151
|
Kelada OJ, Decker RH, Nath SK, Johung KL, Zheng MQ, Huang Y, Gallezot JD, Liu C, Carson RE, Oelfke U, Carlson DJ. High Single Doses of Radiation May Induce Elevated Levels of Hypoxia in Early-Stage Non-Small Cell Lung Cancer Tumors. Int J Radiat Oncol Biol Phys 2018; 102:174-183. [PMID: 30102194 PMCID: PMC6092043 DOI: 10.1016/j.ijrobp.2018.05.032] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 05/10/2018] [Accepted: 05/13/2018] [Indexed: 01/12/2023]
Abstract
PURPOSE Tumor hypoxia correlates with treatment failure in patients undergoing conventional radiation therapy. However, no published studies have investigated tumor hypoxia in patients undergoing stereotactic body radiation therapy (SBRT). We aimed to noninvasively quantify the tumor hypoxic volume (HV) in non-small cell lung cancer (NSCLC) tumors to elucidate the potential role of tumor vascular response and reoxygenation at high single doses. METHODS AND MATERIALS Six SBRT-eligible patients with NSCLC tumors >1 cm were prospectively enrolled in an institutional review board-approved study. Dynamic positron emission tomography images were acquired at 0 to 120 minutes, 150 to 180 minutes, and 210 to 240 minutes after injection of 18F-fluoromisonidazole. Serial imaging was performed prior to delivery of 18 Gy and at approximately 48 hours and approximately 96 hours after SBRT. Tumor HVs were quantified using the tumor-to-blood ratio (>1.2) and rate of tracer influx (>0.0015 mL·min·cm-3). RESULTS An elevated and in some cases persistent level of tumor hypoxia was observed in 3 of 6 patients. Two patients exhibited no detectable baseline tumor hypoxia, and 1 patient with high baseline hypoxia only completed 1 imaging session. On the basis of the tumor-to-blood ratio, in the remaining 3 patients, tumor HVs increased on day 2 after 18 Gy and then showed variable responses on day 4. In the 3 of 6 patients with detectable hypoxia at baseline, baseline tumor HVs ranged between 17% and 24% (mean, 21%), and HVs on days 2 and 4 ranged between 33% and 45% (mean, 40%) and between 18% and 42% (mean, 28%), respectively. CONCLUSIONS High single doses of radiation delivered as part of SBRT may induce an elevated and in some cases persistent state of tumor hypoxia in NSCLC tumors. Hypoxia imaging with 18F-fluoromisonidazole positron emission tomography should be used in a larger cohort of NSCLC patients to determine whether elevated tumor hypoxia is predictive of treatment failure in SBRT.
Collapse
Affiliation(s)
- Olivia J Kelada
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut; Department of Medical Physics in Radiation Oncology, German Cancer Research Center, Heidelberg, Germany
| | - Roy H Decker
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut
| | - Sameer K Nath
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut
| | - Kimberly L Johung
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut
| | - Ming-Qiang Zheng
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut
| | - Yiyun Huang
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut
| | - Jean-Dominique Gallezot
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut
| | - Chi Liu
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut
| | - Richard E Carson
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut
| | - Uwe Oelfke
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center, Heidelberg, Germany
| | - David J Carlson
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut.
| |
Collapse
|
152
|
Optimal timing of fluorine-18-fluoromisonidazole positron emission tomography/computed tomography for assessment of tumor hypoxia in patients with head and neck squamous cell carcinoma. Nucl Med Commun 2018; 39:859-864. [DOI: 10.1097/mnm.0000000000000878] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
153
|
Jamieson SM, Tsai P, Kondratyev MK, Budhani P, Liu A, Senzer NN, Chiorean EG, Jalal SI, Nemunaitis JJ, Kee D, Shome A, Wong WW, Li D, Poonawala-Lohani N, Kakadia PM, Knowlton NS, Lynch CR, Hong CR, Lee TW, Grénman RA, Caporiccio L, McKee TD, Zaidi M, Butt S, Macann AM, McIvor NP, Chaplin JM, Hicks KO, Bohlander SK, Wouters BG, Hart CP, Print CG, Wilson WR, Curran MA, Hunter FW. Evofosfamide for the treatment of human papillomavirus-negative head and neck squamous cell carcinoma. JCI Insight 2018; 3:122204. [PMID: 30135316 PMCID: PMC6141174 DOI: 10.1172/jci.insight.122204] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 07/13/2018] [Indexed: 01/10/2023] Open
Abstract
Evofosfamide (TH-302) is a clinical-stage hypoxia-activated prodrug of a DNA-crosslinking nitrogen mustard that has potential utility for human papillomavirus (HPV) negative head and neck squamous cell carcinoma (HNSCC), in which tumor hypoxia limits treatment outcome. We report the preclinical efficacy, target engagement, preliminary predictive biomarkers and initial clinical activity of evofosfamide for HPV-negative HNSCC. Evofosfamide was assessed in 22 genomically characterized cell lines and 7 cell line-derived xenograft (CDX), patient-derived xenograft (PDX), orthotopic, and syngeneic tumor models. Biomarker analysis used RNA sequencing, whole-exome sequencing, and whole-genome CRISPR knockout screens. Five advanced/metastatic HNSCC patients received evofosfamide monotherapy (480 mg/m2 qw × 3 each month) in a phase 2 study. Evofosfamide was potent and highly selective for hypoxic HNSCC cells. Proliferative rate was a predominant evofosfamide sensitivity determinant and a proliferation metagene correlated with activity in CDX models. Evofosfamide showed efficacy as monotherapy and with radiotherapy in PDX models, augmented CTLA-4 blockade in syngeneic tumors, and reduced hypoxia in nodes disseminated from an orthotopic model. Of 5 advanced HNSCC patients treated with evofosfamide, 2 showed partial responses while 3 had stable disease. In conclusion, evofosfamide shows promising efficacy in aggressive HPV-negative HNSCC, with predictive biomarkers in development to support further clinical evaluation in this indication.
Collapse
Affiliation(s)
- Stephen M.F. Jamieson
- Auckland Cancer Society Research Centre, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
- Department of Pharmacology and Clinical Pharmacology, University of Auckland, Auckland, New Zealand
| | - Peter Tsai
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Maria K. Kondratyev
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Pratha Budhani
- Department of Immunology, University of Texas, MD Anderson Cancer Center, Houston, Texas, USA
| | - Arthur Liu
- Department of Immunology, University of Texas, MD Anderson Cancer Center, Houston, Texas, USA
| | | | - E. Gabriela Chiorean
- Indiana University Melvin and Bren Simon Cancer Center, Indiana University, Indianapolis, Indiana, USA
- Fred Hutchinson Cancer Research Center, University of Washington, Seattle, Washington, USA
| | - Shadia I. Jalal
- Indiana University Melvin and Bren Simon Cancer Center, Indiana University, Indianapolis, Indiana, USA
| | - John J. Nemunaitis
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, University of Toledo, Toledo, Ohio, USA
| | - Dennis Kee
- LabPLUS, Auckland City Hospital, Auckland, New Zealand
| | - Avik Shome
- Auckland Cancer Society Research Centre, University of Auckland, Auckland, New Zealand
| | - Way W. Wong
- Auckland Cancer Society Research Centre, University of Auckland, Auckland, New Zealand
| | - Dan Li
- Auckland Cancer Society Research Centre, University of Auckland, Auckland, New Zealand
| | | | - Purvi M. Kakadia
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Nicholas S. Knowlton
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Courtney R.H. Lynch
- Auckland Cancer Society Research Centre, University of Auckland, Auckland, New Zealand
| | - Cho R. Hong
- Auckland Cancer Society Research Centre, University of Auckland, Auckland, New Zealand
| | - Tet Woo Lee
- Auckland Cancer Society Research Centre, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - Reidar A. Grénman
- Department of Otolaryngology–Head and Neck Surgery, Turku University Hospital, Turku, Finland
| | - Laura Caporiccio
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Trevor D. McKee
- STTARR Innovation Centre, University Health Network, Toronto, Ontario, Canada
| | - Mark Zaidi
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- STTARR Innovation Centre, University Health Network, Toronto, Ontario, Canada
| | - Sehrish Butt
- STTARR Innovation Centre, University Health Network, Toronto, Ontario, Canada
| | - Andrew M.J. Macann
- Department of Radiation Oncology, Auckland City Hospital, Auckland, New Zealand
| | - Nicholas P. McIvor
- Department of Otolaryngology–Head and Neck Surgery, Auckland City Hospital, Auckland, New Zealand
| | - John M. Chaplin
- Department of Otolaryngology–Head and Neck Surgery, Auckland City Hospital, Auckland, New Zealand
| | - Kevin O. Hicks
- Auckland Cancer Society Research Centre, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - Stefan K. Bohlander
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Bradly G. Wouters
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Charles P. Hart
- Threshold Pharmaceuticals, South San Francisco, California, USA
| | - Cristin G. Print
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - William R. Wilson
- Auckland Cancer Society Research Centre, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - Michael A. Curran
- Department of Immunology, University of Texas, MD Anderson Cancer Center, Houston, Texas, USA
| | - Francis W. Hunter
- Auckland Cancer Society Research Centre, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| |
Collapse
|
154
|
Stieb S, Eleftheriou A, Warnock G, Guckenberger M, Riesterer O. Longitudinal PET imaging of tumor hypoxia during the course of radiotherapy. Eur J Nucl Med Mol Imaging 2018; 45:2201-2217. [PMID: 30128659 DOI: 10.1007/s00259-018-4116-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 07/30/2018] [Indexed: 12/11/2022]
Abstract
Hypoxia results from an imbalance between oxygen supply and consumption. It is a common phenomenon in solid malignant tumors such as head and neck cancer. As hypoxic cells are more resistant to therapy, tumor hypoxia is an indicator for poor prognosis. Several techniques have been developed to measure tissue oxygenation. These are the Eppendorf O2 polarographic needle electrode, immunohistochemical analysis of endogenous (e.g., hypoxia-inducible factor-1α (HIF-1a)) and exogenous markers (e.g., pimonidazole) as well as imaging methods such as functional magnetic resonance imaging (e.g., blood oxygen level dependent (BOLD) imaging, T1-weighted imaging) and hypoxia positron emission tomography (PET). Among the imaging modalities, only PET is sufficiently validated to detect hypoxia for clinical use. Hypoxia PET tracers include 18F-fluoromisonidazole (FMISO), the most commonly used hypoxic marker, 18F-flouroazomycin arabinoside (FAZA), 18Ffluoroerythronitroimidazole (FETNIM), 18F-2-nitroimidazolpentafluoropropylacetamide (EF5) and 18F-flortanidazole (HX4). As technical development provides the opportunity to increase the radiation dose to subregions of the tumor, such as hypoxic areas, it has to be ensured that these regions are stable not only from imaging to treatment but also through the course of radiotherapy. The aim of this review is therefore to characterize the behavior of tumor hypoxia during radiotherapy for the whole tumor and for subregions by using hypoxia PET tracers, with focus on head and neck cancer patients.
Collapse
Affiliation(s)
- Sonja Stieb
- Department of Radiation Oncology, University Hospital and University of Zurich, Rämistrasse 100, 8091, Zurich, Switzerland. .,Institute of Diagnostic and Interventional Radiology, University Hospital and University of Zurich, Rämistrasse 100, 8091, Zurich, Switzerland.
| | - Afroditi Eleftheriou
- Department of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Geoffrey Warnock
- Department of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.,Department of Nuclear Medicine, University Hospital and University of Zurich, Rämistrasse 100, 8091, Zurich, Switzerland
| | - Matthias Guckenberger
- Department of Radiation Oncology, University Hospital and University of Zurich, Rämistrasse 100, 8091, Zurich, Switzerland
| | - Oliver Riesterer
- Department of Radiation Oncology, University Hospital and University of Zurich, Rämistrasse 100, 8091, Zurich, Switzerland
| |
Collapse
|
155
|
Spina CS, Drake CG. Combined local and systemic attacks. Nat Biomed Eng 2018; 2:564-565. [DOI: 10.1038/s41551-018-0277-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
156
|
Kelada OJ, Rockwell S, Zheng MQ, Huang Y, Liu Y, Booth CJ, Decker RH, Oelfke U, Carson RE, Carlson DJ. Quantification of Tumor Hypoxic Fractions Using Positron Emission Tomography with [ 18F]Fluoromisonidazole ([ 18F]FMISO) Kinetic Analysis and Invasive Oxygen Measurements. Mol Imaging Biol 2018; 19:893-902. [PMID: 28409339 DOI: 10.1007/s11307-017-1083-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
PURPOSE The purpose of this study is to use dynamic [18F]fluoromisonidazole ([18F]FMISO) positron emission tomography (PET) to compare estimates of tumor hypoxic fractions (HFs) derived by tracer kinetic modeling, tissue-to-blood ratios (TBR), and independent oxygen (pO2) measurements. PROCEDURES BALB/c mice with EMT6 subcutaneous tumors were selected for PET imaging and invasive pO2 measurements. Data from 120-min dynamic [18F]FMISO scans were fit to two-compartment irreversible three rate constant (K 1, k 2, k 3) and Patlak models (K i). Tumor HFs were calculated and compared using K i, k 3, TBR, and pO2 values. The clinical impact of each method was evaluated on [18F]FMISO scans for three non-small cell lung cancer (NSCLC) radiotherapy patients. RESULTS HFs defined by TBR (≥1.2, ≥1.3, and ≥1.4) ranged from 2 to 85 % of absolute tumor volume. HFs defined by K i (>0.004 ml min cm-3) and k 3 (>0.008 min-1) varied from 9 to 85 %. HF quantification was highly dependent on metric (TBR, k 3, or K i) and threshold. HFs quantified on human [18F]FMISO scans varied from 38 to 67, 0 to 14, and 0.1 to 27 %, for each patient, respectively, using TBR, k 3, and K i metrics. CONCLUSIONS [18F]FMISO PET imaging metric choice and threshold impacts hypoxia quantification reliability. Our results suggest that tracer kinetic modeling has the potential to improve hypoxia quantification clinically as it may provide a stronger correlation with direct pO2 measurements.
