151
|
Cheng H, Liao Y, Schaeffer RD, Grishin NV. Manual classification strategies in the ECOD database. Proteins 2015; 83:1238-51. [PMID: 25917548 DOI: 10.1002/prot.24818] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 03/30/2015] [Accepted: 04/19/2015] [Indexed: 12/28/2022]
Abstract
ECOD (Evolutionary Classification Of protein Domains) is a comprehensive and up-to-date protein structure classification database. The majority of new structures released from the PDB (Protein Data Bank) each week already have close homologs in the ECOD hierarchy and thus can be reliably partitioned into domains and classified by software without manual intervention. However, those proteins that lack confidently detectable homologs require careful analysis by experts. Although many bioinformatics resources rely on expert curation to some degree, specific examples of how this curation occurs and in what cases it is necessary are not always described. Here, we illustrate the manual classification strategy in ECOD by example, focusing on two major issues in protein classification: domain partitioning and the relationship between homology and similarity scores. Most examples show recently released and manually classified PDB structures. We discuss multi-domain proteins, discordance between sequence and structural similarities, difficulties with assessing homology with scores, and integral membrane proteins homologous to soluble proteins. By timely assimilation of newly available structures into its hierarchy, ECOD strives to provide a most accurate and updated view of the protein structure world as a result of combined computational and expert-driven analysis.
Collapse
Affiliation(s)
- Hua Cheng
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, 75390
| | - Yuxing Liao
- Department of Biophysics and Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, 75390
| | - R Dustin Schaeffer
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, 75390
| | - Nick V Grishin
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, 75390.,Department of Biophysics and Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, 75390
| |
Collapse
|
152
|
Xue Z, Li H, Wang X, Li X, Liu Y, Sun J, Liu C. A review of the immune molecules in the sea cucumber. FISH & SHELLFISH IMMUNOLOGY 2015; 44:1-11. [PMID: 25655326 DOI: 10.1016/j.fsi.2015.01.026] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 01/20/2015] [Accepted: 01/26/2015] [Indexed: 06/04/2023]
Abstract
It is very important to identify and characterize the immune-related genes that respond to pathogens. Until recently, only some of the immune-related genes in sea cucumbers had been characterized. Their expression patterns after pathogen challenges have been analyzed via expressed sequence tag libraries, microarray studies and proteomic approaches. These genes include lectins, antimicrobial peptides, lysozyme, enzymes, clotting protein, pattern recognition proteins, Toll receptors, complement C3 and other humoral factors that might participate in the innate immune system of sea cucumbers. Although the participation of some of these immune molecules in the sea cucumber's innate immune defense against invading pathogens has been demonstrated, the functions of many of the molecules remain unclear. This review focuses on the discovery and functional characterization of the immune-related molecules from the sea cucumber for the first time and provides new insights into the immune mechanisms of the sea cucumber, which opens new possibilities for developing drugs for novel anti-bacterial and antiviral applications in fisheries.
Collapse
Affiliation(s)
- Zhuang Xue
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China.
| | - Hui Li
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Xiuli Wang
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Xia Li
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Yang Liu
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Jing Sun
- Liaoning Province Academy of Analytic Science, Shenyang 110015, China
| | - Cenjie Liu
- Dalian Institute of Product Quality Supervision & Inspection, Dalian 116023, China
| |
Collapse
|
153
|
Lin Q, Wang T, Li H, London E. Decreasing Transmembrane Segment Length Greatly Decreases Perfringolysin O Pore Size. J Membr Biol 2015; 248:517-27. [PMID: 25850715 DOI: 10.1007/s00232-015-9798-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 03/25/2015] [Indexed: 01/06/2023]
Abstract
Perfringolysin O (PFO) is a transmembrane (TM) β-barrel protein that inserts into mammalian cell membranes. Once inserted into membranes, PFO assembles into pore-forming oligomers containing 30-50 PFO monomers. These form a pore of up to 300 Å, far exceeding the size of most other proteinaceous pores. In this study, we found that altering PFO TM segment length can alter the size of PFO pores. A PFO mutant with lengthened TM segments oligomerized to a similar extent as wild-type PFO, and exhibited pore-forming activity and a pore size very similar to wild-type PFO as measured by electron microscopy and a leakage assay. In contrast, PFO with shortened TM segments exhibited a large reduction in pore-forming activity and pore size. This suggests that the interaction between TM segments can greatly affect the size of pores formed by TM β-barrel proteins. PFO may be a promising candidate for engineering pore size for various applications.
Collapse
Affiliation(s)
- Qingqing Lin
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, 11794-5215, USA
| | | | | | | |
Collapse
|
154
|
Leone P, Bebeacua C, Opota O, Kellenberger C, Klaholz B, Orlov I, Cambillau C, Lemaitre B, Roussel A. X-ray and Cryo-electron Microscopy Structures of Monalysin Pore-forming Toxin Reveal Multimerization of the Pro-form. J Biol Chem 2015; 290:13191-201. [PMID: 25847242 DOI: 10.1074/jbc.m115.646109] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Indexed: 11/06/2022] Open
Abstract
β-Barrel pore-forming toxins (β-PFT), a large family of bacterial toxins, are generally secreted as water-soluble monomers and can form oligomeric pores in membranes following proteolytic cleavage and interaction with cell surface receptors. Monalysin has been recently identified as a β-PFT that contributes to the virulence of Pseudomonas entomophila against Drosophila. It is secreted as a pro-protein that becomes active upon cleavage. Here we report the crystal and cryo-electron microscopy structure of the pro-form of Monalysin as well as the crystal structures of the cleaved form and of an inactive mutant lacking the membrane-spanning region. The overall structure of Monalysin displays an elongated shape, which resembles those of β-pore-forming toxins, such as Aerolysin, but is devoid of a receptor-binding domain. X-ray crystallography, cryo-electron microscopy, and light-scattering studies show that pro-Monalysin forms a stable doughnut-like 18-mer complex composed of two disk-shaped nonamers held together by N-terminal swapping of the pro-peptides. This observation is in contrast with the monomeric pro-form of the other β-PFTs that are receptor-dependent for membrane interaction. The membrane-spanning region of pro-Monalysin is fully buried in the center of the doughnut, suggesting that upon cleavage of pro-peptides, the two disk-shaped nonamers can, and have to, dissociate to leave the transmembrane segments free to deploy and lead to pore formation. In contrast with other toxins, the delivery of 18 subunits at once, nearby the cell surface, may be used to bypass the requirement of receptor-dependent concentration to reach the threshold for oligomerization into the pore-forming complex.
Collapse
Affiliation(s)
- Philippe Leone
- From the CNRS, Architecture et Fonction des Macromolécules Biologiques (AFMB), Unité Mixte de Recherche (UMR) 7257, 13288 Marseille, France, the Aix-Marseille Université, Architecture et Fonction des Macromolécules Biologiques, UMR 7257, 13288 Marseille, France
| | - Cecilia Bebeacua
- From the CNRS, Architecture et Fonction des Macromolécules Biologiques (AFMB), Unité Mixte de Recherche (UMR) 7257, 13288 Marseille, France, the Aix-Marseille Université, Architecture et Fonction des Macromolécules Biologiques, UMR 7257, 13288 Marseille, France
| | - Onya Opota
- the Global Health Institute, School of Life Sciences, École Polytechnique Fédérale Lausanne (EPFL), CH-1015 Lausanne, Switzerland, and
| | - Christine Kellenberger
- From the CNRS, Architecture et Fonction des Macromolécules Biologiques (AFMB), Unité Mixte de Recherche (UMR) 7257, 13288 Marseille, France, the Aix-Marseille Université, Architecture et Fonction des Macromolécules Biologiques, UMR 7257, 13288 Marseille, France
| | - Bruno Klaholz
- the Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), CNRS, UMR 7104/INSERM U964/Université de Strasbourg, 1 rue Laurent Fries, 67404 Illkirch, France
| | - Igor Orlov
- the Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), CNRS, UMR 7104/INSERM U964/Université de Strasbourg, 1 rue Laurent Fries, 67404 Illkirch, France
| | - Christian Cambillau
- From the CNRS, Architecture et Fonction des Macromolécules Biologiques (AFMB), Unité Mixte de Recherche (UMR) 7257, 13288 Marseille, France, the Aix-Marseille Université, Architecture et Fonction des Macromolécules Biologiques, UMR 7257, 13288 Marseille, France
| | - Bruno Lemaitre
- the Global Health Institute, School of Life Sciences, École Polytechnique Fédérale Lausanne (EPFL), CH-1015 Lausanne, Switzerland, and
| | - Alain Roussel
- From the CNRS, Architecture et Fonction des Macromolécules Biologiques (AFMB), Unité Mixte de Recherche (UMR) 7257, 13288 Marseille, France, the Aix-Marseille Université, Architecture et Fonction des Macromolécules Biologiques, UMR 7257, 13288 Marseille, France,
| |
Collapse
|
155
|
Correia C, Lee SH, Meng XW, Vincelette ND, Knorr KLB, Ding H, Nowakowski GS, Dai H, Kaufmann SH. Emerging understanding of Bcl-2 biology: Implications for neoplastic progression and treatment. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:1658-71. [PMID: 25827952 DOI: 10.1016/j.bbamcr.2015.03.012] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 03/20/2015] [Accepted: 03/22/2015] [Indexed: 02/07/2023]
Abstract
Bcl-2, the founding member of a family of apoptotic regulators, was initially identified as the protein product of a gene that is translocated and overexpressed in greater than 85% of follicular lymphomas (FLs). Thirty years later we now understand that anti-apoptotic Bcl-2 family members modulate the intrinsic apoptotic pathway by binding and neutralizing the mitochondrial permeabilizers Bax and Bak as well as a variety of pro-apoptotic proteins, including the cellular stress sensors Bim, Bid, Puma, Bad, Bmf and Noxa. Despite extensive investigation of all of these proteins, important questions remain. For example, how Bax and Bak breach the outer mitochondrial membrane remains poorly understood. Likewise, how the functions of anti-apoptotic Bcl-2 family members such as eponymous Bcl-2 are affected by phosphorylation or cancer-associated mutations has been incompletely defined. Finally, whether Bcl-2 family members can be successfully targeted for therapeutic advantage is only now being investigated in the clinic. Here we review recent advances in understanding Bcl-2 family biology and biochemistry that begin to address these questions.
