151
|
Yoshida GJ. Emerging roles of Myc in stem cell biology and novel tumor therapies. J Exp Clin Cancer Res 2018; 37:173. [PMID: 30053872 PMCID: PMC6062976 DOI: 10.1186/s13046-018-0835-y] [Citation(s) in RCA: 166] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 07/06/2018] [Indexed: 02/08/2023] Open
Abstract
The pathophysiological roles and the therapeutic potentials of Myc family are reviewed in this article. The physiological functions and molecular machineries in stem cells, including embryonic stem (ES) cells and induced pluripotent stem (iPS) cells, are clearly described. The c-Myc/Max complex inhibits the ectopic differentiation of both types of artificial stem cells. Whereas c-Myc plays a fundamental role as a "double-edged sword" promoting both iPS cells generation and malignant transformation, L-Myc contributes to the nuclear reprogramming with the significant down-regulation of differentiation-associated genetic expression. Furthermore, given the therapeutic resistance of neuroendocrine tumors such as small-cell lung cancer and neuroblastoma, the roles of N-Myc in difficult-to-treat tumors are discussed. N-Myc and p53 exhibit the co-localization in the nucleus and alter p53-dependent transcriptional responses which are necessary for DNA repair, anti-apoptosis, and lipid metabolic reprogramming. NCYM protein stabilizes N-Myc, resulting in the stimulation of Oct4 expression, while Oct4 induces both N-Myc and NCYM via direct transcriptional activation of N-Myc, [corrected] thereby leading to the enhanced metastatic potential. Importantly enough, accumulating evidence strongly suggests that c-Myc can be a promising therapeutic target molecule among Myc family in terms of the biological characteristics of cancer stem-like cells (CSCs). The presence of CSCs leads to the intra-tumoral heterogeneity, which is mainly responsible for the therapeutic resistance. Mechanistically, it has been shown that Myc-induced epigenetic reprogramming enhances the CSC phenotypes. In this review article, the author describes two major therapeutic strategies of CSCs by targeting c-Myc; Firstly, Myc-dependent metabolic reprogramming is closely related to CD44 variant-dependent redox stress regulation in CSCs. It has been shown that c-Myc increases NADPH production via enhanced glutaminolysis with a finely-regulated mechanism. Secondly, the dormancy of CSCs due to FBW7-depedent c-Myc degradation pathway is also responsible for the therapeutic resistance to the conventional anti-tumor agents, the action points of which are largely dependent on the operation of the cell cycle. That is why the loss-of-functional mutations of FBW7 gene are expected to trigger "awakening" of dormant CSCs in the niche with c-Myc up-regulation. Collectively, although the further research is warranted to develop the effective anti-tumor therapeutic strategy targeting Myc family, we cancer researchers should always catch up with the current advances in the complex functions of Myc family in highly-malignant and heterogeneous tumor cells to realize the precision medicine.
Collapse
Affiliation(s)
- Go J Yoshida
- Department of Pathological Cell Biology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan.
| |
Collapse
|
152
|
Zhou D, Xue J, He S, Du X, Zhou J, Li C, Huang L, Nair V, Yao Y, Cheng Z. Reticuloendotheliosis virus and avian leukosis virus subgroup J synergistically increase the accumulation of exosomal miRNAs. Retrovirology 2018; 15:45. [PMID: 29970099 PMCID: PMC6029113 DOI: 10.1186/s12977-018-0427-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 06/21/2018] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Co-infection with avian leukosis virus subgroup J and reticuloendotheliosis virus induces synergistic pathogenic effects and increases mortality. However, the role of exosomal miRNAs in the molecular mechanism of the synergistic infection of the two viruses remains unknown. RESULTS In this study, exosomal RNAs from CEF cells infected with ALV-J, REV or both at the optimal synergistic infection time were analysed by Illumina RNA deep sequencing. A total of 54 (23 upregulated and 31 downregulated) and 16 (7 upregulated and 9 downregulated) miRNAs were identified by comparing co-infection with two viruses, single-infected ALV-J and REV, respectively. Moreover, five key miRNAs, including miR-184-3p, miR-146a-3p, miR-146a-5p, miR-3538 and miR-155, were validated in both exosomes and CEF cells by qRT-PCR. GO annotation and KEGG pathway analysis of the miRNA target genes showed that the five differentially expressed miRNAs participated in virus-vector interaction, oxidative phosphorylation, energy metabolism and cell growth. CONCLUSIONS We demonstrated that REV and ALV-J synergistically increased the accumulation of exosomal miRNAs, which sheds light on the synergistic molecular mechanism of ALV-J and REV.
Collapse
Affiliation(s)
- Defang Zhou
- College of Veterinary Medicine, Shandong Agricultural University, Tai’an, 271018 China
| | - Jingwen Xue
- College of Veterinary Medicine, Shandong Agricultural University, Tai’an, 271018 China
| | - Shuhai He
- College of Veterinary Medicine, Shandong Agricultural University, Tai’an, 271018 China
| | - Xusheng Du
- College of Veterinary Medicine, Shandong Agricultural University, Tai’an, 271018 China
| | - Jing Zhou
- College of Veterinary Medicine, Shandong Agricultural University, Tai’an, 271018 China
| | - Chengui Li
- College of Veterinary Medicine, Shandong Agricultural University, Tai’an, 271018 China
| | - Libo Huang
- College of Veterinary Medicine, Shandong Agricultural University, Tai’an, 271018 China
| | - Venugopal Nair
- The Pirbright Institute & UK-China Centre of Excellence on Avian Disease Research, Pirbright, Ash Road, Guildford, Surrey, GU24 0NF UK
| | - Yongxiu Yao
- The Pirbright Institute & UK-China Centre of Excellence on Avian Disease Research, Pirbright, Ash Road, Guildford, Surrey, GU24 0NF UK
| | - Ziqiang Cheng
- College of Veterinary Medicine, Shandong Agricultural University, Tai’an, 271018 China
| |
Collapse
|
153
|
Counihan JL, Grossman EA, Nomura DK. Cancer Metabolism: Current Understanding and Therapies. Chem Rev 2018; 118:6893-6923. [DOI: 10.1021/acs.chemrev.7b00775] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Jessica L. Counihan
- Departments of Chemistry, Molecular and Cell Biology, and Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, California 94720, United States
| | - Elizabeth A. Grossman
- Departments of Chemistry, Molecular and Cell Biology, and Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, California 94720, United States
| | - Daniel K. Nomura
- Departments of Chemistry, Molecular and Cell Biology, and Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
154
|
Fiore APZP, Ribeiro PDF, Bruni-Cardoso A. Sleeping Beauty and the Microenvironment Enchantment: Microenvironmental Regulation of the Proliferation-Quiescence Decision in Normal Tissues and in Cancer Development. Front Cell Dev Biol 2018; 6:59. [PMID: 29930939 PMCID: PMC6001001 DOI: 10.3389/fcell.2018.00059] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 05/18/2018] [Indexed: 01/18/2023] Open
Abstract
Cells from prokaryota to the more complex metazoans cease proliferating at some point in their lives and enter a reversible, proliferative-dormant state termed quiescence. The appearance of quiescence in the course of evolution was essential to the acquisition of multicellular specialization and compartmentalization and is also a central aspect of tissue function and homeostasis. But what makes a cell cease proliferating even in the presence of nutrients, growth factors, and mitogens? And what makes some cells "wake up" when they should not, as is the case in cancer? Here, we summarize and discuss evidence showing how microenvironmental cues such as those originating from metabolism, extracellular matrix (ECM) composition and arrangement, neighboring cells and tissue architecture control the cellular proliferation-quiescence decision, and how this complex regulation is corrupted in cancer.
Collapse
Affiliation(s)
| | | | - Alexandre Bruni-Cardoso
- e-Signal Laboratory, Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
155
|
Nadeem T, Khan MA, Ijaz B, Ahmed N, Rahman ZU, Latif MS, Ali Q, Rana MA. Glycosylation of Recombinant Anticancer Therapeutics in Different Expression Systems with Emerging Technologies. Cancer Res 2018; 78:2787-2798. [DOI: 10.1158/0008-5472.can-18-0032] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 03/22/2018] [Accepted: 04/03/2018] [Indexed: 11/16/2022]
|
156
|
Wojtowicz W, Chachaj A, Olczak A, Ząbek A, Piątkowska E, Rybka J, Butrym A, Biedroń M, Mazur G, Wróbel T, Szuba A, Młynarz P. Serum NMR metabolomics to differentiate haematologic malignancies. Oncotarget 2018; 9:24414-24427. [PMID: 29849950 PMCID: PMC5966245 DOI: 10.18632/oncotarget.25311] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 04/07/2018] [Indexed: 12/17/2022] Open
Abstract
Haematological malignancies are a frequently diagnosed group of neoplasms and a significant cause of cancer deaths. The successful treatment of these diseases relies on early and accurate detection. Specific small molecular compounds released by malignant cells and the simultaneous response by the organism towards the pathological state may serve as diagnostic/prognostic biomarkers or as a tool with relevance for cancer therapy management. To identify the most important metabolites required for differentiation, an 1H NMR metabolomics approach was applied to selected haematological malignancies. This study utilized 116 methanol serum extract samples from AML (n= 38), nHL (n= 26), CLL (n= 21) and HC (n= 31). Multivariate and univariate data analyses were performed to identify the most abundant changes among the studied groups. Complex and detailed VIP-PLS-DA models were calculated to highlight possible changes in terms of biochemical pathways and discrimination ability. Chemometric model prediction properties were validated by receiver operating characteristic (ROC) curves and statistical analysis. Two sets of eight important metabolites in HC/AML/CLL/nHL comparisons and five in AML/CLL/nHL comparisons were selected to form complex models to represent the most significant changes that occurred.
Collapse
Affiliation(s)
- Wojciech Wojtowicz
- Wroclaw University of Technology, Department of Bioorganic Chemistry, Wroclaw, Poland
| | - Angelika Chachaj
- Wroclaw Medical University, Department of Angiology, Wroclaw, Poland
| | - Andrzej Olczak
- Opole University of Technology, Faculty of Electrical Engineering, Automatic Control and Informatics, Opole, Poland
| | - Adam Ząbek
- Wroclaw University of Technology, Department of Bioorganic Chemistry, Wroclaw, Poland
| | | | - Justyna Rybka
- Department of Haematology, Blood Neoplasms, and Bone Marrow Transplantation, Wroclaw Medical University, Wroclaw, Poland
| | - Aleksandra Butrym
- Department of Internal Medicine, Wroclaw Medical University, Wroclaw, Poland.,Department of Physiology, Wroclaw Medical University, Wroclaw, Poland
| | - Monika Biedroń
- Department of Haematology, Blood Neoplasms, and Bone Marrow Transplantation, Wroclaw Medical University, Wroclaw, Poland
| | - Grzegorz Mazur
- Department of Internal Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Tomasz Wróbel
- Department of Haematology, Blood Neoplasms, and Bone Marrow Transplantation, Wroclaw Medical University, Wroclaw, Poland
| | - Andrzej Szuba
- Wroclaw Medical University, Department of Angiology, Wroclaw, Poland
| | - Piotr Młynarz
- Wroclaw University of Technology, Department of Bioorganic Chemistry, Wroclaw, Poland
| |
Collapse
|
157
|
PGC1α promotes cholangiocarcinoma metastasis by upregulating PDHA1 and MPC1 expression to reverse the Warburg effect. Cell Death Dis 2018; 9:466. [PMID: 29700317 PMCID: PMC5919932 DOI: 10.1038/s41419-018-0494-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 03/09/2018] [Accepted: 03/12/2018] [Indexed: 12/15/2022]
Abstract
PGC1α acts as a central regulator of mitochondrial metabolism, whose role in cancer progression has been highlighted but remains largely undefined. Especially, it is completely unknown about the effect of PGC1α on cholangiocarcinoma (CCA). Here we showed that PGC1α overexpression had no impact on CCA growth despite the decreased expression of PGC1α in CCA compared with adjacent normal tissue. Instead, PGC1α overexpression-promoted CCA metastasis both in vitro and in vivo. Mechanistically, for the first time, we illuminated that PGC1α reversed the Warburg effect by upregulating the expression of pyruvate dehydrogenase E1 alpha 1 subunit and mitochondrial pyruvate carrier 1 to increase pyruvate flux into the mitochondria for oxidation, whereas simultaneously promoting mitochondrial biogenesis and fusion to mediate the metabolic switch to oxidative phosphorylation. On the one hand, enhanced mitochondrial oxidation metabolism correlated with elevated reactive oxygen species (ROS) production; on the other hand, increased PGC1α expression upregulated the expression levels of mRNA for several ROS-detoxifying enzymes. To this end, the ROS levels, which were elevated but below a critical threshold, did not inhibit CCA cells proliferation. And the moderately increased ROS facilitated metastatic dissemination of CCA cells, which can be abrogated by antioxidants. Our study suggests the potential utility of developing the PGC1α-targeted therapies or blocking PGC1α signaling axis for inhibiting CCA metastasis.
