/j.jgar.2022.04.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 03/19/2022] [Accepted: 04/11/2022] [Indexed: 10/18/2022] Open
Abstract
OBJECTIVES Determinants showing plasmid-mediated quinolone resistance, which usually leads to antimicrobial ineffectiveness, have become an emerging clinical problem. In our previous study in the Philippines, a high prevalence of Qnr determinants was found in clinical samples and food-producing animals and their food products. However, no qnr-carrying plasmids have been investigated in animals or animal-derived foods. Hence, in the present, we aimed to characterise qnr-carrying plasmids in Escherichia coli isolated from the food supply chain. METHODS Plasmids from 44 qnr-positive isolates were assigned to incompatibility groups by PCR-based replicon typing, and the presence of β-lactamase-encoding genes were investigated by PCR. Localisation of qnr in plasmids was determined by S1-PFGE and Southern blot hybridisation. The transferability of qnr-carrying plasmids was examined by conjugation analysis. RESULTS Overall, 77.3% (95%CI = 62.2 - 88.5) of the isolates harbouring qnr determinants were positive for seven plasmid types, and 56.8% concurrently harboured blaTEM-1. Plasmid IncFrepB was prevalent (65.9%, 95%CI = 50.1 - 79.5) among qnr determinants. Localisation of qnr determinants in IncFrepB and transferability of plasmids was further confirmed. CONCLUSIONS The current study proved that qnr in E. coli isolated from food-producing animals and their food products could spread via plasmid IncFrepB upon selective pressure with quinolones or other antimicrobials. Therefore, to curb the emergence and spread of qnr-harbouring bacteria in the Philippines, prudent use of antimicrobials in animal production and stricter hygiene and food handling are recommended.
Collapse
Affiliation(s)
- Lawrence P Belotindos
- Division of Bioresources, International Institute for Zoonosis Control Hokkaido University, Sapporo 001-0020, Japan; Biosafety and Environment Section, Philippine Carabao Center, Science City of Muñoz, Nueva Ecija 3120, Philippines.
| | - Risa Tsunoda
- Division of Bioresources, International Institute for Zoonosis Control Hokkaido University, Sapporo 001-0020, Japan.
| | - Marvin A Villanueva
- Biosafety and Environment Section, Philippine Carabao Center, Science City of Muñoz, Nueva Ecija 3120, Philippines.
| | - Chie Nakajima
- Division of Bioresources, International Institute for Zoonosis Control Hokkaido University, Sapporo 001-0020, Japan; International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0021, Japan.
| | - Claro N Mingala
- Livestock Biotechnology Center, Philippine Carabao Center, Science City of Muñoz, Nueva Ecija 3120, Philippines.
| | - Yasuhiko Suzuki
- Division of Bioresources, International Institute for Zoonosis Control Hokkaido University, Sapporo 001-0020, Japan; International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0021, Japan.
| |
Collapse
|
178
|
Ramos CP, Kamei CYI, Viegas FM, de Melo Barbieri J, Cunha JLR, Hounmanou YMG, Coura FM, Santana JA, Lobato FCF, Bojesen AM, Silva ROS. Fecal Shedding of Multidrug Resistant Escherichia coli Isolates in Dogs Fed with Raw Meat-Based Diets in Brazil. Antibiotics (Basel) 2022; 11:antibiotics11040534. [PMID: 35453285 PMCID: PMC9029118 DOI: 10.3390/antibiotics11040534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/11/2022] [Accepted: 04/15/2022] [Indexed: 11/29/2022] Open
Abstract
The practice of feeding dogs raw meat-based diets (RMBDs) is growing in several countries, and the risks associated with the ingestion of pathogenic and antimicrobial-resistant Escherichia coli in dogs fed these diets are largely unknown. We characterized E. coli strains isolated from dogs fed either an RMBD or a conventional dry feed, according to the phylogroup, virulence genes, and antimicrobial susceptibility profiles of the bacteria. Two hundred and sixteen E. coli strains were isolated. Dogs fed RMBDs shed E. coli strains from the phylogroup E more frequently and were positive for the E. coli heat-stable enterotoxin 1-encoding gene. Isolates from RMBD-fed dogs were also frequently positive for multidrug-resistant E. coli isolates including extended-spectrum beta-lactamase (ESBL) producers. Whole-genome sequencing of seven ESBL-producing E. coli strains revealed that they predominantly harbored blaCTX-M-55, and two strains were also positive for the colistin-resistant gene mcr-1. These results suggest that feeding an RMBD can affect the dog’s microbiota, change the frequency of certain phylogroups, and increase the shedding of diarrheagenic E. coli. Also, feeding an RMBD seemed to be linked with the fecal shedding of multidrug-resistant E. coli, including the spread of strains harboring mobilizable colistin resistance and ESBL genes. This finding is of concern for both animal and human health.
Collapse
Affiliation(s)
- Carolina Pantuzza Ramos
- Departamento de Medicina Veterinária Preventiva, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 30123-970, Brazil; (C.P.R.); (C.Y.I.K.); (F.M.V.); (J.d.M.B.); (J.L.R.C.); (J.A.S.); (F.C.F.L.)
| | - Carolina Yumi Iceri Kamei
- Departamento de Medicina Veterinária Preventiva, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 30123-970, Brazil; (C.P.R.); (C.Y.I.K.); (F.M.V.); (J.d.M.B.); (J.L.R.C.); (J.A.S.); (F.C.F.L.)
| | - Flávia Mello Viegas
- Departamento de Medicina Veterinária Preventiva, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 30123-970, Brazil; (C.P.R.); (C.Y.I.K.); (F.M.V.); (J.d.M.B.); (J.L.R.C.); (J.A.S.); (F.C.F.L.)
| | - Jonata de Melo Barbieri
- Departamento de Medicina Veterinária Preventiva, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 30123-970, Brazil; (C.P.R.); (C.Y.I.K.); (F.M.V.); (J.d.M.B.); (J.L.R.C.); (J.A.S.); (F.C.F.L.)
| | - João Luís Reis Cunha
- Departamento de Medicina Veterinária Preventiva, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 30123-970, Brazil; (C.P.R.); (C.Y.I.K.); (F.M.V.); (J.d.M.B.); (J.L.R.C.); (J.A.S.); (F.C.F.L.)
| | - Yaovi Mahuton Gildas Hounmanou
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Copenhagen, Denmark; (Y.M.G.H.); (A.M.B.)
| | - Fernanda Morcatti Coura
- Departamento de Ciências Agrárias, Instituto Federal de Minas Gerais (IFMG), Bambuí 38900-000, Brazil;
| | - Jordana Almeida Santana
- Departamento de Medicina Veterinária Preventiva, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 30123-970, Brazil; (C.P.R.); (C.Y.I.K.); (F.M.V.); (J.d.M.B.); (J.L.R.C.); (J.A.S.); (F.C.F.L.)
| | - Francisco Carlos Faria Lobato
- Departamento de Medicina Veterinária Preventiva, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 30123-970, Brazil; (C.P.R.); (C.Y.I.K.); (F.M.V.); (J.d.M.B.); (J.L.R.C.); (J.A.S.); (F.C.F.L.)
| | - Anders Miki Bojesen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Copenhagen, Denmark; (Y.M.G.H.); (A.M.B.)
| | - Rodrigo Otávio Silveira Silva
- Departamento de Medicina Veterinária Preventiva, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 30123-970, Brazil; (C.P.R.); (C.Y.I.K.); (F.M.V.); (J.d.M.B.); (J.L.R.C.); (J.A.S.); (F.C.F.L.)
