151
|
Gigli S, Seguella L, Pesce M, Bruzzese E, D'Alessandro A, Cuomo R, Steardo L, Sarnelli G, Esposito G. Cannabidiol restores intestinal barrier dysfunction and inhibits the apoptotic process induced by Clostridium difficile toxin A in Caco-2 cells. United European Gastroenterol J 2017; 5:1108-1115. [PMID: 29238589 DOI: 10.1177/2050640617698622] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 02/15/2017] [Indexed: 12/17/2022] Open
Abstract
Background Clostridium difficile toxin A is responsible for colonic damage observed in infected patients. Drugs able to restore Clostridium difficile toxin A-induced toxicity have the potential to improve the recovery of infected patients. Cannabidiol is a non-psychotropic component of Cannabis sativa, which has been demonstrated to protect enterocytes against chemical and/or inflammatory damage and to restore intestinal mucosa integrity. Objective The purpose of this study was to evaluate (a) the anti-apoptotic effect and (b) the mechanisms by which cannabidiol protects mucosal integrity in Caco-2 cells exposed to Clostridium difficile toxin A. Methods Caco-2 cells were exposed to Clostridium difficile toxin A (30 ng/ml), with or without cannabidiol (10-7-10-9 M), in the presence of the specific antagonist AM251 (10-7 M). Cytotoxicity assay, transepithelial electrical resistence measurements, immunofluorescence analysis and immunoblot analysis were performed in the different experimental conditions. Results Clostridium difficile toxin A significantly decreased Caco-2 cells' viability and reduced transepithelial electrical resistence values and RhoA guanosine triphosphate (GTP), bax, zonula occludens-1 and occludin protein expression, respectively. All these effects were significantly and concentration-dependently inhibited by cannabidiol, whose effects were completely abolished in the presence of the cannabinoid receptor type 1 (CB1) antagonist, AM251. Conclusions Cannabidiol improved Clostridium difficile toxin A-induced damage in Caco-2 cells, by inhibiting the apoptotic process and restoring the intestinal barrier integrity, through the involvement of the CB1 receptor.
Collapse
Affiliation(s)
- Stefano Gigli
- Department of Physiology and Pharmacology, La Sapienza University of Rome, Rome, Italy
| | - Luisa Seguella
- Department of Physiology and Pharmacology, La Sapienza University of Rome, Rome, Italy
| | - Marcella Pesce
- Department of Clinical Medicine and Surgery, University of Naples 'Federico II', Naples, Italy
| | - Eugenia Bruzzese
- Department of Translational Medical Science, University of Naples 'Federico II', Naples, Italy
| | - Alessandra D'Alessandro
- Department of Clinical Medicine and Surgery, University of Naples 'Federico II', Naples, Italy
| | - Rosario Cuomo
- Department of Clinical Medicine and Surgery, University of Naples 'Federico II', Naples, Italy
| | - Luca Steardo
- Department of Physiology and Pharmacology, La Sapienza University of Rome, Rome, Italy
| | - Giovanni Sarnelli
- Department of Clinical Medicine and Surgery, University of Naples 'Federico II', Naples, Italy
| | - Giuseppe Esposito
- Department of Physiology and Pharmacology, La Sapienza University of Rome, Rome, Italy
| |
Collapse
|
152
|
|
153
|
Fabisiak A, Fichna J. Cannabinoids as gastrointestinal anti-inflammatory drugs. Neurogastroenterol Motil 2017; 29. [PMID: 28239924 DOI: 10.1111/nmo.13038] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Revised: 01/04/2017] [Accepted: 01/05/2017] [Indexed: 02/08/2023]
Abstract
In this mini-review, we focus on the potential of the endocannabinoid system as a target for novel therapies to treat gastrointestinal (GI) inflammation. We discuss the organization of the endocannabinoid signaling and present possible pharmacological sites in the endocannabinoid system. We also refer to recent clinical findings in the field. Finally, we point at the potential use of cannabinoids at low, non-psychoactive doses to counteract non-inflammatory pathological events in the GI tract, like chemotherapy-induced diarrhea, as evidenced by Abalo et al. in the rat model.
Collapse
Affiliation(s)
- A Fabisiak
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - J Fichna
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
154
|
Vera G, López-Pérez AE, Uranga JA, Girón R, Martín-Fontelles MI, Abalo R. Involvement of Cannabinoid Signaling in Vincristine-Induced Gastrointestinal Dysmotility in the Rat. Front Pharmacol 2017; 8:37. [PMID: 28220074 PMCID: PMC5292571 DOI: 10.3389/fphar.2017.00037] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 01/18/2017] [Indexed: 01/16/2023] Open
Abstract
Background: In different models of paralytic ileus, cannabinoid receptors are overexpressed and endogenous cannabinoids are massively released, contributing to gastrointestinal dysmotility. The antitumoral drug vincristine depresses gastrointestinal motility and a similar mechanism could participate in this effect. Therefore, our aim was to determine, using CB1 and CB2 antagonists, whether an increased endocannabinoid tone is involved in vincristine-induced gastrointestinal ileus. Methods: First, we confirmed the effects of vincristine on the gut mucosa, by conventional histological techniques, and characterized its effects on motility, by radiographic means. Conscious male Wistar rats received an intraperitoneal injection of vincristine (0.1–0.5 mg/kg), and barium sulfate (2.5 ml; 2 g/ml) was intragastrically administered 0, 24, or 48 h later. Serial X-rays were obtained at different time-points (0–8 h) after contrast. X-rays were used to build motility curves for each gastrointestinal region and determine the size of stomach and caecum. Tissue samples were taken for histology 48 h after saline or vincristine (0.5 mg/kg). Second, AM251 (a CB1 receptor antagonist) and AM630 (a CB2 receptor antagonist) were used to determine if CB1 and/or CB2 receptors are involved in vincristine-induced gastrointestinal dysmotility. Key results: Vincristine induced damage to the mucosa of ileum and colon and reduced gastrointestinal motor function at 0.5 mg/kg. The effect on motor function was particularly evident when the study started 24 h after administration. AM251, but not AM630, significantly prevented vincristine effect, particularly in the small intestine, when administered thrice. AM251 alone did not significantly alter gastrointestinal motility. Conclusions: The fact that AM251, but not AM630, is capable of reducing the effect of vincristine suggests that, like in other experimental models of paralytic ileus, an increased cannabinoid tone develops and is at least partially responsible for the alterations induced by the antitumoral drug on gastrointestinal motor function. Thus, CB1 antagonists might be useful to prevent/treat ileus induced by vincristine.
Collapse
Affiliation(s)
- Gema Vera
- Área de Farmacología y Nutrición, Departamento de Ciencias Básicas de la Salud, Universidad Rey Juan CarlosAlcorcón, Spain; Unidad Asociada I+D+i del Instituto de Química Médica, Consejo Superior de Investigaciones CientíficasMadrid, Spain; Unidad Asociada I+D+i del Instituto de Investigación en Ciencias de la Alimentación, Consejo Superior de Investigaciones CientíficasMadrid, Spain; Grupo de Excelencia Investigadora URJC-Banco de Santander-Grupo Multidisciplinar de Investigación y Tratamiento del Dolor (i+DOL)Alcorcón, Spain
| | - Ana E López-Pérez
- Grupo de Excelencia Investigadora URJC-Banco de Santander-Grupo Multidisciplinar de Investigación y Tratamiento del Dolor (i+DOL)Alcorcón, Spain; Unidad del Dolor, Servicio de Anestesia, Hospital General Universitario Gregorio MarañónMadrid, Spain
| | - José A Uranga
- Unidad Asociada I+D+i del Instituto de Investigación en Ciencias de la Alimentación, Consejo Superior de Investigaciones CientíficasMadrid, Spain; Grupo de Excelencia Investigadora URJC-Banco de Santander-Grupo Multidisciplinar de Investigación y Tratamiento del Dolor (i+DOL)Alcorcón, Spain; Área de Histología Humana y Anatomía Patológica, Departamento de Ciencias Básicas de la Salud, Universidad Rey Juan CarlosAlcorcón, Spain
| | - Rocío Girón
- Área de Farmacología y Nutrición, Departamento de Ciencias Básicas de la Salud, Universidad Rey Juan CarlosAlcorcón, Spain; Unidad Asociada I+D+i del Instituto de Química Médica, Consejo Superior de Investigaciones CientíficasMadrid, Spain; Unidad Asociada I+D+i del Instituto de Investigación en Ciencias de la Alimentación, Consejo Superior de Investigaciones CientíficasMadrid, Spain; Grupo de Excelencia Investigadora URJC-Banco de Santander-Grupo Multidisciplinar de Investigación y Tratamiento del Dolor (i+DOL)Alcorcón, Spain
| | - Ma Isabel Martín-Fontelles
- Área de Farmacología y Nutrición, Departamento de Ciencias Básicas de la Salud, Universidad Rey Juan CarlosAlcorcón, Spain; Unidad Asociada I+D+i del Instituto de Química Médica, Consejo Superior de Investigaciones CientíficasMadrid, Spain; Unidad Asociada I+D+i del Instituto de Investigación en Ciencias de la Alimentación, Consejo Superior de Investigaciones CientíficasMadrid, Spain; Grupo de Excelencia Investigadora URJC-Banco de Santander-Grupo Multidisciplinar de Investigación y Tratamiento del Dolor (i+DOL)Alcorcón, Spain
| | - Raquel Abalo
- Área de Farmacología y Nutrición, Departamento de Ciencias Básicas de la Salud, Universidad Rey Juan CarlosAlcorcón, Spain; Unidad Asociada I+D+i del Instituto de Química Médica, Consejo Superior de Investigaciones CientíficasMadrid, Spain; Unidad Asociada I+D+i del Instituto de Investigación en Ciencias de la Alimentación, Consejo Superior de Investigaciones CientíficasMadrid, Spain; Grupo de Excelencia Investigadora URJC-Banco de Santander-Grupo Multidisciplinar de Investigación y Tratamiento del Dolor (i+DOL)Alcorcón, Spain
| |
Collapse
|
155
|
Cheifetz AS, Gianotti R, Luber R, Gibson PR. Complementary and Alternative Medicines Used by Patients With Inflammatory Bowel Diseases. Gastroenterology 2017; 152:415-429.e15. [PMID: 27743873 DOI: 10.1053/j.gastro.2016.10.004] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 10/03/2016] [Accepted: 10/06/2016] [Indexed: 02/06/2023]
Abstract
Patients and physicians often have many questions regarding the role of complementary and alternative medicines (CAMs), or nonallopathic therapies, for inflammatory bowel diseases (IBDs). CAMs of various forms are used by more than half of patients with IBD during some point in their disease course. We summarize the available evidence for the most commonly used and discussed CAMs. We discuss evidence for the effects of herbs (such as cannabis and curcumin), probiotics, acupuncture, exercise, and mind-body therapy. There have been few controlled studies of these therapies, which have been limited by their small sample sizes; most studies have been uncontrolled. In addition, there has been a lack of quality control for herbal preparations. It has been a challenge to design rigorous, randomized, placebo-controlled trials, in part owing to problems of adequate blinding for psychological interventions, acupuncture, and exercise. These barriers have limited the acceptance of CAMs by physicians. However, such therapies might be used to supplement conventional therapies and help ease patient symptoms. We conclude that physicians should understand the nature of and evidence for CAMs for IBD so that rational advice can be offered to patients who inquire about their use. CAMs have the potential to aid in the treatment of IBD, but further research is needed to validate these approaches.