Collapse
|
158
|
El Arfani C, De Veirman K, Maes K, De Bruyne E, Menu E. Metabolic Features of Multiple Myeloma. Int J Mol Sci 2018; 19:E1200. [PMID: 29662010 PMCID: PMC5979361 DOI: 10.3390/ijms19041200] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 04/07/2018] [Accepted: 04/10/2018] [Indexed: 01/19/2023] Open
Abstract
Cancer is known for its cellular changes contributing to tumour growth and cell proliferation. As part of these changes, metabolic rearrangements are identified in several cancers, including multiple myeloma (MM), which is a condition whereby malignant plasma cells accumulate in the bone marrow (BM). These metabolic changes consist of generation, inhibition and accumulation of metabolites and metabolic shifts in MM cells. Changes in the BM micro-environment could be the reason for such adjustments. Enhancement of glycolysis and glutaminolysis is found in MM cells compared to healthy cells. Metabolites and enzymes can be upregulated or downregulated and play a crucial role in drug resistance. Therefore, this review will focus on changes in glucose and glutamine metabolism linked with the emergence of drug resistance. Moreover, metabolites do not only affect other metabolic components to benefit cancer development; they also interfere with transcription factors involved in proliferation and apoptotic regulation.
Collapse
Affiliation(s)
- Chaima El Arfani
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium.
| | - Kim De Veirman
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium.
| | - Ken Maes
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium.
| | - Elke De Bruyne
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium.
| | - Eline Menu
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium.
| |
Collapse
|
159
|
Metabolic Reprogramming and Redox Signaling in Pulmonary Hypertension. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 967:241-260. [PMID: 29047090 DOI: 10.1007/978-3-319-63245-2_14] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Pulmonary hypertension is a complex disease of the pulmonary vasculature, which in severe cases terminates in right heart failure. Complex remodeling of pulmonary arteries comprises the central issue of its pathology. This includes extensive proliferation, apoptotic resistance and inflammation. As such, the molecular and cellular features of pulmonary hypertension resemble hallmark characteristics of cancer cell behavior. The vascular remodeling derives from significant metabolic changes in resident cells, which we describe in detail. It affects not only cells of pulmonary artery wall, but also its immediate microenvironment involving cells of immune system (i.e., macrophages). Thus aberrant metabolism constitutes principle component of the cancer-like theory of pulmonary hypertension. The metabolic changes in pulmonary artery cells resemble the cancer associated Warburg effect, involving incomplete glucose oxidation through aerobic glycolysis with depressed mitochondrial catabolism enabling the fueling of anabolic reactions with amino acids, nucleotides and lipids to sustain proliferation. Macrophages also undergo overlapping but distinct metabolic reprogramming inducing specific activation or polarization states that enable their participation in the vascular remodeling process. Such metabolic synergy drives chronic inflammation further contributing to remodeling. Enhanced glycolytic flux together with suppressed mitochondrial bioenergetics promotes the accumulation of reducing equivalents, NAD(P)H. We discuss the enzymes and reactions involved. The reducing equivalents modulate the regulation of proteins using NAD(P)H as the transcriptional co-repressor C-terminal binding protein 1 cofactor and significantly impact redox status (through GSH, NAD(P)H oxidases, etc.), which together act to control the phenotype of the cells of pulmonary arteries. The altered mitochondrial metabolism changes its redox poise, which together with enhanced NAD(P)H oxidase activity and reduced enzymatic antioxidant activity promotes a pro-oxidative cellular status. Herein we discuss all described metabolic changes along with resultant alterations in redox status, which result in excessive proliferation, apoptotic resistance, and inflammation, further leading to pulmonary arterial wall remodeling and thus establishing pulmonary artery hypertension pathology.
Collapse
|
160
|
Buono R, Longo VD. Starvation, Stress Resistance, and Cancer. Trends Endocrinol Metab 2018; 29:271-280. [PMID: 29463451 PMCID: PMC7477630 DOI: 10.1016/j.tem.2018.01.008] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 01/24/2018] [Accepted: 01/25/2018] [Indexed: 12/20/2022]
Abstract
Cancer cells are characterized by dysregulation in signal transduction and metabolic pathways leading to increased glucose uptake, altered mitochondrial function, and the evasion of antigrowth signals. Fasting and fasting-mimicking diets (FMDs) provide a particularly promising intervention to promote differential effects in normal and malignant cells. These effects are caused in part by the reduction in IGF-1, insulin, and glucose and the increase in IGFBP1 and ketone bodies, which generate conditions that force cancer cells to rely more on metabolites and factors that are limited in the blood, thus resulting in cell death. Here we discuss the cellular and animal experiments demonstrating the differential effects of fasting on normal and cancer cells and the mechanisms responsible for these effects.
Collapse
Affiliation(s)
- Roberta Buono
- Longevity Institute, School of Gerontology, Department of Biological Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, USA; IFOM FIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Valter D Longo
- Longevity Institute, School of Gerontology, Department of Biological Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, USA; IFOM FIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy; Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research at USC, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
161
|
Mutz CN, Schwentner R, Aryee DNT, Bouchard EDJ, Mejia EM, Hatch GM, Kauer MO, Katschnig AM, Ban J, Garten A, Alonso J, Banerji V, Kovar H. EWS-FLI1 confers exquisite sensitivity to NAMPT inhibition in Ewing sarcoma cells. Oncotarget 2018; 8:24679-24693. [PMID: 28160567 PMCID: PMC5421879 DOI: 10.18632/oncotarget.14976] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 01/16/2017] [Indexed: 01/26/2023] Open
Abstract
Ewing sarcoma (EwS) is the second most common bone cancer in children and adolescents with a high metastatic potential. EwS development is driven by a specific chromosomal translocation resulting in the generation of a chimeric EWS-ETS transcription factor, most frequently EWS-FLI1. Nicotinamide adenine dinucleotide (NAD) is a key metabolite of energy metabolism involved in cellular redox reactions, DNA repair, and in the maintenance of genomic stability. This study describes targeting nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting enzyme of NAD synthesis, by FK866 in EwS cells. Here we report that blocking NAMPT leads to exhaustive NAD depletion in EwS cells, followed by a metabolic collapse and cell death. Using conditional EWS-FLI1 knockdown by doxycycline-inducible shRNA revealed that EWS-FLI1 depletion significantly reduces the sensitivity of EwS cells to NAMPT inhibition. Consistent with this finding, a comparison of 7 EwS cell lines of different genotypes with 5 Non-EwS cell lines and mesenchymal stem cells revealed significantly higher FK866 sensitivity of EWS-ETS positive EwS cells, with IC50 values mostly below 1nM. Taken together, our data reveal evidence of an important role of the NAMPT-mediated NAD salvage pathway in the energy homeostasis of EwS cells and suggest NAMPT inhibition as a potential new treatment approach for Ewing sarcoma.
Collapse
Affiliation(s)
- Cornelia N Mutz
- Children's Cancer Research Institute Vienna, St. Anna Kinderkrebsforschung, Vienna, Austria
| | - Raphaela Schwentner
- Children's Cancer Research Institute Vienna, St. Anna Kinderkrebsforschung, Vienna, Austria
| | - Dave N T Aryee
- Children's Cancer Research Institute Vienna, St. Anna Kinderkrebsforschung, Vienna, Austria.,Department of Pediatrics, Medical University Vienna, Vienna, Austria
| | - Eric D J Bouchard
- Department of Biochemistry and Medical Genetics, University of Manitoba, Research Institute in Oncology and Hematology (RIOH), CancerCare Manitoba, Winnipeg, Canada
| | - Edgard M Mejia
- Department of Pharmacology and Therapeutics, Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Grant M Hatch
- Department of Biochemistry and Medical Genetics, Center for Research and Treatment of Atherosclerosis, University of Manitoba, DREAM Children's Hospital Research Institute of Manitoba, Winnipeg, Canada
| | - Maximilian O Kauer
- Children's Cancer Research Institute Vienna, St. Anna Kinderkrebsforschung, Vienna, Austria
| | - Anna M Katschnig
- Children's Cancer Research Institute Vienna, St. Anna Kinderkrebsforschung, Vienna, Austria
| | - Jozef Ban
- Children's Cancer Research Institute Vienna, St. Anna Kinderkrebsforschung, Vienna, Austria
| | - Antje Garten
- Center for Pediatric Research Leipzig, Hospital for Children and Adolescents, University of Leipzig, Leipzig, Germany
| | - Javier Alonso
- Unidad de Tumores Sólidos Infantiles, Instituto de Investigación de Enfermedades Raras, ISCIII, Ctra, Madrid, Spain
| | - Versha Banerji
- Department of Biochemistry and Medical Genetics, University of Manitoba, Research Institute in Oncology and Hematology (RIOH), CancerCare Manitoba, Winnipeg, Canada
| | - Heinrich Kovar
- Children's Cancer Research Institute Vienna, St. Anna Kinderkrebsforschung, Vienna, Austria.,Department of Pediatrics, Medical University Vienna, Vienna, Austria
| |
Collapse
|
162
|
Lien SYA, Young L, Gau BS, K Shiao SP. Meta-prediction of MTHFR gene polymorphism-mutations, air pollution, and risks of leukemia among world populations. Oncotarget 2018; 8:4387-4398. [PMID: 27966457 PMCID: PMC5354840 DOI: 10.18632/oncotarget.13876] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 12/05/2016] [Indexed: 12/11/2022] Open
Abstract
The major objective of this study was to examine the association between Methylenetetrahydrofolate Reductase (MTHFR) polymorphisms and the risk of various types of leukemias across the lifespans of children and adults by using the meta-predictive techniques. The secondary objective was to examine the interactions among epigenetic risk factors (including air pollution), MTHFR polymorphisms, and the risks of developing leukemia. We completed a comprehensive search of 6 databases to find 54 studies (10,033 leukemia cases and 15,835 controls) for MTHFR 677, and 43 studies (8,868 cases and 14,301 controls) for MTHFR 1298, published from 1999 to 2014. The results revealed that, in European populations; childhood populations; children from Europe, East Asia, and America; and children with acute lymphocytic leukemia (ALL), MTHFR 677 polymorphisms (both TT and CT types together and individually) are protective, while CC wildtype was leukemogenic. In addition, MTHFR 1298 polymorphisms were protective against ALL and acute myeloid leukemia in European children, and in chronic myeloid leukemia in all adults worldwide and American adults. Air pollution played a role in the increased polymorphisms of MTHFR 677 genotypes in childhood leukemia.
Collapse
Affiliation(s)
- Shin-Yu A Lien
- School of Nursing, College of Medicine, Chang Gung University, Taoyuan, Taiwan (R.O.C.).,Division of Endocrinology and Metabolism, Department of Internal Medicine, Chang Gung Memorial Hospital Linkou Branch, Taoyuan, Taiwan (R.O.C.)
| | - Lufei Young
- College of Nursing, Augusta University, Augusta, Gerogia, USA
| | - Bih-Shya Gau
- School of Nursing, College of Medicine, National Taiwan University, Taipei, Taiwan (R.O.C.)
| | | |
Collapse
|
163
|
Cardoso MR, Santos JC, Ribeiro ML, Talarico MCR, Viana LR, Derchain SFM. A Metabolomic Approach to Predict Breast Cancer Behavior and Chemotherapy Response. Int J Mol Sci 2018; 19:ijms19020617. [PMID: 29466297 PMCID: PMC5855839 DOI: 10.3390/ijms19020617] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/29/2018] [Accepted: 01/31/2018] [Indexed: 12/20/2022] Open
Abstract
Although the classification of breast carcinomas into molecular or immunohistochemical subtypes has contributed to a better categorization of women into different therapeutic regimens, breast cancer nevertheless still progresses or recurs in a remarkable number of patients. Identifying women who would benefit from chemotherapy could potentially increase treatment effectiveness, which has important implications for long-term survival. Metabolomic analyses of fluids and tissues from cancer patients improve our knowledge of the reprogramming of metabolic pathways involved in resistance to chemotherapy. This review evaluates how recent metabolomic approaches have contributed to understanding the relationship between breast cancer and the acquisition of resistance. We focus on the advantages and challenges of cancer treatment and the use of new strategies in clinical care, which helps us comprehend drug resistance and predict responses to treatment.