- Correspondence:
| |
Collapse
|
179
|
Li F, Cheng P, Li X, Liu R, Liu H, Zhang X. Molecular Epidemiology and Colistin-Resistant Mechanism of mcr-Positive and mcr-Negative Escherichia coli Isolated From Animal in Sichuan Province, China. Front Microbiol 2022; 13:818548. [PMID: 35422787 PMCID: PMC9002323 DOI: 10.3389/fmicb.2022.818548] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/02/2022] [Indexed: 12/05/2022] Open
Abstract
Colistin is the last line of defense for the treatment of multidrug-resistant gram-negative bacterial infections. However, colistin resistance is gradually increasing worldwide, with resistance commonly regulated by two-component system and mcr gene. Thus, this study aimed to investigate molecular epidemiology and colistin-resistant mechanism of mcr-positive and mcr-negative Escherichia coli isolates from animal in Sichuan Province, China. In this study, a total of 101 colistin-resistant E. coli strains were isolated from 300 fecal samples in six farms in Sichuan Province. PCR was used to detect mcr gene (mcr-1 to mcr-9). The prevalence of mcr-1 in colistin-resistant E. coli was 53.47% (54/101), and the prevalence of mcr-3 in colistin-resistant E. coli was 10.89% (11/101). The colistin-resistant E. coli and mcr-1–positive E. coli showed extensive antimicrobial resistance profiles. For follow-up experiments, we used 30 mcr-negative and 30 mcr-1–positive colistin-resistant E. coli isolates and E. coli K-12 MG1655 model strain. Multi-locus sequence typing (MLST) of 30 strains carrying mcr-1 as detected by PCR identified revealed six strains (20%) of ST10 and three strains (10%) of each ST206, ST48, and ST155 and either two (for ST542 and 2539) or just one for all other types. The conjugation experiment and plasmid replicon type analysis suggest that mcr-1 was more likely to be horizontally transferred and primarily localized on IncX4-type and IncI2-type plasmid. The ST diversity of the mcr-1 indicated a scattered and non-clonal spreading in mcr-1–positive E. coli. Twenty-eight mcr-negative colistin-resistant E. coli isolates carried diverse amino acid alterations in PmrA, PmrB, PhoP, PhoQ, and MgrB, whereas no mutation was found in the remaining isolates. The finding showed the high prevalence of colistin resistance in livestock farm environments in Sichuan Province, China. Our study demonstrates that colistin resistance is related to chromosomal point mutations including the two-component systems PhoP/PhoQ, PmrA/PmrB, and their regulators MgrB. These point mutations may confer colistin resistance in mcr-negative E. coli. These findings help in gaining insight of chromosomal-encoded colistin resistance in E. coli.
Collapse
Affiliation(s)
- Fulei Li
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Northeast Agricultural University, Harbin, China.,Department of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Ping Cheng
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Northeast Agricultural University, Harbin, China.,Department of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xiaoting Li
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Northeast Agricultural University, Harbin, China.,Department of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Ruimeng Liu
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Northeast Agricultural University, Harbin, China.,Department of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Haibin Liu
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Northeast Agricultural University, Harbin, China.,Department of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xiuying Zhang
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Northeast Agricultural University, Harbin, China.,Department of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| |
Collapse
|
180
|
Zhang W, Zhang T, Wang C, Liang G, Lu Q, Wen G, Guo Y, Cheng Y, Wang Z, Shao H, Luo Q. Prevalence of colistin resistance gene mcr-1 in Escherichia coli isolated from chickens in central China, 2014 to 2019. J Glob Antimicrob Resist 2022; 29:241-246. [DOI: 10.1016/j.jgar.2022.03.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 03/18/2022] [Accepted: 03/28/2022] [Indexed: 10/18/2022] Open
|
181
|
Martínez-Álvarez S, Sanz S, Olarte C, Hidalgo-Sanz R, Carvalho I, Fernández-Fernández R, Campaña-Burguet A, Latorre-Fernández J, Zarazaga M, Torres C. Antimicrobial Resistance in Escherichia coli from the Broiler Farm Environment, with Detection of SHV-12-Producing Isolates. Antibiotics (Basel) 2022; 11:antibiotics11040444. [PMID: 35453196 PMCID: PMC9024766 DOI: 10.3390/antibiotics11040444] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/19/2022] [Accepted: 03/23/2022] [Indexed: 02/06/2023] Open
Abstract
Antimicrobial resistance is an important One Health challenge that encompasses the human, animal, and environmental fields. A total of 111 Escherichia coli isolates previously recovered from manure (n = 57) and indoor air (n = 54) samples from a broiler farm were analyzed to determine their phenotypes and genotypes of antimicrobial resistance and integron characterization; in addition, plasmid replicon analysis and molecular typing were performed in extended-spectrum-beta-lactamase (ESBL) producer isolates. A multidrug-resistance phenotype was detected in 46.8% of the isolates, and the highest rates of resistance were found for ampicillin, trimethoprim−sulfamethoxazole, and tetracycline (>40%); moreover, 15 isolates (13.5%) showed susceptibility to all tested antibiotics. None of the isolates showed imipenem and/or cefoxitin resistance. Twenty-three of the one hundred and eleven E. coli isolates (20.7%) were ESBL producers and carried the blaSHV-12 gene; one of these isolates was recovered from the air, and the remaining 22 were from manure samples. Most of ESBL-positive isolates carried the cmlA (n = 23), tet(A) (n = 19), and aac(6′)-Ib-cr (n = 11) genes. The following genetic lineages were identified among the ESBL-producing isolates (sequence type-phylogroup-clonotype): ST770-E-CH116−552 (n = 12), ST117-B2-CH45−97 (n = 4), ST68-E-CH26−382/49 (n = 3), ST68-E-CH26−49 (n = 1), and ST10992-A/B1-CH11−23/41/580 (n = 4); the latter two were detected for the first time in the poultry sector. At least two plasmid replicon types were detected in the ESBL-producing E. coli isolates, with IncF, IncF1B, IncK, and IncHI1 being the most frequently found. The following antimicrobial resistance genes were identified among the non-ESBL-producing isolates (number of isolates): blaTEM (58), aac(6′)-Ib-cr (6), qnrS (2), aac(3)-II (2), cmlA (6), tet(A)/tet(B) (22), and sul1/2/3 (51). Four different gene-cassette arrays were detected in the variable region of class 1 (dfrA1-aadA1, dfrA12-aadA2, and dfrA12-orf-aadA2-cmlA) and class 2 integrons (sat2-aadA1-orfX). This work reveals the worrying presence of antimicrobial-resistant E. coli in the broiler farm environment, with ESBL-producing isolates of SHV-12 type being extensively disseminated.
Collapse
Affiliation(s)
- Sandra Martínez-Álvarez
- Department of Agriculture and Food, University of La Rioja, 26006 Logroño, Spain; (S.M.-Á.); (S.S.); (C.O.); (R.H.-S.); (I.C.); (R.F.-F.); (A.C.-B.); (J.L.-F.); (M.Z.)
| | - Susana Sanz
- Department of Agriculture and Food, University of La Rioja, 26006 Logroño, Spain; (S.M.-Á.); (S.S.); (C.O.); (R.H.-S.); (I.C.); (R.F.-F.); (A.C.-B.); (J.L.-F.); (M.Z.)
| | - Carmen Olarte
- Department of Agriculture and Food, University of La Rioja, 26006 Logroño, Spain; (S.M.-Á.); (S.S.); (C.O.); (R.H.-S.); (I.C.); (R.F.-F.); (A.C.-B.); (J.L.-F.); (M.Z.)
| | - Raquel Hidalgo-Sanz
- Department of Agriculture and Food, University of La Rioja, 26006 Logroño, Spain; (S.M.-Á.); (S.S.); (C.O.); (R.H.-S.); (I.C.); (R.F.-F.); (A.C.-B.); (J.L.-F.); (M.Z.)
| | - Isabel Carvalho
- Department of Agriculture and Food, University of La Rioja, 26006 Logroño, Spain; (S.M.-Á.); (S.S.); (C.O.); (R.H.-S.); (I.C.); (R.F.-F.); (A.C.-B.); (J.L.-F.); (M.Z.)