Collapse
Affiliation(s)
- Adam S Cheifetz
- Department of Gastroenterology, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Robert Gianotti
- Department of Gastroenterology, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Raphael Luber
- Department of Gastroenterology, Alfred Hospital and Monash University, Melbourne, Australia
| | - Peter R Gibson
- Department of Gastroenterology, Alfred Hospital and Monash University, Melbourne, Australia.
| |
Collapse
|
156
|
Malik Z, Bayman L, Valestin J, Rizvi-Toner A, Hashmi S, Schey R. Dronabinol increases pain threshold in patients with functional chest pain: a pilot double-blind placebo-controlled trial. Dis Esophagus 2017; 30:1-8. [PMID: 26822791 DOI: 10.1111/dote.12455] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Noncardiac chest pain is associated with poor quality of life and high care expenditure. The majority of noncardiac chest pain is either gastresophageal reflux disease related or due to esophageal motility disorders, and the rest are considered functional chest pain (FCP) due to central and peripheral hypersensitivity. Current treatment of FCP improves 40-50% of patients. Cannabinoid receptors 1 (CB1) and 2 (CB2) modulate release of neurotransmitters; CB1 is located in the esophageal epithelium and reduces excitatory enteric transmission and potentially could reduce esophageal hypersensitivity. We performed a prospective study to evaluate its effects on pain threshold, frequency, and intensity in FCP. Subjects with FCP received dronabinol (5 mg, twice daily; n = 7; average age, 44 years; mean body mass index, 26.7) or placebo (n = 6; average age, 42 years; mean body mass index, 25.9) for 28 days (4 weeks). Chest pain, general health, and anxiety/depression questionnaires were assessed at baseline and at 4 weeks. Subjects underwent an esophageal balloon distention test prior to treatment and on last day of the study. Dronabinol increased pain thresholds significantly (3.0 vs. 1.0; P = 0.03) and reduced pain intensity and odynophagia compared to placebo (0.18 vs. 0.01 and 0.12 vs. 0.01, respectively, P = 0.04). Depression and anxiety scores did not differ between the groups at baseline or after treatment. No significant adverse effects were observed. In this novel study, dronabinol increased pain threshold and reduced frequency and intensity of pain in FCP. Further, large scale studies are needed to substantiate these findings.
Collapse
Affiliation(s)
- Z Malik
- Section of Gastroenterology, Temple University Hospital, Philadelphia, Pennsylvania, USA
| | - L Bayman
- Division of Gastroenterology, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - J Valestin
- Division of Gastroenterology, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - A Rizvi-Toner
- Division of Gastroenterology, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - S Hashmi
- Division of Gastroenterology, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - R Schey
- Section of Gastroenterology, Temple University Hospital, Philadelphia, Pennsylvania, USA.,Division of Gastroenterology, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| |
Collapse
|
157
|
Gyires K, Zádori ZS. Role of Cannabinoids in Gastrointestinal Mucosal Defense and Inflammation. Curr Neuropharmacol 2017; 14:935-951. [PMID: 26935536 PMCID: PMC5333598 DOI: 10.2174/1570159x14666160303110150] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 12/14/2015] [Accepted: 02/26/2016] [Indexed: 02/06/2023] Open
Abstract
Modulating the activity of the endocannabinoid system influences various gastrointestinal physiological and pathophysiological processes, and cannabinoid receptors as well as regulatory enzymes responsible for the synthesis or degradation of endocannabinoids representing potential targets to reduce the development of gastrointestinal mucosal lesions, hemorrhage and inflammation. Direct activation of CB1 receptors by plant-derived, endogenous or synthetic cannabinoids effectively reduces both gastric acid secretion and gastric motor activity, and decreases the formation of gastric mucosal lesions induced by stress, pylorus ligation, nonsteroidal anti-inflammatory drugs (NSAIDs) or alcohol, partly by peripheral, partly by central mechanisms. Similarly, indirect activation of cannabinoid receptors through elevation of endocannabinoid levels by globally acting or peripherally restricted inhibitors of their metabolizing enzymes (FAAH, MAGL) or by inhibitors of their cellular uptake reduces the gastric mucosal lesions induced by NSAIDs in a CB1 receptor-dependent fashion. Dual inhibition of FAAH and cyclooxygenase enzymes induces protection against both NSAID-induced gastrointestinal damage and intestinal inflammation. Moreover, in intestinal inflammation direct or indirect activation of CB1 and CB2 receptors exerts also multiple beneficial effects. Namely, activation of both CB receptors was shown to ameliorate intestinal inflammation in various murine colitis models, to decrease visceral hypersensitivity and abdominal pain, as well as to reduce colitis-associated hypermotility and diarrhea. In addition, CB1 receptors suppress secretory processes and also modulate intestinal epithelial barrier functions. Thus, experimental data suggest that the endocannabinoid system represents a promising target in the treatment of inflammatory bowel diseases, and this assumption is also confirmed by preliminary clinical studies.
Collapse
Affiliation(s)
- Klára Gyires
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Nagyvarad ter 4., 1089, Budapest, Hungary
| | | |
Collapse
|
158
|
Gertsch J. Cannabimimetic phytochemicals in the diet - an evolutionary link to food selection and metabolic stress adaptation? Br J Pharmacol 2017; 174:1464-1483. [PMID: 27891602 DOI: 10.1111/bph.13676] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 11/05/2016] [Accepted: 11/13/2016] [Indexed: 12/21/2022] Open
Abstract
The endocannabinoid system (ECS) is a major lipid signalling network that plays important pro-homeostatic (allostatic) roles not only in the nervous system but also in peripheral organs. There is increasing evidence that there is a dietary component in the modulation of the ECS. Cannabinoid receptors in hominids co-evolved with diet, and the ECS constitutes a feedback loop for food selection and energy metabolism. Here, it is postulated that the mismatch of ancient lipid genes of hunter-gatherers and pastoralists with the high-carbohydrate diet introduced by agriculture could be compensated for via dietary modulation of the ECS. In addition to the fatty acid precursors of endocannabinoids, the potential role of dietary cannabimimetic phytochemicals in agriculturist nutrition is discussed. Dietary secondary metabolites from vegetables and spices able to enhance the activity of cannabinoid-type 2 (CB2 ) receptors may provide adaptive metabolic advantages and counteract inflammation. In contrast, chronic CB1 receptor activation in hedonic obese individuals may enhance pathophysiological processes related to hyperlipidaemia, diabetes, hepatorenal inflammation and cardiometabolic risk. Food able to modulate the CB1 /CB2 receptor activation ratio may thus play a role in the nutrition transition of Western high-calorie diets. In this review, the interplay between diet and the ECS is highlighted from an evolutionary perspective. The emerging potential of cannabimimetic food as a nutraceutical strategy is critically discussed. LINKED ARTICLES This article is part of a themed section on Principles of Pharmacological Research of Nutraceuticals. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.11/issuetoc.
Collapse
Affiliation(s)
- Jürg Gertsch
- Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bühlstrasse 28, 3012, Bern, Switzerland
| |
Collapse
|
159
|
Argueta DA, DiPatrizio NV. Peripheral endocannabinoid signaling controls hyperphagia in western diet-induced obesity. Physiol Behav 2017; 171:32-39. [PMID: 28065722 DOI: 10.1016/j.physbeh.2016.12.044] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 12/16/2016] [Accepted: 12/20/2016] [Indexed: 01/07/2023]
Abstract
The endocannabinoid system in the brain and periphery plays a major role in controlling food intake and energy balance. We reported that tasting dietary fats was met with increased levels of the endocannabinoids, 2-arachidonoyl-sn-glycerol (2-AG) and anandamide, in the rat upper small intestine, and pharmacological inhibition of this local signaling event dose-dependently blocked sham feeding of fats. We now investigated the contribution of peripheral endocannabinoid signaling in hyperphagia associated with chronic consumption of a western-style diet in mice ([WD] i.e., high fat and sucrose). Feeding patterns were assessed in male C57BL/6Tac mice maintained for 60days on WD or a standard rodent chow (SD), and the role for peripheral endocannabinoid signaling at CB1Rs in controlling food intake was investigated via pharmacological interventions. In addition, levels of the endocannabinoids, 2-AG and anandamide, in the upper small intestine and circulation of mice were analyzed via liquid chromatography coupled to tandem mass spectrometry to evaluate diet-related changes in endocannabinoid signaling and the potential impact on food intake. Mice fed WD for 60days exhibited large increases in body weight, daily caloric intake, average meal size, and rate of feeding when compared to control mice fed SD. Inhibiting peripheral CB1Rs with the peripherally-restricted neutral cannabinoid CB1 receptor antagonist, AM6545 (10mg/kg), significantly reduced intake of WD during a 6h test, but failed to modify intake of SD in mice. AM6545 normalized intake of WD, average meal size, and rate of feeding to levels found in SD control mice. These results suggest that endogenous activity at peripheral CB1Rs in WD mice is critical for driving hyperphagia. In support of this hypothesis, levels of 2-AG and anandamide in both, jejunum mucosa and plasma, of ad-libitum fed WD mice increased when compared to SC mice. Furthermore, expression of genes for primary components of the endocannabinoid system (i.e., cannabinoid receptors, and endocannabinoid biosynthetic and degradative enzymes) was dysregulated in WD mice when compared to SC mice. Our results suggest that hyperphagia associated with WD-induced obesity is driven by enhanced endocannabinoid signaling at peripheral CB1Rs.
Collapse
Affiliation(s)
| | - Nicholas V DiPatrizio
- University of California Riverside, Riverside, CA, USA; School of Medicine, Riverside, CA, USA; Division of Biomedical Sciences, Riverside, CA, USA.
| |
Collapse
|
160
|
Shamran H, Singh NP, Zumbrun EE, Murphy A, Taub DD, Mishra MK, Price RL, Chatterjee S, Nagarkatti M, Nagarkatti PS, Singh UP. Fatty acid amide hydrolase (FAAH) blockade ameliorates experimental colitis by altering microRNA expression and suppressing inflammation. Brain Behav Immun 2017; 59:10-20. [PMID: 27327245 PMCID: PMC5154806 DOI: 10.1016/j.bbi.2016.06.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 06/13/2016] [Accepted: 06/14/2016] [Indexed: 02/07/2023] Open
Abstract
Inflammatory bowel disease (IBD), including Crohn's disease (CD) and ulcerative colitis (UC), which is thought to result from immune-mediated inflammatory disorders, leads to high morbidity and health care cost. Fatty acid amide hydrolase (FAAH) is an enzyme crucially involved in the modulation of intestinal physiology through anandamide (AEA) and other endocannabinoids. Here we examined the effects of an FAAH inhibitor (FAAH-II), on dextran sodium sulphate (DSS)-induced experimental colitis in mice. Treatments with FAAH-II improved overall clinical scores by reversing weight loss and colitis-associated pathogenesis. The frequencies of activated CD4+ T cells in spleens, mesenteric lymph nodes (MLNs), Peyer's patches (PPs), and colon lamina propiria (LP) were reduced by FAAH inhibition. Similarly, the frequencies of macrophages, neutrophils, natural killer (NK), and NKT cells in the PPs and LP of mice with colitis declined after FAAH blockade, as did concentrations of systemic and colon inflammatory cytokines. Microarray analysis showed that 26 miRNAs from MLNs and 217 from PPs had a 1.5-fold greater difference in expression after FAAH inhibition. Among them, 8 miRNAs were determined by reverse-transcription polymerase chain reaction (RT-PCR) analysis to have anti-inflammatory properties. Pathway analysis demonstrated that differentially regulated miRNAs target mRNA associated with inflammation. Thus, FAAH-II ameliorates experimental colitis by reducing not only the number of activated T cells but also the frequency of macrophages, neutrophils, and NK/NKT cell, as well as inflammatory miRNAs and cytokine at effector sites in the colon. These studies demonstrate for the first time that FAAH-II inhibitor may suppress colitis through regulation of pro-inflammatory miRNAs expression.
