151
|
Liu Q, Liu W, Niu Y, Wang T, Dong J. Liquid-liquid phase separation in plants: Advances and perspectives from model species to crops. PLANT COMMUNICATIONS 2024; 5:100663. [PMID: 37496271 PMCID: PMC10811348 DOI: 10.1016/j.xplc.2023.100663] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/23/2023] [Accepted: 07/20/2023] [Indexed: 07/28/2023]
Abstract
Membraneless biomolecular condensates play important roles in both normal biological activities and responses to environmental stimuli in living organisms. Liquid‒liquid phase separation (LLPS) is an organizational mechanism that has emerged in recent years to explain the formation of biomolecular condensates. In the past decade, advances in LLPS research have contributed to breakthroughs in disease fields. By contrast, although LLPS research in plants has progressed over the past 5 years, it has been concentrated on the model plant Arabidopsis, which has limited relevance to agricultural production. In this review, we provide an overview of recently reported advances in LLPS in plants, with a particular focus on photomorphogenesis, flowering, and abiotic and biotic stress responses. We propose that many potential LLPS proteins also exist in crops and may affect crop growth, development, and stress resistance. This possibility presents a great challenge as well as an opportunity for rigorous scientific research on the biological functions and applications of LLPS in crops.
Collapse
Affiliation(s)
- Qianwen Liu
- College of Biological Sciences, China Agricultural University, Beijing 100193, China; College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Wenxuan Liu
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Yiding Niu
- Key Laboratory of Forage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China
| | - Tao Wang
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jiangli Dong
- College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
152
|
Sandor A, Samalova M, Brandizzi F, Kriechbaumer V, Moore I, Fricker MD, Sweetlove LJ. Characterization of intracellular membrane structures derived from a massive expansion of endoplasmic reticulum (ER) membrane due to synthetic ER-membrane-resident polyproteins. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:45-59. [PMID: 37715992 PMCID: PMC10735356 DOI: 10.1093/jxb/erad364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 09/15/2023] [Indexed: 09/18/2023]
Abstract
The endoplasmic reticulum (ER) is a dynamic organelle that is amenable to major restructuring. Introduction of recombinant ER-membrane-resident proteins that form homo oligomers is a known method of inducing ER proliferation: interaction of the proteins with each other alters the local structure of the ER network, leading to the formation large aggregations of expanded ER, sometimes leading to the formation of organized smooth endoplasmic reticulum (OSER). However, these membrane structures formed by ER proliferation are poorly characterized and this hampers their potential development for plant synthetic biology. Here, we characterize a range of ER-derived membranous compartments in tobacco and show how the nature of the polyproteins introduced into the ER membrane affect the morphology of the final compartment. We show that a cytosol-facing oligomerization domain is an essential component for compartment formation. Using fluorescence recovery after photobleaching, we demonstrate that although the compartment retains a connection to the ER, a diffusional barrier exists to both the ER and the cytosol associated with the compartment. Using quantitative image analysis, we also show that the presence of the compartment does not disrupt the rest of the ER network. Moreover, we demonstrate that it is possible to recruit a heterologous, bacterial enzyme to the compartment, and for the enzyme to accumulate to high levels. Finally, transgenic Arabidopsis constitutively expressing the compartment-forming polyproteins grew and developed normally under standard conditions.
Collapse
Affiliation(s)
- Andras Sandor
- Department of Biology, University of Oxford, South Parks Road, Oxford, UK
| | - Marketa Samalova
- Department of Experimental Biology, Masaryk University, Brno, Czech Republic
| | - Federica Brandizzi
- MSU-DOE Plant Research Laboratory, Department of Plant Biology, Michigan State University, East Lansing, Michigan, USA
| | - Verena Kriechbaumer
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
| | - Ian Moore
- Department of Biology, University of Oxford, South Parks Road, Oxford, UK
| | - Mark D Fricker
- Department of Biology, University of Oxford, South Parks Road, Oxford, UK
| | - Lee J Sweetlove
- Department of Biology, University of Oxford, South Parks Road, Oxford, UK
| |
Collapse
|
153
|
Bianchi G, Mangiagalli M, Ami D, Ahmed J, Lombardi S, Longhi S, Natalello A, Tompa P, Brocca S. Condensation of the N-terminal domain of human topoisomerase 1 is driven by electrostatic interactions and tuned by its charge distribution. Int J Biol Macromol 2024; 254:127754. [PMID: 38287572 DOI: 10.1016/j.ijbiomac.2023.127754] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 10/10/2023] [Accepted: 10/27/2023] [Indexed: 01/31/2024]
Abstract
Liquid-liquid phase separation (LLPS) is pivotal in forming biomolecular condensates, which are crucial in several biological processes. Intrinsically disordered regions (IDRs) are typically responsible for driving LLPS due to their multivalency and high content of charged residues that enable the establishment of electrostatic interactions. In our study, we examined the role of charge distribution in the condensation of the disordered N-terminal domain of human topoisomerase I (hNTD). hNTD is densely charged with oppositely charged residues evenly distributed along the sequence. Its LLPS behavior was compared with that of charge permutants exhibiting varying degrees of charge segregation. At low salt concentrations, hNTD undergoes LLPS. However, LLPS is inhibited by high concentrations of salt and RNA, disrupting electrostatic interactions. Our findings show that, in hNTD, moderate charge segregation promotes the formation of liquid condensates that are sensitive to salt and RNA, whereas marked charge segregation results in the formation of aberrant condensates. Although our study is based on a limited set of protein variants, it supports the applicability of the "stickers-and-spacers" model to biomolecular condensates involving highly charged IDRs. These results may help generate reliable models of the overall LLPS behavior of supercharged polypeptides.
Collapse
Affiliation(s)
- Greta Bianchi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Marco Mangiagalli
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Diletta Ami
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Junaid Ahmed
- VIB-VUB Center for Structural Biology, VUB, Pleinlaan 2, 1050 Brussels, Belgium
| | - Silvia Lombardi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Sonia Longhi
- Lab. Architecture et Fonction des Macromolécules Biologiques (AFMB), UMR 7257, Aix-Marseille University, CNRS, 13288 Marseille, France
| | - Antonino Natalello
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Peter Tompa
- VIB-VUB Center for Structural Biology, VUB, Pleinlaan 2, 1050 Brussels, Belgium.
| | - Stefania Brocca
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy.
| |
Collapse
|
154
|
Gorsheneva NA, Sopova JV, Azarov VV, Grizel AV, Rubel AA. Biomolecular Condensates: Structure, Functions, Methods of Research. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:S205-S223. [PMID: 38621751 DOI: 10.1134/s0006297924140116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/12/2023] [Accepted: 10/16/2023] [Indexed: 04/17/2024]
Abstract
The term "biomolecular condensates" is used to describe membraneless compartments in eukaryotic cells, accumulating proteins and nucleic acids. Biomolecular condensates are formed as a result of liquid-liquid phase separation (LLPS). Often, they demonstrate properties of liquid-like droplets or gel-like aggregates; however, some of them may appear to have a more complex structure and high-order organization. Membraneless microcompartments are involved in diverse processes both in cytoplasm and in nucleus, among them ribosome biogenesis, regulation of gene expression, cell signaling, and stress response. Condensates properties and structure could be highly dynamic and are affected by various internal and external factors, e.g., concentration and interactions of components, solution temperature, pH, osmolarity, etc. In this review, we discuss variety of biomolecular condensates and their functions in live cells, describe their structure variants, highlight domain and primary sequence organization of the constituent proteins and nucleic acids. Finally, we describe current advances in methods that characterize structure, properties, morphology, and dynamics of biomolecular condensates in vitro and in vivo.
Collapse
Affiliation(s)
| | - Julia V Sopova
- St. Petersburg State University, St. Petersburg, 199034, Russia.
| | | | - Anastasia V Grizel
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| | | |
Collapse
|
155
|
Hu Q, Lan H, Tian Y, Li X, Wang M, Zhang J, Yu Y, Chen W, Kong L, Guo Y, Zhang Z. Biofunctional coacervate-based artificial protocells with membrane-like and cytoplasm-like structures for the treatment of persistent hyperuricemia. J Control Release 2024; 365:176-192. [PMID: 37992873 DOI: 10.1016/j.jconrel.2023.11.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/10/2023] [Accepted: 11/14/2023] [Indexed: 11/24/2023]
Abstract
Coacervate droplets formed by liquid-liquid phase separation have attracted considerable attention due to their ability to enrich biomacromolecules while preserving their bioactivities. However, there are challenges to develop coacervate droplets as delivery vesicles for therapeutics resulting from the lack of physiological stability and inherent lack of membranes in coacervate droplets. Herein, polylysine-polynucleotide complex coacervate droplets with favorable physiological stability are formulated to efficiently and facilely concentrate small molecules, biomacromolecules and nanoparticles without organic solvents. To improve the biocompatibility, the PEGylated phospholipid membrane is further coated on the surface of the coacervate droplets to prepare coacervate-based artificial protocells (ArtPC) with membrane-like and cytoplasm-like structures. The ArtPC can confine the cyclic catalytic system of uricase and catalase inside to degrade uric acid and deplete the toxicity of H2O2. This biofunctional ArtPC effectively reduces blood uric acid levels and prevents renal injuries in mice with persistent hyperuricemia. The ArtPC-based therapy can bridge the disciplines of synthetic biology, pharmaceutics and therapeutics.
Collapse
Affiliation(s)
- Qian Hu
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hongbing Lan
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yinmei Tian
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiaonan Li
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Mengmeng Wang
- Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jiao Zhang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yulin Yu
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wei Chen
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Li Kong
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yuanyuan Guo
- Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Zhiping Zhang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Engineering Research Centre for Novel Drug Delivery System, Wuhan 430030, China.
| |
Collapse
|
156
|
Miyata K, Iwasaki W. Seq2Phase: language model-based accurate prediction of client proteins in liquid-liquid phase separation. BIOINFORMATICS ADVANCES 2023; 4:vbad189. [PMID: 38205268 PMCID: PMC10777356 DOI: 10.1093/bioadv/vbad189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/23/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024]
Abstract
Motivation Liquid-liquid phase separation (LLPS) enables compartmentalization in cells without biological membranes. LLPS plays essential roles in membraneless organelles such as nucleoli and p-bodies, helps regulate cellular physiology, and is linked to amyloid formation. Two types of proteins, scaffolds and clients, are involved in LLPS. However, computational methods for predicting LLPS client proteins from amino-acid sequences remain underdeveloped. Results Here, we present Seq2Phase, an accurate predictor of LLPS client proteins. Information-rich features are extracted from amino-acid sequences by a deep-learning technique, Transformer, and fed into supervised machine learning. Predicted client proteins contained known LLPS regulators and showed localization enrichment into membraneless organelles, confirming the validity of the prediction. Feature analysis revealed that scaffolds and clients have different sequence properties and that textbook knowledge of LLPS-related proteins is biased and incomplete. Seq2Phase achieved high accuracies across human, mouse, yeast, and plant, showing that the method is not overfitted to specific species and has broad applicability. We predict that more than hundreds or thousands of LLPS client proteins remain undiscovered in each species and that Seq2Phase will advance our understanding of still enigmatic molecular and physiological bases of LLPS as well as its roles in disease. Availability and implementation The software codes in Python underlying this article are available at https://github.com/IwasakiLab/Seq2Phase.
Collapse
Affiliation(s)
- Kazuki Miyata
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Wataru Iwasaki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-0882, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-0882, Japan
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba 277-0882, Japan
- Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan
| |
Collapse
|
157
|
Zheng LW, Liu CC, Yu KD. Phase separations in oncogenesis, tumor progressions and metastasis: a glance from hallmarks of cancer. J Hematol Oncol 2023; 16:123. [PMID: 38110976 PMCID: PMC10726551 DOI: 10.1186/s13045-023-01522-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 12/12/2023] [Indexed: 12/20/2023] Open
Abstract
Liquid-liquid phase separation (LLPS) is a novel principle for interpreting precise spatiotemporal coordination in living cells through biomolecular condensate (BMC) formation via dynamic aggregation. LLPS changes individual molecules into membrane-free, droplet-like BMCs with specific functions, which coordinate various cellular activities. The formation and regulation of LLPS are closely associated with oncogenesis, tumor progressions and metastasis, the specific roles and mechanisms of LLPS in tumors still need to be further investigated at present. In this review, we comprehensively summarize the conditions of LLPS and identify mechanisms involved in abnormal LLPS in cancer processes, including tumor growth, metastasis, and angiogenesis from the perspective of cancer hallmarks. We have also reviewed the clinical applications of LLPS in oncologic areas. This systematic summary of dysregulated LLPS from the different dimensions of cancer hallmarks will build a bridge for determining its specific functions to further guide basic research, finding strategies to intervene in LLPS, and developing relevant therapeutic approaches.