Collapse
Affiliation(s)
- Marcella Regina Cardoso
- Hospital da Mulher Prof. Dr. José Aristodemo Pinotti-Centro de Atenção Integral à Saúde da Mulher (CAISM), University of Campinas (UNICAMP), Campinas, São Paulo 13083-881, Brazil.
| | - Juliana Carvalho Santos
- Hospital da Mulher Prof. Dr. José Aristodemo Pinotti-Centro de Atenção Integral à Saúde da Mulher (CAISM), University of Campinas (UNICAMP), Campinas, São Paulo 13083-881, Brazil.
| | - Marcelo Lima Ribeiro
- Clinical Pharmacology and Gastroenterology Unit, São Francisco University, Bragança Paulista, São Paulo 13083-881, Brazil.
| | - Maria Cecília Ramiro Talarico
- Hospital da Mulher Prof. Dr. José Aristodemo Pinotti-Centro de Atenção Integral à Saúde da Mulher (CAISM), University of Campinas (UNICAMP), Campinas, São Paulo 13083-881, Brazil.
| | - Lais Rosa Viana
- Hospital da Mulher Prof. Dr. José Aristodemo Pinotti-Centro de Atenção Integral à Saúde da Mulher (CAISM), University of Campinas (UNICAMP), Campinas, São Paulo 13083-881, Brazil.
| | - Sophie Françoise Mauricette Derchain
- Hospital da Mulher Prof. Dr. José Aristodemo Pinotti-Centro de Atenção Integral à Saúde da Mulher (CAISM), University of Campinas (UNICAMP), Campinas, São Paulo 13083-881, Brazil.
| |
Collapse
|
164
|
Yuan L, Zeng G, Chen L, Wang G, Wang X, Cao X, Lu M, Liu X, Qian G, Xiao Y, Wang X. Identification of key genes and pathways in human clear cell renal cell carcinoma (ccRCC) by co-expression analysis. Int J Biol Sci 2018; 14:266-279. [PMID: 29559845 PMCID: PMC5859473 DOI: 10.7150/ijbs.23574] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 01/11/2018] [Indexed: 12/13/2022] Open
Abstract
Human clear cell renal cell carcinoma (ccRCC) is the most common solid lesion within kidney, and its prognostic is influenced by the progression covering a complex network of gene interactions. In our study, we screened differential expressed genes, and constructed protein-protein interaction (PPI) network and a weighted gene co-expression network to identify key genes and pathways associated with the progression of ccRCC (n = 56). Functional and pathway enrichment analysis demonstrated that upregulated differentially expressed genes (DEGs) were significantly enriched in response to wounding, positive regulation of immune system process, leukocyte activation, immune response and cell activation. Downregulated DEGs were significantly enriched in oxidation reduction, monovalent inorganic cation transport, ion transport, excretion and anion transport. In the PPI network, top 10 hub genes were identified (TOP2A, MYC, ALB, CDK1, VEGFA, MMP9, PTPRC, CASR, EGFR and PTGS2). In co-expression network, 6 ccRCC-related modules were identified. They were associated with immune response, metabolic process, cell cycle regulation, angiogenesis and ion transport. In conclusion, our study illustrated the hub genes and pathways involved in the progress of ccRCC, and further molecular biological experiments are needed to confirm the function of the candidate biomarkers in human ccRCC.
Collapse
Affiliation(s)
- Lushun Yuan
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| | - Guang Zeng
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Liang Chen
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Gang Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China.,Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xiaolong Wang
- Department of Urology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Xinyue Cao
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Mengxin Lu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xuefeng Liu
- Department of Pathology, Lombardi Comprehensive Cancer Center, Georgetown University Medical School, Washington DC, USA
| | - Guofeng Qian
- Department of Endocrinology, The First Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Yu Xiao
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China.,Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xinghuan Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| |
Collapse
|
165
|
Nrf2-Mediated Metabolic Reprogramming in Cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:9304091. [PMID: 29670683 PMCID: PMC5833252 DOI: 10.1155/2018/9304091] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 12/16/2017] [Accepted: 12/31/2017] [Indexed: 02/07/2023]
Abstract
Metabolic reprogramming is one of the hallmarks of cancer. Nrf2 pathway is one of the critical signaling cascades involved in cell defense and survival against oxidative stress. The significance of Nrf2 in cancer metabolism begins to be recognized. In this minireview, we focus on the Nrf2-mediated cancer metabolic reprogramming and intend to highlight the role of Nrf2 in the regulation of malignant transformation, cancer proliferation, and the development of treatment resistance via metabolic adaptations. We hope for the development of noninvasive biomarkers and novel therapeutic approaches for cancer based on Nrf2-directed cancer metabolic reprogramming in the near future.
Collapse
|
166
|
D'Alessandro A, El Kasmi KC, Plecitá-Hlavatá L, Ježek P, Li M, Zhang H, Gupte SA, Stenmark KR. Hallmarks of Pulmonary Hypertension: Mesenchymal and Inflammatory Cell Metabolic Reprogramming. Antioxid Redox Signal 2018; 28. [PMID: 28637353 PMCID: PMC5737722 DOI: 10.1089/ars.2017.7217] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
SIGNIFICANCE The molecular events that promote the development of pulmonary hypertension (PH) are complex and incompletely understood. The complex interplay between the pulmonary vasculature and its immediate microenvironment involving cells of immune system (i.e., macrophages) promotes a persistent inflammatory state, pathological angiogenesis, and fibrosis that are driven by metabolic reprogramming of mesenchymal and immune cells. Recent Advancements: Consistent with previous findings in the field of cancer metabolism, increased glycolytic rates, incomplete glucose and glutamine oxidation to support anabolism and anaplerosis, altered lipid synthesis/oxidation ratios, increased one-carbon metabolism, and activation of the pentose phosphate pathway to support nucleoside synthesis are but some of the key metabolic signatures of vascular cells in PH. In addition, metabolic reprogramming of macrophages is observed in PH and is characterized by distinct features, such as the induction of specific activation or polarization states that enable their participation in the vascular remodeling process. CRITICAL ISSUES Accumulation of reducing equivalents, such as NAD(P)H in PH cells, also contributes to their altered phenotype both directly and indirectly by regulating the activity of the transcriptional co-repressor C-terminal-binding protein 1 to control the proliferative/inflammatory gene expression in resident and immune cells. Further, similar to the role of anomalous metabolism in mitochondria in cancer, in PH short-term hypoxia-dependent and long-term hypoxia-independent alterations of mitochondrial activity, in the absence of genetic mutation of key mitochondrial enzymes, have been observed and explored as potential therapeutic targets. FUTURE DIRECTIONS For the foreseeable future, short- and long-term metabolic reprogramming will become a candidate druggable target in the treatment of PH. Antioxid. Redox Signal. 28, 230-250.
Collapse
Affiliation(s)
- Angelo D'Alessandro
- 1 Department of Biochemistry and Molecular Genetics, University of Colorado - Denver , Colorado
| | - Karim C El Kasmi
- 2 Developmental Lung Biology and Cardiovascular Pulmonary Research Laboratories, University of Colorado - Denver , Colorado.,3 Department of Pediatric Gastroenterology, University of Colorado - Denver , Colorado
| | - Lydie Plecitá-Hlavatá
- 4 Department of Mitochondrial Physiology, Institute of Physiology , Czech Academy of Sciences, Prague, Czech Republic
| | - Petr Ježek
- 4 Department of Mitochondrial Physiology, Institute of Physiology , Czech Academy of Sciences, Prague, Czech Republic
| | - Min Li
- 2 Developmental Lung Biology and Cardiovascular Pulmonary Research Laboratories, University of Colorado - Denver , Colorado
| | - Hui Zhang
- 2 Developmental Lung Biology and Cardiovascular Pulmonary Research Laboratories, University of Colorado - Denver , Colorado
| | - Sachin A Gupte
- 5 Department of Pharmacology, School of Medicine, New York Medical College , Valhalla, New York
| | - Kurt R Stenmark
- 2 Developmental Lung Biology and Cardiovascular Pulmonary Research Laboratories, University of Colorado - Denver , Colorado
| |
Collapse
|
167
|
O-GlcNAcylation: key regulator of glycolytic pathways. J Bioenerg Biomembr 2018; 50:189-198. [DOI: 10.1007/s10863-018-9742-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 01/02/2018] [Indexed: 12/20/2022]
|
168
|
More TH, RoyChoudhury S, Christie J, Taunk K, Mane A, Santra MK, Chaudhury K, Rapole S. Metabolomic alterations in invasive ductal carcinoma of breast: A comprehensive metabolomic study using tissue and serum samples. Oncotarget 2018; 9:2678-2696. [PMID: 29416801 PMCID: PMC5788669 DOI: 10.18632/oncotarget.23626] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 12/08/2017] [Indexed: 01/05/2023] Open
Abstract
Invasive ductal carcinoma (IDC) is the most common type of breast cancer and the leading cause of breast cancer related mortality. In the present study, metabolomic profiles of 72 tissue samples and 146 serum samples were analysed using targeted liquid chromatography multiple reaction monitoring mass spectrometry (LC-MRM/MS) and untargeted gas chromatography mass spectrometry (GC-MS) approaches. Combination of univariate and multivariate statistical treatment identified significant alterations of 42 and 32 metabolites in tissue and serum samples of IDC, respectively when compared to control. Some of the metabolite changes from tissue were also reflected in serum, indicating a bi-directional interaction of metabolites in IDC. Additionally, 8 tissue metabolites and 9 serum metabolites showed progressive change from control to benign to IDC suggesting their possible role in malignant transformation. We have identified a panel of three metabolites viz. tryptophan, tyrosine, and creatine in tissue and serum, which could be useful in screening of IDC subjects from both control and benign. The metabolomic alterations in IDC showed perturbations in purine and pyrimidine metabolism, amino sugar metabolism, amino acid metabolism, fatty acid biosynthesis etc. Comprehensively, this study provides valuable insights into metabolic adaptations of IDC, which can help to identify diagnostic markers as well as potential therapeutic targets.
Collapse
Affiliation(s)
- Tushar H. More
- Proteomics Lab, National Center for Cell Science, Ganeshkhind, Pune 411007, MH, India
- Savitribai Phule Pune University, Ganeshkhind, Pune 411007, MH, India
| | - Sourav RoyChoudhury
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur 721302, WB, India
| | - Joel Christie
- Proteomics Lab, National Center for Cell Science, Ganeshkhind, Pune 411007, MH, India
| | - Khushman Taunk
- Proteomics Lab, National Center for Cell Science, Ganeshkhind, Pune 411007, MH, India
| | - Anupama Mane
- Grant Medical Foundation, Ruby Hall Clinic, Pune 411001, MH, India
| | - Manas K. Santra
- Cancer Biology and Epigenetics Lab, National Center for Cell Science, Ganeshkhind, Pune 411007, MH, India
| | - Koel Chaudhury
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur 721302, WB, India
| | - Srikanth Rapole
- Proteomics Lab, National Center for Cell Science, Ganeshkhind, Pune 411007, MH, India
| |
Collapse
|
169
|
Gitto SB, Pandey V, Oyer JL, Copik AJ, Hogan FC, Phanstiel O, Altomare DA. Difluoromethylornithine Combined with a Polyamine Transport Inhibitor Is Effective against Gemcitabine Resistant Pancreatic Cancer. Mol Pharm 2018; 15:369-376. [PMID: 29299930 DOI: 10.1021/acs.molpharmaceut.7b00718] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is highly chemo-resistant and has an extremely poor patient prognosis, with a survival rate at five years of <8%. There remains an urgent need for innovative treatments. Targeting polyamine biosynthesis through inhibition of ornithine decarboxylase with difluoromethylornithine (DFMO) has had mixed clinical success due to tumor escape via an undefined transport system, which imports exogenous polyamines and sustains intracellular polyamine pools. Here, we tested DFMO in combination with a polyamine transport inhibitor (PTI), Trimer44NMe, against Gemcitabine-resistant PDAC cells. DFMO alone and with Trimer44NMe significantly reduced PDAC cell viability by inducing apoptosis or diminishing proliferation. DFMO alone and with Trimer44NMe also inhibited in vivo orthotopic PDAC growth and resulted in decreased c-Myc expression, a readout of polyamine pathway dysfunction. Moreover, dual inhibition significantly prolonged survival of tumor-bearing mice. Collectively, these studies demonstrate that targeting polyamine biosynthesis and import pathways in PDAC can lead to increased survival in pancreatic cancer.
