151
|
Hersey M, Tanda G. Modafinil, an atypical CNS stimulant? ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2023; 99:287-326. [PMID: 38467484 DOI: 10.1016/bs.apha.2023.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Modafinil is a central nervous system stimulant approved for the treatment of narcolepsy and sleep disorders. Due to its wide range of biochemical actions, modafinil has been explored for other potential therapeutic uses. Indeed, it has shown promise as a therapy for cognitive disfunction resulting from neurologic disorders like ADHD, and as a smart drug in non-medical settings. The mechanism(s) of actions underlying the therapeutic efficacy of this agent remains largely elusive. Modafinil is known to inhibit the dopamine transporter, thus decreasing dopamine reuptake following neuronal release, an effect shared by addictive psychostimulants. However, modafinil is unique in that only a few cases of dependence on this drug have been reported, as compared to other psychostimulants. Moreover, modafinil has been tested, with some success, as a potential therapeutic agent to combat psychostimulant and other substance use disorders. Modafinil has additional, but less understood, actions on other neurotransmitter systems (GABA, glutamate, serotonin, norepinephrine, etc.). These interactions, together with its ability to activate selected brain regions, are likely one of the keys to understand its unique pharmacology and therapeutic activity as a CNS stimulant. In this chapter, we outline the pharmacokinetics and pharmacodynamics of modafinil that suggest it has an "atypical" CNS stimulant profile. We also highlight the current approved and off label uses of modafinil, including its beneficial effects as a treatment for sleep disorders, cognitive functions, and substance use disorders.
Collapse
Affiliation(s)
- Melinda Hersey
- Medication Development Program, NIDA-IRP, NIH, Baltimore, MD, United States
| | - Gianluigi Tanda
- Medication Development Program, NIDA-IRP, NIH, Baltimore, MD, United States.
| |
Collapse
|
152
|
Lu Y, Chen K, Zhao W, Hua Y, Bao S, Zhang J, Wu T, Ge G, Yu Y, Sun J, Zhang F. Magnetic vagus nerve stimulation alleviates myocardial ischemia-reperfusion injury by the inhibition of pyroptosis through the M 2AChR/OGDHL/ROS axis in rats. J Nanobiotechnology 2023; 21:421. [PMID: 37957640 PMCID: PMC10644528 DOI: 10.1186/s12951-023-02189-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/03/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND Myocardial ischemia-reperfusion (I/R) injury is accompanied by an imbalance in the cardiac autonomic nervous system, characterized by over-activated sympathetic tone and reduced vagal nerve activity. In our preceding study, we pioneered the development of the magnetic vagus nerve stimulation (mVNS) system. This system showcased precise vagus nerve stimulation, demonstrating remarkable effectiveness and safety in treating myocardial infarction. However, it remains uncertain whether mVNS can mitigate myocardial I/R injury and its specific underlying mechanisms. In this study, we utilized a rat model of myocardial I/R injury to delve into the therapeutic potential of mVNS against this type of injury. RESULTS Our findings revealed that mVNS treatment led to a reduction in myocardial infarct size, a decrease in ventricular fibrillation (VF) incidence and a curbing of inflammatory cytokine release. Mechanistically, mVNS demonstrated beneficial effects on myocardial I/R injury by inhibiting NLRP3-mediated pyroptosis through the M2AChR/OGDHL/ROS axis. CONCLUSIONS Collectively, these outcomes highlight the promising potential of mVNS as a treatment strategy for myocardial I/R injury.
Collapse
Affiliation(s)
- Yao Lu
- Section of Pacing and Electrophysiology, Division of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, 210029, PR China
- Department of Cardiology, Xuzhou Central Hospital, Xuzhou Clinical School of Nanjing Medical University, No.199 Jiefang South Road, Xuzhou, 221009, PR China
| | - Kaiyan Chen
- Section of Pacing and Electrophysiology, Division of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, 210029, PR China
| | - Wei Zhao
- Section of Pacing and Electrophysiology, Division of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, 210029, PR China
| | - Yan Hua
- Section of Pacing and Electrophysiology, Division of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, 210029, PR China
| | - Siyuan Bao
- The State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory of Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210009, P. R. China
| | - Jian Zhang
- Department of Echocardiography, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases, Shanghai Institute of Medical Imaging, Fudan University, 180 Fenglin Road, Shanghai, China
| | - Tianyu Wu
- Section of Pacing and Electrophysiology, Division of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, 210029, PR China
| | - Gaoyuan Ge
- Section of Pacing and Electrophysiology, Division of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, 210029, PR China
| | - Yue Yu
- Section of Pacing and Electrophysiology, Division of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, 210029, PR China
| | - Jianfei Sun
- The State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory of Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210009, P. R. China.
| | - Fengxiang Zhang
- Section of Pacing and Electrophysiology, Division of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, 210029, PR China.
| |
Collapse
|
153
|
Yang Y, Booth V, Zochowski M. Acetylcholine facilitates localized synaptic potentiation and location specific feature binding. Front Neural Circuits 2023; 17:1239096. [PMID: 38033788 PMCID: PMC10684311 DOI: 10.3389/fncir.2023.1239096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 10/11/2023] [Indexed: 12/02/2023] Open
Abstract
Forebrain acetylcholine (ACh) signaling has been shown to drive attention and learning. Recent experimental evidence of spatially and temporally constrained cholinergic signaling has sparked interest to investigate how it facilitates stimulus-induced learning. We use biophysical excitatory-inhibitory (E-I) multi-module neural network models to show that external stimuli and ACh signaling can mediate spatially constrained synaptic potentiation patterns. The effects of ACh on neural excitability are simulated by varying the conductance of a muscarinic receptor-regulated hyperpolarizing slow K+ current (m-current). Each network module consists of an E-I network with local excitatory connectivity and global inhibitory connectivity. The modules are interconnected with plastic excitatory synaptic connections, that change via a spike-timing-dependent plasticity (STDP) rule. Our results indicate that spatially constrained ACh release influences the information flow represented by network dynamics resulting in selective reorganization of inter-module interactions. Moreover the information flow depends on the level of synchrony in the network. For highly synchronous networks, the more excitable module leads firing in the less excitable one resulting in strengthening of the outgoing connections from the former and weakening of its incoming synapses. For networks with more noisy firing patterns, activity in high ACh regions is prone to induce feedback firing of synchronous volleys and thus strengthening of the incoming synapses to the more excitable region and weakening of outgoing synapses. Overall, these results suggest that spatially and directionally specific plasticity patterns, as are presumed necessary for feature binding, can be mediated by spatially constrained ACh release.
Collapse
Affiliation(s)
- Yihao Yang
- Department of Physics, University of Michigan, Ann Arbor, MI, United States
| | - Victoria Booth
- Departments of Mathematics and Anesthesiology, University of Michigan, Ann Arbor, MI, United States
| | - Michal Zochowski
- Department of Physics and Biophysics Program, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
154
|
Suthar JK, Rakesh B, Vaidya A, Ravindran S. Comprehensive Analysis of Titanium Oxide Nanoparticle Size and Surface Properties on Neuronal PC-12 Cells: Unraveling Cytotoxicity, Dopaminergic Gene Expression, and Acetylcholinesterase Inhibition. J Xenobiot 2023; 13:662-684. [PMID: 37987444 PMCID: PMC10660528 DOI: 10.3390/jox13040043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 09/30/2023] [Accepted: 10/05/2023] [Indexed: 11/22/2023] Open
Abstract
Titanium oxide nanoparticles can penetrate the blood-brain barrier, infiltrate the central nervous system, and induce neurotoxicity. One of the most often utilized nanoparticles has been investigated for their neurotoxicity in many studies. Nonetheless, there remains an unexplored aspect regarding the comparative analysis of particles varying in size and nanoparticles of identical dimensions, both with and devoid of surface coating. In the current study, we synthesized two differently sized nanoparticles, TiO2-10 (10 nm) and TiO2-22 (22 nm), and nanoparticles of the same size but with a polyvinylpyrrolidone surface coating (TiO2-PVP, 22 nm) and studied their toxic effects on neural PC-12 cells. The results highlighted significant dose- and time-dependent cytotoxicity at concentrations ≥10 μg/mL. The exposure of TiO2 nanoparticles significantly elevated reactive oxygen and nitrogen species levels, IL-6 and TNF-α levels, altered the mitochondrial membrane potential, and enhanced apoptosis-related caspase-3 activity, irrespective of size and surface coating. The interaction of the nanoparticles with acetylcholinesterase enzyme activity was also investigated, and the results revealed a dose-dependent suppression of enzymatic activity. However, the gene expression studies indicated no effect on the expression of all six genes associated with the dopaminergic system upon exposure to 10 μg/mL for any nanoparticle. The results demonstrated no significant difference between the outcomes of TiO2-10 and TiO2-22 NPs. However, the polyvinylpyrrolidone surface coating was able to attenuate the neurotoxic effects. These findings suggest that as the TiO2 nanoparticles get smaller (towards 0 nm), they might promote apoptosis and inflammatory reactions in neural cells via oxidative stress, irrespective of their size.
Collapse
Affiliation(s)
- Jitendra Kumar Suthar
- Symbiosis School of Biological Sciences, Faculty of Medical and Health Sciences, Symbiosis International (Deemed) University, Pune 412115, India;
| | - Balaji Rakesh
- Symbiosis Institute of Technology, Symbiosis International (Deemed) University, Pune 412115, India;
| | - Anuradha Vaidya
- Symbiosis Centre for Stem Cell Research, Symbiosis School of Biological Sciences, Symbiosis International (Deemed) University, Pune 412115, India;
| | - Selvan Ravindran
- Symbiosis School of Biological Sciences, Faculty of Medical and Health Sciences, Symbiosis International (Deemed) University, Pune 412115, India;
| |
Collapse
|
155
|
Thakkar A, Vora A, Kaur G, Akhtar J. Dysbiosis and Alzheimer's disease: role of probiotics, prebiotics and synbiotics. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:2911-2923. [PMID: 37284896 DOI: 10.1007/s00210-023-02554-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 05/26/2023] [Indexed: 06/08/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease characterized by dementia and the accumulation of amyloid beta in the brain. Recently, microbial dysbiosis has been identified as one of the major factors involved in the onset and progression of AD. Imbalance in gut microbiota is known to affect central nervous system (CNS) functions through the gut-brain axis and involves inflammatory, immune, neuroendocrine and metabolic pathways. An altered gut microbiome is known to affect the gut and BBB permeability, resulting in imbalance in levels of neurotransmitters and neuroactive peptides/factors. Restoration of levels of beneficial microorganisms in the gut has demonstrated promising effects in AD in pre-clinical and clinical studies. The current review enlists the important beneficial microbial species present in the gut, the effect of their metabolites on CNS, mechanisms involved in dysbiosis related to AD and the beneficial effects of probiotics on AD. It also highlights challenges involved in large-scale manufacturing and quality control of probiotic formulations.
Collapse
Affiliation(s)
- Ami Thakkar
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, Shri Vile Parle Kelavani Mandal's Narsee Monjee Institute of Management Studies, Mumbai, India
| | - Amisha Vora
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, Shri Vile Parle Kelavani Mandal's Narsee Monjee Institute of Management Studies, Mumbai, India.
| | - Ginpreet Kaur
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, Shri Vile Parle Kelavani Mandal's Narsee Monjee Institute of Management Studies, Mumbai, India
| | - Jamal Akhtar
- Central Council for Research in Unani Medicine, Ministry of AYUSH, New Delhi, India
| |
Collapse
|
156
|
Joda M, Waters KA, Machaalani R. Choline-acetyltransferase (ChAT) and acetylcholinesterase (AChE) in the human infant dorsal motor nucleus of the Vagus (DMNV), and alterations according to sudden infant death syndrome (SIDS) category. Neurobiol Dis 2023; 188:106319. [PMID: 37813167 DOI: 10.1016/j.nbd.2023.106319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/18/2023] [Accepted: 10/06/2023] [Indexed: 10/11/2023] Open
Abstract
Amongst other molecules, the cholinergic system consists of choline-acetyltransferase (ChAT, - synthesis enzyme), acetylcholinesterase (AChE - primary hydrolysis enzyme), and butyrylcholinesterase (BuChE - secondary hydrolysis enzyme). In the brainstem, the Dorsal Motor Nucleus of The Vagus (DMNV) has high cholinergic expression and is a region of interest in the neuropathology of sudden infant death syndrome (SIDS). SIDS is the unexpected death of a seemingly healthy infant, but postmortem brainstem abnormalities suggesting altered cholinergic regulation have been found. This study aimed to determine the percentage of positive ChAT and AChE neurons within the infant DMNV through immunohistochemistry at the three levels of the brainstem medulla (caudal, intermediate, and rostral), to investigate whether the proportion of neurons positive for these enzymes differs amongst the diagnostic subgroups of SIDS compared to those with an explained cause of Sudden unexpected death in infancy (eSUDI), and whether there were any associations with SIDS risk factors (male gender, cigarette smoke exposure, co-sleeping/bed sharing, and prone sleeping). Results showed that ChAT-positive neurons were lower in the rostral DMNV in the SIDS II cohort, and within the caudal and intermediate DMNV of infants who were exposed to cigarette smoke. These findings suggest altered cholinergic regulation in the brainstem of SIDS infants, with potential contribution of cigarette smoke exposure, presumably via the nicotinic acetylcholinergic receptor system.
Collapse
Affiliation(s)
- Masarra Joda
- Discipline of Medicine, Faculty of Medicine and Health, The University of Sydney, NSW 2006, Australia
| | - Karen A Waters
- Discipline of Medicine, Faculty of Medicine and Health, The University of Sydney, NSW 2006, Australia; Discipline of Child and Adolescent Health, Children's Hospital at Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, NSW 2006, Australia
| | - Rita Machaalani
- Discipline of Medicine, Faculty of Medicine and Health, The University of Sydney, NSW 2006, Australia; Discipline of Child and Adolescent Health, Children's Hospital at Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, NSW 2006, Australia.
| |
Collapse
|
157
|
Ding K, Xu Q, Zhang X, Liu S. Metabolomic insights into neurological effects of BDE-47 exposure in the sea cucumber Apostichopus japonicus. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 266:115558. [PMID: 37820477 DOI: 10.1016/j.ecoenv.2023.115558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/21/2023] [Accepted: 10/06/2023] [Indexed: 10/13/2023]
Abstract
The persistent organic pollutant 2,2',4,4'-Tetrabromodiphenyl ether (BDE-47), a prevalent congener among polybrominated diphenyl ethers (PBDEs), exhibits potent bioaccumulation and toxicity. Despite extensive research into the adverse effects of BDE-47, its neurotoxicity in sea cucumbers remains unexplored. Given the crucial role of the sea cucumber's nervous system in survival and adaptation, evaluating the impacts of BDE-47 is vital for sustainable aquaculture and consumption. In this study, we employed ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Triple-TOF-MS) to analyze metabolomic changes in neuro-related tissues of Apostichopus japonicus exposed to low (0.1 µg/L), medium (1.0 µg/L), and high (10.0 µg/L) BDE-47 concentrations. We identified significantly changed metabolites in each exposure group (87 in low, 79 in medium, and 102 in high), affecting a variety of physiological processes such as steroid hormone balance, nucleotide metabolism, energy metabolism, neurotransmitter levels, and neuroprotection. In addition, we identified concentration-dependent, common, and some other metabolic responses in the neuro-related tissues. Our findings reveal critical insights into the neurotoxic effects of BDE-47 in sea cucumbers and contribute to risk assessment related to BDE-47 exposure in the sea cucumber industry, paving the way for future neurotoxicological research in invertebrates.
