151
|
Scott RS, Bustillo D, Olivos-Oré LA, Cuchillo-Ibañez I, Barahona MV, Carbone E, Artalejo AR. Contribution of BK channels to action potential repolarisation at minimal cytosolic Ca2+ concentration in chromaffin cells. Pflugers Arch 2011; 462:545-57. [DOI: 10.1007/s00424-011-0991-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Accepted: 06/20/2011] [Indexed: 01/11/2023]
|
152
|
Danesh SM, Kundu P, Lu R, Stefani E, Toro L. Distinct transcriptional regulation of human large conductance voltage- and calcium-activated K+ channel gene (hSlo1) by activated estrogen receptor alpha and c-Src tyrosine kinase. J Biol Chem 2011; 286:31064-71. [PMID: 21757754 DOI: 10.1074/jbc.m111.235457] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Estrogen receptor α (ERα) regulates gene transcription via "genomic" (binding directly or indirectly, typically via Sp1 or AP-1 sites, to target genes) and/or "nongenomic" (signaling) mechanisms. ERα activation by estrogen up-regulates the murine Ca(2+)-activated K(+) channel α subunit gene (mSlo1) via genomic mechanisms. Here, we investigated whether ERα also drives transcription of the human (hSlo1) gene. Consistent with this view, estrogen increased hSlo1 transcript levels in primary human smooth muscle cells. Promoter studies revealed that estrogen/hERα-mediated hSlo1 transcription was nearly 6-fold more efficient than for mSlo1 (EC(50), 0.07 versus 0.4 nM). Unlike the genomic transcriptional mechanism employed by mSlo1, hSlo1 exhibits a nongenomic hERα-mediated regulatory mechanism. This is supported by the following: 1) efficient hSlo1 transcription after disruption of the DNA-binding domain of hERα or knockdown of Sp1, and 2) lack of AP-1 sites in the hSlo1 promoter. Three nongenomic signaling pathways were explored: Src, Rho, and PI3K. Inhibition of Src with 10 μM PP2, and reported downstream ERK with 25 μM PD98059 did not prevent estrogen action but caused an increase in hSlo1 basal transcription; conversely, constitutively active c-Src (Y527F) decreased hSlo1 basal transcription even preventing its estrogen/hERα-mediated transcriptional activation. Rho inhibition by coexpressed Clostridium botulinum C3 transferase did not alter estrogen action. In contrast, inhibition of PI3K activity with 10 μM LY294002 decreased estrogen-stimulated hSlo1 transcription by ∼40%. These results indicate that the nongenomic PI3K signaling pathway plays a role in estrogen/hERα-stimulated hSlo1 gene expression; whereas c-Src activity leads to hSlo1 gene tonic repression independently of estrogen, likely through ERK activation.
Collapse
Affiliation(s)
- Shahab M Danesh
- Division of Molecular Medicine, Department of Anesthesiology, UCLA, Los Angeles, California 90095-1778, USA
| | | | | | | | | |
Collapse
|
153
|
Chi S, Cai W, Liu P, Zhang Z, Chen X, Gao L, Qi J, Bi L, Chen L, Qi Z. Baifuzi reduces transient ischemic brain damage through an interaction with the STREX domain of BKCa channels. Cell Death Dis 2011; 1:e13. [PMID: 21364615 PMCID: PMC3039290 DOI: 10.1038/cddis.2009.10] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Stroke is a long-term disability and one of the leading causes of death. However, no successful therapeutic intervention is available for the majority of stroke patients. In this study, we explored a traditional Chinese medicine Baifuzi (Typhonium giganteum Engl.). We show, at first, that the ethanol extract of Baifuzi exerts neuroprotective effects against brain damage induced by transient global or focal cerebral ischemia in rats and mice. Second, the extract activated large-conductance Ca(2+)-activated K(+) channel (BK(Ca)) channels, and BK(Ca) channel blockade suppressed the neuroprotection of the extract, suggesting that the BK(Ca) is the molecular target of Baifuzi. Third, Baifuzi cerebroside (Baifuzi-CB), purified from its ethanol extract, activated BK(Ca) channels in a manner similar to that of the extract. Fourth, the stress axis hormone-regulated exon (STREX) domain of the BK(Ca) channel directly interacted with Baifuzi-CB, and its deletion suppressed channel activation by Baifuzi-CB. These results indicate that Baifuzi-CB activated the BK(Ca) channel through its direct interaction with the STREX domain of the channel and suggests that Baifuzi-CB merits exploration as a potential therapeutic agent for treating brain ischemia.
Collapse
Affiliation(s)
- S Chi
- Department of Physiology, Medical College of Xiamen University, Xiamen, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
154
|
O'Brien AJ, Terala D, Orie NN, Davies NA, Zolfaghari P, Singer M, Clapp LH. BK large conductance Ca²+-activated K+ channel-deficient mice are not resistant to hypotension and display reduced survival benefit following polymicrobial sepsis. Shock 2011; 35:485-91. [PMID: 21330953 PMCID: PMC3079605 DOI: 10.1097/shk.0b013e31820860f5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Nitric oxide-mediated activation of large conductance calcium-activated potassium (BK) channels is considered an important underlying mechanism of sepsis-induced hypotension. Indeed, the nonselective K-channel inhibitor, tetraethylammonium chloride (TEA), has been proposed as a potential treatment to raise blood pressure in septic shock by virtue of its ability to inhibit BK channels. As experimental evidence has so far relied on pharmacological inhibition, we examined the effects of channel deletion using BKα subunit knockout (α, Slo) mice in two mouse models of polymicrobial sepsis, namely, intraperitoneal fecal slurry and cecal ligation and puncture. Comparison was made against TEA treatment in wild-type (WT) mice. Following slurry, BKα and WT mice developed similar degrees of hypotension over 10 h with no difference in cardiac output as assessed by echocardiography between groups. Tetraethylammonium chloride raised blood pressure significantly in septic WT mice, but had no effect on survival. However, following cecal ligation and puncture, a significantly reduced survival was seen in both BKα mice and (high-dose) TEA-treated WT mice compared with untreated WT animals. In conclusion, the BK channel does not appear to be integral to sepsis-induced hypotension but does affect survival through other mechanisms. The pressor effect of TEA may be related to effects on other potassium channels.
Collapse
Affiliation(s)
- Alastair J O'Brien
- Institute of Hepatology and †Department of Medicine, University College, London, UK. a.o'
| | | | | | | | | | | | | |
Collapse
|
155
|
Guanosine is neuroprotective against oxygen/glucose deprivation in hippocampal slices via large conductance Ca²+-activated K+ channels, phosphatidilinositol-3 kinase/protein kinase B pathway activation and glutamate uptake. Neuroscience 2011; 183:212-20. [PMID: 21435378 DOI: 10.1016/j.neuroscience.2011.03.022] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Revised: 03/04/2011] [Accepted: 03/09/2011] [Indexed: 12/20/2022]
Abstract
Guanine derivatives (GD) have been implicated in many relevant brain extracellular roles, such as modulation of glutamate transmission and neuronal protection against excitotoxic damage. GD are spontaneously released to the extracellular space from cultured astrocytes and during oxygen/glucose deprivation (OGD). The aim of this study has been to evaluate the potassium channels and phosphatidilinositol-3 kinase (PI3K) pathway involvement in the mechanisms related to the neuroprotective role of guanosine in rat hippocampal slices subjected to OGD. The addition of guanosine (100 μM) to hippocampal slices subjected to 15 min of OGD and followed by 2 h of re-oxygenation is neuroprotective. The presence of K+ channel blockers, glibenclamide (20 μM) or apamin (300 nM), revealed that neuroprotective effect of guanosine was not dependent on ATP-sensitive K+ channels or small conductance Ca²+-activated K+ channels. The presence of charybdotoxin (100 nM), a large conductance Ca²+-activated K+ channel (BK) blocker, inhibited the neuroprotective effect of guanosine. Hippocampal slices subjected to OGD and re-oxygenation showed a significant reduction of glutamate uptake. Addition of guanosine in the re-oxygenation period has blocked the reduction of glutamate uptake. This guanosine effect was inhibited when hippocampal slices were pre-incubated with charybdotoxin or wortmanin (a PI3K inhibitor, 1 μM) in the re-oxygenation period. Guanosine promoted an increase in Akt protein phosphorylation. However, the presence of charybdotoxin blocked such effect. In conclusion, the neuroprotective effect of guanosine involves augmentation of glutamate uptake, which is modulated by BK channels and the activation of PI3K pathway. Moreover, neuroprotection caused by guanosine depends on the increased expression of phospho-Akt protein.
Collapse
|
156
|
Ohya S, Niwa S, Yanagi A, Fukuyo Y, Yamamura H, Imaizumi Y. Involvement of dominant-negative spliced variants of the intermediate conductance Ca2+-activated K+ channel, K(Ca)3.1, in immune function of lymphoid cells. J Biol Chem 2011; 286:16940-52. [PMID: 21345794 DOI: 10.1074/jbc.m110.184192] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The intermediate conductance Ca(2+)-activated K(+) channel (IK(Ca) channel) encoded by K(Ca)3.1 is responsible for the control of proliferation and differentiation in various types of cells. We identified novel spliced variants of K(Ca)3.1 (human (h) K(Ca)3.1b) from the human thymus, which were lacking the N-terminal domains of the original hK(Ca)3.1a as a result of alternative splicing events. hK(Ca)3.1b was significantly expressed in human lymphoid tissues. Western blot analysis showed that hK(Ca)3.1a proteins were mainly expressed in the plasma membrane fraction, whereas hK(Ca)3.1b was in the cytoplasmic fraction. We also identified a similar N terminus lacking K(Ca)3.1 variants from mice and rat lymphoid tissues (mK(Ca)3.1b and rK(Ca)3.1b). In the HEK293 heterologous expression system, the cellular distribution of cyan fluorescent protein-tagged hK(Ca)3.1a and/or YFP-tagged hK(Ca)3.1b isoforms showed that hK(Ca)3.1b suppressed the localization of hK(Ca)3.1a to the plasma membrane. In the Xenopus oocyte translation system, co-expression of hK(Ca)3.1b with hK(Ca)3.1a suppressed IK(Ca) channel activity of hK(Ca)3.1a in a dominant-negative manner. In addition, this study indicated that up-regulation of mK(Ca)3.1b in mouse thymocytes differentiated CD4(+)CD8(+) phenotype thymocytes into CD4(-)CD8(-) ones and suppressed concanavalin-A-stimulated thymocyte growth by down-regulation of mIL-2 transcripts. Anti-proliferative effects and down-regulation of mIL-2 transcripts were also observed in mK(Ca)3.1b-overexpressing mouse thymocytes. These suggest that the N-terminal domain of K(Ca)3.1 is critical for channel trafficking to the plasma membrane and that the fine-tuning of IK(Ca) channel activity modulated through alternative splicing events may be related to the control in physiological and pathophysiological conditions in T-lymphocytes.