- Department of Veterinary Sciences, University of Trás-os-Montes-and Alto Douro, 5000-801 Vila Real, Portugal
| | - Rosa Fernández-Fernández
- Department of Agriculture and Food, University of La Rioja, 26006 Logroño, Spain; (S.M.-Á.); (S.S.); (C.O.); (R.H.-S.); (I.C.); (R.F.-F.); (A.C.-B.); (J.L.-F.); (M.Z.)
| | - Allelen Campaña-Burguet
- Department of Agriculture and Food, University of La Rioja, 26006 Logroño, Spain; (S.M.-Á.); (S.S.); (C.O.); (R.H.-S.); (I.C.); (R.F.-F.); (A.C.-B.); (J.L.-F.); (M.Z.)
| | - Javier Latorre-Fernández
- Department of Agriculture and Food, University of La Rioja, 26006 Logroño, Spain; (S.M.-Á.); (S.S.); (C.O.); (R.H.-S.); (I.C.); (R.F.-F.); (A.C.-B.); (J.L.-F.); (M.Z.)
| | - Myriam Zarazaga
- Department of Agriculture and Food, University of La Rioja, 26006 Logroño, Spain; (S.M.-Á.); (S.S.); (C.O.); (R.H.-S.); (I.C.); (R.F.-F.); (A.C.-B.); (J.L.-F.); (M.Z.)
| | - Carmen Torres
- Department of Agriculture and Food, University of La Rioja, 26006 Logroño, Spain; (S.M.-Á.); (S.S.); (C.O.); (R.H.-S.); (I.C.); (R.F.-F.); (A.C.-B.); (J.L.-F.); (M.Z.)
- Correspondence:
| |
Collapse
|
182
|
Zhu Y, Fan Y, Cao X, Lu R, Chu S, Ding A. Regulation of Carbapenemase Gene Conjugation in Escherichia coli Clinical Isolates. Microb Drug Resist 2022; 28:551-558. [PMID: 35319308 DOI: 10.1089/mdr.2021.0190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background: The purpose of this study is to raise awareness of the hazards of carbapenemase epidemics and provide theoretical support for preventing the spread of carbapenemase-producing organisms. Methods: A total of 893 non-duplicate E. coil strains were recruited from three major local hospitals. The carbapenemase genotype of each imipenem-resistant strain was analyzed. Molecular typing and homology analysis of the main carbapenemase-producing strains reveal the transmission mode of resistance genes. Through the conjugation experiment, the potential spreading risk of carbapenemase genes was analyzed. Extended-spectrum beta-lactamase genes and replicon detection of the conjugant carrying plasmid were performed. The unannotated Escherichia coli bacterial small non-coding RNAs (sRNAs) interacting with sdiA were predicted through a bioinformatics tool. The sRNAs overexpression and knockout strains were constructed, and the effect of sRNA on conjugation was analyzed. Results: A total of 8 carbapenemase-producing strains were detected (0.90%, 8/893). The main carbapenemase genotype was blaKPC -2 (7 strains). Multilocus sequence typing indicated that 7 E. coli isolates belonged to ST-10, ST-101, ST-131, ST-405, ST-410, and ST-1193, ST-2562, respectively. Homologous cluster analysis revealed that the sequence types among the 7 E. coli were high diversity. The blaKPC -2 genes were successfully transferred from these isolates to EC600 by conjugation. All transconjugant cells exhibited significantly reduced susceptibility to the imipenem. IncFII was the most common conjugative plasmid type (85.7%, 6/7). Bioinformatics predicted the interaction between RydB and sdiA. Further experiments found that the interaction between RydB and sdiA improved the bacterial conjugation rate between MG1655 and EC600. The regulation effect of RydB on E. coli conjugation was not affected by the replicon type and/or harboring resistance coding genotype in conjugative plasmids. Conclusion: Our findings emphasized the epidemiological characteristics of carbapenemase-resistant E. coli. A functional phenotype of the new sRNA RydB was identified, and the regulation effect of RydB on E. coli conjugation was improved.
Collapse
Affiliation(s)
- Yihua Zhu
- Clinical Laboratory, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu, P.R. China
| | - Yuping Fan
- Clinical Laboratory, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu, P.R. China
| | - Xinjian Cao
- Clinical Laboratory, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu, P.R. China
| | - Renfei Lu
- Clinical Laboratory, The Third Affiliated Hospital of Nantong University, Nantong, Jiangsu, P.R. China
| | - Shaopeng Chu
- Clinical Laboratory, Nantong University Affiliated Hospital, Nantong, Jiangsu, P.R. China
| | - Aimin Ding
- Department of Nursing, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
183
|
Fournier C, Poirel L, Despont S, Kessler J, Nordmann P. Increasing Trends of Association of 16S rRNA Methylases and Carbapenemases in Enterobacterales Clinical Isolates from Switzerland, 2017–2020. Microorganisms 2022; 10:microorganisms10030615. [PMID: 35336192 PMCID: PMC8951535 DOI: 10.3390/microorganisms10030615] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/08/2022] [Accepted: 03/10/2022] [Indexed: 02/06/2023] Open
Abstract
Aminoglycosides (AGs) in combination with β-lactams play an important role in antimicrobial therapy in severe infections. Pan-resistance to clinically relevant AGs increasingly arises from the production of 16S rRNA methylases (RMTases) that are mostly encoded by plasmids in Gram-negative bacteria. The recent emergence and spread of isolates encoding RMTases is worrisome, considering that they often co-produce extended-spectrum β-lactamases (ESBLs) or carbapenemases. Our study aimed to retrospectively analyze and characterize the association of carbapenem- and aminoglycoside-resistant clinical isolates in Switzerland during a 3.5-year period between January 2017 and June 2020. A total of 103 pan-aminoglycoside- and carbapenem-resistant clinical isolates were recovered at the NARA (Swiss National Reference Center for Emerging Antibiotic Resistance) during the 2017–2020 period. Carbapenemase and RMTase determinants were identified by PCR and sequencing. The characterization of plasmids bearing resistance determinants was performed by a mating-out assay followed by PCR-based replicon typing (PBRT). Clonality of the isolates was investigated by multilocus sequence typing (MLST). Over the 991 Enterobacterales collected at the NARA during this period, 103 (10.4%) of them were resistant to both carbapenems and all aminoglycosides. Among these 103 isolates, 35 isolates produced NDM-like carbapenemases, followed by OXA-48-like (n = 23), KPC-like (n = 21), or no carbapenemase (n = 13), OXA-48-like and NDM-like co-production (n = 7), and VIM-like enzymes (n = 4). The RMTases ArmA, RmtB, RmtC, RmtF, RmtG, and RmtB + RmtF were identified among 51.4%, 13.6%, 4.9%, 24.3%, 1%, and 1%, respectively. Plasmid co-localization of the carbapenemase and the RMTase encoding genes was found among ca. 20% of the isolates. A high diversity was identified in terms of the nature of associations between RMTase and carbapenemase-encoding genes, of incompatibility groups of the corresponding plasmids, and of strain genetic backgrounds, highlighting heterogeneous importations rather than clonal dissemination.
Collapse
Affiliation(s)
- Claudine Fournier
- Medical and Molecular Microbiology Unit, Faculty of Science and Medicine, University of Fribourg, 1700 Fribourg, Switzerland; (C.F.); (S.D.)
| | - Laurent Poirel
- Medical and Molecular Microbiology Unit, Faculty of Science and Medicine, University of Fribourg, 1700 Fribourg, Switzerland; (C.F.); (S.D.)