Collapse
Affiliation(s)
- Haidar Shamran
- Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC 29208
| | - Narendra P. Singh
- Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC 29208
| | - Elizabeth E. Zumbrun
- Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC 29208
| | - Angela Murphy
- Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC 29208
| | - Dennis D. Taub
- Center for Translational Studies, Medical Services, VA Medical Center, Department of Veteran Affairs, Washington DC, USA
| | - Manoj K. Mishra
- Department of Math and Sciences, Alabama State University 1627 Hall St. Montgomery, AL 36104
| | - Robert L. Price
- Department of Cell and Developmental Biology, University of South Carolina, Columbia, SC 29208 USA
| | - Saurabh Chatterjee
- Department of Environmental Health Sciences, University of South Carolina, Columbia, SC 29208
| | - Mitzi Nagarkatti
- Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC 29208
| | - Prakash S. Nagarkatti
- Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC 29208
| | - Udai P. Singh
- Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC 29208
| |
Collapse
|
161
|
Robinson AM, Rahman AA, Carbone SE, Randall-Demllo S, Filippone R, Bornstein JC, Eri R, Nurgali K. Alterations of colonic function in the Winnie mouse model of spontaneous chronic colitis. Am J Physiol Gastrointest Liver Physiol 2017; 312:G85-G102. [PMID: 27881401 DOI: 10.1152/ajpgi.00210.2016] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 11/14/2016] [Accepted: 11/14/2016] [Indexed: 01/31/2023]
Abstract
UNLABELLED The Winnie mouse, carrying a missense mutation in Muc2, is a model for chronic intestinal inflammation demonstrating symptoms closely resembling inflammatory bowel disease (IBD). Alterations to the immune environment, morphological structure, and innervation of Winnie mouse colon have been identified; however, analyses of intestinal transit and colonic functions have not been conducted. In this study, we investigated in vivo intestinal transit in radiographic studies and in vitro motility of the isolated colon in organ bath experiments. We compared neuromuscular transmission using conventional intracellular recording between distal colon of Winnie and C57BL/6 mice and smooth muscle contractions using force displacement transducers. Chronic inflammation in Winnie mice was confirmed by detection of lipocalin-2 in fecal samples over 4 wk and gross morphological damage to the colon. Colonic transit was faster in Winnie mice. Motility was altered including decreased frequency and increased speed of colonic migrating motor complexes and increased occurrence of short and fragmented contractions. The mechanisms underlying colon dysfunctions in Winnie mice included inhibition of excitatory and fast inhibitory junction potentials, diminished smooth muscle responses to cholinergic and nitrergic stimulation, and increased number of α-smooth muscle actin-immunoreactive cells. We conclude that diminished excitatory responses occur both prejunctionally and postjunctionally and reduced inhibitory purinergic responses are potentially a prejunctional event, while diminished nitrergic inhibitory responses are probably due to a postjunction mechanism in the Winnie mouse colon. Many of these changes are similar to disturbed motor functions in IBD patients indicating that the Winnie mouse is a model highly representative of human IBD. NEW & NOTEWORTHY This is the first study to provide analyses of intestinal transit and whole colon motility in an animal model of spontaneous chronic colitis. We found that cholinergic and purinergic neuromuscular transmission, as well as the smooth muscle cell responses to cholinergic and nitrergic stimulation, is altered in the chronically inflamed Winnie mouse colon. The changes to intestinal transit and colonic function we identified in the Winnie mouse are similar to those seen in inflammatory bowel disease patients.
Collapse
Affiliation(s)
- Ainsley M Robinson
- College of Health and Biomedicine, Victoria University, Melbourne, Victoria, Australia
| | - Ahmed A Rahman
- College of Health and Biomedicine, Victoria University, Melbourne, Victoria, Australia
| | - Simona E Carbone
- College of Health and Biomedicine, Victoria University, Melbourne, Victoria, Australia
| | - Sarron Randall-Demllo
- University of Tasmania, School of Health Sciences, Launceston, Tasmania, Australia; and
| | - Rhiannon Filippone
- College of Health and Biomedicine, Victoria University, Melbourne, Victoria, Australia
| | - Joel C Bornstein
- Department of Physiology, Melbourne University, Melbourne, Victoria, Australia
| | - Rajaraman Eri
- University of Tasmania, School of Health Sciences, Launceston, Tasmania, Australia; and
| | - Kulmira Nurgali
- College of Health and Biomedicine, Victoria University, Melbourne, Victoria, Australia;
| |
Collapse
|
162
|
Woods JA, Wright NJD, Gee J, Scobey MW. Cannabinoid Hyperemesis Syndrome: An Emerging Drug-Induced Disease. Am J Ther 2016; 23:e601-5. [PMID: 24413371 DOI: 10.1097/mjt.0000000000000034] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Cannabinoid hyperemesis is a relatively rare but significant adverse effect of chronic marijuana use characterized by severe, cyclic nausea, vomiting, and abdominal pain and marked by compulsive hot-water bathing for temporary symptom relief. A 37-year-old African American male with no significant medical history other than the habitual abuse of marijuana was admitted for intractable nausea, vomiting, and abdominal pain. With the exception of abdominal skin hyperpigmentation and scarring secondary to the direct application of heat through a heating pad, physical examination of the abdomen was unremarkable. Laboratory studies revealed a mild leukocytosis and acute renal dysfunction. All diagnostic examinations were found to be unremarkable or noncontributory to the patient's presenting state. Consistent with previous admissions, the patient's urine toxicology screening was found to be positive for marijuana. After several days of aggressive IV fluid hydration and as needed antiemetics and pain management, all laboratory studies and vital signs returned to baseline and the patient was subsequently discharged. Symptoms of cannabinoid hyperemesis resolve with cannabis cessation and recur when cannabis use is reinitiated, supporting an association between chronic use and cyclic vomiting. A Naranjo algorithm score of 5 revealed a probable incidence of cyclic vomiting associated with chronic cannabis abuse in our patient. Marijuana use, both legal and illegal, is becoming more prevalent in the United States. Given the nationwide increase in marijuana use for recreational and medical reasons, pharmacists and other health care providers should be aware of this interesting drug-induced phenomenon.
Collapse
Affiliation(s)
- J Andrew Woods
- 1Wingate University School of Pharmacy, Wingate, NC; 2Departments of Pharmacy, 3Internal Medicine, and 4Gastroenterology, Carolinas Medical Center, Charlotte, NC
| | | | | | | |
Collapse
|
163
|
Hasenoehrl C, Taschler U, Storr M, Schicho R. The gastrointestinal tract - a central organ of cannabinoid signaling in health and disease. Neurogastroenterol Motil 2016; 28:1765-1780. [PMID: 27561826 PMCID: PMC5130148 DOI: 10.1111/nmo.12931] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Accepted: 08/01/2016] [Indexed: 12/18/2022]
Abstract
BACKGROUND In ancient medicine, extracts of the marijuana plant Cannabis sativa were used against diseases of the gastrointestinal (GI) tract. Today, our knowledge of the ingredients of the Cannabis plant has remarkably advanced enabling us to use a variety of herbal and synthetic cannabinoid (CB) compounds to study the endocannabinoid system (ECS), a physiologic entity that controls tissue homeostasis with the help of endogenously produced CBs and their receptors. After many anecdotal reports suggested beneficial effects of Cannabis in GI disorders, it was not surprising to discover that the GI tract accommodates and expresses all the components of the ECS. Cannabinoid receptors and their endogenous ligands, the endocannabinoids, participate in the regulation of GI motility, secretion, and the maintenance of the epithelial barrier integrity. In addition, other receptors, such as the transient receptor potential cation channel subfamily V member 1 (TRPV1), the peroxisome proliferator-activated receptor alpha (PPARα) and the G-protein coupled receptor 55 (GPR55), are important participants in the actions of CBs in the gut and critically determine the course of bowel inflammation and colon cancer. PURPOSE The following review summarizes important and recent findings on the role of CB receptors and their ligands in the GI tract with emphasis on GI disorders, such as irritable bowel syndrome, inflammatory bowel disease, and colon cancer.
Collapse
Affiliation(s)
- Carina Hasenoehrl
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| | - Ulrike Taschler
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| | - Martin Storr
- Department of Medicine, Ludwig-Maximilians University, Munich, Germany and Zentrum für Endoskopie, Starnberg, Germany
| | - Rudolf Schicho
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| |
Collapse
|
164
|
Feng YJ, Li YY, Lin XH, Li K, Cao MH. Anti-inflammatory effect of cannabinoid agonist WIN55, 212 on mouse experimental colitis is related to inhibition of p38MAPK. World J Gastroenterol 2016; 22:9515-9524. [PMID: 27920472 PMCID: PMC5116595 DOI: 10.3748/wjg.v22.i43.9515] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 09/04/2016] [Accepted: 09/28/2016] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the anti-inflammatory effect and the possible mechanisms of an agonist of cannabinoid (CB) receptors, WIN55-212-2 (WIN55), in mice with experimental colitis, so as to supply experimental evidence for its clinical use in future.
METHODS We established the colitis model in C57BL/6 mice by replacing the animals’ water supply with 4% dextran sulfate sodium (DSS) for 7 consecutive days. A colitis scoring system was used to evaluate the severity of colon local lesion. The plasma levels of proinflammatory cytokines, such as tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6), and the myeloperoxidase (MPO) activity in colon tissue were measured. The expressions of cannabinoid receptors, claudin-1 protein, p38 mitogen-activated protein kinase (p38MAPK) and its phosphorylated form (p-p38) in colon tissue were determined by immunohistochemistry and Western blot. In addition, the effect of SB203580 (SB), an inhibitor of p38, was investigated in parallel experiments, and the data were compared with those from intervention groups of WIN55 and SB alone or used together.
RESULTS The results demonstrated that WIN55 or SB treatment alone or together improved the pathological changes in mice with DSS colitis, decreased the plasma levels of TNF-α, and IL-6, and MPO activity in colon. The enhanced expression of claudin-1 and the inhibited expression of p-p38 in colon tissues were found in the WIN55-treated group. Besides, the expression of CB1 and CB2 receptors was enhanced in the colon after the induction of DSS colitis, but reduced when p38MAPK was inhibited.
CONCLUSION These results confirmed the anti-inflammatory effect and protective role of WIN55 on the mice with experimental colitis, and revealed that this agent exercises its action at least partially by inhibiting p38MAPK. Furthermore, the results showed that SB203580, affected the expression of CB1 and CB2 receptors in the mouse colon, suggesting a close linkage and cross-talk between the p38MAPK signaling pathway and the endogenous CB system.
Collapse
MESH Headings
- Animals
- Anti-Inflammatory Agents/pharmacology
- Benzoxazines/pharmacology
- Cannabinoid Receptor Agonists/pharmacology
- Colitis/chemically induced
- Colitis/enzymology
- Colitis/pathology
- Colitis/prevention & control
- Colon/drug effects
- Colon/enzymology
- Colon/pathology
- Dextran Sulfate
- Disease Models, Animal
- Female
- Imidazoles/pharmacology
- Interleukin-6/blood
- Male
- Mice, Inbred C57BL
- Morpholines/pharmacology
- Naphthalenes/pharmacology
- Peroxidase/metabolism
- Protein Kinase Inhibitors/pharmacology
- Pyridines/pharmacology
- Receptor, Cannabinoid, CB1/agonists
- Receptor, Cannabinoid, CB1/metabolism
- Receptor, Cannabinoid, CB2/agonists
- Receptor, Cannabinoid, CB2/metabolism
- Signal Transduction/drug effects
- Tumor Necrosis Factor-alpha/blood
- p38 Mitogen-Activated Protein Kinases/antagonists & inhibitors
- p38 Mitogen-Activated Protein Kinases/metabolism
Collapse
|
165
|
Abstract
OPINION STATEMENT Despite the political and social controversy affiliated with it, the medical community must come to the realization that cannabinoids exist as a ubiquitous signaling system in many organ systems. Our understanding of cannabinoids and how they relate not only to homeostasis but also in disease states must be furthered through research, both clinically and in the laboratory. The identification of the cannabinoid receptors in the early 1990s have provided us with the perfect target of translational research. Already, much has been done with cannabinoids and the nervous system. Here, we explore the implications it has for the gastrointestinal tract. Most therapeutics currently on the market presently target only one aspect of the cannabinoid system. Our main purpose here is to highlight areas of research and potential avenues of discovery that the cannabinoid system has yet to reveal.
Collapse
Affiliation(s)
- Zachary Wilmer Reichenbach
- Center for Substance Abuse Research (CSAR), Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA.,Section of Gastroenterology, Department of Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Ron Schey
- Section of Gastroenterology, Department of Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA.
| |
Collapse
|
166
|
Lee Y, Jo J, Chung HY, Pothoulakis C, Im E. Endocannabinoids in the gastrointestinal tract. Am J Physiol Gastrointest Liver Physiol 2016; 311:G655-G666. [PMID: 27538961 DOI: 10.1152/ajpgi.00294.2015] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 08/13/2016] [Indexed: 02/08/2023]
Abstract
The endocannabinoid system mainly consists of endogenously produced cannabinoids (endocannabinoids) and two G protein-coupled receptors (GPCRs), cannabinoid receptors 1 and 2 (CB1 and CB2). This system also includes enzymes responsible for the synthesis and degradation of endocannabinoids and molecules required for the uptake and transport of endocannabinoids. In addition, endocannabinoid-related lipid mediators and other putative endocannabinoid receptors, such as transient receptor potential channels and other GPCRs, have been identified. Accumulating evidence indicates that the endocannabinoid system is a key modulator of gastrointestinal physiology, influencing satiety, emesis, immune function, mucosal integrity, motility, secretion, and visceral sensation. In light of therapeutic benefits of herbal and synthetic cannabinoids, the vast potential of the endocannabinoid system for the treatment of gastrointestinal diseases has been demonstrated. This review focuses on the role of the endocannabinoid system in gut homeostasis and in the pathogenesis of intestinal disorders associated with intestinal motility, inflammation, and cancer. Finally, links between gut microorganisms and the endocannabinoid system are briefly discussed.