Collapse
Affiliation(s)
- Olivia J Kelada
- Department of Therapeutic Radiology, Yale University School of Medicine, P.O. Box 208040, New Haven, CT, 06520-8040, USA.,Department of Medical Physics in Radiation Oncology, German Cancer Research Center, Heidelberg, Germany
| | - Sara Rockwell
- Department of Therapeutic Radiology, Yale University School of Medicine, P.O. Box 208040, New Haven, CT, 06520-8040, USA.,Department of Pharmacology, Yale University School of Medicine, New Haven, CT, USA
| | - Ming-Qiang Zheng
- Department of Diagnostic Radiology, Yale University School of Medicine, New Haven, CT, USA
| | - Yiyun Huang
- Department of Diagnostic Radiology, Yale University School of Medicine, New Haven, CT, USA
| | - Yanfeng Liu
- Department of Therapeutic Radiology, Yale University School of Medicine, P.O. Box 208040, New Haven, CT, 06520-8040, USA
| | - Carmen J Booth
- Section of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Roy H Decker
- Department of Therapeutic Radiology, Yale University School of Medicine, P.O. Box 208040, New Haven, CT, 06520-8040, USA
| | - Uwe Oelfke
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center, Heidelberg, Germany
| | - Richard E Carson
- Department of Diagnostic Radiology, Yale University School of Medicine, New Haven, CT, USA
| | - David J Carlson
- Department of Therapeutic Radiology, Yale University School of Medicine, P.O. Box 208040, New Haven, CT, 06520-8040, USA.
| |
Collapse
|
157
|
Kossoski F, Varella MTDN. How does methylation suppress the electron-induced decomposition of 1-methyl-nitroimidazoles? J Chem Phys 2018; 147:164310. [PMID: 29096502 DOI: 10.1063/1.5005604] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The efficient decomposition of nitroimidazoles (NIs) by low energy electrons is believed to underlie their radiosensitizing properties. Recent dissociative electron attachment (DEA) measurements showed that methylation at the N1 site unexpectedly suppresses the electron-induced reactions in 4(5)-NI. We report theoretical results that provide a clear interpretation of that astounding finding. Around 1.5 eV, DEA reactions into several fragments are initiated by a π* resonance, not considered in previous studies. The autoionization lifetime of this anion state, which limits the predissociation dynamics, is considerably shorter in the methylated species, thereby suppressing the DEA signals. On the other hand, the lifetime of the π* resonance located around 3 eV is less affected by methylation, which explains why DEA is still observed at these energies. Our results demonstrate how even a simple methylation can significantly modify the probabilities for DEA reactions, which may be significant for NI-based cancer therapy.
Collapse
Affiliation(s)
- F Kossoski
- Instituto de Física "Gleb Wataghin", Universidade Estadual de Campinas, 13083-859 Campinas, São Paulo, Brazil
| | - M T do N Varella
- Instituto de Física, Universidade de São Paulo, Rua do Matão 1731, 05508-090 São Paulo, São Paulo, Brazil
| |
Collapse
|
158
|
Kolenda T, Przybyła W, Kapałczyńska M, Teresiak A, Zajączkowska M, Bliźniak R, Lamperska KM. Tumor microenvironment - Unknown niche with powerful therapeutic potential. Rep Pract Oncol Radiother 2018; 23:143-153. [PMID: 29760589 PMCID: PMC5948324 DOI: 10.1016/j.rpor.2018.01.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 11/20/2017] [Accepted: 01/20/2018] [Indexed: 12/25/2022] Open
Abstract
Head and neck squamous cell carcinomas (HNSCC) are in a group of cancers that are the most resistant to treatment. The survival rate of HNSCC patients has been still very low since last 20 years. The existence of relationship between oncogenic and surrounding cells is probably the reason for a poor response to treatment. Fibroblasts are an important element of tumor stroma which increases tumor cells ability to proliferate. Another highly resistance, tumorigenic and metastatic cell population in tumor microenvironment are cancer initiating cells (CICs). The population of cancer initiating cells can be found regardless of differentiation status of cancer and they seem to be crucial for HNSCC development. In this review, we describe the current state of knowledge about HNSCC biological and physiological tumor microenvironment.
Collapse
Affiliation(s)
- Tomasz Kolenda
- Laboratory of Cancer Genetic, Greater Poland Cancer Centre, Poznan, Poland
- Postgraduate School of Molecular Medicine, Medical University of Warsaw, Poland
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, Poznan, Poland
| | - Weronika Przybyła
- Laboratory of Cancer Genetic, Greater Poland Cancer Centre, Poznan, Poland
- Department of Pediatric Research, Division of Pediatric and Adolescent Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Marta Kapałczyńska
- Laboratory of Cancer Genetic, Greater Poland Cancer Centre, Poznan, Poland
- Department of Gastroenterology and Hepatology, Charite University Medicine Berlin, Berlin, Germany
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Anna Teresiak
- Laboratory of Cancer Genetic, Greater Poland Cancer Centre, Poznan, Poland
| | - Maria Zajączkowska
- Laboratory of Cancer Genetic, Greater Poland Cancer Centre, Poznan, Poland
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, Poznan, Poland
| | - Renata Bliźniak
- Laboratory of Cancer Genetic, Greater Poland Cancer Centre, Poznan, Poland
| | | |
Collapse
|
159
|
Yang L, Roberts D, Takhar M, Erho N, Bibby BAS, Thiruthaneeswaran N, Bhandari V, Cheng WC, Haider S, McCorry AMB, McArt D, Jain S, Alshalalfa M, Ross A, Schaffer E, Den RB, Jeffrey Karnes R, Klein E, Hoskin PJ, Freedland SJ, Lamb AD, Neal DE, Buffa FM, Bristow RG, Boutros PC, Davicioni E, Choudhury A, West CML. Development and Validation of a 28-gene Hypoxia-related Prognostic Signature for Localized Prostate Cancer. EBioMedicine 2018; 31:182-189. [PMID: 29729848 PMCID: PMC6014579 DOI: 10.1016/j.ebiom.2018.04.019] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 04/11/2018] [Accepted: 04/20/2018] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Hypoxia is associated with a poor prognosis in prostate cancer. This work aimed to derive and validate a hypoxia-related mRNA signature for localized prostate cancer. METHOD Hypoxia genes were identified in vitro via RNA-sequencing and combined with in vivo gene co-expression analysis to generate a signature. The signature was independently validated in eleven prostate cancer cohorts and a bladder cancer phase III randomized trial of radiotherapy alone or with carbogen and nicotinamide (CON). RESULTS A 28-gene signature was derived. Patients with high signature scores had poorer biochemical recurrence free survivals in six of eight independent cohorts of prostatectomy-treated patients (Log rank test P < .05), with borderline significances achieved in the other two (P < .1). The signature also predicted biochemical recurrence in patients receiving post-prostatectomy radiotherapy (n = 130, P = .007) or definitive radiotherapy alone (n = 248, P = .035). Lastly, the signature predicted metastasis events in a pooled cohort (n = 631, P = .002). Prognostic significance remained after adjusting for clinic-pathological factors and commercially available prognostic signatures. The signature predicted benefit from hypoxia-modifying therapy in bladder cancer patients (intervention-by-signature interaction test P = .0026), where carbogen and nicotinamide was associated with improved survival only in hypoxic tumours. CONCLUSION A 28-gene hypoxia signature has strong and independent prognostic value for prostate cancer patients.
Collapse
Affiliation(s)
- Lingjian Yang
- Translational Radiobiology Group, Division of Cancer Sciences, University of Manchester, Manchester Academic Health Science Centre, Christie Hospital, Manchester M20 4BX, UK
| | - Darren Roberts
- Translational Radiobiology Group, Division of Cancer Sciences, University of Manchester, Manchester Academic Health Science Centre, Christie Hospital, Manchester M20 4BX, UK
| | | | | | - Becky A S Bibby
- Translational Radiobiology Group, Division of Cancer Sciences, University of Manchester, Manchester Academic Health Science Centre, Christie Hospital, Manchester M20 4BX, UK
| | - Niluja Thiruthaneeswaran
- Translational Radiobiology Group, Division of Cancer Sciences, University of Manchester, Manchester Academic Health Science Centre, Christie Hospital, Manchester M20 4BX, UK; Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Vinayak Bhandari
- Informatics & Biocomputing Program, Ontario Institute for Cancer Research, Toronto, Canada; Sydney Medical School, University of Sydney, Sydney, Australia
| | - Wei-Chen Cheng
- Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Syed Haider
- Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK; Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Amy M B McCorry
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast BT9 7BL, Northern Ireland, UK
| | - Darragh McArt
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast BT9 7BL, Northern Ireland, UK
| | - Suneil Jain
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast BT9 7BL, Northern Ireland, UK
| | | | - Ashley Ross
- James Buchanan Brady Urological Institute, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | | | - Robert B Den
- Department of Radiation Oncology, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, United States
| | | | - Eric Klein
- Glickman Urological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Peter J Hoskin
- Mount Vernon Cancer Centre, Rickmansworth Road, Northwood, Middlesex HA6 2RN, UK
| | - Stephen J Freedland
- Department of Surgery, Division of Urology, Center for Integrated Research on Cancer and Lifestyle, Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Alastair D Lamb
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, UK; Nuffield Department of Surgical Sciences, University of Oxford, Old Road Campus Research Building, Headington, Oxford OX3 7DQ, UK
| | - David E Neal
- Nuffield Department of Surgical Sciences, University of Oxford, Old Road Campus Research Building, Headington, Oxford OX3 7DQ, UK
| | - Francesca M Buffa
- Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK; Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Robert G Bristow
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Paul C Boutros
- Informatics & Biocomputing Program, Ontario Institute for Cancer Research, Toronto, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | | | - Ananya Choudhury
- Translational Radiobiology Group, Division of Cancer Sciences, University of Manchester, Manchester Academic Health Science Centre, Christie Hospital, Manchester M20 4BX, UK
| | - Catharine M L West
- Translational Radiobiology Group, Division of Cancer Sciences, University of Manchester, Manchester Academic Health Science Centre, Christie Hospital, Manchester M20 4BX, UK; NIHR Manchester Biomedical Research Centre, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, UK.
| |
Collapse
|
160
|
Basheer HA, Pakanavicius E, Cooper PA, Shnyder SD, Martin L, Hunter KD, Vinader V, Afarinkia K. Hypoxia modulates CCR7 expression in head and neck cancers. Oral Oncol 2018; 80:64-73. [PMID: 29706190 DOI: 10.1016/j.oraloncology.2018.03.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Revised: 03/05/2018] [Accepted: 03/23/2018] [Indexed: 02/08/2023]
Abstract
BACKGROUND The chemokine receptor CCR7 is expressed on lymphocytes and dendritic cells and is responsible for trafficking of these cells in and out of secondary lymphoid organs. It has recently been shown that CCR7 expression is elevated in a number of cancers, including head and neck cancers, and that its expression correlates to lymph node (LN) metastasis. However, little is known about the factors that can induce CCR7 expression in head and neck cancers. METHOD We compared the protein expression and functional responses of CCR7 under normoxia and hypoxia in head and neck cancer cell lines OSC-19, FaDu, SCC-4, A-253 and Detroit-562 cultured as monolayers, spheroids, and grown in vivo as xenografts in balb/c mice. In addition, we analysed the correlation between hypoxia marker HIF-1α and CCR7 expression in a tissue microarray comprising 80 clinical samples with various stages and grades of malignant tumour and normal tissue. RESULTS Under hypoxia, the expression of CCR7 is elevated in both in vitro and in vivo models. Furthermore, in malignant tissue, a correlation is observed between hypoxia marker HIF-1α and CCR7 across all clinical stages. This correlation is also strong in early histological grade of tumours. CONCLUSION Hypoxia plays a role in the regulation of the expression of CCR7 and it may contribute to the development of a metastatic phenotype in head and neck cancers through this axis.
Collapse
Affiliation(s)
- Haneen A Basheer
- The Institute of Cancer Therapeutics, University of Bradford, Bradford BD7 1DP, United Kingdom; Faculty of Pharmacy, Zarqa University, PO Box 132222, Zarqa 13132, Jordan
| | - Edvinas Pakanavicius
- Division of Biosciences, University College London, London WC1E 6BT, United Kingdom
| | - Patricia A Cooper
- The Institute of Cancer Therapeutics, University of Bradford, Bradford BD7 1DP, United Kingdom
| | - Steven D Shnyder
- The Institute of Cancer Therapeutics, University of Bradford, Bradford BD7 1DP, United Kingdom
| | - Lisette Martin
- School of Clinical Dentistry, University of Sheffield, Sheffield S10 2TA, United Kingdom
| | - Keith D Hunter
- School of Clinical Dentistry, University of Sheffield, Sheffield S10 2TA, United Kingdom
| | - Victoria Vinader
- The Institute of Cancer Therapeutics, University of Bradford, Bradford BD7 1DP, United Kingdom
| | - Kamyar Afarinkia
- The Institute of Cancer Therapeutics, University of Bradford, Bradford BD7 1DP, United Kingdom.
| |
Collapse
|
161
|
DAHANCA 10 - Effect of darbepoetin alfa and radiotherapy in the treatment of squamous cell carcinoma of the head and neck. A multicenter, open-label, randomized, phase 3 trial by the Danish head and neck cancer group. Radiother Oncol 2018. [PMID: 29523409 DOI: 10.1016/j.radonc.2018.02.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE To evaluate if correction of low hemoglobin (Hb) levels by means of darbepoetin alfa improves the outcomes of radiotherapy in patients with squamous cell carcinoma of the head and neck (HNSCC). PATIENTS AND METHODS Patients eligible for primary radiotherapy and who had Hb values below 14.0 g/dl were randomized to receive accelerated fractionated radiotherapy with or without darbepoetin alfa. Patients also received the hypoxic radiosensitizer nimorazole. Darbepoetin alfa was given weekly during radiotherapy or until the Hb value exceeded 15.5 g/dl. RESULTS Following a planned interim analysis which showed inferiority of the experimental treatment the trial was stopped after inclusion of 522 patients (of a planned intake of 600). Of these, 513 were eligible for analysis (254 patients treated with darbepoetin alfa and 259 patients in the control group). Overall, the patients were distributed according to the stratification parameters (gender, T and N staging, tumor site). Treatment with darbepoetin alfa increased the Hb level to the planned value in 81% of the patients. The compliance was good without excess serious adverse events. The results showed a poorer outcome with a 5-year cumulative loco-regional failure rate of 47% vs. 34%, Hazard Ratio (HR): 1.53 [1.16-2.02], for the darbepoetin alfa vs. control arm, respectively. This was also seen for the endpoints of event-free survival (HR: 1.36 [1.09-1.69]), disease-specific death (HR: 1.43 [1.08-1.90]), and overall survival (HR: 1.30 [1.02-1.64]). There was no enhanced risk of cardio-vascular events observed in the experimental arm or any significant differences in acute or late radiation related morbidity. All univariate analyses were confirmed in a multivariate setting. CONCLUSION Correction of the Hb level with darbepoetin alfa during radiotherapy of patients with HNSCC resulted in a significantly poorer tumor control and survival.