Collapse
Affiliation(s)
- Susumu Ohya
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| | | | | | | | | | | |
Collapse
|
157
|
Semenov I, Wang B, Herlihy JT, Brenner R. BK channel β1 subunits regulate airway contraction secondary to M2 muscarinic acetylcholine receptor mediated depolarization. J Physiol 2011; 589:1803-17. [PMID: 21300746 DOI: 10.1113/jphysiol.2010.204347] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The large conductance calcium- and voltage-activated potassium channel (BK channel) and its smooth muscle-specific β1 subunit regulate excitation–contraction coupling in many types of smooth muscle cells. However, the relative contribution of BK channels to control of M2- or M3-muscarinic acetylcholine receptor mediated airway smooth muscle contraction is poorly understood. Previously, we showed that knockout of the BK channel β1 subunit enhances cholinergic-evoked trachea contractions. Here, we demonstrate that the enhanced contraction of the BK β1 knockout can be ascribed to a defect in BK channel opposition of M2 receptor-mediated contractions. Indeed, the enhanced contraction of β1 knockout is eliminated by specific M2 receptor antagonism. The role of BK β1 to oppose M2 signalling is evidenced by a greater than fourfold increase in the contribution of L-type voltage-dependent calcium channels to contraction that otherwise does not occur with M2 antagonist or with β1 containing BK channels. The mechanism through which BK channels oppose M2-mediated recruitment of calcium channels is through a negative shift in resting voltage that offsets, rather than directly opposes, M2-mediated depolarization. The negative shift in resting voltage is reduced to similar extents by BK β1 knockout or by paxilline block of BK channels. Normalization of β1 knockout baseline voltage with low external potassium eliminated the enhanced M2-receptor mediated contraction. In summary, these findings indicate that an important function of BK/β1 channels is to oppose cholinergic M2 receptor-mediated depolarization and activation of calcium channels by restricting excitation–contraction coupling to more negative voltage ranges.
Collapse
Affiliation(s)
- Iurii Semenov
- Department of Physiology, UT Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | | | | | | |
Collapse
|
158
|
Choi SH, Shin TJ, Lee BH, Hwang SH, Lee SM, Lee BC, Park CS, Ha TS, Nah SY. Ginsenoside Rg3 enhances large conductance Ca2+-activated potassium channel currents: a role of Tyr360 residue. Mol Cells 2011; 31:133-40. [PMID: 21191818 PMCID: PMC3932677 DOI: 10.1007/s10059-011-0017-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Revised: 10/25/2010] [Accepted: 11/13/2010] [Indexed: 10/18/2022] Open
Abstract
Ginsenosides, active ingredients of Panax ginseng, are known to exhibit neuroprotective effects. Large-conductance Ca(2+)-activated K(+) (BK(Ca)) channels are key modulators of cellular excitability of neurons and vascular smooth muscle cells. In the present study, we examined the effects of ginsenosides on rat brain BK(Ca) (rSlo) channel activity heterologously expressed in Xenopus oocytes to elucidate the molecular mechanisms how ginsenoside regulates the BK(Ca) channel activity. Ginsenoside Rg(3) (Rg(3)) enhanced outward BK(Ca) channel currents. The Rg(3)-enhancement of outward BK(Ca) channel currents was concentration-dependent, voltage-dependent, and reversible. The EC(50) was 15.1 ± 3.1 μM. Rg(3) actions were not desensitized by repeated treatment. Tetraetylammonium (TEA), a K(+) channel blocker, inhibited BK(Ca) channel currents. We examined whether extracellular TEA treatment could alter the Rg(3) action and vice versa. TEA caused a rightward shift of the Rg(3) concentration-response curve (i.e., much higher concentration of Rg(3) is required for the activation of BK(Ca) channel compared to the absence of TEA), while Rg(3) caused a rightward shift of the TEA concentration-response curve in wild-type channels. Mutation of the extracellular TEA binding site Y360 to Y360I caused a rightward shift of the TEA concentration-response curve and almost abolished both the Rg(3) action and Rg(3)-induced rightward shift of TEA concentration-response curve. These results indicate that Tyr360 residue of BK(Ca) channel plays an important role in the Rg(3)-enhancement of BK(Ca) channel currents.
Collapse
Affiliation(s)
- Sun-Hye Choi
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine and Bio/Molecular Informatics Center, Konkuk University, Seoul 143-701, Korea
| | - Tae-Joon Shin
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine and Bio/Molecular Informatics Center, Konkuk University, Seoul 143-701, Korea
| | - Byung-Hwan Lee
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine and Bio/Molecular Informatics Center, Konkuk University, Seoul 143-701, Korea
| | - Sung Hee Hwang
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine and Bio/Molecular Informatics Center, Konkuk University, Seoul 143-701, Korea
| | - Sang-Mok Lee
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine and Bio/Molecular Informatics Center, Konkuk University, Seoul 143-701, Korea
| | - Byung-Cheol Lee
- Department of Life Science, Gwangju Institute of Science and Technology, Gwangju 500-712, Korea
| | - Cheol-Seung Park
- Department of Life Science, Gwangju Institute of Science and Technology, Gwangju 500-712, Korea
| | - Tal Soo Ha
- Department of Molecular Biology, College of Natural Science, Daegu University, Gyeongsan 712-714, Korea
| | - Seung-Yeol Nah
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine and Bio/Molecular Informatics Center, Konkuk University, Seoul 143-701, Korea
| |
Collapse
|
159
|
Tajima N, Itokazu Y, Korpi ER, Somerharju P, Käkelä R. Activity of BK(Ca) channel is modulated by membrane cholesterol content and association with Na+/K+-ATPase in human melanoma IGR39 cells. J Biol Chem 2010; 286:5624-38. [PMID: 21135099 DOI: 10.1074/jbc.m110.149898] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Interaction of large conductance Ca(2+)- and voltage-activated K(+) (BK(Ca)) channels with Na(+)/K(+)-ATPase, caveolin-1, and cholesterol was studied in human melanoma IGR39 cells. Functional BK(Ca) channels were enriched in caveolin-rich and detergent-resistant membranes, i.e. rafts, and blocking of the channels by a specific BK(Ca) blocker paxilline reduced proliferation of the cells. Disruption of rafts by selective depletion of cholesterol released BK(Ca) channels from these domains with a consequent increase in their activity. Consistently, cholesterol enrichment of the cells increased the proportion of BK(Ca) channels in rafts and decreased their activity. Immunocytochemical analysis showed that BK(Ca) channels co-localize with Na(+)/K(+)-ATPase in a cholesterol-dependent manner, thus suggesting their co-presence in rafts. Supporting this, ouabain, a specific blocker of Na(+)/K(+)-ATPase, inhibited BK(Ca) whole-cell current markedly in control cells but not in cholesterol-depleted ones. This inhibition required the presence of external Na(+). Collectively, these data indicate that the presence of Na(+)/K(+)-ATPase in rafts is essential for efficient functioning of BK(Ca) channels, presumably because the pump maintains a low intracellular Na(+) proximal to the BK(Ca) channel. In conclusion, cholesterol could play an important role in cellular ion homeostasis and thus modulate many cellular functions and cell proliferation.
Collapse
Affiliation(s)
- Nobuyoshi Tajima
- Department of Medical Biochemistry and Developmental Biology, Institute of Biomedicine, University of Helsinki, Helsinki FI-00014, Finland
| | | | | | | | | |
Collapse
|
160
|
Cui YM, Yasutomi E, Otani Y, Ido K, Yoshinaga T, Sawada K, Ohwada T. Design, synthesis, and characterization of BK channel openers based on oximation of abietane diterpene derivatives. Bioorg Med Chem 2010; 18:8642-59. [DOI: 10.1016/j.bmc.2010.09.072] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Accepted: 09/30/2010] [Indexed: 01/19/2023]
|
161
|
Dalsgaard T, Kroigaard C, Simonsen U. Calcium-activated potassium channels - a therapeutic target for modulating nitric oxide in cardiovascular disease? Expert Opin Ther Targets 2010; 14:825-37. [PMID: 20560781 DOI: 10.1517/14728222.2010.500616] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
IMPORTANCE OF THE FIELD Cardiovascular risk factors are often associated with endothelial dysfunction, which is also prognostic for occurrence of cardiovascular events. Endothelial dysfunction is reflected by blunted vasodilatation and reduced nitric oxide (NO) bioavailability. Endothelium-dependent vasodilatation is mediated by NO, prostacyclin, and an endothelium-derived hyperpolarising factor (EDHF), and involves small (SK) and intermediate (IK) conductance Ca(2+)-activated K(+) channels. Therefore, SK and IK channels may be drug targets for the treatment of endothelial dysfunction in cardiovascular disease. AREAS COVERED IN THIS REVIEW SK and IK channels are involved in EDHF-type vasodilatation, but recent studies suggest that these channels are also involved in the regulation of NO bioavailability. Here we review how SK and IK channels may regulate NO bioavailability. WHAT THE READER WILL GAIN Opening of SK and IK channels is associated with EDHF-type vasodilatation, but, through increased endothelial cell Ca(2+) influx, L-arginine uptake, and decreased ROS production, it may also lead to increased NO bioavailability and endothelium-dependent vasodilatation. TAKE HOME MESSAGE Opening of SK and IK channels can increase both EDHF and NO-mediated vasodilatation. Therefore, openers of SK and IK channels may have the potential of improving endothelial cell function in cardiovascular disease.