- INSERM European Unit (IAME, France), University of Fribourg, 1700 Fribourg, Switzerland
- Swiss National Reference Center for Emerging Antibiotic Resistance (NARA), 1700 Fribourg, Switzerland;
- Correspondence: (L.P.); (P.N.); Tel.: +41-26-300-9582 (L.P.)
| | - Sarah Despont
- Medical and Molecular Microbiology Unit, Faculty of Science and Medicine, University of Fribourg, 1700 Fribourg, Switzerland; (C.F.); (S.D.)
| | - Julie Kessler
- Swiss National Reference Center for Emerging Antibiotic Resistance (NARA), 1700 Fribourg, Switzerland;
| | - Patrice Nordmann
- Medical and Molecular Microbiology Unit, Faculty of Science and Medicine, University of Fribourg, 1700 Fribourg, Switzerland; (C.F.); (S.D.)
- INSERM European Unit (IAME, France), University of Fribourg, 1700 Fribourg, Switzerland
- Swiss National Reference Center for Emerging Antibiotic Resistance (NARA), 1700 Fribourg, Switzerland;
- Institute for Microbiology, University of Lausanne and University Hospital Centre, 1011 Lausanne, Switzerland
- Correspondence: (L.P.); (P.N.); Tel.: +41-26-300-9582 (L.P.)
| |
Collapse
|
184
|
Khine NO, Lugsomya K, Niyomtham W, Pongpan T, Hampson DJ, Prapasarakul N. Longitudinal Monitoring Reveals Persistence of Colistin-Resistant Escherichia coli on a Pig Farm Following Cessation of Colistin Use. Front Vet Sci 2022; 9:845746. [PMID: 35372535 PMCID: PMC8964308 DOI: 10.3389/fvets.2022.845746] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 02/17/2022] [Indexed: 12/25/2022] Open
Abstract
Colistin-resistant bacteria harboring plasmid-mediated mcr genes are of concern as they may be a cause of serious nosocomial infections. It is hypothesized that cessation of colistin use as a feed additive for pigs will reduce the occurrence and distribution of mcr genes in farms. The aim of this study was to investigate this hypothesis by longitudinal monitoring and characterizing of mcr positive Escherichia coli (MCRPE) isolates after colistin was withdrawn on a central Thailand pig farm that previously had a high frequency of MCRPE. Colistin use ceased at the beginning of 2017, and subsequently 170 samples were collected from farrowing sows and suckling piglets (n = 70), wastewater (n = 50) and farm workers (n = 50) over a 3.5-year period. Bacteria were identified by MALDI-TOF mass spectrometry and minimal inhibitory concentrations were determined by broth microdilution. The antibiogram of mcr positive E. coli isolates was determined using the Vitek2 automated susceptibility machine, and multiplex and simplex PCRs were performed for mcr-1-8 genes. MCRPE containing either mcr-1 or mcr-3 were isolated from pigs throughout the investigation period, but with a declining trend, whereas MCRPE isolates were recovered from humans only in 2017. MCRPE were still being recovered from wastewater in 2020. Most MCRPE isolates possessed the virulence genes Stap, Stb, or Stx2e, reflecting pathogenic potential in pigs, and showed high rates of resistance to ampicillin, gentamicin and tetracycline. Pulsed-field gel electrophoresis and multi-locus sequence typing showed that diverse MCRPE clones were distributed on the farm. The study identified a decline of pathogenic MCRPE following withdrawal of colistin, with pigs being the primary source, followed by wastewater. However, short-term therapeutic usage of other antibiotics could enhance the re-occurrence of mcr-carrying bacteria. Factors including the environment, management, and gene adaptations that allow maintenance of colistin resistance require further investigation, and longer-term studies are needed.
Collapse
Affiliation(s)
- Nwai Oo Khine
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- The International Graduate Program of Veterinary Science and Technology (VST), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Kittitat Lugsomya
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, China
| | - Waree Niyomtham
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Tawat Pongpan
- Center of Excellence in Diagnosis and Monitoring of Animal Pathogens (DMAP), Bangkok, Thailand
| | - David J. Hampson
- School of Veterinary Medicine, Murdoch University, Perth, WA, Australia
| | - Nuvee Prapasarakul
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Diagnosis and Monitoring of Animal Pathogens (DMAP), Bangkok, Thailand
| |
Collapse
|
185
|
Chen F, Wang P, Yin Z, Yang H, Hu L, Yu T, Jing Y, Guan J, Wu J, Zhou D. VIM-encoding Inc pSTY plasmids and chromosome-borne integrative and mobilizable elements (IMEs) and integrative and conjugative elements (ICEs) in Pseudomonas. Ann Clin Microbiol Antimicrob 2022; 21:10. [PMID: 35264204 PMCID: PMC8905914 DOI: 10.1186/s12941-022-00502-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 03/02/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The carbapenem-resistance genes blaVIM are widely disseminated in Pseudomonas, and frequently harbored within class 1 integrons that reside within various mobile genetic elements (MGEs). However, there are few reports on detailed genetic dissection of blaVIM-carrying MGEs in Pseudomonas. METHODS This study presented the complete sequences of five blaVIM-2/-4-carrying MGEs, including two plasmids, two chromosomal integrative and mobilizable elements (IMEs), and one chromosomal integrative and conjugative element (ICE) from five different Pseudomonas isolates. RESULTS The two plasmids were assigned to a novel incompatibility (Inc) group IncpSTY, which included only seven available plasmids with determined complete sequences and could be further divided into three subgroups IncpSTY-1/2/3. A detailed sequence comparison was then applied to a collection of 15 MGEs belonging to four different groups: three representative IncpSTY plasmids, two Tn6916-related IMEs, two Tn6918-related IMEs, and eight Tn6417-related ICEs and ten of these 15 MGEs were first time identified. At least 22 genes involving resistance to seven different categories of antibiotics and heavy metals were identified within these 15 MGEs, and most of these resistance genes were located within the accessory modules integrated as exogenous DNA regions into these MGEs. Especially, eleven of these 15 MGEs carried the blaVIM genes, which were located within 11 different concise class 1 integrons. CONCLUSION These blaVIM-carrying integrons were further integrated into the above plasmids, IMEs/ICEs with intercellular mobility. These MGEs could transfer between Pseudomonas isolates, which resulted in the accumulation and spread of blaVIM among Pseudomonas and thus was helpful for the bacteria to survival from the stress of antibiotics. Data presented here provided a deeper insight into the genetic diversification and evolution of VIM-encoding MGEs in Pseudomonas.
Collapse
Affiliation(s)
- Fangzhou Chen
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China.,Basic Medical College, Guizhou Medical University, Guiyang, 550025, China.,Guangzhou Medical University, Guangzhou, 511436, China
| | - Peng Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Zhe Yin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Huiying Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Lingfei Hu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Ting Yu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Ying Jing
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Jiayao Guan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Jiahong Wu
- Basic Medical College, Guizhou Medical University, Guiyang, 550025, China.
| | - Dongsheng Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China. .,Guangzhou Medical University, Guangzhou, 511436, China.