Collapse
|
162
|
Mirabello V, Cortezon-Tamarit F, Pascu SI. Oxygen Sensing, Hypoxia Tracing and in Vivo Imaging with Functional Metalloprobes for the Early Detection of Non-communicable Diseases. Front Chem 2018; 6:27. [PMID: 29527524 PMCID: PMC5829448 DOI: 10.3389/fchem.2018.00027] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 02/02/2018] [Indexed: 01/10/2023] Open
Abstract
Hypoxia has been identified as one of the hallmarks of tumor environments and a prognosis factor in many cancers. The development of ideal chemical probes for imaging and sensing of hypoxia remains elusive. Crucial characteristics would include a measurable response to subtle variations of pO2 in living systems and an ability to accumulate only in the areas of interest (e.g., targeting hypoxia tissues) whilst exhibiting kinetic stabilities in vitro and in vivo. A sensitive probe would comprise platforms for applications in imaging and therapy for non-communicable diseases (NCDs) relying on sensitive detection of pO2. Just a handful of probes for the in vivo imaging of hypoxia [mainly using positron emission tomography (PET)] have reached the clinical research stage. Many chemical compounds, whilst presenting promising in vitro results as oxygen-sensing probes, are facing considerable disadvantages regarding their general application in vivo. The mechanisms of action of many hypoxia tracers have not been entirely rationalized, especially in the case of metallo-probes. An insight into the hypoxia selectivity mechanisms can allow an optimization of current imaging probes candidates and this will be explored hereby. The mechanistic understanding of the modes of action of coordination compounds under oxygen concentration gradients in living cells allows an expansion of the scope of compounds toward in vivo applications which, in turn, would help translate these into clinical applications. We summarize hereby some of the recent research efforts made toward the discovery of new oxygen sensing molecules having a metal-ligand core. We discuss their applications in vitro and/or in vivo, with an appreciation of a plethora of molecular imaging techniques (mainly reliant on nuclear medicine techniques) currently applied in the detection and tracing of hypoxia in the preclinical and clinical setups. The design of imaging/sensing probe for early-stage diagnosis would longer term avoid invasive procedures providing platforms for therapy monitoring in a variety of NCDs and, particularly, in cancers.
Collapse
|
163
|
Bonnet M, Hong CR, Wong WW, Liew LP, Shome A, Wang J, Gu Y, Stevenson RJ, Qi W, Anderson RF, Pruijn FB, Wilson WR, Jamieson SMF, Hicks KO, Hay MP. Next-Generation Hypoxic Cell Radiosensitizers: Nitroimidazole Alkylsulfonamides. J Med Chem 2018; 61:1241-1254. [PMID: 29253343 DOI: 10.1021/acs.jmedchem.7b01678] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Innovations in the field of radiotherapy such as stereotactic body radiotherapy, along with the advent of radio-immuno-oncology, herald new opportunities for classical oxygen-mimetic radiosensitizers. The role of hypoxic tumor cells in resistance to radiotherapy and in suppression of immune response continues to endorse tumor hypoxia as a bona fide, yet largely untapped, drug target. Only nimorazole is used clinically as a radiosensitizer, and there is a dearth of new radiosensitizers in development. Here we present a survey of novel nitroimidazole alkylsulfonamides and document their cytotoxicity and ability to radiosensitize anoxic tumor cells in vitro. We use a phosphate prodrug approach to increase aqueous solubility and to improve tumor drug delivery. A 2-nitroimidazole and a 5-nitroimidazole analogue demonstrated marked tumor radiosensitization in either ex vivo assays of surviving clonogens or tumor regrowth delay.
Collapse
Affiliation(s)
- Muriel Bonnet
- Auckland Cancer Society Research Centre, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland , Private Bag 92019, Auckland, New Zealand
| | - Cho Rong Hong
- Auckland Cancer Society Research Centre, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland , Private Bag 92019, Auckland, New Zealand
| | - Way Wua Wong
- Auckland Cancer Society Research Centre, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland , Private Bag 92019, Auckland, New Zealand
| | - Lydia P Liew
- Auckland Cancer Society Research Centre, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland , Private Bag 92019, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland , 3 Symonds St, Auckland, New Zealand
| | - Avik Shome
- Auckland Cancer Society Research Centre, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland , Private Bag 92019, Auckland, New Zealand
| | - Jingli Wang
- Auckland Cancer Society Research Centre, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland , Private Bag 92019, Auckland, New Zealand
| | - Yongchuan Gu
- Auckland Cancer Society Research Centre, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland , Private Bag 92019, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland , 3 Symonds St, Auckland, New Zealand
| | - Ralph J Stevenson
- Auckland Cancer Society Research Centre, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland , Private Bag 92019, Auckland, New Zealand
| | - Wen Qi
- School of Chemical Sciences, Faculty of Science, University of Auckland , Private Bag 92019, Auckland, New Zealand
| | - Robert F Anderson
- Auckland Cancer Society Research Centre, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland , Private Bag 92019, Auckland, New Zealand.,School of Chemical Sciences, Faculty of Science, University of Auckland , Private Bag 92019, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland , 3 Symonds St, Auckland, New Zealand
| | - Frederik B Pruijn
- Auckland Cancer Society Research Centre, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland , Private Bag 92019, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland , 3 Symonds St, Auckland, New Zealand
| | - William R Wilson
- Auckland Cancer Society Research Centre, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland , Private Bag 92019, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland , 3 Symonds St, Auckland, New Zealand
| | - Stephen M F Jamieson
- Auckland Cancer Society Research Centre, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland , Private Bag 92019, Auckland, New Zealand.,Department of Pharmacology and Clinical Pharmacology, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland , Private Bag 92019, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland , 3 Symonds St, Auckland, New Zealand
| | - Kevin O Hicks
- Auckland Cancer Society Research Centre, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland , Private Bag 92019, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland , 3 Symonds St, Auckland, New Zealand
| | - Michael P Hay
- Auckland Cancer Society Research Centre, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland , Private Bag 92019, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland , 3 Symonds St, Auckland, New Zealand
| |
Collapse
|
164
|
Local recurrences after curative IMRT for HNSCC: Effect of different GTV to high-dose CTV margins. Radiother Oncol 2018; 126:48-55. [DOI: 10.1016/j.radonc.2017.11.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 11/27/2017] [Accepted: 11/27/2017] [Indexed: 01/29/2023]
|
165
|
Lassen P, Lacas B, Pignon JP, Trotti A, Zackrisson B, Zhang Q, Overgaard J, Blanchard P. Prognostic impact of HPV-associated p16-expression and smoking status on outcomes following radiotherapy for oropharyngeal cancer: The MARCH-HPV project. Radiother Oncol 2018; 126:107-115. [DOI: 10.1016/j.radonc.2017.10.018] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 10/16/2017] [Accepted: 10/16/2017] [Indexed: 11/30/2022]
|
166
|
Prognostic value of tissue necrosis, hypoxia-related markers and correlation with HPV status in head and neck cancer patients treated with bio- or chemo-radiotherapy. Radiother Oncol 2018; 126:116-124. [DOI: 10.1016/j.radonc.2017.10.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 09/25/2017] [Accepted: 10/04/2017] [Indexed: 11/23/2022]
|
167
|
Teng F, Aryal M, Lee J, Lee C, Shen X, Hawkins PG, Mierzwa M, Eisbruch A, Cao Y. Adaptive Boost Target Definition in High-Risk Head and Neck Cancer Based on Multi-imaging Risk Biomarkers. Int J Radiat Oncol Biol Phys 2017; 102:969-977. [PMID: 29428251 DOI: 10.1016/j.ijrobp.2017.12.269] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 12/06/2017] [Accepted: 12/14/2017] [Indexed: 11/19/2022]
Abstract
PURPOSE Positron emission tomography with 18F-deoxyglucose (FDG), dynamic contrast-enhanced magnetic resonance imaging (MRI), and diffusion-weighted MRI each identify unique risk factors for treatment outcomes in head and neck cancer (HNC). Clinical trials in HNC largely rely on a single imaging modality to define targets for boosting. This study aimed to investigate the spatial correspondence of FDG uptake, perfusion, and the apparent diffusion coefficient (ADC) in HNC and their response to chemoradiation therapy (CRT) and to determine the implications of this overlap or lack thereof for adaptive boosting. METHODS AND MATERIALS Forty patients with HNC enrolled in a clinical trial underwent FDG positron emission tomography-computed tomography before CRT and underwent dynamic contrast-enhanced and diffusion-weighted MRI scans before and during CRT. The gross tumor volume (GTV) of the primary tumor was contoured on post-gadolinium T1-weighted images. Tumor subvolumes with high FDG uptake, low blood volume (BV), and low ADC were created by using previously established thresholds. Spatial correspondences between subvolumes were analyzed using the Dice coefficient, and those between each pair of image parameters at voxel level were analyzed by Spearman rank correlation coefficients. RESULTS Prior to CRT, the median subvolumes of high FDG, low BV, and low ADC relative to the primary GTV were 20%, 21%, and 45%, respectively. Spearman correlation coefficients between BV and ADC varied from -0.47 to 0.22; between BV and FDG, from -0.08 to 0.59; and between ADC and FDG, from -0.68 to 0.25. Dice coefficients between subvolumes of FDG and BV, FDG and ADC, and BV and ADC were 10%, 46%, and 15%, respectively. The union of the 3 parameters was 64% of the GTV. The union of the subvolumes of BV and ADC was 56% of the GTV before CRT but was reduced significantly by 57% after 10 fractions of radiation therapy. CONCLUSIONS High FDG uptake, low BV, and low ADC as imaging risk biomarkers of HNC identify largely distinct tumor characteristics. A single imaging modality may not define the boosting target adequately.
Collapse
Affiliation(s)
- Feifei Teng
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - Madhava Aryal
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - Jae Lee
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - Choonik Lee
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - Xioajin Shen
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - Peter G Hawkins
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - Michelle Mierzwa
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan; Department of Radiation Oncology, Ann Arbor VA Hospital, Ann Arbor, Michigan
| | - Avraham Eisbruch
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - Yue Cao
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan; Department of Radiology, University of Michigan, Ann Arbor, Michigan; Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan.
| |
Collapse
|
168
|
van der Horst A, Versteijne E, Besselink MGH, Daams JG, Bulle EB, Bijlsma MF, Wilmink JW, van Delden OM, van Hooft JE, Franken NAP, van Laarhoven HWM, Crezee J, van Tienhoven G. The clinical benefit of hyperthermia in pancreatic cancer: a systematic review. Int J Hyperthermia 2017; 34:969-979. [PMID: 29168401 DOI: 10.1080/02656736.2017.1401126] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE In pancreatic cancer, which is therapy resistant due to its hypoxic microenvironment, hyperthermia may enhance the effect of radio(chemo)therapy. The aim of this systematic review is to investigate the validity of the hypothesis that hyperthermia added to radiotherapy and/or chemotherapy improves treatment outcome for pancreatic cancer patients. METHODS AND MATERIALS We searched MEDLINE and Embase, supplemented by handsearching, for clinical studies involving hyperthermia in pancreatic cancer patients. The quality of studies was evaluated using the Oxford Centre for Evidence-Based Medicine levels of evidence. Primary outcome was treatment efficacy; we calculated overall response rate and the weighted estimate of the population median overall survival (mp) and compared these between hyperthermia and control cohorts. RESULTS Overall, 14 studies were included, with 395 patients with locally advanced and/or metastatic pancreatic cancer of whom 248 received hyperthermia. Patients were treated with regional (n = 189), intraoperative (n = 39) or whole-body hyperthermia (n = 20), combined with chemotherapy, radiotherapy or both. Quality of the studies was low, with level of evidence 3 (five studies) and 4. The six studies including a control group showed a longer mp in the hyperthermia groups than in the control groups (11.7 vs. 5.6 months). Overall response rate, reported in three studies with a control group, was also better for the hyperthermia groups (43.9% vs. 35.3%). CONCLUSIONS Hyperthermia, when added to chemotherapy and/or radiotherapy, may positively affect treatment outcome for patients with pancreatic cancer. However, the quality of the reviewed studies was limited and future randomised controlled trials are needed to establish efficacy.
Collapse
Affiliation(s)
- Astrid van der Horst
- a Department of Radiation Oncology and Hyperthermia , Academic Medical Center, University of Amsterdam , Amsterdam , The Netherlands
| | - Eva Versteijne
- a Department of Radiation Oncology and Hyperthermia , Academic Medical Center, University of Amsterdam , Amsterdam , The Netherlands
| | - Marc G H Besselink
- b Department of Surgery , Academic Medical Center, University of Amsterdam , Amsterdam , The Netherlands
| | - Joost G Daams
- c Medical Library , Academic Medical Center, University of Amsterdam , Amsterdam , The Netherlands
| | - Esther B Bulle
- a Department of Radiation Oncology and Hyperthermia , Academic Medical Center, University of Amsterdam , Amsterdam , The Netherlands
| | - Maarten F Bijlsma
- d Laboratory for Experimental Oncology and Radiobiology (LEXOR) , Center for Experimental and Molecular Medicine (CEMM), Academic Medical Center, University of Amsterdam , Amsterdam , The Netherlands
| | - Johanna W Wilmink
- e Department of Medical Oncology , Academic Medical Center, University of Amsterdam , Amsterdam , The Netherlands
| | - Otto M van Delden
- f Department of Radiology , Academic Medical Center, University of Amsterdam , Amsterdam , The Netherlands
| | - Jeanin E van Hooft
- g Department of Gastroenterology and Hepatology , Academic Medical Center, University of Amsterdam , Amsterdam , The Netherlands
| | - Nicolaas A P Franken
- d Laboratory for Experimental Oncology and Radiobiology (LEXOR) , Center for Experimental and Molecular Medicine (CEMM), Academic Medical Center, University of Amsterdam , Amsterdam , The Netherlands
| | - Hanneke W M van Laarhoven
- e Department of Medical Oncology , Academic Medical Center, University of Amsterdam , Amsterdam , The Netherlands
| | - Johannes Crezee
- a Department of Radiation Oncology and Hyperthermia , Academic Medical Center, University of Amsterdam , Amsterdam , The Netherlands
| | - Geertjan van Tienhoven
- a Department of Radiation Oncology and Hyperthermia , Academic Medical Center, University of Amsterdam , Amsterdam , The Netherlands
| |
Collapse
|
169
|
Grau C, Høyer M, Poulsen PR, Muren LP, Korreman SS, Tanderup K, Lindegaard JC, Alsner J, Overgaard J. Rethink radiotherapy - BIGART 2017. Acta Oncol 2017; 56:1341-1352. [PMID: 29148908 DOI: 10.1080/0284186x.2017.1371326] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Cai Grau
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Morten Høyer
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | | | - Ludvig Paul Muren
- Department of Medical Physics, Aarhus University Hospital, Aarhus, Denmark
| | | | - Kari Tanderup
- Department of Medical Physics, Aarhus University Hospital, Aarhus, Denmark
| | | | - Jan Alsner
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Jens Overgaard
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
170
|
Itälä E, Tanzer K, Granroth S, Kooser K, Denifl S, Kukk E. Fragmentation patterns of 4(5)-nitroimidazole and 1-methyl-5-nitroimidazole-The effect of the methylation. JOURNAL OF MASS SPECTROMETRY : JMS 2017; 52:770-776. [PMID: 28763569 DOI: 10.1002/jms.3979] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 07/27/2017] [Accepted: 07/27/2017] [Indexed: 06/07/2023]
Abstract
We present here the photofragmentation patterns of doubly ionized 4(5)-nitroimidazole and 1-methyl-5-nitroimidazole. The doubly ionized state was created by core ionizing the C 1s orbitals of the samples, rapidly followed by Auger decay. Due to the recent development of nitroimidazole-based radiosensitizing drugs, core ionization was selected as it represents the very same processes taking place under the irradiation with medical X-rays. In addition to the fragmentation patterns of the sample, we study the effects of methylation on the fragmentation patterns of nitroimidazoles. We found that methylation alters the fragmentation significantly, especially the charge distribution between the final fragments. The most characteristic feature of the methylation is that it effectively quenches the production of NO and NO+ , widely regarded as key radicals in the chemistry of radiosensitization by the nitroimidazoles.