Collapse
Affiliation(s)
- Thomas Dalsgaard
- Department of Pharmacology, Aarhus University, DK-8000 Aarhus C, Denmark.
| | | | | |
Collapse
|
162
|
Williams WR. Relative similarity within purine nucleotide and ligand structures operating on nitric oxide synthetase, guanylyl cyclase and potassium (K ATP, BK Ca) channels. ACTA ACUST UNITED AC 2010; 63:95-105. [PMID: 21155821 DOI: 10.1111/j.2042-7158.2010.01169.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
OBJECTIVES Purine nucleotides play a central role in signal transduction events initiated at the cell membrane. The NO-cGMP-cGK pathway, in particular, mediates events involving NOS and some classes of K(+) ion channel. The aim of this study is to investigate relative molecular similarity within the ligands binding to NOS, K(ATP), BK(Ca) channels and regulatory nucleotides. METHODS Minimum energy conformers of the ligand structures were superimposed and fitted to L-arginine and the nucleotides of adenine and guanine using a computational program. KEY FINDINGS Distinctive patterns were evident in the fitting of NOS isoform antagonists to L-arginine. K(ATP) channel openers and antagonists superimposed on the glycosidic linkage and imidazole ring of the purine nucleotides, and guanidinium and ribose groups of GTP in the case of glibenclamide. The fits of BK(Ca) channel openers and antagonists to cGMP were characterized by the linear dimensions of their structures; distances between terminal oxy groups in respect of dexamethasone and aldosterone. CONCLUSIONS The findings provide structural evidence for the functional interaction between K(+) channel openers/antagonists and the regulatory nucleotides. Use of the purine nucleotide template systematizes the considerable heterogeneity evident within the structures of ligands operating on K(+) ion channels.
Collapse
Affiliation(s)
- W Robert Williams
- Faculty of Health, Sport & Science, University of Glamorgan, Cardiff, UK.
| |
Collapse
|
163
|
Zuidema MY, Yang Y, Wang M, Kalogeris T, Liu Y, Meininger CJ, Hill MA, Davis MJ, Korthuis RJ. Antecedent hydrogen sulfide elicits an anti-inflammatory phenotype in postischemic murine small intestine: role of BK channels. Am J Physiol Heart Circ Physiol 2010; 299:H1554-67. [PMID: 20833953 DOI: 10.1152/ajpheart.01229.2009] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The objectives of this study were to determine the role of calcium-activated, small (SK), intermediate (IK), and large (BK) conductance potassium channels in initiating the development of an anti-inflammatory phenotype elicited by preconditioning with an exogenous hydrogen sulfide (H(2)S) donor, sodium hydrosulfide (NaHS). Intravital microscopy was used to visualize rolling and firmly adherent leukocytes in vessels of the small intestine of mice preconditioned with NaHS (in the absence and presence of SK, IK, and BK channel inhibitors, apamin, TRAM-34, and paxilline, respectively) or SK/IK (NS-309) or BK channel activators (NS-1619) 24 h before ischemia-reperfusion (I/R). I/R induced marked increases in leukocyte rolling and adhesion, effects that were largely abolished by preconditioning with NaHS, NS-309, or NS-1619. The postischemic anti-inflammatory effects of NaHS-induced preconditioning were mitigated by BKB channel inhibitor treatment coincident with NaHS, but not by apamin or TRAM-34, 24 h before I/R. Confocal imaging and immunohistochemistry were used to demonstrate the presence of BKα subunit staining in both endothelial and vascular smooth muscle cells of isolated, pressurized mesenteric venules. Using patch-clamp techniques, we found that BK channels in cultured endothelial cells were activated after exposure to NaHS. Bath application of the same concentration of NaHS used in preconditioning protocols led to a rapid increase in a whole cell K(+) current; specifically, the component of K(+) current blocked by the selective BK channel antagonist iberiotoxin. The activation of BK current by NaHS could also be demonstrated in single channel recording mode where it was independent of a change in intracellular Ca(+) concentration. Our data are consistent with the concept that H(2)S induces the development of an anti-adhesive state in I/R in part mediated by a BK channel-dependent mechanism.
Collapse
Affiliation(s)
- Mozow Y Zuidema
- Department of Medical Pharmacology and Physiology, Dalton Cardiovascular Research Center, University of Missouri School of Medicine, Columbia, Missouri 65212, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
164
|
Savas S, Briollais L, Ibrahim-zada I, Jarjanazi H, Choi YH, Musquera M, Fleshner N, Venkateswaran V, Ozcelik H. A whole-genome SNP association study of NCI60 cell line panel indicates a role of Ca2+ signaling in selenium resistance. PLoS One 2010; 5:e12601. [PMID: 20830292 PMCID: PMC2935366 DOI: 10.1371/journal.pone.0012601] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Accepted: 08/04/2010] [Indexed: 01/21/2023] Open
Abstract
Epidemiological studies have suggested an association between selenium intake and protection from a variety of cancer. Considering this clinical importance of selenium, we aimed to identify the genes associated with resistance to selenium treatment. We have applied a previous methodology developed by our group, which is based on the genetic and pharmacological data publicly available for the NCI60 cancer cell line panel. In short, we have categorized the NCI60 cell lines as selenium resistant and sensitive based on their growth inhibition (GI50) data. Then, we have utilized the Affymetrix 125K SNP chip data available and carried out a genome-wide case-control association study for the selenium sensitive and resistant NCI60 cell lines. Our results showed statistically significant association of four SNPs in 5q33–34, 10q11.2, 10q22.3 and 14q13.1 with selenium resistance. These SNPs were located in introns of the genes encoding for a kinase-scaffolding protein (AKAP6), a membrane protein (SGCD), a channel protein (KCNMA1), and a protein kinase (PRKG1). The knock-down of KCNMA1 by siRNA showed increased sensitivity to selenium in both LNCaP and PC3 cell lines. Furthermore, SNP-SNP interaction (epistasis) analysis indicated the interactions of the SNPs in AKAP6 with SGCD as well as SNPs in AKAP6 with KCNMA1 with each other, assuming additive genetic model. These genes were also all involved in the Ca2+ signaling, which has a direct role in induction of apoptosis and induction of apoptosis in tumor cells is consistent with the chemopreventive action of selenium. Once our findings are further validated, this knowledge can be translated into clinics where individuals who can benefit from the chemopreventive characteristics of the selenium supplementation will be easily identified using a simple DNA analysis.
Collapse
Affiliation(s)
- Sevtap Savas
- Fred A. Litwin Centre for Cancer Genetics, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Laurent Briollais
- Prosserman Centre for Health Research, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Irada Ibrahim-zada
- Fred A. Litwin Centre for Cancer Genetics, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Hamdi Jarjanazi
- Fred A. Litwin Centre for Cancer Genetics, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Yun Hee Choi
- Prosserman Centre for Health Research, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Mireia Musquera
- Division of Urology, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Neil Fleshner
- Ontario Cancer Institute, Princess Margaret Hospital, Toronto, Ontario, Canada
| | - Vasundara Venkateswaran
- Division of Urology, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
- * E-mail: (VV); (HO)
| | - Hilmi Ozcelik
- Fred A. Litwin Centre for Cancer Genetics, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- * E-mail: (VV); (HO)
| |
Collapse
|
165
|
Martire M, Barrese V, D'Amico M, Iannotti FA, Pizzarelli R, Samengo I, Viggiano D, Ruth P, Cherubini E, Taglialatela M. Pre-synaptic BK channels selectively control glutamate versus GABA release from cortical and hippocampal nerve terminals. J Neurochem 2010; 115:411-22. [PMID: 20681950 DOI: 10.1111/j.1471-4159.2010.06938.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In the present study, by means of genetic, biochemical, morphological, and electrophysiological approaches, the role of large-conductance voltage- and Ca(2+)-dependent K(+) channels (BK channels) in the release of excitatory and non-excitatory neurotransmitters at hippocampal and non-hippocampal sites has been investigated. The results obtained show that the pharmacological modulation of pre-synaptic BK channels selectively regulates [(3)H]D-aspartate release from cortical and hippocampal rat synaptosomes, but it fails to influence the release of excitatory neurotransmitters from cerebellar nerve endings or that of [(3)H]GABA, [(3)H]Noradrenaline, or [(3)H]Dopamine from any of the brain regions investigated. Confocal immunofluorescence experiments in hippocampal or cerebrocortical nerve terminals revealed that the main pore-forming BK α subunit was more abundantly expressed in glutamatergic (vGLUT1(+)) versus GABAergic (GAD(65-67)(+)) nerve terminals. Double patch recordings in monosynaptically connected hippocampal neurons in culture confirmed a preferential control exerted by BK channels on glutamate over GABA release. Altogether, the present results highlight a high degree of specificity in the regulation of the release of various neurotransmitters from distinct brain regions by BK channels, supporting the concept that BK channel modulators can be used to selectively limit excessive excitatory amino acid release, a major pathogenetic mechanism in several neuropsychiatric disorders.
Collapse
Affiliation(s)
- Maria Martire
- Institute of Pharmacology, Catholic University of Sacred Heart, Rome, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
166
|
Zhou Y, Xia X, Lingle CJ. Inhibition of large-conductance Ca2+-activated K+ channels by nanomolar concentrations of Ag+. Mol Pharmacol 2010; 78:952-60. [PMID: 20729303 DOI: 10.1124/mol.110.066407] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Silver has been widely used in various medical products because of its antibacterial properties. However, there is only limited information concerning silver-related cytotoxicity. In this study we show that Ag(+) at low nanomolar concentrations (<10 nM) strongly inhibits the activity of large-conductance Ca(2+)-activated K(+) channels (BK) (Slo1), a widely expressed and physiologically important potassium channel. The Ag(+) inhibition is caused by irreversible modification on cytosolically accessible parts of the BK channel. At least four intracellular cysteines are involved in this process. In addition, at least one of these key cysteines is not accessible to the bulkier thiolate-active reagent [2-(trimethylammonium)ethyl] methanethiosulfonate bromide. One of the cysteine-less constructs generated in this study shows gating properties similar to wild-type BK channel but with much lower Ag(+) sensitivity, in which the Ag(+) modification rate was decreased by approximately 20-fold. The results from the present study suggest a possible contribution of BK channel inhibition to the cytotoxicity of Ag(+) in humans and other species.