Collapse
Affiliation(s)
- Cristina Correia
- Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA; Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Sun-Hee Lee
- Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA; Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - X Wei Meng
- Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA; Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Nicole D Vincelette
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Katherine L B Knorr
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Husheng Ding
- Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Grzegorz S Nowakowski
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Haiming Dai
- Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA; Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA.
| | - Scott H Kaufmann
- Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA; Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA; Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
156
|
Morante K, Caaveiro JMM, Tanaka K, González-Mañas JM, Tsumoto K. A pore-forming toxin requires a specific residue for its activity in membranes with particular physicochemical properties. J Biol Chem 2015; 290:10850-61. [PMID: 25759390 DOI: 10.1074/jbc.m114.615211] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Indexed: 12/29/2022] Open
Abstract
The physicochemical landscape of the bilayer modulates membrane protein function. Actinoporins are a family of potent hemolytic proteins from sea anemones acting at the membrane level. This family of cytolysins preferentially binds to target membranes containing sphingomyelin, where they form lytic pores giving rise to cell death. Although the cytolytic activity of the actinoporin fragaceatoxin C (FraC) is sensitive to vesicles made of various lipid compositions, it is far from clear how this toxin adjusts its mechanism of action to a broad range of physiochemical landscapes. Herein, we show that the conserved residue Phe-16 of FraC is critical for pore formation in cholesterol-rich membranes such as those of red blood cells. The interaction of a panel of muteins of Phe-16 with model membranes composed of raft-like lipid domains is inactivated in cholesterol-rich membranes but not in cholesterol-depleted membranes. These results indicate that actinoporins recognize different membrane environments, resulting in a wider repertoire of susceptible target membranes (and preys) for sea anemones. In addition, this study has unveiled promising candidates for the development of protein-based biosensors highly sensitive to the concentration of cholesterol within the membrane.
Collapse
Affiliation(s)
- Koldo Morante
- From the Department of Bioengineering, Graduate School of Engineering and the Department of Biochemistry and Molecular Biology, University of the Basque Country, 48940 Leioa, Spain, and
| | - Jose M M Caaveiro
- From the Department of Bioengineering, Graduate School of Engineering and
| | - Koji Tanaka
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Juan Manuel González-Mañas
- the Department of Biochemistry and Molecular Biology, University of the Basque Country, 48940 Leioa, Spain, and
| | - Kouhei Tsumoto
- From the Department of Bioengineering, Graduate School of Engineering and Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan, the Medical Proteomics Laboratory, Institute of Medical Science, The University of Tokyo, Minato-ku, 108-8639 Tokyo, Japan
| |
Collapse
|
157
|
Benke S, Roderer D, Wunderlich B, Nettels D, Glockshuber R, Schuler B. The assembly dynamics of the cytolytic pore toxin ClyA. Nat Commun 2015; 6:6198. [PMID: 25652783 PMCID: PMC4347018 DOI: 10.1038/ncomms7198] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 01/05/2015] [Indexed: 12/15/2022] Open
Abstract
Pore-forming toxins are protein assemblies used by many organisms to disrupt the membranes of target cells. They are expressed as soluble monomers that assemble spontaneously into multimeric pores. However, owing to their complexity, the assembly processes have not been resolved in detail for any pore-forming toxin. To determine the assembly mechanism for the ring-shaped, homododecameric pore of the bacterial cytolytic toxin ClyA, we collected a diverse set of kinetic data using single-molecule spectroscopy and complementary techniques on timescales from milliseconds to hours, and from picomolar to micromolar ClyA concentrations. The entire range of experimental results can be explained quantitatively by a surprisingly simple mechanism. First, addition of the detergent n-dodecyl-β-D-maltopyranoside to the soluble monomers triggers the formation of assembly-competent toxin subunits, accompanied by the transient formation of a molten-globule-like intermediate. Then, all sterically compatible oligomers contribute to assembly, which greatly enhances the efficiency of pore formation compared with simple monomer addition.
Collapse
Affiliation(s)
- Stephan Benke
- University of Zurich, Department of Biochemistry, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Daniel Roderer
- ETH Zurich, Institute of Molecular Biology and Biophysics, Otto-Stern-Weg 5, 8093 Zurich, Switzerland
| | - Bengt Wunderlich
- University of Zurich, Department of Biochemistry, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Daniel Nettels
- University of Zurich, Department of Biochemistry, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Rudi Glockshuber
- ETH Zurich, Institute of Molecular Biology and Biophysics, Otto-Stern-Weg 5, 8093 Zurich, Switzerland
| | - Benjamin Schuler
- University of Zurich, Department of Biochemistry, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| |
Collapse
|
158
|
Fauth EVF, Cilli EM, Ligabue-Braun R, Verli H. Differential effect of solution conditions on the conformation of the actinoporins Sticholysin II and Equinatoxin II. AN ACAD BRAS CIENC 2015; 86:1949-62. [PMID: 25590731 DOI: 10.1590/0001-3765201420140270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 08/11/2014] [Indexed: 11/22/2022] Open
Abstract
Actinoporins are a family of pore-forming proteins with hemolytic activity. The structural basis for such activity appears to depend on their correct folding. Such folding encompasses a phosphocholine binding site, a tryptophan-rich region and the activity-related N-terminus segment. Additionally, different solution conditions are known to be able to influence the pore formation by actinoporins, as for Sticholysin II (StnII) and Equinatoxin II (EqtxII). In this context, the current work intends to characterize the influence of distinct solution conditions in the conformational behavior of these proteins through molecular dynamics (MD) simulations. The obtained data offer structural insights into actinoporins dynamics in solution, characterizing its conformational behavior at the atomic level, in accordance with previous experimental data on StnII and EqtxII hemolytic activities.
Collapse
Affiliation(s)
| | - Eduardo M Cilli
- Departamento de Bioquímica e Tecnologia Química, UNESP, Instituto de Química, Universidade Estadual Paulista, Araraquara, SP, Brasil
| | | | - Hugo Verli
- Centro de Biotecnologia, UFRGS, Porto Alegre, RS, Brasil
| |
Collapse
|
159
|
Vibrio cholerae Cytolysin: Structure–Function Mechanism of an Atypical β-Barrel Pore-Forming Toxin. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 842:109-25. [DOI: 10.1007/978-3-319-11280-0_7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
160
|
Rojko N, Cronin B, Danial JSH, Baker MAB, Anderluh G, Wallace MI. Imaging the lipid-phase-dependent pore formation of equinatoxin II in droplet interface bilayers. Biophys J 2014; 106:1630-7. [PMID: 24739162 DOI: 10.1016/j.bpj.2013.11.4507] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 09/23/2013] [Accepted: 11/27/2013] [Indexed: 11/17/2022] Open
Abstract
Using phase-separated droplet interface bilayers, we observe membrane binding and pore formation of a eukaryotic cytolysin, Equinatoxin II (EqtII). EqtII activity is known to depend on the presence of sphingomyelin in the target membrane and is enhanced by lipid phase separation. By imaging the ionic flux through individual pores in vitro, we observe that EqtII pores form predominantly within the liquid-disordered phase. We observe preferential binding of labeled EqtII at liquid-ordered/liquid-disordered domain boundaries before it accumulates in the liquid-disordered phase.
Collapse
Affiliation(s)
- N Rojko
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - B Cronin
- Department of Chemistry, Oxford University, Oxford, UK
| | - J S H Danial
- Department of Chemistry, Oxford University, Oxford, UK
| | - M A B Baker
- Department of Chemistry, Oxford University, Oxford, UK
| | - G Anderluh
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia; National Institute of Chemistry, Ljubljana, Slovenia.
| | - M I Wallace
- Department of Chemistry, Oxford University, Oxford, UK.
| |
Collapse
|
161
|
Clostridial pore-forming toxins: Powerful virulence factors. Anaerobe 2014; 30:220-38. [DOI: 10.1016/j.anaerobe.2014.05.014] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 04/16/2014] [Accepted: 05/25/2014] [Indexed: 01/05/2023]
|
162
|
Engineered liposomes sequester bacterial exotoxins and protect from severe invasive infections in mice. Nat Biotechnol 2014; 33:81-8. [PMID: 25362245 DOI: 10.1038/nbt.3037] [Citation(s) in RCA: 160] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 09/09/2014] [Indexed: 12/25/2022]
Abstract
Gram-positive bacterial pathogens that secrete cytotoxic pore-forming toxins, such as Staphylococcus aureus and Streptococcus pneumoniae, cause a substantial burden of disease. Inspired by the principles that govern natural toxin-host interactions, we have engineered artificial liposomes that are tailored to effectively compete with host cells for toxin binding. Liposome-bound toxins are unable to lyse mammalian cells in vitro. We use these artificial liposomes as decoy targets to sequester bacterial toxins that are produced during active infection in vivo. Administration of artificial liposomes within 10 h after infection rescues mice from septicemia caused by S. aureus and S. pneumoniae, whereas untreated mice die within 24-33 h. Furthermore, liposomes protect mice against invasive pneumococcal pneumonia. Composed exclusively of naturally occurring lipids, tailored liposomes are not bactericidal and could be used therapeutically either alone or in conjunction with antibiotics to combat bacterial infections and to minimize toxin-induced tissue damage that occurs during bacterial clearance.
Collapse
|
163
|
Li J, Rodnin MV, Ladokhin AS, Gross ML. Hydrogen-deuterium exchange and mass spectrometry reveal the pH-dependent conformational changes of diphtheria toxin T domain. Biochemistry 2014; 53:6849-56. [PMID: 25290210 PMCID: PMC4222528 DOI: 10.1021/bi500893y] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The translocation (T) domain of diphtheria toxin plays a critical role in moving the catalytic domain across the endosomal membrane. Translocation/insertion is triggered by a decrease in pH in the endosome where conformational changes of T domain occur through several kinetic intermediates to yield a final trans-membrane form. High-resolution structural studies are only applicable to the static T-domain structure at physiological pH, and studies of the T-domain translocation pathway are hindered by the simultaneous presence of multiple conformations. Here, we report the application of hydrogen-deuterium exchange mass spectrometry (HDX-MS) for the study of the pH-dependent conformational changes of the T domain in solution. Effects of pH on intrinsic HDX rates were deconvolved by converting the on-exchange times at low pH into times under our "standard condition" (pH 7.5). pH-Dependent HDX kinetic analysis of T domain clearly reveals the conformational transition from the native state (W-state) to a membrane-competent state (W(+)-state). The initial transition occurs at pH 6 and includes the destabilization of N-terminal helices accompanied by the separation between N- and C-terminal segments. The structural rearrangements accompanying the formation of the membrane-competent state expose a hydrophobic hairpin (TH8-9) to solvent, prepare it to insert into the membrane. At pH 5.5, the transition is complete, and the protein further unfolds, resulting in the exposure of its C-terminal hydrophobic TH8-9, leading to subsequent aggregation in the absence of membranes. This solution-based study complements high resolution crystal structures and provides a detailed understanding of the pH-dependent structural rearrangement and acid-induced oligomerization of T domain.