Collapse
Affiliation(s)
- Kui Ding
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; Laboratory of Marine Ecology and Environmental Science, National Laboratory for Marine Science and Technology, Qingdao 266061, China; CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
| | - Qinzeng Xu
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; Laboratory of Marine Ecology and Environmental Science, National Laboratory for Marine Science and Technology, Qingdao 266061, China
| | - Xuelei Zhang
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; Laboratory of Marine Ecology and Environmental Science, National Laboratory for Marine Science and Technology, Qingdao 266061, China
| | - Shilin Liu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| |
Collapse
|
158
|
Sullere S, Kunczt A, McGehee DS. A cholinergic circuit that relieves pain despite opioid tolerance. Neuron 2023; 111:3414-3434.e15. [PMID: 37734381 PMCID: PMC10843525 DOI: 10.1016/j.neuron.2023.08.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/19/2023] [Accepted: 08/16/2023] [Indexed: 09/23/2023]
Abstract
Chronic pain is a tremendous burden for afflicted individuals and society. Although opioids effectively relieve pain, significant adverse outcomes limit their utility and efficacy. To investigate alternate pain control mechanisms, we explored cholinergic signaling in the ventrolateral periaqueductal gray (vlPAG), a critical nexus for descending pain modulation. Biosensor assays revealed that pain states decreased acetylcholine release in vlPAG. Activation of cholinergic projections from the pedunculopontine tegmentum to vlPAG relieved pain, even in opioid-tolerant conditions, through ⍺7 nicotinic acetylcholine receptors (nAChRs). Activating ⍺7 nAChRs with agonists or stimulating endogenous acetylcholine inhibited vlPAG neuronal activity through Ca2+ and peroxisome proliferator-activated receptor α (PPAR⍺)-dependent signaling. In vivo 2-photon imaging revealed that chronic pain induces aberrant excitability of vlPAG neuronal ensembles and that ⍺7 nAChR-mediated inhibition of these cells relieves pain, even after opioid tolerance. Finally, pain relief through these cholinergic mechanisms was not associated with tolerance, reward, or withdrawal symptoms, highlighting its potential clinical relevance.
Collapse
Affiliation(s)
- Shivang Sullere
- Committee on Neurobiology, University of Chicago, Chicago, IL 60637, USA
| | - Alissa Kunczt
- Department of Anesthesia and Critical Care, University of Chicago, Chicago, IL 60637, USA
| | - Daniel S McGehee
- Committee on Neurobiology, University of Chicago, Chicago, IL 60637, USA; Department of Anesthesia and Critical Care, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
159
|
Guo R, Zhang S, Yu S, Li X, Liu X, Shen Y, Wei J, Wu Y. Inclusion of frailty improved performance of delirium prediction for elderly patients in the cardiac intensive care unit (D-FRAIL): A prospective derivation and external validation study. Int J Nurs Stud 2023; 147:104582. [PMID: 37672971 DOI: 10.1016/j.ijnurstu.2023.104582] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 07/29/2023] [Accepted: 07/30/2023] [Indexed: 09/08/2023]
Abstract
BACKGROUND The elderly patients admitted to cardiac intensive care unit (CICU) are at relatively high risk for developing delirium. A simple and reliable predictive model can benefit them from early recognition of delirium followed by timely and appropriate preventive strategies. OBJECTIVE To explore the role of frailty in delirium prediction and develop and validate a delirium predictive model including frailty for elderly patients in CICU. DESIGN A prospective, observational cohort study. SETTINGS CICU at China-Japan Friendship Hospital from March 1, 2022 to August 25, 2022 (derivation cohort); CICU at Beijing Anzhen Hospital affiliated to Capital Medical University from March 14, 2023 to May 8, 2023 (external validation cohort). PARTICIPANTS A total of 236 and 90 participants were enrolled in the derivation and external validation cohorts, respectively. Participants in the derivation cohort were assigned into either the delirium (n = 70) or non-delirium group (n = 166) based on the occurrence of delirium. METHODS The simplified Chinese version of the Confusion Assessment Method for the Diagnosis of Delirium in the Intensive Care Unit was used to assess delirium twice a day at 8:00-10:00 and 18:00-20:00 until the onset of delirium or discharge from the CICU. Frailty was assessed using the FRAIL scale during the first 24 h in the CICU. Other possible risk factors were collected prospectively through patient interviews and medical records review. After processing missing data via multiple imputations, univariate analysis and bootstrapped forward stepwise logistic regression were performed to select optimal predictors and develop the models. The models were internally validated using bootstrapping and evaluated comprehensively via discrimination, calibration, and clinical utility in both the derivation and external validation cohorts. RESULTS The study developed D-FRAIL predictive model using FRAIL score, hearing impairment, Acute Physiology and Chronic Health Evaluation-II score, and fibrinogen. The area under the receiver operating characteristic curve (AUC) was 0.937 (95% confidence interval [CI]: 0.907-0.967) and 0.889 (95%CI: 0.840-0.938) even after bootstrapping in the derivation cohort. Inclusion of frailty was demonstrated to improve the model performance greatly with the AUC increased from 0.851 to 0.937 (p < 0.001). In the external validation cohort, the AUC of D-FRAIL model was 0.866 (95%CI: 0.782-0.907). Calibration plots and decision curve analysis suggested good calibration and clinical utility of the D-FRAIL model in both the derivation and external validation cohorts. CONCLUSIONS For elderly patients in the CICU, FRAIL score is an independent delirium predictor and the D-FRAIL model demonstrates superior performance in predicting delirium.
Collapse
Affiliation(s)
- Rongrong Guo
- School of Nursing, Capital Medical University, Beijing 100069, China
| | - Shan Zhang
- School of Nursing, Capital Medical University, Beijing 100069, China
| | - Saiying Yu
- School of Nursing, Capital Medical University, Beijing 100069, China
| | - Xiangyu Li
- School of Nursing, Capital Medical University, Beijing 100069, China
| | - Xinju Liu
- Cardiac Intensive Care Unit, China-Japan Friendship Hospital, Beijing 100029, China
| | - Yanling Shen
- Surgical Intensive Care Unit, China-Japan Friendship Hospital, Beijing 100029, China
| | - Jinling Wei
- Cardiac Intensive Care Unit, Beijing Anzhen Hospital Affiliated to Capital Medical University, Beijing 100029, China
| | - Ying Wu
- School of Nursing, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
160
|
Mieling M, Meier H, Bunzeck N. Structural degeneration of the nucleus basalis of Meynert in mild cognitive impairment and Alzheimer's disease - Evidence from an MRI-based meta-analysis. Neurosci Biobehav Rev 2023; 154:105393. [PMID: 37717861 DOI: 10.1016/j.neubiorev.2023.105393] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 07/17/2023] [Accepted: 09/14/2023] [Indexed: 09/19/2023]
Abstract
Recent models of Alzheimer's disease (AD) suggest that neuropathological changes of the medial temporal lobe, especially entorhinal cortex, are preceded by degenerations of the cholinergic Nucleus basalis of Meynert (NbM). Evidence from imaging studies in humans, however, is limited. Therefore, we performed an activation-likelihood estimation meta-analysis on whole brain voxel-based morphometry (VBM) MRI data from 54 experiments and 2581 subjects in total. It revealed, compared to healthy older controls, reduced gray matter in the bilateral NbM in AD, but only limited evidence for such an effect in patients with mild cognitive impairment (MCI), which typically precedes AD. Both patient groups showed less gray matter in the amygdala and hippocampus, with hints towards more pronounced amygdala effects in AD. We discuss our findings in the context of studies that highlight the importance of the cholinergic basal forebrain in learning and memory throughout the lifespan, and conclude that they are partly compatible with pathological staging models suggesting initial and pronounced structural degenerations within the NbM in the progression of AD.
Collapse
Affiliation(s)
- Marthe Mieling
- Department of Psychology, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Hannah Meier
- Department of Psychology, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Nico Bunzeck
- Department of Psychology, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany; Center of Brain, Behavior and Metabolism, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany.
| |
Collapse
|
161
|
Zheng Y, Bonfili L, Wei T, Eleuteri AM. Understanding the Gut-Brain Axis and Its Therapeutic Implications for Neurodegenerative Disorders. Nutrients 2023; 15:4631. [PMID: 37960284 PMCID: PMC10648099 DOI: 10.3390/nu15214631] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/25/2023] [Accepted: 10/28/2023] [Indexed: 11/15/2023] Open
Abstract
The gut-brain axis (GBA) is a complex bidirectional communication network connecting the gut and brain. It involves neural, immune, and endocrine communication pathways between the gastrointestinal (GI) tract and the central nervous system (CNS). Perturbations of the GBA have been reported in many neurodegenerative disorders (NDDs), such as Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS), among others, suggesting a possible role in disease pathogenesis. The gut microbiota is a pivotal component of the GBA, and alterations in its composition, known as gut dysbiosis, have been associated with GBA dysfunction and neurodegeneration. The gut microbiota might influence the homeostasis of the CNS by modulating the immune system and, more directly, regulating the production of molecules and metabolites that influence the nervous and endocrine systems, making it a potential therapeutic target. Preclinical trials manipulating microbial composition through dietary intervention, probiotic and prebiotic supplementation, and fecal microbial transplantation (FMT) have provided promising outcomes. However, its clear mechanism is not well understood, and the results are not always consistent. Here, we provide an overview of the major components and communication pathways of the GBA, as well as therapeutic approaches targeting the GBA to ameliorate NDDs.
Collapse
Affiliation(s)
- Yadong Zheng
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, MC, Italy; (Y.Z.); (L.B.)
- School of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Laura Bonfili
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, MC, Italy; (Y.Z.); (L.B.)
| | - Tao Wei
- School of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Anna Maria Eleuteri
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, MC, Italy; (Y.Z.); (L.B.)
| |
Collapse
|
162
|
Trofimova I. Anticipatory attractors, functional neurochemistry and "Throw & Catch" mechanisms as illustrations of constructivism. Rev Neurosci 2023; 34:737-762. [PMID: 36584323 DOI: 10.1515/revneuro-2022-0120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 12/07/2022] [Indexed: 12/31/2022]
Abstract
This review explores several rarely discussed examples illustrating constructivism principles, generative and selective features of neuronal regulation of behaviour. First, the review highlights Walter Freeman's experiments and mathematical analysis that uncovered the existence of anticipatory attractors, i.e. non-random dynamical patterns in neurodynamics. Since Freeman's work did not extend to neurochemistry, this paper then points to the proposed earlier neurochemical framework summarizing the managerial roles of monoaminergic, cholinergic and opioid receptor systems likely contributing to anticipatory attractors in line with functional constructivism. As a third example, neurochemistry's evidence points to the "Throw & Catch" (T&C) principle in neurodynamics. This principle refers to the pro-active, neurochemically expensive, massive but topical increase of potentials ("Throw") within electrodynamics and neurotransmission in the brain whenever there is an uncertainty in selection of degrees of freedom (DFs). The T&C also underlines the relay-like processes during the selection of DFs. The "Throw" works as an internally generated "flashlight" that, contrarily to the expectations of entropy reduction, increases entropy and variance observed in processes related to orientation and action-formation. The discussed examples highlight the deficiency of structures-oriented projects and excitation-inhibition concepts in neuroscience. The neural regulation of behaviour appears to be a fluid, constructive process, constantly upgrading the choice of behavioural DFs, to ensure the compatibility between the environmental and individual's individuals' needs and capacities.
Collapse
Affiliation(s)
- Irina Trofimova
- Laboratory of Collective Intelligence, Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton L8S 2T6, ON, Canada
| |
Collapse
|
163
|
Chen MH, Lin HC, Chao T, Lee VSY, Hou CL, Wang TJ, Chen JR. Hyaluronic Acid Conjugated with 17β-Estradiol Effectively Alleviates Estropause-Induced Cognitive Deficits in Rats. Int J Mol Sci 2023; 24:15569. [PMID: 37958552 PMCID: PMC10649161 DOI: 10.3390/ijms242115569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/18/2023] [Accepted: 10/18/2023] [Indexed: 11/15/2023] Open
Abstract
Women are at a higher risk of cognitive impairments and Alzheimer's disease (AD), particularly after the menopause, when the estrous cycle becomes irregular and diminishes. Numerous studies have shown that estrogen deficiency, especially estradiol (E2) deficiency, plays a key role in this phenomenon. Recently, a novel polymeric drug, hyaluronic acid-17β-estradiol conjugate (HA-E2), has been introduced for the delivery of E2 to brain tissues. Studies have indicated that HA-E2 crosses the blood-brain barrier (BBB) and facilitates a prolonged E2 release profile while lowering the risk of estrogen-supplement-related side effects. In this study, we used ovariohysterectomy (OHE) rats, a postmenopausal cognitive deficit model, to explore the effect of a 2-week HA-E2 treatment (210 ng/kg body weight, twice a week) on the cholinergic septo-hippocampal innervation system, synaptic transmission in hippocampal pyramidal neurons and cognitive improvements. Our study revealed an 11% rise in choline acetyltransferase (ChAT) expression in both the medial septal nucleus (MS nucleus) and the hippocampus, along with a 14-18% increase in dendritic spine density in hippocampal pyramidal neurons, following HA-E2 treatment in OHE rats. These enhancements prompted the recovery of cognitive functions such as spatial learning and memory. These findings suggest that HA-E2 may prevent and improve estrogen-deficiency-induced cognitive impairment and AD.