Collapse
Affiliation(s)
- Yu Zhou
- Department of Anesthesiology, Washington University School of Medicine, St Louis, Missouri 63110, USA.
| | | | | |
Collapse
|
167
|
Ouyang Q, Patel V, Vanderburgh J, Harris-Warrick RM. Cloning and distribution of Ca2+-activated K+ channels in lobster Panulirus interruptus. Neuroscience 2010; 170:692-702. [PMID: 20682332 DOI: 10.1016/j.neuroscience.2010.07.060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Revised: 07/27/2010] [Accepted: 07/29/2010] [Indexed: 11/25/2022]
Abstract
Large conductance Ca(2+)-activated potassium (BK) channels play important roles in controlling neuronal excitability. We cloned the PISlo gene encoding BK channels from the spiny lobster, Panulirus interruptus. This gene shows 81-98% sequence identity to Slo genes previously found in other organisms. We isolated a number of splice variants of the PISlo cDNA within Panulirus interruptus nervous tissue. Sequence analysis indicated that there are at least seven alternative splice sites in PISlo, each with multiple alternative segments. Using immunohistochemistry, we found that the PISlo proteins are distributed in the synaptic neuropil, axon and soma of stomatogastric ganglion (STG) neurons.
Collapse
Affiliation(s)
- Q Ouyang
- Department of Neurobiology and Behavior, Cornell University, Ithaca,NY 14853, USA.
| | | | | | | |
Collapse
|
168
|
Ma YG, Dong L, Ye XL, Deng CL, Cheng JH, Liu WC, Ma J, Chang YM, Xie MJ. Activation of cloned BK(Ca) channels in nitric oxide-induced apoptosis of HEK293 cells. Apoptosis 2010; 15:426-38. [PMID: 20012488 DOI: 10.1007/s10495-009-0423-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The large conductance Ca(2+)-activated K(+) (BK(Ca)) channels are highly expressed in vascular smooth muscle cells (VSMCs) and play an essential role in the regulation of various physiological functions. Besides its electrophysiological function in vascular relaxation, BK(Ca) has also been reported to be implicated in nitric oxide (NO)-induced apoptosis of VSMCs. However, the molecular mechanism is not clear and has not been determined on cloned channels. The present study was designed to clarify whether activation of cloned BK(Ca) channel was involved in NO-induced apoptosis in human embryonic kidney 293 (HEK293) cell. The cDNA encoding the alpha-subunit of BK(Ca) channel, hSloalpha, was transiently transfected into HEK293 cells. The apoptotic death in HEK-hSloalpha cells was detected using immunocytochemistry, analysis of fragmented DNA by agarose gel electrophoresis, MTT test, and flow cytometry assays. Whole-cell and single-channel characteristics of HEK-hSloalpha cells exhibited functional features similar to native BK(Ca) channel in VSMCs. Exposuring of HEK- hSloalpha cells to S-nitroso-N-acetyl-penicillamine increased the hSloalpha channel activities of whole-cell and single-channel, and then increased percentage of cells undergoing apoptosis. However, blocking hSloalpha channels with 1 mM tetraethylammonia or 100 nM iberiotoxin significantly decreased the NO-induced apoptosis, whereas 30 microM NS1619, the specific agonist of BK(Ca), independently increased hSloalpha currents and induced apoptosis. These results indicated that activation of cloned BK(Ca) channel was involved in NO-induced apoptosis of HEK293 cells.
Collapse
Affiliation(s)
- Yu-Guang Ma
- Department of Clinical Oncology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | | | | | | | | | | | | | | | | |
Collapse
|
169
|
Xie MJ, Ma YG, Gao F, Bai YG, Cheng JH, Chang YM, Yu ZB, Ma J. Activation of BKCa channel is associated with increased apoptosis of cerebrovascular smooth muscle cells in simulated microgravity rats. Am J Physiol Cell Physiol 2010; 298:C1489-500. [DOI: 10.1152/ajpcell.00474.2009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Cerebral arterial remodeling is one of the critical factors in the occurrence of postspaceflight orthostatic intolerance. We hypothesize that large-conductance calcium-activated K+ (BKCa) channels in vascular smooth muscle cells (VSMCs) may play an important role in regulating cerebrovascular adaptation during microgravity exposure. The aim of this work was to investigate whether activation of BKCa channels is involved in regulation of apoptotic remodeling of cerebral arteries in simulated microgravity rats. In animal studies, Sprague-Dawley rats were subjected to 1-wk hindlimb unweighting to simulate microgravity. Alterations of BKCa channels in cerebral VSMCs were investigated by patch clamp and Western blotting; apoptosis was assessed by electron microscopy and terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick-end labeling (TUNEL). To evaluate the correlation of BKCa channel and apoptosis, channel protein and cell nucleus were double-stained. In cell studies, hSloα+β1 channel was coexpressed into human embryonic kidney 293 (HEK293) cells to observe the effects of BKCa channels on apoptosis. In rats, enhanced activities and expression of BKCa channels were found to be correlated with increased apoptosis in cerebral VSMCs after simulated microgravity. In transfected HEK293 cells, activation of cloned BKCa channel induced apoptosis, whereas inhibition of cloned BKCa channel decreased apoptosis. In conclusion, activation of BKCa channels is associated with increased apoptosis in cerebral VSMCs of simulated microgravity rats.
Collapse
Affiliation(s)
- Man-Jiang Xie
- Department of Aerospace Physiology, Key Laboratory of Aerospace Medicine of Ministry of Education, and
| | - Yu-Guang Ma
- Department of Clinical Oncology, Xijing Hospital, Fourth Military Medical University, Xi'an; and
- Department of Breast Disease, First Hospital of Lanzhou University, Lanzhou, China
| | - Fang Gao
- Department of Aerospace Physiology, Key Laboratory of Aerospace Medicine of Ministry of Education, and
| | - Yun-Gang Bai
- Department of Aerospace Physiology, Key Laboratory of Aerospace Medicine of Ministry of Education, and
| | - Jiu-Hua Cheng
- Department of Aerospace Physiology, Key Laboratory of Aerospace Medicine of Ministry of Education, and
| | - Yao-Ming Chang
- Department of Aerospace Physiology, Key Laboratory of Aerospace Medicine of Ministry of Education, and
| | - Zhi-Bin Yu
- Department of Aerospace Physiology, Key Laboratory of Aerospace Medicine of Ministry of Education, and
| | - Jin Ma
- Department of Aerospace Physiology, Key Laboratory of Aerospace Medicine of Ministry of Education, and
| |
Collapse
|
170
|
Vang A, Mazer J, Casserly B, Choudhary G. Activation of endothelial BKCa channels causes pulmonary vasodilation. Vascul Pharmacol 2010; 53:122-9. [PMID: 20470901 DOI: 10.1016/j.vph.2010.05.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Revised: 04/28/2010] [Accepted: 05/06/2010] [Indexed: 12/21/2022]
Abstract
BACKGROUND Large-conductance Ca(2+)-activated K(+) (BK(Ca)) channels cause hyperpolarization and can regulate vascular tone. In this study, we evaluated the effect of endothelial BK(Ca) activation on pulmonary vascular tone. METHODS The presence of BK(Ca) channels in lung microvascular endothelial cells (LMVEC) and rat lung tissue was confirmed by RT-PCR, immunoblotting and immunohistochemistry. Isolated pulmonary artery (PA) rings and isolated ventilated-perfused rat lungs were used to assay the effects of BK(Ca) channel activation on endothelium-dependent vasodilation. RESULTS Immunoblotting and RT-PCR revealed the presence of BK(Ca) channel alpha- and beta(4)-subunits in LMVEC. Immunohistochemical staining showed BK(Ca) channel alpha-subunit expression in vascular endothelium in rat lungs. In arterial ring studies, BK(Ca) channel activation by NS1619 enhanced endothelium-dependent vasodilation that was attenuated by tetraethylammonium and iberiotoxin. In addition, activation of BK(Ca) channels by C-type natriuretic peptide caused endothelial-dependent vasodilation that was blocked by iberiotoxin, L-NAME, and lanthanum. Furthermore, BK(Ca) activation by NS1619 caused a dose-dependent reduction in PA pressures that was attenuated by L-NAME. In vitro, BK(Ca) channel activation in LMVEC caused hyperpolarization and increased NO production. CONCLUSIONS Pulmonary endothelium expresses BK(Ca) channels. Activation of endothelial BK(Ca) channels causes hyperpolarization and NO mediated endothelium-dependent vasodilation in micro- and macrovasculature in the lung.