Collapse
Affiliation(s)
- Sarah B Gitto
- Burnett School of Biomedical Sciences, University of Central Florida , 6900 Lake Nona Blvd., Orlando, Florida 32827, United States
| | - Veethika Pandey
- Burnett School of Biomedical Sciences, University of Central Florida , 6900 Lake Nona Blvd., Orlando, Florida 32827, United States
| | - Jeremiah L Oyer
- Burnett School of Biomedical Sciences, University of Central Florida , 6900 Lake Nona Blvd., Orlando, Florida 32827, United States
| | - Alicja J Copik
- Burnett School of Biomedical Sciences, University of Central Florida , 6900 Lake Nona Blvd., Orlando, Florida 32827, United States
| | - Frederick C Hogan
- Burnett School of Biomedical Sciences, University of Central Florida , 6900 Lake Nona Blvd., Orlando, Florida 32827, United States
| | - Otto Phanstiel
- Department of Medical Education, University of Central Florida , 12722 Research Parkway, Orlando, Florida 32826, United States
| | - Deborah A Altomare
- Burnett School of Biomedical Sciences, University of Central Florida , 6900 Lake Nona Blvd., Orlando, Florida 32827, United States
| |
Collapse
|
170
|
Norouzi-Barough L, Sarookhani MR, Sharifi M, Moghbelinejad S, Jangjoo S, Salehi R. Molecular mechanisms of drug resistance in ovarian cancer. J Cell Physiol 2018; 233:4546-4562. [PMID: 29152737 DOI: 10.1002/jcp.26289] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 11/14/2017] [Indexed: 12/13/2022]
Abstract
Ovarian cancer is the most lethal malignancy among the gynecological cancers, with a 5-year survival rate, mainly due to being diagnosed at advanced stages, recurrence and resistance to the current chemotherapeutic agents. Drug resistance is a complex phenomenon and the number of known involved genes and cross-talks between signaling pathways in this process is growing rapidly. Thus, discovering and understanding the underlying molecular mechanisms involved in chemo-resistance are crucial for management of treatment and identifying novel and effective drug targets as well as drug discovery to improve therapeutic outcomes. In this review, the major and recently identified molecular mechanisms of drug resistance in ovarian cancer from relevant literature have been investigated. In the final section of the paper, new approaches for studying detailed mechanisms of chemo-resistance have been briefly discussed.
Collapse
Affiliation(s)
- Leyla Norouzi-Barough
- Department of Molecular Medicine, School of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | | | - Mohammadreza Sharifi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sahar Moghbelinejad
- Department of Biochemistry and Genetic, School of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Saranaz Jangjoo
- School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Rasoul Salehi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
171
|
Taunk K, Taware R, More TH, Porto-Figueira P, Pereira JAM, Mohapatra R, Soneji D, Câmara JS, Nagarajaram HA, Rapole S. A non-invasive approach to explore the discriminatory potential of the urinary volatilome of invasive ductal carcinoma of the breast. RSC Adv 2018; 8:25040-25050. [PMID: 35542123 PMCID: PMC9082450 DOI: 10.1039/c8ra02083c] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 06/24/2018] [Indexed: 01/13/2023] Open
Abstract
A non-invasive urinary volatilomics approach for exploring the IDC type breast cancer.
Collapse
Affiliation(s)
- Khushman Taunk
- Proteomics Lab
- National Centre for Cell Science
- Pune 411007
- India
| | - Ravindra Taware
- Proteomics Lab
- National Centre for Cell Science
- Pune 411007
- India
| | - Tushar H. More
- Proteomics Lab
- National Centre for Cell Science
- Pune 411007
- India
| | - Priscilla Porto-Figueira
- CQM – Centro de Química da Madeira
- Universidade da Madeira
- Campus Universitário da Penteada
- Funchal 9000-390
- Portugal
| | - Jorge A. M. Pereira
- CQM – Centro de Química da Madeira
- Universidade da Madeira
- Campus Universitário da Penteada
- Funchal 9000-390
- Portugal
| | - Rajkishore Mohapatra
- Laboratory of Computational Biology
- Centre for DNA Fingerprinting & Diagnostics (CDFD)
- Hyderabad
- India
| | - Dharmesh Soneji
- Malignant Disease Treatment Centre
- Military Hospital (Cardio Thoracic Centre)
- Armed Forces Medical College
- Pune 411040
- India
| | - José S. Câmara
- CQM – Centro de Química da Madeira
- Universidade da Madeira
- Campus Universitário da Penteada
- Funchal 9000-390
- Portugal
| | - H. A. Nagarajaram
- Laboratory of Computational Biology
- Centre for DNA Fingerprinting & Diagnostics (CDFD)
- Hyderabad
- India
- Department of Biotechnology & Bioinformatics
| | - Srikanth Rapole
- Proteomics Lab
- National Centre for Cell Science
- Pune 411007
- India
| |
Collapse
|
172
|
Identification of genes highly downregulated in pancreatic cancer through a meta-analysis of microarray datasets: implications for discovery of novel tumor-suppressor genes and therapeutic targets. J Cancer Res Clin Oncol 2017; 144:309-320. [PMID: 29288362 DOI: 10.1007/s00432-017-2558-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 12/11/2017] [Indexed: 01/18/2023]
Abstract
PURPOSE The lack of specific symptoms at early tumor stages, together with a high biological aggressiveness of the tumor contribute to the high mortality rate for pancreatic cancer (PC), which has a 5-year survival rate of about 7%. Recent failures of targeted therapies inhibiting kinase activity in clinical trials have highlighted the need for new approaches towards combating this deadly disease. METHODS In this study, we have identified genes that are significantly downregulated in PC, through a meta-analysis of large number of microarray datasets. We have used qRT-PCR to confirm the downregulation of selected genes in a panel of PC cell lines. RESULTS This study has yielded several novel candidate tumor-suppressor genes (TSGs) including GNMT, CEL, PLA2G1B and SERPINI2. We highlight the role of GNMT, a methyl transferase associated with the methylation potential of the cell, and CEL, a lipase, as potential therapeutic targets. We have uncovered genetic links to risk factors associated with PC such as smoking and obesity. Genes important for patient survival and prognosis are also discussed, and we confirm the dysregulation of metabolic pathways previously observed in PC. CONCLUSIONS While many of the genes downregulated in our dataset are associated with protein products normally produced by the pancreas for excretion, we have uncovered some genes whose downregulation appear to play a more causal role in PC. These genes will assist in providing a better understanding of the disease etiology of PC, and in the search for new therapeutic targets and biomarkers.
Collapse
|
173
|
McCarthy MT, Moncayo G, Hiron TK, Jakobsen NA, Valli A, Soga T, Adam J, O'Callaghan CA. Purine nucleotide metabolism regulates expression of the human immune ligand MICA. J Biol Chem 2017; 293:3913-3924. [PMID: 29279329 DOI: 10.1074/jbc.m117.809459] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 12/12/2017] [Indexed: 12/31/2022] Open
Abstract
Expression of the cell-surface glycoprotein MHC class I polypeptide-related sequence A (MICA) is induced in dangerous, abnormal, or "stressed" cells, including cancer cells, virus-infected cells, and rapidly proliferating cells. MICA is recognized by the activating immune cell receptor natural killer group 2D (NKG2D), providing a mechanism by which immune cells can identify and potentially eliminate pathological cells. Immune recognition through NKG2D is implicated in cancer, atherosclerosis, transplant rejection, and inflammatory diseases, such as rheumatoid arthritis. Despite the wide range of potential therapeutic applications of MICA manipulation, the factors that control MICA expression are unclear. Here we use metabolic interventions and metabolomic analyses to show that the transition from quiescent cellular metabolism to a "Warburg" or biosynthetic metabolic state induces MICA expression. Specifically, we show that glucose transport into the cell and active glycolytic metabolism are necessary to up-regulate MICA expression. Active purine synthesis is necessary to support this effect of glucose, and increases in purine nucleotide levels are sufficient to induce MICA expression. Metabolic induction of MICA expression directly influences NKG2D-dependent cytotoxicity by immune cells. These findings support a model of MICA regulation whereby the purine metabolic activity of individual cells is reflected by cell-surface MICA expression and is the subject of surveillance by NKG2D receptor-expressing immune cells.
Collapse
Affiliation(s)
- Michael T McCarthy
- From the Wellcome Trust Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Gerard Moncayo
- From the Wellcome Trust Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Thomas K Hiron
- From the Wellcome Trust Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Niels A Jakobsen
- From the Wellcome Trust Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Alessandro Valli
- the Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, United Kingdom, and
| | - Tomoyoshi Soga
- the Institute for Advanced Biosciences, Keio University, 246-2 Mizukami, Kakuganji, Tsuruoka, Yamagata 997-0052, Japan
| | - Julie Adam
- From the Wellcome Trust Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, United Kingdom.,the Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, United Kingdom, and
| | - Christopher A O'Callaghan
- From the Wellcome Trust Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, United Kingdom,
| |
Collapse
|
174
|
Buttacavoli M, Albanese NN, Di Cara G, Alduina R, Faleri C, Gallo M, Pizzolanti G, Gallo G, Feo S, Baldi F, Cancemi P. Anticancer activity of biogenerated silver nanoparticles: an integrated proteomic investigation. Oncotarget 2017. [PMID: 29515763 PMCID: PMC5839394 DOI: 10.18632/oncotarget.23859] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Silver nanoparticles (AgNPs), embedded into a specific polysaccharide (EPS), were biogenerated by Klebsiella oxytoca DSM 29614 under aerobic (AgNPs-EPSaer) and anaerobic conditions (AgNPs-EPSanaer). Both AgNPs-EPS matrices were tested by MTT assay for cytotoxic activity against human breast (SKBR3 and 8701-BC) and colon (HT-29, HCT 116 and Caco-2) cancer cell lines, revealing AgNPs-EPSaer as the most active, in terms of IC50, with a more pronounced efficacy against breast cancer cell lines. Therefore, colony forming capability, morphological changes, generation of reactive oxygen species (ROS), induction of apoptosis and autophagy, inhibition of migratory and invasive capabilities and proteomic changes were investigated using SKBR3 breast cancer cells with the aim to elucidate AgNPs-EPSaer mode of action. In particular, AgNPs-EPSaer induced a significant decrease of cell motility and MMP-2 and MMP-9 activity and a significant increase of ROS generation, which, in turn, supported cell death mainly through autophagy and in a minor extend through apoptosis. Consistently, TEM micrographs and the determination of total silver in subcellular fractions indicated that the Ag+ accumulated preferentially in mitochondria and in smaller concentrations in nucleus, where interact with DNA. Interestingly, these evidences were confirmed by a differential proteomic analysis that highlighted important pathways involved in AgNPs-EPSaer toxicity, including endoplasmic reticulum stress, oxidative stress and mitochondrial impairment triggering cell death trough apoptosis and/or autophagy activation.
Collapse
Affiliation(s)
- Miriam Buttacavoli
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Nadia Ninfa Albanese
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Gianluca Di Cara
- Center of Experimental Oncobiology (C.OB.S.), La Maddalena Hospital III Level Oncological Dept., Palermo, Italy
| | - Rosa Alduina
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Claudia Faleri
- Department of Life Science, University of Siena, Siena, Italy
| | - Michele Gallo
- Department of Molecular Science and Nanosystems, Cà Foscari University of Venice, Venice, Italy
| | - Giuseppe Pizzolanti
- Biomedical Department of Internal and Specialist Medicine (DIBIMIS), Section of Endocrinology, University of Palermo, Palermo, Italy.,Advanced Technologies Network Center (ATeN), University of Palermo, Palermo, Italy
| | - Giuseppe Gallo
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy.,Advanced Technologies Network Center (ATeN), University of Palermo, Palermo, Italy
| | - Salvatore Feo
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy.,Advanced Technologies Network Center (ATeN), University of Palermo, Palermo, Italy
| | - Franco Baldi
- Department of Molecular Science and Nanosystems, Cà Foscari University of Venice, Venice, Italy
| | - Patrizia Cancemi
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy.,Center of Experimental Oncobiology (C.OB.S.), La Maddalena Hospital III Level Oncological Dept., Palermo, Italy.,Advanced Technologies Network Center (ATeN), University of Palermo, Palermo, Italy
| |
Collapse
|
175
|
3-Bromopyruvate enhances TRAIL-induced apoptosis in human nasopharyngeal carcinoma cells through CHOP-dependent upregulation of TRAIL-R2. Anticancer Drugs 2017; 28:739-749. [PMID: 28471808 DOI: 10.1097/cad.0000000000000502] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Past reports have shown that the sensitivity of cancer cells to TRAIL-induced apoptosis is related to their expression of TRAIL-death receptors on the cell surface. However, the level of TRAIL-death receptors expression on cancer cells is always low. Our previous research showed that nasopharyngeal carcinoma (NPC) cells have a poor sensitivity to low doses of TRAIL. Here, we evaluated combined treatment with the energy inhibitor 3-bromopyruvate (3BP) and TRAIL as a method to produce an increased apoptotic response in NPC cells. The results showed that 3BP and TRAIL together produced higher cytotoxicity and increased TRAIL-R2 expression in NPC cells compared with the effects of either 3BP or TRAIL alone. These findings led us to hypothesize that 3BP may sensitize NPC cells to TRAIL. 3BP is a metabolic blocker that inhibits hexokinase II activity, suppresses ATP production, and induces endoplasmic reticulum (ER) stress. Our results showed that 3BP also activated AMP-activated protein kinase, which we found to play an important role in the induction of ER stress by 3BP. Furthermore, the induction of TRAIL-R2 expression and the sensitization of the NPC cells to TRAIL by 3BP were reduced when we inhibited the expression of CHOP. Taken together, our results showed that a low dose of 3BP sensitized NPC cells to TRAIL-induced apoptosis by the upregulation of CHOP, which was mediated by the activation of AMP-activated protein kinase and ER stress. The results showed that 3BP is a promising candidate agent for enhancing the therapeutic response to TRAIL in NPC.