Collapse
Affiliation(s)
- Eero Itälä
- Department of Physics and Astronomy, University of Turku, Turku, FI-20014, Finland
| | - Katrin Tanzer
- Institut für Ionenphysik und Angewandte Physik and Center of Molecular Biosciences, Leopold Franzens Universität Innsbruck, Technikerstrasse 25, Innsbruck, 6020, Austria
| | - Sari Granroth
- Department of Physics and Astronomy, University of Turku, Turku, FI-20014, Finland
| | - Kuno Kooser
- Department of Physics and Astronomy, University of Turku, Turku, FI-20014, Finland
| | - Stephan Denifl
- Institut für Ionenphysik und Angewandte Physik and Center of Molecular Biosciences, Leopold Franzens Universität Innsbruck, Technikerstrasse 25, Innsbruck, 6020, Austria
| | - Edwin Kukk
- Department of Physics and Astronomy, University of Turku, Turku, FI-20014, Finland
| |
Collapse
|
171
|
|
172
|
Hajj C, Russell J, Hart CP, Goodman KA, Lowery MA, Haimovitz-Friedman A, Deasy JO, Humm JL. A Combination of Radiation and the Hypoxia-Activated Prodrug Evofosfamide (TH-302) is Efficacious against a Human Orthotopic Pancreatic Tumor Model. Transl Oncol 2017; 10:760-765. [PMID: 28778024 PMCID: PMC5538966 DOI: 10.1016/j.tranon.2017.06.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 06/07/2017] [Accepted: 06/12/2017] [Indexed: 12/31/2022] Open
Abstract
This study was designed to investigate the effect of single-dose radiation therapy (RT) in combination with evofosfamide (TH-302), a hypoxia-activated prodrug, in a pre-clinical model of pancreatic cancer. AsPC1 tumors were implanted orthotopically in the pancreas of nude mice. Tumors were treated with 15 Gy of RT, using a 1 cm diameter field, and delivered as a continuous arc. Image-guidance to center the field on the tumor was based on CT imaging with intraperitoneal contrast. Evofosfamide (100 mg/kg, i.p.) was administered 3 hours before RT. Tumor volumes were measured using ultrasound, and regrowth curves were plotted. Tumor hypoxia and cell proliferation were measured using pimonidazole and the thymidine analog EdU, respectively. In vitro clonogenic assays were performed. Tumors were shown to contain substantial areas of hypoxia, as calculated by percent pimonidazole staining. Evofosfamide was active in these tumors, as demonstrated by a significant reduction in uptake of the thymidine analog EdU. This effect was visible in oxygenated tissue, consistent with the previously reported bystander effects of evofosfamide. RT produced significant regrowth delay, as did evofosfamide. The combination of both agents produced a growth delay that was at least equal to the sum of the two treatments given separately. The improvement in tumor response when evofosfamide is combined with RT supports the hypothesis that hypoxia is a cause of radioresistance in high dose RT for pancreatic cancer. Assessing the efficacy and safety of stereotactic radiation treatment and evofosfamide is warranted in patients with locally advanced pancreatic cancer.
Collapse
|
173
|
Cheng X, Yong Y, Dai Y, Song X, Yang G, Pan Y, Ge C. Enhanced Radiotherapy using Bismuth Sulfide Nanoagents Combined with Photo-thermal Treatment. Theranostics 2017; 7:4087-4098. [PMID: 29158812 PMCID: PMC5694999 DOI: 10.7150/thno.20548] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 08/02/2017] [Indexed: 12/21/2022] Open
Abstract
Nanotechniques that can improve the effectiveness of radiotherapy (RT) by integrating it with multimodal imaging are highly desirable. Results In this study, we fabricated Bi2S3 nanorods that have attractive features such as their ability to function as contrast agents for X-ray computed tomography (CT) and photoacoustic (PA) imaging as well as good biocompatibility. Both in vitro and in vivo studies confirmed that the Bi2S3 nanoagents could potentiate the lethal effects of radiation via amplifying the local radiation dose and enhancing the anti-tumor efficacy of RT by augmenting the photo-thermal effect. Furthermore, the nanoagent-mediated hyperthermia could effectively increase the oxygen concentration in hypoxic regions thereby inhibiting the expression of hypoxia-inducible factor (HIF-1α). This, in turn, interfered with DNA repair via decreasing the expression of DNA repair-related proteins to overcome radio-resistance. Also, RT combined with nanoagent-mediated hyperthermia could substantially suppress tumor metastasis via down-regulating angiogenic factors. Conclusion In summary, we constructed a single-component powerful nanoagent for CT/PA imaging-guided tumor radiotherapy and, most importantly, explored the potential mechanisms of nanoagent-mediated photo-thermal treatment for enhancing the efficacy of RT in a synergistic manner.
Collapse
Affiliation(s)
- Xiaju Cheng
- School of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Yuan Yong
- College of Chemistry and Environment Protection Engineering, Southwest Minzu University, Chengdu 610041, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Yiheng Dai
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Xin Song
- School of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Gang Yang
- School of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Yue Pan
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Cuicui Ge
- School of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| |
Collapse
|
174
|
Troost EGC, Koi L, Yaromina A, Krause M. Therapeutic options to overcome tumor hypoxia in radiation oncology. Clin Transl Imaging 2017. [DOI: 10.1007/s40336-017-0247-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
175
|
Nishikawa Y, Yasuda K, Okamoto S, Ito YM, Onimaru R, Shiga T, Tsuchiya K, Watanabe S, Takeuchi W, Kuge Y, Peng H, Tamaki N, Shirato H. Local relapse of nasopharyngeal cancer and Voxel-based analysis of FMISO uptake using PET with semiconductor detectors. Radiat Oncol 2017; 12:148. [PMID: 28877734 PMCID: PMC5586018 DOI: 10.1186/s13014-017-0886-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Accepted: 09/01/2017] [Indexed: 12/02/2022] Open
Abstract
Background Hypoxic cancer cells are thought to be radioresistant and could impact local recurrence after radiotherapy (RT). One of the major hypoxic imaging modalities is [18F]fluoromisonidazole positron emission tomography (FMISO-PET). High FMISO uptake before RT could indicate radioresistant sites and might be associated with future local recurrence. The predictive value of FMISO-PET for intra-tumoral recurrence regions was evaluated using high-resolution semiconductor detectors in patients with nasopharyngeal carcinoma after intensity-modulated radiotherapy (IMRT). Methods Nine patients with local recurrence and 12 patients without local recurrence for more than 3 years were included in this study. These patients received homogeneous and standard doses of radiation to the primary tumor irrespective of FMISO uptake. The FMISO-PET image before RT was examined via a voxel-based analysis, which focused on the relationship between the degree of FMISO uptake and recurrence region. Results In the pretreatment FMISO-PET images, the tumor-to-muscle ratio (TMR) of FMISO in the voxels of the tumor recurrence region was significantly higher than that of the non-recurrence region (p < 0.0001). In the recurrent patient group, a TMR value of 1.37 (95% CI: 1.36–1.39) corresponded to a recurrence rate of 30%, the odds ratio was 5.18 (4.87–5.51), and the area under the curve (AUC) of the receiver operating characteristic curve was 0.613. In all 21 patients, a TMR value of 2.42 (2.36–2.49) corresponded to an estimated recurrence rate of 30%, and the AUC was only 0.591. Conclusions The uptake of FMISO in the recurrent region was significantly higher than that in the non-recurrent region. However, the predictive value of FMISO-PET before IMRT is not sufficient for up-front dose escalation for the intra-tumoral high-uptake region of FMISO. Because of the higher mean TMR of the recurrence region, a new hypoxic imaging method is needed to improve the sensitivity and specificity for hypoxia. Electronic supplementary material The online version of this article doi: (10.1186/s13014-017-0886-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yukiko Nishikawa
- Department of Radiation Medicine, Graduate School of Medicine, Hokkaido University, North-15 West-7, Sapporo, Japan
| | - Koichi Yasuda
- Department of Radiation Medicine, Graduate School of Medicine, Hokkaido University, North-15 West-7, Sapporo, Japan. .,Global Station for Quantum Medical Science and Engineering, Global Institution for Collaborative Research and Education, Sapporo, Japan.
| | - Shozo Okamoto
- Department of Nuclear Medicine, Graduate School of Medicine, Sapporo, Japan
| | - Yoichi M Ito
- Department of Biostatistics, Graduate School of Medicine, Sapporo, Japan
| | - Rikiya Onimaru
- Department of Radiation Medicine, Graduate School of Medicine, Hokkaido University, North-15 West-7, Sapporo, Japan
| | - Tohru Shiga
- Department of Nuclear Medicine, Graduate School of Medicine, Sapporo, Japan
| | - Kazuhiko Tsuchiya
- Department of Radiation Medicine, Graduate School of Medicine, Hokkaido University, North-15 West-7, Sapporo, Japan
| | - Shiro Watanabe
- Department of Nuclear Medicine, Graduate School of Medicine, Sapporo, Japan
| | - Wataru Takeuchi
- Research & Development Group, Hitachi, Ltd., Kokubunji, Tokyo, Japan
| | - Yuji Kuge
- Central Institute of Isotope Science, Hokkaido University, Sapporo, Japan
| | - Hao Peng
- Stanford University, Stanford, CA, USA
| | - Nagara Tamaki
- Department of Nuclear Medicine, Graduate School of Medicine, Sapporo, Japan
| | - Hiroki Shirato
- Department of Radiation Medicine, Graduate School of Medicine, Hokkaido University, North-15 West-7, Sapporo, Japan.,Global Station for Quantum Medical Science and Engineering, Global Institution for Collaborative Research and Education, Sapporo, Japan
| |
Collapse
|
176
|
Feldman LA, Fabre MS, Grasso C, Reid D, Broaddus WC, Lanza GM, Spiess BD, Garbow JR, McConnell MJ, Herst PM. Perfluorocarbon emulsions radiosensitise brain tumors in carbogen breathing mice with orthotopic GL261 gliomas. PLoS One 2017; 12:e0184250. [PMID: 28873460 PMCID: PMC5584944 DOI: 10.1371/journal.pone.0184250] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 08/21/2017] [Indexed: 01/02/2023] Open
Abstract
Background Tumour hypoxia limits the effectiveness of radiation therapy. Delivering normobaric or hyperbaric oxygen therapy elevates pO2 in both tumour and normal brain tissue. However, pO2 levels return to baseline within 15 minutes of stopping therapy. Aim To investigate the effect of perfluorocarbon (PFC) emulsions on hypoxia in subcutaneous and intracranial mouse gliomas and their radiosensitising effect in orthotopic gliomas in mice breathing carbogen (95%O2 and 5%CO2). Results PFC emulsions completely abrogated hypoxia in both subcutaneous and intracranial GL261 models and conferred a significant survival advantage orthotopically (Mantel Cox: p = 0.048) in carbogen breathing mice injected intravenously (IV) with PFC emulsions before radiation versus mice receiving radiation alone. Carbogen alone decreased hypoxia levels substantially and conferred a smaller but not statistically significant survival advantage over and above radiation alone. Conclusion IV injections of PFC emulsions followed by 1h carbogen breathing, radiosensitises GL261 intracranial tumors.
Collapse
Affiliation(s)
- Lisa A Feldman
- Department of Neurosurgery, Virginia Commonwealth University, Richmond, VA United States of America.,Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Marie-Sophie Fabre
- School of Biological Sciences, Victoria University, Wellington, New Zealand
| | - Carole Grasso
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Dana Reid
- School of Biological Sciences, Victoria University, Wellington, New Zealand
| | - William C Broaddus
- Department of Neurosurgery, Virginia Commonwealth University, Richmond, VA United States of America
| | - Gregory M Lanza
- Division of Cardiovascular Diseases, Washington University School of Medicine, St. Louis, MO United States of America
| | - Bruce D Spiess
- Department of Anesthesiology, College of Medicine, University of Florida, Gainesville, FL United States of America
| | - Joel R Garbow
- Mallinckrodt Institute, Washington University School of Medicine, St. Louis, MO United States of America
| | - Melanie J McConnell
- Malaghan Institute of Medical Research, Wellington, New Zealand.,School of Biological Sciences, Victoria University, Wellington, New Zealand
| | - Patries M Herst
- Malaghan Institute of Medical Research, Wellington, New Zealand.,Department of Radiation Therapy, University of Otago, Wellington, New Zealand
| |
Collapse
|
177
|
Bindra RS, Chalmers AJ, Evans S, Dewhirst M. GBM radiosensitizers: dead in the water…or just the beginning? J Neurooncol 2017; 134:513-521. [PMID: 28762004 DOI: 10.1007/s11060-017-2427-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 04/11/2017] [Indexed: 12/22/2022]
Abstract
The finding that most GBMs recur either near or within the primary site after radiotherapy has fueled great interest in the development of radiosensitizers to enhance local control. Unfortunately, decades of clinical trials testing a wide range of novel therapeutic approaches have failed to yield any clinically viable radiosensitizers. However, many of the previous radiosensitizing strategies were not based on clear pre-clinical evidence, and in many cases blood-barrier penetration was not considered. Furthermore, DNA repair inhibitors have only recenly arrived in the clinic, and likely represent potent agents for glioma radiosensitization. Here, we present recent progress in the use of small molecule DNA damage response inhibitors as GBM radiosensitizers. In addition, we discuss the latest progress in targeting hypoxia and oxidative stress for GBM radiosensitization.