| |
Collapse
|
186
|
Liu J, Lin X, Soteyome T, Ye Y, Chen D, Yang L, Xu Z. A strategy design based on antibiotic‑resistance and plasmid replicons genes of clinical Escherichia coli strains. Bioengineered 2022; 13:7500-7514. [PMID: 35259054 PMCID: PMC9208507 DOI: 10.1080/21655979.2022.2047543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Since antimicrobial resistance, especially β-lactam resistance genes were common in clinical Escherichia coli strains, this study had designed and developed multiplex amplification platform for rapid and accurate detection of such resistance genes in 542 clinical E. coli isolates. The obtained specimens were subjected to bacteriological examination, antimicrobial susceptibility testing, and detection of β-lactamase genes and plasmid replicons. The major virulence genes were detected by 7 groups of multiplex PCR and eight groups of multiplex PCR were designed to detect 8 different plasmid replicons including parA-parB, iteron, repA, and RNAI. It was found that most MDR isolates were co-resistant to penicillins (AMP) and fluoroquindones (LVX, CIP) and distribution of LVX and CIP resistance was significantly higher among female than male gender. RNAI (AY234375) showed the highest detection rate, followed by the iteron (J01724) and repA (M26308), indicating the relatively higher carriage rate of corresponding plasmids. BlaOXA acquired the highest carriage rate, followed by group 2 blaCTX-M and blaSHV-1, indicating their prevalence among clinical E. coli. Among the β-lactamase genes, blaOXA acquired the highest carriage rate, followed by group 2 blaCTX-M and blaSHV-1, indicating their prevalence among clinical E. coli. The RNAI (AY234375) showed the highest detection rate, followed by the iteron (J01724) and repA (M26308), indicating the relatively higher carriage rate of the corresponding plasmids by clinical E. coli isolates. It is shown that the developed multiplex amplification methodology is applicable to AMR detection, and such identification of plasmid replicons and β-lactamase genes may aid in the understanding of clinical E. coli isolate epidemiology.
Collapse
Affiliation(s)
- Junyan Liu
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou, Guangdong, China.,Department of Civil and Environmental Engineering, University of Maryland, College Park, MD, USA.,College of Light Industry and Food Sciences, Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Innovation Research Institute of Modern Agricultural Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China.,Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Xin Lin
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou, Guangdong, China
| | - Thanapop Soteyome
- Home Economics Technology, Rajamangala University of Technology Phra Nakhon, Bangkok, Thailand
| | - Yanrui Ye
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong, China
| | - Dingqiang Chen
- Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Ling Yang
- Department of Laboratory Medicine, The First Affiliated Hospital of Guangzhou University, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zhenbo Xu
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou, Guangdong, China.,Department of Civil and Environmental Engineering, University of Maryland, College Park, MD, USA.,Home Economics Technology, Rajamangala University of Technology Phra Nakhon, Bangkok, Thailand.,Research Institute for Food Nutrition and Human Health, Guangzhou, Guangdong, China
| |
Collapse
|
187
|
Wangkheimayum J, Chanda DD, Bhattacharjee A. Expression of itaT toxin gene is enhanced under aminoglycoside stress in Escherichia coli harbouring aac(6′)Ib. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
188
|
Occurrence of blaOXA-48 type carbapenemase in Escherichia coli with coexisting resistance determinants: A report from India. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2021.101459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
189
|
Nakayama T, Hoa TTT, Huyen HM, Yamaguchi T, Jinnai M, Minh DTN, Hoang ON, Thi HL, Thanh PN, Hoang Hoai P, Nguyen Do P, Van CD, Kumeda Y, Hase A. Isolation of carbapenem-resistant Enterobacteriaceae harbouring NDM-1, 4, 5, OXA48 and KPC from river fish in Vietnam. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
190
|
Liu F, Tian A, Wang J, Zhu Y, Xie Z, Zhang R, Jiang S. Occurrence and molecular epidemiology of fosA3-bearing Escherichia coli from ducks in Shandong province of China. Poult Sci 2022; 101:101620. [PMID: 34986446 PMCID: PMC8743214 DOI: 10.1016/j.psj.2021.101620] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 11/20/2021] [Accepted: 11/22/2021] [Indexed: 01/14/2023] Open
Abstract
The plasmid-borne fosfomycin resistance gene fosA3 has been identified in Escherichia coli (E. coli) from various animals but has rarely been reported in ducks. In this study, we investigated the fosA3 prevalence and molecular characteristics of fosA3-harboring E. coli strains from ducks in Shandong province of China. In 416 E. coli isolates, 91 (21.88%) were identified as fosA3-bearing strains, and the fosfomycin-resistant phenotype of 88 of the 91 fosA3-harboring strains was successfully transferred to the recipient strains. Seven different genetic structures surrounding the fosA3 gene were detected and 2 new contexts were discovered among the fosA3-carrying E. coli. Twenty fosA3-harboring isolates and their trans-conjugants were randomly selected for pulsed-field gel electrophoresis (PFGE) typing and S1-nuclease PFGE, respectively. The PFGE patterns revealed that the 20 randomly selected fosA3-bearing isolates were not a result of clonal dissemination. S1-PFGE showed that 15 of the 20 randomly selected trans-conjugants carried a single plasmid, and these 15 plasmids that harbored fosA3 (55-190 kb) were distributed into the following replicon types: IncF (n = 11), IncI1 (n = 1), IncN (n = 1), untypable (n = 1), and W-FIC (n = 1). Additionally, as vectors for fosA3 in E. coli, F-:A1:B6, N/ST1, IncI1/ST2, W-FIC, and one untypable plasmid had never been reported before. These observations highlighted the importance of ducks as a reservoir for multidrug-resistant fosA3-carrying E. coli.
Collapse
Affiliation(s)
- Fengzhi Liu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian 271018, China
| | - Ang Tian
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian 271018, China
| | - Jingyu Wang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian 271018, China
| | - Yanli Zhu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian 271018, China
| | - Zhijing Xie
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian 271018, China
| | - Ruihua Zhang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian 271018, China.
| | - Shijin Jiang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian 271018, China.
| |
Collapse
|
191
|
Outbreak of NDM-1-Producing Escherichia coli in a Coronavirus Disease 2019 Intensive Care Unit in a Mexican Tertiary Care Center. Microbiol Spectr 2022; 10:e0201521. [PMID: 35019697 PMCID: PMC8754109 DOI: 10.1128/spectrum.02015-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Emergency department areas were repurposed as intensive care units (ICUs) for patients with acute respiratory distress syndrome during the initial months of the coronavirus disease 2019 (COVID-19) pandemic. We describe an outbreak of New Delhi metallo-β-lactamase 1 (NDM-1)-producing Escherichia coli infections in critically ill COVID-19 patients admitted to one of the repurposed units. Seven patients developed infections (6 ventilator-associated pneumonia [VAP] and 1 urinary tract infection [UTI]) due to carbapenem-resistant E. coli, and only two survived. Five of the affected patients and four additional patients had rectal carriage of carbapenem-resistant E. coli. The E. coli strain from the affected patients corresponded to a single sequence type. Rectal screening identified isolates of two other sequence types bearing blaNDM-1. Isolates of all three sequence types harbored an IncFII plasmid. The plasmid was confirmed to carry blaNDM-1 through conjugation. An outbreak of clonal NDM-1-producing E. coli isolates and subsequent dissemination of NDM-1 through mobile elements to other E. coli strains occurred after hospital conversion during the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic. This emphasizes the need for infection control practices in surge scenarios. IMPORTANCE The SARS-CoV-2 pandemic has resulted in a surge of critically ill patients. Hospitals have had to adapt to the demand by repurposing areas as intensive care units. This has resulted in high workload and disruption of usual hospital workflows. Surge capacity guidelines and pandemic response plans do not contemplate how to limit collateral damage from issues like hospital-acquired infections. It is vital to ensure quality of care in surge scenarios.