Collapse
Affiliation(s)
- Mu-Hsuan Chen
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung-Hsing University, No. 145, Xingda Rd., Taichung 402202, Taiwan; (M.-H.C.); (H.-C.L.); (T.C.)
| | - Hsiao-Chun Lin
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung-Hsing University, No. 145, Xingda Rd., Taichung 402202, Taiwan; (M.-H.C.); (H.-C.L.); (T.C.)
| | - Tzu Chao
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung-Hsing University, No. 145, Xingda Rd., Taichung 402202, Taiwan; (M.-H.C.); (H.-C.L.); (T.C.)
| | - Viola Szu-Yuan Lee
- Basic Research Division, Holy Stone Healthcare Co., Ltd., Taipei 11493, Taiwan; (V.S.-Y.L.); (C.-L.H.)
| | - Chia-Lung Hou
- Basic Research Division, Holy Stone Healthcare Co., Ltd., Taipei 11493, Taiwan; (V.S.-Y.L.); (C.-L.H.)
| | - Tsyr-Jiuan Wang
- Department of Nursing, National Taichung University of Science and Technology, No. 193, Section 1, Sanmin Rd., Taichung 403027, Taiwan
| | - Jeng-Rung Chen
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung-Hsing University, No. 145, Xingda Rd., Taichung 402202, Taiwan; (M.-H.C.); (H.-C.L.); (T.C.)
| |
Collapse
|
164
|
Maldonado PE, Concha-Miranda M, Schwalm M. Autogenous cerebral processes: an invitation to look at the brain from inside out. Front Neural Circuits 2023; 17:1253609. [PMID: 37941893 PMCID: PMC10629273 DOI: 10.3389/fncir.2023.1253609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/26/2023] [Indexed: 11/10/2023] Open
Abstract
While external stimulation can reliably trigger neuronal activity, cerebral processes can operate independently from the environment. In this study, we conceptualize autogenous cerebral processes (ACPs) as intrinsic operations of the brain that exist on multiple scales and can influence or shape stimulus responses, behavior, homeostasis, and the physiological state of an organism. We further propose that the field should consider exploring to what extent perception, arousal, behavior, or movement, as well as other cognitive functions previously investigated mainly regarding their stimulus-response dynamics, are ACP-driven.
Collapse
Affiliation(s)
- Pedro E. Maldonado
- Departamento de Neurociencia, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, University of Chile, Santiago, Chile
- National Center for Artificial Intelligence (CENIA), Santiago, Chile
| | - Miguel Concha-Miranda
- Bernstein Center for Computational Neuroscience Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Miriam Schwalm
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| |
Collapse
|
165
|
Aroniadou-Anderjaska V, Figueiredo TH, de Araujo Furtado M, Pidoplichko VI, Braga MFM. Mechanisms of Organophosphate Toxicity and the Role of Acetylcholinesterase Inhibition. TOXICS 2023; 11:866. [PMID: 37888716 PMCID: PMC10611379 DOI: 10.3390/toxics11100866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/11/2023] [Accepted: 10/17/2023] [Indexed: 10/28/2023]
Abstract
Organophosphorus compounds (OPs) have applications in agriculture (e.g., pesticides), industry (e.g., flame retardants), and chemical warfare (nerve agents). In high doses or chronic exposure, they can be toxic or lethal. The primary mechanism, common among all OPs, that initiates their toxic effects is the inhibition of acetylcholinesterase. In acute OP exposure, the subsequent surge of acetylcholine in cholinergic synapses causes a peripheral cholinergic crisis and status epilepticus (SE), either of which can lead to death. If death is averted without effective seizure control, long-term brain damage ensues. This review describes the mechanisms by which elevated acetylcholine can cause respiratory failure and trigger SE; the role of the amygdala in seizure initiation; the role of M1 muscarinic receptors in the early stages of SE; the neurotoxic pathways activated by SE (excitotoxicity/Ca++ overload/oxidative stress, neuroinflammation); and neurotoxic mechanisms linked to low-dose, chronic exposure (Ca++ dyshomeostasis/oxidative stress, inflammation), which do not depend on SE and do not necessarily involve acetylcholinesterase inhibition. The evidence so far indicates that brain damage from acute OP exposure is a direct result of SE, while the neurotoxic mechanisms activated by low-dose chronic exposure are independent of SE and may not be associated with acetylcholinesterase inhibition.
Collapse
Affiliation(s)
- Vassiliki Aroniadou-Anderjaska
- Department of Anatomy, Physiology, and Genetics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; (V.A.-A.); (V.I.P.)
- Department of Psychiatry, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Taiza H. Figueiredo
- Department of Anatomy, Physiology, and Genetics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; (V.A.-A.); (V.I.P.)
| | - Marcio de Araujo Furtado
- Department of Anatomy, Physiology, and Genetics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; (V.A.-A.); (V.I.P.)
| | - Volodymyr I. Pidoplichko
- Department of Anatomy, Physiology, and Genetics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; (V.A.-A.); (V.I.P.)
| | - Maria F. M. Braga
- Department of Anatomy, Physiology, and Genetics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; (V.A.-A.); (V.I.P.)
- Department of Psychiatry, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| |
Collapse
|
166
|
Cerna-Vargas JP, Gumerov VM, Krell T, Zhulin IB. Amine-recognizing domain in diverse receptors from bacteria and archaea evolved from the universal amino acid sensor. Proc Natl Acad Sci U S A 2023; 120:e2305837120. [PMID: 37819981 PMCID: PMC10589655 DOI: 10.1073/pnas.2305837120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 09/09/2023] [Indexed: 10/13/2023] Open
Abstract
Bacteria possess various receptors that sense different signals and transmit information to enable an optimal adaptation to the environment. A major limitation in microbiology is the lack of information on the signal molecules that activate receptors. Signals recognized by sensor domains are poorly reflected in overall sequence identity, and therefore, the identification of signals from the amino acid sequence of the sensor alone presents a challenge. Biogenic amines are of great physiological importance for microorganisms and humans. They serve as substrates for aerobic and anaerobic growth and play a role of neurotransmitters and osmoprotectants. Here, we report the identification of a sequence motif that is specific for amine-sensing sensor domains that belong to the Cache superfamily of the most abundant extracellular sensors in prokaryotes. We identified approximately 13,000 sensor histidine kinases, chemoreceptors, receptors involved in second messenger homeostasis and Ser/Thr phosphatases from 8,000 bacterial and archaeal species that contain the amine-recognizing motif. The screening of compound libraries and microcalorimetric titrations of selected sensor domains confirmed their ability to specifically bind biogenic amines. Mutants in the amine-binding motif or domains that contain a single mismatch in the binding motif had either no or a largely reduced affinity for amines. We demonstrate that the amine-recognizing domain originated from the universal amino acid-sensing Cache domain, thus providing insight into receptor evolution. Our approach enables precise "wet"-lab experiments to define the function of regulatory systems and therefore holds a strong promise to enable the identification of signals stimulating numerous receptors.
Collapse
Affiliation(s)
- Jean Paul Cerna-Vargas
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada18008, Spain
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria/Consejo Superior de Investigaciones Científicas, Parque Científico y Tecnológico de la Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid28223, Spain
| | - Vadim M. Gumerov
- Department of Microbiology and Translational Data Analytics Institute, The Ohio State University, Columbus, OH43210
| | - Tino Krell
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada18008, Spain
| | - Igor B. Zhulin
- Department of Microbiology and Translational Data Analytics Institute, The Ohio State University, Columbus, OH43210
| |
Collapse
|
167
|
Yang L, Ma X, Guo Y, He Y, Yang Y, Wang W, Xu Z, Zuo Z, Xue Y, Yang R, Han B, Sun J. Acetylcholine (ACh) enhances Cd tolerance through transporting ACh in vesicles and modifying Cd absorption in duckweed (Lemna turionifera 5511). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 335:122305. [PMID: 37580008 DOI: 10.1016/j.envpol.2023.122305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 05/20/2023] [Accepted: 08/02/2023] [Indexed: 08/16/2023]
Abstract
Acetylcholine (ACh), an important neurotransmitter, plays a role in resistance to abiotic stress. However, the role of ACh during cadmium (Cd) resistance in duckweed (Lemna turionifera 5511) remains uncharacterized. In this study, the changes of endogenous ACh in duckweed under Cd stress has been investigated. Also, how exogenous ACh affects duckweed's ability to withstand Cd stress was studied. The ACh sensor transgenic duckweed (ACh 3.0) showed the ACh signal response under Cd stress. And ACh was wrapped and released in vesicles. Cd stress promoted ACh content in duckweed. The gene expression analysis showed an improved fatty acid metabolism and choline transport. Moreover, exogenous ACh addition enhanced Cd tolerance and decreased Cd accumulation in duckweed. ACh supplement reduced the root abscission rate, alleviated leaf etiolation, and improved chlorophyll fluorescence parameters under Cd stress. A modified calcium (Ca2+) flux and improved Cd2+ absorption were present in conjunction with it. Thus, we speculate that ACh could improve Cd resistance by promoting the uptake and accumulation of Cd, as well as the response of the Ca2+ signaling pathway. Also, plant-derived extracellular vesicles (PDEVs) were extracted during Cd stress. Therefore, these results provide new insights into the response of ACh during Cd stress.
Collapse
Affiliation(s)
- Lin Yang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 300387, Tianjin, China
| | - Xu Ma
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 300387, Tianjin, China
| | - Yuhan Guo
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yuman He
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 300387, Tianjin, China
| | - Yunwen Yang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 300387, Tianjin, China
| | - Wenqiao Wang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 300387, Tianjin, China
| | - Ziyi Xu
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 300387, Tianjin, China
| | - Zhaojiang Zuo
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-Based Healthcare Functions, Zhejiang A&F University, Hangzhou, China
| | - Ying Xue
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 300387, Tianjin, China
| | - Rui Yang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 300387, Tianjin, China
| | - Bing Han
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 300387, Tianjin, China
| | - Jinsheng Sun
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 300387, Tianjin, China.
| |
Collapse
|
168
|
Jörg M, van der Westhuizen ET, Lu Y, Christopher Choy KH, Shackleford DM, Khajehali E, Tobin AB, Thal DM, Capuano B, Christopoulos A, Valant C, Scammells PJ. Design, synthesis and evaluation of novel 2-phenyl-3-(1H-pyrazol-4-yl)pyridine positive allosteric modulators for the M 4 mAChR. Eur J Med Chem 2023; 258:115588. [PMID: 37423123 PMCID: PMC7616163 DOI: 10.1016/j.ejmech.2023.115588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/15/2023] [Accepted: 06/20/2023] [Indexed: 07/11/2023]
Abstract
Translation of muscarinic acetylcholine receptor (mAChR) agonists into clinically used therapeutic agents has been difficult due to their poor subtype selectivity. M4 mAChR subtype-selective positive allosteric modulators (PAMs) may provide better therapeutic outcomes, hence investigating their detailed pharmacological properties is crucial to advancing them into the clinic. Herein, we report the synthesis and comprehensive pharmacological evaluation of M4 mAChR PAMs structurally related to 1e, Me-C-c, [11C]MK-6884 and [18F]12. Our results show that small structural changes to the PAMs can result in pronounced differences to baseline, potency (pEC50) and maximum effect (Emax) measures in cAMP assays when compared to the endogenous ligand acetylcholine (ACh) without the addition of the PAMs. Eight selected PAMs were further assessed to determine their binding affinity and potential signalling bias profile between cAMP and β-arrestin 2 recruitment. These rigorous analyses resulted in the discovery of the novel PAMs, 6k and 6l, which exhibit improved allosteric properties compared to the lead compound, and probative in vivo exposure studies in mice confirmed that they maintain the ability to cross the blood-brain barrier, making them more suitable for future preclinical assessment.
Collapse
Affiliation(s)
- Manuela Jörg
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, 3052, Victoria, Australia
| | - Emma T van der Westhuizen
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, 3052, Victoria, Australia
| | - Yao Lu
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, 3052, Victoria, Australia; ARC Industrial Transformation Training Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, 3052, Victoria, Australia
| | - K H Christopher Choy
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, 3052, Victoria, Australia
| | - David M Shackleford
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, 3052, Victoria, Australia
| | - Elham Khajehali
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, 3052, Victoria, Australia
| | - Andrew B Tobin
- Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, United Kingdom
| | - David M Thal
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, 3052, Victoria, Australia; ARC Industrial Transformation Training Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, 3052, Victoria, Australia
| | - Ben Capuano
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, 3052, Victoria, Australia
| | - Arthur Christopoulos
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, 3052, Victoria, Australia; ARC Industrial Transformation Training Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, 3052, Victoria, Australia; Neuromedicines Discovery Centre, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, 3052, Victoria, Australia
| | - Celine Valant
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, 3052, Victoria, Australia.
| | - Peter J Scammells
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, 3052, Victoria, Australia.
| |
Collapse
|
169
|
Ali A, Abdi SAH, Ali A, Ahmad W. Hexaconazole exposure disrupt acetylcholinesterase, leading to mental illness. Toxicol Res (Camb) 2023; 12:775-782. [PMID: 37915471 PMCID: PMC10615806 DOI: 10.1093/toxres/tfad067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 05/15/2023] [Accepted: 07/18/2023] [Indexed: 11/03/2023] Open
Abstract
Hexaconazole is widely used in agricultural work, and it has been observed that it has potential to disrupt endocrine function and it has also capacity of bioaccumulation. In this study, we examined how the hexaconazole disrupts the usual balance of acetylcholinesterase. It has been already reported that heavy pesticide exposures may be a reason for several mental illnesses because these pesticides may disrupt normal balance of acetylcholinesterase. In this paper, we have done a complete molecular and dynamics analysis to understand the behavior of hexaconazole with acetylcholinesterase so that its toxicological aspect may be explored. Our findings revealed that hexaconazole has potency to interact with acetylcholinesterase in a stable manner. The binding energy of hexaconazole was found to be -7.95 kcal/mol. However, chlorpyrifos, known inhibitors of acetylcholinesterase, has binding energy of -7.17 kcal/mol. With respect to stability analysis, hexaconazole has similar stability like chlorpyrifos. Root-mean-square deviation, root-mean-square fluctuation, radius of gyration, hydrogen bonding, and solvent accessible surface area were similar to chlorpyrifos. In addition, density functional theory computations analysis reveals that hexaconazole is energetically stable like chlorpyrifos, which is necessary for establishing a stable ligand-protein complex. The result of this complete molecular analysis reveals that hexaconazole may disrupt the acetylcholinesterase balance, which leads to mental illness.