Collapse
Affiliation(s)
- Le-Wei Zheng
- Department of Breast Surgery, Department of Oncology, Key Laboratory of Breast Cancer in Shanghai, Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Cui-Cui Liu
- Department of Breast Surgery, Department of Oncology, Key Laboratory of Breast Cancer in Shanghai, Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Ke-Da Yu
- Department of Breast Surgery, Department of Oncology, Key Laboratory of Breast Cancer in Shanghai, Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
158
|
Uebel CJ, Rajeev S, Phillips CM. Caenorhabditis elegans germ granules are present in distinct configurations and assemble in a hierarchical manner. Development 2023; 150:dev202284. [PMID: 38009921 PMCID: PMC10753583 DOI: 10.1242/dev.202284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/17/2023] [Indexed: 11/29/2023]
Abstract
RNA silencing pathways are complex, highly conserved, and perform crucial regulatory roles. In Caenorhabditis elegans germlines, RNA surveillance occurs through a series of perinuclear germ granule compartments - P granules, Z granules, SIMR foci, and Mutator foci - multiple of which form via phase separation. Although the functions of individual germ granule proteins have been extensively studied, the relationships between germ granule compartments (collectively, 'nuage') are less understood. We find that key germ granule proteins assemble into separate but adjacent condensates, and that boundaries between germ granule compartments re-establish after perturbation. We discover a toroidal P granule morphology, which encircles the other germ granule compartments in a consistent exterior-to-interior spatial organization, providing broad implications for the trajectory of an RNA as it exits the nucleus. Moreover, we quantify the stoichiometric relationships between germ granule compartments and RNA to reveal discrete populations of nuage that assemble in a hierarchical manner and differentially associate with RNAi-targeted transcripts, possibly suggesting functional differences between nuage configurations. Our work creates a more accurate model of C. elegans nuage and informs the conceptualization of RNA silencing through the germ granule compartments.
Collapse
Affiliation(s)
- Celja J. Uebel
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Sanjana Rajeev
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Carolyn M. Phillips
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
159
|
Marshall AC, Cummins J, Kobelke S, Zhu T, Widagdo J, Anggono V, Hyman A, Fox AH, Bond CS, Lee M. Different Low-complexity Regions of SFPQ Play Distinct Roles in the Formation of Biomolecular Condensates. J Mol Biol 2023; 435:168364. [PMID: 37952770 DOI: 10.1016/j.jmb.2023.168364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/02/2023] [Accepted: 11/07/2023] [Indexed: 11/14/2023]
Abstract
Demixing of proteins and nucleic acids into condensed liquid phases is rapidly emerging as a ubiquitous mechanism underlying the complex spatiotemporal organisation of molecules within the cell. Long disordered regions of low sequence complexity (LCRs) are a common feature of proteins that form liquid-like microscopic biomolecular condensates. In particular, RNA-binding proteins with prion-like regions have emerged as key drivers of liquid demixing to form condensates such as nucleoli, paraspeckles and stress granules. Splicing factor proline- and glutamine-rich (SFPQ) is an RNA- and DNA-binding protein essential for DNA repair and paraspeckle formation. SFPQ contains two LCRs of different length and composition. Here, we show that the shorter C-terminal LCR of SFPQ is the main region responsible for the condensation of SFPQ in vitro and in the cell nucleus. In contrast, we find that the longer N-terminal prion-like LCR of SFPQ attenuates condensation of the full-length protein, suggesting a more regulatory role in preventing aberrant condensate formation in the cell. The compositions of these respective LCRs are discussed with reference to current literature. Our data add nuance to the emerging understanding of biomolecular condensation, by providing the first example of a common multifunctional nucleic acid-binding protein with an extensive prion-like region that serves to regulate rather than drive condensate formation.
Collapse
Affiliation(s)
- Andrew C Marshall
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| | - Jerry Cummins
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| | - Simon Kobelke
- School of Human Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| | - Tianyi Zhu
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Jocelyn Widagdo
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Victor Anggono
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Anthony Hyman
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Archa H Fox
- School of Human Sciences, The University of Western Australia, Crawley, WA 6009, Australia.
| | - Charles S Bond
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia.
| | - Mihwa Lee
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia.
| |
Collapse
|
160
|
Bronkhorst AW, Lee CY, Möckel MM, Ruegenberg S, de Jesus Domingues AM, Sadouki S, Piccinno R, Sumiyoshi T, Siomi MC, Stelzl L, Luck K, Ketting RF. An extended Tudor domain within Vreteno interconnects Gtsf1L and Ago3 for piRNA biogenesis in Bombyx mori. EMBO J 2023; 42:e114072. [PMID: 37984437 PMCID: PMC10711660 DOI: 10.15252/embj.2023114072] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 10/25/2023] [Accepted: 10/30/2023] [Indexed: 11/22/2023] Open
Abstract
Piwi-interacting RNAs (piRNAs) direct PIWI proteins to transposons to silence them, thereby preserving genome integrity and fertility. The piRNA population can be expanded in the ping-pong amplification loop. Within this process, piRNA-associated PIWI proteins (piRISC) enter a membraneless organelle called nuage to cleave their target RNA, which is stimulated by Gtsf proteins. The resulting cleavage product gets loaded into an empty PIWI protein to form a new piRISC complex. However, for piRNA amplification to occur, the new RNA substrates, Gtsf-piRISC, and empty PIWI proteins have to be in physical proximity. In this study, we show that in silkworm cells, the Gtsf1 homolog BmGtsf1L binds to piRNA-loaded BmAgo3 and localizes to granules positive for BmAgo3 and BmVreteno. Biochemical assays further revealed that conserved residues within the unstructured tail of BmGtsf1L directly interact with BmVreteno. Using a combination of AlphaFold modeling, atomistic molecular dynamics simulations, and in vitro assays, we identified a novel binding interface on the BmVreteno-eTudor domain, which is required for BmGtsf1L binding. Our study reveals that a single eTudor domain within BmVreteno provides two binding interfaces and thereby interconnects piRNA-loaded BmAgo3 and BmGtsf1L.
Collapse
Affiliation(s)
| | - Chop Y Lee
- International PhD Programme on Gene Regulation, Epigenetics & Genome StabilityMainzGermany
- Integrative Systems Biology GroupInstitute of Molecular BiologyMainzGermany
| | - Martin M Möckel
- Protein Production Core FacilityInstitute of Molecular BiologyMainzGermany
| | - Sabine Ruegenberg
- Protein Production Core FacilityInstitute of Molecular BiologyMainzGermany
| | - Antonio M de Jesus Domingues
- Biology of Non‐coding RNA GroupInstitute of Molecular BiologyMainzGermany
- Present address:
Dewpoint Therapeutics GmbHDresdenGermany
| | - Shéraz Sadouki
- Biology of Non‐coding RNA GroupInstitute of Molecular BiologyMainzGermany
| | - Rossana Piccinno
- Microscopy Core FacilityInstitute of Molecular BiologyMainzGermany
| | - Tetsutaro Sumiyoshi
- Department of Biological Sciences, Graduate School of ScienceThe University of TokyoTokyoJapan
- Present address:
Department of Medical Innovations, Osaka Research Center for Drug DiscoveryOtsuka Pharmaceutical Co., Ltd.OsakaJapan
| | - Mikiko C Siomi
- Department of Biological Sciences, Graduate School of ScienceThe University of TokyoTokyoJapan
| | - Lukas Stelzl
- Faculty of BiologyJohannes Gutenberg University MainzMainzGermany
- KOMET 1, Institute of PhysicsJohannes Gutenberg University MainzMainzGermany
| | - Katja Luck
- Integrative Systems Biology GroupInstitute of Molecular BiologyMainzGermany
| | - René F Ketting
- Biology of Non‐coding RNA GroupInstitute of Molecular BiologyMainzGermany
- Institute of Developmental Biology and NeurobiologyJohannes Gutenberg UniversityMainzGermany
| |
Collapse
|
161
|
Chang CC, Coyle SM. Regulatable assembly of synthetic microtubule architectures using engineered MAP-IDR condensates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.14.532644. [PMID: 38105997 PMCID: PMC10723337 DOI: 10.1101/2023.03.14.532644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Microtubules filaments are assembled into higher-order structures and machines critical for cellular processes using microtubule-associated proteins (MAPs). However, the design of synthetic MAPs that direct the formation of new structures in cells is challenging, as nanoscale biochemical activities must be organized across micron length-scales. Here we develop synthetic MAP-IDR condensates (synMAPs) that provide tunable and regulatable assembly of higher-order microtubule structures in vitro and in mammalian cells. synMAPs harness a small microtubule-binding domain from oligodendrocytes (TPPP) whose activity can be synthetically rewired by interaction with condensate-forming IDR sequences. This combination allows synMAPs to self-organize multivalent structures that bind and bridge microtubules into synthetic architectures. Regulating the connection between the microtubule-binding and condensate-forming components allows synMAPs to act as nodes in more complex cytoskeletal circuits in which the formation and dynamics of the microtubule structure can be controlled by small molecules or cell-signaling inputs. By systematically testing a panel of synMAP circuit designs, we define a two-level control scheme for dynamic assembly of microtubule architectures at the nanoscale (via microtubule-binding) and microscale (via condensate formation). synMAPs provide a compact and rationally engineerable starting point for the design of more complex microtubule architectures and cellular machines.
Collapse
Affiliation(s)
- Chih-Chia Chang
- Biophysics Graduate Program, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Scott M. Coyle
- Biophysics Graduate Program, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53705, USA
| |
Collapse
|
162
|
Ramšak M, Ramirez DA, Hough LE, Shirts MR, Vidmar S, Eleršič Filipič K, Anderluh G, Jerala R. Programmable de novo designed coiled coil-mediated phase separation in mammalian cells. Nat Commun 2023; 14:7973. [PMID: 38042897 PMCID: PMC10693550 DOI: 10.1038/s41467-023-43742-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 11/17/2023] [Indexed: 12/04/2023] Open
Abstract
Membraneless liquid compartments based on phase-separating biopolymers have been observed in diverse cell types and attributed to weak multivalent interactions predominantly based on intrinsically disordered domains. The design of liquid-liquid phase separated (LLPS) condensates based on de novo designed tunable modules that interact in a well-understood, controllable manner could improve our understanding of this phenomenon and enable the introduction of new features. Here we report the construction of CC-LLPS in mammalian cells, based on designed coiled-coil (CC) dimer-forming modules, where the stability of CC pairs, their number, linkers, and sequential arrangement govern the transition between diffuse, liquid and immobile condensates and are corroborated by coarse-grained molecular simulations. Through modular design, we achieve multiple coexisting condensates, chemical regulation of LLPS, condensate fusion, formation from either one or two polypeptide components or LLPS regulation by a third polypeptide chain. These findings provide further insights into the principles underlying LLPS formation and a design platform for controlling biological processes.
Collapse
Affiliation(s)
- Maruša Ramšak
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
- Interdisciplinary doctoral study of biomedicine, Medical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Dominique A Ramirez
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA
| | - Loren E Hough
- Department of Physics and BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA
| | - Michael R Shirts
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, USA
| | - Sara Vidmar
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
- Interdisciplinary doctoral study of biomedicine, Medical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Kristina Eleršič Filipič
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Gregor Anderluh
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Roman Jerala
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia.
| |
Collapse
|
163
|
Zhou X, Kato M, McKnight SL. How do disordered head domains assist in the assembly of intermediate filaments? Curr Opin Cell Biol 2023; 85:102262. [PMID: 37871501 PMCID: PMC11009871 DOI: 10.1016/j.ceb.2023.102262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/23/2023] [Accepted: 09/24/2023] [Indexed: 10/25/2023]
Abstract
The dominant structural feature of intermediate filament (IF) proteins is a centrally located α-helix. These long α-helical segments become paired in a parallel orientation to form coiled-coil dimers. Pairs of dimers further coalesce in an anti-parallel orientation to form tetramers. These early stages of intermediate filament assembly can be accomplished solely by the central α-helices. By contrast, the assembly of tetramers into mature intermediate filaments is reliant upon an N-terminal head domain. IF head domains measure roughly 100 amino acids in length and have long been understood to exist in a state of structural disorder. Here, we describe experiments favoring the unexpected idea that head domains self-associate to form transient structural order in the form of labile cross-β interactions. We propose that this weak form of protein structure allows for dynamic regulation of IF assembly and disassembly. We further offer that what we have learned from studies of IF head domains may represent a simple, unifying template for understanding how thousands of other intrinsically disordered proteins help to establish dynamic morphological order within eukaryotic cells.
Collapse
Affiliation(s)
- Xiaoming Zhou
- Department of Biochemistry, UT Southwestern Medical Center, 5323 Harry Hines Blvd. Dallas, Texas 75390-9152, USA
| | - Masato Kato
- Department of Biochemistry, UT Southwestern Medical Center, 5323 Harry Hines Blvd. Dallas, Texas 75390-9152, USA; Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), 4-9-1, Anagawa, Inage-ku, Chiba, 263-8555, Japan
| | - Steven L McKnight
- Department of Biochemistry, UT Southwestern Medical Center, 5323 Harry Hines Blvd. Dallas, Texas 75390-9152, USA.
| |
Collapse
|
164
|
Moses D, Ginell GM, Holehouse AS, Sukenik S. Intrinsically disordered regions are poised to act as sensors of cellular chemistry. Trends Biochem Sci 2023; 48:1019-1034. [PMID: 37657994 PMCID: PMC10840941 DOI: 10.1016/j.tibs.2023.08.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 09/03/2023]
Abstract
Intrinsically disordered proteins and protein regions (IDRs) are abundant in eukaryotic proteomes and play a wide variety of essential roles. Instead of folding into a stable structure, IDRs exist in an ensemble of interconverting conformations whose structure is biased by sequence-dependent interactions. The absence of a stable 3D structure, combined with high solvent accessibility, means that IDR conformational biases are inherently sensitive to changes in their environment. Here, we argue that IDRs are ideally poised to act as sensors and actuators of cellular physicochemistry. We review the physical principles that underlie IDR sensitivity, the molecular mechanisms that translate this sensitivity to function, and recent studies where environmental sensing by IDRs may play a key role in their downstream function.