Collapse
|
192
|
Plasmid Replicon Diversity of Clinical Uropathogenic Escherichia coli Isolates from Riyadh, Saudi Arabia. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2022. [DOI: 10.22207/jpam.16.1.51] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The aim of this study was to identify and compare the plasmid replicons of clinical uropathogenic Escherichia coli (UPEC) isolates, involving extended spectrum β-lactamase (ESBL)-positive and ESBL-negative, E. coli ST131 and non-ST131 and various ST131 subclones. Plasmid replicon typing on 24 clinical UPEC isolates was carried out using polymerase chain reaction-based replicon typing. A statistical analysis was performed to assess the associations between plasmid replicon types and ESBL carriage, and to evaluate the link between ST131 isolates and high replicon carriage. Eight replicons, I1α, N2, Iγ, X1, FIIS, K, FIA, and FII were detected. The FII was the most common replicon identified here. ESBL-positive E. coli isolates were highly associated with I1α, N2, Iγ, X1, and FIIS replicons, while FIA was present only in ESBL-negative group. ST131 isolates were highly associated with I1α and N2 replicons compared to non-ST131. No link was found between replicon carriage and the number or type of ESBLs in E. coli isolates. The diversity observed in replicon patterns of our clinical E. coli isolates indicates that they might be originated from different sources. The presence of replicons reported previously in animal sources suggests a possible transfer of antimicrobial resistance between animal and human bacterial isolates.
Collapse
|
193
|
Clinically healthy household dogs and cats as carriers of multidrug-resistant Salmonella enterica with variable R plasmids. J Med Microbiol 2022; 71. [DOI: 10.1099/jmm.0.001488] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Introduction. Antimicrobial resistance (AMR) is a One Health issue concerning humans, animals and the environment and a unified One Health approach is required to contain this problematic issue. Dogs and cats are popular pet animals and are known to carry many bacterial pathogens that are of public health importance, including
Salmonella
. However, data on AMR in companion animals is limited.
Gap statement. Scant AMR data from bacteria originating from companion animals limits an accurate assessment of the impacts of pet-animal-related AMR on public health.
Purpose. This study aimed to phenotypically and genetically investigate AMR in
Salmonella
isolated from pet dogs and cats in Thailand.
Methodology.
Salmonella enterica
were isolated from pet dogs (n=159) and cats (n=19) in Thailand between 2016 and 2019. All isolates were serotyped. Phenotypic and genotypic antimicrobial resistance was examined. PCR-based replicon typing, replicon sequence typing and plasmid multilocus sequence typing were conducted to characterize plasmids.
Results. Seventy-seven serovars were identified, with serovars Weltevreden (9.6%) and Stockholm (9.0%) the most common. Most of the isolates (34.3%) were multidrug-resistant. The serovar Stockholm was an ESBL-producer and carried the β-lactamase genes bla
TEM-1 and bla
CTX-M-55. The plasmid-mediated quinolone resistance (PMQR) gene, qnrS, was also detected (10.1%). Class 1 integrons carrying the dfrA12-aadA2 cassette array were most frequent (45.9%). Five plasmid replicon types as IncA/C (0.6%), N (1.1%), IncFIIA (28.7%), IncHI1 (2.2%), and IncI1 (3.4%) were identified. Based on the pMLST typing scheme (n=9), plasmids were assigned into five different STs including IncA/C-ST6 (n=1), IncH1-ST16 (n=4), IncI1-ST3 (n=1), IncI1-ST60 (n=1) and IncI1-ST136 (n=1). The ST 16 of IncHI1 plasmid was a novel plasmid ST. Subtyping F-type plasmids using the RST scheme (n=9) revealed four different combinations of replicons including S1:A-:B- (n=4), S1:A-:B22 (n=2), S3:A-:B- (n=1) and S-:A-:B47 (n=1).
Conclusions. Our findings highlight the role of clinically healthy household dogs and cats as carriers of AMR
Salmonella
strains with different R plasmid. The implementation of AMR phenotypes instigation and genotypic monitoring and surveillance programmes in companion animals are imperative as integral components of the One Health framework.
Collapse
|
194
|
Geetha PV, Aishwarya KVL, Shanthi M, Sekar U. Plasmid-Mediated Fluoroquinolone Resistance in Pseudomonas aeruginosa and Acinetobacter baumannii. J Lab Physicians 2022; 14:271-277. [PMID: 36119417 PMCID: PMC9473940 DOI: 10.1055/s-0042-1742636] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Introduction
Pseudomonas aeruginosa
and
Acinetobacter baumannii
are important pathogens in health care–associated infections. Fluoroquinolone resistance has emerged in these pathogens. In this study, we aimed to determine the occurrence of plasmid-mediated quinolone resistance (PMQR) determinants (
qnrA
,
qnrB
,
qnrS
,
aac(6′)-Ib-cr
,
oqxAB
, and
qepA
) by polymerase chain reaction (PCR) and the transmissibility of plasmid-borne resistance determinants in clinical isolates of
P. aeruginosa
and
A. baumannii
.
Materials and Methods
The study included
P. aeruginosa
(85) and
A. baumannii
(45) which were nonduplicate, clinically significant, and ciprofloxacin resistant. Antibiotic susceptibility testing was done by disk diffusion method for other antimicrobial agents, namely amikacin, ceftazidime, piperacillin/tazobactam, ofloxacin, levofloxacin, and imipenem. Minimum inhibitory concentration of ciprofloxacin was determined. Efflux pump activity was evaluated using carbonyl-cyanide m-chlorophenylhydrazone (CCCP). The presence of PMQR genes was screened by PCR amplification. Transferability of PMQR genes was determined by conjugation experiment, and plasmid-based replicon typing was performed.
Results
Resistance to other classes of antimicrobial agents was as follows: ceftazidime (86.9%), piperacillin/tazobactam (73.8%), imipenem (69.2%), and amikacin (63.8%). The minimal inhibitory concentration (MIC)50 and MIC90 for ciprofloxacin were 64 and greater than or equal to 256 µg/mL, respectively. There was a reduction in MIC for 37 (28.4%) isolates with CCCP. In
P. aeruginosa
, 12 (14.1%) isolates harbored
qnrB
, 12 (14.1%)
qnrS
, 9 (10.5%) both
qnrB
and
qnrS
, 66 (77.6%)
aac(6′)-Ib-cr
, and 3 (3.5%)
oqxAB
gene. In
A. baumannii
,
qnrB
was detected in 2 (4.4%), 1 (2.2%) harbored both the
qnrA
and
qnrS
, 1 isolate harbored
qnrB
and
qnrS
, 21 (46.6%)
aac(6′)-Ib-cr
, and 1 (2.2%) isolate harbored
oqxAB
gene. Notably,
qepA
gene was not detected in any of the study isolates. Conjugation experiments revealed that 12 (9.2%) were transferable. Of the transconjugants, seven (58.3%) belonged to IncFII type plasmid replicon, followed by four (33.3%) IncA/C and one (8.3%) IncFIC type.
Conclusion
The plasmid-mediated resistance
aac(6′)-Ib-cr
gene is primarily responsible for mediating fluoroquinolone resistance in clinical isolates of
P
.
aeruginosa
and
A. baumannii
. The predominant plasmid type is IncFII.
Collapse
Affiliation(s)
- P. V. Geetha
- Department of Microbiology, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, Tamil Nadu, India
| | - K. V. L. Aishwarya
- Department of Microbiology, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, Tamil Nadu, India
| | - M. Shanthi
- Department of Microbiology, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, Tamil Nadu, India
| | - Uma Sekar
- Department of Microbiology, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, Tamil Nadu, India
| |
Collapse
|
195
|
Hammer-Dedet F, Aujoulat F, Jumas-Bilak E, Licznar-Fajardo P. Persistence and Dissemination Capacities of a BlaNDM-5-Harboring IncX-3 Plasmid in Escherichia coli Isolated from an Urban River in Montpellier, France. Antibiotics (Basel) 2022; 11:antibiotics11020196. [PMID: 35203799 PMCID: PMC8868147 DOI: 10.3390/antibiotics11020196] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/24/2022] [Accepted: 01/28/2022] [Indexed: 02/01/2023] Open
Abstract
To investigate the capacities of persistence and dissemination of blaNDM-5 within Escherichia coli and in aquatic environment, we characterized E. coli (sequence type 636) strains B26 and B28 isolated one month apart from the same urban river in Montpellier, France. The two isolates carried a pTsB26 plasmid, which sized 45,495 Kb, harbored blaNDM-5 gene and belonged to IncX-3 incompatibility group. pTsB26 was conjugative in vitro at high frequency, it was highly stable after 400 generations and it exerted no fitness cost on its host. blaNDM-5harboring plasmids are widely dispersed in E. coli all around the world, with no lineage specialization. The genomic comparison between B26 and B28 stated that the two isolates probably originated from the same clone, suggesting the persistence of pTsB26 in an E. coli host in aquatic environment.