Collapse
Affiliation(s)
- Abuzer Ali
- Department of Pharmacognosy, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Sayed Aliul Hasan Abdi
- Department of Pharmacy, Al Baha University, Al Baha 1988, Saudi Arabia
- University of Tennessee, Health Science Center, USA
| | - Amena Ali
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Wasim Ahmad
- Department of Pharmacy, Mohammed Al-Mana College for Medical Sciences, Dammam 34222, Saudi Arabia
| |
Collapse
|
170
|
Sun Y, Qian L, Xu L, Hunt S, Sah P. Somatostatin neurons in the central amygdala mediate anxiety by disinhibition of the central sublenticular extended amygdala. Mol Psychiatry 2023; 28:4163-4174. [PMID: 33005027 DOI: 10.1038/s41380-020-00894-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 07/29/2020] [Accepted: 09/16/2020] [Indexed: 11/09/2022]
Abstract
Fear and anxiety are two defensive emotional states evoked by threats in the environment. Fear can be initiated by either imminent or future threats, but experimentally, it is typically studied as a phasic response initiated by imminent danger that subsides when the threats is removed. In contrast, anxiety is a sustained response, initiated by imagined or potential threats. The central amygdala (CeA) is a key structure active during both fear and anxiety but thought to engage different neural systems. Fear responses are triggered by activation of somatostatin (SOM) expressing neurons in the lateral division of the CeA (CeL), and downstream projections from the medial division. Anxiety responses engage the central extended amygdala that includes the CeA, central sublenticular extended amygdala (SLEAc) and bed nucleus of the stria terminalis, but the nature of connections between these regions is not understood. Here using a combination of tract tracing, electrophysiology, and behavioral analysis in mice, we show that a population of SOM+ neurons in the CeL project to the SLEAc where they inhibit local GABAergic interneurons. Optogenetic activation of this input to the SLEAc has no effect on movement, but is anxiogenic in both open field and elevated plus maze. Our results define the inhibitory connections between CeL and SLEAc and establish a specific CeL to SLEAc projection as a circuit element in mediating anxiety.
Collapse
Affiliation(s)
- Yajie Sun
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Lei Qian
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Li Xu
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Sarah Hunt
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Pankaj Sah
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia.
- Brain Research Centre and Department of Biology, Southern University of Science and Technology, Nanshan District, Shenzhen, Guangdong Province, PR China.
| |
Collapse
|
171
|
Narayanan AC, Venkatesh R, Singh S, Singh G, Modi G, Singh S, Kandasamy J. Synthesis of phenylethanoid glycosides from acrylic esters of glucose and aryldiazonium salts via palladium-catalyzed cross-coupling reactions and evaluation of their anti-Alzheimer activity. Carbohydr Res 2023; 532:108920. [PMID: 37586143 DOI: 10.1016/j.carres.2023.108920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/13/2023] [Accepted: 08/02/2023] [Indexed: 08/18/2023]
Abstract
Cinnamic acid-containing sugar compounds such as phenylethanoid glycosides are widely present in nature and display various biological activities. In this work, the synthesis of trans-cinnamic acid containing phenylethanoid glycosides was achieved via palladium-catalyzed cross-coupling reactions between glycosyl acrylic esters and aryldiazonium salts. A wide range of functionalized aryldiazonium salts were successfully coupled with 6-O- and 4-O-acrylic esters of glucose under optimized conditions. The reactions proceeded at room temperature in the absence of additives and base. The desired products were obtained in good to excellent yields. Selected compounds from the library were screened for anti-Alzheimer activity, while compound 16 displayed significant inhibitory activities against butyrylcholinesterase (BChE) and acetylcholinesterase (AChE) enzymes.
Collapse
Affiliation(s)
- Aswathi C Narayanan
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Rapelly Venkatesh
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Shweta Singh
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Gourav Singh
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Gyan Modi
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Sundaram Singh
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Jeyakumar Kandasamy
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India; Department of Chemistry, Pondicherry University, Pondicherry, 605014, India.
| |
Collapse
|
172
|
Mineur YS, Picciotto MR. How can I measure brain acetylcholine levels in vivo? Advantages and caveats of commonly used approaches. J Neurochem 2023; 167:3-15. [PMID: 37621094 PMCID: PMC10616967 DOI: 10.1111/jnc.15943] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/26/2023]
Abstract
The neurotransmitter acetylcholine (ACh) plays a central role in the regulation of multiple cognitive and behavioral processes, including attention, learning, memory, motivation, anxiety, mood, appetite, and reward. As a result, understanding ACh dynamics in the brain is essential for elucidating the neural mechanisms underlying these processes. In vivo measurements of ACh in the brain have been challenging because of the low concentrations and rapid turnover of this neurotransmitter. Here, we review a number of techniques that have been developed to measure ACh levels in the brain in vivo. We follow this with a deeper focus on use of genetically encoded fluorescent sensors coupled with fiber photometry, an accessible technique that can be used to monitor neurotransmitter release with high temporal resolution and specificity. We conclude with a discussion of methods for analyzing fiber photometry data and their respective advantages and disadvantages. The development of genetically encoded fluorescent ACh sensors is revolutionizing the field of cholinergic signaling, allowing temporally precise measurement of ACh release in awake, behaving animals. Use of these sensors has already begun to contribute to a mechanistic understanding of cholinergic modulation of complex behaviors.
Collapse
Affiliation(s)
- Yann S. Mineur
- Department of Psychiatry, Yale University School of Medicine, 34 Park Street, 3 Floor Research, New Haven, CT 06508, USA
| | - Marina R. Picciotto
- Department of Psychiatry, Yale University School of Medicine, 34 Park Street, 3 Floor Research, New Haven, CT 06508, USA
| |
Collapse
|
173
|
Yadav H, Jaldhi, Bhardwaj R, Anamika, Bakshi A, Gupta S, Maurya SK. Unveiling the role of gut-brain axis in regulating neurodegenerative diseases: A comprehensive review. Life Sci 2023; 330:122022. [PMID: 37579835 DOI: 10.1016/j.lfs.2023.122022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/06/2023] [Accepted: 08/10/2023] [Indexed: 08/16/2023]
Abstract
Emerging evidence have shown the importance of gut microbiota in regulating brain functions. The diverse molecular mechanisms involved in cross-talk between gut and brain provide insight into importance of this communication in maintenance of brain homeostasis. It has also been observed that disturbed gut microbiota contributes to neurological diseases such as Alzheimer's disease, Parkinson's disease, multiple sclerosis, amyotrophic lateral sclerosis and aging. Recently, gut microbiome-derived exosomes have also been reported to play an essential role in the development and progression of neurodegenerative diseases and could thereby act as a therapeutic target. Further, pharmacological interventions including antibiotics, prebiotics and probiotics can influence gut microbiome-mediated management of neurological diseases. However, extensive research is warranted to better comprehend this interconnection in maintenance of brain homeostasis and its implication in neurological diseases. Thus, the present review is aimed to provide a detailed understanding of gut-brain axis followed by possibilities to target the gut microbiome for improving neurological health.
Collapse
Affiliation(s)
- Himanshi Yadav
- Biochemistry and Molecular Biology Laboratory, Department of Zoology, Faculty of Science, University of Delhi, Delhi, India
| | - Jaldhi
- Biochemistry and Molecular Biology Laboratory, Department of Zoology, Faculty of Science, University of Delhi, Delhi, India
| | - Rati Bhardwaj
- Department of Biotechnology, Delhi Technical University, Delhi, India
| | - Anamika
- Department of Zoology, Ramjas College, University of Delhi, Delhi, India
| | - Amrita Bakshi
- Department of Zoology, Ramjas College, University of Delhi, Delhi, India
| | - Suchi Gupta
- Tech Cell Innovations Private Limited, Centre for Medical Innovation and Entrepreneurship (CMIE), All India Institute of Medical Sciences, New Delhi, India
| | - Shashank Kumar Maurya
- Biochemistry and Molecular Biology Laboratory, Department of Zoology, Faculty of Science, University of Delhi, Delhi, India.
| |
Collapse
|
174
|
Montigné E, Balayssac D. Exploring Cholinergic Compounds for Peripheral Neuropathic Pain Management: A Comprehensive Scoping Review of Rodent Model Studies. Pharmaceuticals (Basel) 2023; 16:1363. [PMID: 37895835 PMCID: PMC10609809 DOI: 10.3390/ph16101363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/01/2023] [Accepted: 09/14/2023] [Indexed: 10/29/2023] Open
Abstract
Neuropathic pain affects about 7-8% of the population, and its management still poses challenges with unmet needs. Over the past decades, researchers have explored the cholinergic system (muscarinic and nicotinic acetylcholine receptors: mAChR and nAChR) and compounds targeting these receptors as potential analgesics for neuropathic pain management. This scoping review aims to provide an overview of studies on peripheral neuropathic pain (PNP) in rodent models, exploring compounds targeting cholinergic neurotransmission. The inclusion criteria were original articles on PNP in rodent models that explored the use of compounds directly targeting cholinergic neurotransmission and reported results of nociceptive behavioral assays. The literature search was performed in the PubMed and Web of Science databases (1 January 2000-22 April 2023). The selection process yielded 82 publications, encompassing 62 compounds. The most studied compounds were agonists of α4β2 nAChR and α7 nAChR, and antagonists of α9/α10 nAChR, along with those increasing acetylcholine and targeting mAChRs. Studies mainly reported antinociceptive effects in traumatic PNP models, and to a lesser extent, chemotherapy-induced neuropathy or diabetic models. These preclinical studies underscore the considerable potential of cholinergic compounds in the management of PNP, warranting the initiation of clinical trials.
Collapse
Affiliation(s)
- Edouard Montigné
- INSERM, U1107, NEURO-DOL, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France;
| | - David Balayssac
- INSERM, U1107, NEURO-DOL, Université Clermont Auvergne, Direction de la Recherche Clinique et de l’Innovation, CHU Clermont-Ferrand, F-63000 Clermont-Ferrand, France
| |
Collapse
|
175
|
Singh A, Singh K, Kaur J, Kaur R, Sharma A, Kaur J, Kaur U, Chadha R, Bedi PMS. Pathogenesis of Alzheimer's Disease and Diversity of 1,2,3-Triazole Scaffold in Drug Development: Design Strategies, Structural Insights, and Therapeutic Potential. ACS Chem Neurosci 2023; 14:3291-3317. [PMID: 37683129 DOI: 10.1021/acschemneuro.3c00393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2023] Open
Abstract
Alzheimer's disease is a most prevalent form of dementia all around the globe and currently poses a significant challenge to the healthcare system. Currently available drugs only slow the progression of this disease rather than provide proper containment. Identification of multiple targets responsible for this disease in the last three decades established it as a multifactorial neurodegenerative disorder that needs novel multifunctional agents for its management and the possible reason for the failure of currently available single target clinical drugs. 1,2,3-Triazole is a miraculous nucleus in medicinal chemistry and the first choice for development of multifunctional hybrid molecules. Apart from that, it is an integral component of various drugs in clinical trials as well as in clinical practice. This review is focused on the pathogenesis of Alzheimer's disease and 1,2,3-triazole containing derivatives developed in recent decades as potential anti-Alzheimer's agents. The review will provide (A) precise insight of various established targets of Alzheimer's disease including cholinergic, amyloid, tau, monoamine oxidases, glutamate, calcium, and reactive oxygen species hypothesis and (B) design hypothesis, structure-activity relationships, and pharmacological outcomes of 1,2,3-triazole containing multifunctional anti-Alzheimer's agents. This review will provide a baseline for various research groups working on Alzheimer's drug development in designing potent, safer, and effective multifunctional anti-Alzheimer's candidates of the future.
Collapse
Affiliation(s)
- Atamjit Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Karanvir Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Jashandeep Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Ramanpreet Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Aman Sharma
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Jasleen Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Uttam Kaur
- University School of Business, Chandigarh University, Mohali, Punjab 140413, India
| | - Renu Chadha
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India
| | - Preet Mohinder Singh Bedi
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005, India
- Drug and Pollution Testing Laboratory, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| |
Collapse
|
176
|
Gonçalves JM, Benedetti M, d'Errico G, Regoli F, Bebianno MJ. Polystyrene nanoplastics in the marine mussel Mytilus galloprovincialis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 333:122104. [PMID: 37379876 DOI: 10.1016/j.envpol.2023.122104] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 06/30/2023]
Abstract
Concerns about plastic pollution and its toxicity towards animals and people are growing. Polystyrene (PS) is a plastic polymer highly produced in Europe for packaging purposes and building insulation amongst others. Whatever their source-illegal dumping, improper waste management, or a lack of treatment for the removal of plastic debris from wastewater treatment plants-PS products ultimately end up in the marine environment. Nanoplastics (<1000 nm) are the new focus for plastic pollution, gaining broad interest. Whether primary or secondary, their small size permits nanoparticles to cross cellular boundaries, consequently leading to adverse toxic effects. An in vitro assay of Mytilus galloprovincialis haemocytes exposed to 10 μg/L of polystyrene nanoplastics (PS-NPs; 50 nm) for 24 h was used to test cellular viability along with the luminescence inhibition (LC50) of Aliivibrio fischeri bacteria to evaluate acute toxicity. Cellular viability of mussel haemocytes decreased significantly after a 24 h exposure and PS-NPs LC50 range from 180 to 217, μg/L. In addition, a 28-day exposure of the marine bivalve M. galloprovincialis to PS-NPs (10 μg/L; 50 nm) was performed to evaluate the neurotoxic effects and the uptake of these plastic particles in three bivalve tissues (gills, digestive gland, and gonads). The ingestion of PS-NPs was time- and tissue-specific, suggesting that PS-NPs are ingested through the gills and then translocated through the mussel bloodstream, to the digestive gland and gonads where the highest amount of ingested PS-NPs was reported. Ingested PS-NPs may compromise the digestive glands' key metabolic function and impair mussels' gametogenic and reproductive success. Data on acetylcholinesterase inhibition and those previously obtained on a wide range of cellular biomarkers were elaborated through weighted criteria providing a synthetic assessment of cellular hazard from PS-NPs.