Collapse
Affiliation(s)
- Yunna Lee
- College of Pharmacy, Pusan National University, Busan, Korea; and
| | - Jeongbin Jo
- College of Pharmacy, Pusan National University, Busan, Korea; and
| | - Hae Young Chung
- College of Pharmacy, Pusan National University, Busan, Korea; and
| | - Charalabos Pothoulakis
- Section of Inflammatory Bowel Disease & Inflammatory Bowel Disease Center, Division of Digestive Diseases, David Geffen School of Medicine, UCLA, Los Angeles, California
| | - Eunok Im
- College of Pharmacy, Pusan National University, Busan, Korea; and
| |
Collapse
|
167
|
Ligresti A, De Petrocellis L, Di Marzo V. From Phytocannabinoids to Cannabinoid Receptors and Endocannabinoids: Pleiotropic Physiological and Pathological Roles Through Complex Pharmacology. Physiol Rev 2016; 96:1593-659. [DOI: 10.1152/physrev.00002.2016] [Citation(s) in RCA: 253] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Apart from having been used and misused for at least four millennia for, among others, recreational and medicinal purposes, the cannabis plant and its most peculiar chemical components, the plant cannabinoids (phytocannabinoids), have the merit to have led humanity to discover one of the most intriguing and pleiotropic endogenous signaling systems, the endocannabinoid system (ECS). This review article aims to describe and critically discuss, in the most comprehensive possible manner, the multifaceted aspects of 1) the pharmacology and potential impact on mammalian physiology of all major phytocannabinoids, and not only of the most famous one Δ9-tetrahydrocannabinol, and 2) the adaptive pro-homeostatic physiological, or maladaptive pathological, roles of the ECS in mammalian cells, tissues, and organs. In doing so, we have respected the chronological order of the milestones of the millennial route from medicinal/recreational cannabis to the ECS and beyond, as it is now clear that some of the early steps in this long path, which were originally neglected, are becoming important again. The emerging picture is rather complex, but still supports the belief that more important discoveries on human physiology, and new therapies, might come in the future from new knowledge in this field.
Collapse
Affiliation(s)
- Alessia Ligresti
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Comprensorio Olivetti, Pozzuoli, Italy
| | - Luciano De Petrocellis
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Comprensorio Olivetti, Pozzuoli, Italy
| | - Vincenzo Di Marzo
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Comprensorio Olivetti, Pozzuoli, Italy
| |
Collapse
|
168
|
|
169
|
Romero-Parra J, Mella-Raipán J, Palmieri V, Allarà M, Torres MJ, Pessoa-Mahana H, Iturriaga-Vásquez P, Escobar R, Faúndez M, Di Marzo V, Pessoa-Mahana CD. Synthesis, binding assays, cytotoxic activity and docking studies of benzimidazole and benzothiophene derivatives with selective affinity for the CB2 cannabinoid receptor. Eur J Med Chem 2016; 124:17-35. [PMID: 27560280 DOI: 10.1016/j.ejmech.2016.08.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 07/17/2016] [Accepted: 08/05/2016] [Indexed: 12/11/2022]
Abstract
Herein we report the design, synthesis, bioinformatic and biological studies of benzimidazole and benzothiophene derivatives as new cannabinoid receptor ligands. To test the hypothesis that the lack of a hydrogen bond interaction between benzimidazole and benzothiophene derivatives with Lys192 reduces their affinity for CB1 receptors (as we previously reported) and leads to CB2 selectivity, most of the tested compounds do not exhibit hydrogen bond acceptors. All compounds displayed mostly CB2 selectivity, although this was more pronounced in the benzimidazoles derivatives. Furthermore, docking assays revealed a ∏-cation interaction with Lys109 which could play a key role for the CB2 selectivity index. The series displayed low toxicity on five different cell lines. Derivative 8f presented the best binding profile (Ki = 0.08 μM), high selectivity index (KiCB1/KiCB2) and a low citoxicity. Interestingly, in cell viability experiments, using HL-60 cells (expressing exclusively CB2 receptors), all synthesised compounds were shown to be cytotoxic, suggesting that a CB2 agonist response may be involved.
Collapse
Affiliation(s)
- Javier Romero-Parra
- Department of Pharmacy, Faculty of Chemistry, Pontificia Universidad Católica de Chile, Vicuña Mackenna, 4860, Santiago, Chile
| | - Jaime Mella-Raipán
- Institute of Chemistry and Biochemistry, Universidad de Valparaíso, Gran Bretaña, 1111, Valparaíso, Chile
| | - Vittoria Palmieri
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 034, Napoli, Italy
| | - Marco Allarà
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 034, Napoli, Italy
| | - Maria Jose Torres
- Department of Pharmacy, Faculty of Chemistry, Pontificia Universidad Católica de Chile, Vicuña Mackenna, 4860, Santiago, Chile
| | - Hernán Pessoa-Mahana
- Department of Organic and Physical Chemistry, Faculty of Chemical and Pharmaceutical Sciences, Universidad de Chile, Sergio Livingstone, 1007, Santiago, Chile
| | | | - Rossy Escobar
- Department of Pharmacy, Faculty of Chemistry, Pontificia Universidad Católica de Chile, Vicuña Mackenna, 4860, Santiago, Chile
| | - Mario Faúndez
- Department of Pharmacy, Faculty of Chemistry, Pontificia Universidad Católica de Chile, Vicuña Mackenna, 4860, Santiago, Chile
| | - Vincenzo Di Marzo
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 034, Napoli, Italy
| | - C David Pessoa-Mahana
- Department of Pharmacy, Faculty of Chemistry, Pontificia Universidad Católica de Chile, Vicuña Mackenna, 4860, Santiago, Chile.
| |
Collapse
|
170
|
Sharkey KA, Wiley JW. The Role of the Endocannabinoid System in the Brain-Gut Axis. Gastroenterology 2016; 151:252-66. [PMID: 27133395 PMCID: PMC4961581 DOI: 10.1053/j.gastro.2016.04.015] [Citation(s) in RCA: 153] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 03/21/2016] [Accepted: 04/11/2016] [Indexed: 12/17/2022]
Abstract
The actions of cannabis are mediated by receptors that are part of an endogenous cannabinoid system. The endocannabinoid system (ECS) consists of the naturally occurring ligands N-arachidonoylethanolamine (anandamide) and 2-arachidonoylglycerol (2-AG), their biosynthetic and degradative enzymes, and the cannabinoid (CB) receptors CB1 and CB2. The ECS is a widely distributed transmitter system that controls gut functions peripherally and centrally. It is an important physiologic regulator of gastrointestinal motility. Polymorphisms in the gene encoding CB1 (CNR1) have been associated with some forms of irritable bowel syndrome. The ECS is involved in the control of nausea and vomiting and visceral sensation. The homeostatic role of the ECS also extends to the control of intestinal inflammation. We review the mechanisms by which the ECS links stress and visceral pain. CB1 in sensory ganglia controls visceral sensation, and transcription of CNR1 is modified through epigenetic processes under conditions of chronic stress. These processes might link stress with abdominal pain. The ECS is also involved centrally in the manifestation of stress, and endocannabinoid signaling reduces the activity of hypothalamic-pituitary-adrenal pathways via actions in specific brain regions, notably the prefrontal cortex, amygdala, and hypothalamus. Agents that modulate the ECS are in early stages of development for treatment of gastrointestinal diseases. Increasing our understanding of the ECS will greatly advance our knowledge of interactions between the brain and gut and could lead to new treatments for gastrointestinal disorders.
Collapse
Affiliation(s)
- Keith A. Sharkey
- Hotchkiss Brain Institute and Snyder Institute of Chronic Diseases, Department of Physiology and Pharmacology, University of Calgary, Calgary, AB T2N 4N1, Canada,Corresponding author: Dr. Keith Sharkey, Department of Physiology and Pharmacology, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada, , Tel: 403-220-4601
| | - John W. Wiley
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
171
|
Pélissier F, Claudet I, Gandia-Mailly P, Benyamina A, Franchitto N. Cannabis Hyperemesis Syndrome in the Emergency Department: How Can a Specialized Addiction Team Be Useful? A Pilot Study. J Emerg Med 2016; 51:544-551. [PMID: 27485997 DOI: 10.1016/j.jemermed.2016.06.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 05/27/2016] [Accepted: 06/02/2016] [Indexed: 12/26/2022]
Abstract
BACKGROUND Chronic cannabis users may experience cyclical episodes of nausea and vomiting and learned behavior of hot bathing. This clinical condition, known as cannabis hyperemesis syndrome, was first reported in 2004. OBJECTIVE Our aim was to promote early recognition of this syndrome in emergency departments (EDs) and to increase referral to addiction specialists. METHODS Cannabis abusers were admitted to the ED for vomiting or abdominal pain from June 1, 2014 to January 1, 2015 and diagnosed with cannabis hyperemesis syndrome by a specialized addiction team. Then, medical records were examined retrospectively. RESULTS Seven young adults were included. Their mean age was 24.7 years (range 17-39 years) and the majority were men (male-to-female ratio 1.2). Biological and toxicological blood samples were taken in all patients. Tetrahydrocannabinol blood level was measured in 4 patients, with a mean blood concentration of 11.6 ng/mL. Radiographic examination including abdominal computed tomography and brain imaging were negative, as was upper endoscopy. Five patients compulsively took hot baths in an attempt to decrease the symptoms. Treatment was symptomatic. Five patients have started follow-up with the specialized addiction team. CONCLUSIONS Cannabis hyperemesis syndrome is still under-diagnosed 10 years after it was first described. Physicians should be aware of this syndrome to avoid repeated hospitalizations or esophageal complications. Greater awareness should lead to prompt treatment and prevention of future recurrence through cannabis cessation. Addiction specialists, as well as medical toxicologists, are experts in the management of cannabis abusers and can help re-establish the role of medical care in this population in collaboration with emergency physicians.
Collapse
Affiliation(s)
- Fanny Pélissier
- Poisons Center, Toulouse-Purpan University Hospital, Toulouse, France
| | - Isabelle Claudet
- Pediatric Emergency Unit, Children's Hospital, CHU Toulouse, Toulouse, France
| | - Peggy Gandia-Mailly
- Laboratory of Pharmacokinetics and Clinical Toxicology, Institute of Biology, University Hospital of Toulouse, Toulouse, France
| | - Amine Benyamina
- National Institute for Medical Research (INSERM) U-669, Hôpital Universitaire Paul Brousse, Villejuif, France
| | - Nicolas Franchitto
- Poisons Center, Toulouse-Purpan University Hospital, Toulouse, France; Department of Addiction Treatments, Toulouse-Purpan University Hospital, Toulouse, France; Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1027, Paul Sabatier University, Toulouse, France
| |
Collapse
|
172
|
Abnormal cannabidiol attenuates experimental colitis in mice, promotes wound healing and inhibits neutrophil recruitment. JOURNAL OF INFLAMMATION-LONDON 2016; 13:21. [PMID: 27418880 PMCID: PMC4944257 DOI: 10.1186/s12950-016-0129-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 06/15/2016] [Indexed: 12/30/2022]
Abstract
Background Non-psychotropic atypical cannabinoids have therapeutic potential in a variety of inflammatory conditions including those of the gastrointestinal tract. Here we examined the effects of the atypical cannabinoid abnormal cannabidiol (Abn-CBD) on wound healing, inflammatory cell recruitment and colitis in mice. Methods Colitis was induced in CD1 mice by a single intrarectal administration of trinitrobenzene sulfonic acid (TNBS, 4 mg/100 μl in 30 % ethanol) and Abn-CBD and/or the antagonists O-1918 (Abd-CBD), AM251 (CB1 receptor) and AM630 (CB2 receptor), were administered intraperitoneally (all 5 mg/kg, twice daily for 3 days). The degree of colitis was assessed macro- and microscopically and tissue myeloperoxidase activity was determined. The effects of Abn-CBD on wound healing of endothelial and epithelial cells (LoVo) were assessed in a scratch injury assay. Human neutrophils were employed in Transwell assays or perfused over human umbilical vein endothelial cells (HUVEC) to study the effect of Abn-CBD on neutrophil accumulation and transmigration. Results TNBS-induced colitis was attenuated by treatment with Abn-CBD. Histological, macroscopic colitis scores and tissue myeloperoxidase activity were significantly reduced. These effects were inhibited by O-1918, but not by AM630, and only in part by AM251. Wound healing of both HUVEC and LoVo cells was enhanced by Abn-CBD. Abn-CBD inhibited neutrophil migration towards IL-8, and dose-dependently inhibited accumulation of neutrophils on HUVEC. Conclusions Abn-CBD is protective against TNBS-induced colitis, promotes wound healing of endothelial and epithelial cells and inhibits neutrophil accumulation on HUVEC monolayers. Thus, the atypical cannabinoid Abn-CBD represents a novel potential therapeutic in the treatment of intestinal inflammatory diseases. Electronic supplementary material The online version of this article (doi:10.1186/s12950-016-0129-0) contains supplementary material, which is available to authorized users.