Collapse
Affiliation(s)
- Jing Li
- Department of Chemistry, Washington University , St. Louis, Missouri 63130, United States
| | | | | | | |
Collapse
|
164
|
Roderer D, Benke S, Müller M, Fäh-Rechsteiner H, Ban N, Schuler B, Glockshuber R. Characterization of Variants of the Pore-Forming Toxin ClyA from Escherichia coli Controlled by a Redox Switch. Biochemistry 2014; 53:6357-69. [DOI: 10.1021/bi5007578] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Daniel Roderer
- Institute
of Molecular Biology and Biophysics, ETH Zürich, Otto-Stern-Weg
5, CH-8093 Zürich, Switzerland
| | - Stephan Benke
- Department
of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Marcus Müller
- Institute
of Molecular Biology and Biophysics, ETH Zürich, Otto-Stern-Weg
5, CH-8093 Zürich, Switzerland
| | - Helene Fäh-Rechsteiner
- Institute
of Molecular Biology and Biophysics, ETH Zürich, Otto-Stern-Weg
5, CH-8093 Zürich, Switzerland
| | - Nenad Ban
- Institute
of Molecular Biology and Biophysics, ETH Zürich, Otto-Stern-Weg
5, CH-8093 Zürich, Switzerland
| | - Benjamin Schuler
- Department
of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Rudi Glockshuber
- Institute
of Molecular Biology and Biophysics, ETH Zürich, Otto-Stern-Weg
5, CH-8093 Zürich, Switzerland
| |
Collapse
|
165
|
de Souza Freire I, Miranda-Vilela AL, Barbosa LCP, Martins ES, Monnerat RG, Grisolia CK. Evaluation of cytotoxicity, genotoxicity and hematotoxicity of the recombinant spore-crystal complexes Cry1Ia, Cry10Aa and Cry1Ba6 from Bacillus thuringiensis in Swiss mice. Toxins (Basel) 2014; 6:2872-85. [PMID: 25268978 PMCID: PMC4210873 DOI: 10.3390/toxins6102872] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 07/29/2014] [Accepted: 08/12/2014] [Indexed: 01/29/2023] Open
Abstract
The insecticidal properties of Cry-endotoxins from Bacillus thuringiensis (Bt) have long been used as spore-crystals in commercial spray formulations for insect control. Recently, some Bt-endotoxin genes have been cloned in many different plants. Toxicological evaluations of three spore-crystal endotoxins, BtCry1Ia, BtCry10Aa and BtCry1Ba6 from B. thuringiensis, were carried out on mice to understand their adverse effects on hematological systems and on genetic material. These three spore-crystals have shown toxic activity to the boll weevil, which is one of the most aggressive pests of the cotton crop. Cry1Ia, Cry10Aa and Cry1Ba6 did not increase the micronucleus frequency in the peripheral erythrocytes of mice and did not cause changes in the frequency of polychromatic erythrocytes. However, some hematologic disburbances were observed, specifically related to Cry1Ia and Cry1Ba6, respectively, for the erythroid and lymphoid lineage. Thus, although the profile of such adverse side effects can be related to their high level of exposure, which is not commonly found in the environment, results showed that these Bt spore-crystals were not harmless to mice, indicating that each spore-crystal endotoxin presents a characteristic profile of toxicity and might be investigated individually.
Collapse
Affiliation(s)
- Ingrid de Souza Freire
- Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasilia, Brasília 70910-900, Brazil.
| | - Ana Luisa Miranda-Vilela
- Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasilia, Brasília 70910-900, Brazil.
| | - Lilian Carla Pereira Barbosa
- Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasilia, Brasília 70910-900, Brazil.
| | - Erica Soares Martins
- Instituto Mato-Grossense do Algodão-IMAmt/Faculdades Integradas ICESP/Promove de Brasília, Brasília 78008-000, Brazil.
| | - Rose Gomes Monnerat
- Laboratory of Bacteriology, Centro Nacional de Recursos Genéticos (CENARGEN), Brasília 70770-917, Brazil.
| | - Cesar Koppe Grisolia
- Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasilia, Brasília 70910-900, Brazil.
| |
Collapse
|
166
|
Molecular basis of transmembrane beta-barrel formation of staphylococcal pore-forming toxins. Nat Commun 2014; 5:4897. [DOI: 10.1038/ncomms5897] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 08/01/2014] [Indexed: 01/05/2023] Open
|
167
|
Apoptotic pore formation is associated with in-plane insertion of Bak or Bax central helices into the mitochondrial outer membrane. Proc Natl Acad Sci U S A 2014; 111:E4076-85. [PMID: 25228770 DOI: 10.1073/pnas.1415142111] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The pivotal step on the mitochondrial pathway to apoptosis is permeabilization of the mitochondrial outer membrane (MOM) by oligomers of the B-cell lymphoma-2 (Bcl-2) family members Bak or Bax. However, how they disrupt MOM integrity is unknown. A longstanding model is that activated Bak and Bax insert two α-helices, α5 and α6, as a hairpin across the MOM, but recent insights on the oligomer structures question this model. We have clarified how these helices contribute to MOM perforation by determining that, in the oligomers, Bak α5 (like Bax α5) remains part of the protein core and that a membrane-impermeable cysteine reagent can label cysteines placed at many positions in α5 and α6 of both Bak and Bax. The results are inconsistent with the hairpin insertion model but support an in-plane model in which α5 and α6 collapse onto the membrane and insert shallowly to drive formation of proteolipidic pores.
Collapse
|
168
|
Protein arcs may form stable pores in lipid membranes. Biophys J 2014; 106:154-61. [PMID: 24411247 DOI: 10.1016/j.bpj.2013.11.4490] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2013] [Revised: 11/04/2013] [Accepted: 11/22/2013] [Indexed: 01/22/2023] Open
Abstract
Electron microscopy and atomic force microscopy images of cholesterol-dependent cytolysins and related proteins that form large pores in lipid membranes have revealed the presence of incomplete rings, or arcs. Some evidence indicates that these arcs are inserted into the membrane and induce membrane leakage, but other experiments seem to refute that. Could such pores, only partially lined by protein, be kinetically and thermodynamically stable? How would the lipids be structured in such a pore? Using the antimicrobial peptide protegrin-1 as a model, we test the stability of pores only partially lined by peptide using all-atom molecular dynamics simulations in POPC and POPE/POPG membranes. The data show that, whereas pure lipid pores close rapidly, pores partially lined by protegrin arcs are stable for at least 300 ns. Estimates of the thermodynamic stability of these arcs using line tension data and implicit solvent calculations show that these arcs can be marginally stable in both zwitterionic and anionic membranes. Arcs provide an explanation for the observed ion selectivity in protegrin electrophysiology experiments and could possibly be involved in other membrane permeabilization processes where lipids are thought to participate, such as those induced by antimicrobial peptides and colicins, as well as the Bax apoptotic pore.
Collapse
|
169
|
Draeger A, Schoenauer R, Atanassoff AP, Wolfmeier H, Babiychuk EB. Dealing with damage: plasma membrane repair mechanisms. Biochimie 2014; 107 Pt A:66-72. [PMID: 25183513 DOI: 10.1016/j.biochi.2014.08.008] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 08/15/2014] [Indexed: 12/22/2022]
Abstract
Eukaryotic cells have developed repair mechanisms, which allow them to reseal their membrane in order to prevent the efflux of cytoplasmic constituents and the uncontrolled influx of calcium. After injury, the Ca(2+)-concentration gradient fulfils a dual function: it provides guidance cues for the repair machinery and directly activates the molecules, which have a repair function. Depending on the nature of injury, the morphology of the cell and the severity of injury, the membrane resealing can be effected by lysosomal exocytosis, microvesicle shedding or a combination of both. Likewise, exocytosis is often followed by the endocytic uptake of lesions. Additionally, since plasmalemmal resealing must be attempted, even after extensive injury in order to prevent cell lysis, the restoration of membrane integrity can be achieved by ceramide-driven invagination of the lipid bilayer, during which the cell is prepared for apoptotic disposal. Plasmalemmal injury can be contained by a surfeit of plasma membrane, which serves as a trap for toxic substances: either passively by an abundance of cellular protrusions, or actively by membrane blebbing.
Collapse
Affiliation(s)
- Annette Draeger
- Department of Cell Biology, Institute of Anatomy, University of Bern, Baltzerstr. 2, 3012 Bern, Switzerland.
| | - Roman Schoenauer
- Department of Cell Biology, Institute of Anatomy, University of Bern, Baltzerstr. 2, 3012 Bern, Switzerland
| | - Alexander P Atanassoff
- Department of Cell Biology, Institute of Anatomy, University of Bern, Baltzerstr. 2, 3012 Bern, Switzerland
| | - Heidi Wolfmeier
- Department of Cell Biology, Institute of Anatomy, University of Bern, Baltzerstr. 2, 3012 Bern, Switzerland
| | - Eduard B Babiychuk
- Department of Cell Biology, Institute of Anatomy, University of Bern, Baltzerstr. 2, 3012 Bern, Switzerland
| |
Collapse
|
170
|
Gurnev PA, Nestorovich EM. Channel-forming bacterial toxins in biosensing and macromolecule delivery. Toxins (Basel) 2014; 6:2483-540. [PMID: 25153255 PMCID: PMC4147595 DOI: 10.3390/toxins6082483] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 08/08/2014] [Accepted: 08/08/2014] [Indexed: 12/19/2022] Open
Abstract
To intoxicate cells, pore-forming bacterial toxins are evolved to allow for the transmembrane traffic of different substrates, ranging from small inorganic ions to cell-specific polypeptides. Recent developments in single-channel electrical recordings, X-ray crystallography, protein engineering, and computational methods have generated a large body of knowledge about the basic principles of channel-mediated molecular transport. These discoveries provide a robust framework for expansion of the described principles and methods toward use of biological nanopores in the growing field of nanobiotechnology. This article, written for a special volume on "Intracellular Traffic and Transport of Bacterial Protein Toxins", reviews the current state of applications of pore-forming bacterial toxins in small- and macromolecule-sensing, targeted cancer therapy, and drug delivery. We discuss the electrophysiological studies that explore molecular details of channel-facilitated protein and polymer transport across cellular membranes using both natural and foreign substrates. The review focuses on the structurally and functionally different bacterial toxins: gramicidin A of Bacillus brevis, α-hemolysin of Staphylococcus aureus, and binary toxin of Bacillus anthracis, which have found their "second life" in a variety of developing medical and technological applications.