Collapse
Affiliation(s)
- J M Gonçalves
- CIMA, Centre of Marine and Environmental Research\ARNET - Infrastructure Network in Aquatic Research, University of Algarve, Campus de Gambelas, 8000-139 Faro, Portugal
| | - M Benedetti
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy; National Future Biodiversity Centre (NFBC), Palermo, Italy
| | - G d'Errico
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - F Regoli
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy; National Future Biodiversity Centre (NFBC), Palermo, Italy
| | - M J Bebianno
- CIMA, Centre of Marine and Environmental Research\ARNET - Infrastructure Network in Aquatic Research, University of Algarve, Campus de Gambelas, 8000-139 Faro, Portugal.
| |
Collapse
|
177
|
Song X, Li H, Liu X, Pang M, Wang Y. Calcium Imaging Characterize the Neurobiological Effect of Terahertz Radiation in Zebrafish Larvae. SENSORS (BASEL, SWITZERLAND) 2023; 23:7689. [PMID: 37765745 PMCID: PMC10537331 DOI: 10.3390/s23187689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/22/2023] [Accepted: 09/02/2023] [Indexed: 09/29/2023]
Abstract
(1) Objective: To explore the neurobiological effects of terahertz (THz) radiation on zebrafish larvae using calcium (Ca2+) imaging technology. (2) Methods: Zebrafish larvae at 7 days post fertilization (dpf) were exposed to THz radiation for 10 or 20 min; the frequency was 2.52 THz and the amplitude 50 mW/cm2. The behavioral experiments, neural Ca2+ imaging, and quantitative polymerase chain reaction (qPCR) of the dopamine-related genes were conducted following the irradiation. (3) Results: Compared with the control group, the behavioral experiments demonstrated that THz radiation significantly increased the distance travelled and speed of zebrafish larvae. In addition, the maximum acceleration and motion frequency were elevated in the 20 min radiation group. The neural Ca2+ imaging results indicated a substantial increase in zebrafish neuronal activity. qPCR experiments revealed a significant upregulation of dopamine-related genes, such as drd2b, drd4a, slc6a3 and th. (4) Conclusion: THz radiation (2.52 THz, 50 mW/cm2, 20 min) upregulated dopamine-related genes and significantly enhanced neuronal excitability, and the neurobiological effect of THz radiation can be visualized using neural Ca2+ imaging in vivo.
Collapse
Affiliation(s)
- Xin Song
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China; (X.S.); (X.L.)
| | - Haibin Li
- School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China;
| | - Xiuyun Liu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China; (X.S.); (X.L.)
- School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China;
| | - Meijun Pang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China; (X.S.); (X.L.)
| | - Yuye Wang
- School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China;
| |
Collapse
|
178
|
Feldmeyer D. Structure and function of neocortical layer 6b. Front Cell Neurosci 2023; 17:1257803. [PMID: 37744882 PMCID: PMC10516558 DOI: 10.3389/fncel.2023.1257803] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 08/14/2023] [Indexed: 09/26/2023] Open
Abstract
Cortical layer 6b is considered by many to be a remnant of the subplate that forms during early stages of neocortical development, but its role in the adult is not well understood. Its neuronal complement has only recently become the subject of systematic studies, and its axonal projections and synaptic input structures have remained largely unexplored despite decades of research into neocortical function. In recent years, however, layer 6b (L6b) has attracted increasing attention and its functional role is beginning to be elucidated. In this review, I will attempt to provide an overview of what is currently known about the excitatory and inhibitory neurons in this layer, their pre- and postsynaptic connectivity, and their functional implications. Similarities and differences between different cortical areas will be highlighted. Finally, layer 6b neurons are highly responsive to several neuropeptides such as orexin/hypocretin, neurotensin and cholecystokinin, in some cases exclusively. They are also strongly controlled by neurotransmitters such as acetylcholine and norepinephrine. The interaction of these neuromodulators with L6b microcircuitry and its functional consequences will also be discussed.
Collapse
Affiliation(s)
- Dirk Feldmeyer
- Research Centre Jülich, Institute of Neuroscience and Medicine 10 (INM-10), Jülich, Germany
- Department of Psychiatry, Psychotherapy, and Psychosomatics, RWTH Aachen University Hospital, Aachen, Germany
- Jülich-Aachen Research Alliance, Translational Brain Medicine (JARA Brain), Aachen, Germany
| |
Collapse
|
179
|
Duan W, Guo S, Huang HP, Tian Y, Li Z, Bi Y, Yi L, Cao M, Guo M, Li Y, Liu Y, Li C. High expression of NF-κB inducing kinase in the bulge region of hair follicle induces tumor. Immunobiology 2023; 228:152705. [PMID: 37459681 DOI: 10.1016/j.imbio.2023.152705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/19/2023] [Accepted: 07/04/2023] [Indexed: 08/29/2023]
Abstract
The bulge region, a reservoir of multipotent stem cells, is possibly responsible for tumorigenesis. NF-κB-inducing kinase (NIK) is a kinase involved in the activation of the noncanonical NF-κB pathway and exhibits positive staining in tumor cells. However, whether high expression of NIK can result in tumorigenesis has not been reported in published papers. By establishing Nik-coe (Nik-stopF/F crossed with Chat-cre) and Nik-soe (Nik-stopF/F crossed with Sox9-cre) mice, we found that overexpression of Nik in the bulge region of hair follicles induced hair follicle loss and tumorigenesis. Furthermore, RNA sequencing, proteomic and phosphopeptide analyses revealed that multiple cancer pathways are involved in tumor formation. Taken together, these findings indicate that constitutive activation of Nik in the bulge region induces tumorigenesis.
Collapse
Affiliation(s)
- Weisong Duan
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, People's Republic of China; Neurological Laboratory of Hebei Province, Shijiazhuang, Hebei 050000, People's Republic of China
| | - Shengmin Guo
- Hebei Senlang Biotechnology Co., Ltd., No. 136 Yellow River Avenue, Shijiazhuang High-Tech Development Zone, Hebei 050000, People's Republic of China
| | - Huai-Peng Huang
- Shijiazhuang Pingan Hospital, Shijiazhuang, Hebei 050021, People's Republic of China
| | - Yunyun Tian
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, People's Republic of China
| | - Zhongyao Li
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, People's Republic of China
| | - Yue Bi
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, People's Republic of China
| | - Le Yi
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, People's Republic of China
| | - Mengjie Cao
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, People's Republic of China
| | - Moran Guo
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, People's Republic of China
| | - Yuanyuan Li
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, People's Republic of China
| | - Yakun Liu
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, People's Republic of China
| | - Chunyan Li
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, People's Republic of China; Neurological Laboratory of Hebei Province, Shijiazhuang, Hebei 050000, People's Republic of China.
| |
Collapse
|
180
|
Fronza MG, Alves D, Praticò D, Savegnago L. The neurobiology and therapeutic potential of multi-targeting β-secretase, glycogen synthase kinase 3β and acetylcholinesterase in Alzheimer's disease. Ageing Res Rev 2023; 90:102033. [PMID: 37595640 DOI: 10.1016/j.arr.2023.102033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/04/2023] [Accepted: 08/14/2023] [Indexed: 08/20/2023]
Abstract
Alzheimer's Disease (AD) is the most common form of dementia, affecting almost 50 million of people around the world, characterized by a complex and age-related progressive pathology with projections to duplicate its incidence by the end of 2050. AD pathology has two major hallmarks, the amyloid beta (Aβ) peptides accumulation and tau hyperphosphorylation, alongside with several sub pathologies including neuroinflammation, oxidative stress, loss of neurogenesis and synaptic dysfunction. In recent years, extensive research pointed out several therapeutic targets which have shown promising effects on modifying the course of the disease in preclinical models of AD but with substantial failure when transposed to clinic trials, suggesting that modulating just an isolated feature of the pathology might not be sufficient to improve brain function and enhance cognition. In line with this, there is a growing consensus that an ideal disease modifying drug should address more than one feature of the pathology. Considering these evidence, β-secretase (BACE1), Glycogen synthase kinase 3β (GSK-3β) and acetylcholinesterase (AChE) has emerged as interesting therapeutic targets. BACE1 is the rate-limiting step in the Aβ production, GSK-3β is considered the main kinase responsible for Tau hyperphosphorylation, and AChE play an important role in modulating memory formation and learning. However, the effects underlying the modulation of these enzymes are not limited by its primarily functions, showing interesting effects in a wide range of impaired events secondary to AD pathology. In this sense, this review will summarize the involvement of BACE1, GSK-3β and AChE on synaptic function, neuroplasticity, neuroinflammation and oxidative stress. Additionally, we will present and discuss new perspectives on the modulation of these pathways on AD pathology and future directions on the development of drugs that concomitantly target these enzymes.
Collapse
Affiliation(s)
- Mariana G Fronza
- Neurobiotechnology Research Group (GPN) - Centre for Technology Development CDTec, Federal University of Pelotas (UFPel), Pelotas, RS, Brazil
| | - Diego Alves
- Laboratory of Clean Organic Synthesis (LASOL), Center for Chemical, Pharmaceutical and Food Sciences (CCQFA), UFPel, RS, Brazil
| | - Domenico Praticò
- Alzheimer's Center at Temple - ACT, Temple University, Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Lucielli Savegnago
- Neurobiotechnology Research Group (GPN) - Centre for Technology Development CDTec, Federal University of Pelotas (UFPel), Pelotas, RS, Brazil.
| |
Collapse
|
181
|
Dai J, Sun QQ. Learning induced neuronal identity switch in the superficial layers of the primary somatosensory cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.30.555603. [PMID: 37693620 PMCID: PMC10491147 DOI: 10.1101/2023.08.30.555603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
During learning, multi-dimensional inputs are integrated within the sensory cortices. However, the strategies by which the sensory cortex employs to achieve learning remains poorly understood. We studied the sensory cortical neuronal coding of trace eyeblink conditioning (TEC) in head-fixed, freely running mice, where whisker deflection was used as a conditioned stimulus (CS) and an air puff to the cornea delivered after an interval was used as unconditioned stimulus (US). After training, mice learned the task with a set of stereotypical behavioral changes, most prominent ones include prolonged closure of eyelids, and increased reverse running between CS and US onset. The local blockade of the primary somatosensory cortex (S1) activities with muscimol abolished the behavior learning suggesting that S1 is required for the TEC. In naive animals, based on the response properties to the CS and US, identities of the small proportion (~20%) of responsive primary neurons (PNs) were divided into two subtypes: CR (i.e. CS-responsive) and UR neurons (i.e. US-responsive). After animals learned the task, identity of CR and UR neurons changed: while the CR neurons are less responsive to CS, UR neurons gain responsiveness to CS, a new phenomenon we defined as 'learning induced neuronal identity switch (LINIS)'. To explore the potential mechanisms underlying LINIS, we found that systemic and local (i.e. in S1) administration of the nicotinic receptor antagonist during TEC training blocked the LINIS, and concomitantly disrupted the behavior learning. Additionally, we monitored responses of two types of cortical interneurons (INs) and observed that the responses of the somatostatin-expressing (SST), but not parvalbumin-expressing (PV) INs are negatively correlated with the learning performance, suggesting that SST-INs contribute to the LINIS. Thus, we conclude that L2/3 PNs in S1 encode perceptual learning by LINIS like mechanisms, and cholinergic pathways and cortical SST interneurons are involved in the formation of LINIS.
Collapse
Affiliation(s)
- Jiaman Dai
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY82071, USA
- Wyoming Sensory Biology Center of Biomedical Research Excellence, University of Wyoming, Laramie, WY82071, USA
| | - Qian-Quan Sun
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY82071, USA
- Wyoming Sensory Biology Center of Biomedical Research Excellence, University of Wyoming, Laramie, WY82071, USA
| |
Collapse
|
182
|
Beebe NL, Herrera YN, Noftz WA, Roberts MT, Schofield BR. Characterization of three cholinergic inputs to the cochlear nucleus. J Chem Neuroanat 2023; 131:102284. [PMID: 37164181 PMCID: PMC10330717 DOI: 10.1016/j.jchemneu.2023.102284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 05/12/2023]
Abstract
Acetylcholine modulates responses throughout the auditory system, including at the earliest brain level, the cochlear nucleus (CN). Previous studies have shown multiple sources of cholinergic input to the CN but information about their relative contributions and the distribution of inputs from each source is lacking. Here, we used staining for cholinergic axons and boutons, retrograde tract tracing, and acetylcholine-selective anterograde tracing to characterize three sources of acetylcholine input to the CN in mice. Staining for cholinergic axons showed heavy cholinergic inputs to granule cell areas and the dorsal CN with lighter input to the ventral CN. Retrograde tract tracing revealed that cholinergic cells from the superior olivary complex, pontomesencephalic tegmentum, and lateral paragigantocellular nucleus send projections to the CN. When we selectively labeled cholinergic axons from each source to the CN, we found surprising similarities in their terminal distributions, with patterns that were overlapping rather than complementary. Each source heavily targeted granule cell areas and the dorsal CN (especially the deep dorsal CN) and sent light input into the ventral CN. Our results demonstrate convergence of cholinergic inputs from multiple sources in most regions of the CN and raise the possibility of convergence onto single CN cells. Linking sources of acetylcholine and their patterns of activity to modulation of specific cell types in the CN will be an important next step in understanding cholinergic modulation of early auditory processing.
Collapse
Affiliation(s)
- Nichole L Beebe
- Hearing Research Group, Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Yoani N Herrera
- Kresge Hearing Research Institute, Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, MI, USA
| | - William A Noftz
- Hearing Research Group, Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Michael T Roberts
- Kresge Hearing Research Institute, Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, MI, USA; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Brett R Schofield
- Hearing Research Group, Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, USA.
| |
Collapse
|
183
|
Kumagai S, Shiramatsu TI, Matsumura A, Ishishita Y, Ibayashi K, Onuki Y, Kawai K, Takahashi H. Frequency-specific modulation of oscillatory activity in the rat auditory cortex by vagus nerve stimulation. Brain Stimul 2023; 16:1476-1485. [PMID: 37777110 DOI: 10.1016/j.brs.2023.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 09/21/2023] [Accepted: 09/21/2023] [Indexed: 10/02/2023] Open
Abstract
BACKGROUND We previously found that vagus nerve stimulation (VNS) strengthened stimulus-evoked activity in the superficial layer of the sensory cortex but not in the deep layer, suggesting that VNS altered the balance between the feedforward (FF) and feedback (FB) pathways. Band-specific oscillatory activities in the cortex could serve as an index of the FF-FB balance, but whether VNS affects cortical oscillations along sensory pathways through neuromodulators remains unclear. HYPOTHESIS VNS modulates the FF-FB balance through the cholinergic and noradrenergic systems, which modulate stimulus gain in the cortex. METHODS We investigated the effects of VNS using electrocorticography in the auditory cortex of 34 Wistar rats under general anesthesia while presenting click stimuli. In the time-frequency analyses, the putative modulation of the FF and FB pathways was estimated using high- and low-frequency power. We assessed, using analysis of variance, how VNS modulates auditory-evoked activities and how the modulation changes with cholinergic and noradrenergic antagonists. RESULTS VNS increased auditory cortical evoked potentials, consistent with results of our previous work. Furthermore, VNS increased auditory-evoked gamma and beta powers and decreased theta power. Local administration of cholinergic antagonists in the auditory cortex selectively disrupted the VNS-induced increase in gamma and beta power, while noradrenergic antagonists disrupted the decrease in theta power. CONCLUSIONS VNS might strengthen the FF pathway through the cholinergic system and attenuate the FB pathway through the noradrenergic system in the auditory cortex. Cortical gain modulation through the VNS-induced neuromodulatory system provides new mechanistic insights into the effect of VNS on auditory processing.