Collapse
Affiliation(s)
- Florence Hammer-Dedet
- HSM, University Montpellier, CNRS, IRD, 34090 Montpellier, France; (F.H.-D.); (F.A.)
| | - Fabien Aujoulat
- HSM, University Montpellier, CNRS, IRD, 34090 Montpellier, France; (F.H.-D.); (F.A.)
| | - Estelle Jumas-Bilak
- HSM, University of Montpellier, CNRS, IRD, CHU Montpellier, 34090 Montpellier, France;
| | - Patricia Licznar-Fajardo
- HSM, University of Montpellier, CNRS, IRD, CHU Montpellier, 34090 Montpellier, France;
- Correspondence:
| |
Collapse
|
196
|
Wangkheimayum J, Paul D, Chanda DD, Melson Singha K, Bhattacharjee A. Elevated expression of rsmI can act as a reporter of aminoglycoside resistance in Escherichia coli using kanamycin as signal molecule. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 98:105229. [PMID: 35104679 DOI: 10.1016/j.meegid.2022.105229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 01/20/2022] [Accepted: 01/24/2022] [Indexed: 11/26/2022]
Abstract
We aimed to design and analyse expressional response of endogenous and exogenous 16S rRNA methyl transferase genes under sub inhibitory concentration stress of different clinically relevant aminoglycoside antibiotics in Escherichia coli to identify an endogenous marker. One hundred twenty nine aminoglycoside resistant E. coli of clinical origin were collected for detection of 16S rRNA methyl transferase genes by PCR assay and each gene type was cloned within E. coli JM107. Parent isolates were subjected to plasmid elimination by SDS treatment. Expression analysis of both acquired and endogenous 16S rRNA methyl transferase genes were performed by quantitative real-time PCR in clones and parent isolates under aminoglycoside stress (4 mg/L). Majority of the isolates were harbouring rmtC (35/129), followed by rmtB (32/129), rmtA (21/129), rmtE (13/129), armA (11/129) rmtF (9/129) and rmtH (8/129). Plasmid was successfully eliminated for all the isolates with 6% of SDS. Expression analysis indicates that kanamycin, tobramycin and netilmicin stress could increase the expression of 16S rRNA methyltransferese genes. In the presence of kanamycin stress the expression of rsmI was consistently elevated for all the wild type isolates and clones tested. Except for isolates harbouring rmtB and rmtC expression of rsmE and rsmF was increased in the presence of all aminoglycosides. For all the cured mutants it was apparently observed that expression of endogenous methyl transferases were marginally increased. Elevated expression of constitutive rsmI can be used as a potential biomarker for detection of acquired 16S rRNA methyl transferase mediated aminoglycoside resistance by using sub inhibitory concentration of kanamycin as signal molecule.
Collapse
Affiliation(s)
| | - Deepjyoti Paul
- Department of Microbiology, Assam University Silchar, India
| | | | - K Melson Singha
- Department of Microbiology, Silchar Medical College and Hospital, Silchar, India
| | | |
Collapse
|
197
|
Li R, Lu X, Munir A, Abdullah S, Liu Y, Xiao X, Wang Z, Mohsin M. Widespread prevalence and molecular epidemiology of tet(X4) and mcr-1 harboring Escherichia coli isolated from chickens in Pakistan. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150689. [PMID: 34599956 DOI: 10.1016/j.scitotenv.2021.150689] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/24/2021] [Accepted: 09/26/2021] [Indexed: 06/13/2023]
Abstract
The emergence and spread of plasmid-mediated tigecycline resistance gene tet(X4) and colistin resistance gene mcr-1 in Escherichia coli (E. coli) pose a potential threat to public health, due to the importance of colistin and tigecycline for treating serious clinical infections. However, the characterization of bacteria coharboring both genes was few reported. Here, we described the molecular epidemiology of tet(X4) and mcr-1 harboring E. coli strains of chicken origin in Pakistan, with methods including PCR, antimicrobial susceptibility testing, DNA transfer assays, plasmid replicon typing, whole-genome sequencing and bioinformatics analysis. The tet(X4) gene was identified in 36 isolates exhibiting high levels of tigecycline resistance (MICs, 16-128 mg/L). Worryingly, 24 of the 36 tet(X4)-bearing isolates were confirmed as colistin resistance, positive for plasmid-borne mcr-1. We observed the prevalence of tet(X4)-bearing IncFII plasmid with mcr-1-bearing IncI2 plasmid in 12 E. coli isolates, with a high co-transfer frequency except for one strain PK8233, in which tet(X4)- and mcr-1-bearing plasmids were non-transferable. Coexistence of tet(X4)-bearing IncFII plasmid with mcr-1-carrying multidrug-resistant (MDR) IncHI2 plasmid was also identified in 10 E. coli isolates, and a relatively low co-transfer frequency was obtained except PK8575, in which mcr-1 was non-transferable. The transferability of pPK8275-tetX in PK8275 and pPK8233-tetX in PK8233, that could transfer from E. coli J53 to C600 by conjugation, was interfered by certain factors in PK8275 and PK8233. This may provide new insights to prevent and control the spread of antibiotic resistance genes. Two strains were reported to co-carry tet(X4)-positive IncQ1 plasmid and mcr-1-positive IncI2 plasmid. Convergence of tet(X4) and mcr-1 genes in E. coli by conjugative or mobilizable plasmids may lead to potentially widespread transmission of such resistance genes, which may incur antibiotic-resistance crisis globally.
Collapse
Affiliation(s)
- Ruichao Li
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu Province, PR China; Institute of Comparative Medicine, Yangzhou University, Yangzhou, Jiangsu Province, PR China
| | - Xiaoyu Lu
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu Province, PR China; Institute of Comparative Medicine, Yangzhou University, Yangzhou, Jiangsu Province, PR China
| | - Asim Munir
- Institute of Microbiology, University of Agriculture, Faisalabad, Pakistan
| | - Sabahat Abdullah
- Institute of Microbiology, University of Agriculture, Faisalabad, Pakistan
| | - Yuan Liu
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu Province, PR China; Institute of Comparative Medicine, Yangzhou University, Yangzhou, Jiangsu Province, PR China
| | - Xia Xiao
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu Province, PR China
| | - Zhiqiang Wang
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu Province, PR China; Institute of Comparative Medicine, Yangzhou University, Yangzhou, Jiangsu Province, PR China.
| | - Mashkoor Mohsin
- Institute of Microbiology, University of Agriculture, Faisalabad, Pakistan.