Collapse
Affiliation(s)
- David Moses
- Department of Chemistry and Biochemistry, University of California, Merced, CA, USA
| | - Garrett M Ginell
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA; Center for Biomolecular Condensates (CBC), Washington University in St. Louis, St. Louis, MO, USA
| | - Alex S Holehouse
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA; Center for Biomolecular Condensates (CBC), Washington University in St. Louis, St. Louis, MO, USA.
| | - Shahar Sukenik
- Department of Chemistry and Biochemistry, University of California, Merced, CA, USA; Quantitative Systems Biology Program, University of California, Merced, CA, USA.
| |
Collapse
|
165
|
Nobeyama T, Tataka K, Mori M, Murakami T, Yamada Y, Shiraki K. Synthesis of Butterfly-Like Shaped Gold Nanomaterial: For the Regulation of Liquid-Liquid Phase-Separated Biomacromolecule Droplets. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300362. [PMID: 37596729 DOI: 10.1002/smll.202300362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 07/31/2023] [Indexed: 08/20/2023]
Abstract
Nanotechnology is a critical tool to manipulate the sophisticated behavior of biological structures and has provided new research fields. Liquid-liquid phase-separated (LLPS) droplets gather attention as basic reaction fields in a living cell. Droplets play critical roles in regulating protein behavior, including enzyme compartmentalization, stress response, and disease pathogenesis. The dynamic manipulation of LLPS droplet formation/deformation has become a crucial target in nanobiotechnology. However, the development of nanodevices specifically designed for this purpose remains a challenge. Therefore, this study presents butterfly-shaped gold nanobutterflies (GNBs) as novel nanodevices for manipulating LLPS droplet dynamics. The growth process of the GNBs is analyzed via time-lapse electroscopic imaging, time-lapse spectroscopy, and additives assays. Interestingly, GNBs demonstrate the ability to induce LLPS droplet formation in systems such as adenosine triphosphate/poly-l-lysine and human immunoglobulin G, whereas spherical and rod-shaped gold nanoparticles exhibit no such capability. This indicates that the GNB concave surface interacts with the droplet precursors facilitating the LLPS droplet formation. Near-infrared-laser irradiation applied to GNBs enables on-demand deformation of the droplets through localized heat effects. GNB regulates the enzymatic reaction of lysozymes. The innovative design of GNBs presents a promising strategy for manipulating LLPS dynamics and offers exciting prospects for future research.
Collapse
Affiliation(s)
- Tomohiro Nobeyama
- Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan
| | - Koji Tataka
- Graduate School of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
- Human Life Technology Research, Toyama Industrial Technology Research and Development Center, 35-1 Iwatakeshin, Nanto, Toyama, 939-1503, Japan
| | - Megumi Mori
- Faculty of Agriculture, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Tatsuya Murakami
- Graduate School of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Yoichi Yamada
- Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan
| | - Kentaro Shiraki
- Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan
| |
Collapse
|
166
|
Lin Z, Beneyton T, Baret JC, Martin N. Coacervate Droplets for Synthetic Cells. SMALL METHODS 2023; 7:e2300496. [PMID: 37462244 DOI: 10.1002/smtd.202300496] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/15/2023] [Indexed: 12/24/2023]
Abstract
The design and construction of synthetic cells - human-made microcompartments that mimic features of living cells - have experienced a real boom in the past decade. While many efforts have been geared toward assembling membrane-bounded compartments, coacervate droplets produced by liquid-liquid phase separation have emerged as an alternative membrane-free compartmentalization paradigm. Here, the dual role of coacervate droplets in synthetic cell research is discussed: encapsulated within membrane-enclosed compartments, coacervates act as surrogates of membraneless organelles ubiquitously found in living cells; alternatively, they can be viewed as crowded cytosol-like chassis for constructing integrated synthetic cells. After introducing key concepts of coacervation and illustrating the chemical diversity of coacervate systems, their physicochemical properties and resulting bioinspired functions are emphasized. Moving from suspensions of free floating coacervates, the two nascent roles of these droplets in synthetic cell research are highlighted: organelle-like modules and cytosol-like templates. Building the discussion on recent studies from the literature, the potential of coacervate droplets to assemble integrated synthetic cells capable of multiple life-inspired functions is showcased. Future challenges that are still to be tackled in the field are finally discussed.
Collapse
Affiliation(s)
- Zi Lin
- Université de Bordeaux, CNRS, Centre de Recherche Paul Pascal, UMR5031, 115 avenue du Dr. Schweitzer, 33600, Pessac, France
| | - Thomas Beneyton
- Université de Bordeaux, CNRS, Centre de Recherche Paul Pascal, UMR5031, 115 avenue du Dr. Schweitzer, 33600, Pessac, France
| | - Jean-Christophe Baret
- Université de Bordeaux, CNRS, Centre de Recherche Paul Pascal, UMR5031, 115 avenue du Dr. Schweitzer, 33600, Pessac, France
| | - Nicolas Martin
- Université de Bordeaux, CNRS, Centre de Recherche Paul Pascal, UMR5031, 115 avenue du Dr. Schweitzer, 33600, Pessac, France
| |
Collapse
|
167
|
Crabtree MD, Holland J, Pillai AS, Kompella PS, Babl L, Turner NN, Eaton JT, Hochberg GKA, Aarts DGAL, Redfield C, Baldwin AJ, Nott TJ. Ion binding with charge inversion combined with screening modulates DEAD box helicase phase transitions. Cell Rep 2023; 42:113375. [PMID: 37980572 PMCID: PMC10935546 DOI: 10.1016/j.celrep.2023.113375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/14/2023] [Accepted: 10/18/2023] [Indexed: 11/21/2023] Open
Abstract
Membraneless organelles, or biomolecular condensates, enable cells to compartmentalize material and processes into unique biochemical environments. While specific, attractive molecular interactions are known to stabilize biomolecular condensates, repulsive interactions, and the balance between these opposing forces, are largely unexplored. Here, we demonstrate that repulsive and attractive electrostatic interactions regulate condensate stability, internal mobility, interfaces, and selective partitioning of molecules both in vitro and in cells. We find that signaling ions, such as calcium, alter repulsions between model Ddx3 and Ddx4 condensate proteins by directly binding to negatively charged amino acid sidechains and effectively inverting their charge, in a manner fundamentally dissimilar to electrostatic screening. Using a polymerization model combined with generalized stickers and spacers, we accurately quantify and predict condensate stability over a wide range of pH, salt concentrations, and amino acid sequences. Our model provides a general quantitative treatment for understanding how charge and ions reversibly control condensate stability.
Collapse
Affiliation(s)
- Michael D Crabtree
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Jack Holland
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Arvind S Pillai
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Purnima S Kompella
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Leon Babl
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Noah N Turner
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - James T Eaton
- Department of Chemistry, Physical & Theoretical Chemistry Laboratory, University of Oxford, Oxford OX1 3QZ, UK; Kavli Insititute of Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, Sherrington Rd, Oxford, OX1 3QU, UK
| | - Georg K A Hochberg
- Department of Chemistry, Philipps University Marburg, Hans-Meerwein-Straße 4, 35032 Marburg, Germany; Center for Synthetic Microbiology, Philipps University Marburg, Karl-von-Frisch-Straße 14, 35032 Marburg, Germany
| | - Dirk G A L Aarts
- Department of Chemistry, Physical & Theoretical Chemistry Laboratory, University of Oxford, Oxford OX1 3QZ, UK
| | - Christina Redfield
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Andrew J Baldwin
- Department of Chemistry, Physical & Theoretical Chemistry Laboratory, University of Oxford, Oxford OX1 3QZ, UK; Kavli Insititute of Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, Sherrington Rd, Oxford, OX1 3QU, UK.
| | - Timothy J Nott
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.
| |
Collapse
|
168
|
Holland J, Castrejón-Pita AA, Tuinier R, Aarts DGAL, Nott TJ. Surface tension measurement and calculation of model biomolecular condensates. SOFT MATTER 2023; 19:8706-8716. [PMID: 37791635 PMCID: PMC10663989 DOI: 10.1039/d3sm00820g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/20/2023] [Indexed: 10/05/2023]
Abstract
The surface tension of liquid-like protein-rich biomolecular condensates is an emerging physical principle governing the mesoscopic interior organisation of biological cells. In this study, we present a method to evaluate the surface tension of model biomolecular condensates, through straighforward sessile drop measurements of capillary lengths and condensate densities. Our approach bypasses the need for characterizing condensate viscosities, which was required in previously reported techniques. We demonstrate this method using model condensates comprising two mutants of the intrinsically disordered protein Ddx4N. Notably, we uncover a detrimental impact of increased protein net charge on the surface tension of Ddx4N condensates. Furthermore, we explore the application of Scheutjens-Fleer theory, calculating condensate surface tensions through a self-consistent mean-field framework using Flory-Huggins interaction parameters. This relatively simple theory provides semi-quantitative accuracy in predicting Ddx4N condensate surface tensions and enables the evaluation of molecular organisation at condensate surfaces. Our findings shed light on the molecular details of fluid-fluid interfaces in biomolecular condensates.
Collapse
Affiliation(s)
- Jack Holland
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford, OX1 3QZ, UK.
- Dept. of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK.
| | | | - Remco Tuinier
- Laboratory of Physical Chemistry, Department of Chemical Engineering and Chemistry & Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Dirk G A L Aarts
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford, OX1 3QZ, UK.
| | - Timothy J Nott
- Dept. of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK.
| |
Collapse
|
169
|
Uversky VN. Functional unfoldomics: Roles of intrinsic disorder in protein (multi)functionality. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 138:179-210. [PMID: 38220424 DOI: 10.1016/bs.apcsb.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Intrinsically disordered proteins (IDPs), which are functional proteins without stable tertiary structure, and hybrid proteins containing ordered domains and intrinsically disordered regions (IDRs) constitute prominent parts of all proteomes collectively known as unfoldomes. IDPs/IDRs exist as highly dynamic structural ensembles of rapidly interconverting conformations and are characterized by the exceptional structural heterogeneity, where their different parts are (dis)ordered to different degree, and their overall structure represents a complex mosaic of foldons, inducible foldons, inducible morphing foldons, non-foldons, semifoldons, and even unfoldons. Despite their lack of unique 3D structures, IDPs/IDRs play crucial roles in the control of various biological processes and the regulation of different cellular pathways and are commonly involved in recognition and signaling, indicating that the disorder-based functional repertoire is complementary to the functions of ordered proteins. Furthermore, IDPs/IDRs are frequently multifunctional, and this multifunctionality is defined by their structural flexibility and heterogeneity. Intrinsic disorder phenomenon is at the roots of the structure-function continuum model, where the structure continuum is defined by the presence of differently (dis)ordered regions, and the function continuum arises from the ability of all these differently (dis)ordered parts to have different functions. In their everyday life, IDPs/IDRs utilize a broad spectrum of interaction mechanisms thereby acting as interaction specialists. They are crucial for the biogenesis of numerous proteinaceous membrane-less organelles driven by the liquid-liquid phase separation. This review introduces functional unfoldomics by representing some aspects of the intrinsic disorder-based functionality.
Collapse
Affiliation(s)
- Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, United States.
| |
Collapse
|
170
|
Chou MC, Wang YH, Chen FY, Kung CY, Wu KP, Kuo JC, Chan SJ, Cheng ML, Lin CY, Chou YC, Ho MC, Firestine S, Huang JR, Chen RH. PAICS ubiquitination recruits UBAP2 to trigger phase separation for purinosome assembly. Mol Cell 2023; 83:4123-4140.e12. [PMID: 37848033 DOI: 10.1016/j.molcel.2023.09.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 07/10/2023] [Accepted: 09/22/2023] [Indexed: 10/19/2023]
Abstract
Purinosomes serve as metabolons to enhance de novo purine synthesis (DNPS) efficiency through compartmentalizing DNPS enzymes during stressed conditions. However, the mechanism underpinning purinosome assembly and its pathophysiological functions remains elusive. Here, we show that K6-polyubiquitination of the DNPS enzyme phosphoribosylaminoimidazole carboxylase and phosphoribosylaminoimidazolesuccinocarboxamide synthetase (PAICS) by cullin-5/ankyrin repeat and SOCS box containing 11 (Cul5/ASB11)-based ubiquitin ligase plays a driving role in purinosome assembly. Upon several purinosome-inducing cues, ASB11 is upregulated by relieving the H3K9me3/HP1α-mediated transcriptional silencing, thus stimulating PAICS polyubiquitination. The polyubiquitinated PAICS recruits ubiquitin-associated protein 2 (UBAP2), a ubiquitin-binding protein with multiple stretches of intrinsically disordered regions, thereby inducing phase separation to trigger purinosome assembly for enhancing DNPS pathway flux. In human melanoma, ASB11 is highly expressed to facilitate a constitutive purinosome formation to which melanoma cells are addicted for supporting their proliferation, viability, and tumorigenesis in a xenograft model. Our study identifies a driving mechanism for purinosome assembly in response to cellular stresses and uncovers the impact of purinosome formation on human malignancies.