Collapse
|
173
|
Li XH, Lin ML, Wang ZL, Wang P, Tang HH, Lin YY, Li N, Fang Q, Wang R. Central administrations of hemopressin and related peptides inhibit gastrointestinal motility in mice. Neurogastroenterol Motil 2016; 28:891-9. [PMID: 26991932 DOI: 10.1111/nmo.12789] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Accepted: 01/06/2016] [Indexed: 02/08/2023]
Abstract
BACKGROUND Hemopressin was identified as an endogenous inverse agonist/antagonist of CB1 receptor, whereas VD-hemopressin(α) [VD-Hpα] and VD-hemopressin(β) [VD-Hpβ] were found as the novel endogenous peptidic agonists of cannabinoid receptors. As cannabinoids are potent modulators of gastrointestinal (GI) motility, our aim was to characterize the effects of hemopressin and related peptides on GI motility in vivo. METHODS The responses of intracerebroventricular (i.c.v.) administration of the reference compound WIN55,212-2, hemopressin, and related peptides to GI motility were investigated by measuring upper GI transit, colonic bead expulsion, and whole gut transit in mice. KEY RESULTS Central administration of the classical cannabinoid receptor agonist WIN55,212-2 dose-dependently slowed upper GI transit, colonic expulsion, and whole gut transit via CB1 receptor. Similarly, Hpα, VD-Hpα, and VD-Hpβ delayed upper GI transit and colonic expulsion after i.c.v. administration. At the high doses, Hpα and VD-Hpβ inhibited whole gut transit, whereas VD-Hpα had no effect on whole gut transit. In addition, the effects of these three peptides on GI transit were antagonized by the CB1 receptor selective antagonist AM251, but not by the CB2 receptor selective antagonist AM630. CONCLUSION & INFERENCES The endogenous cannabinoid peptide ligands hemopressin, VD-Hpα, and VD-Hpβ inhibited GI transit through the activation of CB1 , but not CB2 cannabinoid receptors. The lower potencies of the hemopressin and related peptides in GI transit assays may be important for the future development of cannabinoid peptides as the therapeutic analgesics with limited GI side effects.
Collapse
Affiliation(s)
- X-H Li
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - M-L Lin
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Z-L Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - P Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - H-H Tang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Y-Y Lin
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - N Li
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Q Fang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - R Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| |
Collapse
|
174
|
Katchan V, David P, Shoenfeld Y. Cannabinoids and autoimmune diseases: A systematic review. Autoimmun Rev 2016; 15:513-28. [DOI: 10.1016/j.autrev.2016.02.008] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 02/03/2016] [Indexed: 12/21/2022]
|
175
|
Abstract
The endocannabinoid system (ECS) is abundantly expressed in the brain. This system regulates a plethora of physiological functions and is composed of cannabinoid receptors, their endogenous ligands (endocannabinoids), and the enzymes involved in the metabolism of endocannabinoids. In this review, we highlight the new advances in cannabinoid signaling, focusing on a key component of the ECS, the type-1 cannabinoid receptor (CB
1). In recent years, the development of new imaging and molecular tools has demonstrated that this receptor can be distributed in many cell types (e.g., neuronal or glial cells) and intracellular compartments (e.g., mitochondria). Interestingly, cellular and molecular effects are differentially mediated by CB
1 receptors according to their specific localization (e.g., glutamatergic or GABAergic neurons). Moreover, this receptor is expressed in the periphery, where it can modulate periphery-brain connections. Finally, the better understanding of the CB
1 receptor structure led researchers to propose interesting and new allosteric modulators. Thus, the advances and the new directions of the CB
1 receptor field will provide new insights and better approaches to profit from its interesting therapeutic profile.
Collapse
Affiliation(s)
- Arnau Busquets Garcia
- Endocannabinoids and Neuroadaptation, INSERM U1215 NeuroCentre Magendie, Bordeaux, 33077, France; University of Bordeaux, Bordeaux, France
| | - Edgar Soria-Gomez
- Endocannabinoids and Neuroadaptation, INSERM U1215 NeuroCentre Magendie, Bordeaux, 33077, France; University of Bordeaux, Bordeaux, France
| | - Luigi Bellocchio
- Endocannabinoids and Neuroadaptation, INSERM U1215 NeuroCentre Magendie, Bordeaux, 33077, France; University of Bordeaux, Bordeaux, France
| | - Giovanni Marsicano
- Endocannabinoids and Neuroadaptation, INSERM U1215 NeuroCentre Magendie, Bordeaux, 33077, France; University of Bordeaux, Bordeaux, France
| |
Collapse
|
176
|
Abdel-Salam O. Gastric acid inhibitory and gastric protective effects of Cannabis and cannabinoids. ASIAN PAC J TROP MED 2016; 9:413-9. [PMID: 27261847 DOI: 10.1016/j.apjtm.2016.04.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 02/16/2016] [Accepted: 03/10/2016] [Indexed: 11/26/2022] Open
Abstract
Cannabis sativa has long been known for its psychotropic effect. Only recently with the discovery of the cannabinoid receptors, their endogenous legends and the enzymes responsible for their synthesis and degradation, the role of this 'endocannabinoid system' in different pathophysiologic processes is beginning to be delineated. There is evidence that CB1 receptor stimulation with synthetic cannabinoids or Cannabis sativa extracts rich in Δ(9)-tetrahydrocannabinol inhibit gastric acid secretion in humans and experimental animals. This is specially seen when gastric acid secretion is stimulated by pentagastrin, carbachol or 2-deoxy-d-glucose. Cannabis and/or cannabinoids protect the gastric mucosa against noxious challenge with non-steroidal anti-inflammatory drugs, ethanol as well as against stress-induced mucosal damage. Cannabis/cannabinoids might protect the gastric mucosa by virtue of its antisecretory, antioxidant, anti-inflammatory, and vasodilator properties.
Collapse
Affiliation(s)
- Omar Abdel-Salam
- Department of Toxicology and Narcotics, Medical Division, National Research Centre, Tahrir Street, Dokki, Cairo, Egypt.
| |
Collapse
|
177
|
Salaga M, Storr M, Martemyanov KA, Fichna J. RGS proteins as targets in the treatment of intestinal inflammation and visceral pain: New insights and future perspectives. Bioessays 2016; 38:344-54. [PMID: 26817719 PMCID: PMC4916644 DOI: 10.1002/bies.201500118] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Regulators of G protein signaling (RGS) proteins provide timely termination of G protein-coupled receptor (GPCR) responses. Serving as a central control point in GPCR signaling cascades, RGS proteins are promising targets for drug development. In this review, we discuss the involvement of RGS proteins in the pathophysiology of the gastrointestinal inflammation and their potential to become a target for anti-inflammatory drugs. Specifically, we evaluate the emerging evidence for modulation of selected receptor families: opioid, cannabinoid and serotonin by RGS proteins. We discuss how the regulation of RGS protein level and activity may modulate immunological pathways involved in the development of intestinal inflammation. Finally, we propose that RGS proteins may serve as a prognostic factor for survival rate in colorectal cancer. The ideas introduced in this review set a novel conceptual framework for the utilization of RGS proteins in the treatment of gastrointestinal inflammation, a growing major concern worldwide.
Collapse
Affiliation(s)
- Maciej Salaga
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Poland
| | - Martin Storr
- Walter Brendel Center of Experimental Medicine, University of Munich, Germany
| | - Kirill A. Martemyanov
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL, USA
- Corresponding authors: J.F. Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland, Phone: ++48 42 272 57 07, Fax: ++48 42 272 56 94, . K.A.M., Department of Neuroscience, The Scripps Research Institute, 130 Scripps Way C347, Jupiter, FL 33458, USA, Phone: ++1 561 228 2770,
| | - Jakub Fichna
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Poland
- Corresponding authors: J.F. Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland, Phone: ++48 42 272 57 07, Fax: ++48 42 272 56 94, . K.A.M., Department of Neuroscience, The Scripps Research Institute, 130 Scripps Way C347, Jupiter, FL 33458, USA, Phone: ++1 561 228 2770,
| |
Collapse
|
178
|
González-Mariscal I, Krzysik-Walker SM, Kim W, Rouse M, Egan JM. Blockade of cannabinoid 1 receptor improves GLP-1R mediated insulin secretion in mice. Mol Cell Endocrinol 2016; 423:1-10. [PMID: 26724516 PMCID: PMC4752920 DOI: 10.1016/j.mce.2015.12.015] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 12/15/2015] [Accepted: 12/18/2015] [Indexed: 01/18/2023]
Abstract
The cannabinoid 1 receptor (CB1) is an important regulator of energy metabolism. Reports of in vivo and in vitro studies give conflicting results regarding its role in insulin secretion, possibly due to circulatory factors, such as incretins. We hypothesized that this receptor may be a regulator of the entero-insular axis. We found that despite lower food consumption and lower body weight postprandial GLP-1 plasma concentrations were increased in CB1(-/-) mice compared to CB1(+/+) mice administered a standard diet or high fat/sugar diet. Upon exogenous GLP-1 treatment, CB1(-/-) mice had increased glucose-stimulated insulin secretion. In mouse insulinoma cells, cannabinoids reduced GLP-1R-mediated intracellular cAMP accumulation and subsequent insulin secretion. Importantly, such effects were also evident in human islets, and were prevented by pharmacologic blockade of CB1. Collectively, these findings suggest a novel mechanism in which endocannabinoids are negative modulators of incretin-mediated insulin secretion.
Collapse
Affiliation(s)
| | | | - Wook Kim
- National Institute on Aging/NIH, 251 Bayview Boulevard, Baltimore, MD 21224, USA; Department of Molecular Science and Technology, Ajou University, Suwan 443-749, South Korea.
| | - Michael Rouse
- National Institute on Aging/NIH, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| | - Josephine M Egan
- National Institute on Aging/NIH, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| |
Collapse
|
179
|
Cani PD, Plovier H, Van Hul M, Geurts L, Delzenne NM, Druart C, Everard A. Endocannabinoids--at the crossroads between the gut microbiota and host metabolism. Nat Rev Endocrinol 2016; 12:133-43. [PMID: 26678807 DOI: 10.1038/nrendo.2015.211] [Citation(s) in RCA: 253] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Various metabolic disorders are associated with changes in inflammatory tone. Among the latest advances in the metabolism field, the discovery that gut microorganisms have a major role in host metabolism has revealed the possibility of a plethora of associations between gut bacteria and numerous diseases. However, to date, few mechanisms have been clearly established. Accumulating evidence indicates that the endocannabinoid system and related bioactive lipids strongly contribute to several physiological processes and are a characteristic of obesity, type 2 diabetes mellitus and inflammation. In this Review, we briefly define the gut microbiota as well as the endocannabinoid system and associated bioactive lipids. We discuss existing literature regarding interactions between gut microorganisms and the endocannabinoid system, focusing specifically on the triad of adipose tissue, gut bacteria and the endocannabinoid system in the context of obesity and the development of fat mass. We highlight gut-barrier function by discussing the role of specific factors considered to be putative 'gate keepers' or 'gate openers', and their role in the gut microbiota-endocannabinoid system axis. Finally, we briefly discuss data related to the different pharmacological strategies currently used to target the endocannabinoid system, in the context of cardiometabolic disorders and intestinal inflammation.