Collapse
Affiliation(s)
- Alexander Vang
- Vascular Research Laboratory, Providence VA Medical Center, Providence, RI 02908, USA
| | | | | | | |
Collapse
|
171
|
Gordon E, Semus SF, Lozinskaya IM, Lin Z, Xu X. Characterizing the Role of Thr352 in the Inhibition of the Large Conductance Ca2+-Activated K+ Channels by 1-[1-Hexyl-6-(methyloxy)-1H-indazol-3-yl]-2-methyl-1-propanone. J Pharmacol Exp Ther 2010; 334:402-9. [DOI: 10.1124/jpet.110.166017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
172
|
Kizub IV, Pavlova OO, Ivanova IV, Soloviev AI. Protein kinase C-dependent inhibition of BK(Ca) current in rat aorta smooth muscle cells following gamma-irradiation. Int J Radiat Biol 2010; 86:291-9. [PMID: 20353339 DOI: 10.3109/09553000903564042] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
PURPOSE The aim of this study was to estimate the effects of non-fatal whole-body gamma-irradiation on outward potassium plasma membrane conductivity in rat vascular smooth muscle cells (VSMC), and to identify underlying mechanisms. MATERIALS AND METHODS Rats were exposed to a 6 Gy dose irradiation from a cobalt(60) source. Whole-cell potassium current was measured in freshly isolated rat aorta smooth muscle cells using standard patch-clamp technique. RESULTS We have determined that whole-body ionising irradiation significantly inhibits whole-cell outward K(+) current in rat aortic VSMC obtained from irradiated rats 9 and 30 days after irradiation, and this inhibition appears to be increased throughout post-irradiation period. Using selective inhibitors of small conductance Ca(2+)-activated K(+) channels (SK(Ca)), apamin (1 microM), intermediate conductance Ca(2+)-activated K(+) channels (IK(Ca,)), charybdotoxin (1 microM) and a large conductance Ca(2+)-activated K(+) channels (BK(Ca)), paxilline (500 nM), we established that the main component of whole-cell outward K(+) current in rat aortic VSMC is due to BK(Ca). It is clear that on the 9th day after irradiation paxilline had only a small effect on whole-cell outward K(+) current in VSMC, and was without effect on the 30th day post-irradiation, suggesting complete suppression of the BK(Ca) current. The PKC inhibitor, chelerythrine (100 nM), effectively reversed the suppression of whole-cell outward K(+) current induced by ionising irradiation in the post-irradiation period of 9 and 30 days. CONCLUSIONS The results suggest that irradiation-evoked inhibition of the BK(Ca) current in aortic VSMC is mediated by PKC. Taken together, our data indicate that one of the mechanisms leading to elevation of vascular tone and related arterial hypertension development under ionising irradiation impact is a PKC-mediated inhibition of BK(Ca) channels in VSMC.
Collapse
Affiliation(s)
- Igor V Kizub
- Experimental Therapeutics Department, Institute of Pharmacology and Toxicology of Academy of Medical Sciences of Ukraine, Kiev, Ukraine.
| | | | | | | |
Collapse
|
173
|
Funabashi K, Ohya S, Yamamura H, Hatano N, Muraki K, Giles W, Imaizumi Y. Accelerated Ca2+ entry by membrane hyperpolarization due to Ca2+-activated K+ channel activation in response to histamine in chondrocytes. Am J Physiol Cell Physiol 2010; 298:C786-97. [DOI: 10.1152/ajpcell.00469.2009] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
In articular cartilage inflammation, histamine release from mast cells is a key event. It can enhance cytokine production and matrix synthesis and also promote cell proliferation by stimulating chondrocytes. In this study, the functional impact of Ca2+-activated K+ (KCa) channels in the regulation of intracellular Ca2+ concentration ([Ca2+]i) in chondrocytes in response to histamine was examined using OUMS-27 cells, as a model of chondrocytes derived from human chondrosarcoma. Application of histamine induced a significant [Ca2+]i rise and also membrane hyperpolarization, and both effects were mediated by the stimulation of H1 receptors. The histamine-induced membrane hyperpolarization was attenuated to ∼50% by large-conductance KCa (BK) channel blockers, and further reduced by intermediate (IK) and small conductance KCa (SK) channel blockers. The tonic component of histamine-induced [Ca2+]i rise strongly depended on the presence of extracellular Ca2+ ([Ca2+]o) and was markedly reduced by La3+ or Gd3+ but not by nifedipine. It was significantly attenuated by BK channel blockers, and further blocked by the cocktail of BK, IK, and SK channel blockers. The KCa blocker cocktail also significantly reduced the store-operated Ca2+ entry (SOCE), which was induced by Ca2+ addition after store-depletion by thapsigargin in [Ca2+]o free solution. Our results demonstrate that the histamine-induced membrane hyperpolarization in chondrocytes due to KCa channel activation contributes to sustained Ca2+ entry mainly through SOCE channels in OUMS-27 cells. Thus, KCa channels appear to play an important role in the positive feedback mechanism of [Ca2+]i regulation in chondrocytes in the presence of articular cartilage inflammation.
Collapse
Affiliation(s)
- Kenji Funabashi
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Susumu Ohya
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Hisao Yamamura
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Noriyuki Hatano
- Laboratory of Cellular Pharmacology, School of Pharmacy, Aichi-Gakuin University, Nagoya, Japan; and
| | - Katsuhiko Muraki
- Laboratory of Cellular Pharmacology, School of Pharmacy, Aichi-Gakuin University, Nagoya, Japan; and
| | - Wayne Giles
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Yuji Imaizumi
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| |
Collapse
|
174
|
Luján R. Organisation of potassium channels on the neuronal surface. J Chem Neuroanat 2010; 40:1-20. [PMID: 20338235 DOI: 10.1016/j.jchemneu.2010.03.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2010] [Revised: 03/10/2010] [Accepted: 03/11/2010] [Indexed: 11/30/2022]
Abstract
Potassium channels are a family of ion channels that govern the intrinsic electrical properties of neurons in the brain. Molecular cloning has revealed over 100 genes encoding the pore-forming alpha subunits of potassium channels in mammals, making them the most diverse subset of ion channels. Multiplicity in this ion channel family is further generated through alternative splicing. The precise location of potassium channels along the dendro-somato-axonic surface of the neurons is an important factor in determining its functional impact. Today, it is widely accepted that potassium channels can be located at any subcellular compartment on the neuronal surface, at synaptic and extrasynaptic sites, from somata to dendritic shafts, dendritic spines, axons or axon terminals. However, they are not evenly distributed on the neuronal surface and depending on the potassium channel subtype, are instead concentrated at different compartments. This selective localization of ion channels to specific neuronal compartments has many different functional implications. One factor necessary to understand the role of potassium channels in neuronal function is to unravel their specialized distribution and subcellular localization within a cell, and this can only be achieved by electron microscopy. In this review, I summarize anatomical findings, describing their distribution in the central nervous system. The distinct regional, cellular and subcellular distribution of potassium channels in the brain will be discussed in view of their possible functional implications.
Collapse
Affiliation(s)
- Rafael Luján
- Departamento de Ciencias Médicas, Instituto de Investigación en Discapacidades Neurológicas (IDINE), Facultad de Medicina, Universidad de Castilla-La Mancha, Campus Biosanitario, C/Almansa 14, 02006 Albacete, Spain.
| |
Collapse
|
175
|
Bagdy G, Riba P, Kecskeméti V, Chase D, Juhász G. Headache-type adverse effects of NO donors: vasodilation and beyond. Br J Pharmacol 2010; 160:20-35. [PMID: 20331608 DOI: 10.1111/j.1476-5381.2010.00643.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Although nitrate therapy, used in the treatment of cardiovascular disorders, is frequently associated with side-effects, mainly headaches, the summaries of product characteristics of nitrate-containing medicines do not report detailed description of headaches and even do not highlight the possibility of nitrate-induced migraine. Two different types of nitrate-induced headaches have been described: (i) immediate headaches that develop within the first hour of the application, are mild or medium severity without characteristic symptoms for migraine, and ease spontaneously; and (ii) delayed, moderate or severe migraine-type headaches (occurring mainly in subjects with personal or family history of migraine), that develop 3-6 h after the intake of nitrates, with debilitating, long-lasting symptoms including nausea, vomiting, photo- and/or phono-phobia. These two types of headaches are remarkably different, not only in their timing and symptoms, but also in the persons who are at risk. Recent studies provide evidence that the two headache types are caused by different mechanisms: immediate headaches are connected to vasodilation caused by nitric oxide (NO) release, while migraines are triggered by other actions such as the release of calcitonin gene-related peptide or glutamate, or changes in ion channel function mediated by cyclic guanosine monophosphate or S-nitrosylation. Migraines usually need anti-attack medication, such as triptans, but these drugs are contraindicated in most medical conditions that are treated using nitrates. In conclusion, these data recommend the correction of summaries of nitrate product characteristics, and also suggest a need to develop new types of anti-migraine drugs, effective in migraine attacks, that could be used in patients with risk for angina pectoris.
Collapse
Affiliation(s)
- G Bagdy
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary.
| | | | | | | | | |
Collapse
|
176
|
Kita M, Yunoki T, Takimoto K, Miyazato M, Kita K, de Groat WC, Kakizaki H, Yoshimura N. Effects of bladder outlet obstruction on properties of Ca2+-activated K+ channels in rat bladder. Am J Physiol Regul Integr Comp Physiol 2010; 298:R1310-9. [PMID: 20200132 DOI: 10.1152/ajpregu.00523.2009] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In this study, we investigated the effects of bladder outlet obstruction (BOO) on the expression and function of large conductance (BK) and small conductance (SK) Ca(2+)-activated K(+) channels in detrusor smooth muscle. The bladder from adult female Sprague-Dawley rats with 6-wk BOO were used. The mRNA expression of the BK channel alpha-subunit, beta1-, beta2-, and beta4-subunits and SK1, SK2, and SK3 channels were investigated using real-time RT-PCR. All subunits except for the BK-beta2, SK2, and SK3 channels were predominantly expressed in the detrusor smooth muscle rather than in the mucosa. The mRNA expression of the BK channel alpha-subunit was not significantly changed in obstructed bladders. However, the expression of the BK channel beta1-subunit and the SK3 channel was remarkably increased in obstructed bladders. On the other hand, the expression of the BK channel beta4-subunit was decreased as the severity of BOO-induced bladder overactivity progressed. In detrusor smooth muscle strips from obstructed bladders, blockade of BK channels by iberiotoxin (IbTx) or charybdotoxin (CTx) and blockade of SK channels by apamin increased the amplitude of spontaneous contractions. These blockers also increased the contractility and affinity of these strips for carbachol during cumulative applications. The facilitatory effects elicited by these K(+) channel blockers were larger in the strips from obstructed bladders compared with control bladders. These results suggest that long-term exposure to BOO for 6 wk enhances the function of both BK and SK types of Ca(2+)-activated K(+) channels in the detrusor smooth muscle to induce an inhibition of bladder contractility, which might be a compensatory mechanism to reduce BOO-induced bladder overactivity.