Collapse
Affiliation(s)
- Ming-Chieh Chou
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan; Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei 106, Taiwan
| | - Yi-Hsuan Wang
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan; Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei 106, Taiwan
| | - Fei-Yun Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Chun-Ying Kung
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan; Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei 106, Taiwan
| | - Kuen-Phon Wu
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan; Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei 106, Taiwan
| | - Jean-Cheng Kuo
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Shu-Jou Chan
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Mei-Ling Cheng
- Metabolomics Core Laboratory, Healthy Aging Research Center, Chang Gung University, Taoyuan 333, Taiwan; Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; Clinical Metabolomics Core Laboratory, Chang Gung Memorial Hospital at Linkou, Taoyuan 333, Taiwan
| | - Chih-Yu Lin
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Yu-Chi Chou
- Biomedical Translation Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Meng-Chiao Ho
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan; Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei 106, Taiwan
| | - Steven Firestine
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Jie-Rong Huang
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Ruey-Hwa Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan; Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei 106, Taiwan.
| |
Collapse
|
171
|
Gui T, Fleming C, Manzato C, Bourgeois B, Sirati N, Heuer J, Papadionysiou I, Montfort DIV, Gijzen MV, Smits LMM, Burgering BMT, Madl T, Schuijers J. Targeted perturbation of signaling-driven condensates. Mol Cell 2023; 83:4141-4157.e11. [PMID: 37977121 DOI: 10.1016/j.molcel.2023.10.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/27/2023] [Accepted: 10/17/2023] [Indexed: 11/19/2023]
Abstract
Biomolecular condensates have emerged as a major organizational principle in the cell. However, the formation, maintenance, and dissolution of condensates are still poorly understood. Transcriptional machinery partitions into biomolecular condensates at key cell identity genes to activate these. Here, we report a specific perturbation of WNT-activated β-catenin condensates that disrupts oncogenic signaling. We use a live-cell condensate imaging method in human cancer cells to discover FOXO and TCF-derived peptides that specifically inhibit β-catenin condensate formation on DNA, perturb nuclear β-catenin condensates in cells, and inhibit β-catenin-driven transcriptional activation and colorectal cancer cell growth. We show that these peptides compete with homotypic intermolecular interactions that normally drive condensate formation. Using this framework, we derive short peptides that specifically perturb condensates and transcriptional activation of YAP and TAZ in the Hippo pathway. We propose a "monomer saturation" model in which short interacting peptides can be used to specifically inhibit condensate-associated transcription in disease.
Collapse
Affiliation(s)
- Tianshu Gui
- Center for Molecular Medicine, University Medical Center Utrecht, 3584 CG Utrecht, the Netherlands; Oncode Institute, 3721 AL Utrecht, the Netherlands
| | - Cassio Fleming
- Center for Molecular Medicine, University Medical Center Utrecht, 3584 CG Utrecht, the Netherlands
| | - Caterina Manzato
- Center for Molecular Medicine, University Medical Center Utrecht, 3584 CG Utrecht, the Netherlands
| | - Benjamin Bourgeois
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
| | - Nafiseh Sirati
- Center for Molecular Medicine, University Medical Center Utrecht, 3584 CG Utrecht, the Netherlands
| | - Jasper Heuer
- Center for Molecular Medicine, University Medical Center Utrecht, 3584 CG Utrecht, the Netherlands
| | - Ioanna Papadionysiou
- Center for Molecular Medicine, University Medical Center Utrecht, 3584 CG Utrecht, the Netherlands
| | - Daniel I van Montfort
- Center for Molecular Medicine, University Medical Center Utrecht, 3584 CG Utrecht, the Netherlands
| | - Merel van Gijzen
- Center for Molecular Medicine, University Medical Center Utrecht, 3584 CG Utrecht, the Netherlands
| | - Lydia M M Smits
- Center for Molecular Medicine, University Medical Center Utrecht, 3584 CG Utrecht, the Netherlands
| | - Boudewijn M T Burgering
- Center for Molecular Medicine, University Medical Center Utrecht, 3584 CG Utrecht, the Netherlands; Oncode Institute, 3721 AL Utrecht, the Netherlands
| | - Tobias Madl
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria; BioTechMed-Graz, 8010 Graz, Austria
| | - Jurian Schuijers
- Center for Molecular Medicine, University Medical Center Utrecht, 3584 CG Utrecht, the Netherlands; Oncode Institute, 3721 AL Utrecht, the Netherlands.
| |
Collapse
|
172
|
Wang YL, Zhao WW, Shi J, Wan XB, Zheng J, Fan XJ. Liquid-liquid phase separation in DNA double-strand breaks repair. Cell Death Dis 2023; 14:746. [PMID: 37968256 PMCID: PMC10651886 DOI: 10.1038/s41419-023-06267-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 10/23/2023] [Accepted: 11/01/2023] [Indexed: 11/17/2023]
Abstract
DNA double-strand breaks (DSBs) are the fatal type of DNA damage mostly induced by exposure genome to ionizing radiation or genotoxic chemicals. DSBs are mainly repaired by homologous recombination (HR) and nonhomologous end joining (NHEJ). To repair DSBs, a large amount of DNA repair factors was observed to be concentrated at the end of DSBs in a specific spatiotemporal manner to form a repair center. Recently, this repair center was characterized as a condensate derived from liquid-liquid phase separation (LLPS) of key DSBs repair factors. LLPS has been found to be the mechanism of membraneless organelles formation and plays key roles in a variety of biological processes. In this review, the recent advances and mechanisms of LLPS in the formation of DSBs repair-related condensates are summarized.
Collapse
Affiliation(s)
- Yun-Long Wang
- Henan Provincial Key Laboratory of Radiation Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, PR China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450052, PR China
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, PR China
- Department of Radiation Oncology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, PR China
| | - Wan-Wen Zhao
- Department of Radiation Oncology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, PR China
- GuangDong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, PR China
| | - Jie Shi
- Department of Radiation Oncology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, PR China
- GuangDong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, PR China
| | - Xiang-Bo Wan
- Henan Provincial Key Laboratory of Radiation Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, PR China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450052, PR China
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, PR China
- Department of Radiation Oncology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, PR China
| | - Jian Zheng
- Department of Radiation Oncology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, PR China
- GuangDong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, PR China
| | - Xin-Juan Fan
- Henan Provincial Key Laboratory of Radiation Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, PR China.
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450052, PR China.
- GuangDong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, PR China.
- Department of Pathology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, PR China.
| |
Collapse
|
173
|
Celora GL, Blossey R, Münch A, Wagner B. Counterion-controlled phase equilibria in a charge-regulated polymer solution. J Chem Phys 2023; 159:184902. [PMID: 37942872 DOI: 10.1063/5.0169610] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/17/2023] [Indexed: 11/10/2023] Open
Abstract
We study phase equilibria in a minimal model of charge-regulated polymer solutions. Our model consists of a single polymer species whose charge state arises from protonation-deprotonation processes in the presence of a dissolved acid, whose anions serve as screening counterions. We explicitly account for variability in the polymers' charge states. Homogeneous equilibria in this model system are characterised by the total concentration of polymers, the concentration of counter-ions and the charge distributions of polymers which can be computed with the help of analytical approximations. We use these analytical results to characterise how parameter values and solution acidity influence equilibrium charge distributions and identify for which regimes uni-modal and multi-modal charge distributions arise. We then study the interplay between charge regulation, solution acidity and phase separation. We find that charge regulation has a significant impact on polymer solubility and allows for non-linear responses to the solution acidity: Re-entrant phase behaviour is possible in response to increasing solution acidity. Moreover, we show that phase separation can yield to the coexistence of local environments characterised by different charge distributions.
Collapse
Affiliation(s)
- Giulia L Celora
- Department of Mathematics, University College London, 25 Gordon Street, London WC1H 0AY, United Kingdom
| | - Ralf Blossey
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France
| | - Andreas Münch
- Mathematical Institute, University of Oxford, Andrew Wiles Building, Woodstock Road, Oxford OX2 6GG, United Kingdom
| | - Barbara Wagner
- Weierstrass Institute, Mohrenstr. 39, 10117 Berlin, Germany
| |
Collapse
|
174
|
LaPeruta AJ, Micic J, Woolford Jr. JL. Additional principles that govern the release of pre-ribosomes from the nucleolus into the nucleoplasm in yeast. Nucleic Acids Res 2023; 51:10867-10883. [PMID: 35736211 PMCID: PMC10639060 DOI: 10.1093/nar/gkac430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 05/05/2022] [Accepted: 06/20/2022] [Indexed: 11/14/2022] Open
Abstract
During eukaryotic ribosome biogenesis, pre-ribosomes travel from the nucleolus, where assembly is initiated, to the nucleoplasm and then are exported to the cytoplasm, where assembly concludes. Although nuclear export of pre-ribosomes has been extensively investigated, the release of pre-ribosomes from the nucleolus is an understudied phenomenon. Initial data indicate that unfolded rRNA interacts in trans with nucleolar components and that, when rRNA folds due to ribosomal protein (RP) binding, the number of trans interactions drops below the threshold necessary for nucleolar retention. To validate and expand on this idea, we performed a bioinformatic analysis of the protein components of the Saccharomyces cerevisiae ribosome assembly pathway. We found that ribosome biogenesis factors (RiBi factors) contain significantly more predicted trans interacting regions than RPs. We also analyzed cryo-EM structures of ribosome assembly intermediates to determine how nucleolar pre-ribosomes differ from post-nucleolar pre-ribosomes, specifically the capacity of RPs, RiBi factors, and rRNA components to interact in trans. We observed a significant decrease in the theoretical trans-interacting capability of pre-ribosomes between nucleolar and post-nucleolar stages of assembly due to the release of RiBi factors from particles and the folding of rRNA. Here, we provide a mechanism for the release of pre-ribosomes from the nucleolus.
Collapse
Affiliation(s)
- Amber J LaPeruta
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Jelena Micic
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - John L Woolford Jr.
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| |
Collapse
|
175
|
Adhikari S, Mondal J. Machine Learning Subtle Conformational Change due to Phosphorylation in Intrinsically Disordered Proteins. J Phys Chem B 2023; 127:9433-9449. [PMID: 37905972 DOI: 10.1021/acs.jpcb.3c05136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Phosphorylation of intrinsically disordered proteins/regions (IDPs/IDRs) has a profound effect in biological functions such as cell signaling, protein folding or unfolding, and long-range allosteric effects. However, here we focus on two IDPs, namely 83-residue IDR transcription factor Ash1 and 92-residue long N-terminal region of CDK inhibitor Sic1 protein, found in Saccharomyces cerevisiae, for which experimental measurements of average conformational properties, namely, radius of gyration and structure factor, indicate negligible changes upon phosphorylation. Here, we show that a judicious dissection of conformational ensemble via combination of unsupervised machine learning and extensive molecular dynamics (MD) trajectories can highlight key differences and similarities among the phosphorylated and wild-type IDP. In particular, we develop Markov state model (MSM) using the latent-space dimensions of an autoencoder, trained using multi-microsecond long MD simulation trajectories. Examination of structural changes among the states, prior to and upon phosphorylation, captured several similarities and differences in their backbone contact maps, secondary structure, and torsion angles. Hydrogen bonding analysis revealed that phosphorylation not only increases the number of hydrogen bonds but also switches the pattern of hydrogen bonding between the backbone and side chain atoms with the phosphorylated residues. We also observe that although phosphorylation introduces salt bridges, there is a loss of the cation-π interaction. Phosphorylation also improved the probability for long-range hydrophobic contacts and also enhanced interaction with water molecules and improved the local structure of water as evident from the geometric order parameters. The observations on these machine-learnt states gave important insights, as it would otherwise be difficult to determine experimentally which is important, if we were to understand the role of phosphorylation of IDPs in their biological functions.
Collapse
|
176
|
Kang H, Park S, Jo A, Mao X, Kumar M, Park C, Ahn J, Lee Y, Choi J, Lee Y, Dawson VL, Dawson TM, Kam T, Shin J. PARIS undergoes liquid-liquid phase separation and poly(ADP-ribose)-mediated solidification. EMBO Rep 2023; 24:e56166. [PMID: 37870275 PMCID: PMC10626450 DOI: 10.15252/embr.202256166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 08/04/2023] [Accepted: 09/20/2023] [Indexed: 10/24/2023] Open
Abstract
ZNF746 was identified as parkin-interacting substrate (PARIS). Investigating its pathophysiological properties, we find that PARIS undergoes liquid-liquid phase separation (LLPS) and amorphous solid formation. The N-terminal low complexity domain 1 (LCD1) of PARIS is required for LLPS, whereas the C-terminal prion-like domain (PrLD) drives the transition from liquid to solid phase. In addition, we observe that poly(ADP-ribose) (PAR) strongly binds to the C-terminus of PARIS near the PrLD, accelerating its LLPS and solidification. N-Methyl-N'-nitro-N-nitrosoguanidine (MNNG)-induced PAR formation leads to PARIS oligomerization in human iPSC-derived dopaminergic neurons that is prevented by the PARP inhibitor, ABT-888. Furthermore, SDS-resistant PARIS species are observed in the substantia nigra (SN) of aged mice overexpressing wild-type PARIS, but not with a PAR binding-deficient PARIS mutant. PARIS solidification is also found in the SN of mice injected with preformed fibrils of α-synuclein (α-syn PFF) and adult mice with a conditional knockout (KO) of parkin, but not if α-syn PFF is injected into mice deficient for PARP1. Herein, we demonstrate that PARIS undergoes LLPS and PAR-mediated solidification in models of Parkinson's disease.