| |
Collapse
|
198
|
Shen S, Huang X, Shi Q, Guo Y, Yang Y, Yin D, Zhou X, Ding L, Han R, Yu H, Hu F. Occurrence of NDM-1, VIM-1, and OXA-10 Co-Producing Providencia rettgeri Clinical Isolate in China. Front Cell Infect Microbiol 2022; 11:789646. [PMID: 35047418 PMCID: PMC8761753 DOI: 10.3389/fcimb.2021.789646] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 11/29/2021] [Indexed: 12/22/2022] Open
Abstract
Providencia rettgeri is a nosocomial pathogen associated with urinary tract infections related to hospital-acquired Infections. In recent years, P. rettgeri clinical strains producing New Delhi Metallo-β-lactamase (NDM) and other β-lactamase which reduce the efficiency of antimicrobial therapy have been reported. However, there are few reports of P. rettgeri co-producing two metallo-β-lactamases in one isolate. Here, we first reported a P. rettgeri strain (P138) co-harboring blaNDM-1, blaVIM-1, and blaOXA-10. The specie were identified using MALDI-TOF MS. The results of antimicrobial susceptibility testing by broth microdilution method indicated that P. rettgeri P138 was resistant to meropenem (MIC = 64μg/ml), imipenem (MIC = 64μg/ml), and aztreonam (MIC = 32μg/ml). Conjugation experiments revealed that the blaNDM-1-carrying plasmid was transferrable. The carbapenemase genes were detected using PCR and confirmed by PCR-based sequencing. The complete genomic sequence of the P. rettgeri was identified using Illumina (Illumina, San Diego, CA, USA) short-read sequencing (150bp paired-end reads), and many common resistance genes had been identified, including blaNDM-1, blaVIM-1, blaOXA-10, aac(6’)-Il, aadA5, ant(2’’)-Ia, aadA1, aac(6’)-Ib3, aadA1, aph(3’)-Ia, aac(6’)-Ib-cr, qnrD1, qnrA1, and catA2. The blaNDM-1 gene was characterized by the following structure: IS110–TnpA–IntI1–aadB–IS91–GroEL–GroES–DsbD–PAI–ble–blaNDM-1–IS91–QnrS1–IS110. Blast comparison revealed that the blaNDM-1 gene structure shared >99% similarity with plasmid p5_SCLZS62 (99% nucleotide identity and query coverage). In summary, we isolated a P. rettgeri strain coproducing blaNDM-1, blaVIM-1, and blaOXA-10. To the best of our acknowledge, this was first reported in the world. The occurrence of the strain needs to be closely monitored.
Collapse
Affiliation(s)
- Siquan Shen
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| | - Xiangning Huang
- Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Qingyu Shi
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| | - Yan Guo
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| | - Yang Yang
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| | - Dandan Yin
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| | - Xun Zhou
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| | - Li Ding
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| | - Renru Han
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| | - Hua Yu
- Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Fupin Hu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| |
Collapse
|
199
|
Huang W, Zhang J, Zeng L, Yang C, Yin L, Wang J, Li J, Li X, Hu K, Zhang X, Liu B. Carbapenemase Production and Epidemiological Characteristics of Carbapenem-Resistant Klebsiella pneumoniae in Western Chongqing, China. Front Cell Infect Microbiol 2022; 11:775740. [PMID: 35071036 PMCID: PMC8769044 DOI: 10.3389/fcimb.2021.775740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 12/13/2021] [Indexed: 11/29/2022] Open
Abstract
Background This study aimed to determine the molecular characteristics of carbapenem-resistant Klebsiella pneumoniae (CRKP) isolates in a hospital in western Chongqing, southwestern China. Methods A total of 127 unique CRKP isolates were collected from the Yongchuan Hospital of Chongqing Medical University, identified using a VITEK-2 compact system, and subjected to microbroth dilution to determine the minimal inhibitory concentration. Enterobacteriaceae intergenic repeat consensus polymerase chain reaction and multilocus sequence typing were used to analyze the homology among the isolates. Genetic information, including resistance and virulence genes, was assessed using polymerase chain reaction. The genomic features of the CRKP carrying gene blaKPC-2 were detected using whole-genome sequencing. Results ST11 was the dominant sequence type in the homology comparison. The resistance rate to ceftazidime-avibactam in children was much higher than that in adults as was the detection rate of the resistance gene blaNDM (p < 0.0001). Virulence genes such as mrkD (97.6%), uge (96.9%), kpn (96.9%), and fim-H (84.3%) had high detection rates. IncF (57.5%) was the major replicon plasmid detected, and sequencing showed that the CRKP063 genome contained two plasmids. The plasmid carrying blaKPC-2, which mediates carbapenem resistance, was located on the 359,625 base pair plasmid IncFII, together with virulence factors, plasmid replication protein (rep B), stabilizing protein (par A), and type IV secretion system (T4SS) proteins that mediate plasmid conjugation transfer. Conclusion Our study aids in understanding the prevalence of CRKP in this hospital and the significant differences between children and adults, thus providing new ideas for clinical empirical use of antibiotics.
Collapse
Affiliation(s)
- Wan Huang
- Department of Microbiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Jisheng Zhang
- Department of Microbiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Lingyi Zeng
- Department of Microbiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China.,Department of Microbiology, Jiaxing Maternity and Child Health Care Hospital, Jiaxing, China
| | - Chengru Yang
- Department of Microbiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China.,Department of Microbiology, The First Affiliated Hospital of Jiamusi University, Jiamusi, China
| | - Lining Yin
- Department of Microbiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China.,Department of Microbiology, The First Affiliated Hospital of Jiamusi University, Jiamusi, China
| | - Jianmin Wang
- Department of Microbiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Jie Li
- Department of Microbiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Xinhui Li
- Department of Microbiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Kewang Hu
- Department of Microbiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China.,Department of Microbiology, Affiliated Hangzhou Xixi Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoli Zhang
- Department of Microbiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China.,Department of Microbiology, The First Affiliated Hospital of Jiamusi University, Jiamusi, China
| | - Beizhong Liu
- Central Laboratory of Yongchuan Hospital, Chongqing Medical University, Chongqing, China
| |
Collapse
|
200
|
Kyung SM, Choi SW, Lim J, Shim S, Kim S, Im YB, Lee NE, Hwang CY, Kim D, Yoo HS. Comparative genomic analysis of plasmids encoding metallo-β-lactamase NDM-5 in Enterobacterales Korean isolates from companion dogs. Sci Rep 2022; 12:1569. [PMID: 35091689 PMCID: PMC8799648 DOI: 10.1038/s41598-022-05585-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 01/10/2022] [Indexed: 12/24/2022] Open
Abstract
Carbapenems are broad-spectrum antibiotics widely used for the treatment of human infections caused by multidrug-resistant (MDR) Gram-negative bacteria. However, emerging carbapenemase-producing Enterobacterales (CPE) are rising as a public threat to human and animal health. We screened clinical bacterial isolates from 241 dogs and 18 cats hospitalized at Veterinary Medical Teaching Hospital, Seoul National University, from 2018 to 2020 for carbapenemase production. In our study, 5 strains of metallo-β-lactamase NDM-5-producing Escherichia coli and Klebsiella pneumoniae were isolated from 4 different dogs. Multilocus sequence typing (MLST) results showed that all E. coli strains were ST410 and all K. pneumoniae strains were ST378. Whole genome analysis of the plasmid showed that blaNDM-5 is carried on a IncX3 plasmid, showing a high concordance rate with plasmids detected worldwide in human and animal isolates. The blaNDM gene was associated with the bleMBL gene and the ISAba125 element, truncated with the IS5 element. The results of this study show that CPE has already become as a threat to both animals and humans in our society, posing the necessity to solve it in terms of "One Health". Therefore, preventive strategies should be developed to prevent the spread of CPE in animal and human societies.
Collapse
Affiliation(s)
- Su Min Kyung
- Department of Infectious Disease, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Sung-Woon Choi
- Department of Infectious Disease, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Jaewon Lim
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Soojin Shim
- Department of Infectious Disease, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
- Department of Mechanical and Biofunctional Systems, Institute of Industrial Science, University of Tokyo, Tokyo, 153-8505, Japan
| | - Suji Kim
- Department of Infectious Disease, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Young Bin Im
- Department of Infectious Disease, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Na-Eun Lee
- Department of Veterinary Dermatology, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Cheol-Yong Hwang
- Department of Veterinary Dermatology, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Donghyuk Kim
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Han Sang Yoo
- Department of Infectious Disease, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|