Collapse
Affiliation(s)
- Patrice D Cani
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Avenue E. Mounier 73, Box B1.73.11, Brussels B-1200, Belgium
| | - Hubert Plovier
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Avenue E. Mounier 73, Box B1.73.11, Brussels B-1200, Belgium
| | - Matthias Van Hul
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Avenue E. Mounier 73, Box B1.73.11, Brussels B-1200, Belgium
| | - Lucie Geurts
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Avenue E. Mounier 73, Box B1.73.11, Brussels B-1200, Belgium
| | - Nathalie M Delzenne
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Avenue E. Mounier 73, Box B1.73.11, Brussels B-1200, Belgium
| | - Céline Druart
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Avenue E. Mounier 73, Box B1.73.11, Brussels B-1200, Belgium
| | - Amandine Everard
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Avenue E. Mounier 73, Box B1.73.11, Brussels B-1200, Belgium
| |
Collapse
|
180
|
Abstract
Cannabis has been used medicinally for centuries to treat a variety of disorders, including those associated with the gastrointestinal tract. The discovery of our bodies' own "cannabis-like molecules" and associated receptors and metabolic machinery - collectively called the endocannabinoid system - enabled investigations into the physiological relevance for the system, and provided the field with evidence of a critical function for this endogenous signaling pathway in health and disease. Recent investigations yield insight into a significant participation for the endocannabinoid system in the normal physiology of gastrointestinal function, and its possible dysfunction in gastrointestinal pathology. Many gaps, however, remain in our understanding of the precise neural and molecular mechanisms across tissue departments that are under the regulatory control of the endocannabinoid system. This review highlights research that reveals an important - and at times surprising - role for the endocannabinoid system in the control of a variety of gastrointestinal functions, including motility, gut-brain mediated fat intake and hunger signaling, inflammation and gut permeability, and dynamic interactions with gut microbiota.
Collapse
Affiliation(s)
- Nicholas V. DiPatrizio
- Address correspondence to: Nicholas V. DiPatrizio, PhD, Division of Biomedical Sciences, School of Medicine, University of California, Riverside, 900 University Ave., Riverside, CA 92521, E-mail:
| |
Collapse
|
181
|
Guertin PA. New pharmacological approaches against chronic bowel and bladder problems in paralytics. World J Crit Care Med 2016; 5:1-6. [PMID: 26855887 PMCID: PMC4733449 DOI: 10.5492/wjccm.v5.i1.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 08/20/2015] [Accepted: 11/11/2015] [Indexed: 02/06/2023] Open
Abstract
Spinal cord injury (SCI) leads generally to an irreversible loss of sensory functions and voluntary motor control below injury level. Cures that could repair SCI and/or restore voluntary walking have not been yet developed nor commercialized. Beyond the well-known loss of walking capabilities, most SCI patients experience also a plethora of motor problems and health concerns including specific bladder and bowel dysfunctions. Indeed, chronic constipation and urinary retention, two significant life-threatening complications, are typically found in patients suffering of traumatic (e.g., falls or car accidents) or non-traumatic SCI (e.g., multiple sclerosis, spinal tumors). Secondary health concerns associated with these dysfunctions include hemorrhoids, abdominal distention, altered visceral sensitivity, hydronephrosis, kidney failure, urinary tract infections, sepsis and, in some cases, cardiac arrest. Consequently, individuals with chronic SCI are forced to regularly seek emergency and critical care treatments when some of these conditions occur or become intolerable. Increasing evidence supports the existence of a novel experimental approach that may be capable of preventing the occurrence or severity of bladder and bowel problems. Indeed, recent findings in animal models of SCI have revealed that, despite paraplegia or tetraplegia, it remains possible to elicit episodes of micturition and defecation by acting pharmacologically or electrically upon specialized lumbosacral neuronal networks, namely the spinal or sacral micturition center (SMC) and lumbosacral defecation center (LDC). Daily activation of SMC and LDC neurons could potentially become, new classes of minimally invasive treatments (i.e., if orally active) against these dysfunctions and their many life-threatening complications.
Collapse
|
182
|
Affiliation(s)
- Robert W Isfort
- Division of Gastroenterology and Hepatology, University of Colorado, Aurora, Colorado, USA
| | - Mark E Gerich
- Division of Gastroenterology and Hepatology, University of Colorado, Aurora, Colorado, USA
| |
Collapse
|
183
|
Abstract
The incretin hormones glucose-dependent insulinotropic polypeptide (GIP) and glucagon like peptide-1 (GLP-1) are secreted from enteroendocrine cells in the gut and regulate physiological and homeostatic functions related to glucose control, metabolism and food intake. This review provides a systematic summary of the molecular mechanisms underlying secretion from incretin cells, and an understanding of how they sense and interact with lumen and vascular factors and the enteric nervous system through transporters and G-protein coupled receptors (GPCRs) present on their surface to ultimately culminate in hormone release. Some of the molecules described below such as sodium coupled glucose transporter 1 (SGLT1), G-protein coupled receptor (GPR) 119 and GPR40 are targets of novel therapeutics designed to enhance endogenous gut hormone release. Synthetic ligands at these receptors aimed at treating obesity and type 2 diabetes are currently under investigation.
Collapse
Affiliation(s)
- Ramona Pais
- The Wellcome Trust–MRC Institute of Metabolic Science, Metabolic Research Laboratories, University of Cambridge, Cambridge, UK
| | - Fiona M. Gribble
- The Wellcome Trust–MRC Institute of Metabolic Science, Metabolic Research Laboratories, University of Cambridge, Addenbrookes’s Hospital, Box 289, Hills Road, Cambridge, CB2 0QQ, UK
| | | |
Collapse
|
184
|
Zhang J, Dai EH, Jiang HQ. Cannabinoid receptor 2 and several digestive system diseases. Shijie Huaren Xiaohua Zazhi 2016; 24:400-407. [DOI: 10.11569/wcjd.v24.i3.400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The endocannabinoid system is made up of endocannabinoid, cannabinoid receptor type 1 (CB1) and cannabinoid receptor type 2 (CB2). A multitude of physiological effects and putative pathophysiological roles have been proposed for the endogenous cannabinoid system in the gastrointestinal tract, liver, pancreas and tumors. This paper aims to review the endocannabinoid system and the relations of CB2 with irritable bowel syndrome, inflammatory bowel disease, pancreatitis, hepatic disease and digestive system tumors.
Collapse
|
185
|
Volz MS, Siegmund B, Häuser W. Wirksamkeit, Verträglichkeit und Sicherheit von Cannabinoiden in der Gastroenterologie. Schmerz 2016; 30:37-46. [DOI: 10.1007/s00482-015-0087-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
186
|
Elder JJ, Knoderer HM. Characterization of Dronabinol Usage in a Pediatric Oncology Population. J Pediatr Pharmacol Ther 2016; 20:462-7. [PMID: 26766935 DOI: 10.5863/1551-6776-20.6.462] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVES Chemotherapy-induced nausea and vomiting (CINV) remains an important side effect associated with administration of chemotherapy in pediatrics. The aim of this study was to retrospectively review dronabinol use in a pediatric cancer center, with the intent of characterizing its use and identifying trends such as age, sex, diagnosis, and chemotherapy that describe where dronabinol is best used as an adjuvant antiemetic. METHODS Patients receiving dronabinol at Riley Hospital for Children between 2000 and 2010 were identified. Patients eligible for inclusion were those with malignancy ≤18 years old, who received at least 1 dose of dronabinol for CINV during admission. RESULTS Ninety-five percent of patients received moderate or highly emetogenic chemotherapy. When dronabinol doses were analyzed, 95% of patients received doses that were lower than reference guidelines, 55% received dronabinol as a scheduled medication, and 19% received dronabinol 1 to 3 hours before chemotherapy. Overall, 60% of patients had a defined positive response to dronabinol. Sixty-five percent of patients received repeat courses of dronabinol, and 62% received outpatient prescriptions for dronabinol. CONCLUSIONS Dronabinol appears to be a viable option as an adjuvant antiemetic in pediatric CINV, but a prospective trial using patients as their own controls is necessary to truly define dronabinol's place in therapy.
Collapse
Affiliation(s)
- Joshua J Elder
- Department of Pharmacy, Kosair Children's Hospital, Louisville, Kentucky
| | - Holly M Knoderer
- Department of Pediatric Hematology-Oncology, Riley Hospital for Children at Indiana University Health, Indianapolis, Indiana
| |
Collapse
|
187
|
Johnson AC, Greenwood-Van Meerveld B. The Pharmacology of Visceral Pain. ADVANCES IN PHARMACOLOGY 2016; 75:273-301. [PMID: 26920016 DOI: 10.1016/bs.apha.2015.11.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Visceral pain describes pain emanating from the internal thoracic, pelvic, or abdominal organs. Unlike somatic pain, visceral pain is generally vague, poorly localized, and characterized by hypersensitivity to a stimulus such as organ distension. While current therapeutics provides some relief from somatic pain, drugs used for treatment of chronic visceral pain are typically less efficacious and limited by multiple adverse side effects. Thus, the treatment of visceral pain represents a major unmet medical need. Further, more basic research into the physiology and pathophysiology of visceral pain is needed to provide novel targets for future drug development. In concert with chronic visceral pain, there is a high comorbidity with stress-related psychiatric disorders including anxiety and depression. The mechanisms linking visceral pain with these overlapping comorbidities remain to be elucidated. However, persistent stress facilitates pain perception and sensitizes pain pathways, leading to a feed-forward cycle promoting chronic visceral pain disorders. We will focus on stress-induced exacerbation of chronic visceral pain and provide supporting evidence that centrally acting drugs targeting the pain and stress-responsive brain regions may represent a valid target for the development of novel and effective therapeutics.
Collapse
Affiliation(s)
- Anthony C Johnson
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Beverley Greenwood-Van Meerveld
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA; Veterans Affairs Medical Center, Oklahoma City, Oklahoma, USA; Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA.
| |
Collapse
|
188
|
Mosińska P, Salaga M, Fichna J. Novel investigational drugs for constipation-predominant irritable bowel syndrome: a review. Expert Opin Investig Drugs 2016; 25:275-86. [PMID: 26765585 DOI: 10.1517/13543784.2016.1142532] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Constipation-predominant irritable bowel syndrome (IBS-C) is a functional gastrointestinal (GI) disorder with an unknown etiology. A number of the drugs tested for IBS-C have also been applied to chronic constipation and chronic idiopathic constipation. Unfortunately, due to severe adverse effects, many drugs envisioned for IBS-C had been withdrawn from the market. Nevertheless, a number of potential new agents for this indication are now under development. AREAS COVERED The following review describes the most recently developed agents in preclinical as well as Phase 1 and Phase 2 clinical studies. Information was obtained from published literature, abstracts and the latest results found in Clinicaltrial.gov database. The authors put a special interest on glucagon-like peptide 1 analogue, bile acid modulators, serotonergic agents, guanylate cyclase C and cannabinoid antagonists. EXPERT OPINION To enter the market, a newly-developed drug has to meet several criteria, such as good bioavailability or the absence of drug-related adverse events. Taking into account constipation and abdominal pain as the main symptoms in IBS-C, a novel successful drug is usually able to improve both at the same time. Four out of fifteen investigational drugs described in this paper belong to the serotonergic family and have a good prognosis to reach the market; still, more long-term clinical studies are warranted.
Collapse
Affiliation(s)
- Paula Mosińska
- a Department of Biochemistry, Faculty of Medicine , Medical University of Lodz , Lodz , Poland
| | - Maciej Salaga
- a Department of Biochemistry, Faculty of Medicine , Medical University of Lodz , Lodz , Poland
| | - Jakub Fichna
- a Department of Biochemistry, Faculty of Medicine , Medical University of Lodz , Lodz , Poland
| |
Collapse
|
189
|
|
190
|
Cannabinoid Receptors in Regulating the GI Tract: Experimental Evidence and Therapeutic Relevance. Handb Exp Pharmacol 2016; 239:343-362. [PMID: 28161834 DOI: 10.1007/164_2016_105] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Cannabinoid receptors are fundamentally involved in all aspects of intestinal physiology, such as motility, secretion, and epithelial barrier function. They are part of a broader entity, the so-called endocannabinoid system which also includes their endocannabinoid ligands and the ligands' synthesizing/degrading enzymes. The system has a strong impact on the pathophysiology of the gastrointestinal tract and is believed to maintain homeostasis in the gut by controlling hypercontractility and by promoting regeneration after injury. For instance, genetic knockout of cannabinoid receptor 1 leads to inflammation and cancer of the intestines. Derivatives of Δ9-tetrahydrocannabinol, such as nabilone and dronabinol, activate cannabinoid receptors and have been introduced into the clinic to treat chemotherapy-induced emesis and loss of appetite; however, they may cause many psychotropic side effects. New drugs that interfere with endocannabinoid degradation to raise endocannabinoid levels circumvent this obstacle and could be used in the future to treat emesis, intestinal inflammation, and functional disorders associated with visceral hyperalgesia.