Collapse
Affiliation(s)
- Hojin Kang
- Department of PharmacologySungkyunkwan University School of MedicineSuwonSouth Korea
- Neuroregeneration and Stem Cell Programs, Institute for Cell EngineeringJohns Hopkins University School of MedicineBaltimoreMDUSA
- Department of NeurologyJohns Hopkins University School of MedicineBaltimoreMDUSA
- Single Cell Network Research CenterSungkyunkwan University School of MedicineSuwonSouth Korea
| | - Soojeong Park
- Department of PharmacologySungkyunkwan University School of MedicineSuwonSouth Korea
| | - Areum Jo
- Department of PharmacologySungkyunkwan University School of MedicineSuwonSouth Korea
- Neuroregeneration and Stem Cell Programs, Institute for Cell EngineeringJohns Hopkins University School of MedicineBaltimoreMDUSA
- Department of NeurologyJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Xiaobo Mao
- Neuroregeneration and Stem Cell Programs, Institute for Cell EngineeringJohns Hopkins University School of MedicineBaltimoreMDUSA
- Department of NeurologyJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Manoj Kumar
- Neuroregeneration and Stem Cell Programs, Institute for Cell EngineeringJohns Hopkins University School of MedicineBaltimoreMDUSA
- Department of NeurologyJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Chi‐Hu Park
- Neurodegeneration Research InstituteYEP Bio Co., Ltd.AnyangSouth Korea
| | - Jee‐Yin Ahn
- Single Cell Network Research CenterSungkyunkwan University School of MedicineSuwonSouth Korea
- Samsung Biomedical Research Institute, Samsung Medical CenterSeoulSouth Korea
| | - Yunjong Lee
- Department of PharmacologySungkyunkwan University School of MedicineSuwonSouth Korea
- Samsung Biomedical Research Institute, Samsung Medical CenterSeoulSouth Korea
| | - Jeong‐Yun Choi
- Department of PharmacologySungkyunkwan University School of MedicineSuwonSouth Korea
- Samsung Biomedical Research Institute, Samsung Medical CenterSeoulSouth Korea
| | - Yun‐Song Lee
- Department of PharmacologySungkyunkwan University School of MedicineSuwonSouth Korea
- Samsung Biomedical Research Institute, Samsung Medical CenterSeoulSouth Korea
| | - Valina L Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell EngineeringJohns Hopkins University School of MedicineBaltimoreMDUSA
- Department of NeurologyJohns Hopkins University School of MedicineBaltimoreMDUSA
- Department of PhysiologyJohns Hopkins University School of MedicineBaltimoreMDUSA
- Solomon H. Snyder Department of NeuroscienceJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Ted M Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell EngineeringJohns Hopkins University School of MedicineBaltimoreMDUSA
- Department of NeurologyJohns Hopkins University School of MedicineBaltimoreMDUSA
- Solomon H. Snyder Department of NeuroscienceJohns Hopkins University School of MedicineBaltimoreMDUSA
- Department of Pharmacology and Molecular SciencesJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Tae‐In Kam
- Neuroregeneration and Stem Cell Programs, Institute for Cell EngineeringJohns Hopkins University School of MedicineBaltimoreMDUSA
- Department of NeurologyJohns Hopkins University School of MedicineBaltimoreMDUSA
- Department of Brain and Cognitive SciencesKorea Advanced Institute of Science and TechnologyDaejeonSouth Korea
| | - Joo‐Ho Shin
- Department of PharmacologySungkyunkwan University School of MedicineSuwonSouth Korea
- Neuroregeneration and Stem Cell Programs, Institute for Cell EngineeringJohns Hopkins University School of MedicineBaltimoreMDUSA
- Department of NeurologyJohns Hopkins University School of MedicineBaltimoreMDUSA
- Single Cell Network Research CenterSungkyunkwan University School of MedicineSuwonSouth Korea
- Samsung Biomedical Research Institute, Samsung Medical CenterSeoulSouth Korea
| |
Collapse
|
177
|
Patil A, Strom AR, Paulo JA, Collings CK, Ruff KM, Shinn MK, Sankar A, Cervantes KS, Wauer T, St Laurent JD, Xu G, Becker LA, Gygi SP, Pappu RV, Brangwynne CP, Kadoch C. A disordered region controls cBAF activity via condensation and partner recruitment. Cell 2023; 186:4936-4955.e26. [PMID: 37788668 PMCID: PMC10792396 DOI: 10.1016/j.cell.2023.08.032] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 07/16/2023] [Accepted: 08/24/2023] [Indexed: 10/05/2023]
Abstract
Intrinsically disordered regions (IDRs) represent a large percentage of overall nuclear protein content. The prevailing dogma is that IDRs engage in non-specific interactions because they are poorly constrained by evolutionary selection. Here, we demonstrate that condensate formation and heterotypic interactions are distinct and separable features of an IDR within the ARID1A/B subunits of the mSWI/SNF chromatin remodeler, cBAF, and establish distinct "sequence grammars" underlying each contribution. Condensation is driven by uniformly distributed tyrosine residues, and partner interactions are mediated by non-random blocks rich in alanine, glycine, and glutamine residues. These features concentrate a specific cBAF protein-protein interaction network and are essential for chromatin localization and activity. Importantly, human disease-associated perturbations in ARID1B IDR sequence grammars disrupt cBAF function in cells. Together, these data identify IDR contributions to chromatin remodeling and explain how phase separation provides a mechanism through which both genomic localization and functional partner recruitment are achieved.
Collapse
Affiliation(s)
- Ajinkya Patil
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Program in Virology, Harvard Medical School, Boston, MA 02115, USA
| | - Amy R Strom
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Clayton K Collings
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Kiersten M Ruff
- Department of Biomedical Engineering and Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Min Kyung Shinn
- Department of Biomedical Engineering and Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Akshay Sankar
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Kasey S Cervantes
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Tobias Wauer
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02115, USA
| | - Jessica D St Laurent
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02115, USA; Department of Obstetrics and Gynecology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Grace Xu
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Lindsay A Becker
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Rohit V Pappu
- Department of Biomedical Engineering and Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Clifford P Brangwynne
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA; Howard Hughes Medical Institute, Chevy Chase, MD 21044, USA; Omenn-Darling Bioengineering Institute, Princeton University, Princeton, NJ 08544, USA.
| | - Cigall Kadoch
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Chevy Chase, MD 21044, USA.
| |
Collapse
|
178
|
Cho Y, Jacobs WM. Nonequilibrium interfacial properties of chemically driven fluids. J Chem Phys 2023; 159:154101. [PMID: 37843057 DOI: 10.1063/5.0166824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/26/2023] [Indexed: 10/17/2023] Open
Abstract
Chemically driven fluids can demix to form condensed droplets that exhibit phase behaviors not observed at equilibrium. In particular, nonequilibrium interfacial properties can emerge when the chemical reactions are driven differentially between the interior and exterior of the phase-separated droplets. Here, we use a minimal model to study changes in the interfacial tension between coexisting phases away from equilibrium. Simulations of both droplet nucleation and interface roughness indicate that the nonequilibrium interfacial tension can either be increased or decreased relative to its equilibrium value, depending on whether the driven chemical reactions are accelerated or decelerated within the droplets. Finally, we show that these observations can be understood using a predictive theory based on an effective thermodynamic equilibrium.
Collapse
Affiliation(s)
- Yongick Cho
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
| | - William M Jacobs
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
179
|
Cai Z, Mei S, Zhou L, Ma X, Wuyun Q, Yan J, Ding H. Liquid-Liquid Phase Separation Sheds New Light upon Cardiovascular Diseases. Int J Mol Sci 2023; 24:15418. [PMID: 37895097 PMCID: PMC10607581 DOI: 10.3390/ijms242015418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/19/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
Liquid-liquid phase separation (LLPS) is a biophysical process that mediates the precise and complex spatiotemporal coordination of cellular processes. Proteins and nucleic acids are compartmentalized into micron-scale membrane-less droplets via LLPS. These droplets, termed biomolecular condensates, are highly dynamic, have concentrated components, and perform specific functions. Biomolecular condensates have been observed to organize diverse key biological processes, including gene transcription, signal transduction, DNA damage repair, chromatin organization, and autophagy. The dysregulation of these biological activities owing to aberrant LLPS is important in cardiovascular diseases. This review provides a detailed overview of the regulation and functions of biomolecular condensates, provides a comprehensive depiction of LLPS in several common cardiovascular diseases, and discusses the revolutionary therapeutic perspective of modulating LLPS in cardiovascular diseases and new treatment strategies relevant to LLPS.
Collapse
Affiliation(s)
- Ziyang Cai
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Z.C.); (S.M.); (L.Z.); (X.M.); (Q.W.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Shuai Mei
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Z.C.); (S.M.); (L.Z.); (X.M.); (Q.W.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Li Zhou
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Z.C.); (S.M.); (L.Z.); (X.M.); (Q.W.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Xiaozhu Ma
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Z.C.); (S.M.); (L.Z.); (X.M.); (Q.W.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Qidamugai Wuyun
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Z.C.); (S.M.); (L.Z.); (X.M.); (Q.W.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Jiangtao Yan
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Z.C.); (S.M.); (L.Z.); (X.M.); (Q.W.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
- Genetic Diagnosis Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hu Ding
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Z.C.); (S.M.); (L.Z.); (X.M.); (Q.W.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
- Genetic Diagnosis Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
180
|
Amin R, Bukulmez O, Woodruff JB. Visualization of Balbiani Body disassembly during human primordial follicle activation. MICROPUBLICATION BIOLOGY 2023; 2023:10.17912/micropub.biology.000989. [PMID: 37920272 PMCID: PMC10618801 DOI: 10.17912/micropub.biology.000989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/12/2023] [Accepted: 10/15/2023] [Indexed: 11/04/2023]
Abstract
Dormant human oocytes contain a perinuclear super-organelle, called the Balbiani Body, which is not present in mature oocytes. Here, we use confocal imaging to visualize two Balbiani Body markers-mitochondria and the DEAD-box helicase DDX4-in preantral follicles isolated from a 20-year-old female patient. In primordial follicles, mitochondria were concentrated in a ring near the oocyte nucleus, while DDX4 formed adjacent micron-scale spherical condensates. In primary and secondary follicles, the mitochondria were dispersed throughout the oocyte cytoplasm, and large DDX4 condensates were not visible. Our data suggest that the Balbiani Body breaks down during the primordial to primary follicle transition, thus releasing mitochondria and soluble DDX4 protein into the oocyte cytoplasm.
Collapse
Affiliation(s)
- Ruchi Amin
- Obstetrics and Gynecology, The University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Orhan Bukulmez
- Obstetrics and Gynecology, The University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Jeffrey B. Woodruff
- Cell Biology, The University of Texas Southwestern Medical Center, Dallas, Texas, United States
| |
Collapse
|
181
|
Testa A, Spanke HT, Jambon-Puillet E, Yasir M, Feng Y, Küffner AM, Arosio P, Dufresne ER, Style RW, Rebane AA. Surface Passivation Method for the Super-repellence of Aqueous Macromolecular Condensates. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:14626-14637. [PMID: 37797324 PMCID: PMC10586374 DOI: 10.1021/acs.langmuir.3c01886] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/21/2023] [Indexed: 10/07/2023]
Abstract
Solutions of macromolecules can undergo liquid-liquid phase separation to form droplets with ultralow surface tension. Droplets with such low surface tension wet and spread over common surfaces such as test tubes and microscope slides, complicating in vitro experiments. The development of a universal super-repellent surface for macromolecular droplets has remained elusive because their ultralow surface tension requires low surface energies. Furthermore, the nonwetting of droplets containing proteins poses additional challenges because the surface must remain inert to a wide range of chemistries presented by the various amino acid side chains at the droplet surface. Here, we present a method to coat microscope slides with a thin transparent hydrogel that exhibits complete dewetting (contact angles θ ≈ 180°) and minimal pinning of phase-separated droplets in aqueous solution. The hydrogel is based on a swollen matrix of chemically cross-linked polyethylene glycol diacrylate of molecular weight 12 kDa (PEGDA), and can be prepared with basic chemistry laboratory equipment. The PEGDA hydrogel is a powerful tool for in vitro studies of weak interactions, dynamics, and the internal organization of phase-separated droplets in aqueous solutions.