Collapse
Affiliation(s)
- Ranjit S Bindra
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT, 06520, USA.
| | - Anthony J Chalmers
- Institute of Cancer Sciences & Beatson West of Scotland Cancer Centre, University of Glasgow, Glasgow, UK
| | - Sydney Evans
- Department of Radiation Oncology, University of Pennsylvania, School of Medicine, Philadelphia, PA, 19081, USA
| | - Mark Dewhirst
- Radiation Oncology Department, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
178
|
Löck S, Perrin R, Seidlitz A, Bandurska-Luque A, Zschaeck S, Zöphel K, Krause M, Steinbach J, Kotzerke J, Zips D, Troost EGC, Baumann M. Residual tumour hypoxia in head-and-neck cancer patients undergoing primary radiochemotherapy, final results of a prospective trial on repeat FMISO-PET imaging. Radiother Oncol 2017; 124:533-540. [PMID: 28843726 DOI: 10.1016/j.radonc.2017.08.010] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 08/07/2017] [Accepted: 08/07/2017] [Indexed: 12/31/2022]
Abstract
BACKGROUND Hypoxia is a well recognised parameter of tumour resistance to radiotherapy, a number of anticancer drugs and potentially immunotherapy. In a previously published exploration cohort of 25 head and neck squamous cell carcinoma (HNSCC) patients on [18F]fluoromisonidazole positron emission tomography (FMISO-PET) we identified residual tumour hypoxia during radiochemotherapy, not before start of treatment, as the driving mechanism of hypoxia-mediated therapy resistance. Several quantitative FMISO-PET parameters were identified as potential prognostic biomarkers. Here we present the results of the prospective validation cohort, and the overall results of the study. METHODS FMISO-PET/CT images of further 25 HNSCC patients were acquired at four time-points before and during radiochemotherapy (RCHT). Peak standardised uptake value, tumour-to-background ratio, and hypoxic volume were analysed. The impact of the potential prognostic parameters on loco-regional tumour control (LRC) was validated by the concordance index (ci) using univariable and multivariable Cox models based on the exploration cohort. Log-rank tests were employed to compare the endpoint between risk groups. RESULTS The two cohorts differed significantly in several baseline parameters, e.g., tumour volume, hypoxic volume, HPV status, and intercurrent death. Validation was successful for several FMISO-PET parameters and showed the highest performance (ci=0.77-0.81) after weeks 1 and 2 of treatment. Cut-off values for the FMISO-PET parameters could be validated after week 2 of RCHT. Median values for the residual hypoxic volume, defined as the ratio of the hypoxic volume in week 2 of RCHT and at baseline, stratified patients into groups of significantly different LRC when applied to the respective other cohort. CONCLUSION Our study validates that residual tumour hypoxia during radiochemotherapy is a major driver of therapy resistance of HNSCC, and that hypoxia after the second week of treatment measured by FMISO-PET may serve as biomarker for selection of patients at high risk of loco-regional recurrence after state-of-the art radiochemotherapy.
Collapse
Affiliation(s)
- Steffen Löck
- OncoRay - National Center for Radiation Research in Oncology, Biostatistics and Modeling in Radiation Oncology Group, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Germany; OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Germany; Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany; German Cancer Consortium (DKTK), partner site Dresden, Germany
| | - Rosalind Perrin
- OncoRay - National Center for Radiation Research in Oncology, Biostatistics and Modeling in Radiation Oncology Group, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Germany; Center for Proton Therapy, Paul Scherrer Institute, Switzerland
| | - Annekatrin Seidlitz
- OncoRay - National Center for Radiation Research in Oncology, Biostatistics and Modeling in Radiation Oncology Group, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Germany; Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany
| | - Anna Bandurska-Luque
- OncoRay - National Center for Radiation Research in Oncology, Biostatistics and Modeling in Radiation Oncology Group, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Germany; Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany
| | - Sebastian Zschaeck
- OncoRay - National Center for Radiation Research in Oncology, Biostatistics and Modeling in Radiation Oncology Group, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Germany; Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany
| | - Klaus Zöphel
- Department of Nuclear Medicine, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany; National Center for Tumor Diseases, partner site Dresden, Germany
| | - Mechthild Krause
- OncoRay - National Center for Radiation Research in Oncology, Biostatistics and Modeling in Radiation Oncology Group, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Germany; Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany; German Cancer Consortium (DKTK), partner site Dresden, Germany; National Center for Tumor Diseases, partner site Dresden, Germany; Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology - OncoRay, Germany; Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| | - Jörg Steinbach
- National Center for Tumor Diseases, partner site Dresden, Germany; Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Germany
| | - Jörg Kotzerke
- Department of Nuclear Medicine, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany; National Center for Tumor Diseases, partner site Dresden, Germany
| | - Daniel Zips
- Department of Radiation Oncology, Eberhard Karls Universität Tübingen, Germany; German Cancer Consortium (DKTK), partner site Tübingen, Germany
| | - Esther G C Troost
- OncoRay - National Center for Radiation Research in Oncology, Biostatistics and Modeling in Radiation Oncology Group, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Germany; Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany; German Cancer Consortium (DKTK), partner site Dresden, Germany; National Center for Tumor Diseases, partner site Dresden, Germany; Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology - OncoRay, Germany.
| | - Michael Baumann
- OncoRay - National Center for Radiation Research in Oncology, Biostatistics and Modeling in Radiation Oncology Group, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Germany; Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany; German Cancer Consortium (DKTK), partner site Dresden, Germany; National Center for Tumor Diseases, partner site Dresden, Germany; Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology - OncoRay, Germany; Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| |
Collapse
|
179
|
Abstract
OPINION STATEMENT The survival rate for patients with advanced stages of squamous cell carcinoma of the head and neck (SCCHN) remains poor despite multimodal treatment options. Cetuximab, an anti-EGFR inhibitor, is the only FDA-approved targeted agent for this disease. Recent findings have implicated modifications of the microenvironment and, consequently, phenotypical modifications of the cancer cell, in treatment resistance mechanisms. For many years, cancer research has focused mainly on targetable sites on or inside the cancer cell. Nowadays, in preclinical and clinical studies, a greater emphasis is being placed on drugs that target the tumor microenvironment. Potential targets relate to tumor vascularization, immunology, extracellular matrix components, or cancer-associated fibroblasts. The combination of these new agents with standard treatment options is of particular interest to overcome resistance mechanisms and/or to increase treatment efficacy. Whereas antiangiogenic agents show poor clinical activity, immunotherapy seems to be a more promising tool with an objective response rate (ORR) of 20 % in patients with recurrent and/or metastatic squamous cell carcinoma (R/M SCC). Other targets, located inside the extracellular matrix or on cancer associated fibroblasts, are under preclinical investigation. These new agents all need to be tested in clinical trials alone, or in combination with standard treatment modalities, based on preclinical data. To increase our knowledge of the complex network between the cancer cell and its environment, preclinical studies should consider co-culture models, and clinical studies should incorporate a translational research objective.
Collapse
|
180
|
Panek R, Welsh L, Baker LCJ, Schmidt MA, Wong KH, Riddell AM, Koh DM, Dunlop A, Mcquaid D, d'Arcy JA, Bhide SA, Harrington KJ, Nutting CM, Hopkinson G, Richardson C, Box C, Eccles SA, Leach MO, Robinson SP, Newbold KL. Noninvasive Imaging of Cycling Hypoxia in Head and Neck Cancer Using Intrinsic Susceptibility MRI. Clin Cancer Res 2017; 23:4233-4241. [PMID: 28314789 PMCID: PMC5516915 DOI: 10.1158/1078-0432.ccr-16-1209] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 07/19/2016] [Accepted: 03/03/2017] [Indexed: 01/13/2023]
Abstract
Purpose: To evaluate intrinsic susceptibility (IS) MRI for the identification of cycling hypoxia, and the assessment of its extent and spatial distribution, in head and neck squamous cell carcinoma (HNSCC) xenografts and patients.Experimental Design: Quantitation of the transverse relaxation rate, R2*, which is sensitive to paramagnetic deoxyhemoglobin, using serial IS-MRI acquisitions, was used to monitor temporal oscillations in levels of paramagnetic deoxyhemoglobin in human CALR xenografts and patients with HNSCC at 3T. Autocovariance and power spectrum analysis of variations in R2* was performed for each imaged voxel, to assess statistical significance and frequencies of cycling changes in tumor blood oxygenation. Pathologic correlates with tumor perfusion (Hoechst 33342), hypoxia (pimonidazole), and vascular density (CD31) were sought in the xenografts, and dynamic contrast-enhanced (DCE) MRI was used to assess patient tumor vascularization. The prevalence of fluctuations within patient tumors, DCE parameters, and treatment outcome were reported.Results: Spontaneous R2* fluctuations with a median periodicity of 15 minutes were detected in both xenografts and patient tumors. Spatially, these fluctuations were predominantly associated with regions of heterogeneous perfusion and hypoxia in the CALR xenografts. In patients, R2* fluctuations spatially correlated with regions of lymph nodes with low Ktrans values, typically in the vicinity of necrotic cores.Conclusions: IS-MRI can be used to monitor variations in levels of paramagnetic deoxyhemoglobin, associated with cycling hypoxia. The presence of such fluctuations may be linked with impaired tumor vasculature, the presence of which may impact treatment outcome. Clin Cancer Res; 23(15); 4233-41. ©2017 AACR.
Collapse
Affiliation(s)
- Rafal Panek
- CR-UK and EPSRC Cancer Imaging Centre, London, United Kingdom
- Institute of Cancer Research, London, United Kingdom
- Royal Marsden Hospital, London, United Kingdom
| | - Liam Welsh
- Institute of Cancer Research, London, United Kingdom
- Royal Marsden Hospital, London, United Kingdom
| | - Lauren C J Baker
- CR-UK and EPSRC Cancer Imaging Centre, London, United Kingdom
- Institute of Cancer Research, London, United Kingdom
| | - Maria A Schmidt
- CR-UK and EPSRC Cancer Imaging Centre, London, United Kingdom
- Institute of Cancer Research, London, United Kingdom
- Royal Marsden Hospital, London, United Kingdom
| | - Kee H Wong
- Institute of Cancer Research, London, United Kingdom
- Royal Marsden Hospital, London, United Kingdom
| | - Angela M Riddell
- CR-UK and EPSRC Cancer Imaging Centre, London, United Kingdom
- Institute of Cancer Research, London, United Kingdom
- Royal Marsden Hospital, London, United Kingdom
| | - Dow-Mu Koh
- CR-UK and EPSRC Cancer Imaging Centre, London, United Kingdom
- Institute of Cancer Research, London, United Kingdom
- Royal Marsden Hospital, London, United Kingdom
| | - Alex Dunlop
- Institute of Cancer Research, London, United Kingdom
- Royal Marsden Hospital, London, United Kingdom
| | - Dualta Mcquaid
- Institute of Cancer Research, London, United Kingdom
- Royal Marsden Hospital, London, United Kingdom
| | - James A d'Arcy
- CR-UK and EPSRC Cancer Imaging Centre, London, United Kingdom
- Institute of Cancer Research, London, United Kingdom
- Royal Marsden Hospital, London, United Kingdom
| | - Shreerang A Bhide
- Institute of Cancer Research, London, United Kingdom
- Royal Marsden Hospital, London, United Kingdom
| | - Kevin J Harrington
- Institute of Cancer Research, London, United Kingdom
- Royal Marsden Hospital, London, United Kingdom
| | | | | | | | - Carol Box
- Institute of Cancer Research, London, United Kingdom
| | | | - Martin O Leach
- CR-UK and EPSRC Cancer Imaging Centre, London, United Kingdom.
- Institute of Cancer Research, London, United Kingdom
- Royal Marsden Hospital, London, United Kingdom
| | - Simon P Robinson
- CR-UK and EPSRC Cancer Imaging Centre, London, United Kingdom
- Institute of Cancer Research, London, United Kingdom
| | - Kate L Newbold
- Institute of Cancer Research, London, United Kingdom
- Royal Marsden Hospital, London, United Kingdom
| |
Collapse
|
181
|
Peerlings J, Van De Voorde L, Mitea C, Larue R, Yaromina A, Sandeleanu S, Spiegelberg L, Dubois L, Lambin P, Mottaghy FM. Hypoxia and hypoxia response-associated molecular markers in esophageal cancer: A systematic review. Methods 2017; 130:51-62. [PMID: 28705470 DOI: 10.1016/j.ymeth.2017.07.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 06/08/2017] [Accepted: 07/04/2017] [Indexed: 12/22/2022] Open
Abstract
PURPOSE In this systematic review, the existing evidence of available hypoxia-associated molecular response biomarkers in esophageal cancer (EC) patients is summarized and set into the context of the role of hypoxia in the prediction of esophageal cancer, treatment response and treatment outcome. METHODS A systematic literature search was performed in Web of Science, MEDLINE, and PubMed databases using the keywords: hypoxia, esophagus, cancer, treatment outcome and treatment response. Eligible publications were independently evaluated by two reviewers. In total, 22 out of 419 records were included for systematic review. The described search strategy was applied weekly, with the last update being performed on April 3rd, 2017. RESULTS In esophageal cancer, several (non-)invasive biomarkers for hypoxia could be identified. Independent prognostic factors for treatment response include HIF-1α, CA IX, GLUT-1 overexpression and elevated uptake of the PET-tracer 18F-fluoroerythronitroimidazole (18F-FETNIM). Hypoxia-associated molecular responses represents a clinically relevant phenomenon in esophageal cancer and detection of elevated levels of hypoxia-associated biomarkers and tends to be associated with poor treatment outcome (i.e., overall survival, disease-free survival, complete response and local control). CONCLUSION Evaluation of tumor micro-environmental conditions, such as intratumoral hypoxia, is important to predict treatment outcome and efficacy. Promising non-invasive imaging-techniques have been suggested to assess tumor hypoxia and hypoxia-associated molecular responses. However, extensive validation in EC is lacking. Hypoxia-associated markers that are independent prognostic factors could potentially provide targets for novel treatment strategies to improve treatment outcome. For personalized hypoxia-guided treatment, safe and reliable makers for tumor hypoxia are needed to select suitable patients.
Collapse
Affiliation(s)
- Jurgen Peerlings
- MAASTRO Clinic, Department of Radiation Oncology, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre+, Maastricht, The Netherlands; Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre+, Maastricht, The Netherlands.
| | - Lien Van De Voorde
- MAASTRO Clinic, Department of Radiation Oncology, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Cristina Mitea
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Ruben Larue
- MAASTRO Clinic, Department of Radiation Oncology, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Ala Yaromina
- MAASTRO Clinic, Department of Radiation Oncology, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Sebastian Sandeleanu
- MAASTRO Clinic, Department of Radiation Oncology, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Linda Spiegelberg
- MAASTRO Clinic, Department of Radiation Oncology, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Ludwig Dubois
- MAASTRO Clinic, Department of Radiation Oncology, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Philippe Lambin
- MAASTRO Clinic, Department of Radiation Oncology, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Felix M Mottaghy
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre+, Maastricht, The Netherlands; Department of Nuclear Medicine, University Hospital RWTH Aachen University, Aachen, Germany
| |
Collapse
|
182
|
Chen HHW, Kuo MT. Improving radiotherapy in cancer treatment: Promises and challenges. Oncotarget 2017; 8:62742-62758. [PMID: 28977985 PMCID: PMC5617545 DOI: 10.18632/oncotarget.18409] [Citation(s) in RCA: 168] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 04/18/2017] [Indexed: 12/25/2022] Open
Abstract
Effective radiotherapy for cancer has relied on the promise of maximally eradicating tumor cells while minimally killing normal cells. Technological advancement has provided state-of-the-art instrumentation that enables delivery of radiotherapy with great precision to tumor lesions with substantial reduced injury to normal tissues. Moreover, better understanding of radiobiology, particularly the mechanisms of radiation sensitivity and resistance in tumor lesions and toxicity in normal tissues, has improved the treatment efficacy of radiotherapy. Previous mechanism-based studies have identified many cellular targets that can affect radiation sensitivity, notably reactive oxygen species, DNA-damaging response signals, and tumor microenvironments. Several radiation sensitizers and protectors have been developed and clinically evaluated; however, many of these results are inconclusive, indicating that improvement remains needed. In this era of personalized medicine in which patients’ genetic variations, transcriptome and proteomics, tumor metabolism and microenvironment, and tumor immunity are available. These new developments have provided opportunity for new target discovery. Several radiotherapy sensitivity-associated “gene signatures” have been reported although clinical validations are needed. Recently, several immune modifiers have been shown to associate with improved radiotherapy in preclinical models and in early clinical trials. Combination of radiotherapy and immunocheckpoint blockade has shown promising results especially in targeting metastatic tumors through abscopal response. In this article, we succinctly review recent advancements in the areas of mechanism-driven targets and exploitation of new targets from current radio-oncogenomic and radiation-immunotherapeutic approaches that bear clinical implications for improving the treatment efficacy of radiotherapy.