Collapse
|
176
|
Immunometabolic Pathways in BCG-Induced Trained Immunity. Cell Rep 2017; 17:2562-2571. [PMID: 27926861 PMCID: PMC5177620 DOI: 10.1016/j.celrep.2016.11.011] [Citation(s) in RCA: 428] [Impact Index Per Article: 61.1] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 10/11/2016] [Accepted: 10/31/2016] [Indexed: 12/15/2022] Open
Abstract
The protective effects of the tuberculosis vaccine Bacillus Calmette-Guerin (BCG) on unrelated infections are thought to be mediated by long-term metabolic changes and chromatin remodeling through histone modifications in innate immune cells such as monocytes, a process termed trained immunity. Here, we show that BCG induction of trained immunity in monocytes is accompanied by a strong increase in glycolysis and, to a lesser extent, glutamine metabolism, both in an in-vitro model and after vaccination of mice and humans. Pharmacological and genetic modulation of rate-limiting glycolysis enzymes inhibits trained immunity, changes that are reflected by the effects on the histone marks (H3K4me3 and H3K9me3) underlying BCG-induced trained immunity. These data demonstrate that a shift of the glucose metabolism toward glycolysis is crucial for the induction of the histone modifications and functional changes underlying BCG-induced trained immunity. The identification of these pathways may be a first step toward vaccines that combine immunological and metabolic stimulation. Cellular metabolism undergoes major shifts in BCG-trained monocytes The Akt-mTOR signaling pathway is essential for these shifts in metabolism Induction of glucose and glutamine metabolism are crucial in trained immunity The metabolic changes are the result of rewiring of chromatin modifications
Collapse
|
177
|
Tatapudy S, Aloisio F, Barber D, Nystul T. Cell fate decisions: emerging roles for metabolic signals and cell morphology. EMBO Rep 2017; 18:2105-2118. [PMID: 29158350 DOI: 10.15252/embr.201744816] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 09/14/2017] [Accepted: 10/24/2017] [Indexed: 12/25/2022] Open
Abstract
Understanding how cell fate decisions are regulated is a fundamental goal of developmental and stem cell biology. Most studies on the control of cell fate decisions address the contributions of changes in transcriptional programming, epigenetic modifications, and biochemical differentiation cues. However, recent studies have found that other aspects of cell biology also make important contributions to regulating cell fate decisions. These cues can have a permissive or instructive role and are integrated into the larger network of signaling, functioning both upstream and downstream of developmental signaling pathways. Here, we summarize recent insights into how cell fate decisions are influenced by four aspects of cell biology: metabolism, reactive oxygen species (ROS), intracellular pH (pHi), and cell morphology. For each topic, we discuss how these cell biological cues interact with each other and with protein-based mechanisms for changing gene transcription. In addition, we highlight several questions that remain unanswered in these exciting and relatively new areas of the field.
Collapse
Affiliation(s)
- Sumitra Tatapudy
- Departments of Anatomy and OB-GYN/RS, University of California, San Francisco, San Francisco, CA, USA
| | - Francesca Aloisio
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, USA
| | - Diane Barber
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, USA
| | - Todd Nystul
- Departments of Anatomy and OB-GYN/RS, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
178
|
Roux C, Riganti C, Borgogno SF, Curto R, Curcio C, Catanzaro V, Digilio G, Padovan S, Puccinelli MP, Isabello M, Aime S, Cappello P, Novelli F. Endogenous glutamine decrease is associated with pancreatic cancer progression. Oncotarget 2017; 8:95361-95376. [PMID: 29221133 PMCID: PMC5707027 DOI: 10.18632/oncotarget.20545] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 08/04/2017] [Indexed: 12/12/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is becoming the second leading cause of cancer-related death in the Western world. The mortality is very high, which emphasizes the need to identify biomarkers for early detection. As glutamine metabolism alteration is a feature of PDAC, its in vivo evaluation may provide a useful tool for biomarker identification. Our aim was to identify a handy method to evaluate blood glutamine consumption in mouse models of PDAC. We quantified the in vitro glutamine uptake by Mass Spectrometry (MS) in tumor cell supernatants and showed that it was higher in PDAC compared to non-PDAC tumor and pancreatic control human cells. The increased glutamine uptake was paralleled by higher activity of most glutamine pathway-related enzymes supporting nucleotide and ATP production. Free glutamine blood levels were evaluated in orthotopic and spontaneous mouse models of PDAC and other pancreatic-related disorders by High-Performance Liquid Chromatography (HPLC) and/or MS. Notably we observed a reduction of blood glutamine as much as the tumor progressed from pancreatic intraepithelial lesions to invasive PDAC, but was not related to chronic pancreatitis-associated inflammation or diabetes. In parallel the increased levels of branched-chain amino acids (BCAA) were observed. By contrast blood glutamine levels were stable in non-tumor bearing mice. These findings demonstrated that glutamine uptake is measurable both in vitro and in vivo. The higher in vitro avidity of PDAC cells corresponded to a lower blood glutamine level as soon as the tumor mass grew. The reduction in circulating glutamine represents a novel tool exploitable to implement other diagnostic or prognostic PDAC biomarkers.
Collapse
Affiliation(s)
- Cecilia Roux
- Center for Experimental Research and Medical Studies, Città della Salute e della Scienza di Torino, 10126 Turin, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy
| | - Chiara Riganti
- Department of Oncology, University of Turin, 10126 Turin, Italy
| | - Sammy Ferri Borgogno
- Center for Experimental Research and Medical Studies, Città della Salute e della Scienza di Torino, 10126 Turin, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy
| | - Roberta Curto
- Center for Experimental Research and Medical Studies, Città della Salute e della Scienza di Torino, 10126 Turin, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy
| | - Claudia Curcio
- Center for Experimental Research and Medical Studies, Città della Salute e della Scienza di Torino, 10126 Turin, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy
| | - Valeria Catanzaro
- Department of Science and Technologic Innovation, Università del Piemonte Orientale “A. Avogadro”, 15121 Alessandria, Italy
| | - Giuseppe Digilio
- Department of Science and Technologic Innovation, Università del Piemonte Orientale “A. Avogadro”, 15121 Alessandria, Italy
| | - Sergio Padovan
- Institute for Biostructures and Bioimages (CNR) c/o Molecular Biotechnology Center, 10126 Turin, Italy
| | - Maria Paola Puccinelli
- Clinical Biochemistry Laboratory, Città della Salute e della Scienza di Torino, 10126 Turin, Italy
| | - Monica Isabello
- Clinical Biochemistry Laboratory, Città della Salute e della Scienza di Torino, 10126 Turin, Italy
| | - Silvio Aime
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy
- Molecular Biotechnology Center, University of Turin, 10126 Turin, Italy
| | - Paola Cappello
- Center for Experimental Research and Medical Studies, Città della Salute e della Scienza di Torino, 10126 Turin, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy
- Molecular Biotechnology Center, University of Turin, 10126 Turin, Italy
| | - Francesco Novelli
- Center for Experimental Research and Medical Studies, Città della Salute e della Scienza di Torino, 10126 Turin, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy
- Molecular Biotechnology Center, University of Turin, 10126 Turin, Italy
| |
Collapse
|
179
|
Cuyàs E, Verdura S, Fernández-Arroyo S, Bosch-Barrera J, Martin-Castillo B, Joven J, Menendez JA. Metabolomic mapping of cancer stem cells for reducing and exploiting tumor heterogeneity. Oncotarget 2017; 8:99223-99236. [PMID: 29245896 PMCID: PMC5725087 DOI: 10.18632/oncotarget.21834] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 09/29/2017] [Indexed: 02/06/2023] Open
Abstract
Personalized cancer medicine based on the analysis of tumors en masse is limited by tumor heterogeneity, which has become a major obstacle to effective cancer treatment. Cancer stem cells (CSC) are emerging as key drivers of inter- and intratumoral heterogeneity. CSC have unique metabolic dependencies that are required not only for specific bioenergetic/biosynthetic demands but also for sustaining their operational epigenetic traits, i.e. self-renewal, tumor-initiation, and plasticity. Given that the metabolome is the final downstream product of all the –omic layers and, therefore, most representative of the biological phenotype, we here propose that a novel approach to better understand the complexity of tumor heterogeneity is by mapping and cataloging small numbers of CSC metabolomic phenotypes. The narrower metabolomic diversity of CSC states could be employed to reduce multidimensional tumor heterogeneity into dynamic models of fewer actionable sub-phenotypes. The identification of the driver nodes that are used differentially by CSC states to metabolically regulate self-renewal and tumor initation and escape chemotherapy might open new preventive and therapeutic avenues. The mapping of CSC metabolomic states could become a pioneering strategy to reduce the dimensionality of tumor heterogeneity and improve our ability to examine changes in tumor cell populations for cancer detection, prognosis, prediction/monitoring of therapy response, and detection of therapy resistance and recurrent disease. The identification of driver metabolites and metabolic nodes accounting for a large amount of variance within the CSC metabolomic sub-phenotypes might offer new unforeseen opportunities for reducing and exploiting tumor heterogeneity via metabolic targeting of CSC.
Collapse
Affiliation(s)
- Elisabet Cuyàs
- Metabolism and Cancer Group, Program Against Cancer Therapeutic Resistance, Catalan Institute of Oncology, Girona, Spain.,Molecular Oncology Group, Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| | - Sara Verdura
- Metabolism and Cancer Group, Program Against Cancer Therapeutic Resistance, Catalan Institute of Oncology, Girona, Spain.,Molecular Oncology Group, Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| | - Salvador Fernández-Arroyo
- Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Catalonia, Spain.,Campus of International Excellence Southern Catalonia, Tarragona, Catalonia, Spain
| | | | | | - Jorge Joven
- Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Catalonia, Spain.,Campus of International Excellence Southern Catalonia, Tarragona, Catalonia, Spain
| | - Javier A Menendez
- Metabolism and Cancer Group, Program Against Cancer Therapeutic Resistance, Catalan Institute of Oncology, Girona, Spain.,Molecular Oncology Group, Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| |
Collapse
|
180
|
Jové M, Collado R, Quiles JL, Ramírez-Tortosa MC, Sol J, Ruiz-Sanjuan M, Fernandez M, de la Torre Cabrera C, Ramírez-Tortosa C, Granados-Principal S, Sánchez-Rovira P, Pamplona R. A plasma metabolomic signature discloses human breast cancer. Oncotarget 2017; 8:19522-19533. [PMID: 28076849 PMCID: PMC5386702 DOI: 10.18632/oncotarget.14521] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 12/26/2016] [Indexed: 01/04/2023] Open
Abstract
PURPOSE Metabolomics is the comprehensive global study of metabolites in biological samples. In this retrospective pilot study we explored whether serum metabolomic profile can discriminate the presence of human breast cancer irrespective of the cancer subtype. METHODS Plasma samples were analyzed from healthy women (n = 20) and patients with breast cancer after diagnosis (n = 91) using a liquid chromatography-mass spectrometry platform. Multivariate statistics and a Random Forest (RF) classifier were used to create a metabolomics panel for the diagnosis of human breast cancer. RESULTS Metabolomics correctly distinguished between breast cancer patients and healthy control subjects. In the RF supervised class prediction analysis comparing breast cancer and healthy control groups, RF accurately classified 100% both samples of the breast cancer patients and healthy controls. So, the class error for both group in and the out-of-bag error were 0. We also found 1269 metabolites with different concentration in plasma from healthy controls and cancer patients; and basing on exact mass, retention time and isotopic distribution we identified 35 metabolites. These metabolites mostly support cell growth by providing energy and building stones for the synthesis of essential biomolecules, and function as signal transduction molecules. The collective results of RF, significance testing, and false discovery rate analysis identified several metabolites that were strongly associated with breast cancer. CONCLUSIONS In breast cancer a metabolomics signature of cancer exists and can be detected in patient plasma irrespectively of the breast cancer type.