Collapse
Affiliation(s)
- Philip A Gurnev
- Physics Department, University of Massachusetts, Amherst, MA 01003, USA.
| | | |
Collapse
|
171
|
Baker MAB, Rojko N, Cronin B, Anderluh G, Wallace MI. Photobleaching Reveals Heterogeneous Stoichiometry for Equinatoxin II Oligomers. Chembiochem 2014; 15:2139-45. [DOI: 10.1002/cbic.201300799] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Indexed: 01/19/2023]
|
172
|
The formation of tau pore-like structures is prevalent and cell specific: possible implications for the disease phenotypes. Acta Neuropathol Commun 2014; 2:56. [PMID: 24887264 PMCID: PMC4231072 DOI: 10.1186/2051-5960-2-56] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 05/13/2014] [Indexed: 12/01/2022] Open
Abstract
Pathological aggregation of the microtubule-associated protein tau and subsequent accumulation of neurofibrillary tangles (NFTs) or other tau-containing inclusions are defining histopathological features of many neurodegenerative diseases, which are collectively known as tauopathies. Due to conflicting results regarding a correlation between the presence of NFTs and disease progression, the mechanism linking pathological tau aggregation with cell death is poorly understood. An emerging view is that NFTs are not the toxic entity in tauopathies; rather, tau intermediates between monomers and NFTs are pathogenic. Several proteins associated with neurodegenerative diseases, such as β-amyloid (Aβ) and α-synuclein, have the tendency to form pore-like amyloid structures (annular protofibrils, APFs) that mimic the membrane-disrupting properties of pore-forming protein toxins. The present study examined the similarities of tau APFs with other tau amyloid species and showed for the first time the presence of tau APFs in brain tissue from patients with progressive supranuclear palsy (PSP) and dementia with Lewy bodies (DLB), as well as in the P301L mouse model, which overexpresses mutated tau. Furthermore, we found that APFs are preceded by tau oligomers and do not go on to form NFTs, evading fibrillar fate. Collectively, our results demonstrate that in vivo APF formation depends on mutations in tau, phosphorylation levels, and cell type. These findings establish the pathological significance of tau APFs in vivo and highlight their suitability as therapeutic targets for several neurodegenerative tauopathies.
Collapse
|
173
|
Wang G. Human antimicrobial peptides and proteins. Pharmaceuticals (Basel) 2014; 7:545-94. [PMID: 24828484 PMCID: PMC4035769 DOI: 10.3390/ph7050545] [Citation(s) in RCA: 362] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 04/15/2014] [Accepted: 04/29/2014] [Indexed: 12/11/2022] Open
Abstract
As the key components of innate immunity, human host defense antimicrobial peptides and proteins (AMPs) play a critical role in warding off invading microbial pathogens. In addition, AMPs can possess other biological functions such as apoptosis, wound healing, and immune modulation. This article provides an overview on the identification, activity, 3D structure, and mechanism of action of human AMPs selected from the antimicrobial peptide database. Over 100 such peptides have been identified from a variety of tissues and epithelial surfaces, including skin, eyes, ears, mouths, gut, immune, nervous and urinary systems. These peptides vary from 10 to 150 amino acids with a net charge between -3 and +20 and a hydrophobic content below 60%. The sequence diversity enables human AMPs to adopt various 3D structures and to attack pathogens by different mechanisms. While α-defensin HD-6 can self-assemble on the bacterial surface into nanonets to entangle bacteria, both HNP-1 and β-defensin hBD-3 are able to block cell wall biosynthesis by binding to lipid II. Lysozyme is well-characterized to cleave bacterial cell wall polysaccharides but can also kill bacteria by a non-catalytic mechanism. The two hydrophobic domains in the long amphipathic α-helix of human cathelicidin LL-37 lays the basis for binding and disrupting the curved anionic bacterial membrane surfaces by forming pores or via the carpet model. Furthermore, dermcidin may serve as ion channel by forming a long helix-bundle structure. In addition, the C-type lectin RegIIIα can initially recognize bacterial peptidoglycans followed by pore formation in the membrane. Finally, histatin 5 and GAPDH(2-32) can enter microbial cells to exert their effects. It appears that granulysin enters cells and kills intracellular pathogens with the aid of pore-forming perforin. This arsenal of human defense proteins not only keeps us healthy but also inspires the development of a new generation of personalized medicine to combat drug-resistant superbugs, fungi, viruses, parasites, or cancer. Alternatively, multiple factors (e.g., albumin, arginine, butyrate, calcium, cyclic AMP, isoleucine, short-chain fatty acids, UV B light, vitamin D, and zinc) are able to induce the expression of antimicrobial peptides, opening new avenues to the development of anti-infectious drugs.
Collapse
Affiliation(s)
- Guangshun Wang
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, 986495 Nebraska Medical Center, Omaha, NE 68198-6495, USA.
| |
Collapse
|
174
|
Dondelinger Y, Declercq W, Montessuit S, Roelandt R, Goncalves A, Bruggeman I, Hulpiau P, Weber K, Sehon CA, Marquis RW, Bertin J, Gough PJ, Savvides S, Martinou JC, Bertrand MJM, Vandenabeele P. MLKL compromises plasma membrane integrity by binding to phosphatidylinositol phosphates. Cell Rep 2014; 7:971-81. [PMID: 24813885 DOI: 10.1016/j.celrep.2014.04.026] [Citation(s) in RCA: 736] [Impact Index Per Article: 66.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 04/09/2014] [Accepted: 04/18/2014] [Indexed: 10/25/2022] Open
Abstract
Although mixed lineage kinase domain-like (MLKL) protein has emerged as a specific and crucial protein for necroptosis induction, how MLKL transduces the death signal remains poorly understood. Here, we demonstrate that the full four-helical bundle domain (4HBD) in the N-terminal region of MLKL is required and sufficient to induce its oligomerization and trigger cell death. Moreover, we found that a patch of positively charged amino acids on the surface of the 4HBD binds to phosphatidylinositol phosphates (PIPs) and allows recruitment of MLKL to the plasma membrane. Importantly, we found that recombinant MLKL, but not a mutant lacking these positive charges, induces leakage of PIP-containing liposomes as potently as BAX, supporting a model in which MLKL induces necroptosis by directly permeabilizing the plasma membrane. Accordingly, we found that inhibiting the formation of PI(5)P and PI(4,5)P2 specifically inhibits tumor necrosis factor (TNF)-mediated necroptosis but not apoptosis.
Collapse
Affiliation(s)
- Yves Dondelinger
- VIB Inflammation Research Center, Technologiepark 927, 9052 Zwijnaarde-Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, 9052 Zwijnaarde-Ghent, Belgium
| | - Wim Declercq
- VIB Inflammation Research Center, Technologiepark 927, 9052 Zwijnaarde-Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, 9052 Zwijnaarde-Ghent, Belgium
| | - Sylvie Montessuit
- Department of Cell Biology, University of Geneva, 1211 Geneva 4, Switzerland
| | - Ria Roelandt
- VIB Inflammation Research Center, Technologiepark 927, 9052 Zwijnaarde-Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, 9052 Zwijnaarde-Ghent, Belgium
| | - Amanda Goncalves
- Microscopy Core Facility, VIB Inflammation Research Center, VIB/Ghent University, Technologiepark 927, 9052 Zwijnaarde-Ghent, Belgium
| | - Inge Bruggeman
- VIB Inflammation Research Center, Technologiepark 927, 9052 Zwijnaarde-Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, 9052 Zwijnaarde-Ghent, Belgium
| | - Paco Hulpiau
- VIB Inflammation Research Center, Technologiepark 927, 9052 Zwijnaarde-Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, 9052 Zwijnaarde-Ghent, Belgium
| | - Kathrin Weber
- VIB Inflammation Research Center, Technologiepark 927, 9052 Zwijnaarde-Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, 9052 Zwijnaarde-Ghent, Belgium
| | - Clark A Sehon
- Pattern Recognition Receptor Discovery Performance Unit, Immuno-Inflammation Therapeutic Area, GlaxoSmithKline, Collegeville, PA 19426, USA
| | - Robert W Marquis
- Pattern Recognition Receptor Discovery Performance Unit, Immuno-Inflammation Therapeutic Area, GlaxoSmithKline, Collegeville, PA 19426, USA
| | - John Bertin
- Pattern Recognition Receptor Discovery Performance Unit, Immuno-Inflammation Therapeutic Area, GlaxoSmithKline, Collegeville, PA 19426, USA
| | - Peter J Gough
- Pattern Recognition Receptor Discovery Performance Unit, Immuno-Inflammation Therapeutic Area, GlaxoSmithKline, Collegeville, PA 19426, USA
| | - Savvas Savvides
- Unit for Structural Biology and Biophysics, Laboratory for Protein Biochemistry and Biomolecular Engineering, Ghent University, K.L. Ledeganckstraat 35, 9000 Ghent, Belgium
| | | | - Mathieu J M Bertrand
- VIB Inflammation Research Center, Technologiepark 927, 9052 Zwijnaarde-Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, 9052 Zwijnaarde-Ghent, Belgium
| | - Peter Vandenabeele
- VIB Inflammation Research Center, Technologiepark 927, 9052 Zwijnaarde-Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, 9052 Zwijnaarde-Ghent, Belgium; Methusalem Program, Ghent University, Technologiepark 927, 9052 Zwijnaarde-Ghent, Belgium.
| |
Collapse
|
175
|
Grafmüller A, Knecht V. The free energy of nanopores in tense membranes. Phys Chem Chem Phys 2014; 16:11270-8. [PMID: 24780914 DOI: 10.1039/c3cp54685c] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Membrane nanopores are central players for a range of important cellular membrane remodeling processes as well as membrane rupture. Understanding pore formation in tense membranes requires comprehension of the molecular mechanism of pore formation and the associated free energy change as a function of the membrane tension. Here we propose a scheme to calculate the free energy change associated with the formation of a nanometer sized pore in molecular dynamics simulations as a function of membrane tension, which requires the calculation of only one computationally expensive potential of mean force. We show that membrane elastic theory can be used to estimate the pore formation free energy at different tension values from the free energy change in a relaxed membrane and the area expansion curves of the membranes. We have computed the pore formation free energy for a dipalmitoyl-phosphatidylcholine (DPPC) membrane at two different lateral pressure values, 1 bar and -40 bar, by calculating the potential of mean force acting on the head group of a single lipid molecule. Unrestrained simulations of the closing process confirm that the intermediate states along this reaction coordinate are reasonable and show that hydrophilic indentations spanning half the bilayer connected by a hydrophobic pore segment represent the corresponding high energy transition state. A comparison of the stability of simulated membranes to experiment at high loading rates show that, contrary to expectation, pores form too easily in small simulated membrane patches. This discrepancy originates from a combination of the absence of ions in the simulations and the small membrane size.