Collapse
Affiliation(s)
- Andrea Testa
- Department
of Materials, ETH Zürich, 8093 Zürich, Switzerland
| | | | - Etienne Jambon-Puillet
- Department
of Materials, ETH Zürich, 8093 Zürich, Switzerland
- LadHyX,
CNRS, Ecole Polytechnique, Institut Polytechnique
de Paris, Palaiseau 91120, France
| | - Mohammad Yasir
- Department
of Materials, ETH Zürich, 8093 Zürich, Switzerland
| | - Yanxia Feng
- Department
of Materials, ETH Zürich, 8093 Zürich, Switzerland
| | - Andreas M. Küffner
- Department
of Chemistry and Applied Biosciences, Institute
for Chemical and Bioengineering, ETH Zürich, 8093 Zürich, Switzerland
| | - Paolo Arosio
- Department
of Chemistry and Applied Biosciences, Institute
for Chemical and Bioengineering, ETH Zürich, 8093 Zürich, Switzerland
| | | | - Robert W. Style
- Department
of Materials, ETH Zürich, 8093 Zürich, Switzerland
| | - Aleksander A. Rebane
- Department
of Materials, ETH Zürich, 8093 Zürich, Switzerland
- Life
Molecules and Materials Laboratory, Programs in Chemistry and in Physics, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates
| |
Collapse
|
182
|
Bergmann AM, Bauermann J, Bartolucci G, Donau C, Stasi M, Holtmannspötter AL, Jülicher F, Weber CA, Boekhoven J. Liquid spherical shells are a non-equilibrium steady state of active droplets. Nat Commun 2023; 14:6552. [PMID: 37848445 PMCID: PMC10582082 DOI: 10.1038/s41467-023-42344-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/06/2023] [Indexed: 10/19/2023] Open
Abstract
Liquid-liquid phase separation yields spherical droplets that eventually coarsen to one large, stable droplet governed by the principle of minimal free energy. In chemically fueled phase separation, the formation of phase-separating molecules is coupled to a fuel-driven, non-equilibrium reaction cycle. It thus yields dissipative structures sustained by a continuous fuel conversion. Such dissipative structures are ubiquitous in biology but are poorly understood as they are governed by non-equilibrium thermodynamics. Here, we bridge the gap between passive, close-to-equilibrium, and active, dissipative structures with chemically fueled phase separation. We observe that spherical, active droplets can undergo a morphological transition into a liquid, spherical shell. We demonstrate that the mechanism is related to gradients of short-lived droplet material. We characterize how far out of equilibrium the spherical shell state is and the chemical power necessary to sustain it. Our work suggests alternative avenues for assembling complex stable morphologies, which might already be exploited to form membraneless organelles by cells.
Collapse
Affiliation(s)
- Alexander M Bergmann
- School of Natural Sciences, Department of Chemistry, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Jonathan Bauermann
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Strasse 38, 01187, Dresden, Germany
- Center for Systems Biology Dresden, Pfotenhauerstrasse 108, 01307, Dresden, Germany
| | - Giacomo Bartolucci
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Strasse 38, 01187, Dresden, Germany
- Center for Systems Biology Dresden, Pfotenhauerstrasse 108, 01307, Dresden, Germany
| | - Carsten Donau
- School of Natural Sciences, Department of Chemistry, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Michele Stasi
- School of Natural Sciences, Department of Chemistry, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Anna-Lena Holtmannspötter
- School of Natural Sciences, Department of Chemistry, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Frank Jülicher
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Strasse 38, 01187, Dresden, Germany
- Center for Systems Biology Dresden, Pfotenhauerstrasse 108, 01307, Dresden, Germany
- Cluster of Excellence Physics of Life, Technical University of Dresden, 01307, Dresden, Germany
| | - Christoph A Weber
- Faculty of Mathematics, Natural Sciences, and Materials Engineering: Institute of Physics, University of Augsburg, Universitätsstrasse 1, 86159, Augsburg, Germany.
| | - Job Boekhoven
- School of Natural Sciences, Department of Chemistry, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching, Germany.
| |
Collapse
|
183
|
Poudyal M, Patel K, Gadhe L, Sawner AS, Kadu P, Datta D, Mukherjee S, Ray S, Navalkar A, Maiti S, Chatterjee D, Devi J, Bera R, Gahlot N, Joseph J, Padinhateeri R, Maji SK. Intermolecular interactions underlie protein/peptide phase separation irrespective of sequence and structure at crowded milieu. Nat Commun 2023; 14:6199. [PMID: 37794023 PMCID: PMC10550955 DOI: 10.1038/s41467-023-41864-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 09/21/2023] [Indexed: 10/06/2023] Open
Abstract
Liquid-liquid phase separation (LLPS) has emerged as a crucial biological phenomenon underlying the sequestration of macromolecules (such as proteins and nucleic acids) into membraneless organelles in cells. Unstructured and intrinsically disordered domains are known to facilitate multivalent interactions driving protein LLPS. We hypothesized that LLPS could be an intrinsic property of proteins/polypeptides but with distinct phase regimes irrespective of their sequence and structure. To examine this, we studied many (a total of 23) proteins/polypeptides with different structures and sequences for LLPS study in the presence and absence of molecular crowder, polyethylene glycol (PEG-8000). We showed that all proteins and even highly charged polypeptides (under study) can undergo liquid condensate formation, however with different phase regimes and intermolecular interactions. We further demonstrated that electrostatic, hydrophobic, and H-bonding or a combination of such intermolecular interactions plays a crucial role in individual protein/peptide LLPS.
Collapse
Affiliation(s)
- Manisha Poudyal
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai, 400076, India
| | - Komal Patel
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai, 400076, India
- Sunita Sanghi Centre of Aging and Neurodegenerative Diseases, IIT Bombay, Powai, Mumbai, 400076, India
| | - Laxmikant Gadhe
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai, 400076, India
| | - Ajay Singh Sawner
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai, 400076, India
| | - Pradeep Kadu
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai, 400076, India
| | - Debalina Datta
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai, 400076, India
| | - Semanti Mukherjee
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai, 400076, India
| | - Soumik Ray
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai, 400076, India
| | - Ambuja Navalkar
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai, 400076, India
| | - Siddhartha Maiti
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai, 400076, India
- Department of Bioengineering, VIT Bhopal University, Bhopal-Indore Highway, Kothrikalan, Sehore, Madhya Pradesh, 466114, India
| | - Debdeep Chatterjee
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai, 400076, India
| | - Jyoti Devi
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai, 400076, India
| | - Riya Bera
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai, 400076, India
| | - Nitisha Gahlot
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai, 400076, India
| | - Jennifer Joseph
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai, 400076, India
| | - Ranjith Padinhateeri
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai, 400076, India
| | - Samir K Maji
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai, 400076, India.
- Sunita Sanghi Centre of Aging and Neurodegenerative Diseases, IIT Bombay, Powai, Mumbai, 400076, India.
| |
Collapse
|
184
|
Lin Y, Suyama R, Kawaguchi S, Iki T, Kai T. Tejas functions as a core component in nuage assembly and precursor processing in Drosophila piRNA biogenesis. J Cell Biol 2023; 222:e202303125. [PMID: 37555815 PMCID: PMC10412688 DOI: 10.1083/jcb.202303125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/11/2023] [Accepted: 07/13/2023] [Indexed: 08/10/2023] Open
Abstract
PIWI-interacting RNAs (piRNAs), which protect genome from the attack by transposons, are produced and amplified in membraneless granules called nuage. In Drosophila, PIWI family proteins, Tudor-domain-containing (Tdrd) proteins, and RNA helicases are assembled and form nuage to ensure piRNA production. However, the molecular functions of the Tdrd protein Tejas (Tej) in piRNA biogenesis remain unknown. Here, we conduct a detailed analysis of the subcellular localization of fluorescently tagged nuage proteins and behavior of piRNA precursors. Our results demonstrate that Tej functions as a core component that recruits Vasa (Vas) and Spindle-E (Spn-E) into nuage granules through distinct motifs, thereby assembling nuage and engaging precursors for further processing. Our study also reveals that the low-complexity region of Tej regulates the mobility of Vas. Based on these results, we propose that Tej plays a pivotal role in piRNA precursor processing by assembling Vas and Spn-E into nuage and modulating the mobility of nuage components.
Collapse
Affiliation(s)
- Yuxuan Lin
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Ritsuko Suyama
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | | | - Taichiro Iki
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Toshie Kai
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| |
Collapse
|
185
|
Triandafillou CG, Pan RW, Dinner AR, Drummond DA. Pervasive, conserved secondary structure in highly charged protein regions. PLoS Comput Biol 2023; 19:e1011565. [PMID: 37844070 PMCID: PMC10602382 DOI: 10.1371/journal.pcbi.1011565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 10/26/2023] [Accepted: 10/02/2023] [Indexed: 10/18/2023] Open
Abstract
Understanding how protein sequences confer function remains a defining challenge in molecular biology. Two approaches have yielded enormous insight yet are often pursued separately: structure-based, where sequence-encoded structures mediate function, and disorder-based, where sequences dictate physicochemical and dynamical properties which determine function in the absence of stable structure. Here we study highly charged protein regions (>40% charged residues), which are routinely presumed to be disordered. Using recent advances in structure prediction and experimental structures, we show that roughly 40% of these regions form well-structured helices. Features often used to predict disorder-high charge density, low hydrophobicity, low sequence complexity, and evolutionarily varying length-are also compatible with solvated, variable-length helices. We show that a simple composition classifier predicts the existence of structure far better than well-established heuristics based on charge and hydropathy. We show that helical structure is more prevalent than previously appreciated in highly charged regions of diverse proteomes and characterize the conservation of highly charged regions. Our results underscore the importance of integrating, rather than choosing between, structure- and disorder-based approaches.
Collapse
Affiliation(s)
- Catherine G. Triandafillou
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Rosalind Wenshan Pan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, United States of America
| | - Aaron R. Dinner
- Department of Chemistry, University of Chicago, Chicago, Illinois, United States of America
| | - D. Allan Drummond
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, United States of America
- Department of Medicine, Section of Genetic Medicine, The University of Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
186
|
Ferreira PA. Nucleocytoplasmic transport at the crossroads of proteostasis, neurodegeneration and neuroprotection. FEBS Lett 2023; 597:2567-2589. [PMID: 37597509 DOI: 10.1002/1873-3468.14722] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/04/2023] [Accepted: 08/05/2023] [Indexed: 08/21/2023]
Abstract
Nucleocytoplasmic transport comprises the multistep assembly, transport, and disassembly of protein and RNA cargoes entering and exiting nuclear pores. Accruing evidence supports that impairments to nucleocytoplasmic transport are a hallmark of neurodegenerative diseases. These impairments cause dysregulations in nucleocytoplasmic partitioning and proteostasis of nuclear transport receptors and client substrates that promote intracellular deposits - another hallmark of neurodegeneration. Disturbances in liquid-liquid phase separation (LLPS) between dense and dilute phases of biomolecules implicated in nucleocytoplasmic transport promote micrometer-scale coacervates, leading to proteinaceous aggregates. This Review provides historical and emerging principles of LLPS at the interface of nucleocytoplasmic transport, proteostasis, aging and noxious insults, whose dysregulations promote intracellular aggregates. E3 SUMO-protein ligase Ranbp2 constitutes the cytoplasmic filaments of nuclear pores, where it acts as a molecular hub for rate-limiting steps of nucleocytoplasmic transport. A vignette is provided on the roles of Ranbp2 in nucleocytoplasmic transport and at the intersection of proteostasis in the survival of photoreceptor and motor neurons under homeostatic and pathophysiological environments. Current unmet clinical needs are highlighted, including therapeutics aiming to manipulate aggregation-dissolution models of purported neurotoxicity in neurodegeneration.
Collapse
Affiliation(s)
- Paulo A Ferreira
- Department of Ophthalmology, Department of Pathology, Duke University Medical Center, NC, Durham, USA
| |
Collapse
|
187
|
Borodavka A, Acker J. Seeing Biomolecular Condensates Through the Lens of Viruses. Annu Rev Virol 2023; 10:163-182. [PMID: 37040799 DOI: 10.1146/annurev-virology-111821-103226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
Phase separation of viral biopolymers is a key factor in the formation of cytoplasmic viral inclusions, known as sites of virus replication and assembly. This review describes the mechanisms and factors that affect phase separation in viral replication and identifies potential areas for future research. Drawing inspiration from studies on cellular RNA-rich condensates, we compare the hierarchical coassembly of ribosomal RNAs and proteins in the nucleolus to the coordinated coassembly of viral RNAs and proteins taking place within viral factories in viruses containing segmented RNA genomes. We highlight the common characteristics of biomolecular condensates in viral replication and how this new understanding is reshaping our views of virus assembly mechanisms. Such studies have the potential to uncover unexplored antiviral strategies targeting these phase-separated states.
Collapse
Affiliation(s)
- Alexander Borodavka
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom;
| | - Julia Acker
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom;
| |
Collapse
|
188
|
Tripathi S, Shirnekhi HK, Gorman SD, Chandra B, Baggett DW, Park CG, Somjee R, Lang B, Hosseini SMH, Pioso BJ, Li Y, Iacobucci I, Gao Q, Edmonson MN, Rice SV, Zhou X, Bollinger J, Mitrea DM, White MR, McGrail DJ, Jarosz DF, Yi SS, Babu MM, Mullighan CG, Zhang J, Sahni N, Kriwacki RW. Defining the condensate landscape of fusion oncoproteins. Nat Commun 2023; 14:6008. [PMID: 37770423 PMCID: PMC10539325 DOI: 10.1038/s41467-023-41655-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 09/13/2023] [Indexed: 09/30/2023] Open
Abstract
Fusion oncoproteins (FOs) arise from chromosomal translocations in ~17% of cancers and are often oncogenic drivers. Although some FOs can promote oncogenesis by undergoing liquid-liquid phase separation (LLPS) to form aberrant biomolecular condensates, the generality of this phenomenon is unknown. We explored this question by testing 166 FOs in HeLa cells and found that 58% formed condensates. The condensate-forming FOs displayed physicochemical features distinct from those of condensate-negative FOs and segregated into distinct feature-based groups that aligned with their sub-cellular localization and biological function. Using Machine Learning, we developed a predictor of FO condensation behavior, and discovered that 67% of ~3000 additional FOs likely form condensates, with 35% of those predicted to function by altering gene expression. 47% of the predicted condensate-negative FOs were associated with cell signaling functions, suggesting a functional dichotomy between condensate-positive and -negative FOs. Our Datasets and reagents are rich resources to interrogate FO condensation in the future.