Collapse
Affiliation(s)
- Masafumi Kita
- Department of Urology, University of Pittsburgh School of Medicine, 3471 Fifth Ave., Pittsburgh, PA 15213, USA.
| | | | | | | | | | | | | | | |
Collapse
|
177
|
Yang MJ, Wang F, Wang JH, Wu WN, Hu ZL, Cheng J, Yu DF, Long LH, Fu H, Xie N, Chen JG. PI3K integrates the effects of insulin and leptin on large-conductance Ca2+-activated K+ channels in neuropeptide Y neurons of the hypothalamic arcuate nucleus. Am J Physiol Endocrinol Metab 2010; 298:E193-201. [PMID: 19671839 DOI: 10.1152/ajpendo.00155.2009] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The adipocyte-derived hormone leptin and the pancreatic beta-cell-derived hormone insulin function as afferent signals to the hypothalamus in an endocrine feedback loop that regulates body adiposity. They act in hypothalamic centers to modulate the function of specific neuronal subtypes, such as neuropeptide Y (NPY) neurons, by modifying neuronal electrical activity. To investigate the intrinsic activity of these neurons and their responses to insulin and leptin, we used a combination of morphological features and immunocytochemical technique to identify the NPY neurons of hypothalamic arcuate nucleus (ARC) and record whole cell large-conductance Ca(2+)-activated potassium (BK) currents on them. We found that both of the hormones increase the peak amplitude of BK currents, shifting the steady-state activation curve to the left. The effect of both insulin and leptin can be prevented by pretreatment with inhibitors of tyrosine kinase and phosphatidylinositol 3-kinase (PI3K) but not MAPK. These data indicate that PI3K-mediated signals are the common regulators of BK channels by insulin and leptin and mediated the two hormones' identical activatory effects on ARC NPY neurons. The effect of insulin and leptin together was similar to that of insulin or leptin alone, and leptin or insulin pretreatment did not lead to insulin- or leptin-sensitizing effects, respectively. These intracellular signaling mechanisms may play key roles in regulating ARC NPY neuron activity and physiological processes such as the control of food intake and body weight, which are under the combined control of insulin and leptin.
Collapse
Affiliation(s)
- Meng-Jie Yang
- Dept. of Pharmacology, Tongji Medical College, Huazhong Univ. of Science and Technology, Wuhan, Hubei 430030 China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
178
|
Khan LH, Rosenfeld CR, Liu XT, Magness RR. Regulation of the cGMP-cPKG pathway and large-conductance Ca2+-activated K+ channels in uterine arteries during the ovine ovarian cycle. Am J Physiol Endocrinol Metab 2010; 298:E222-8. [PMID: 19920217 PMCID: PMC2822482 DOI: 10.1152/ajpendo.00375.2009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The follicular phase of the ovine ovarian cycle demonstrates parallel increases in ovarian estrogens and uterine blood flow (UBF). Although estrogen and nitric oxide contribute to the rise in UBF, the signaling pathway remains unclear. We examined the relationship between the rise in UBF during the ovarian cycle of nonpregnant sheep and changes in the uterine vascular cGMP-dependent pathway and large-conductance Ca(2+)-activated K(+) channels (BK(Ca)). Nonpregnant ewes (n = 19) were synchronized to either follicular or luteal phase using a vaginal progesterone-releasing device (CIDR), followed by intramuscular PGF(2alpha), CIDR removal, and treatment with pregnant mare serum gonadotropin. UBF was measured with flow probes before tissue collection, and second-generation uterine artery segments were collected from nine follicular and seven luteal phase ewes. The pore-forming alpha- and regulatory beta-subunits that constitute the BK(Ca), soluble guanylyl cyclase (sGC), and cGMP-dependent protein kinase G (cPKG) isoforms (cPKG(1alpha) and cPKG(1beta)) were measured by Western analysis and cGMP levels by RIA. BK(Ca) subunits were localized by immunohistochemistry. UBF rose >3-fold (P < 0.04) in follicular phase ewes, paralleling a 2.3-fold rise in smooth muscle cGMP and 32% increase in cPKG(1alpha) (P < 0.05). sGC, cPKG(1beta), and the BK(Ca) alpha-subunit were unchanged. Notably, expression of beta(1)- and beta(2)-regulatory subunits rose 51 and 79% (P <or= 0.05), respectively. Increases in endogenous ovarian estrogens in follicular-phase ewes result in increases in UBF associated with upregulation of the cGMP- and cPKG-dependent pathway and increased vascular BK(Ca) beta/alpha-subunit stoichiometry, suggesting enhanced BK(Ca) activation contributes to the follicular phase rise in UBF.
Collapse
Affiliation(s)
- Liaqat H Khan
- Division of Neonatal-Perinatal Medicine, University of Texas Southwestern Medical School, Dallas, Texas, USA
| | | | | | | |
Collapse
|
179
|
Alda JO, Valero MS, Pereboom D, Gros P, Garay RP. Endothelium-independent vasorelaxation by the selective alpha estrogen receptor agonist propyl pyrazole triol in rat aortic smooth muscle. J Pharm Pharmacol 2010. [DOI: 10.1211/jpp.61.05.0013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Abstract
Objectives
This study investigated the signalling mechanism of the relaxant responses to the estrogen receptor alpha (ERα) agonist PPT (propyl pyrazole triol) in endothelium-denuded rat aortic rings.
Methods
Several compounds, including protein kinase G (PKG) inhibitors and potassium channel inhibitors, were tested against PPT-dependent rat aortic relaxation. Cyclic GMP and cytosolic calcium responses to PPT in isolated aortic smooth muscle were investigated in parallel.
Key findings
PPT vasorelaxation was largely reduced by the selective ERα antagonist methyl-piperidinopyrazole (MPP; −91.6 ± 2.5%), by the selective PKG inhibitor Rp-8-Br-cGMP (−78.6 ± 4.9%), by the specific soluble guanylyl cyclase inhibitor ODQ (1H-(1,2,4)-oxadiazolo[4,3-a]quinoxalin-1-one; −85.3 ± 5.2%) and to a lesser extent by the selective BKCa (large-conductance calcium- and voltage-activated potassium channel) inhibitor iberiotoxin (−59.3%), the selective IKCa (intermediate-conductance calcium-activated potassium channel) inhibitor TRAM-34 (1-[(2-chlorophenyl)diphenylmethyl]-1H-pyrazole; −50.7%) and the voltage-gated potassium channel inhibitor 4-aminopyridine (−40.8%). In isolated aortic smooth muscle, PPT strongly enhanced the cyclic GMP content (+144%) and Rp-8-Br-cGMP largely reduced the PPT-dependent calcium signal (−80.8%).
Conclusions
ERα receptor stimulation in rat aortic smooth muscle evokes a PKG-signalling pathway, likely triggering relaxation by BKCa and IKCa channel opening.
Collapse
Affiliation(s)
- José O Alda
- Department of Pharmacology and Physiology, School of Medicine, Zaragoza, Spain
| | - Marta S Valero
- Department of Pharmacology and Physiology, School of Medicine, Zaragoza, Spain
| | - Desiree Pereboom
- Department of Pharmacology and Physiology, School of Medicine, Zaragoza, Spain
| | - Pilar Gros
- Department of Pharmacology and Physiology, School of Medicine, Zaragoza, Spain
| | | |
Collapse
|
180
|
Interaction of mitochondrial potassium channels with the permeability transition pore. FEBS Lett 2009; 584:2005-12. [DOI: 10.1016/j.febslet.2009.12.038] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Accepted: 12/20/2009] [Indexed: 01/11/2023]
|
181
|
|
182
|
Layne JJ, Nausch B, Olesen SP, Nelson MT. BK channel activation by NS11021 decreases excitability and contractility of urinary bladder smooth muscle. Am J Physiol Regul Integr Comp Physiol 2009; 298:R378-84. [PMID: 19923353 DOI: 10.1152/ajpregu.00458.2009] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Large-conductance Ca(2+)-activated potassium (BK) channels play an important role in regulating the function and activity of urinary bladder smooth muscle (UBSM), and the loss of BK channel function has been shown to increase UBSM excitability and contractility. However, it is not known whether activation of BK channels has the converse effect of reducing UBSM excitability and contractility. Here, we have sought to investigate this possibility by using the novel BK channel opener NS11021. NS11021 (3 microM) caused an approximately threefold increase in both single BK channel open probability (P(o)) and whole cell BK channel currents. The frequency of spontaneous action potentials in UBSM strips was reduced by NS11021 from a control value of 20.9 + or - 5.9 to 10.9 + or - 3.7 per minute. NS11021 also reduced the force of UBSM spontaneous phasic contractions by approximately 50%, and this force reduction was blocked by pretreatment with the BK channel blocker iberiotoxin. NS11021 (3 microM) had no effect on contractions evoked by nerve stimulation. These findings indicate that activating BK channels reduces the force of UBSM spontaneous phasic contractions, principally through decreasing the frequency of spontaneous action potentials.