Collapse
Affiliation(s)
- Shinichi Kumagai
- Department of Neurosurgery, Jichi Medical University, Tochigi, Japan; Department of Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Tomoyo Isoguchi Shiramatsu
- Department of Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Akane Matsumura
- Department of Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Yohei Ishishita
- Department of Neurosurgery, Jichi Medical University, Tochigi, Japan
| | - Kenji Ibayashi
- Department of Neurosurgery, Jichi Medical University, Tochigi, Japan
| | - Yoshiyuki Onuki
- Department of Neurosurgery, Jichi Medical University, Tochigi, Japan
| | - Kensuke Kawai
- Department of Neurosurgery, Jichi Medical University, Tochigi, Japan
| | - Hirokazu Takahashi
- Department of Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
184
|
Mehri K, Oskuye ZZ, Nassireslami E, Karami E, Parvizi MR. Rivastigmine ameliorates botulinum-induced hippocampal damage and spatial memory impairment in male rats. Neurotoxicology 2023; 98:29-38. [PMID: 37507053 DOI: 10.1016/j.neuro.2023.07.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 06/24/2023] [Accepted: 07/24/2023] [Indexed: 07/30/2023]
Abstract
Botulinum toxin (Botox) is widely used in beauty industry and its long-term consequences can be a matter of concern. The hippocampal cholinergic system plays a significant role in memory and learning that could be affected by Botulinum toxin. However, to date, the effect of Botox on memory system has been controversial. This survey aimed to examine the effects of Botox on spatial memory, and biochemical and histological parameters of the hippocampus in male rats by using Rivastigmine (R) as a cholinesterase inhibitor that is more selective for the central nervous system (CNS). Thirty-five male Wistar rats (200-250 g) were distributed into seven groups: Sham, Botox A (3, 6, and 15 IU intramascularly) and Botox A (3, 6, and 15 IU) plus Rivastigmine (1 mg/kg intraperitoneally). Spatial memory was assessed in the Morris Water Maze (MWM) 4 weeks later. Moreover, the hippocampal tissue was removed for histopathological and biochemical analyses. Botox significantly impaired memory performance in MWM by increasing escape latency and swim distance and decreasing the time spent in the target zone. Furthermore, in the Botox groups, the level of acetylcholine decreased, while the level of the acetylcholinesterase enzyme increased significantly in the hippocampus. Also, local lesions were observed in the form of degeneration and loss of pyramidal neurons, as well as a decrease in the volume and shrinkage of the cell body and an increase in microglia in the damaged area. Rivastigmine administration alleviated biochemical and histological parameters and partially ameliorated Botox-induced impairments. In summary, rivastigmine could be a suitable protective approach for side effects of Botox in the hippocampus.
Collapse
Affiliation(s)
- Keyvan Mehri
- Student Research Committee,Tabriz University of Medical sciences, Tabriz, Iran
| | | | - Ehsan Nassireslami
- Department of Pharmacology, School of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Esmail Karami
- Department of Physiology, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Parvizi
- Department of Physiology, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
185
|
Paolino M, de Candia M, Purgatorio R, Catto M, Saletti M, Tondo AR, Nicolotti O, Cappelli A, Brizzi A, Mugnaini C, Corelli F, Altomare CD. Investigation on Novel E/Z 2-Benzylideneindan-1-One-Based Photoswitches with AChE and MAO-B Dual Inhibitory Activity. Molecules 2023; 28:5857. [PMID: 37570828 PMCID: PMC10421270 DOI: 10.3390/molecules28155857] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/22/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
The multitarget therapeutic strategy, as opposed to the more traditional 'one disease-one target-one drug', may hold promise in treating multifactorial neurodegenerative syndromes, such as Alzheimer's disease (AD) and related dementias. Recently, combining a photopharmacology approach with the multitarget-directed ligand (MTDL) design strategy, we disclosed a novel donepezil-like compound, namely 2-(4-((diethylamino)methyl)benzylidene)-5-methoxy-2,3-dihydro-1H-inden-1-one (1a), which in the E isomeric form (and about tenfold less in the UV-B photo-induced isomer Z) showed the best activity as dual inhibitor of the AD-related targets acetylcholinesterase (AChE) and monoamine oxidase B (MAO-B). Herein, we investigated further photoisomerizable 2-benzylideneindan-1-one analogs 1b-h with the unconjugated tertiary amino moiety bearing alkyls of different bulkiness and lipophilicity. For each compound, the thermal stable E geometric isomer, along with the E/Z mixture as produced by UV-B light irradiation in the photostationary state (PSS, 75% Z), was investigated for the inhibition of human ChEs and MAOs. The pure E-isomer of the N-benzyl(ethyl)amino analog 1h achieved low nanomolar AChE and high nanomolar MAO-B inhibition potencies (IC50s 39 and 355 nM, respectively), whereas photoisomerization to the Z isomer (75% Z in the PSS mixture) resulted in a decrease (about 30%) of AChE inhibitory potency, and not in the MAO-B one. Molecular docking studies were performed to rationalize the different E/Z selectivity of 1h toward the two target enzymes.
Collapse
Affiliation(s)
- Marco Paolino
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A. Moro 2, I-53100 Siena, Italy; (M.P.); (M.S.); (A.C.); (A.B.); (C.M.); (F.C.)
| | - Modesto de Candia
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, I-70125 Bari, Italy; (M.d.C.); (R.P.); (M.C.); (A.R.T.); (O.N.)
| | - Rosa Purgatorio
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, I-70125 Bari, Italy; (M.d.C.); (R.P.); (M.C.); (A.R.T.); (O.N.)
| | - Marco Catto
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, I-70125 Bari, Italy; (M.d.C.); (R.P.); (M.C.); (A.R.T.); (O.N.)
| | - Mario Saletti
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A. Moro 2, I-53100 Siena, Italy; (M.P.); (M.S.); (A.C.); (A.B.); (C.M.); (F.C.)
| | - Anna Rita Tondo
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, I-70125 Bari, Italy; (M.d.C.); (R.P.); (M.C.); (A.R.T.); (O.N.)
| | - Orazio Nicolotti
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, I-70125 Bari, Italy; (M.d.C.); (R.P.); (M.C.); (A.R.T.); (O.N.)
| | - Andrea Cappelli
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A. Moro 2, I-53100 Siena, Italy; (M.P.); (M.S.); (A.C.); (A.B.); (C.M.); (F.C.)
| | - Antonella Brizzi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A. Moro 2, I-53100 Siena, Italy; (M.P.); (M.S.); (A.C.); (A.B.); (C.M.); (F.C.)
| | - Claudia Mugnaini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A. Moro 2, I-53100 Siena, Italy; (M.P.); (M.S.); (A.C.); (A.B.); (C.M.); (F.C.)
| | - Federico Corelli
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A. Moro 2, I-53100 Siena, Italy; (M.P.); (M.S.); (A.C.); (A.B.); (C.M.); (F.C.)
| | - Cosimo D. Altomare
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, I-70125 Bari, Italy; (M.d.C.); (R.P.); (M.C.); (A.R.T.); (O.N.)
| |
Collapse
|
186
|
Nimgampalle M, Chakravarthy H, Sharma S, Shree S, Bhat AR, Pradeepkiran JA, Devanathan V. Neurotransmitter systems in the etiology of major neurological disorders: Emerging insights and therapeutic implications. Ageing Res Rev 2023; 89:101994. [PMID: 37385351 DOI: 10.1016/j.arr.2023.101994] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/21/2023] [Accepted: 06/25/2023] [Indexed: 07/01/2023]
Abstract
Neurotransmitters serve as chemical messengers playing a crucial role in information processing throughout the nervous system, and are essential for healthy physiological and behavioural functions in the body. Neurotransmitter systems are classified as cholinergic, glutamatergic, GABAergic, dopaminergic, serotonergic, histaminergic, or aminergic systems, depending on the type of neurotransmitter secreted by the neuron, allowing effector organs to carry out specific functions by sending nerve impulses. Dysregulation of a neurotransmitter system is typically linked to a specific neurological disorder. However, more recent research points to a distinct pathogenic role for each neurotransmitter system in more than one neurological disorder of the central nervous system. In this context, the review provides recently updated information on each neurotransmitter system, including the pathways involved in their biochemical synthesis and regulation, their physiological functions, pathogenic roles in diseases, current diagnostics, new therapeutic targets, and the currently used drugs for associated neurological disorders. Finally, a brief overview of the recent developments in neurotransmitter-based therapeutics for selected neurological disorders is offered, followed by future perspectives in that area of research.
Collapse
Affiliation(s)
- Mallikarjuna Nimgampalle
- Department of Biology, Indian Institute of Science Education and Research Tirupati (IISER T), Transit campus, Karakambadi Road, Mangalam, Tirupati 517507, Andhra Pradesh, India
| | - Harshini Chakravarthy
- Department of Biology, Indian Institute of Science Education and Research Tirupati (IISER T), Transit campus, Karakambadi Road, Mangalam, Tirupati 517507, Andhra Pradesh, India.
| | - Sapana Sharma
- Department of Biology, Indian Institute of Science Education and Research Tirupati (IISER T), Transit campus, Karakambadi Road, Mangalam, Tirupati 517507, Andhra Pradesh, India
| | - Shruti Shree
- Department of Biology, Indian Institute of Science Education and Research Tirupati (IISER T), Transit campus, Karakambadi Road, Mangalam, Tirupati 517507, Andhra Pradesh, India
| | - Anoop Ramachandra Bhat
- Department of Biology, Indian Institute of Science Education and Research Tirupati (IISER T), Transit campus, Karakambadi Road, Mangalam, Tirupati 517507, Andhra Pradesh, India
| | | | - Vasudharani Devanathan
- Department of Biology, Indian Institute of Science Education and Research Tirupati (IISER T), Transit campus, Karakambadi Road, Mangalam, Tirupati 517507, Andhra Pradesh, India.
| |
Collapse
|
187
|
Wideman CE, Huff AE, Messer WS, Winters BD. Muscarinic receptor activation overrides boundary conditions on memory updating in a calcium/calmodulin-dependent manner. Neuropsychopharmacology 2023; 48:1358-1366. [PMID: 36928353 PMCID: PMC10354085 DOI: 10.1038/s41386-023-01564-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/17/2023]
Abstract
Long-term memory storage is a dynamic process requiring flexibility to ensure adaptive behavioural responding in changing environments. Indeed, it is well established that memory reactivation can "destabilize" consolidated traces, leading to various forms of updating. However, the neurobiological mechanisms rendering long-term memories labile and modifiable remain poorly described. Moreover, boundary conditions, such as the age or strength of the memory, can reduce the likelihood of this destabilization; yet, intuitively, these most behaviourally influential of memories should also be modifiable under appropriate conditions. Here, we provide evidence that salient novelty at the time of memory reactivation promotes integrative updating of resistant object memories in rats. Furthermore, blockade of muscarinic acetylcholine receptors (mAChRs; with pirenzepine) or disruption of calcium/calmodulin (Ca2+/CaM) with KN-93, a Ca2+/CaM-binding molecule that inhibits calcium/calmodulin-dependent protein kinase II (CaMKII) activation, in perirhinal cortex (PRh) prevented novelty-induced destabilization and updating of resistant object memories. Finally, PRh M1 mAChR activation (with CDD-0102A) was sufficient to destabilize resistant object memories for updating, and this effect was blocked by KN-93, possibly via inhibition of CaMKII activity. Thus, mAChRs and activation of CaMKII appear to interact as part of a mechanism to override boundary conditions on resistant object memories to ensure integrative modification with novel information. These findings therefore have important implications for understanding the dynamic nature of long-term memory storage and potential treatments for conditions characterized by maladaptive and inflexible memories.
Collapse
Affiliation(s)
- Cassidy E Wideman
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, ON, Canada.
| | - Andrew E Huff
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, ON, Canada
| | - William S Messer
- Department of Pharmacology and Experimental Therapeutics, University of Toledo, Toldeo, OH, USA
| | - Boyer D Winters
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
188
|
Fogaça MV, Wu M, Li C, Li XY, Duman RS, Picciotto MR. M1 acetylcholine receptors in somatostatin interneurons contribute to GABAergic and glutamatergic plasticity in the mPFC and antidepressant-like responses. Neuropsychopharmacology 2023; 48:1277-1287. [PMID: 37142667 PMCID: PMC10354201 DOI: 10.1038/s41386-023-01583-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 03/28/2023] [Accepted: 04/01/2023] [Indexed: 05/06/2023]
Abstract
Alterations in glutamatergic and GABAergic function in the medial prefrontal cortex (mPFC) are prevalent in individuals with major depressive disorder, resulting in impaired synaptic plasticity that compromises the integrity of signal transfer to limbic regions. Scopolamine, a non-selective muscarinic receptor antagonist, produces rapid antidepressant-like effects by targeting M1-type acetylcholine receptors (M1R) on somatostatin (SST) interneurons. So far, these effects have been investigated with relatively short-term manipulations, and long-lasting synaptic mechanisms involved in these responses are still unknown. Here, we generated mice with conditional deletion of M1R (M1f/fSstCre+) only in SST interneurons to determine the role of M1R in modulating long-term GABAergic and glutamatergic plasticity in the mPFC that leads to attenuation of stress-relevant behaviors. We have also investigated whether the molecular and antidepressant-like effects of scopolamine could be mimicked or occluded in male M1f/fSstCre+ mice. M1R deletion in SST-expressing neurons occluded the rapid and sustained antidepressant-like effects of scopolamine, as well as scopolamine-induced increases in c-Fos+/CaMKIIα cells and proteins necessary for glutamatergic and GABAergic function in the mPFC. Importantly, M1R SST deletion resulted in resilience to chronic unpredictable stress in behaviors relevant to coping strategies and motivation, and to a lesser extent, in behaviors relevant to avoidance. Finally, M1R SST deletion also prevented stress-induced impairments in the expression of GABAergic and glutamatergic markers in the mPFC. These findings suggest that the antidepressant-like effects of scopolamine result from modulation of excitatory and inhibitory plasticity via M1R blockade in SST interneurons. This mechanism could represent a promising strategy for antidepressant development.