Collapse
Affiliation(s)
- Swarnendu Tripathi
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Hazheen K Shirnekhi
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Scott D Gorman
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Arrakis Therapeutics, 830 Winter St, Waltham, MA, 02451, USA
| | - Bappaditya Chandra
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - David W Baggett
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Cheon-Gil Park
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ramiz Somjee
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Rhodes College, Memphis, TN, USA
- Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO, 63110, USA
| | - Benjamin Lang
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Center of Excellence for Data-Driven Discovery, Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Seyed Mohammad Hadi Hosseini
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Center of Excellence for Data-Driven Discovery, Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Brittany J Pioso
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yongsheng Li
- Livestrong Cancer Institutes, Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Ilaria Iacobucci
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Qingsong Gao
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Michael N Edmonson
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Stephen V Rice
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Xin Zhou
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - John Bollinger
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Diana M Mitrea
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Dewpoint Therapeutics, 451 D Street, Suite 104, Boston, MA, 02210, USA
| | - Michael R White
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
- IDEXX Laboratories, Inc., One IDEXX Drive, Westbrook, ME, 04092, USA
| | - Daniel J McGrail
- Center for Immunotherapy and Precision Immuno-Oncology, Cleveland Clinic, Cleveland, OH, USA
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Daniel F Jarosz
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - S Stephen Yi
- Livestrong Cancer Institutes, Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, TX, 78712, USA
- Department of Biomedical Engineering, and Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX, USA
| | - M Madan Babu
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Center of Excellence for Data-Driven Discovery, Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Charles G Mullighan
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jinghui Zhang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Nidhi Sahni
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Program in Quantitative and Computational Biosciences, Baylor College of Medicine, Houston, TX, USA
| | - Richard W Kriwacki
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA.
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Sciences Center, Memphis, TN, USA.
| |
Collapse
|
189
|
Meyer MO, Yamagami R, Choi S, Keating CD, Bevilacqua PC. RNA folding studies inside peptide-rich droplets reveal roles of modified nucleosides at the origin of life. SCIENCE ADVANCES 2023; 9:eadh5152. [PMID: 37729412 PMCID: PMC10511188 DOI: 10.1126/sciadv.adh5152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 08/16/2023] [Indexed: 09/22/2023]
Abstract
Compartmentalization of RNA in biopolymer-rich membraneless organelles is now understood to be pervasive and critical for the function of extant biology and has been proposed as a prebiotically plausible way to accumulate RNA. However, compartment-RNA interactions that drive encapsulation have the potential to influence RNA structure and function in compartment- and RNA sequence-dependent ways. Here, we detail next-generation sequencing (NGS) experiments performed in membraneless compartments called complex coacervates to characterize the fold of many different transfer RNAs (tRNAs) simultaneously under the potentially denaturing conditions of these compartments. Notably, we find that natural modifications favor the native fold of tRNAs in these compartments. This suggests that covalent RNA modifications could have played a critical role in metabolic processes at the origin of life.
Collapse
Affiliation(s)
- McCauley O. Meyer
- Department of Biochemistry, Microbiology, and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
- Center for RNA Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Ryota Yamagami
- Center for RNA Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| | - Saehyun Choi
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| | - Christine D. Keating
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| | - Philip C. Bevilacqua
- Department of Biochemistry, Microbiology, and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
- Center for RNA Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
190
|
Mukherjee S, Schäfer LV. Thermodynamic forces from protein and water govern condensate formation of an intrinsically disordered protein domain. Nat Commun 2023; 14:5892. [PMID: 37735186 PMCID: PMC10514047 DOI: 10.1038/s41467-023-41586-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 09/08/2023] [Indexed: 09/23/2023] Open
Abstract
Liquid-liquid phase separation (LLPS) can drive a multitude of cellular processes by compartmentalizing biological cells via the formation of dense liquid biomolecular condensates, which can function as membraneless organelles. Despite its importance, the molecular-level understanding of the underlying thermodynamics of this process remains incomplete. In this study, we use atomistic molecular dynamics simulations of the low complexity domain (LCD) of human fused in sarcoma (FUS) protein to investigate the contributions of water and protein molecules to the free energy changes that govern LLPS. Both protein and water components are found to have comparably sizeable thermodynamic contributions to the formation of FUS condensates. Moreover, we quantify the counteracting effects of water molecules that are released into the bulk upon condensate formation and the waters retained within the protein droplets. Among the various factors considered, solvation entropy and protein interaction enthalpy are identified as the most important contributions, while solvation enthalpy and protein entropy changes are smaller. These results provide detailed molecular insights on the intricate thermodynamic interplay between protein- and solvation-related forces underlying the formation of biomolecular condensates.
Collapse
Affiliation(s)
- Saumyak Mukherjee
- Center for Theoretical Chemistry, Ruhr University Bochum, D-44780, Bochum, Germany
| | - Lars V Schäfer
- Center for Theoretical Chemistry, Ruhr University Bochum, D-44780, Bochum, Germany.
| |
Collapse
|
191
|
Liu Q, Yi D, Ding J, Mao Y, Wang S, Ma L, Li Q, Wang J, Zhang Y, Zhao J, Guo S, Liu Z, Guo F, Zhao D, Liang C, Li X, Peng X, Cen S. MOV10 recruits DCP2 to decap human LINE-1 RNA by forming large cytoplasmic granules with phase separation properties. EMBO Rep 2023; 24:e56512. [PMID: 37437058 PMCID: PMC10481665 DOI: 10.15252/embr.202256512] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 06/22/2023] [Accepted: 06/28/2023] [Indexed: 07/14/2023] Open
Abstract
Long interspersed element 1 (LINE-1) is the only active autonomous mobile element in the human genome. Its transposition can exert deleterious effects on the structure and function of the host genome and cause sporadic genetic diseases. Tight control of LINE-1 mobilization by the host is crucial for genetic stability. In this study, we report that MOV10 recruits the main decapping enzyme DCP2 to LINE-1 RNA and forms a complex of MOV10, DCP2, and LINE-1 RNP, exhibiting liquid-liquid phase separation (LLPS) properties. DCP2 cooperates with MOV10 to decap LINE-1 RNA, which causes degradation of LINE-1 RNA and thus reduces LINE-1 retrotransposition. We here identify DCP2 as one of the key effector proteins determining LINE-1 replication, and elucidate an LLPS mechanism that facilitates the anti-LINE-1 action of MOV10 and DCP2.
Collapse
Affiliation(s)
- Qian Liu
- Institute of Medicinal BiotechnologyChinese Academy of Medical Sciences and Peking Union Medical SchoolBeijingChina
| | - Dongrong Yi
- Institute of Medicinal BiotechnologyChinese Academy of Medical Sciences and Peking Union Medical SchoolBeijingChina
| | - Jiwei Ding
- Institute of Medicinal BiotechnologyChinese Academy of Medical Sciences and Peking Union Medical SchoolBeijingChina
| | - Yang Mao
- Institute of Medicinal BiotechnologyChinese Academy of Medical Sciences and Peking Union Medical SchoolBeijingChina
| | - Shujie Wang
- Institute of Medicinal BiotechnologyChinese Academy of Medical Sciences and Peking Union Medical SchoolBeijingChina
| | - Ling Ma
- Institute of Medicinal BiotechnologyChinese Academy of Medical Sciences and Peking Union Medical SchoolBeijingChina
| | - Quanjie Li
- Institute of Medicinal BiotechnologyChinese Academy of Medical Sciences and Peking Union Medical SchoolBeijingChina
| | - Jing Wang
- Institute of Medicinal BiotechnologyChinese Academy of Medical Sciences and Peking Union Medical SchoolBeijingChina
| | - Yongxin Zhang
- Institute of Medicinal BiotechnologyChinese Academy of Medical Sciences and Peking Union Medical SchoolBeijingChina
| | - Jianyuan Zhao
- Institute of Medicinal BiotechnologyChinese Academy of Medical Sciences and Peking Union Medical SchoolBeijingChina
| | - Saisai Guo
- Institute of Medicinal BiotechnologyChinese Academy of Medical Sciences and Peking Union Medical SchoolBeijingChina
| | - Zhenlong Liu
- Lady Davis Institute, Jewish General HospitalMcGill UniversityMontrealQCCanada
| | - Fei Guo
- Institute of Pathogen BiologyChinese Academy of Medical ScienceBeijingChina
| | - Dongbing Zhao
- National Cancer CenterChinese Academy of Medical Sciences and Peking Union Medical SchoolBeijingChina
| | - Chen Liang
- Lady Davis Institute, Jewish General HospitalMcGill UniversityMontrealQCCanada
| | - Xiaoyu Li
- Institute of Medicinal BiotechnologyChinese Academy of Medical Sciences and Peking Union Medical SchoolBeijingChina
| | - Xiaozhong Peng
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical SciencesSchool of Basic Medicine Peking Union Medical CollegeBeijingChina
| | - Shan Cen
- Institute of Medicinal BiotechnologyChinese Academy of Medical Sciences and Peking Union Medical SchoolBeijingChina
| |
Collapse
|
192
|
Nicy, Collepardo-Guevara R, Joseph JA, Wales DJ. Energy landscapes and heat capacity signatures for peptides correlate with phase separation propensity. QRB DISCOVERY 2023; 4:e7. [PMID: 37771761 PMCID: PMC10523320 DOI: 10.1017/qrd.2023.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/09/2023] [Accepted: 07/17/2023] [Indexed: 09/30/2023] Open
Abstract
Phase separation plays an important role in the formation of membraneless compartments within the cell and intrinsically disordered proteins with low-complexity sequences can drive this compartmentalisation. Various intermolecular forces, such as aromatic-aromatic and cation-aromatic interactions, promote phase separation. However, little is known about how the ability of proteins to phase separate under physiological conditions is encoded in their energy landscapes and this is the focus of the present investigation. Our results provide a first glimpse into how the energy landscapes of minimal peptides that contain - and cation- interactions differ from the peptides that lack amino acids with such interactions. The peaks in the heat capacity () as a function of temperature report on alternative low-lying conformations that differ significantly in terms of their enthalpic and entropic contributions. The analysis and subsequent quantification of frustration of the energy landscape suggest that the interactions that promote phase separation lead to features (peaks or inflection points) at low temperatures in . More features may occur for peptides containing residues with better phase separation propensity and the energy landscape is more frustrated for such peptides. Overall, this work links the features in the underlying single-molecule potential energy landscapes to their collective phase separation behaviour and identifies quantities ( and frustration metric) that can be utilised in soft material design.
Collapse
Affiliation(s)
- Nicy
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Rosana Collepardo-Guevara
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
- Department of Physics, University of Cambridge, Cambridge, UK
- Department of Genetics, University of Cambridge, Cambridge, UK
| | - Jerelle A. Joseph
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| | - David J. Wales
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| |
Collapse
|
193
|
Gadek M, Sherr EH, Floor SN. The variant landscape and function of DDX3X in cancer and neurodevelopmental disorders. Trends Mol Med 2023; 29:726-739. [PMID: 37422363 DOI: 10.1016/j.molmed.2023.06.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 07/10/2023]
Abstract
RNA molecules rely on proteins across their life cycle. DDX3X encodes an X-linked DEAD-box RNA helicase with a Y-linked paralog, DDX3Y. DDX3X is central to the RNA life cycle and is implicated in many conditions, including cancer and the neurodevelopmental disorder DDX3X syndrome. DDX3X-linked conditions often exhibit sex differences, possibly due to differences between expression or function of the X- and Y-linked paralogs DDX3X and DDX3Y. DDX3X-related diseases have different mutational landscapes, indicating different roles of DDX3X. Understanding the role of DDX3X in normal and disease states will inform the understanding of DDX3X in disease. We review the function of DDX3X and DDX3Y, discuss how mutation type and sex bias contribute to human diseases involving DDX3X, and review possible DDX3X-targeting treatments.
Collapse
Affiliation(s)
- Margaret Gadek
- Department of Cell and Tissue Biology, University of California, San Francisco, CA 94143, USA
| | - Elliott H Sherr
- Department of Neurology, University of California, San Francisco, CA 94143, USA
| | - Stephen N Floor
- Department of Cell and Tissue Biology, University of California, San Francisco, CA 94143, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA 94143, USA.
| |
Collapse
|
194
|
Liu S, Wang C, Latham AP, Ding X, Zhang B. OpenABC enables flexible, simplified, and efficient GPU accelerated simulations of biomolecular condensates. PLoS Comput Biol 2023; 19:e1011442. [PMID: 37695778 PMCID: PMC10513381 DOI: 10.1371/journal.pcbi.1011442] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 09/21/2023] [Accepted: 08/19/2023] [Indexed: 09/13/2023] Open
Abstract
Biomolecular condensates are important structures in various cellular processes but are challenging to study using traditional experimental techniques. In silico simulations with residue-level coarse-grained models strike a balance between computational efficiency and chemical accuracy. They could offer valuable insights by connecting the emergent properties of these complex systems with molecular sequences. However, existing coarse-grained models often lack easy-to-follow tutorials and are implemented in software that is not optimal for condensate simulations. To address these issues, we introduce OpenABC, a software package that greatly simplifies the setup and execution of coarse-grained condensate simulations with multiple force fields using Python scripting. OpenABC seamlessly integrates with the OpenMM molecular dynamics engine, enabling efficient simulations with performance on a single GPU that rivals the speed achieved by hundreds of CPUs. We also provide tools that convert coarse-grained configurations to all-atom structures for atomistic simulations. We anticipate that OpenABC will significantly facilitate the adoption of in silico simulations by a broader community to investigate the structural and dynamical properties of condensates.