Collapse
Affiliation(s)
- Andrea Grafmüller
- Max Planck Institute for Colloids and Interfaces, 14424 Potsdam, Germany.
| | | |
Collapse
|
176
|
Identification of two novel cytolysins from the hydrozoan Olindias sambaquiensis (Cnidaria). J Venom Anim Toxins Incl Trop Dis 2014; 20:10. [PMID: 24666608 PMCID: PMC3987661 DOI: 10.1186/1678-9199-20-10] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 01/30/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Although the hydrozoan Olindias sambaquiensis is the most common jellyfish associated with human envenomation in southeastern and southern Brazil, information about the composition of its venom is rare. Thus, the present study aimed to analyze pharmacological aspects of O. sambaquiensis venom as well as clinical manifestations observed in affected patients. Crude protein extracts were prepared from the tentacles of animals; peptides and proteins were sequenced and submitted to circular dichroism spectroscopy. Creatine kinase, cytotoxicity and hemolytic activity were evaluated by specific methods. RESULTS We identified two novel cytolysins denominated oshem 1 and oshem 2 from the tentacles of this jellyfish. The cytolysins presented the amino acid sequences NEGKAKCGNTAGSKLTFKSADECTKTGQK (oshem 1) and NNSKAKCGDLAGWSKLTFKSADECTKTGQKS (oshem 2) with respective molecular masses of 3.013 kDa and 3.375 kDa. Circular dichroism revealed that oshem 1 has random coils and small α-helix conformation as main secondary structure whereas oshem 2 presents mainly random coils as its main secondary structure probably due to the presence of W (13) in oshem 2. The hemolysis levels induced by oshem 1 and oshem 2 using a peptide concentration of 0.2 mg/mL were, respectively, 51.7 ± 6.5% and 32.9 ± 8.7% (n = 12 and p ≤ 0.05). Oshem 1 and oshem 2 showed significant myonecrotic activity, evaluated by respective CK level measurements of 1890.4 ± 89 and 1212.5 ± 103 (n = 4 and p ≤ 0.05). In addition, myonecrosis was also evaluated by cell survival, which was measured at 72.4 ± 8.6% and 83.5 ± 6.7% (n = 12 and p ≤ 0.05), respectively. The structural analysis showed that both oshem 1 and oshem 2 should be classified as a small basic hemolytic peptide. CONCLUSION The amino acid sequences of two peptides were highly similar while the primary amino acid sequence analysis revealed W (22th) as the most important mutation. Finally oshem 1 and oshem 2 are the first cytolytic peptides isolated from the Olindias sambaquiensis and should probably represent a novel class of cytolytic peptides.
Collapse
|
177
|
Abstract
Bacteria secrete and harbor in their membranes a number of pore-forming proteins. Some of these are bona fide ion channels that may respond to changes in membrane tension, voltage, or pH. Others may be large translocons used for the secretion of folded or unfolded polypeptide substrates. Additionally, many secreted toxins insert into target cell membranes and form pores that either collapse membrane electrochemical gradients or provide conduits for the delivery of virulence factors. In all cases, electrophysiological approaches have yielded much progress in past decades in understanding the functional mechanisms of these pores. By monitoring the changes in current due to ion flow through the pores, these techniques are used as high-resolution tools to gather detailed information on the kinetic and permeation properties of these proteins, including those whose physiological role is not ion flux. This review highlights some of the electrophysiological studies that have advanced the field of transport by pore-forming proteins of bacterial origin.
Collapse
Affiliation(s)
- Anne H Delcour
- Department of Biology and Biochemistry, University of Houston, Houston, Texas 77204-5001;
| |
Collapse
|
178
|
Cantón PE, López-Díaz JA, Gill SS, Bravo A, Soberón M. Membrane binding and oligomer membrane insertion are necessary but insufficient for Bacillus thuringiensis Cyt1Aa toxicity. Peptides 2014; 53:286-91. [PMID: 24512949 PMCID: PMC3927797 DOI: 10.1016/j.peptides.2013.10.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 10/15/2013] [Accepted: 10/15/2013] [Indexed: 10/26/2022]
Abstract
Bacillus thuringiensis Cyt proteins are pore-forming toxins that have insecticidal activity mainly against dipteran insects. However, certain Cyt proteins have toxicity to some insect orders, but not toxicity of Cyt1Aa against lepidopteran larvae has been found. Insect specificity has been proposed to rely in specific binding to certain lipids on the brush border membrane of midgut cells since no protein receptors have been described so far. To determine the molecular basis of Cyt1Aa insect specificity we compared different steps of Cyt1Aa mode of action in a susceptible insect as the dipteran Aedes aegypti and also in the non-susceptible lepidopteran Manduca sexta. Our data shows that the lack toxicity of Cyt1Aa to M. sexta larvae does not rely on protoxin processing, membrane binding interaction, and oligomerization of Cyt1Aa since these steps were similar in the two insect species analyzed.
Collapse
Affiliation(s)
- Pablo Emiliano Cantón
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Postal 510-3, Cuernavaca 62250, Morelos, Mexico.
| | - Jazmin A López-Díaz
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Postal 510-3, Cuernavaca 62250, Morelos, Mexico.
| | - Sarjeet S Gill
- Department of Cell biology and Neuroscience, University of California, Riverside, CA 92521, United States.
| | - Alejandra Bravo
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Postal 510-3, Cuernavaca 62250, Morelos, Mexico.
| | - Mario Soberón
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Postal 510-3, Cuernavaca 62250, Morelos, Mexico.
| |
Collapse
|
179
|
Portugal L, Gringorten JL, Caputo GF, Soberón M, Muñoz-Garay C, Bravo A. Toxicity and mode of action of insecticidal Cry1A proteins from Bacillus thuringiensis in an insect cell line, CF-1. Peptides 2014; 53:292-9. [PMID: 24189038 DOI: 10.1016/j.peptides.2013.10.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 10/24/2013] [Accepted: 10/25/2013] [Indexed: 02/07/2023]
Abstract
Bacillus thuringiensis Cry toxins are insecticidal proteins used to control insect pests. The interaction of Cry toxins with the midgut of susceptible insects is a dynamic process involving activation of the toxin, binding to midgut receptors in the apical epithelium and conformational changes in the toxin molecule, leading to pore formation and cell lysis. An understanding of the molecular events underlying toxin mode of action is essential for the continued use of Cry toxins. In this work, we examined the mechanism of action of Cry1A toxins in the lepidopteran cell line CF-1, using native Cry1Ab and mutant forms of this protein that interfer with different steps in the mechanism of action, specifically, receptor binding, oligomerization or pore formation. These mutants lost activity against both Manduca sexta larvae and CF-1 cells. We also analyzed a mutation created in domain I of Cry1Ab, in which helix α-1 and part of helix α-2 were deleted (Cry1AbMod). Cry1AbMod is able to oligomerize in the absence of toxin receptors, and although it shows reduced activity against some susceptible insects, it kills insect pests that have developed resistance to native Cry1Ab. Cry1AbMod showed enhanced toxicity to CF-1, suggesting that oligomerization of native Cry1Ab may be a limiting step in its activity against CF-1 cells. The toxicity of Cry1Ac and Cry1AcMod were also analyzed. Our results suggest that some of the steps in the mode of action of Cry1A toxins are conserved in vivo in insect midgut cells and in vitro in an established cell line, CF-1.
Collapse
Affiliation(s)
- Leivi Portugal
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Postal 510-3, Cuernavaca 620, Morelos, Mexico.
| | - J Lawrence Gringorten
- Canadian Forest Service, Great Lakes Forestry Centre, 1219 Queen St. E., Sault Ste. Marie, ON P6A 2E5, Canada.
| | - Guido F Caputo
- Canadian Forest Service, Great Lakes Forestry Centre, 1219 Queen St. E., Sault Ste. Marie, ON P6A 2E5, Canada
| | - Mario Soberón
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Postal 510-3, Cuernavaca 620, Morelos, Mexico.
| | - Carlos Muñoz-Garay
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Postal 510-3, Cuernavaca 620, Morelos, Mexico.
| | - Alejandra Bravo
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Postal 510-3, Cuernavaca 620, Morelos, Mexico.
| |
Collapse
|
180
|
Piovesan AR, Martinelli AHS, Ligabue-Braun R, Schwartz JL, Carlini CR. Canavalia ensiformis urease, Jaburetox and derived peptides form ion channels in planar lipid bilayers. Arch Biochem Biophys 2014; 547:6-17. [PMID: 24583269 DOI: 10.1016/j.abb.2014.02.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2013] [Revised: 02/13/2014] [Accepted: 02/14/2014] [Indexed: 01/22/2023]
Abstract
Ureases catalyze the hydrolysis of urea into NH3 and CO2. They are synthesized by plants, fungi and bacteria but not by animals. Ureases display biological activities unrelated to their enzymatic activity, i.e., platelet and neutrophil activation, fungus inhibition and insecticidal effect. Urease from Canavalia ensiformis (jack bean) is toxic to several hemipteran and coleopteran insects. Jaburetox is an insecticidal fragment derived from jack bean urease. Among other effects, Jaburetox has been shown to interact with lipid vesicles. In this work, the ion channel activity of C. ensiformis urease, Jaburetox and three deletion mutants of Jaburetox (one lacking the N-terminal region, one lacking the C-terminal region and one missing the central β-hairpin) were tested on planar lipid bilayers. All proteins formed well resolved, highly cation-selective channels exhibiting two conducting states whose conductance ranges were 7-18pS and 32-79pS, respectively. Urease and the N-terminal mutant of Jaburetox were more active at negative potentials, while the channels of the other peptides did not display voltage-dependence. This is the first direct demonstration of the capacity of C. ensiformis urease and Jaburetox to permeabilize membranes through an ion channel-based mechanism, which may be a crucial step of their diverse biological activities, including host defense.