Collapse
Affiliation(s)
- Helen H W Chen
- Division of Clinical Radiation Oncology, Department of Radiation Oncology, National Cheng Kung University Hospital, Department of Radiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Macus Tien Kuo
- Division of Clinical Radiation Oncology, Department of Radiation Oncology, National Cheng Kung University Hospital, Department of Radiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
183
|
Lazzari P, Spiga M, Sani M, Zanda M, Fleming IN. KEMTUB012-NI2, a novel potent tubulysin analog that selectively targets hypoxic cancer cells and is potentiated by cytochrome p450 reductase downregulation. HYPOXIA 2017; 5:45-59. [PMID: 28580362 PMCID: PMC5448701 DOI: 10.2147/hp.s132832] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
PURPOSE There is an urgent need to develop effective therapies and treatment strategies to treat hypoxic tumors, which have a very poor prognosis and do not respond well to existing therapies. METHODS A novel hypoxia-targeting agent, KEMTUB012-NI2, was synthesized by conjugating a 2-nitroimidazole hypoxia-targeting moiety to a synthetic tubulysin, a very potent antimitotic. Its hypoxic selectivity and mode of action were studied in breast cancer cell lines. RESULTS KEMTUB012-NI2 exhibited a similar selectivity for hypoxic cells to that of tirapazamine, a well-established hypoxia-targeting agent, but was >1,000 times more potent in cell cytotoxicity assays. The hypoxia-targeting mechanism for both KEMTUB012-NI2 and tirapazamine was selective and mediated by one-electron reductases. However, while cytochrome p450 reductase (POR) downregulation could inhibit tirapazamine cytotoxicity, it actually sensitized hypoxic cells to KEMTUB012-NI2. CONCLUSION KEMTUB012-NI2 is a potent new agent that can selectively target hypoxic cancer cells. The hypoxia selectivity of KEMTUB012-NI2 and tirapazamine appears to be differentially activated by reductases. Since reductases are heterogeneously expressed in tumors, the different activation mechanisms will allow these agents to complement each other. Combining POR downregulation with KEMTUB012-NI2 treatment could be a new treatment strategy that maximizes efficacy toward hypoxic tumor cells while limiting systemic toxicity.
Collapse
Affiliation(s)
- Paolo Lazzari
- KemoTech s.r.l., Parco Scientifico della Sardegna, Pula, Cagliari
| | - Marco Spiga
- KemoTech s.r.l., Parco Scientifico della Sardegna, Pula, Cagliari
| | - Monica Sani
- KemoTech s.r.l., Parco Scientifico della Sardegna, Pula, Cagliari.,C.N.R. - Istituto di Chimica del Riconoscimento Molecolare, Sezione 'A. Quilico', Milano, Italy
| | - Matteo Zanda
- C.N.R. - Istituto di Chimica del Riconoscimento Molecolare, Sezione 'A. Quilico', Milano, Italy.,Kosterlitz Centre for Therapeutics, Institute of Medical Sciences, University of Aberdeen
| | - Ian N Fleming
- Aberdeen Biomedical Imaging Centre, Institute of Medical Sciences, Foresterhill, Aberdeen, Scotland, UK
| |
Collapse
|
184
|
Facteurs pronostiques de la ré-irradiation des cancers des voies aérodigestives supérieures : revue de la littérature. Cancer Radiother 2017; 21:316-338. [DOI: 10.1016/j.canrad.2017.02.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 01/06/2017] [Accepted: 02/27/2017] [Indexed: 11/19/2022]
|
185
|
Grkovski M, Lee NY, Schöder H, Carlin SD, Beattie BJ, Riaz N, Leeman JE, O'Donoghue JA, Humm JL. Monitoring early response to chemoradiotherapy with 18F-FMISO dynamic PET in head and neck cancer. Eur J Nucl Med Mol Imaging 2017; 44:1682-1691. [PMID: 28540417 DOI: 10.1007/s00259-017-3720-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 05/03/2017] [Indexed: 01/10/2023]
Abstract
PURPOSE There is growing recognition that biologic features of the tumor microenvironment affect the response to cancer therapies and the outcome of cancer patients. In head and neck cancer (HNC) one such feature is hypoxia. We investigated the utility of 18F-fluoromisonidazole (FMISO) dynamic positron emission tomography (dPET) for monitoring the early microenvironmental response to chemoradiotherapy in HNC. EXPERIMENTAL DESIGN Seventy-two HNC patients underwent FMISO dPET scans in a customized immobilization mask (0-30 min dynamic acquisition, followed by 10 min static acquisitions starting at ∼95 min and ∼160 min post-injection) at baseline and early into treatment where patients have already received one cycle of chemotherapy and anywhere from five to ten fractions of 2 Gy per fraction radiation therapy. Voxelwise pharmacokinetic modeling was conducted using an irreversible one-plasma two-tissue compartment model to calculate surrogate biomarkers of tumor hypoxia (k 3 and Tumor-to-Blood Ratio (TBR)), perfusion (K 1 ) and FMISO distribution volume (DV). Additionally, Tumor-to-Muscle Ratios (TMR) were derived by visual inspection by an experienced nuclear medicine physician, with TMR > 1.2 defining hypoxia. RESULTS One hundred and thirty-five lesions in total were analyzed. TBR, k 3 and DV decreased on early response scans, while no significant change was observed for K 1 . The k 3 -TBR correlation decreased substantially from baseline scans (Pearson's r = 0.72 and 0.76 for mean intratumor and pooled voxelwise values, respectively) to early response scans (Pearson's r = 0.39 and 0.40, respectively). Both concordant and discordant examples of changes in intratumor k 3 and TBR were identified; the latter partially mediated by the change in DV. In 13 normoxic patients according to visual analysis (all having lesions with TMR = 1.2), subvolumes were identified where k 3 indicated the presence of hypoxia. CONCLUSION Pharmacokinetic modeling of FMISO dynamic PET reveals a more detailed characterization of the tumor microenvironment and assessment of response to chemoradiotherapy in HNC patients than a single static image does. In a clinical trial where absence of hypoxia in primary tumor and lymph nodes would lead to de-escalation of therapy, the observed disagreement between visual analysis and pharmacokinetic modeling results would have affected patient management in <20% cases. While simple static PET imaging is easily implemented for clinical trials, the clinical applicability of pharmacokinetic modeling remains to be investigated.
Collapse
Affiliation(s)
- Milan Grkovski
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.
| | - Nancy Y Lee
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Heiko Schöder
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sean D Carlin
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Bradley J Beattie
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Nadeem Riaz
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jonathan E Leeman
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Joseph A O'Donoghue
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - John L Humm
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| |
Collapse
|
186
|
Goda JS, Pachpor T, Basu T, Chopra S, Gota V. Targeting the AKT pathway: Repositioning HIV protease inhibitors as radiosensitizers. Indian J Med Res 2017; 143:145-59. [PMID: 27121513 PMCID: PMC4859124 DOI: 10.4103/0971-5916.180201] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Cellular resistance in tumour cells to different therapeutic approaches has been a limiting factor in the curative treatment of cancer. Resistance to therapeutic radiation is a common phenomenon which significantly reduces treatment options and impacts survival. One of the mechanisms of acquiring resistance to ionizing radiation is the overexpression or activation of various oncogenes like the EGFR (epidermal growth factor receptor), RAS (rat sarcoma) oncogene or loss of PTEN (phosphatase and tensin homologue) which in turn activates the phosphatidyl inositol 3-kinase/protein kinase B (PI3-K)/AKT pathway responsible for radiation resistance in various tumours. Blocking the pathway enhances the radiation response both in vitro and in vivo. Due to the differential activation of this pathway (constitutively activated in tumour cells and not in the normal host cells), it is an excellent candidate target for molecular targeted therapy to enhance radiation sensitivity. In this regard, HIV protease inhibitors (HPIs) known to interfere with PI3-K/AKT signaling in tumour cells, have been shown to sensitize various tumour cells to radiation both in vitro and in vivo. As a result, HPIs are now being investigated as possible radiosensitizers along with various chemotherapeutic drugs. This review describes the mechanisms by which PI3-K/AKT pathway causes radioresistance and the role of HIV protease inhibitors especially nelfinavir as a potential candidate drug to target the AKT pathway for overcoming radioresistance and its use in various clinical trials for different malignancies.
Collapse
Affiliation(s)
- Jayant S Goda
- Department of Radiation Oncology; Clinical Biology Laboratory, Department of Radiation Oncology, Advance Centre for Treatment Research & Education in Cancer, Tata Memorial Center, Navi Mumbai, India
| | | | | | | | | |
Collapse
|
187
|
Christiaens M, Collette S, Overgaard J, Gregoire V, Kazmierska J, Castadot P, Giralt J, Grant W, Tomsej M, Bar-Deroma R, Monti AF, Hurkmans CW, Weber DC. Quality assurance of radiotherapy in the ongoing EORTC 1219-DAHANCA-29 trial for HPV/p16 negative squamous cell carcinoma of the head and neck: Results of the benchmark case procedure. Radiother Oncol 2017; 123:424-430. [PMID: 28478912 DOI: 10.1016/j.radonc.2017.04.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 04/17/2017] [Accepted: 04/17/2017] [Indexed: 11/29/2022]
Abstract
BACKGROUND AND PURPOSE The phase III EORTC 1219-DAHANCA 29 intergroup trial evaluates the influence of nimorazole in patients with locally advanced head and neck cancer when treated with accelerated radiotherapy (RT) in combination with chemotherapy. This article describes the results of the RT Benchmark Case (BC) performed before patient inclusion. MATERIALS AND METHODS The participating centers were asked to perform a 2-step BC, consisting of (1) a delineation and (2) a planning exercise according to the protocol guidelines. Submissions were prospectively centrally reviewed and feedback was given to the submitting centers. Sørensen-Dice similarity index (DSI) and the 95th percentile Hausdorff distance (HD) were retrospectively used to evaluate the agreement between the centers and the expert contours. RESULTS Fifty-four submissions (34 delineation and 20 planning exercises) from 19 centers were reviewed. Nine (47%) centers needed to perform the delineation step twice and three (16%) centers 3 times before receiving an approval. An increase in DSI-value and a decrease in HD, in particular for the prophylactic Clinical Target Volume (pCTV), could be found for the resubmitted cases. No unacceptable variations could be found for the planning exercise. CONCLUSIONS These BC-results highlight the need for effective and prospective RTQA in clinical trials. Even with clearly defined protocol guidelines, delineation and not planning remain the main reason for unacceptable protocol variations. The introduction of more objective quantitative analysis methods, such as the HD and DSI, in future trials might strengthen the evaluation by experts.
Collapse
Affiliation(s)
- Melissa Christiaens
- EORTC HQ, Brussels, Belgium; Department of Radiation Oncology, University Hospital Leuven, Belgium.
| | | | - Jens Overgaard
- Department of Radiation Oncology, Aarhus University Hospital, Denmark
| | - Vincent Gregoire
- Department of Radiation Oncology, Université Catholique de Louvain, St-Luc University Hospital, Brussels, Belgium
| | | | | | - Jordi Giralt
- Radiation Oncology, Hospital General Vall D'Hebron, Barcelona, Spain
| | - Warren Grant
- Oncology Centre, Cheltenham General Hospital, Gloucestershire Hospitals NHS Foundation Trust, UK
| | | | | | - Angelo F Monti
- Department of Medical Physics, Ospedale Niguarda Ca' Granda, Milan, Italy
| | - Coen Wilhelm Hurkmans
- ROG RTQA Strategic Committee, EORTC, Brussels, Belgium; Radiation Oncology, Catharina Hospital, Eindhoven, The Netherlands
| | - Damien Charles Weber
- ROG RTQA Strategic Committee, EORTC, Brussels, Belgium; Center for Proton Therapy, Paul Scherrer Institute, Villigen, Switzerland; University of Zürich, Switzerland
| |
Collapse
|
188
|
Wong KH, Panek R, Bhide SA, Nutting CM, Harrington KJ, Newbold KL. The emerging potential of magnetic resonance imaging in personalizing radiotherapy for head and neck cancer: an oncologist's perspective. Br J Radiol 2017; 90:20160768. [PMID: 28256151 DOI: 10.1259/bjr.20160768] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Head and neck cancer (HNC) is a challenging tumour site for radiotherapy delivery owing to its complex anatomy and proximity to organs at risk (OARs) such as the spinal cord and optic apparatus. Despite significant advances in radiotherapy planning techniques, radiation-induced morbidities remain substantial. Further improvement would require high-quality imaging and tailored radiotherapy based on intratreatment response. For these reasons, the use of MRI in radiotherapy planning for HNC is rapidly gaining popularity. MRI provides superior soft-tissue contrast in comparison with CT, allowing better definition of the tumour and OARs. The lack of additional radiation exposure is another attractive feature for intratreatment monitoring. In addition, advanced MRI techniques such as diffusion-weighted, dynamic contrast-enhanced and intrinsic susceptibility-weighted MRI techniques are capable of characterizing tumour biology further by providing quantitative functional parameters such as tissue cellularity, vascular permeability/perfusion and hypoxia. These functional parameters are known to have radiobiological relevance, which potentially could guide treatment adaptation based on their changes prior to or during radiotherapy. In this article, we first present an overview of the applications of anatomical MRI sequences in head and neck radiotherapy, followed by the potentials and limitations of functional MRI sequences in personalizing therapy.