Collapse
Affiliation(s)
- Mariona Jové
- Department of Experimental Medicine, University of Lleida-Institute for Research in Biomedicine of Lleida (UdL-IRBLleida), Lleida, Spain
| | - Ricardo Collado
- Department of Oncology, Medical Oncology Unit, Hospital San Pedro de Alcántara, Cáceres, Official Postgraduate Programme in Nutrition and Food Technology, University of Granada, Spain
| | - José Luís Quiles
- Institute of Nutrition and Food Technology "José Mataix", Biomedical Research Center, Department of Physiology, University of Granada, Granada, Spain
| | - Mari-Carmen Ramírez-Tortosa
- Institute of Nutrition and Food Technology "José Mataix", Biomedical Research Center, Department of Biochemistry and Molecular Biology II, University of Granada, Granada, Spain
| | - Joaquim Sol
- Department of Experimental Medicine, University of Lleida-Institute for Research in Biomedicine of Lleida (UdL-IRBLleida), Lleida, Spain
| | | | | | | | - Cesar Ramírez-Tortosa
- Department of Pathological Anatomy, Hospital of Jaén, Jaén, Spain.,GENYO, Centre for Genomics and Oncological Research (Pfizer / University of Granada / Andalusian Regional Government), PTS Granada, Granada, Spain
| | | | | | - Reinald Pamplona
- Department of Experimental Medicine, University of Lleida-Institute for Research in Biomedicine of Lleida (UdL-IRBLleida), Lleida, Spain
| |
Collapse
|
181
|
Mehrmohamadi M, Jeong SH, Locasale JW. Molecular features that predict the response to antimetabolite chemotherapies. Cancer Metab 2017; 5:8. [PMID: 29026541 PMCID: PMC5627437 DOI: 10.1186/s40170-017-0170-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 09/18/2017] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Antimetabolite chemotherapeutic agents that target cellular metabolism are widely used in the clinic and are thought to exert their anti-cancer effects mainly through non-specific cytotoxic effects. However, patients vary dramatically with respect to treatment outcome, and the sources of heterogeneity remain largely unknown. METHODS Here, we introduce a computational method for identifying gene expression signatures of response to chemotherapies and apply it to human tumors and cancer cell lines. Furthermore, we characterize a set of 17 antimetabolite agents in various contexts to investigate determinants of sensitivity to these agents. RESULTS We identify distinct favorable and unfavorable metabolic expression signatures for 5-FU and Gemcitabine. Importantly, we find that metabolic pathways targeted by each of these antimetabolites are specifically enriched in its expression signatures. We provide evidence against the common notion about non-specific cytotoxic functions of antimetabolite drugs. CONCLUSIONS This study demonstrates through unbiased analyses that the activities of metabolic pathways likely contribute to therapeutic response.
Collapse
Affiliation(s)
- Mahya Mehrmohamadi
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC 27710 USA.,Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC 27710 USA.,Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710 USA.,Department of Molecular Biology and Genetics, Field of Genetics, Genomics and Development, Cornell University, Ithaca, NY 14853 USA
| | - Seong Ho Jeong
- Department of Molecular Biology and Genetics, Field of Genetics, Genomics and Development, Cornell University, Ithaca, NY 14853 USA
| | - Jason W Locasale
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC 27710 USA.,Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC 27710 USA.,Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710 USA
| |
Collapse
|
182
|
Sun Y, Luo M, Chang G, Ren W, Wu K, Li X, Shen J, Zhao X, Hu Y. Phosphorylation of Ser6 in hnRNPA1 by S6K2 regulates glucose metabolism and cell growth in colorectal cancer. Oncol Lett 2017; 14:7323-7331. [PMID: 29344170 PMCID: PMC5755035 DOI: 10.3892/ol.2017.7085] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 07/27/2017] [Indexed: 12/29/2022] Open
Abstract
Abnormal glucose metabolism is critical in colorectal cancer (CRC) development. Expression of the pyruvate kinase (PK) M2 isoform, rather than the PKM1 isoform, serves important functions in reprogramming the glucose metabolism of cancer cells. Preferential expression of PKM2 is primarily driven by alternative splicing, which is coordinated by a group of splicing factors including heterogeneous nuclear ribonucleoprotein (hnRNP)A1, hnRNPA2 and RNA binding motif containing. However, the underlying molecular mechanisms associated with cancer cell expression of PKM2, instead of PKM1, remain unknown. The mRNA levels of PKM isoform and glucose metabolism were analyzed in CRC cells. The results of the present study indicated that S6 kinase 2 (S6K2) promotes glycolysis and growth of CRC cells by regulating alternative splicing of the PKM gene. In addition, chromatin immunoprecipitation assay indicated that S6K2 phosphorylation of Ser6 of hnRNPA1 facilitated hnRNPA1 binding to the splicing site of the PKM gene. As a result, cancer cells preferentially expressed the PKM2 isoform, instead of the PKM1 isoform. Furthermore, Cox regression analysis demonstrated that the phosphorylation of Ser6 of hnRNPA1 was a predictor of poor prognosis for patients with CRC. Therefore, the results of the present study revealed that the phosphorylation of Ser6 in hnRNPA1 by S6K2 was a novel mechanism underlying glucose metabolic reprogramming, and suggested that S6K2 is a potential therapeutic target for CRC treatment.
Collapse
Affiliation(s)
- Yan Sun
- Department of Geriatrics, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Man Luo
- Department of Geriatrics, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Guilin Chang
- Department of Geriatrics, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Weiying Ren
- Department of Geriatrics, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Kefen Wu
- Department of Geriatrics, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Xi Li
- Department of Geriatrics, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Jiping Shen
- Department of Geriatrics, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Xiaoping Zhao
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| | - Yu Hu
- Department of Geriatrics, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| |
Collapse
|
183
|
Rajeshkumar NV, Yabuuchi S, Pai SG, De Oliveira E, Kamphorst JJ, Rabinowitz JD, Tejero H, Al-Shahrour F, Hidalgo M, Maitra A, Dang CV. Treatment of Pancreatic Cancer Patient-Derived Xenograft Panel with Metabolic Inhibitors Reveals Efficacy of Phenformin. Clin Cancer Res 2017; 23:5639-5647. [PMID: 28611197 PMCID: PMC6540110 DOI: 10.1158/1078-0432.ccr-17-1115] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 05/23/2017] [Accepted: 06/05/2017] [Indexed: 12/12/2022]
Abstract
Purpose: To identify effective metabolic inhibitors to suppress the aggressive growth of pancreatic ductal adenocarcinoma (PDAC), we explored the in vivo antitumor efficacy of metabolic inhibitors, as single agents, in a panel of patient-derived PDAC xenograft models (PDX) and investigated whether genomic alterations of tumors correlate with the sensitivity to metabolic inhibitors.Experimental Design: Mice with established PDAC tumors from 6 to 13 individual PDXs were randomized and treated, once daily for 4 weeks, with either sterile PBS (vehicle) or the glutaminase inhibitor bis-2-(5-phenylacetamido-1,3,4-thiadiazol-2-yl)ethyl sulfide (BPTES), transaminase inhibitor aminooxyacetate (AOA), pyruvate dehydrogenase kinase inhibitor dichloroacetate (DCA), autophagy inhibitor chloroquine (CQ), and mitochondrial complex I inhibitor phenformin/metformin.Results: Among the agents tested, phenformin showed significant tumor growth inhibition (>30% compared with vehicle) in 5 of 12 individual PDXs. Metformin, at a fivefold higher dose, displayed significant tumor growth inhibition in 3 of 12 PDXs similar to BPTES (2/8 PDXs) and DCA (2/6 PDXs). AOA and CQ had the lowest response rates. Gene set enrichment analysis conducted using the baseline gene expression profile of pancreatic tumors identified a gene expression signature that inversely correlated with phenformin sensitivity, which is in agreement with the phenformin gene expression signature of NIH Library of Integrated Network-based Cellular Signatures (LINCS). The PDXs that were more sensitive to phenformin showed a baseline reduction in amino acids and elevation in oxidized glutathione. There was no correlation between phenformin response and genetic alterations in KRAS, TP53, SMAD4, or PTENConclusions: Phenformin treatment showed relatively higher antitumor efficacy against established PDAC tumors, compared with the efficacy of other metabolic inhibitors and metformin. Phenformin treatment significantly diminished PDAC tumor progression and prolonged tumor doubling time. Overall, our results serve as a foundation for further evaluation of phenformin as a therapeutic agent in pancreatic cancer. Clin Cancer Res; 23(18); 5639-47. ©2017 AACR.
Collapse
Affiliation(s)
- N V Rajeshkumar
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland.
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Shinichi Yabuuchi
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Shweta G Pai
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Elizabeth De Oliveira
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jurre J Kamphorst
- Cancer Research UK Beatson Institute, Garscube Estate, Glasgow, United Kingdom
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Glasgow, United Kingdom
| | - Joshua D Rabinowitz
- Lewis-Sigler Institute for Integrative Genomics and Department of Chemistry, Princeton University, Princeton, New Jersey
| | - Héctor Tejero
- Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | | | - Manuel Hidalgo
- Spanish National Cancer Research Center (CNIO), Madrid, Spain
- Division of Hematology-Oncology, Rosenberg Clinical Cancer Center, Beth Israel Deaconess Medical Center (BIDMC), Boston, Massachusetts
| | - Anirban Maitra
- Department of Pathology and Translational Molecular Pathology, Sheikh Ahmad Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Chi V Dang
- Abramson Cancer Center, Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania.
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
184
|
Sreedhar A, Petruska P, Miriyala S, Panchatcharam M, Zhao Y. UCP2 overexpression enhanced glycolysis via activation of PFKFB2 during skin cell transformation. Oncotarget 2017; 8:95504-95515. [PMID: 29221144 PMCID: PMC5707038 DOI: 10.18632/oncotarget.20762] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Accepted: 08/03/2017] [Indexed: 01/01/2023] Open
Abstract
Uncoupling protein 2 (UCP2) is an inner mitochondrial membrane transporter which is often upregulated in human cancers. However, how this anion transporter affects tumorigenesis is not well understood. Using the skin cell transformation JB6 model, we demonstrated that UCP2 overexpression activated phosphofructokinase 2/fructose-2,6-bisphosphatase 2 (PFKFB2), a key regulator of glycolysis. In conjunction, upregulation of PFKFB2 expression correlated with elevated fructose 2,6-bisphosphate (Fru-2,6-P2) levels, 6-phosphofructo-1-kinase (PFK-1) activity, glucose uptake, and lactate production. Inhibiting PFKFB2 expression suppressed UCP2-mediated skin cell transformation, decreased cell proliferation, and enhanced mitochondrial respiration, while dampening aerobic glycolysis. The AKT signaling pathway was activated in the UCP2 overexpressed cells; furthermore, the activated AKT signaling contributed to the activation of PFKFB2. Whereas AKT inactivation blocked PFKFB2 activation, suggesting that AKT activation is an important step in PFKFB2 activation. Collectively, our data suggest that UCP2 is a critical regulator of cellular metabolism during cell transformation. Our data also demonstrate a potentially novel mechanism to understand UCP2's tumor-promoting role, which is through the AKT-dependent activation of PFKFB2 and thereby, the metabolic shift to glycolysis (the Warburg effect).