Collapse
Affiliation(s)
- Angela R Piovesan
- Graduate Program in Cellular and Molecular Biology, Center of Biotechnology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS CEP 91501-970, Brazil
| | - Anne H S Martinelli
- Graduate Program in Cellular and Molecular Biology, Center of Biotechnology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS CEP 91501-970, Brazil; Department of Biophysics, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS CEP 91501-970, Brazil
| | - Rodrigo Ligabue-Braun
- Graduate Program in Cellular and Molecular Biology, Center of Biotechnology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS CEP 91501-970, Brazil
| | - Jean-Louis Schwartz
- Groupe d'étude des protéines membranaires (GÉPROM, FQR-S) and Department of Physiology, Faculty of Medicine, Université de Montréal, Montreal, Quebec H3C 3J7, Canada; Centre SÈVE (FQR-NT), Université de Sherbrooke, Sherbrooke, Quebec J1K 2R, Canada.
| | - Celia R Carlini
- Graduate Program in Cellular and Molecular Biology, Center of Biotechnology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS CEP 91501-970, Brazil; Department of Biophysics, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS CEP 91501-970, Brazil.
| |
Collapse
|
181
|
Atanassoff AP, Wolfmeier H, Schoenauer R, Hostettler A, Ring A, Draeger A, Babiychuk EB. Microvesicle shedding and lysosomal repair fulfill divergent cellular needs during the repair of streptolysin O-induced plasmalemmal damage. PLoS One 2014; 9:e89743. [PMID: 24587004 PMCID: PMC3931818 DOI: 10.1371/journal.pone.0089743] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 01/23/2014] [Indexed: 12/13/2022] Open
Abstract
Pathogenic bacteria secrete pore-forming toxins that permeabilize the plasma membrane of host cells. Nucleated cells possess protective mechanisms that repair toxin-damaged plasmalemma. Currently two putative repair scenarios are debated: either the isolation of the damaged membrane regions and their subsequent expulsion as microvesicles (shedding) or lysosome-dependent repair might allow the cell to rid itself of its toxic cargo and prevent lysis. Here we provide evidence that both mechanisms operate in tandem but fulfill diverse cellular needs. The prevalence of the repair strategy varies between cell types and is guided by the severity and the localization of the initial toxin-induced damage, by the morphology of a cell and, most important, by the incidence of the secondary mechanical damage. The surgically precise action of microvesicle shedding is best suited for the instant elimination of individual toxin pores, whereas lysosomal repair is indispensable for mending of self-inflicted mechanical injuries following initial plasmalemmal permeabilization by bacterial toxins. Our study provides new insights into the functioning of non-immune cellular defenses against bacterial pathogens.
Collapse
Affiliation(s)
| | - Heidi Wolfmeier
- Department of Cell Biology, Institute of Anatomy, University of Bern, Bern, Switzerland
| | - Roman Schoenauer
- Department of Cell Biology, Institute of Anatomy, University of Bern, Bern, Switzerland
| | - Andrea Hostettler
- Department of Cell Biology, Institute of Anatomy, University of Bern, Bern, Switzerland
| | - Avi Ring
- Department of Protection, Norwegian Defence Research Establishment, Kjeller, Norway
| | - Annette Draeger
- Department of Cell Biology, Institute of Anatomy, University of Bern, Bern, Switzerland
| | - Eduard B. Babiychuk
- Department of Cell Biology, Institute of Anatomy, University of Bern, Bern, Switzerland
- * E-mail:
| |
Collapse
|
182
|
Feil SC, Ascher DB, Kuiper MJ, Tweten RK, Parker MW. Structural studies of Streptococcus pyogenes streptolysin O provide insights into the early steps of membrane penetration. J Mol Biol 2014; 426:785-92. [PMID: 24316049 PMCID: PMC4323271 DOI: 10.1016/j.jmb.2013.11.020] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 11/11/2013] [Accepted: 11/22/2013] [Indexed: 12/22/2022]
Abstract
Cholesterol-dependent cytolysins (CDCs) are a large family of bacterial toxins that exhibit a dependence on the presence of membrane cholesterol in forming large pores in cell membranes. Significant changes in the three-dimensional structure of these toxins are necessary to convert the soluble monomeric protein into a membrane pore. We have determined the crystal structure of the archetypical member of the CDC family, streptolysin O (SLO), a virulence factor from Streptococcus pyogenes. The overall fold is similar to previously reported CDC structures, although the C-terminal domain is in a different orientation with respect to the rest of the molecule. Surprisingly, a signature stretch of CDC sequence called the undecapeptide motif, a key region involved in membrane recognition, adopts a very different structure in SLO to that of the well-characterized CDC perfringolysin O (PFO), although the sequences in this region are identical. An analysis reveals that, in PFO, there are complementary interactions between the motif and the rest of domain 4 that are lost in SLO. Molecular dynamics simulations suggest that the loss of a salt bridge in SLO and a cation-pi interaction are determining factors in the extended conformation of the motif, which in turn appears to result in a greater flexibility of the neighboring L1 loop that houses a cholesterol-sensing motif. These differences may explain the differing abilities of SLO and PFO to efficiently penetrate target cell membranes in the first step of toxin insertion into the membrane.
Collapse
Affiliation(s)
- Susanne C Feil
- ACRF Rational Drug Discovery Centre, Biota Structural Biology Laboratory, St. Vincent's Institute of Medical Research, Fitzroy, Victoria 3065, Australia
| | - David B Ascher
- ACRF Rational Drug Discovery Centre, Biota Structural Biology Laboratory, St. Vincent's Institute of Medical Research, Fitzroy, Victoria 3065, Australia
| | - Michael J Kuiper
- Victorian Life Sciences Computation Initiative, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Rodney K Tweten
- Department of Microbiology and Immunology, University of Oklahoma, Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Michael W Parker
- ACRF Rational Drug Discovery Centre, Biota Structural Biology Laboratory, St. Vincent's Institute of Medical Research, Fitzroy, Victoria 3065, Australia; Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
183
|
Schoenauer R, Atanassoff AP, Wolfmeier H, Pelegrin P, Babiychuk EB, Draeger A. P2X7 receptors mediate resistance to toxin-induced cell lysis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:915-22. [PMID: 24487066 DOI: 10.1016/j.bbamcr.2014.01.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 01/17/2014] [Accepted: 01/23/2014] [Indexed: 02/02/2023]
Abstract
In the majority of cells, the integrity of the plasmalemma is recurrently compromised by mechanical or chemical stress. Serum complement or bacterial pore-forming toxins can perforate the plasma membrane provoking uncontrolled Ca(2+) influx, loss of cytoplasmic constituents and cell lysis. Plasmalemmal blebbing has previously been shown to protect cells against bacterial pore-forming toxins. The activation of the P2X7 receptor (P2X7R), an ATP-gated trimeric membrane cation channel, triggers Ca(2+) influx and induces blebbing. We have investigated the role of the P2X7R as a regulator of plasmalemmal protection after toxin-induced membrane perforation caused by bacterial streptolysin O (SLO). Our results show that the expression and activation of the P2X7R furnishes cells with an increased chance of surviving attacks by SLO. This protective effect can be demonstrated not only in human embryonic kidney 293 (HEK) cells transfected with the P2X7R, but also in human mast cells (HMC-1), which express the receptor endogenously. In addition, this effect is abolished by treatment with blebbistatin or A-438079, a selective P2X7R antagonist. Thus blebbing, which is elicited by the ATP-mediated, paracrine activation of the P2X7R, is part of a cellular non-immune defense mechanism. It pre-empts plasmalemmal damage and promotes cellular survival. This mechanism is of considerable importance for cells of the immune system which carry the P2X7R and which are specifically exposed to toxin attacks.
Collapse
Affiliation(s)
| | | | | | - Pablo Pelegrin
- Inflammation and Experimental Surgery Research, University Hospital Virgen de la Arrixaca - FFIS, Murcia, Spain
| | | | - Annette Draeger
- Institute of Anatomy, University of Bern, Bern, Switzerland.
| |
Collapse
|
184
|
Abstract
The cell membrane is crucial for protection of the cell from its environment. MACPF/CDC proteins are a large superfamily known to be essential for bacterial pathogenesis and proper functioning of the immune system. The three most studied groups of MACPF/CDC proteins are cholesterol-dependent cytolysins from bacteria, the membrane attack complex of complement and human perforin. Their primary function is to form transmembrane pores in target cell membranes. The common mechanism of action comprises water-soluble monomeric proteins binding to the host cell membrane, oligomerization, and formation of a functional pore. This causes a disturbance in gradients of ions and other molecules across the membrane and can lead to cell death. Cells react to this form of attack in a complex manner. Responses can be general, like removing the perforated part of the membrane, or more specific, in many cases depending on binding of proteins to specific receptors to trigger various signalling cascades.
Collapse
|
185
|
Islam MZ, Alam JM, Tamba Y, Karal MAS, Yamazaki M. The single GUV method for revealing the functions of antimicrobial, pore-forming toxin, and cell-penetrating peptides or proteins. Phys Chem Chem Phys 2014; 16:15752-67. [DOI: 10.1039/c4cp00717d] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The single GUV method provides detailed information on the elementary processes of peptide/protein-induced pore formation in lipid membranes and the entry of peptides into a GUV; specifically, the GUV method provides the rate constants of these processes.
Collapse
Affiliation(s)
- Md. Zahidul Islam
- Integrated Bioscience Section
- Graduate School of Science and Technology
- Shizuoka University
- Shizuoka, Japan
| | - Jahangir Md. Alam
- Nanomaterials Research Division
- Research Institute of Electronics
- Shizuoka University
- Shizuoka, Japan
| | | | - Mohammad Abu Sayem Karal
- Integrated Bioscience Section
- Graduate School of Science and Technology
- Shizuoka University
- Shizuoka, Japan
| | - Masahito Yamazaki
- Integrated Bioscience Section
- Graduate School of Science and Technology
- Shizuoka University
- Shizuoka, Japan
- Nanomaterials Research Division
| |
Collapse
|
186
|
Abstract
Staphylococcus aureus secretes a number of host-injurious toxins, among the most prominent of which is the small β-barrel pore-forming toxin α-hemolysin. Initially named based on its properties as a red blood cell lytic toxin, early studies suggested a far greater complexity of α-hemolysin action as nucleated cells also exhibited distinct responses to intoxication. The hemolysin, most aptly referred to as α-toxin based on its broad range of cellular specificity, has long been recognized as an important cause of injury in the context of both skin necrosis and lethal infection. The recent identification of ADAM10 as a cellular receptor for α-toxin has provided keen insight on the biology of toxin action during disease pathogenesis, demonstrating the molecular mechanisms by which the toxin causes tissue barrier disruption at host interfaces lined by epithelial or endothelial cells. This review highlights both the historical studies that laid the groundwork for nearly a century of research on α-toxin and key findings on the structural and functional biology of the toxin, in addition to discussing emerging observations that have significantly expanded our understanding of this toxin in S. aureus disease. The identification of ADAM10 as a proteinaceous receptor for the toxin not only provides a greater appreciation of truths uncovered by many historic studies, but now affords the opportunity to more extensively probe and understand the role of α-toxin in modulation of the complex interaction of S. aureus with its human host.