Collapse
Affiliation(s)
- Shuming Liu
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Cong Wang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Andrew P. Latham
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, California, United States of America
| | - Xinqiang Ding
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Bin Zhang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| |
Collapse
|
195
|
Liu D, Riggi M, Lee HO, Currie SL, Goodsell DS, Iwasa JH, Rog O. Depicting a cellular space occupied by condensates. Mol Biol Cell 2023; 34:tp2. [PMID: 37590933 PMCID: PMC10551707 DOI: 10.1091/mbc.e22-11-0519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/20/2023] [Accepted: 07/10/2023] [Indexed: 08/19/2023] Open
Abstract
Condensates have emerged as a new way to understand how cells are organized, and have been invoked to play crucial roles in essentially all cellular processes. In this view, the cell is occupied by numerous assemblies, each composed of member proteins and nucleic acids that preferentially interact with each other. However, available visual representations of condensates fail to communicate the growing body of knowledge about how condensates form and function. The resulting focus on only a subset of the potential implications of condensates can skew interpretations of results and hinder the generation of new hypotheses. Here we summarize the discussion from a workshop that brought together cell biologists, visualization and computation specialists, and other experts who specialize in thinking about space and ways to represent it. We place the recent advances in condensate research in a historical perspective that describes evolving views of the cell; highlight different attributes of condensates that are not well-served by current visual conventions; and survey potential approaches to overcome these challenges. An important theme of these discussions is that the new understanding on the roles of condensates exposes broader challenges in visual representations that apply to cell biological research more generally.
Collapse
Affiliation(s)
- Daniel Liu
- Historisches Seminar, Abt. Wissenschaftsgeschichte, Ludwig-Maximilians-Universität München, Geschwister-Scholl-Platz 1, 80539 Munich, Germany
| | | | - Hyun O. Lee
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Simon L. Currie
- Department of Biophysics, UT Southwestern Medical Center, Dallas, TX 75390
| | - David S. Goodsell
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037
- Institute for Quantitative Biomedicine and Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New Jersey, Piscataway, NJ 08854
| | | | - Ofer Rog
- School of Biological Sciences and Center for Cell and Genome Science, University of Utah, Salt Lake City, UT 84112
| |
Collapse
|
196
|
Ura T, Sakakibara N, Hirano Y, Tamada T, Takakusagi Y, Shiraki K, Mikawa T. Activation of oxidoreductases by the formation of enzyme assembly. Sci Rep 2023; 13:14381. [PMID: 37658129 PMCID: PMC10474089 DOI: 10.1038/s41598-023-41789-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/31/2023] [Indexed: 09/03/2023] Open
Abstract
Biological properties of protein molecules depend on their interaction with other molecules, and enzymes are no exception. Enzyme activities are controlled by their interaction with other molecules in living cells. Enzyme activation and their catalytic properties in the presence of different types of polymers have been studied in vitro, although these studies are restricted to only a few enzymes. In this study, we show that addition of poly-l-lysine (PLL) can increase the enzymatic activity of multiple oxidoreductases through formation of enzyme assemblies. Oxidoreductases with an overall negative charge, such as l-lactate oxidase, d-lactate dehydrogenase, pyruvate oxidase, and acetaldehyde dehydrogenase, each formed assemblies with the positively charged PLL via electrostatic interactions. The enzyme activities of these oxidoreductases in the enzyme assemblies were several-folds higher than those of the enzyme in their natural dispersed state. In the presence of PLL, the turnover number (kcat) improved for all enzymes, whereas the decrease in Michaelis constant (KM) was enzyme dependent. This type of enzyme function regulation through the formation of assemblies via simple addition of polymers has potential for diverse applications, including various industrial and research purposes.
Collapse
Affiliation(s)
- Tomoto Ura
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan
- Institute of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan
- RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Nanako Sakakibara
- Institute of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan
- RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Yu Hirano
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan
- Department of Quantum Life Science, Graduate School of Science, Chiba University, Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan
| | - Taro Tamada
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan
- Department of Quantum Life Science, Graduate School of Science, Chiba University, Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan
| | - Yoichi Takakusagi
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan
- Department of Quantum Life Science, Graduate School of Science, Chiba University, Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan
| | - Kentaro Shiraki
- Institute of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan
| | - Tsutomu Mikawa
- RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan.
| |
Collapse
|
197
|
Naskar A, Nayak A, Salaikumaran MR, Vishal SS, Gopal PP. Phase separation and pathologic transitions of RNP condensates in neurons: implications for amyotrophic lateral sclerosis, frontotemporal dementia and other neurodegenerative disorders. Front Mol Neurosci 2023; 16:1242925. [PMID: 37720552 PMCID: PMC10502346 DOI: 10.3389/fnmol.2023.1242925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/21/2023] [Indexed: 09/19/2023] Open
Abstract
Liquid-liquid phase separation results in the formation of dynamic biomolecular condensates, also known as membrane-less organelles, that allow for the assembly of functional compartments and higher order structures within cells. Multivalent, reversible interactions between RNA-binding proteins (RBPs), including FUS, TDP-43, and hnRNPA1, and/or RNA (e.g., RBP-RBP, RBP-RNA, RNA-RNA), result in the formation of ribonucleoprotein (RNP) condensates, which are critical for RNA processing, mRNA transport, stability, stress granule assembly, and translation. Stress granules, neuronal transport granules, and processing bodies are examples of cytoplasmic RNP condensates, while the nucleolus and Cajal bodies are representative nuclear RNP condensates. In neurons, RNP condensates promote long-range mRNA transport and local translation in the dendrites and axon, and are essential for spatiotemporal regulation of gene expression, axonal integrity and synaptic function. Mutations of RBPs and/or pathologic mislocalization and aggregation of RBPs are hallmarks of several neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), and Alzheimer's disease. ALS/FTD-linked mutations of RBPs alter the strength and reversibility of multivalent interactions with other RBPs and RNAs, resulting in aberrant phase transitions. These aberrant RNP condensates have detrimental functional consequences on mRNA stability, localization, and translation, and ultimately lead to compromised axonal integrity and synaptic function in disease. Pathogenic protein aggregation is dependent on various factors, and aberrant dynamically arrested RNP condensates may serve as an initial nucleation step for pathologic aggregate formation. Recent studies have focused on identifying mechanisms by which neurons resolve phase transitioned condensates to prevent the formation of pathogenic inclusions/aggregates. The present review focuses on the phase separation of neurodegenerative disease-linked RBPs, physiological functions of RNP condensates, and the pathologic role of aberrant phase transitions in neurodegenerative disease, particularly ALS/FTD. We also examine cellular mechanisms that contribute to the resolution of aberrant condensates in neurons, and potential therapeutic approaches to resolve aberrantly phase transitioned condensates at a molecular level.
Collapse
Affiliation(s)
- Aditi Naskar
- Department of Pathology, Yale School of Medicine, New Haven, CT, United States
| | - Asima Nayak
- Department of Pathology, Yale School of Medicine, New Haven, CT, United States
| | | | - Sonali S. Vishal
- Department of Pathology, Yale School of Medicine, New Haven, CT, United States
| | - Pallavi P. Gopal
- Department of Pathology, Yale School of Medicine, New Haven, CT, United States
- Program in Cellular Neuroscience, Neurodegeneration, and Repair, Yale School of Medicine, New Haven, CT, United States
| |
Collapse
|
198
|
Xu C, Kim A, Corbin JM, Wang GG. Onco-condensates: formation, multi-component organization, and biological functions. Trends Cancer 2023; 9:738-751. [PMID: 37349246 PMCID: PMC10524369 DOI: 10.1016/j.trecan.2023.05.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/16/2023] [Accepted: 05/23/2023] [Indexed: 06/24/2023]
Abstract
Numerous cellular processes occur in the context of condensates, a type of large, membrane-less biomolecular assembly generated through phase separation. These condensates function as a hub of diversified cellular events by concentrating the required components. Cancer frequently coopts biomolecular condensation mechanisms to promote survival and/or proliferation. Onco-condensates, which refer to those that have causal roles or are critically involved in tumorigenicity, operate to abnormally elevate biological output of a proliferative process, or to suppress a tumor-suppressive pathway, thereby promoting oncogenesis. Here, we summarize advances regarding how multi-component onco-condensates are established and organized to promote oncogenesis, with those related to chromatin and transcription deregulation used as showcases. A better understanding should enable development of new means of targeting onco-condensates as potential therapeutics.
Collapse
Affiliation(s)
- Chenxi Xu
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA; Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Arum Kim
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA; Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Joshua M Corbin
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA; Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Gang Greg Wang
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA; Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA; Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA.
| |
Collapse
|
199
|
Solis-Miranda J, Chodasiewicz M, Skirycz A, Fernie AR, Moschou PN, Bozhkov PV, Gutierrez-Beltran E. Stress-related biomolecular condensates in plants. THE PLANT CELL 2023; 35:3187-3204. [PMID: 37162152 PMCID: PMC10473214 DOI: 10.1093/plcell/koad127] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 04/07/2023] [Accepted: 04/27/2023] [Indexed: 05/11/2023]
Abstract
Biomolecular condensates are membraneless organelle-like structures that can concentrate molecules and often form through liquid-liquid phase separation. Biomolecular condensate assembly is tightly regulated by developmental and environmental cues. Although research on biomolecular condensates has intensified in the past 10 years, our current understanding of the molecular mechanisms and components underlying their formation remains in its infancy, especially in plants. However, recent studies have shown that the formation of biomolecular condensates may be central to plant acclimation to stress conditions. Here, we describe the mechanism, regulation, and properties of stress-related condensates in plants, focusing on stress granules and processing bodies, 2 of the most well-characterized biomolecular condensates. In this regard, we showcase the proteomes of stress granules and processing bodies in an attempt to suggest methods for elucidating the composition and function of biomolecular condensates. Finally, we discuss how biomolecular condensates modulate stress responses and how they might be used as targets for biotechnological efforts to improve stress tolerance.
Collapse
Affiliation(s)
- Jorge Solis-Miranda
- Institutode Bioquimica Vegetal y Fotosintesis, Consejo Superior de Investigaciones Cientificas (CSIC)-Universidad de Sevilla, 41092 Sevilla, Spain
| | - Monika Chodasiewicz
- Biological and Environmental Science and Engineering Division, Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | | | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Panagiotis N Moschou
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, 75007 Uppsala, Sweden
- Department of Biology, University of Crete, Heraklion 71409, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion 70013, Greece
| | - Peter V Bozhkov
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, 75007 Uppsala, Sweden
| | - Emilio Gutierrez-Beltran
- Institutode Bioquimica Vegetal y Fotosintesis, Consejo Superior de Investigaciones Cientificas (CSIC)-Universidad de Sevilla, 41092 Sevilla, Spain
- Departamento de Bioquimica Vegetal y Biologia Molecular, Facultad de Biologia, Universidad de Sevilla, 41012 Sevilla, Spain
| |
Collapse
|
200
|
Ray S, Mason TO, Boyens-Thiele L, Farzadfard A, Larsen JA, Norrild RK, Jahnke N, Buell AK. Mass photometric detection and quantification of nanoscale α-synuclein phase separation. Nat Chem 2023; 15:1306-1316. [PMID: 37337111 DOI: 10.1038/s41557-023-01244-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 05/19/2023] [Indexed: 06/21/2023]
Abstract
Protein liquid-liquid phase separation can lead to disease-related amyloid fibril formation. The mechanisms of conversion of monomeric protein into condensate droplets and of the latter into fibrils remain elusive. Here, using mass photometry, we demonstrate that the Parkinson's disease-related protein, α-synuclein, can form dynamic nanoscale clusters at physiologically relevant, sub-saturated concentrations. Nanoclusters nucleate in bulk solution and promote amyloid fibril formation of the dilute-phase monomers upon ageing. Their formation is instantaneous, even under conditions where macroscopic assemblies appear only after several days. The slow growth of the nanoclusters can be attributed to a kinetic barrier, probably due to an interfacial penalty from the charged C terminus of α-synuclein. Our findings reveal that α-synuclein phase separation occurs at much wider ranges of solution conditions than reported so far. Importantly, we establish mass photometry as a promising methodology to detect and quantify nanoscale precursors of phase separation. We also demonstrate its general applicability by probing the existence of nanoclusters of a non-amyloidogenic protein, Ddx4n1.
Collapse
Affiliation(s)
- Soumik Ray
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Thomas O Mason
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Lars Boyens-Thiele
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Azad Farzadfard
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Jacob Aunstrup Larsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Rasmus K Norrild
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Nadin Jahnke
- Novo Nordisk A/S, Novo Nordisk Park, Måløv, Denmark
| | - Alexander K Buell
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark.
| |
Collapse
|