Collapse
Affiliation(s)
- Annapoorna Sreedhar
- Department of Pharmacology, Toxicology & Neuroscience, LSU Health Sciences Center in Shreveport, Shreveport, LA 71130, USA
| | - Petra Petruska
- Department of Pharmacology, Toxicology & Neuroscience, LSU Health Sciences Center in Shreveport, Shreveport, LA 71130, USA
| | - Sumitra Miriyala
- Department of Anatomy and Cell Biology, LSU Health Sciences Center in Shreveport, Shreveport, LA 71130, USA
| | - Manikandan Panchatcharam
- Department of Anatomy and Cell Biology, LSU Health Sciences Center in Shreveport, Shreveport, LA 71130, USA
| | - Yunfeng Zhao
- Department of Pharmacology, Toxicology & Neuroscience, LSU Health Sciences Center in Shreveport, Shreveport, LA 71130, USA
| |
Collapse
|
185
|
Rinaldi G, Rossi M, Fendt SM. Metabolic interactions in cancer: cellular metabolism at the interface between the microenvironment, the cancer cell phenotype and the epigenetic landscape. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2017; 10. [DOI: 10.1002/wsbm.1397] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 07/18/2017] [Accepted: 07/20/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Gianmarco Rinaldi
- Laboratory of Cellular Metabolism and Metabolic Regulation; VIB Center for Cancer Biology; Leuven Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology; KU Leuven and Leuven Cancer Institute (LKI); Leuven Belgium
| | - Matteo Rossi
- Laboratory of Cellular Metabolism and Metabolic Regulation; VIB Center for Cancer Biology; Leuven Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology; KU Leuven and Leuven Cancer Institute (LKI); Leuven Belgium
| | - Sarah-Maria Fendt
- Laboratory of Cellular Metabolism and Metabolic Regulation; VIB Center for Cancer Biology; Leuven Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology; KU Leuven and Leuven Cancer Institute (LKI); Leuven Belgium
| |
Collapse
|
186
|
Méndez-Lucas A, Li X, Hu J, Che L, Song X, Jia J, Wang J, Xie C, Driscoll PC, Tschaharganeh DF, Calvisi DF, Yuneva M, Chen X. Glucose Catabolism in Liver Tumors Induced by c-MYC Can Be Sustained by Various PKM1/PKM2 Ratios and Pyruvate Kinase Activities. Cancer Res 2017; 77:4355-4364. [PMID: 28630053 PMCID: PMC5559320 DOI: 10.1158/0008-5472.can-17-0498] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 05/05/2017] [Accepted: 06/13/2017] [Indexed: 12/12/2022]
Abstract
Different pyruvate kinase isoforms are expressed in a tissue-specific manner, with pyruvate kinase M2 (PKM2) suggested to be the predominant isoform in proliferating cells and cancer cells. Because of differential regulation of enzymatic activities, PKM2, but not PKM1, has been thought to favor cell proliferation. However, the role of PKM2 in tumorigenesis has been recently challenged. Here we report that increased glucose catabolism through glycolysis and increased pyruvate kinase activity in c-MYC-driven liver tumors are associated with increased expression of both PKM1 and PKM2 isoforms and decreased expression of the liver-specific isoform of pyruvate kinase, PKL. Depletion of PKM2 at the time of c-MYC overexpression in murine livers did not affect c-MYC-induced tumorigenesis and resulted in liver tumor formation with decreased pyruvate kinase activity and decreased catabolism of glucose into alanine and the Krebs cycle. An increased PKM1/PKM2 ratio by ectopic PKM1 expression further decreased glucose flux into serine biosynthesis and increased flux into lactate and the Krebs cycle, resulting in reduced total levels of serine. However, these changes also did not affect c-MYC-induced liver tumor development. These results suggest that increased expression of PKM2 is not required to support c-MYC-induced tumorigenesis in the liver and that various PKM1/PKM2 ratios and pyruvate kinase activities can sustain glucose catabolism required for this process. Cancer Res; 77(16); 4355-64. ©2017 AACR.
Collapse
Affiliation(s)
| | - Xiaolei Li
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, California
- Department of Thyroid and Breast Surgery, Jinan Military General Hospital of PLA, Jinan, Shandong, P.R. China
| | - Junjie Hu
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, California
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei, P.R. China
| | - Li Che
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, California
| | - Xinhua Song
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, California
| | - Jiaoyuan Jia
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, California
- Department of Oncology and Hematology, The Second Hospital, Jilin University, Changchun, China
| | - Jingxiao Wang
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, California
| | - Chencheng Xie
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, California
- Department of Internal Medicine, University of South Dakota Sanford School of Medicine, Vermillion, South Dakota
| | | | - Darjus F Tschaharganeh
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Helmholtz-Junior Research Group "Cell plasticity and Epigenetic Remodeling", German Cancer Research Center and Institute of Pathology at Heidelberg University, Heidelberg, Germany
| | - Diego F Calvisi
- Institute of Pathology, University of Greifswald, Greifswald, Germany
| | - Mariia Yuneva
- The Francis Crick Institute, London, United Kingdom.
| | - Xin Chen
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, California.
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei, P.R. China
| |
Collapse
|
187
|
O'Flanagan CH, Rossi EL, McDonell SB, Chen X, Tsai YH, Parker JS, Usary J, Perou CM, Hursting SD. Metabolic reprogramming underlies metastatic potential in an obesity-responsive murine model of metastatic triple negative breast cancer. NPJ Breast Cancer 2017; 3:26. [PMID: 28748213 PMCID: PMC5514148 DOI: 10.1038/s41523-017-0027-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Revised: 05/12/2017] [Accepted: 06/06/2017] [Indexed: 02/08/2023] Open
Abstract
The vast majority of cancer-related deaths are due to metastatic disease, whereby primary tumor cells disseminate and colonize distal sites within the body. Triple negative breast cancer typically displays aberrant Wnt signaling, lacks effective targeted therapies, and compared with other breast cancer subtypes, is more likely to recur and metastasize. We developed a Wnt-driven lung metastasis model of triple negative breast cancer (metM-Wntlung) through serial passaging of our previously described, nonmetastatic, claudin-low M-Wnt cell line. metM-Wntlung cells displayed characteristics of epithelial-to-mesenchymal transition (e.g., increased invasiveness) with some re-epithealization (e.g., increased adhesion, tight colony formation, increased E-cadherin expression, and decreased Vimentin and Fibronectin expression). When orthotopically transplanted into syngeneic mice, metM-Wntlung cells readily formed tumors and metastasized in vivo, and tumor growth and metastasis were enhanced in obese mice compared with non-obese mice. Gene expression analysis revealed several genes and pathways altered in metM-Wntlung cells compared with M-Wnt cells, including multiple genes associated with epithelial-to-mesenchymal transition, energy metabolism and inflammation. Moreover, obesity caused significant transcriptomic changes, especially in metabolic pathways. Metabolic flux analyses showed greater metabolic plasticity, with heightened mitochondrial and glycolytic energetics in metM-Wntlung cells relative to M-Wnt cells. Similar metabolic profiles were found in a second triple negative breast cancer progression series, M6 and M6C cells. These findings suggest that metabolic reprogramming is a feature of metastatic potential in triple negative breast cancer. Thus, targeting metastases-associated metabolic perturbations may represent a novel strategy for reducing the burden of metastatic triple negative breast cancer, particularly in obese women. Metabolic changes contribute to the metastatic potential of triple negative breast cancer (TNBC), a mouse study shows. Stephen Hursting and colleagues from the University of North Carolina at Chapel Hill, USA, established metastatic mouse TNBC cells driven by Wnt-1, a signaling protein that’s highly active in this aggressive subtype of breast cancer. In a lab dish, these cells showed signs of increased invasiveness; and when transplanted into mice, the cells readily formed tumors that metastasized to the lungs. Obese mice experienced more aggressive tumor growth and spread than normal-weight animals. Gene expression analyses revealed that TNBC cells with metastatic potential have an energetic leg-up over their non-metastatic counterparts in the face of obesity-induced metabolic changes, suggesting that targeting metabolic perturbations could help reduce the burden of metastatic TNBC, particularly for obese women.
Collapse
Affiliation(s)
- Ciara H O'Flanagan
- Department of Nutrition, University of North Carolina, Chapel Hill, NC 27517 USA
| | - Emily L Rossi
- Department of Nutrition, University of North Carolina, Chapel Hill, NC 27517 USA
| | - Shannon B McDonell
- Department of Nutrition, University of North Carolina, Chapel Hill, NC 27517 USA
| | - Xuewen Chen
- Department of Nutrition, University of North Carolina, Chapel Hill, NC 27517 USA
| | - Yi-Hsuan Tsai
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27517 USA
| | - Joel S Parker
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27517 USA.,Department of Genetics, University of North Carolina, Chapel Hill, NC 27517 USA
| | - Jerry Usary
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27517 USA
| | - Charles M Perou
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27517 USA.,Department of Genetics, University of North Carolina, Chapel Hill, NC 27517 USA.,Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27517 USA
| | - Stephen D Hursting
- Department of Nutrition, University of North Carolina, Chapel Hill, NC 27517 USA.,Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27517 USA.,Nutrition Research Institute, University of North Carolina, Kannapolis, NC 28081 USA
| |
Collapse
|
188
|
Houde VP, Donzelli S, Sacconi A, Galic S, Hammill JA, Bramson JL, Foster RA, Tsakiridis T, Kemp BE, Grasso G, Blandino G, Muti P, Steinberg GR. AMPK β1 reduces tumor progression and improves survival in p53 null mice. Mol Oncol 2017; 11:1143-1155. [PMID: 28544264 PMCID: PMC5579332 DOI: 10.1002/1878-0261.12079] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 05/15/2017] [Accepted: 05/16/2017] [Indexed: 12/21/2022] Open
Abstract
The AMP-activated protein kinase (AMPK) is a heterotrimeric protein complex that is an important sensor of cellular energy status. Reduced expression of the AMPK β1 isoform has been linked to reduced survival in different cancers, but whether this accelerates tumor progression and the potential mechanism mediating these effects are not known. Furthermore, it is unknown whether AMPK β1 is implicated in tumorigenesis, and if so, what tissues may be most sensitive. In the current study, we find that in the absence of the tumor suppressor p53, germline genetic deletion of AMPK β1 accelerates the appearance of a T-cell lymphoma that reduces lifespan compared to p53 deficiency alone. This increased tumorigenesis is linked to increases in interleukin-1β (IL1β), reductions in acetyl-CoA carboxylase (ACC) phosphorylation, and elevated lipogenesis. Collectively, these data indicate that reductions in the AMPK β1 subunit accelerate the development of T-cell lymphoma, suggesting that therapies targeting this AMPK subunit or inhibiting lipogenesis may be effective for limiting the proliferation of p53-mutant tumors.
Collapse
Affiliation(s)
- Vanessa P Houde
- Department of Oncology, McMaster University, Hamilton, Canada.,Department of Medicine, McMaster University, Hamilton, Canada
| | - Sara Donzelli
- Oncogenomic and Epigenetic Unit, Italian National Cancer Institute 'Regina Elena', Rome, Italy
| | - Andrea Sacconi
- Oncogenomic and Epigenetic Unit, Italian National Cancer Institute 'Regina Elena', Rome, Italy
| | - Sandra Galic
- St. Vincent's Institute of Medical Research and Department of Medicine, University of Melbourne, Australia
| | - Joanne A Hammill
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Canada
| | - Jonathan L Bramson
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Canada
| | - Robert A Foster
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Canada
| | | | - Bruce E Kemp
- St. Vincent's Institute of Medical Research and Department of Medicine, University of Melbourne, Australia.,Mary MacKillop Institute for Health Research Australian Catholic University, Fitzroy, Australia
| | - Giuseppe Grasso
- Oncogenomic and Epigenetic Unit, Italian National Cancer Institute 'Regina Elena', Rome, Italy
| | - Giovanni Blandino
- Department of Oncology, McMaster University, Hamilton, Canada.,Oncogenomic and Epigenetic Unit, Italian National Cancer Institute 'Regina Elena', Rome, Italy
| | - Paola Muti
- Department of Oncology, McMaster University, Hamilton, Canada
| | - Gregory R Steinberg
- Department of Medicine, McMaster University, Hamilton, Canada.,Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
| |
Collapse
|
189
|
Identification of the Consistently Altered Metabolic Targets in Human Hepatocellular Carcinoma. Cell Mol Gastroenterol Hepatol 2017; 4:303-323.e1. [PMID: 28840186 PMCID: PMC5560912 DOI: 10.1016/j.jcmgh.2017.05.004] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 05/19/2017] [Indexed: 02/08/2023]
Abstract
BACKGROUND & AIMS Cancer cells rely on metabolic alterations to enhance proliferation and survival. Metabolic gene alterations that repeatedly occur in liver cancer are largely unknown. We aimed to identify metabolic genes that are consistently deregulated, and are of potential clinical significance in human hepatocellular carcinoma (HCC). METHODS We studied the expression of 2,761 metabolic genes in 8 microarray datasets comprising 521 human HCC tissues. Genes exclusively up-regulated or down-regulated in 6 or more datasets were defined as consistently deregulated. The consistent genes that correlated with tumor progression markers (ECM2 and MMP9) (Pearson correlation P < .05) were used for Kaplan-Meier overall survival analysis in a patient cohort. We further compared proteomic expression of metabolic genes in 19 tumors vs adjacent normal liver tissues. RESULTS We identified 634 consistent metabolic genes, ∼60% of which are not yet described in HCC. The down-regulated genes (n = 350) are mostly involved in physiologic hepatocyte metabolic functions (eg, xenobiotic, fatty acid, and amino acid metabolism). In contrast, among consistently up-regulated metabolic genes (n = 284) are those involved in glycolysis, pentose phosphate pathway, nucleotide biosynthesis, tricarboxylic acid cycle, oxidative phosphorylation, proton transport, membrane lipid, and glycan metabolism. Several metabolic genes (n = 434) correlated with progression markers, and of these, 201 predicted overall survival outcome in the patient cohort analyzed. Over 90% of the metabolic targets significantly altered at the protein level were similarly up- or down-regulated as in genomic profile. CONCLUSIONS We provide the first exposition of the consistently altered metabolic genes in HCC and show that these genes are potentially relevant targets for onward studies in preclinical and clinical contexts.