Collapse
Affiliation(s)
- Bryan J. Berube
- Department of Microbiology, The University of Chicago, 920 E. 58th Street Chicago, IL 60637, USA; E-Mail:
| | - Juliane Bubeck Wardenburg
- Department of Microbiology, The University of Chicago, 920 E. 58th Street Chicago, IL 60637, USA; E-Mail:
- Department of Pediatrics, The University of Chicago, 5721 S. Maryland Ave. Chicago, IL 60637, USA
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-773-834-9763; Fax: +1-773-834-8150
| |
Collapse
|
187
|
Argôlo-Filho RC, Loguercio LL. Bacillus thuringiensis Is an Environmental Pathogen and Host-Specificity Has Developed as an Adaptation to Human-Generated Ecological Niches. INSECTS 2013; 5:62-91. [PMID: 26462580 PMCID: PMC4592628 DOI: 10.3390/insects5010062] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 12/03/2013] [Accepted: 12/13/2013] [Indexed: 11/16/2022]
Abstract
Bacillus thuringiensis (Bt) has been used successfully as a biopesticide for more than 60 years. More recently, genes encoding their toxins have been used to transform plants and other organisms. Despite the large amount of research on this bacterium, its true ecology is still a matter of debate, with two major viewpoints dominating: while some understand Bt as an insect pathogen, others see it as a saprophytic bacteria from soil. In this context, Bt's pathogenicity to other taxa and the possibility that insects may not be the primary targets of Bt are also ideas that further complicate this scenario. The existence of conflicting research results, the difficulty in developing broader ecological and genetics studies, and the great genetic plasticity of this species has cluttered a definitive concept. In this review, we gathered information on the aspects of Bt ecology that are often ignored, in the attempt to clarify the lifestyle, mechanisms of transmission and target host range of this bacterial species. As a result, we propose an integrated view to account for Bt ecology. Although Bt is indeed a pathogenic bacterium that possesses a broad arsenal for virulence and defense mechanisms, as well as a wide range of target hosts, this seems to be an adaptation to specific ecological changes acting on a versatile and cosmopolitan environmental bacterium. Bt pathogenicity and host-specificity was favored evolutionarily by increased populations of certain insect species (or other host animals), whose availability for colonization were mostly caused by anthropogenic activities. These have generated the conditions for ecological imbalances that favored dominance of specific populations of insects, arachnids, nematodes, etc., in certain areas, with narrower genetic backgrounds. These conditions provided the selective pressure for development of new hosts for pathogenic interactions, and so, host specificity of certain strains.
Collapse
Affiliation(s)
- Ronaldo Costa Argôlo-Filho
- Department of Biological Sciences, State University of Santa Cruz (UESC), Rod, Ilhéus-Itabuna, Km-16, Ilhéus-BA 45662-900, Brazil.
| | - Leandro Lopes Loguercio
- Department of Biological Sciences, State University of Santa Cruz (UESC), Rod, Ilhéus-Itabuna, Km-16, Ilhéus-BA 45662-900, Brazil.
| |
Collapse
|
188
|
Marchioretto M, Podobnik M, Dalla Serra M, Anderluh G. What planar lipid membranes tell us about the pore-forming activity of cholesterol-dependent cytolysins. Biophys Chem 2013; 182:64-70. [DOI: 10.1016/j.bpc.2013.06.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 06/19/2013] [Accepted: 06/19/2013] [Indexed: 12/21/2022]
|
189
|
Zhang Z, Zhou Y, Sun J, Mao P, Jing X, Ma X, Ma L. Four novel antimicrobial peptides derived from human C8α-MACPF. Biotechnol Lett 2013; 36:319-25. [PMID: 24101243 DOI: 10.1007/s10529-013-1359-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 09/18/2013] [Indexed: 11/24/2022]
Abstract
Antimicrobial peptides are active against a diverse spectrum of microorganisms. Using a bioinformatics method, six potential novel antimicrobial peptides, A1, C1, A2, A3, C2 and A4, were identified in the C8α complement component. The corresponding genes were then cloned into a new vector as fusions with the self-cleavage protein N(pro) protein mutant EDDIE gene. The expressed or synthetic peptides, A1, A2, A3 and A4, showed antimicrobial activities against several bacteria, while peptides C1 and C2 did not. Peptides A1 to A4 showed no hemolytic activities over 3 h when at 500 μg/ml. Thus, A1, A2, A3 and A4, derived from the C8α complement system, are novel antimicrobial peptides.
Collapse
Affiliation(s)
- Zhen Zhang
- Hubei Key Laboratory of Industrial Biotechnology, College of Life Science, Hubei University, Wuhan, 430062, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
190
|
Cationic polymers inhibit the conductance of lysenin channels. ScientificWorldJournal 2013; 2013:316758. [PMID: 24191139 PMCID: PMC3804441 DOI: 10.1155/2013/316758] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 09/12/2013] [Indexed: 11/29/2022] Open
Abstract
The pore-forming toxin lysenin self-assembles large and stable conductance channels in natural and artificial lipid membranes. The lysenin channels exhibit unique regulation capabilities, which open unexplored possibilities to control the transport of ions and molecules through artificial and natural lipid membranes. Our investigations demonstrate that the positively charged polymers polyethyleneimine and chitosan inhibit the conducting properties of lysenin channels inserted into planar lipid membranes. The preservation of the inhibitory effect following addition of charged polymers on either side of the supporting membrane suggests the presence of multiple binding sites within the channel's structure and a multistep inhibition mechanism that involves binding and trapping. Complete blockage of the binding sites with divalent cations prevents further inhibition in conductance induced by the addition of cationic polymers and supports the hypothesis that the binding sites are identical for both multivalent metal cations and charged polymers. The investigation at the single-channel level has shown distinct complete blockages of each of the inserted channels. These findings reveal key structural characteristics which may provide insight into lysenin's functionality while opening innovative approaches for the development of applications such as transient cell permeabilization and advanced drug delivery systems.
Collapse
|
191
|
Wager B, Faudry E, Wills T, Attree I, Delcour AH. Current fluctuation analysis of the PopB and PopD translocon components of the Pseudomonas aeruginosa type III secretion system. Biophys J 2013; 104:1445-55. [PMID: 23561521 DOI: 10.1016/j.bpj.2013.02.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Revised: 02/05/2013] [Accepted: 02/12/2013] [Indexed: 12/24/2022] Open
Abstract
Pseudomonas aeruginosa is a major agent of hospital-acquired infections, and a pathogen of immunocompromised, cystic fibrosis and burn patients. It uses a type III secretion system for the injection of toxins directly into host cells, through a translocon assembled in the host cell membrane. The hydrophobic translocator subunits of this system, PopB and PopD, have membrane permeabilizing activity based on previous dye leakage experiments, but little is known about the mechanism of assembly and the pore properties of this translocon. Using electrophysiology, we have observed that an equimolar mixture of PopB and PopD induces current fluctuations in planar lipid bilayers, with a unitary conductance of 57 pS in 1 M KCl and numerous larger conductance levels. The activity depends on voltage magnitude and polarity, and increases with protein concentration and the duration of the voltage step. PopB alone is sufficient for producing current fluctuations. PopD rarely displays any transitions, but accelerates PopB onset of activity. The effects of pH, ionic strength, and lipid composition have also been explored. Our data provide new, to our knowledge, insights into the behavior of PopB and PopD by highlighting similarities with secreted pore-forming peptides, and by suggesting that PopB/PopD may form channels via the toroidal pore model. We believe that the events we report here represent the initial steps of insertion and assembly of these translocators in the membrane.
Collapse
Affiliation(s)
- Beau Wager
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | | | | | | | | |
Collapse
|
192
|
Ganash M, Phung D, Sedelnikova SE, Lindbäck T, Granum PE, Artymiuk PJ. Structure of the NheA component of the Nhe toxin from Bacillus cereus: implications for function. PLoS One 2013; 8:e74748. [PMID: 24040335 PMCID: PMC3769298 DOI: 10.1371/journal.pone.0074748] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 08/06/2013] [Indexed: 12/03/2022] Open
Abstract
The structure of NheA, a component of the Bacillus cereus Nhe tripartite toxin, has been solved at 2.05 Å resolution using selenomethionine multiple-wavelength anomalous dispersion (MAD). The structure shows it to have a fold that is similar to the Bacillus cereus Hbl-B and E. coli ClyA toxins, and it is therefore a member of the ClyA superfamily of α-helical pore forming toxins (α-PFTs), although its head domain is significantly enlarged compared with those of ClyA or Hbl-B. The hydrophobic β-hairpin structure that is a characteristic of these toxins is replaced by an amphipathic β-hairpin connected to the main structure via a β-latch that is reminiscent of a similar structure in the β-PFT Staphylococcus aureus α-hemolysin. Taken together these results suggest that, although it is a member of an archetypal α-PFT family of toxins, NheA may be capable of forming a β rather than an α pore.
Collapse
Affiliation(s)
- Magdah Ganash
- The Krebs Institute, Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
| | - Danh Phung
- The Krebs Institute, Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
- Department of Food Safety and Infection Biology, Norwegian School of Veterinary Science, Oslo, Norway
| | - Svetlana E. Sedelnikova
- The Krebs Institute, Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
| | - Toril Lindbäck
- Department of Food Safety and Infection Biology, Norwegian School of Veterinary Science, Oslo, Norway
| | - Per Einar Granum
- Department of Food Safety and Infection Biology, Norwegian School of Veterinary Science, Oslo, Norway
- * E-mail: (PJA); (PEG)
| | - Peter J. Artymiuk
- The Krebs Institute, Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
- * E-mail: (PJA); (PEG)
| |
Collapse
|
193
|
Fahie M, Romano FB, Chisholm C, Heuck AP, Zbinden M, Chen M. A non-classical assembly pathway of Escherichia coli pore-forming toxin cytolysin A. J Biol Chem 2013; 288:31042-51. [PMID: 24019520 DOI: 10.1074/jbc.m113.475350] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Cytolysin A (ClyA) is an α-pore forming toxin from pathogenic Escherichia coli (E. coli) and Salmonella enterica. Here, we report that E. coli ClyA assembles into an oligomeric structure in solution in the absence of either bilayer membranes or detergents at physiological temperature. These oligomers can rearrange to create transmembrane pores when in contact with detergents or biological membranes. Intrinsic fluorescence measurements revealed that oligomers adopted an intermediate state found during the transition between monomer and transmembrane pore. These results indicate that the water-soluble oligomer represents a prepore intermediate state. Furthermore, we show that ClyA does not form transmembrane pores on E. coli lipid membranes. Because ClyA is delivered to the target host cell in an oligomeric conformation within outer membrane vesicles (OMVs), our findings suggest ClyA forms a prepore oligomeric structure independently of the lipid membrane within the OMV. The proposed model for ClyA represents a non-classical pathway to attack eukaryotic host cells.