Collapse
|
191
|
Trautmann SM, Sharkey KA. The Endocannabinoid System and Its Role in Regulating the Intrinsic Neural Circuitry of the Gastrointestinal Tract. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2015; 125:85-126. [PMID: 26638765 DOI: 10.1016/bs.irn.2015.10.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Endocannabinoids are important neuromodulators in the central nervous system. They regulate central transmission through pre- and postsynaptic actions on neurons and indirectly through effects on glial cells. Cannabinoids (CBs) also regulate neurotransmission in the enteric nervous system (ENS) of the gastrointestinal (GI) tract. The ENS consists of intrinsic primary afferent neurons, interneurons, and motor neurons arranged in two ganglionated plexuses which control all the functions of the gut. Increasing evidence suggests that endocannabinoids are potent neuromodulators in the ENS. In this review, we will highlight key observations on the localization of CB receptors and molecules involved in the synthesis and degradation of endocannabinoids in the ENS. We will discuss endocannabinoid signaling mechanisms, endocannabinoid tone and concepts of CB receptor metaplasticity in the ENS. We will also touch on some examples of enteric neural signaling in relation neuromuscular, secretomotor, and enteroendocrine transmission in the ENS. Finally, we will briefly discuss some key future directions.
Collapse
Affiliation(s)
- Samantha M Trautmann
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Keith A Sharkey
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
192
|
Evaluation of cannabinoid CB1 and CB2 receptors expression in mobile tongue squamous cell carcinoma: associations with clinicopathological parameters and patients' survival. Tumour Biol 2015; 37:3647-56. [PMID: 26459312 DOI: 10.1007/s13277-015-4182-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 10/01/2015] [Indexed: 10/23/2022] Open
Abstract
Cannabinoid receptors (CB1R and CB2R) constitute essential members of the endocannabinoid system (ECS) which participates in many different functions indispensable to homeostatic regulation in several tissues, exerting also antitumorigenic effects. The present study aimed to assess the clinical significance of CB1R and CB2R protein expression in mobile tongue squamous cell carcinoma (SCC). CB1R and CB2R expression was assessed immunohistochemically on 28 mobile tongue SCC tissue samples and was analyzed in relation with clinicopathological characteristics and overall and disease-free patients' survival. CB1R, CB2R, and concomitant CB1R/CB2R expression was significantly increased in older compared to younger mobile tongue SCC patients (p = 0.0243, p = 0.0079, and p = 0.0366, respectively). Enhanced CB2R and concomitant CB1R/CB2R expression was significantly more frequently observed in female compared to male mobile tongue SCC patients (p = 0.0025 and p = 0.0016, respectively). Elevated CB2R expression was significantly more frequently observed in mobile tongue SCC patients presenting well-defined tumor shape compared to those with diffuse (p = 0.0430). Mobile tongue SCC patients presenting enhanced CB1R, CB2R, or concomitant CB1R/CB2R expression showed significantly longer overall (log-rank test, p = 0.004, p = 0.011, p = 0.018, respectively) and disease-free (log-rank test, p = 0.003, p = 0.007, p = 0.027, respectively) survival times compared to those with low expression. In multivariate analysis, CB1R was identified as an independent prognostic factor for disease-free patients' survival (Cox-regression analysis, p = 0.032). The present study provides evidence that CB1R and CB2R may play a role in the pathophysiological aspects of the mobile tongue SCC and even each molecule may constitute a potential target for the development of novel anti-cancer drugs for this type of malignancy.
Collapse
|
193
|
Clinical Significance of Cannabinoid Receptors CB1 and CB2 Expression in Human Malignant and Benign Thyroid Lesions. BIOMED RESEARCH INTERNATIONAL 2015; 2015:839403. [PMID: 26539529 PMCID: PMC4619873 DOI: 10.1155/2015/839403] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 08/11/2015] [Indexed: 01/27/2023]
Abstract
The endocannabinoid system is comprised of cannabinoid receptors (CB1 and CB2), their endogenous ligands (endocannabinoids), and proteins responsible for their metabolism participate in many different functions indispensable to homeostatic regulation in several tissues, exerting also antitumorigenic effects. The present study aimed to evaluate the clinical significance of CB1 and CB2 expression in human benign and malignant thyroid lesions. CB1 and CB2 proteins' expression was assessed immunohistochemically on paraffin-embedded thyroid tissues obtained from 87 patients with benign (n = 43) and malignant (n = 44) lesions and was statistically analyzed with clinicopathological parameters, follicular cells' proliferative capacity, and risk of recurrence rate estimated according to the American Thyroid Association (ATA) staging system. Enhanced CB1 and CB2 expression was significantly more frequently observed in malignant compared to benign thyroid lesions (p = 0.0010 and p = 0.0005, resp.). Enhanced CB1 and CB2 expression was also significantly more frequently observed in papillary carcinomas compared to hyperplastic nodules (p = 0.0097 and p = 0.0110, resp.). In malignant thyroid lesions, elevated CB2 expression was significantly associated with the presence of lymph node metastases (p = 0.0301). Enhanced CB2 expression was also more frequently observed in malignant thyroid cases with presence of capsular (p = 0.1165), lymphatic (p = 0.1989), and vascular invasion (p = 0.0555), as well as in those with increased risk of recurrence rate (p = 0.1165), at a nonsignificant level though, whereas CB1 expression was not associated with any of the clinicopathological parameters examined. Our data suggest that CB receptors may be involved in malignant thyroid transformation and especially CB2 receptor could serve as useful biomarker and potential therapeutic target in thyroid neoplasia.
Collapse
|
194
|
Stančić A, Jandl K, Hasenöhrl C, Reichmann F, Marsche G, Schuligoi R, Heinemann A, Storr M, Schicho R. The GPR55 antagonist CID16020046 protects against intestinal inflammation. Neurogastroenterol Motil 2015; 27:1432-45. [PMID: 26227635 PMCID: PMC4587547 DOI: 10.1111/nmo.12639] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 06/23/2015] [Indexed: 12/13/2022]
Abstract
BACKGROUND G protein-coupled receptor 55 (GPR55) is a lysophospholipid receptor responsive to certain cannabinoids. The role of GPR55 in inflammatory processes of the gut is largely unknown. Using the recently characterized GPR55 inhibitor CID16020046, we determined the role of GPR55 in experimental intestinal inflammation and explored possible mechanisms of action. METHODS Colitis was induced by either 2.5% dextran sulfate sodium (DSS) supplemented in the drinking water of C57BL/6 mice or by a single intrarectal application of trinitrobenzene sulfonic acid (TNBS). KEY RESULTS Daily application of CID16020046 (20 mg/kg) significantly reduced inflammation scores and myeloperoxidase (MPO) activity. In the DSS colitis model, levels of tumor necrosis factor alpha (TNF-α) and interleukin 1 beta (IL-1β), and the expression of cyclooxygenase (Cox)-2 and signal transducer and activator of transcription 3 (STAT-3) were reduced in colon tissues while in TNBS-induced colitis, levels of Cox-2, IL-1β and IL-6 were significantly lowered. Evaluation of leukocyte recruitment by flow cytometry indicated reduced presence of lymphocytes and macrophages in the colon following GPR55 inhibition in DSS-induced colitis. In J774A.1 mouse macrophages, inhibition of GPR55 revealed reduced migration of macrophages and decreased CD11b expression, suggesting that direct effects of CID16020046 on macrophages may have contributed to the improvement of colitis. GPR55(-/-) knockout mice showed reduced inflammation scores as compared to wild type mice in the DSS model suggesting a pro-inflammatory role in intestinal inflammation. CONCLUSIONS & INFERENCES Pharmacological blockade of GPR55 reduces experimental intestinal inflammation by reducing leukocyte migration and activation, in particular that of macrophages. Therefore, CID16020046 represents a possible drug for the treatment of bowel inflammation.
Collapse
Affiliation(s)
- Angela Stančić
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz
| | - Katharina Jandl
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz
| | - Carina Hasenöhrl
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz
| | - Florian Reichmann
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz
| | - Gunther Marsche
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz
| | - Rufina Schuligoi
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz
| | - Akos Heinemann
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz
| | - Martin Storr
- Department of Medicine II, Klinikum Großhadern, Ludwig-Maximilians University, Munich, Germany
,Co-corresponding author:Martin Storr, MD, PhD Department of Medicine II, Klinikum Großhadern Ludwig-Maximilians University Marchioninistr. 15 81377 Munich Germany Phone: 0049 89-7095-2281 (0) Fax: 0049 89-7095-5281
| | - Rudolf Schicho
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz
,Corresponding author:Rudolf Schicho, PhD Medical University of Graz Institute of Experimental and Clinical Pharmacology Universitätsplatz 4 8010 Graz Austria Phone: 0043 3163807851 Fax: 0043 3163809645
| |
Collapse
|
195
|
Response to Utomo et al. Am J Gastroenterol 2015; 110:1245-6. [PMID: 26263368 DOI: 10.1038/ajg.2015.202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
196
|
Taschler U, Eichmann TO, Radner FPW, Grabner GF, Wolinski H, Storr M, Lass A, Schicho R, Zimmermann R. Monoglyceride lipase deficiency causes desensitization of intestinal cannabinoid receptor type 1 and increased colonic μ-opioid receptor sensitivity. Br J Pharmacol 2015; 172:4419-29. [PMID: 26075589 PMCID: PMC4556478 DOI: 10.1111/bph.13224] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 05/12/2015] [Accepted: 06/03/2015] [Indexed: 12/25/2022] Open
Abstract
Background and Purpose Monoglyceride lipase (MGL) degrades 2-arachidonoyl glycerol (2-AG), an endogenous agonist of cannabinoid receptors (CB1/2). Because the CB1 receptor is involved in the control of gut function, we investigated the effects of pharmacological inhibition and genetic deletion of MGL on intestinal motility. Furthermore, we determined whether defective 2-AG degradation affects μ-opioid receptor (μ receptor) signalling, a parallel pathway regulating gut motility. Experimental Approach Gut motility was investigated by monitoring Evans Blue transit and colonic bead propulsion in response to MGL inhibition and CB1 receptor or μ receptor stimulation. Ileal contractility was investigated by electrical field stimulation. CB1 receptor expression in ileum and colon was assessed by immunohistochemical analyses. Key Results Pharmacological inhibition of MGL slowed down whole gut transit in a CB1 receptor-dependent manner. Conversely, genetic deletion of MGL did not affect gut transit despite increased 2-AG levels. Notably, MGL deficiency caused complete insensitivity to CB1 receptor agonist-mediated inhibition of whole gut transit and ileal contractility suggesting local desensitization of CB1 receptors. Accordingly, immunohistochemical analyses of myenteric ganglia of MGL-deficient mice revealed that CB1 receptors were trapped in endocytic vesicles. Finally, MGL-deficient mice displayed accelerated colonic propulsion and were hypersensitive to μ receptor agonist-mediated inhibition of colonic motility. This phenotype was reproduced by chronic pharmacological inhibition of MGL. Conclusion and Implications Constantly elevated 2-AG levels induce severe desensitization of intestinal CB1 receptors and increased sensitivity to μ receptor-mediated inhibition of colonic motility. These changes should be considered when cannabinoid-based drugs are used in the therapy of gastrointestinal diseases.