Collapse
Affiliation(s)
- Jeffrey J Layne
- Department of Pharmacology, College of Medicine, University of Vermont, Burlington, VT 05405, USA
| | | | | | | |
Collapse
|
183
|
Dismuke WM, Ellis DZ. Activation of the BK(Ca) channel increases outflow facility and decreases trabecular meshwork cell volume. J Ocul Pharmacol Ther 2009; 25:309-14. [PMID: 19552602 DOI: 10.1089/jop.2008.0133] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
PURPOSE Inhibition of the BK(Ca) channel attenuated the nitric oxide-induced increase in outflow facility and decrease in trabecular meshwork (TM) cell volume suggesting the involvement of the BK(Ca) channel in TM cell function. This study examined the effects of activation of the BK(Ca) channel on outflow facility and TM cell volume and determined if the effects of NO and BK(Ca) channel activation on TM cell volume were additive. METHODS Porcine eyes were used to measure outflow facility using the anterior segment organ culture perfusion system. Cell volume was measured using Calcein AM fluorescent dye, detected by confocal microscopy, and quantified using NIH ImageJ software. RESULTS NS1619 increased outflow facility 86% over baseline. Additionally, there was a concentration-dependent decrease in TM cell volume in response to NS1619, which was abolished by iberiotoxin (IBTX). While NS1619 alone and DETA-NO alone decreased TM cell volume, together their effects were not additive. The time course for NS1619-induced increases in outflow facility correlated with the time course for NS1619-induced decreases in cell volume. CONCLUSIONS BK(Ca) channel activation increases outflow facility and decreases cell volume suggesting that K(+) efflux regulates TM cell function.
Collapse
Affiliation(s)
- William M Dismuke
- Department of Pharmacodynamics, University of Florida, 1600 SW Archer Road, Gainesville, FL 32610, USA
| | | |
Collapse
|
184
|
Lee JH, Kim HJ, Kim HD, Lee BC, Chun JS, Park CS. Modulation of the conductance-voltage relationship of the BK(Ca) channel by shortening the cytosolic loop connecting two RCK domains. Biophys J 2009; 97:730-7. [PMID: 19651031 DOI: 10.1016/j.bpj.2009.04.058] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2008] [Revised: 04/20/2009] [Accepted: 04/24/2009] [Indexed: 12/25/2022] Open
Abstract
Calcium-dependent gating of large-conductance calcium-activated potassium (BK(Ca)) channels is mediated by the intracellular carboxyl terminus, which contains two domains of regulator of K(+) conductance (RCK). In mammalian BK(Ca) channels, the two RCK domains are separated by a protein segment of 101 residues that is poorly conserved in evolution and predicted to have no regular secondary structures. We investigated the functional importance of this loop using a series of deletion mutations. We found that the length, rather than the specific sequence at the central region of the segment, is critical for the functionality of the channel. As the length of the loop is progressively shorted, the conductance-voltage relationship gradually shifts toward more positive voltages with a minimum length of 70 amino acids, in an apparent response to increased tension within the loop. Thus, the functional activity of the BK(Ca) channel can be modulated by altering the tension of this loop region.
Collapse
Affiliation(s)
- Ju-Ho Lee
- Department of Life Science, Gwangju Institute of Science and Technology, Gwangju, Korea
| | | | | | | | | | | |
Collapse
|
185
|
Hydrogen sulfide increases calcium-activated potassium (BK) channel activity of rat pituitary tumor cells. Pflugers Arch 2009; 459:389-97. [DOI: 10.1007/s00424-009-0737-0] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2009] [Revised: 09/04/2009] [Accepted: 09/13/2009] [Indexed: 01/28/2023]
|
186
|
Long X, Tharp DL, Georger MA, Slivano OJ, Lee MY, Wamhoff BR, Bowles DK, Miano JM. The smooth muscle cell-restricted KCNMB1 ion channel subunit is a direct transcriptional target of serum response factor and myocardin. J Biol Chem 2009; 284:33671-82. [PMID: 19801679 DOI: 10.1074/jbc.m109.050419] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Large conductance calcium-activated potassium (MaxiK) channels play a pivotal role in maintaining normal arterial tone by regulating the excitation-contraction coupling process. MaxiK channels comprise alpha and beta subunits encoded by Kcnma and the cell-restricted Kcnmb genes, respectively. Although the functionality of MaxiK channel subunits has been well studied, the molecular regulation of their transcription and modulation in smooth muscle cells (SMCs) is incomplete. Using several model systems, we demonstrate down-regulation of Kcnmb1 mRNA upon SMC phenotypic modulation in vitro and in vivo. As part of a broad effort to define all functional CArG elements in the genome (i.e. the CArGome), we discovered two conserved CArG boxes located in the proximal promoter and first intron of the human KCNMB1 gene. Gel shift and chromatin immunoprecipitation assays confirmed serum response factor (SRF) binding to both CArG elements. A luciferase assay showed myocardin (MYOCD)-mediated transactivation of the KCNMB1 promoter in a CArG element-dependent manner. In vivo analysis of the human KCNMB1 promoter disclosed activity in embryonic heart and aortic SMCs; mutation of both conserved CArG elements completely abolished in vivo promoter activity. Forced expression of MYOCD increased Kcnmb1 expression in a variety of rodent and human non-SMC lines with no effect on expression of the Kcnma1 subunit. Conversely, knockdown of Srf resulted in decreases of endogenous Kcnmb1. Functional studies demonstrated MYOCD-induced, iberiotoxin-sensitive potassium currents in porcine coronary SMCs. These results reveal the first ion channel subunit as a direct target of SRF-MYOCD transactivation, providing further insight into the role of MYOCD as a master regulator of the SMC contractile phenotype.
Collapse
Affiliation(s)
- Xiaochun Long
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | | | | | | | | | | | | | | |
Collapse
|
187
|
Treistman SN, Martin GE. BK Channels: mediators and models for alcohol tolerance. Trends Neurosci 2009; 32:629-37. [PMID: 19781792 DOI: 10.1016/j.tins.2009.08.001] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Revised: 07/30/2009] [Accepted: 08/05/2009] [Indexed: 12/16/2022]
Abstract
Enhanced acute tolerance predicts alcohol abuse. We describe work on the role of the calcium- and voltage-gated BK channel in alcohol tolerance, highlighting the lipid environment, BK protein isoform selection and auxiliary BK channel proteins. We show how ethanol, which had the reputation of a nonspecific membrane perturbant, is now being examined at realistic concentrations with cutting-edge techniques, providing novel molecular targets for therapeutic approaches to alcoholism. Addictive disorders impact our emotional, physical and financial status, and burden our healthcare system. Although alcohol is the focus of this review, it is highly probable, given the common neural and biochemical pathways used by drugs of abuse, that the findings described here will also apply to other drugs.
Collapse
Affiliation(s)
- Steven N Treistman
- Institute of Neurobiology, University of Puerto Rico Medical Sciences Campus, San Juan 00901, Puerto Rico.
| | | |
Collapse
|
188
|
KIM DY. Role of Ion Channels in the Bladder. Low Urin Tract Symptoms 2009. [DOI: 10.1111/j.1757-5672.2009.00029.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
189
|
Unnerståle S, Lind J, Papadopoulos E, Mäler L. Solution structure of the HsapBK K+ channel voltage-sensor paddle sequence. Biochemistry 2009; 48:5813-21. [PMID: 19456106 DOI: 10.1021/bi9004599] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Voltage-gated potassium channels open and close in response to changes in the membrane potential. In this study, we have determined the NMR solution structure of the putative S3b-S4 voltage-sensor paddle fragment, the part that moves to mediate voltage gating, of the HsapBK potassium channel in dodecylphosphocholine (DPC) micelles. This paper presents the first structure of the S3b-S4 fragment from a BK channel. Diffusion coefficients as determined from PFG NMR experiments showed that a well-defined complex between the peptide and DPC molecules was formed. The structure reveals a helix-turn-helix motif, which is in agreement with crystal structures of other voltage-gated potassium channels, thus indicating that it is feasible to study the isolated fragment. The paddle motifs generally contain several basic residues, implicated in the gating. The critical Arg residues in this structure all reside on the surface, which is in agreement with crystal structures of K(v) channels. Similarities in the structure of the S3b-S4 fragment in BK and K(v) channels as well as important differences are seen, which may be important for explaining the details in paddle movement within a bilayer.
Collapse
Affiliation(s)
- Sofia Unnerståle
- Department of Biochemistry and Biophysics, Center for Biomembrane Research, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | | | | | | |
Collapse
|
190
|
Stadnicka A, Contney SJ, Moreno C, Weihrauch D, Bosnjak ZJ, Roman RJ, Stekiel TA. Mechanism of differential cardiovascular response to propofol in Dahl salt-sensitive, Brown Norway, and chromosome 13-substituted consomic rat strains: role of large conductance Ca2+ and voltage-activated potassium channels. J Pharmacol Exp Ther 2009; 330:727-35. [PMID: 19541907 DOI: 10.1124/jpet.109.154104] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Cardiovascular sensitivity to general anesthetics is highly variable among individuals in both human and animal models, but little is known about the genetic determinants of drug response to anesthetics. Recently, we reported that propofol (2,6-diisopropylphenol) causes circulatory instability in Dahl salt-sensitive SS/JRHsdMcwi (SS) rats but not in Brown Norway BN/NHsdMcwi (BN) rats and that these effects are related to genes on chromosome 13. Based on the hypothesis that propofol does target mesenteric circulation, we investigated propofol modulation of mesenteric arterial smooth muscle cells (MASMC) in SS and BN rats. The role of chromosome 13 was tested using SS-13(BN)/Mcwi and BN-13(SS)/Mcwi consomic strains with chromosome 13 substitution. Propofol (5 microM) produced a greater in situ hyperpolarization of MASMC membrane potential in SS than BN rats, and this effect was abrogated by iberiotoxin, a voltage-activated potassium (BK) channel blocker. In inside-out patches, the BK channel number, P(o), and apparent Ca(2+) sensitivity, and propofol sensitivity all were significantly greater in MASMC of SS rats. The density of whole-cell BK current was increased by propofol more in SS than BN myocytes. Immunolabeling confirmed higher expression of BK alpha subunit in MASMC of SS rats. Furthermore, the hyperpolarization produced by propofol, the BK channel properties, and propofol sensitivity were modified in MASMC of SS-13(BN)/Mcwi and BN-13(SS)/Mcwi strains toward the values observed in the background SS and BN strains. We conclude that differential function and expression of BK channels, resulting from genetic variation within chromosome 13, contribute to the enhanced propofol sensitivity in SS and BN-13(SS)/Mcwi versus BN and SS-13(BN)/Mcwi strains.