Collapse
|
194
|
Rojko N, Kristan KČ, Viero G, Žerovnik E, Maček P, Dalla Serra M, Anderluh G. Membrane damage by an α-helical pore-forming protein, Equinatoxin II, proceeds through a succession of ordered steps. J Biol Chem 2013; 288:23704-15. [PMID: 23803608 DOI: 10.1074/jbc.m113.481572] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Actinoporin equinatoxin II (EqtII) is an archetypal example of α-helical pore-forming toxins that porate cellular membranes by the use of α-helices. Previous studies proposed several steps in the pore formation: binding of monomeric protein onto the membrane, followed by oligomerization and insertion of the N-terminal α-helix into the lipid bilayer. We studied these separate steps with an EqtII triple cysteine mutant. The mutant was engineered to monitor the insertion of the N terminus into the lipid bilayer by labeling Cys-18 with a fluorescence probe and at the same time to control the flexibility of the N-terminal region by the disulfide bond formed between cysteines introduced at positions 8 and 69. The insertion of the N terminus into the membrane proceeded shortly after the toxin binding and was followed by oligomerization. The oxidized, non-lytic, form of the mutant was still able to bind to membranes and oligomerize at the same level as the wild-type or the reduced form. However, the kinetics of the N-terminal helix insertion, the release of calcein from erythrocyte ghosts, and hemolysis of erythrocytes was much slower when membrane-bound oxidized mutant was reduced by the addition of the reductant. Results show that the N-terminal region needs to be inserted in the lipid membrane before the oligomerization into the final pore and imply that there is no need for a stable prepore formation. This is different from β-pore-forming toxins that often form β-barrel pores via a stable prepore complex.
Collapse
Affiliation(s)
- Nejc Rojko
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, 1000 Ljubljana, Slovenia
| | | | | | | | | | | | | |
Collapse
|
195
|
Los FCO, Randis TM, Aroian RV, Ratner AJ. Role of pore-forming toxins in bacterial infectious diseases. Microbiol Mol Biol Rev 2013; 77:173-207. [PMID: 23699254 PMCID: PMC3668673 DOI: 10.1128/mmbr.00052-12] [Citation(s) in RCA: 299] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Pore-forming toxins (PFTs) are the most common bacterial cytotoxic proteins and are required for virulence in a large number of important pathogens, including Streptococcus pneumoniae, group A and B streptococci, Staphylococcus aureus, Escherichia coli, and Mycobacterium tuberculosis. PFTs generally disrupt host cell membranes, but they can have additional effects independent of pore formation. Substantial effort has been devoted to understanding the molecular mechanisms underlying the functions of certain model PFTs. Likewise, specific host pathways mediating survival and immune responses in the face of toxin-mediated cellular damage have been delineated. However, less is known about the overall functions of PFTs during infection in vivo. This review focuses on common themes in the area of PFT biology, with an emphasis on studies addressing the roles of PFTs in in vivo and ex vivo models of colonization or infection. Common functions of PFTs include disruption of epithelial barrier function and evasion of host immune responses, which contribute to bacterial growth and spreading. The widespread nature of PFTs make this group of toxins an attractive target for the development of new virulence-targeted therapies that may have broad activity against human pathogens.
Collapse
Affiliation(s)
| | - Tara M. Randis
- Department of Pediatrics, Columbia University, New York, New York, USA
| | - Raffi V. Aroian
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California San Diego, La Jolla, California, USA
| | - Adam J. Ratner
- Department of Pediatrics, Columbia University, New York, New York, USA
| |
Collapse
|
196
|
Role of pore-forming toxins in neonatal sepsis. Clin Dev Immunol 2013; 2013:608456. [PMID: 23710203 PMCID: PMC3655490 DOI: 10.1155/2013/608456] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 03/27/2013] [Indexed: 11/17/2022]
Abstract
Protein toxins are important virulence factors contributing to neonatal sepsis. The major pathogens of neonatal sepsis, group B Streptococci, Escherichia coli, Listeria monocytogenes, and Staphylococcus aureus, secrete toxins of different molecular nature, which are key for defining the disease. Amongst these toxins are pore-forming exotoxins that are expressed as soluble monomers prior to engagement of the target cell membrane with subsequent formation of an aqueous membrane pore. Membrane pore formation is not only a means for immediate lysis of the targeted cell but also a general mechanism that contributes to penetration of epithelial barriers and evasion of the immune system, thus creating survival niches for the pathogens. Pore-forming toxins, however, can also contribute to the induction of inflammation and hence to the manifestation of sepsis. Clearly, pore-forming toxins are not the sole factors that drive sepsis progression, but they often act in concert with other bacterial effectors, especially in the initial stages of neonatal sepsis manifestation.
Collapse
|
197
|
Characteristics of hemolytic activity induced by skin secretions of the frog Kaloula pulchra hainana. J Venom Anim Toxins Incl Trop Dis 2013; 19:9. [PMID: 24499077 PMCID: PMC3710140 DOI: 10.1186/1678-9199-19-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 04/11/2013] [Indexed: 11/29/2022] Open
Abstract
Background The hemolytic activity of skin secretions obtained by stimulating the frog Kaloula pulchra hainana with diethyl ether was tested using human, cattle, rabbit, and chicken erythrocytes. The skin secretions had a significant concentration-dependent hemolytic effect on erythrocytes. The hemolytic activity of the skin secretions was studied in the presence of osmotic protectants (polyethylene glycols and carbohydrates), cations (Mg2+, Ca2+, Ba2+, Cu2+, and K+), or antioxidants (ascorbic acid, reduced glutathione, and cysteine). Results Depending on their molecular mass, osmotic protectants effectively inhibited hemolysis. The inhibition of skin hemolysis was observed after treatment with polyethylene glycols (1000, 3400, and 6000 Da). Among divalent cations, only 1 mM Cu2+ markedly inhibited hemolytic activity. Antioxidant compounds slightly reduced the hemolytic activity. Conclusions The results suggested that skin secretions of K. pulchra hainana induce a pore-forming mechanism to form pores with a diameter of 1.36-2.0 nm rather than causing oxidative damage to the erythrocyte membrane.
Collapse
|
198
|
Hisamatsu K, Nagao T, Unno H, Goda S, Hatakeyama T. Identification of the amino acid residues involved in the hemolytic activity of the Cucumaria echinata lectin CEL-III. Biochim Biophys Acta Gen Subj 2013; 1830:4211-7. [PMID: 23583369 DOI: 10.1016/j.bbagen.2013.04.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 03/13/2013] [Accepted: 04/05/2013] [Indexed: 11/30/2022]
Abstract
BACKGROUND CEL-III is a hemolytic lectin isolated from the sea cucumber Cucumaria echinata that shows Ca(2+)-dependent Gal/GalNAc-binding specificity. This lectin is composed of two carbohydrate-recognition domains (domains 1 and 2) and an oligomerization domain (domain 3) that facilitates CEL-III assembly in the target cell membrane to form ion-permeable pores. METHODS Several amino acid residues in domain 3 were replaced by alanine, and hemolytic activity of the mutants was examined. RESULTS K344A, K351A, K405A, K420A and K425A showed marked increases in activity. In particular, K405A had activity that was 360-fold higher than the wild-type recombinant CEL-III and 3.6-fold higher than the native protein purified from sea cucumber. Since these residues appear to play roles in the stabilization of domain 3 through ionic and hydrogen bonding interactions with other residues, the mutations of these residues presumably lead to destabilization of domain 3, which consequently induces the oligomerization of the protein through association of domain 3 in the membrane. In contrast, K338A, R378A and R408A mutants exhibited a marked decrease in hemolytic activity. Since these residues are located on the surface of domain 3 without significant interactions with other residue, they may be involved in the interaction with components of the target cell membrane. CONCLUSIONS Several amino acid residues, especially basic residues, are found to be involved in the hemolytic activity as well as the oligomerization ability of CEL-III. GENERAL SIGNIFICANCE The results provide important clues to the membrane pore-forming mechanism of CEL-III, which is also related to that of bacterial pore-forming toxins.
Collapse
Affiliation(s)
- Keigo Hisamatsu
- Laboratory of Biomolecular Chemistry, Nagasaki University, Nagasaki, Japan
| | | | | | | | | |
Collapse
|
199
|
Peter B, Ngubane NCML, Fanucchi S, Dirr HW. Membrane Mimetics Induce Helix Formation and Oligomerization of the Chloride Intracellular Channel Protein 1 Transmembrane Domain. Biochemistry 2013; 52:2739-49. [DOI: 10.1021/bi4002776] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Bradley Peter
- Protein Structure-Function Research
Unit, School of
Molecular and Cell Biology, University of the Witwatersrand, Johannesburg 2050, South Africa
| | - Nomxolisi Chloë Mina-Liz Ngubane
- Protein Structure-Function Research
Unit, School of
Molecular and Cell Biology, University of the Witwatersrand, Johannesburg 2050, South Africa
| | - Sylvia Fanucchi
- Protein Structure-Function Research
Unit, School of
Molecular and Cell Biology, University of the Witwatersrand, Johannesburg 2050, South Africa
| | - Heini W. Dirr
- Protein Structure-Function Research
Unit, School of
Molecular and Cell Biology, University of the Witwatersrand, Johannesburg 2050, South Africa
| |
Collapse
|
200
|
Czabotar PE, Westphal D, Dewson G, Ma S, Hockings C, Fairlie WD, Lee EF, Yao S, Robin AY, Smith BJ, Huang DCS, Kluck RM, Adams JM, Colman PM. Bax crystal structures reveal how BH3 domains activate Bax and nucleate its oligomerization to induce apoptosis. Cell 2013; 152:519-31. [PMID: 23374347 DOI: 10.1016/j.cell.2012.12.031] [Citation(s) in RCA: 440] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 10/11/2012] [Accepted: 12/10/2012] [Indexed: 02/06/2023]
Abstract
In stressed cells, apoptosis ensues when Bcl-2 family members Bax or Bak oligomerize and permeabilize the mitochondrial outer membrane. Certain BH3-only relatives can directly activate them to mediate this pivotal, poorly understood step. To clarify the conformational changes that induce Bax oligomerization, we determined crystal structures of BaxΔC21 treated with detergents and BH3 peptides. The peptides bound the Bax canonical surface groove but, unlike their complexes with prosurvival relatives, dissociated Bax into two domains. The structures define the sequence signature of activator BH3 domains and reveal how they can activate Bax via its groove by favoring release of its BH3 domain. Furthermore, Bax helices α2-α5 alone adopted a symmetric homodimer structure, supporting the proposal that two Bax molecules insert their BH3 domain into each other's surface groove to nucleate oligomerization. A planar lipophilic surface on this homodimer may engage the membrane. Our results thus define critical Bax transitions toward apoptosis.
Collapse
Affiliation(s)
- Peter E Czabotar
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria 3052, Australia.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|