Collapse
Affiliation(s)
- U Taschler
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - T O Eichmann
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - F P W Radner
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - G F Grabner
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - H Wolinski
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - M Storr
- Department of Medicine, Division of Gastroenterology, Ludwig Maximilians University of Munich, Munich, Germany
| | - A Lass
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - R Schicho
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| | - R Zimmermann
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| |
Collapse
|
197
|
Nettekoven M, Adam JM, Bendels S, Bissantz C, Fingerle J, Grether U, Grüner S, Guba W, Kimbara A, Ottaviani G, Püllmann B, Rogers-Evans M, Röver S, Rothenhäusler B, Schmitt S, Schuler F, Schulz-Gasch T, Ullmer C. Novel Triazolopyrimidine-Derived Cannabinoid Receptor 2 Agonists as Potential Treatment for Inflammatory Kidney Diseases. ChemMedChem 2015; 11:179-89. [DOI: 10.1002/cmdc.201500218] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 06/23/2015] [Indexed: 11/05/2022]
Affiliation(s)
- Matthias Nettekoven
- Roche Pharmaceutical Research and Early Development; Small-Molecule Research; Roche Innovation Center Basel; Grenzacher Str. 124 4070 Basel Switzerland
| | - Jean-Michel Adam
- Roche Pharmaceutical Research and Early Development; Small-Molecule Research; Roche Innovation Center Basel; Grenzacher Str. 124 4070 Basel Switzerland
| | - Stefanie Bendels
- Roche Pharmaceutical Research and Early Development; Small-Molecule Research; Roche Innovation Center Basel; Grenzacher Str. 124 4070 Basel Switzerland
| | - Catarina Bissantz
- Roche Pharmaceutical Research and Early Development; Small-Molecule Research; Roche Innovation Center Basel; Grenzacher Str. 124 4070 Basel Switzerland
| | - Jürgen Fingerle
- Roche Pharmaceutical Research and Early Development; Discovery Biology; Roche Innovation Center Basel; Grenzacher Str. 124 4070 Basel Switzerland
| | - Uwe Grether
- Roche Pharmaceutical Research and Early Development; Small-Molecule Research; Roche Innovation Center Basel; Grenzacher Str. 124 4070 Basel Switzerland
| | - Sabine Grüner
- Roche Pharmaceutical Research and Early Development; Discovery Biology; Roche Innovation Center Basel; Grenzacher Str. 124 4070 Basel Switzerland
| | - Wolfgang Guba
- Roche Pharmaceutical Research and Early Development; Small-Molecule Research; Roche Innovation Center Basel; Grenzacher Str. 124 4070 Basel Switzerland
| | - Atsushi Kimbara
- Roche Pharmaceutical Research and Early Development; Small-Molecule Research; Roche Innovation Center Basel; Grenzacher Str. 124 4070 Basel Switzerland
| | - Giorgio Ottaviani
- Roche Pharmaceutical Research and Early Development, DMPK; Roche Innovation Center Basel; Grenzacher Str. 124 4070 Basel Switzerland
| | - Bernd Püllmann
- Roche Pharmaceutical Research and Early Development; Small-Molecule Research; Roche Innovation Center Basel; Grenzacher Str. 124 4070 Basel Switzerland
| | - Mark Rogers-Evans
- Roche Pharmaceutical Research and Early Development; Small-Molecule Research; Roche Innovation Center Basel; Grenzacher Str. 124 4070 Basel Switzerland
| | - Stephan Röver
- Roche Pharmaceutical Research and Early Development; Small-Molecule Research; Roche Innovation Center Basel; Grenzacher Str. 124 4070 Basel Switzerland
| | - Benno Rothenhäusler
- Roche Pharmaceutical Research and Early Development, DMPK; Roche Innovation Center Basel; Grenzacher Str. 124 4070 Basel Switzerland
| | - Sebastien Schmitt
- Roche Pharmaceutical Research and Early Development; Small-Molecule Research; Roche Innovation Center Basel; Grenzacher Str. 124 4070 Basel Switzerland
| | - Franz Schuler
- Roche Pharmaceutical Research and Early Development, DMPK; Roche Innovation Center Basel; Grenzacher Str. 124 4070 Basel Switzerland
| | - Tanja Schulz-Gasch
- Roche Pharmaceutical Research and Early Development; Small-Molecule Research; Roche Innovation Center Basel; Grenzacher Str. 124 4070 Basel Switzerland
| | - Christoph Ullmer
- Roche Pharmaceutical Research and Early Development; Discovery Biology; Roche Innovation Center Basel; Grenzacher Str. 124 4070 Basel Switzerland
| |
Collapse
|
198
|
Baron EP. Comprehensive Review of Medicinal Marijuana, Cannabinoids, and Therapeutic Implications in Medicine and Headache: What a Long Strange Trip It's Been …. Headache 2015; 55:885-916. [PMID: 26015168 DOI: 10.1111/head.12570] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2015] [Indexed: 02/06/2023]
Abstract
BACKGROUND The use of cannabis, or marijuana, for medicinal purposes is deeply rooted though history, dating back to ancient times. It once held a prominent position in the history of medicine, recommended by many eminent physicians for numerous diseases, particularly headache and migraine. Through the decades, this plant has taken a fascinating journey from a legal and frequently prescribed status to illegal, driven by political and social factors rather than by science. However, with an abundance of growing support for its multitude of medicinal uses, the misguided stigma of cannabis is fading, and there has been a dramatic push for legalizing medicinal cannabis and research. Almost half of the United States has now legalized medicinal cannabis, several states have legalized recreational use, and others have legalized cannabidiol-only use, which is one of many therapeutic cannabinoids extracted from cannabis. Physicians need to be educated on the history, pharmacology, clinical indications, and proper clinical use of cannabis, as patients will inevitably inquire about it for many diseases, including chronic pain and headache disorders for which there is some intriguing supportive evidence. OBJECTIVE To review the history of medicinal cannabis use, discuss the pharmacology and physiology of the endocannabinoid system and cannabis-derived cannabinoids, perform a comprehensive literature review of the clinical uses of medicinal cannabis and cannabinoids with a focus on migraine and other headache disorders, and outline general clinical practice guidelines. CONCLUSION The literature suggests that the medicinal use of cannabis may have a therapeutic role for a multitude of diseases, particularly chronic pain disorders including headache. Supporting literature suggests a role for medicinal cannabis and cannabinoids in several types of headache disorders including migraine and cluster headache, although it is primarily limited to case based, anecdotal, or laboratory-based scientific research. Cannabis contains an extensive number of pharmacological and biochemical compounds, of which only a minority are understood, so many potential therapeutic uses likely remain undiscovered. Cannabinoids appear to modulate and interact at many pathways inherent to migraine, triptan mechanisms ofaction, and opiate pathways, suggesting potential synergistic or similar benefits. Modulation of the endocannabinoid system through agonism or antagonism of its receptors, targeting its metabolic pathways, or combining cannabinoids with other analgesics for synergistic effects, may provide the foundation for many new classes of medications. Despite the limited evidence and research suggesting a role for cannabis and cannabinoids in some headache disorders, randomized clinical trials are lacking and necessary for confirmation and further evaluation.
Collapse
Affiliation(s)
- Eric P Baron
- Department of Neurology, Headache Center, Cleveland Clinic Neurological Institute, Cleveland, OH, USA
| |
Collapse
|
199
|
Bashashati M, Nasser Y, Keenan CM, Ho W, Piscitelli F, Nalli M, Mackie K, Storr MA, Di Marzo V, Sharkey KA. Inhibiting endocannabinoid biosynthesis: a novel approach to the treatment of constipation. Br J Pharmacol 2015; 172:3099-111. [PMID: 25684407 DOI: 10.1111/bph.13114] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 02/03/2015] [Accepted: 02/09/2015] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND AND PURPOSE Endocannabinoids are a family of lipid mediators involved in the regulation of gastrointestinal (GI) motility. The expression, localization and function of their biosynthetic enzymes in the GI tract are not well understood. Here, we examined the expression, localization and function of the enzyme diacylglycerol lipase-α (DAGLα), which is involved in biosynthesis of the endocannabinoid 2-arachidonoylglycerol (2-AG). EXPERIMENTAL APPROACH Cannabinoid CB1 receptor-deficient, wild-type control and C3H/HeJ mice, a genetically constipated strain, were used. The distribution of DAGLα in the enteric nervous system was examined by immunohistochemistry. Effects of the DAGL inhibitors, orlistat and OMDM-188 on pharmacologically induced GI hypomotility were assessed by measuring intestinal contractility in vitro and whole gut transit or faecal output in vivo. Endocannabinoid levels were measured by mass spectrometry. KEY RESULTS DAGLα was expressed throughout the GI tract. In the intestine, unlike DAGLβ, DAGLα immunoreactivity was prominently expressed in the enteric nervous system. In the myenteric plexus, it was colocalized with the vesicular acetylcholine transporter in cholinergic nerves. In normal mice, inhibiting DAGL reversed both pharmacologically reduced intestinal contractility and pharmacologically prolonged whole gut transit. Moreover, inhibiting DAGL normalized faecal output in constipated C3H/HeJ mice. In colons incubated with scopolamine, 2-AG was elevated while inhibiting DAGL normalized 2-AG levels. CONCLUSIONS AND IMPLICATIONS DAGLα was expressed in the enteric nervous system of mice and its inhibition reversed slowed GI motility, intestinal contractility and constipation through 2-AG and CB1 receptor-mediated mechanisms. Our data suggest that DAGLα inhibitors may be promising candidates for the treatment of constipation.
Collapse
Affiliation(s)
- M Bashashati
- Hotchkiss Brain Institute and Snyder Institute for Chronic Diseases, Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | - Y Nasser
- Division of Gastroenterology, Department of Medicine, University of Calgary, Calgary, AB, Canada
| | - C M Keenan
- Hotchkiss Brain Institute and Snyder Institute for Chronic Diseases, Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | - W Ho
- Hotchkiss Brain Institute and Snyder Institute for Chronic Diseases, Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | - F Piscitelli
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Pozzuoli, Italy
| | - M Nalli
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, Rome, Italy
| | - K Mackie
- Department of Psychological and Brain Sciences, Gill Center for Biomolecular Science, Indiana University, Bloomington, IN, USA
| | - M A Storr
- Division of Gastroenterology, Department of Medicine, University of Calgary, Calgary, AB, Canada.,II Medical Department, Klinikum Groshadern, Ludwig Maximilians University of Munich, Munich, Germany
| | - V Di Marzo
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Pozzuoli, Italy
| | - K A Sharkey
- Hotchkiss Brain Institute and Snyder Institute for Chronic Diseases, Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
200
|
Maccarrone M, Bab I, Bíró T, Cabral GA, Dey SK, Di Marzo V, Konje JC, Kunos G, Mechoulam R, Pacher P, Sharkey KA, Zimmer A. Endocannabinoid signaling at the periphery: 50 years after THC. Trends Pharmacol Sci 2015; 36:277-96. [PMID: 25796370 DOI: 10.1016/j.tips.2015.02.008] [Citation(s) in RCA: 455] [Impact Index Per Article: 50.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 02/10/2015] [Accepted: 02/19/2015] [Indexed: 12/19/2022]
Abstract
In 1964, the psychoactive ingredient of Cannabis sativa, Δ(9)-tetrahydrocannabinol (THC), was isolated. Nearly 30 years later the endogenous counterparts of THC, collectively termed endocannabinoids (eCBs), were discovered: N-arachidonoylethanolamine (anandamide) (AEA) in 1992 and 2-arachidonoylglycerol (2-AG) in 1995. Since then, considerable research has shed light on the impact of eCBs on human health and disease, identifying an ensemble of proteins that bind, synthesize, and degrade them and that together form the eCB system (ECS). eCBs control basic biological processes including cell choice between survival and death and progenitor/stem cell proliferation and differentiation. Unsurprisingly, in the past two decades eCBs have been recognized as key mediators of several aspects of human pathophysiology and thus have emerged to be among the most widespread and versatile signaling molecules ever discovered. Here some of the pioneers of this research field review the state of the art of critical eCB functions in peripheral organs. Our community effort is aimed at establishing consensus views on the relevance of the peripheral ECS for human health and disease pathogenesis, as well as highlighting emerging challenges and therapeutic hopes.
Collapse
Affiliation(s)
- Mauro Maccarrone
- Center of Integrated Research, Campus Bio-Medico University, Rome, Italy; Center for Brain Research, Santa Lucia Foundation IRCCS, Rome, Italy.
| | - Itai Bab
- Bone Laboratory, Hebrew University Medical Faculty, Jerusalem, Israel; Institute for Drug Research, Hebrew University Medical Faculty, Jerusalem, Israel
| | - Tamás Bíró
- DE-MTA 'Lendület' Cellular Physiology Research Group, Department of Physiology, Medical Faculty, University of Debrecen, Debrecen, Hungary
| | - Guy A Cabral
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA, USA
| | - Sudhansu K Dey
- Division of Reproductive Sciences, Cincinnati Children's Research Foundation, Cincinnati, OH, USA
| | - Vincenzo Di Marzo
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, National Council of Research, Pozzuoli, Italy
| | - Justin C Konje
- Department of Obstetrics and Gynaecology, Sidra Medical and Research Center, Doha, Qatar
| | - George Kunos
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA
| | - Raphael Mechoulam
- Institute for Drug Research, Hebrew University Medical Faculty, Jerusalem, Israel
| | - Pal Pacher
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA
| | - Keith A Sharkey
- Hotchkiss Brain Institute, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Andreas Zimmer
- Institute of Molecular Psychiatry, University of Bonn, Bonn, Germany
| |
Collapse
|