Collapse
Affiliation(s)
- Anna Stadnicka
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA.
| | | | | | | | | | | | | |
Collapse
|
191
|
Li J, Deng CL, Gao F, Cheng JH, Yu ZB, Liu L, Xie MJ. Coexpression and characterization of the human large-conductance Ca2+-activated K+ channel α + β1 subunits in HEK293 cells. Mol Cell Biochem 2009; 331:117-26. [DOI: 10.1007/s11010-009-0149-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2008] [Accepted: 04/23/2009] [Indexed: 12/30/2022]
|
192
|
Traut MH, Berg D, Berg U, Mayerhofer A, Kunz L. Identification and characterization of Ca2+-activated K+ channels in granulosa cells of the human ovary. Reprod Biol Endocrinol 2009; 7:28. [PMID: 19351419 PMCID: PMC2671515 DOI: 10.1186/1477-7827-7-28] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Accepted: 04/08/2009] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Granulosa cells (GCs) represent a major endocrine compartment of the ovary producing sex steroid hormones. Recently, we identified in human GCs a Ca2+-activated K+ channel (K(Ca)) of big conductance (BK(Ca)), which is involved in steroidogenesis. This channel is activated by intraovarian signalling molecules (e.g. acetylcholine) via raised intracellular Ca2+ levels. In this study, we aimed at characterizing 1. expression and functions of K(Ca) channels (including BK(Ca) beta-subunits), and 2. biophysical properties of BK(Ca) channels. METHODS GCs were obtained from in vitro-fertilization patients and cultured. Expression of mRNA was determined by standard RT-PCR and protein expression in human ovarian slices was detected by immunohistochemistry. Progesterone production was measured in cell culture supernatants using ELISAs. Single channels were recorded in the inside-out configuration of the patch-clamp technique. RESULTS We identified two K(Ca) types in human GCs, the intermediate- (IK) and the small-conductance K(Ca) (SK). Their functionality was concluded from attenuation of human chorionic gonadotropin-stimulated progesterone production by K(Ca) blockers (TRAM-34, apamin). Functional IK channels were also demonstrated by electrophysiological recording of single K(Ca) channels with distinctive features. Both, IK and BK(Ca) channels were found to be simultaneously active in individual GCs. In agreement with functional data, we identified mRNAs encoding IK, SK1, SK2 and SK3 in human GCs and proteins of IK and SK2 in corresponding human ovarian cells. Molecular characterization of the BK(Ca) channel revealed the presence of mRNAs encoding several BK(Ca) beta-subunits (beta2, beta3, beta4) in human GCs. The multitude of beta-subunits detected might contribute to variations in Ca2+ dependence of individual BK(Ca) channels which we observed in electrophysiological recordings. CONCLUSION Functional and molecular studies indicate the presence of active IK and SK channels in human GCs. Considering the already described BK(Ca), they express all three K(Ca) types known. We suggest that the plurality and co-expression of different K(Ca) channels and BK(Ca) beta-subunits might allow differentiated responses to Ca2+ signals over a wide range caused by various intraovarian signalling molecules (e.g. acetylcholine, ATP, dopamine). The knowledge of ovarian K(Ca) channel properties and functions should help to understand the link between endocrine and paracrine/autocrine control in the human ovary.
Collapse
Affiliation(s)
- Matthias H Traut
- Institute for Cell Biology, University of Munich, Munich, Germany
- Current address: Max Planck Institute of Neurobiology, Martinsried, Germany
| | - Dieter Berg
- Assisted Reproductive Technologies Bogenhausen, Munich, Germany
| | - Ulrike Berg
- Assisted Reproductive Technologies Bogenhausen, Munich, Germany
| | - Artur Mayerhofer
- Institute for Cell Biology, University of Munich, Munich, Germany
| | - Lars Kunz
- Institute for Cell Biology, University of Munich, Munich, Germany
| |
Collapse
|
193
|
Abstract
Large conductance, Ca(2+)-activated potassium (BK) channels are widely expressed throughout the animal kingdom and play important roles in many physiological processes, such as muscle contraction, neural transmission and hearing. These physiological roles derive from the ability of BK channels to be synergistically activated by membrane voltage, intracellular Ca(2+) and other ligands. Similar to voltage-gated K(+) channels, BK channels possess a pore-gate domain (S5-S6 transmembrane segments) and a voltage-sensor domain (S1-S4). In addition, BK channels contain a large cytoplasmic C-terminal domain that serves as the primary ligand sensor. The voltage sensor and the ligand sensor allosterically control K(+) flux through the pore-gate domain in response to various stimuli, thereby linking cellular metabolism and membrane excitability. This review summarizes the current understanding of these structural domains and their mutual interactions in voltage-, Ca(2+)- and Mg(2+)-dependent activation of the channel.
Collapse
Affiliation(s)
- J Cui
- Department of Biomedical Engineering and Cardiac Bioelectricity and Arrhythmia Center, Washington University, 1 Brookings Drive, St. Louis, Missouri 63130, USA.
| | | | | |
Collapse
|
194
|
Structural determinants of lolitrems for inhibition of BK large conductance Ca2+-activated K+ channels. Eur J Pharmacol 2009; 605:36-45. [PMID: 19210977 DOI: 10.1016/j.ejphar.2008.12.031] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2008] [Revised: 12/12/2008] [Accepted: 12/23/2008] [Indexed: 01/28/2023]
Abstract
Lolitrem B is an indole-diterpenoid neurotoxin which is the main causative agent of ryegrass staggers, an animal disease associated with tremors and incoordination. It is also a potent inhibitor of large conductance calcium-activated potassium (BK) channel activity (IC(50)=4 nM). Furthermore, we have recently shown that the motor function deficits induced by lolitrem B are specifically mediated by BK channels, making the toxin a valuable tool for investigating the molecular function and physiological roles of these channels. To determine what structural features of BK channel agents are required for high potency, the effect of lolitrem B and seven structurally-related lolitrems on BK channel activity has been measured. Concentration-responses and conductance-voltage (G-V) relationships were determined for each compound and related to the different structure types. This study has identified seven new BK channel inhibitors and has allowed the identification of two key structural features required for high potency BK channel activity by lolitrems.
Collapse
|
195
|
Chen GP, Ye Y, Li L, Yang Y, Qian AB, Hu SJ. Endothelium-independent vasorelaxant effect of sodium ferulate on rat thoracic aorta. Life Sci 2009; 84:81-8. [PMID: 19038273 DOI: 10.1016/j.lfs.2008.11.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2008] [Revised: 08/29/2008] [Accepted: 11/05/2008] [Indexed: 12/18/2022]
|
196
|
Zou J, Zhang Y, Yin S, Wu H, Pyykkö I. Mitochondrial dysfunction disrupts trafficking of Kir4.1 in spiral ganglion satellite cells. J Neurosci Res 2009; 87:141-9. [DOI: 10.1002/jnr.21842] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
197
|
Ramteke VD, Tandan SK, Kumar D, Aruna Devi R, Shukla MK, Ravi Prakash V. Increased hyperalgesia by 5-nitro-2, 3-(phenylpropylamino)-benzoic acid (NPPB), a chloride channel blocker in crush injury-induced neuropathic pain in rats. Pharmacol Biochem Behav 2009; 91:417-22. [DOI: 10.1016/j.pbb.2008.08.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2008] [Revised: 07/26/2008] [Accepted: 08/12/2008] [Indexed: 01/22/2023]
|
198
|
Telezhkin V, Brazier S, Cayzac S, Müller C, Riccardi D, Kemp P. Hydrogen Sulfide Inhibits Human BKCa Channels. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 648:65-72. [DOI: 10.1007/978-90-481-2259-2_7] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
199
|
Wrzosek A, Łukasiak A, Gwóźdź P, Malińska D, Kozlovski VI, Szewczyk A, Chlopicki S, Dołowy K. Large-conductance K+ channel opener CGS7184 as a regulator of endothelial cell function. Eur J Pharmacol 2009; 602:105-11. [DOI: 10.1016/j.ejphar.2008.10.066] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Revised: 09/19/2008] [Accepted: 10/29/2008] [Indexed: 01/08/2023]
|
200
|
Morin C, Sirois M, Echave V, Rizcallah E, Rousseau E. Relaxing effects of 17(18)-EpETE on arterial and airway smooth muscles in human lung. Am J Physiol Lung Cell Mol Physiol 2009; 296:L130-9. [DOI: 10.1152/ajplung.90436.2008] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Human cytochrome P-450 epoxygenase enzymes metabolize eicosapentaenoic acid (EPA), an ω-3-polyunsaturated fatty acid (PUFA), and leads to the production of 17(18)-epoxyeicosatetraenoic acid, or 17(18)-EpETE. The aim of the present study was to delineate the mode of action of 17(18)-EpETE on human pulmonary artery (HPA) and distal bronchi. Isometric tension measurements demonstrated that 17(18)-EpETE induced concentration-dependent relaxing effects in pulmonary artery and airway smooth muscles. Iberiotoxin (IbTx) and glyburide (Glyb), known BKCa and KATP channel inhibitors, respectively, reversed the relaxation induced by 17(18)-EpETE on both tissues types. Microelectrode measurements showed that exogenous addition of 17(18)-EpETE hyperpolarized the membrane potential of HPA and bronchial smooth muscle cells. These induced electrophysiological effects were reversed by the addition of 10 nM IbTx and 10 μM Glyb. Complementary experiments performed on human bronchi, using the planar lipid bilayer reconstitution technique, demonstrated that 17(18)-EpETE activated reconstituted BKCa channels at low free Ca2+ concentration. Moreover, in bronchi, the relaxing responses induced by 17(18)-EpETE were also related to reduced Ca2+ sensitivity of the myofilaments, since free Ca2+ concentration-response curves, performed on β-escin-permeabilized cultured explants, were shifted toward higher Ca2+. Together, these results provide new insight into the mode of action of 17(18)-EpETE in lung tissues and highlight this eicosanoid as a potent modulator of tone on both HPA and distal bronchi in vitro, which may be of clinical relevance in the pathophysiology of pulmonary hypertension and airway diseases.
Collapse
|