Collapse
Affiliation(s)
- Kee H Wong
- 1 Head and neck unit, The Royal Marsden Hospital, London, UK.,2 Radiotherapy and imaging, The Institute of Cancer Research, London, UK
| | - Rafal Panek
- 1 Head and neck unit, The Royal Marsden Hospital, London, UK.,2 Radiotherapy and imaging, The Institute of Cancer Research, London, UK
| | - Shreerang A Bhide
- 1 Head and neck unit, The Royal Marsden Hospital, London, UK.,2 Radiotherapy and imaging, The Institute of Cancer Research, London, UK
| | - Christopher M Nutting
- 1 Head and neck unit, The Royal Marsden Hospital, London, UK.,2 Radiotherapy and imaging, The Institute of Cancer Research, London, UK
| | - Kevin J Harrington
- 1 Head and neck unit, The Royal Marsden Hospital, London, UK.,2 Radiotherapy and imaging, The Institute of Cancer Research, London, UK
| | - Katie L Newbold
- 1 Head and neck unit, The Royal Marsden Hospital, London, UK.,2 Radiotherapy and imaging, The Institute of Cancer Research, London, UK
| |
Collapse
|
189
|
Nytko KJ, Grgic I, Bender S, Ott J, Guckenberger M, Riesterer O, Pruschy M. The hypoxia-activated prodrug evofosfamide in combination with multiple regimens of radiotherapy. Oncotarget 2017; 8:23702-23712. [PMID: 28423594 PMCID: PMC5410338 DOI: 10.18632/oncotarget.15784] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 02/06/2017] [Indexed: 11/30/2022] Open
Abstract
The promising treatment combination of ionizing radiation (IR) with a hypoxia-activated prodrug (HAP) is based on biological cooperation. Here we investigated the hypoxia-activated prodrug evofosfamide in combination with different treatment regimens of IR against lung A549- and head&neck UT-SCC-14-derived tumor xenografts. DNA damage-related endpoints and clonogenic cell survival of A549 and UT-SCC-14 carcinoma cells were probed under normoxia and hypoxia.Evofosfamide (TH-302) induced DNA-damage and a dose-dependent antiproliferative response in A549 cells on cellular pretreatment under hypoxia, and supra-additively reduced clonogenic survival in combination with IR. Concomitant treatment of A549-derived tumor xenografts with evofosfamide and fractionated irradiation induced the strongest treatment response in comparison to the corresponding neoadjuvant and adjuvant regimens. Adjuvant evofosfamide was more potent than concomitant and neoadjuvant evofosfamide when combined with a single high dose of IR. Hypoxic UT-SCC-14 cells and tumor xenografts thereof were resistant to evofosfamide alone and in combination with IR, most probably due to reduced P450 oxidoreductase expression, which might act as major predictive determinant of sensitivity to HAPs.In conclusion, evofosfamide with IR is a potent combined treatment modality against hypoxic tumors. However, the efficacy and the therapeutic outcome of this combined treatment modality is, as indicated here in preclinical tumor models, dependent on scheduling parameters and tumor type, which is most probably related to the status of respective HAP-activating oxidoreductases. Further biomarker development is necessary for the launch of successful clinical trials.
Collapse
Affiliation(s)
- Katarzyna J. Nytko
- Laboratory for Applied Radiobiology, Department of Radiation Oncology, University Hospital Zurich, Zurich, Switzerland
- Clinical Research Priority Program “Tumor Oxygenation”, Zurich, Switzerland
| | - Ivo Grgic
- Laboratory for Applied Radiobiology, Department of Radiation Oncology, University Hospital Zurich, Zurich, Switzerland
- Clinical Research Priority Program “Tumor Oxygenation”, Zurich, Switzerland
| | - Sabine Bender
- Laboratory for Applied Radiobiology, Department of Radiation Oncology, University Hospital Zurich, Zurich, Switzerland
| | - Janosch Ott
- Laboratory for Applied Radiobiology, Department of Radiation Oncology, University Hospital Zurich, Zurich, Switzerland
| | | | - Oliver Riesterer
- Clinical Research Priority Program “Tumor Oxygenation”, Zurich, Switzerland
- Department of Radiation Oncology, University Hospital Zurich, Zurich, Switzerland
| | - Martin Pruschy
- Laboratory for Applied Radiobiology, Department of Radiation Oncology, University Hospital Zurich, Zurich, Switzerland
- Clinical Research Priority Program “Tumor Oxygenation”, Zurich, Switzerland
| |
Collapse
|
190
|
Aboushelib MN, Arnaout MA, Elsafi MH, Kassem YM. Two-stage implant placement technique for the management of irradiated jaws: An animal study. J Prosthet Dent 2017; 118:546-550. [PMID: 28343674 DOI: 10.1016/j.prosdent.2017.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 01/24/2017] [Accepted: 01/24/2017] [Indexed: 11/28/2022]
Abstract
STATEMENT OF PROBLEM Radiotherapy results in diminished bone remodeling capacity and an elevated risk of osteoradionecrosis, which can negatively influence the survival rate of dental implants. Patients receiving radiotherapy are advised not to receive dental implants during or soon after completing their radiotherapy. PURPOSE The purpose of this animal study was to investigate a 2-stage implant placement technique designed to diminish applied trauma on irradiated bone. MATERIAL AND METHODS Two groups of white New Zealand rabbits received radiotherapy in ascending doses (2, 4, 8 Gy), while a nonirradiated group served as control. Three weeks after completion of the last radiotherapy session, one of the irradiated groups and the control group received titanium dental implants bilaterally in the femur head. For the second irradiated group, an osteotomy was performed, and the surgical wound was left to heal for 2 weeks before implant placement. All animals were sacrificed 4 weeks after implant placement, and histomorphometric analysis was used to study bone-implant contact (n=14, α=.05). RESULTS Statistical analysis revealed significantly higher (F=159, P<.001) bone-implant contact in the 2-stage (40.2 ±1.9) implant placement technique than in the immediately placed implants (21.2 ±2.3) in irradiated bone. Both of the groups had a significantly lower bone-to-implant contact ratio than the non-irradiated control (64.2 ±3.8). CONCLUSIONS Within the limitations of this animal study, the 2-stage implant placement technique could be used to reduce trauma in irradiated bone and to improve wound healing around dental implants.
Collapse
Affiliation(s)
- Moustafa N Aboushelib
- Associate Professor, Department of Dental Materials, Faculty of Dentistry, Alexandria University, Alexandria, Egypt.
| | - Mohamed A Arnaout
- Lecturer, Department of Conservative and Prosthetic Dentistry, School of Dentistry, College of Health Science, Moi University, Eldoret, Kenya
| | - Mohamed H Elsafi
- Researcher, Fine Measurement Lab, Department of Dental Material, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| | - Youssef M Kassem
- Demonstrator, Department of Dental Materials, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| |
Collapse
|
191
|
Salem A. So long, Farewell, Au revoir, Auf Weidersehen. In regard to Overgaard (Radiother Oncol. 2016 Dec; 121(3):345-347). Radiother Oncol 2017; 122:486. [PMID: 28196642 DOI: 10.1016/j.radonc.2017.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 01/23/2017] [Indexed: 11/17/2022]
Affiliation(s)
- Ahmed Salem
- Division of Molecular and Clinical Cancer Sciences, University of Manchester, UK.
| |
Collapse
|
192
|
Brøndum L, Eriksen JG, Singers Sørensen B, Mortensen LS, Toustrup K, Overgaard J, Alsner J. Plasma proteins as prognostic biomarkers in radiotherapy treated head and neck cancer patients. Clin Transl Radiat Oncol 2017; 2:46-52. [PMID: 29658000 PMCID: PMC5893530 DOI: 10.1016/j.ctro.2017.01.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 12/27/2016] [Accepted: 01/03/2017] [Indexed: 01/03/2023] Open
Abstract
Background Blood-based protein biomarkers can be a useful tool as pre-treatment prognostic markers, as they can reflect both variations in the tumor microenvironment and the host immune response. We investigated the influence of a panel of plasma proteins for the development of any failure defined as recurrent disease in the T-, N-, or M-site in HNSCC. Methods We used a multiplex bead-based approach to analyze 19 proteins in 86 HNSCC patients and 15 healthy controls. We evaluated the associations between the biomarkers, loco-regional failure, failure in the T-, N-, or M-site, overall survival (OS), p16 status, and hypoxia. Results In 41 p16 positive oropharynx cancer patients we identified a profile of biomarkers consisting of upregulation of IL-2, IL-4, IL-6, IL-8, eotaxin, GRO-a, and VEGF and downregulation of VEGFR-1 and VEGFR-2 with a significantly reduced risk of failure (p < 0.01). None of the individual proteins were associated with outcome. Conclusion The identified plasma profile potentially reflects an activated immune response in a subgroup of the p16 positive patients.
Collapse
Affiliation(s)
- Line Brøndum
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark
| | | | - Brita Singers Sørensen
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark
| | | | - Kasper Toustrup
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Jens Overgaard
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Jan Alsner
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
193
|
Krause M, Dubrovska A, Linge A, Baumann M. Cancer stem cells: Radioresistance, prediction of radiotherapy outcome and specific targets for combined treatments. Adv Drug Deliv Rev 2017; 109:63-73. [PMID: 26877102 DOI: 10.1016/j.addr.2016.02.002] [Citation(s) in RCA: 206] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 01/05/2016] [Accepted: 02/03/2016] [Indexed: 12/26/2022]
Abstract
Inactivation of cancer stem cells (CSCs) is of utmost importance for tumor cure after radiotherapy. An increasing body of evidence complies with a higher radioresistance of CSCs compared to the mass of tumor cells, supporting the use of CSC related biomarkers for prediction of radiotherapy outcome. Treatment individualization strategies for patient groups with vastly different risk of recurrence will most likely require application of more than one biomarker. Specifically, inclusion of established biomarkers like tumor size for primary radio(chemo)therapy or human papilloma virus (HPV) infection status in head and neck squamous cell carcinoma seems to be of very high relevance. The high heterogeneity of CSC subclones along with changes of the functional behavior of individual tumors under treatment underlines the importance of the selection of the optimal timepoint(s) of biomarker evaluation, but also provides a potential therapeutic target for combined treatment approaches with irradiation.
Collapse
Affiliation(s)
- Mechthild Krause
- German Cancer Consortium (DKTK) Dresden, Germany; Dept. of Radiation Oncology, Technische Universität Dresden, Germany; OncoRay, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany; Helmholtz-Zentrum Dresden-Rossendorf, Germany; German Cancer Research Center (DKFZ) Heidelberg, Germany.
| | - Anna Dubrovska
- German Cancer Consortium (DKTK) Dresden, Germany; OncoRay, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany; German Cancer Research Center (DKFZ) Heidelberg, Germany
| | - Annett Linge
- German Cancer Consortium (DKTK) Dresden, Germany; Dept. of Radiation Oncology, Technische Universität Dresden, Germany; OncoRay, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany; German Cancer Research Center (DKFZ) Heidelberg, Germany
| | - Michael Baumann
- German Cancer Consortium (DKTK) Dresden, Germany; Dept. of Radiation Oncology, Technische Universität Dresden, Germany; OncoRay, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany; Helmholtz-Zentrum Dresden-Rossendorf, Germany; German Cancer Research Center (DKFZ) Heidelberg, Germany
| |
Collapse
|
194
|
Welsh L, Panek R, Riddell A, Wong K, Leach MO, Tavassoli M, Rahman D, Schmidt M, Hurley T, Grove L, Richards T, Koh DM, Nutting C, Harrington K, Newbold K, Bhide S. Blood transfusion during radical chemo-radiotherapy does not reduce tumour hypoxia in squamous cell cancer of the head and neck. Br J Cancer 2017; 116:28-35. [PMID: 27884018 PMCID: PMC5220150 DOI: 10.1038/bjc.2016.386] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 10/08/2016] [Accepted: 10/25/2016] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Patients with head and neck squamous cell carcinoma (HNSCC) undergoing radical chemo-radiation (CRT) frequently receive transfusion with packed red cells (PRCT) during radiotherapy on the basis that PRCT increases tumour oxygenation and overcomes hypoxia-induced radio-resistance. This is likely to be a significant oversimplification given the fact that tumour hypoxia is the result of several intrinsic and extrinsic factors, including many that are not directly related to serum haemoglobin (Hb). Therefore, we have studied the effect of PRCT on tumour oxygenation in a prospective cohort of patients who developed low Hb during radical CRT for HNSCC. METHODS This was a prospective study of 20 patients with HNSCC receiving radical CRT undergoing PRCT for Hb<11.5 g dl-1. Patients underwent pretransfusion and posttransfusion intrinsic susceptibility-weighted (SWI) MRI and dynamic contrast-enhanced (DCE) MRI. Blood samples were obtained at the time of MRI scanning and two further time points for measuring Hb and a panel of serum cytokine markers of tumour hypoxia. 3D T2* and Ktrans maps were calculated from the MRI data for primary tumours and cervical lymph node metastases. RESULTS PRCT produced no change (11 patients) or reduced (1 patient) T2* (tumour oxygenation) in 12 of the 16 (75%) evaluable primary tumours. Three of the four patients with improved tumour oxygenation progressed or had partial response following treatment completion. There were variable changes in Ktrans (tumour perfusion or vessel permeability) following PRCT that were of small magnitude for most tumours. Pre- and Post-PRCT levels of measured cytokines were not significantly different. CONCLUSIONS This study suggests that PRCT during radical CRT for HNSCC does not improve tumour oxygenation. Therefore, oncologists should consider changing practice according to NICE and American Association of Blood Banks guidelines on PRCT for anaemia.