Collapse
Affiliation(s)
- Manoela V Fogaça
- Department of Psychiatry, Yale University School of Medicine, 34 Park Street, New Haven, CT, 06519, USA.
| | - Min Wu
- Department of Psychiatry, Yale University School of Medicine, 34 Park Street, New Haven, CT, 06519, USA
| | - Chan Li
- Department of Psychiatry, Yale University School of Medicine, 34 Park Street, New Haven, CT, 06519, USA
| | - Xiao-Yuan Li
- Department of Psychiatry, Yale University School of Medicine, 34 Park Street, New Haven, CT, 06519, USA
| | - Ronald S Duman
- Department of Psychiatry, Yale University School of Medicine, 34 Park Street, New Haven, CT, 06519, USA
| | - Marina R Picciotto
- Department of Psychiatry, Yale University School of Medicine, 34 Park Street, New Haven, CT, 06519, USA
| |
Collapse
|
189
|
Palumbo TB, Miwa JM. Lynx1 and the family of endogenous mammalian neurotoxin-like proteins and their roles in modulating nAChR function. Pharmacol Res 2023; 194:106845. [PMID: 37437646 DOI: 10.1016/j.phrs.2023.106845] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/14/2023]
Abstract
The promise of nicotinic receptors as a therapeutic target has yet to be fully realized, despite solid data supporting their involvement in neurological and neuropsychiatric diseases. The reasons for this are likely complex and manifold, having to do with the widespread action of the cholinergic system and the biophysical mechanism of action of nicotinic receptors leading to fast desensitization and down-regulation. Conventional drug development strategies tend to focus on receptor subtype-specific action of candidate therapeutics, although the broad agonist, nicotine, is being explored in the clinic. The potential negative effects of nicotine make the search for alternate strategies warranted. Prototoxins are a promising yet little-explored avenue of nicotinic receptor drug development. Nicotinic receptors in the brain belong to a complex of proteins, including those that bind to the extracellular face of the receptor, as well as chaperones that bind the intracellular domain, etc. Lynx prototoxins have allosteric modularity effects on receptor function and number and have been implicated in complex in vivo processes such as neuroplasticity, learning, and memory. Their mechanism of action and binding specificity on sets of nAChR subtypes present intriguing possibilities for more efficacious and nuanced therapeutic targeting than nicotinic receptor subtypes alone. An allosteric drug may restrict its actions to physiologically relevant time points, which tend to be correlated with salient events which would be encoded into long-term memory storage. Rather than blanketing the brain with a steady and prolonged elevation of agonist, an allosteric nAChR compound could avoid side effects and loss of efficacy over time. This review details the potential strengths and challenges of prototoxin proteins as therapeutic targets, and some of the utility of such therapeutics based on the emerging understanding of cholinergic signaling in a growing number of complex neural processes.
Collapse
Affiliation(s)
- Talulla B Palumbo
- Department of Biological Sciences, Lehigh University, 111 Research Dr., Iacocca Hall, B-217, Bethlehem PA, USA.
| | - Julie M Miwa
- Department of Biological Sciences, Lehigh University, 111 Research Dr., Iacocca Hall, B-217, Bethlehem PA, USA.
| |
Collapse
|
190
|
Schoen MS, Boland KM, Christ SE, Cui X, Ramakrishnan U, Ziegler TR, Alvarez JA, Singh RH. Total choline intake and working memory performance in adults with phenylketonuria. Orphanet J Rare Dis 2023; 18:222. [PMID: 37516884 PMCID: PMC10386684 DOI: 10.1186/s13023-023-02842-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/21/2023] [Indexed: 07/31/2023] Open
Abstract
BACKGROUND Despite early diagnosis and compliance with phenylalanine (Phe)-restricted diets, many individuals with phenylketonuria (PKU) still exhibit neurological changes and experience deficits in working memory and other executive functions. Suboptimal choline intake may contribute to these impairments, but this relationship has not been previously investigated in PKU. The objective of this study was to determine if choline intake is correlated with working memory performance, and if this relationship is modified by diagnosis and metabolic control. METHODS This was a cross-sectional study that included 40 adults with PKU and 40 demographically matched healthy adults. Web-based neurocognitive tests were used to assess working memory performance and 3-day dietary records were collected to evaluate nutrient intake. Recent and historical blood Phe concentrations were collected as measures of metabolic control. RESULTS Working memory performance was 0.32 z-scores (95% CI 0.06, 0.58) lower, on average, in participants with PKU compared to participants without PKU, and this difference was not modified by total choline intake (F[1,75] = 0.85, p = 0.36). However, in a subgroup with complete historical blood Phe data, increased total choline intake was related to improved working memory outcomes among participants with well controlled PKU (Phe = 360 µmol/L) after adjusting for intellectual ability and mid-childhood Phe concentrations (average change in working memory per 100 mg change in choline = 0.11; 95% CI 0.02, 0.20; p = 0.02). There also was a trend, albeit nonsignificant (p = 0.10), for this association to be attenuated with increased Phe concentrations. CONCLUSIONS Clinical monitoring of choline intake is essential for all individuals with PKU but may have important implications for working memory functioning among patients with good metabolic control. Results from this study should be confirmed in a larger controlled trial in people living with PKU.
Collapse
Affiliation(s)
- Meriah S Schoen
- Department of Human Genetics, Emory University School of Medicine, 101 Woodruff Circle, Suite 7130, Atlanta, GA, 30322, USA.
| | - Kelly M Boland
- Department of Psychological Sciences, University of Missouri, Columbia, MO, USA
| | - Shawn E Christ
- Department of Psychological Sciences, University of Missouri, Columbia, MO, USA
| | - Xiangqin Cui
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Usha Ramakrishnan
- Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Thomas R Ziegler
- Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Jessica A Alvarez
- Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Rani H Singh
- Department of Human Genetics, Emory University School of Medicine, 101 Woodruff Circle, Suite 7130, Atlanta, GA, 30322, USA
| |
Collapse
|
191
|
Perego MC, McMichael BD, McMurry NR, Ventrello SW, Bain LJ. Arsenic Impairs Differentiation of Human Induced Pluripotent Stem Cells into Cholinergic Motor Neurons. TOXICS 2023; 11:644. [PMID: 37624150 PMCID: PMC10458826 DOI: 10.3390/toxics11080644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/04/2023] [Accepted: 07/14/2023] [Indexed: 08/26/2023]
Abstract
Arsenic exposure during embryogenesis can lead to improper neurodevelopment and changes in locomotor activity. Additionally, in vitro studies have shown that arsenic inhibits the differentiation of sensory neurons and skeletal muscle. In the current study, human-induced pluripotent stem (iPS) cells were differentiated into motor neurons over 28 days, while being exposed to up to 0.5 μM arsenic. On day 6, neuroepithelial progenitor cells (NEPs) exposed to arsenic had reduced transcript levels of the neural progenitor/stem cell marker nestin (NES) and neuroepithelial progenitor marker SOX1, while levels of these transcripts were increased in motor neuron progenitors (MNPs) at day 12. In day 18 early motor neurons (MNs), choline acetyltransferase (CHAT) expression was reduced two-fold in cells exposed to 0.5 μM arsenic. RNA sequencing demonstrated that the cholinergic synapse pathway was impaired following exposure to 0.5 μM arsenic, and that transcript levels of genes involved in acetylcholine synthesis (CHAT), transport (solute carriers, SLC18A3 and SLC5A7) and degradation (acetylcholinesterase, ACHE) were all downregulated in day 18 early MNs. In day 28 mature motor neurons, arsenic significantly downregulated protein expression of microtubule-associated protein 2 (MAP2) and ChAT by 2.8- and 2.1-fold, respectively, concomitantly with a reduction in neurite length. These results show that exposure to environmentally relevant arsenic concentrations dysregulates the differentiation of human iPS cells into motor neurons and impairs the cholinergic synapse pathway, suggesting that exposure impairs cholinergic function in motor neurons.
Collapse
Affiliation(s)
- M. Chiara Perego
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| | | | - Nicholas R. McMurry
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| | - Scott W. Ventrello
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| | - Lisa J. Bain
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| |
Collapse
|
192
|
Chen C, Khanthiyong B, Charoenlappanit S, Roytrakul S, Reynolds GP, Thanoi S, Nudmamud-Thanoi S. Cholinergic-estrogen interaction is associated with the effect of education on attenuating cognitive sex differences in a Thai healthy population. PLoS One 2023; 18:e0278080. [PMID: 37471329 PMCID: PMC10358962 DOI: 10.1371/journal.pone.0278080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 05/30/2023] [Indexed: 07/22/2023] Open
Abstract
The development of human brain is shaped by both genetic and environmental factors. Sex differences in cognitive function have been found in humans as a result of sexual dimorphism in neural information transmission. Numerous studies have reported the positive effects of education on cognitive functions. However, little work has investigated the effect of education on attenuating cognitive sex differences and the neural mechanisms behind it based on healthy population. In this study, the Wisconsin Card Sorting Test (WCST) was employed to examine sex differences in cognitive function in 135 Thai healthy subjects, and label-free quantitative proteomic method and bioinformatic analysis were used to study sex-specific neurotransmission-related protein expression profiles. The results showed sex differences in two WCST sub-scores: percentage of Total corrects and Total errors in the primary education group (Bayes factor>100) with males performed better, while such differences eliminated in secondary and tertiary education levels. Moreover, 11 differentially expressed proteins (DEPs) between men and women (FDR<0.1) were presented in both education groups, with majority of them upregulated in females. Half of those DEPs interacted directly with nAChR3, whereas the other DEPs were indirectly connected to the cholinergic pathways through interaction with estrogen. These findings provided a preliminary indication that a cholinergic-estrogen interaction relates to, and might underpin, the effect of education on attenuating cognitive sex differences in a Thai healthy population.
Collapse
Affiliation(s)
- Chen Chen
- Medical Science Graduate Program, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
- Centre of Excellence in Medical Biotechnology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | | | - Sawanya Charoenlappanit
- Functional Proteomics Technology Laboratory, National Centre for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Sittiruk Roytrakul
- Functional Proteomics Technology Laboratory, National Centre for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Gavin P. Reynolds
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, United Kingdom
| | - Samur Thanoi
- School of Medical Sciences, University of Phayao, Mae Ka, Phayao, Thailand
| | - Sutisa Nudmamud-Thanoi
- Centre of Excellence in Medical Biotechnology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
- Department of Anatomy, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| |
Collapse
|
193
|
Alrashdi BM, Fehaid A, Kassab RB, Rizk S, Habotta OA, Abdel Moneim AE. Biosynthesized Selenium Nanoparticles Using Epigallocatechin Gallate Protect against Pentylenetetrazole-Induced Acute Epileptic Seizures in Mice via Antioxidative, Anti-Inflammatory, and Anti-Apoptotic Activities. Biomedicines 2023; 11:1955. [PMID: 37509594 PMCID: PMC10377216 DOI: 10.3390/biomedicines11071955] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/21/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
Several negative outcomes are associated with current anti-epileptic medications. Epigallocatechin gallate (EGCG) is a plant-derived compound called catechin and has many medicinal activities, such as anti-inflammatory and antioxidant activities. Biosynthesized selenium nanoparticles are also showing their neuroprotective effect. The anti-epileptic effect of EGCG, alone or with SeNPs, is still debated. Here, we aimed to investigate the potential anti-seizure effect of biosynthesized SeNPs using EGCG (EGCG-SeNPs) against epileptic seizures and hippocampal damage, which is enhanced by pentylenetetrazole (PTZ) injection in mice. Mice were grouped as follows: control; PTZ-exposed group (epileptic model); EGCG + PTZ-treated group; sodium selenite (Na2SeO3) + PTZ-treated group; EGCG-SeNPs + PTZ-treated group; and valproic acid (VPA) + PTZ-treated group. EGCG-SeNPs administration showed anti-epileptic activity by increasing the latency time and reducing the seizure duration following the PTZ injection. Additionally, EGCG-SeNPs counteracted the PTZ-induced changes in oxidants and antioxidants. Moreover, EGCG-SeNPs inhibited the inflammatory response by suppressing the release of pro-inflammatory cytokines and decreasing the immunoreactivity of the glial fibrillary acidic protein and mRNA expression of glutamate receptor subunit zeta-1 (NMDAR; Grin1), showing their inhibitory effect on epilepsy-associated inflammation. Moreover, EGCG-SeNPs reduced PTZ-induced neuronal apoptosis, as indicated by a reduction in the levels of pro-apoptotic proteins and an elevation of the anti-apoptotic protein. Moreover, EGCG-SeNPs administration significantly modulated the PTZ-induced changes in monoamine levels and acetylcholinesterase activity in the hippocampal tissue. The obtained findings suggest the anti-seizure activity of EGCG-SeNPs via their antioxidant, anti-inflammatory, and anti-apoptotic effects, along with their neuromodulatory effect.
Collapse
Affiliation(s)
- Barakat M Alrashdi
- Biology Department, College of Science, Jouf University, Sakaka 41412, Saudi Arabia
| | - Alaa Fehaid
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Rami B Kassab
- Department of Biology, Faculty of Science and Arts, Al-Baha University, Al-Baha 65799, Saudi Arabia
| | - Sara Rizk
- Department of Immunizations and Vaccines, Hadayek Helwan Medical Center for Family Health, Cairo 4042342, Egypt
| | - Ola A Habotta
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Ahmed E Abdel Moneim
- Zoology and Entomology Department, Faculty of Science, Helwan University, Cairo 11792, Egypt
| |
Collapse
|
194
|
Yamahashi Y, Tsuboi D, Funahashi Y, Kaibuchi K. Neuroproteomic mapping of kinases and their substrates downstream of acetylcholine: finding and implications. Expert Rev Proteomics 2023; 20:291-298. [PMID: 37787112 DOI: 10.1080/14789450.2023.2265067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 08/09/2023] [Indexed: 10/04/2023]
Abstract
INTRODUCTION Since the emergence of the cholinergic hypothesis of Alzheimer's disease (AD), acetylcholine has been viewed as a mediator of learning and memory. Donepezil improves AD-associated learning deficits and memory loss by recovering brain acetylcholine levels. However, it is associated with side effects due to global activation of acetylcholine receptors. Muscarinic acetylcholine receptor M1 (M1R), a key mediator of learning and memory, has been an alternative target. The importance of targeting a specific pathway downstream of M1R has recently been recognized. Elucidating signaling pathways beyond M1R that lead to learning and memory holds important clues for AD therapeutic strategies. AREAS COVERED This review first summarizes the role of acetylcholine in aversive learning, one of the outputs used for preliminary AD drug screening. It then describes the phosphoproteomic approach focused on identifying acetylcholine intracellular signaling pathways leading to aversive learning. Finally, the intracellular mechanism of donepezil and its effect on learning and memory is discussed. EXPERT OPINION The elucidation of signaling pathways beyond M1R by phosphoproteomic approach offers a platform for understanding the intracellular mechanism of AD drugs and for developing AD therapeutic strategies. Clarifying the molecular mechanism that links the identified acetylcholine signaling to AD pathophysiology will advance the development of AD therapeutic strategies.
Collapse
Affiliation(s)
- Yukie Yamahashi
- Division of Cell Biology, International Center for Brain Science, Fujita Health University, Toyoake, Aichi, Japan
| | - Daisuke Tsuboi
- Division of Cell Biology, International Center for Brain Science, Fujita Health University, Toyoake, Aichi, Japan
| | - Yasuhiro Funahashi
- Division of Cell Biology, International Center for Brain Science, Fujita Health University, Toyoake, Aichi, Japan
| | - Kozo Kaibuchi
- Division of Cell Biology, International Center for Brain Science, Fujita Health University, Toyoake, Aichi, Japan
| |
Collapse
|
195
|
Dávila G, Torres-Prioris MJ, López-Barroso D, Berthier ML. Turning the Spotlight to Cholinergic Pharmacotherapy of the Human Language System. CNS Drugs 2023; 37:599-637. [PMID: 37341896 PMCID: PMC10374790 DOI: 10.1007/s40263-023-01017-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/24/2023] [Indexed: 06/22/2023]
Abstract
Even though language is essential in human communication, research on pharmacological therapies for language deficits in highly prevalent neurodegenerative and vascular brain diseases has received little attention. Emerging scientific evidence suggests that disruption of the cholinergic system may play an essential role in language deficits associated with Alzheimer's disease and vascular cognitive impairment, including post-stroke aphasia. Therefore, current models of cognitive processing are beginning to appraise the implications of the brain modulator acetylcholine in human language functions. Future work should be directed further to analyze the interplay between the cholinergic system and language, focusing on identifying brain regions receiving cholinergic innervation susceptible to modulation with pharmacotherapy to improve affected language domains. The evaluation of language deficits in pharmacological cholinergic trials for Alzheimer's disease and vascular cognitive impairment has thus far been limited to coarse-grained methods. More precise, fine-grained language testing is needed to refine patient selection for pharmacotherapy to detect subtle deficits in the initial phases of cognitive decline. Additionally, noninvasive biomarkers can help identify cholinergic depletion. However, despite the investigation of cholinergic treatment for language deficits in Alzheimer's disease and vascular cognitive impairment, data on its effectiveness are insufficient and controversial. In the case of post-stroke aphasia, cholinergic agents are showing promise, particularly when combined with speech-language therapy to promote trained-dependent neural plasticity. Future research should explore the potential benefits of cholinergic pharmacotherapy in language deficits and investigate optimal strategies for combining these agents with other therapeutic approaches.
Collapse
Affiliation(s)
- Guadalupe Dávila
- Cognitive Neurology and Aphasia Unit, Centro de Investigaciones Médico-Sanitarias, University of Malaga, Marqués de Beccaria 3, 29010, Malaga, Spain
- Instituto de Investigación Biomédica de Malaga-IBIMA, Malaga, Spain
- Department of Psychobiology and Methodology of Behavioral Sciences, Faculty of Psychology and Speech Therapy, University of Malaga, Malaga, Spain
- Language Neuroscience Research Laboratory, Faculty of Psychology and Speech Therapy, University of Malaga, Malaga, Spain
| | - María José Torres-Prioris
- Cognitive Neurology and Aphasia Unit, Centro de Investigaciones Médico-Sanitarias, University of Malaga, Marqués de Beccaria 3, 29010, Malaga, Spain
- Instituto de Investigación Biomédica de Malaga-IBIMA, Malaga, Spain
- Department of Psychobiology and Methodology of Behavioral Sciences, Faculty of Psychology and Speech Therapy, University of Malaga, Malaga, Spain
- Language Neuroscience Research Laboratory, Faculty of Psychology and Speech Therapy, University of Malaga, Malaga, Spain
| | - Diana López-Barroso
- Cognitive Neurology and Aphasia Unit, Centro de Investigaciones Médico-Sanitarias, University of Malaga, Marqués de Beccaria 3, 29010, Malaga, Spain
- Instituto de Investigación Biomédica de Malaga-IBIMA, Malaga, Spain
- Department of Psychobiology and Methodology of Behavioral Sciences, Faculty of Psychology and Speech Therapy, University of Malaga, Malaga, Spain
- Language Neuroscience Research Laboratory, Faculty of Psychology and Speech Therapy, University of Malaga, Malaga, Spain
| | - Marcelo L Berthier
- Cognitive Neurology and Aphasia Unit, Centro de Investigaciones Médico-Sanitarias, University of Malaga, Marqués de Beccaria 3, 29010, Malaga, Spain.
- Instituto de Investigación Biomédica de Malaga-IBIMA, Malaga, Spain.
- Language Neuroscience Research Laboratory, Faculty of Psychology and Speech Therapy, University of Malaga, Malaga, Spain.
| |
Collapse
|
196
|
Layfield E, Hwa TP, Quimby AE, Brant JA, Bigelow D, Ruckenstein MJ, Eliades SJ. Impact of Anticholinergic Medications on Speech Perception Performance after Cochlear Implantation. Otol Neurotol 2023; 44:e364-e368. [PMID: 37205865 DOI: 10.1097/mao.0000000000003896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
OBJECTIVE To identify and characterize the impact of anticholinergic medications, which have known adverse effects on cognition in older adults, on speech perception after cochlear implantation. STUDY DESIGN Retrospective cohort. SETTING Tertiary referral center. SUBJECT POPULATION Adult patients who underwent cochlear implantation between January 2010 and September 2020 with speech perception scores at 3, 6, and 12 months. INTERVENTIONS Anticholinergic burden of patients' prescribed medications. MAIN OUTCOME MEASURES AzBio speech perception scores after implantation. RESULTS One hundred twenty-six patients had documented AzBio in quiet speech perception score at all three postactivation time points. Patients were divided into three groups by anticholinergic burden (ACB) score, including ACB = 0 (90 patients), 1 (23 patients), and ≥2 (13 patients). There was no statistically significant difference between ACB groups in audiologic performance at candidacy testing ( p = 0.77) or at 3 months after implantation ( p = 0.13). Beginning at 6 months, a lower mean AzBio was seen in patients with higher ACB scores (68% ACB = 0; 62% ACB = 1; 48.1% ACB ≥ 2; p = 0.03). At 12 months, there were further differences between the groups (71.0% ACB = 0, 69.5% ACB = 1, 48.0% ACB ≥2, p < 0.01). Controlling for the effects of age using multivariate linear regression showed persistent effects of ACB score on learning-related AzBio improvements. Comparatively, the negative impact of a single ACB score point was equivalent to nearly 10 years of aging ( p = 0.03). CONCLUSIONS Increased ACB is associated with worse speech perception scores after cochlear implantation, an effect that persists even when accounting for patient age, suggesting that these medications may have cognitive and learning effects that reduce cochlear implant performance.
Collapse
Affiliation(s)
- Eleanor Layfield
- Department of Surgery, University of California, San Francisco, San Francisco, California
| | - Tiffany Peng Hwa
- Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Alexandra E Quimby
- Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Jason A Brant
- Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Douglas Bigelow
- Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Michael J Ruckenstein
- Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Steven J Eliades
- Department of Head and Neck Surgery & Communication Sciences, Duke University School of Medicine, Durham, North Carolina
| |
Collapse
|
197
|
Berry AS, Harrison TM. New perspectives on the basal forebrain cholinergic system in Alzheimer's disease. Neurosci Biobehav Rev 2023; 150:105192. [PMID: 37086935 PMCID: PMC10249144 DOI: 10.1016/j.neubiorev.2023.105192] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/27/2023] [Accepted: 03/28/2023] [Indexed: 04/24/2023]
Abstract
The basal forebrain cholinergic system (BFCS) has long been implicated in age-related cognitive changes and the pathophysiology of Alzheimer's disease (AD). Limitations of cholinergic interventions helped to inspire a shift away from BFCS in AD research. A resurgence in interest in the BFCS following methodological and analytical advances has resulted in a call for the BFCS to be examined in novel frameworks. We outline the basic structure and function of the BFCS, its role in supporting cognitive and affective function, and its vulnerability to aging and AD. We consider the BFCS in the context of the amyloid hypothesis and evolving concepts in AD research: resilience and resistance to pathology, selective neuronal vulnerability, trans-synaptic pathology spread and sleep health. We highlight 1) the potential role of the BFCS in cognitive resilience, 2) recent work refining understanding about the selective vulnerability of BFCS to AD, 3) BFCS connectivity that suggests it is related to tau spreading and neurodegeneration and 4) the gap between BFCS involvement in AD and sleep-wake cycles.
Collapse
Affiliation(s)
| | - Theresa M Harrison
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
198
|
Pastor V, Dalto JF, Medina JH. α7 nicotinic acetylcholine receptors in the medial prefrontal cortex control rewarding but not aversive memory expression in a dopamine-sensitive manner. Pharmacol Biochem Behav 2023; 227-228:173594. [PMID: 37385456 DOI: 10.1016/j.pbb.2023.173594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/01/2023]
Abstract
Emotional learning involves the association between sensory cues and rewarding or aversive stimuli, and this stored information can be recalled during memory retrieval. In this process, the medial prefrontal cortex (mPFC) plays an essential role. We have previously shown that the antagonism of α7 nicotinic acetylcholine receptors (nAChRs) by methyllycaconitine (MLA) in the mPFC blocked cue-induced cocaine memory retrieval. However, little is known about the involvement of prefrontal α7 nAChRs in the retrieval of aversive memories. Here, by using pharmacology and different behavioral tasks, we found that MLA did not affect aversive memory retrieval, indicating a differential effect of cholinergic prefrontal control of appetitive and aversive memories. Despite being shown that acetylcholine modulates dopamine release in the mPFC, it remains unknown if those modulatory systems act together to control reward-based behavior. We examined that question and found that dopamine type 1 receptor (D1R) activation prevented MLA-induced blockade of cocaine CPP retrieval. Our results suggest that α7 nAChRs and D1R signaling interact in the mPFC to modulate cocaine-associated memory retrieval.
Collapse
Affiliation(s)
- Verónica Pastor
- CONICET-Universidad de Buenos Aires, Instituto de Biología Celular y Neurociencia "Prof. Eduardo De Robertis" (IBCN), Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Medicina, Departamento de Ciencias Fisiológicas, Buenos Aires, Argentina.
| | - Juliana F Dalto
- CONICET-Universidad de Buenos Aires, Instituto de Biología Celular y Neurociencia "Prof. Eduardo De Robertis" (IBCN), Buenos Aires, Argentina
| | - Jorge H Medina
- CONICET-Universidad de Buenos Aires, Instituto de Biología Celular y Neurociencia "Prof. Eduardo De Robertis" (IBCN), Buenos Aires, Argentina; Instituto Tecnológico de Buenos Aires (ITBA), Buenos Aires, Argentina
| |
Collapse
|
199
|
Nicotine's effect on cognition, a friend or foe? Prog Neuropsychopharmacol Biol Psychiatry 2023; 124:110723. [PMID: 36736944 DOI: 10.1016/j.pnpbp.2023.110723] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/27/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023]
Abstract
Tobacco smoking is a preventable cause of morbidity and mortality throughout the world. Smoking comes in form of absorption of many compounds, among which nicotine is the main psychoactive component of tobacco and its positive and negative reinforcement effects are proposed to be the key mechanism for the initiation and maintenance of smoking. Growing evidence suggests that the cognitive enhancement effects of nicotine may also contribute to the difficulty of quitting smoking, especially in individuals with psychiatric disorders. In this review, we first introduce the beneficial effect of nicotine on cognition including attention, short-term memory and long-term memory. We next summarize the beneficial effect of nicotine on cognition under pathological conditions, including Alzheimer's disease, Parkinson's disease, Schizophrenia, Stress-induced Anxiety, Depression, and drug-induced memory impairment. The possible mechanism underlying nicotine's effect is also explored. Finally, nicotine's detrimental effect on cognition is discussed, including in the prenatal and adolescent periods, and high-dose nicotine- and withdrawal-induced memory impairment is emphasized. Therefore, nicotine serves as both a friend and foe. Nicotine-derived compounds could be a promising strategy to alleviate neurological disease-associated cognitive deficit, however, due to nicotine's detrimental effect, continued educational programs and public awareness campaigns are needed to reduce tobacco use among pregnant women and smoking should be quitted even if it is e-cigarette, especially for the adolescents.
Collapse
|
200
|
Mohebi A, Collins VL, Berke JD. Accumbens cholinergic interneurons dynamically promote dopamine release and enable motivation. eLife 2023; 12:e85011. [PMID: 37272423 PMCID: PMC10259987 DOI: 10.7554/elife.85011] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 05/30/2023] [Indexed: 06/06/2023] Open
Abstract
Motivation to work for potential rewards is critically dependent on dopamine (DA) in the nucleus accumbens (NAc). DA release from NAc axons can be controlled by at least two distinct mechanisms: (1) action potentials propagating from DA cell bodies in the ventral tegmental area (VTA), and (2) activation of β2* nicotinic receptors by local cholinergic interneurons (CINs). How CIN activity contributes to NAc DA dynamics in behaving animals is not well understood. We monitored DA release in the NAc Core of awake, unrestrained rats using the DA sensor RdLight1, while simultaneously monitoring or manipulating CIN activity at the same location. CIN stimulation rapidly evoked DA release, and in contrast to slice preparations, this DA release showed no indication of short-term depression or receptor desensitization. The sound of unexpected food delivery evoked a brief joint increase in CIN population activity and DA release, with a second joint increase as rats approached the food. In an operant task, we observed fast ramps in CIN activity during approach behaviors, either to start the trial or to collect rewards. These CIN ramps co-occurred with DA release ramps, without corresponding changes in the firing of lateral VTA DA neurons. Finally, we examined the effects of blocking CIN influence over DA release through local NAc infusion of DHβE, a selective antagonist of β2* nicotinic receptors. DHβE dose-dependently interfered with motivated approach decisions, mimicking the effects of a DA antagonist. Our results support a key influence of CINs over motivated behavior via the local regulation of DA release.
Collapse
Affiliation(s)
- Ali Mohebi
- Department of Neurology, University of California, San FranciscoSan FranciscoUnited States
| | - Val L Collins
- Department of Neurology, University of California, San FranciscoSan FranciscoUnited States
| | - Joshua D Berke
- Department of Neurology, University of California, San FranciscoSan FranciscoUnited States
- Department of Psychiatry and Behavioral Sciences, University of California, San FranciscoSan FranciscoUnited States
- Neuroscience Graduate Program, University of California, San FranciscoSan FranciscoUnited States
- Weill Institute for Neurosciences, University of California, San FranciscoSan FranciscoUnited States
| |
Collapse
|