Collapse
Affiliation(s)
- Liam Welsh
- The Royal Marsden Hospital, Fulham Road, London SW3 6JJ, UK
- The Royal Marsde Hospital, Downs Road, Sutton SM2 5PT, UK
- Institute of Cancer Research, 123 Old Brompton Road, London SW7 3RP, UK
| | - Rafal Panek
- The Royal Marsden Hospital, Fulham Road, London SW3 6JJ, UK
- The Royal Marsde Hospital, Downs Road, Sutton SM2 5PT, UK
- Institute of Cancer Research, 123 Old Brompton Road, London SW7 3RP, UK
| | - Angela Riddell
- The Royal Marsden Hospital, Fulham Road, London SW3 6JJ, UK
- The Royal Marsde Hospital, Downs Road, Sutton SM2 5PT, UK
| | - Kee Wong
- The Royal Marsden Hospital, Fulham Road, London SW3 6JJ, UK
- The Royal Marsde Hospital, Downs Road, Sutton SM2 5PT, UK
- Institute of Cancer Research, 123 Old Brompton Road, London SW7 3RP, UK
| | - Martin O Leach
- The Royal Marsden Hospital, Fulham Road, London SW3 6JJ, UK
- The Royal Marsde Hospital, Downs Road, Sutton SM2 5PT, UK
- Institute of Cancer Research, 123 Old Brompton Road, London SW7 3RP, UK
| | - Mahvash Tavassoli
- King's College, Floor 2, Hodgkin Building, Guy's, London SE1 9RT, UK
| | - Durdana Rahman
- King's College, Floor 2, Hodgkin Building, Guy's, London SE1 9RT, UK
| | - Maria Schmidt
- The Royal Marsden Hospital, Fulham Road, London SW3 6JJ, UK
- The Royal Marsde Hospital, Downs Road, Sutton SM2 5PT, UK
- Institute of Cancer Research, 123 Old Brompton Road, London SW7 3RP, UK
| | - Tara Hurley
- The Royal Marsden Hospital, Fulham Road, London SW3 6JJ, UK
- The Royal Marsde Hospital, Downs Road, Sutton SM2 5PT, UK
| | - Lorna Grove
- The Royal Marsden Hospital, Fulham Road, London SW3 6JJ, UK
- The Royal Marsde Hospital, Downs Road, Sutton SM2 5PT, UK
| | - Thomas Richards
- The Royal Marsden Hospital, Fulham Road, London SW3 6JJ, UK
- The Royal Marsde Hospital, Downs Road, Sutton SM2 5PT, UK
- Institute of Cancer Research, 123 Old Brompton Road, London SW7 3RP, UK
| | - Dow-Mu Koh
- The Royal Marsden Hospital, Fulham Road, London SW3 6JJ, UK
- The Royal Marsde Hospital, Downs Road, Sutton SM2 5PT, UK
- Institute of Cancer Research, 123 Old Brompton Road, London SW7 3RP, UK
| | - Christopher Nutting
- The Royal Marsden Hospital, Fulham Road, London SW3 6JJ, UK
- The Royal Marsde Hospital, Downs Road, Sutton SM2 5PT, UK
- Institute of Cancer Research, 123 Old Brompton Road, London SW7 3RP, UK
| | - Kevin Harrington
- The Royal Marsden Hospital, Fulham Road, London SW3 6JJ, UK
- The Royal Marsde Hospital, Downs Road, Sutton SM2 5PT, UK
- Institute of Cancer Research, 123 Old Brompton Road, London SW7 3RP, UK
| | - Kate Newbold
- The Royal Marsden Hospital, Fulham Road, London SW3 6JJ, UK
- The Royal Marsde Hospital, Downs Road, Sutton SM2 5PT, UK
- Institute of Cancer Research, 123 Old Brompton Road, London SW7 3RP, UK
| | - Shreerang Bhide
- The Royal Marsden Hospital, Fulham Road, London SW3 6JJ, UK
- The Royal Marsde Hospital, Downs Road, Sutton SM2 5PT, UK
- Institute of Cancer Research, 123 Old Brompton Road, London SW7 3RP, UK
| |
Collapse
|
195
|
Pandeti S, Feketeová L, Reddy TJ, Abdoul-Carime H, Farizon B, Farizon M, Märk TD. Nitroimidazolic radiosensitizers investigated by electrospray ionization time-of-flight mass spectrometry and density functional theory. RSC Adv 2017. [DOI: 10.1039/c7ra08312b] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Formation of positive and negative ions and radical anions of 5-nitroimidazolic radiosensitizers and their ability to form these ions.
Collapse
Affiliation(s)
- S. Pandeti
- Université de Lyon
- Université Claude Bernard Lyon1
- Institut de Physique Nucléaire de Lyon
- CNRS/IN2P3
- UMR 5822
| | - L. Feketeová
- Université de Lyon
- Université Claude Bernard Lyon1
- Institut de Physique Nucléaire de Lyon
- CNRS/IN2P3
- UMR 5822
| | - T. J. Reddy
- Analytical Chemistry and Mass Spectrometry Division
- CSIR-Indian Institute of Chemical Technology
- Hyderabad-500 007
- India
| | - H. Abdoul-Carime
- Université de Lyon
- Université Claude Bernard Lyon1
- Institut de Physique Nucléaire de Lyon
- CNRS/IN2P3
- UMR 5822
| | - B. Farizon
- Université de Lyon
- Université Claude Bernard Lyon1
- Institut de Physique Nucléaire de Lyon
- CNRS/IN2P3
- UMR 5822
| | - M. Farizon
- Université de Lyon
- Université Claude Bernard Lyon1
- Institut de Physique Nucléaire de Lyon
- CNRS/IN2P3
- UMR 5822
| | - T. D. Märk
- Institut für Ionenphysik und Angewandte Physik
- Leopold Franzens Universität Innsbruck
- 6020 Innsbruck
- Austria
| |
Collapse
|
196
|
Perdrizet GA. Chronic Diseases as Barriers to Oxygen Delivery: A Unifying Hypothesis of Tissue Reoxygenation Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 977:15-20. [PMID: 28685422 DOI: 10.1007/978-3-319-55231-6_3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Modern medical practice has resulted in the accumulation of a growing number of incurable chronic diseases, many of which are inflammatory in nature. Inflammation establishes a hypoxic microenvironment within tissues, a condition of inflammatory hypoxia (IH). Tissues thus affected become severely compromised, are unable to elicit adaptive responses and eventually develop fibrosis and fixed microvascular deficits. Previous work has demonstrated that tissue hypoxia exits even within the simple human model of self-resolving inflammation, the tuberculin reaction. Failed resolution of IH establishes a vicious cycle within tissues that perpetuates tissue hypoxia and resists standard drug therapies. Diseases such as sepsis, chronic cutaneous wounds, kidney disease, traumatic brain injury, solid tumors, inflammatory bowel disease, and chronic bacterial infections (urinary tract infection, cystic fibrosis) are tissue specific manifestations of chronic IH. Successful reversal of IH, through tissue re-oxygenation therapy (TROT), will break this vicious cycle and restore tissue homeostasis. The examples of solid tumors and inflammatory bowel disease are presented to illustrate a theoretical framework to support this hypothesis. Re-oxygenation of compromised tissues must occur before successful treatment of these diverse chronic disease s can be expected.
Collapse
Affiliation(s)
- G A Perdrizet
- Department of Emergency Medicine, Center for Wound Healing and Hyperbaric Medicine, UCSD, San Diego, CA, USA.
| |
Collapse
|
197
|
Hong BJ, Kim J, Jeong H, Bok S, Kim YE, Ahn GO. Tumor hypoxia and reoxygenation: the yin and yang for radiotherapy. Radiat Oncol J 2016; 34:239-249. [PMID: 28030900 PMCID: PMC5207368 DOI: 10.3857/roj.2016.02012] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 12/11/2016] [Accepted: 12/12/2016] [Indexed: 12/22/2022] Open
Abstract
Tumor hypoxia, a common feature occurring in nearly all human solid tumors is a major contributing factor for failures of anticancer therapies. Because ionizing radiation depends heavily on the presence of molecular oxygen to produce cytotoxic effect, the negative impact of tumor hypoxia had long been recognized. In this review, we will highlight some of the past attempts to overcome tumor hypoxia including hypoxic radiosensitizers and hypoxia-selective cytotoxin. Although they were (still are) a very clever idea, they lacked clinical efficacy largely because of ‘reoxygenation’ phenomenon occurring in the conventional low dose hyperfractionation radiotherapy prevented proper activation of these compounds. Recent meta-analysis and imaging studies do however indicate that there may be a significant clinical benefit in lowering the locoregional failures by using these compounds. Latest technological advancement in radiotherapy has allowed to deliver high doses of radiation conformally to the tumor volume. Although this technology has brought superb clinical responses for many types of cancer, recent modeling studies have predicted that tumor hypoxia is even more serious because ‘reoxygenation’ is low thereby leaving a large portion of hypoxic tumor cells behind. Wouldn’t it be then reasonable to combine hypoxic radiosensitizers and/or hypoxia-selective cytotoxin with the latest radiotherapy? We will provide some preclinical and clinical evidence to support this idea hoping to revamp an enthusiasm for hypoxic radiosensitizers or hypoxia-selective cytotoxins as an adjunct therapy for radiotherapy.
Collapse
Affiliation(s)
- Beom-Ju Hong
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, Korea
| | - Jeongwoo Kim
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, Korea
| | - Hoibin Jeong
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, Korea
| | - Seoyeon Bok
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, Korea
| | - Young-Eun Kim
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, Korea
| | - G-One Ahn
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, Korea
| |
Collapse
|
198
|
Hyperbaric Oxygen as Radiation Sensitizer for Locally Advanced Squamous Cell Carcinoma of the Oropharynx: A Phase 1 Dose-Escalation Study. Int J Radiat Oncol Biol Phys 2016; 97:481-486. [PMID: 28126298 DOI: 10.1016/j.ijrobp.2016.10.048] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 10/30/2016] [Indexed: 11/21/2022]
Abstract
PURPOSE To explore, in a dose-escalation study, the feasibility of hyperbaric oxygen (HBO) treatments immediately before intensity modulated radiation therapy in conjunction with cisplatinum chemotherapy for squamous cell carcinoma of the head and neck (SCCHN). METHODS AND MATERIALS Eligible patients presented with SCCHN (stage III-IV [M0]), life expectancy >6 months, and Karnofsky performance status ≥70. Enrollees received intensity modulated radiation therapy, 70 Gy in 35 fractions over 7 weeks with weekly cisplatinum. Patients received HBO-100% oxygen, 2.4 atmospheres absolute (ATA) for 30 minutes-twice per week initially. Subsequent patients were escalated to 3 and then 5 times per week. Intensity modulated radiation therapy began within 15 minutes after HBO. Patients were followed for 2 years after RT with quality-of-life questionnaires (Performance Status Scale-Head and Neck Cancer and the Functional Assessment of Cancer Therapy-Head and Neck Cancer) and for 5+ years for local recurrence, distant metastases, disease-specific survival, and overall survival. RESULTS Twelve subjects enrolled from 3 centers. Two withdrew during radiation therapy and 1 within 14 weeks after radiation therapy. The remaining 9 had primary oropharyngeal disease and were stage IVA (7) or IVB (2). No dose-limiting toxicities were observed with daily HBO. Two patients (22%) required pressure equalization tubes. The average time between HBO and radiation therapy was 8.5 minutes, with 2 of 231 administrations delivered beyond 15 minutes (0.5%). Per-protocol analysis showed a clinical complete response in 7 and a pathologic complete response without tumor in salvage neck dissections in 2. With minimum follow-up of 61 months, per-protocol 5-year overall survival was 100%, local recurrence 0%, and distant metastases 11%. Patient-reported outcomes for quality of life (Functional Assessment of Cancer Therapy-Head and Neck Cancer) were comparable to published results for chemoradiotherapy without HBO. CONCLUSIONS While acknowledging the study's small size and early attrition of 3 patients, our in-depth review of the acquired data indicates the feasibility of combining HBO with chemoradiation.
Collapse
|
199
|
Eskiizmir G, Baskın Y, Yalçın F, Ellidokuz H, Ferris RL. Risk factors for radiation failure in early-stage glottic carcinoma: A systematic review and meta-analysis. Oral Oncol 2016; 62:90-100. [PMID: 27865377 DOI: 10.1016/j.oraloncology.2016.10.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 10/08/2016] [Accepted: 10/16/2016] [Indexed: 01/04/2023]
Abstract
BACKGROUND Radiotherapy is one of the main treatment modalities for early-stage glottic carcinoma. Unfortunately, local failure may occur in a group of cases with T1-T2 glottic carcinoma. This meta-analysis sought to determine risk factors for radiation failure in patients with early-stage glottic carcinoma. METHODS A systematic and comprehensive search was performed for related studies published between 1995 and 2014. The primary end-point was 5-year local control. Data extraction and analysis were performed using the software STATA/SE 13.1 for Windows. RESULTS Twenty-seven studies were eligible. A higher risk of radiation failure was demonstrated in male patients [relative risk (RR): 0.927, p<0.001] and those with low hemoglobin level (RR: 0.891, p<0.001) with a high agreement between studies (I-squared=0.0%). Moreover, T2 tumors (RR: 0.795, p<0.001), tumors with anterior commissure involvement (RR: 0.904, p<0.001), tobacco use during/after therapy (RR: 0.824, p<0.001), and "bulky" tumors (RR: 1.270, p<0.001] or tumors bigger in size (RR: 1.332, p<0.001]. Poorly differentiated tumors had a questionable risk of local failure, although a moderate to high interstudy heterogeneity was determined. A statistically significant contribution was not detected for age, presence of comorbidity, alcohol use or subglottic extension. CONCLUSION This is the first meta-analysis which assessed the potential risk factors for radiation failure in patients with early-stage glottic carcinoma. Gender and pretreatment hemoglobin level are major influential factors associated with radiation failure in patients with early-stage glottic carcinoma. However, prospective, randomized clinical trials may permit better stratification of their relative contributions, and those who may benefit more from upfront surgery.
Collapse
Affiliation(s)
- Görkem Eskiizmir
- Celal Bayar University, Department of Otolaryngology-Head and Neck Surgery, Manisa, Turkey.
| | - Yasemin Baskın
- Dokuz Eylül University, Institute of Oncology, Izmir, Turkey
| | - Femin Yalçın
- Katip Celebi University, Department of Engineering Sciences, Izmir, Turkey
| | - Hülya Ellidokuz
- Dokuz Eylül University, Institute of Oncology, Izmir, Turkey
| | - Robert L Ferris
- University of Pittsburgh, Division of Head Neck Surgery, Pittsburgh, PA, United States
| |
Collapse
|
200
|
Kim MS, Lee EJ, Kim JW, Chung US, Koh WG, Keum KC, Koom WS. Gold nanoparticles enhance anti-tumor effect of radiotherapy to hypoxic tumor. Radiat Oncol J 2016; 34:230-238. [PMID: 27730800 PMCID: PMC5066449 DOI: 10.3857/roj.2016.01788] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Revised: 07/13/2016] [Accepted: 08/02/2016] [Indexed: 01/23/2023] Open
Abstract
Purpose Hypoxia can impair the therapeutic efficacy of radiotherapy (RT). Therefore, a new strategy is necessary for enhancing the response to RT. In this study, we investigated whether the combination of nanoparticles and RT is effective in eliminating the radioresistance of hypoxic tumors. Materials and Methods Gold nanoparticles (GNPs) consisting of a silica core with a gold shell were used. CT26 colon cancer mouse model was developed to study whether the combination of RT and GNPs reduced hypoxia-induced radioresistance. Hypoxia inducible factor-1α (HIF-1α) was used as a hypoxia marker. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining were conducted to evaluate cell death. Results Hypoxic tumor cells had an impaired response to RT. GNPs combined with RT enhanced anti-tumor effect in hypoxic tumor compared with RT alone. The combination of GNPs and RT decreased tumor cell viability compare to RT alone in vitro. Under hypoxia, tumors treated with GNPs + RT showed a higher response than that shown by tumors treated with RT alone. When a reactive oxygen species (ROS) scavenger was added, the enhanced antitumor effect of GNPs + RT was diminished. Conclusion In the present study, hypoxic tumors treated with GNPs + RT showed favorable responses, which might be attributable to the ROS production induced by GNPs + RT. Taken together, GNPs combined with RT seems to be potential modality for enhancing the response to RT in hypoxic tumors.
Collapse
Affiliation(s)
- Mi Sun Kim
- Department of Radiation Oncology, Yonsei University College of Medicine, Seoul, Korea
| | - Eun-Jung Lee
- Department of Radiation Oncology, Yonsei University College of Medicine, Seoul, Korea
| | - Jae-Won Kim
- Department of Radiation Oncology, Yonsei University College of Medicine, Seoul, Korea
| | - Ui Seok Chung
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, Korea
| | - Won-Gun Koh
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, Korea
| | - Ki Chang Keum
- Department of Radiation Oncology, Yonsei University College of Medicine, Seoul, Korea
| | - Woong Sub Koom
- Department of Radiation Oncology, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|