Collapse
Key Words
- EMT, epithelial to mesenchymal transition
- FA, fatty acid
- HCC
- HCC, hepatocellular carcinoma
- Liver Cancer
- NAFLD, nonalcoholic fatty liver disease
- NASH, nonalcoholic steatohepatitis
- NB, nucleotide biosynthesis
- OXPHOS, oxidative phosphorylation
- PPP, pentose phosphate pathway
- TCA, tricarboxylic acid
- TCGA, The Cancer Genome Atlas
- Tumor Metabolism
- XM, xenobiotics metabolism
- logFC, log of fold change
Collapse
|
190
|
Abrego J, Gunda V, Vernucci E, Shukla SK, King RJ, Dasgupta A, Goode G, Murthy D, Yu F, Singh PK. GOT1-mediated anaplerotic glutamine metabolism regulates chronic acidosis stress in pancreatic cancer cells. Cancer Lett 2017; 400:37-46. [PMID: 28455244 DOI: 10.1016/j.canlet.2017.04.029] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 04/12/2017] [Accepted: 04/14/2017] [Indexed: 02/07/2023]
Abstract
The increased rate of glycolysis and reduced oxidative metabolism are the principal biochemical phenotypes observed in pancreatic ductal adenocarcinoma (PDAC) that lead to the development of an acidic tumor microenvironment. The pH of most epithelial cell-derived tumors is reported to be lower than that of plasma. However, little is known regarding the physiology and metabolism of cancer cells enduring chronic acidosis. Here, we cultured PDAC cells in chronic acidosis (pH 6.9-7.0) and observed that cells cultured in low pH had reduced clonogenic capacity. However, our physiological and metabolomics analysis showed that cells in low pH deviate from glycolytic metabolism and rely more on oxidative metabolism. The increased expression of the transaminase enzyme GOT1 fuels oxidative metabolism of cells cultured in low pH by enhancing the non-canonical glutamine metabolic pathway. Survival in low pH is reduced upon depletion of GOT1 due to increased intracellular ROS levels. Thus, GOT1 plays an important role in energy metabolism and ROS balance in chronic acidosis stress. Our studies suggest that targeting anaplerotic glutamine metabolism may serve as an important therapeutic target in PDAC.
Collapse
Affiliation(s)
- Jaime Abrego
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - Venugopal Gunda
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - Enza Vernucci
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - Surendra K Shukla
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - Ryan J King
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - Aneesha Dasgupta
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Gennifer Goode
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - Divya Murthy
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - Fang Yu
- Department of Biostatistics, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Pankaj K Singh
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA; Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA; Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA; Department of Genetics Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
191
|
Chen F, Bian K, Tang Q, Fedeles BI, Singh V, Humulock ZT, Essigmann JM, Li D. Oncometabolites d- and l-2-Hydroxyglutarate Inhibit the AlkB Family DNA Repair Enzymes under Physiological Conditions. Chem Res Toxicol 2017; 30:1102-1110. [PMID: 28269980 DOI: 10.1021/acs.chemrestox.7b00009] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Cancer-associated mutations often lead to perturbed cellular energy metabolism and accumulation of potentially harmful oncometabolites. One example is the chiral molecule 2-hydroxyglutarate (2HG); its two stereoisomers (d- and l-2HG) have been found at abnormally high concentrations in tumors featuring anomalous metabolic pathways. 2HG has been demonstrated to competitively inhibit several α-ketoglutarate (αKG)- and non-heme iron-dependent dioxygenases, including some of the AlkB family DNA repair enzymes, such as ALKBH2 and ALKBH3. However, previous studies have only provided the IC50 values of d-2HG on the enzymes, and the results have not been correlated to physiologically relevant concentrations of 2HG and αKG in cancer cells. In this work, we performed detailed kinetic analyses of DNA repair reactions catalyzed by ALKBH2, ALKBH3, and the bacterial AlkB in the presence of d- and l-2HG in both double- and single-stranded DNA contexts. We determined the kinetic parameters of inhibition, including kcat, KM, and Ki. We also correlated the relative concentrations of 2HG and αKG previously measured in tumor cells with the inhibitory effect of 2HG on the AlkB family enzymes. Both d- and l-2HG significantly inhibited the human DNA repair enzymes ALKBH2 and ALKBH3 at pathologically relevant concentrations (73-88% for d-2HG and 31-58% for l-2HG inhibition). This work provides a new perspective that the elevation of the d- or l-2HG concentration in cancer cells may contribute to an increased mutation rate by inhibiting the DNA repair performed by the AlkB family enzymes and thus exacerbate the genesis and progression of tumors.
Collapse
Affiliation(s)
- Fangyi Chen
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island , Kingston, Rhode Island 02881, United States
| | - Ke Bian
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island , Kingston, Rhode Island 02881, United States
| | - Qi Tang
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island , Kingston, Rhode Island 02881, United States
| | - Bogdan I Fedeles
- Department of Biological Engineering, Department of Chemistry, and Center for Environmental Health Sciences, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - Vipender Singh
- Department of Biological Engineering, Department of Chemistry, and Center for Environmental Health Sciences, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - Zachary T Humulock
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island , Kingston, Rhode Island 02881, United States
| | - John M Essigmann
- Department of Biological Engineering, Department of Chemistry, and Center for Environmental Health Sciences, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - Deyu Li
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island , Kingston, Rhode Island 02881, United States
| |
Collapse
|
192
|
Lytovchenko O, Kunji ERS. Expression and putative role of mitochondrial transport proteins in cancer. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2017; 1858:641-654. [PMID: 28342810 DOI: 10.1016/j.bbabio.2017.03.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 02/20/2017] [Accepted: 03/21/2017] [Indexed: 02/07/2023]
Abstract
Cancer cells undergo major changes in energy and biosynthetic metabolism. One of them is the Warburg effect, in which pyruvate is used for fermentation rather for oxidative phosphorylation. Another major one is their increased reliance on glutamine, which helps to replenish the pool of Krebs cycle metabolites used for other purposes, such as amino acid or lipid biosynthesis. Mitochondria are central to these alterations, as the biochemical pathways linking these processes run through these organelles. Two membranes, an outer and inner membrane, surround mitochondria, the latter being impermeable to most organic compounds. Therefore, a large number of transport proteins are needed to link the biochemical pathways of the cytosol and mitochondrial matrix. Since the transport steps are relatively slow, it is expected that many of these transport steps are altered when cells become cancerous. In this review, changes in expression and regulation of these transport proteins are discussed as well as the role of the transported substrates. This article is part of a Special Issue entitled Mitochondria in Cancer, edited by Giuseppe Gasparre, Rodrigue Rossignol and Pierre Sonveaux.
Collapse
Affiliation(s)
- Oleksandr Lytovchenko
- Medical Research Council, Mitochondrial Biology Unit, Cambridge Biomedical Campus, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, UK
| | - Edmund R S Kunji
- Medical Research Council, Mitochondrial Biology Unit, Cambridge Biomedical Campus, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, UK.
| |
Collapse
|
193
|
Hartman JH, Miller GP, Meyer JN. Toxicological Implications of Mitochondrial Localization of CYP2E1. Toxicol Res (Camb) 2017; 6:273-289. [PMID: 28989700 DOI: 10.1039/c7tx00020k] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Cytochrome P450 2E1 (CYP2E1) metabolizes an extensive array of pollutants, drugs, and other small molecules, often resulting in bioactivation to reactive metabolites. Therefore, it is unsurprising that it has been the subject of decades of research publications and reviews. However, while CYP2E1 has historically been studied in the endoplasmic reticulum (erCYP2E1), active CYP2E1 is also present in mitochondria (mtCYP2E1). Relatively few studies have specifically focused on mtCYP2E1, but there is growing interest in this form of the enzyme as a driver in toxicological mechanisms given its activity and location. Many previous studies have linked total CYP2E1 to conditions that involve mitochondrial dysfunction (fasting, diabetes, non-alcoholic steatohepatitis, and obesity). Furthermore, a large number of reactive metabolites that are formed by CYP2E1 through metabolism of drugs and pollutants have been demonstrated to cause mitochondrial dysfunction. Finally, there appears to be significant inter-individual variability in targeting to the mitochondria, which could constitute a source of variability in individual response to exposures. This review discusses those outcomes, the biochemical properties and toxicological consequences of mtCYP2E1, and highlights important knowledge gaps and future directions. Overall, we feel that this exciting area of research is rich with new and important questions about the relationship between mtCYP2E1, mitochondrial dysfunction, and pathology.
Collapse
Affiliation(s)
| | - Grover P Miller
- Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Joel N Meyer
- Nicholas School of the Environment, Duke University, Durham, NC
| |
Collapse
|
194
|
Neuzillet C, Rousseau B, Kocher H, Bourget P, Tournigand C. Unravelling the pharmacologic opportunities and future directions for targeted therapies in gastro-intestinal cancers Part 1: GI carcinomas. Pharmacol Ther 2017; 174:145-172. [PMID: 28223233 DOI: 10.1016/j.pharmthera.2017.02.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Until the 1990s, cytotoxic chemotherapy has been the cornerstone of medical therapy for gastrointestinal (GI) cancers. Better understanding of the molecular biology of cancer cell has led to the therapeutic revolution of targeted therapies, i.e. monoclonal antibodies or small molecule inhibitors directed against proteins that are specifically overexpressed or mutated in cancer cells. These agents being more specific to cancer cells were expected to be less toxic than cytotoxic agents. Targeted agents have provided clinical benefit in many GI cancer types. For example, antiangiogenics and anti-EGFR therapies have significantly improved survival of patients affected by metastatic colorectal cancer and have deeply changed the therapeutic strategy in this disease. However, their effects have sometimes been disappointing, due to intrinsic or acquired resistance mechanisms (e.g., RAS mutation for anti-EGFR therapies), or to an activity restricted to some tumour settings (e.g., lack of activity in other cancer types, or on the microscopic residual disease in adjuvant setting). Many studies are negative in overall population but positive in some specific patient subgroups (e.g., trastuzumab in HER2-positive gastric cancer), illustrating the importance of patient selection and early identification of predictive biomarkers of response to these therapies. We propose a comprehensive two-part review providing a panoramic approach of the successes and failures of targeted agents in GI cancers to unravel the pharmacologic opportunities and future directions for these agents in GI oncology. In this first part, we will focus on adenocarcinomas and squamous cell carcinomas, for which targeted therapies are mostly used in combination with chemotherapy.
Collapse
Affiliation(s)
- Cindy Neuzillet
- INSERM UMR1149, Bichat-Beaujon University Hospital (AP-HP - PRES Paris 7 Diderot), 46 rue Henri Huchard, 75018 Paris, and 100 boulevard du Général Leclerc, 92110 Clichy, France; Department of Medical Oncology, Henri Mondor University Hospital, AP-HP, Paris Est Créteil University (UPEC), 51 avenue du Maréchal de Lattre de Tassigny, 94010 Créteil, France; Tumour Biology Laboratory, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, United Kingdom; Barts and The London HPB Centre, The Royal London Hospital, Whitechapel, London, E1 1BB, United Kingdom.
| | - Benoît Rousseau
- Department of Medical Oncology, Henri Mondor University Hospital, AP-HP, Paris Est Créteil University (UPEC), 51 avenue du Maréchal de Lattre de Tassigny, 94010 Créteil, France
| | - Hemant Kocher
- Tumour Biology Laboratory, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, United Kingdom; Barts and The London HPB Centre, The Royal London Hospital, Whitechapel, London, E1 1BB, United Kingdom
| | - Philippe Bourget
- Department of Clinical Pharmacy, Necker-Enfants Malades University Hospital, 149 Rue de Sèvres, 75015 Paris, France
| | - Christophe Tournigand
- Department of Medical Oncology, Henri Mondor University Hospital, AP-HP, Paris Est Créteil University (UPEC), 51 avenue du Maréchal de Lattre de Tassigny, 94010 Créteil, France
| |
Collapse
|
195
|
Massafra V, Milona A, Vos HR, Burgering BMT, van Mil SWC. Quantitative liver proteomics identifies FGF19 targets that couple metabolism and proliferation. PLoS One 2017; 12:e0171185. [PMID: 28178326 PMCID: PMC5298232 DOI: 10.1371/journal.pone.0171185] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 01/18/2017] [Indexed: 12/14/2022] Open
Abstract
Fibroblast growth factor 19 (FGF19) is a gut-derived peptide hormone that is produced following activation of Farnesoid X Receptor (FXR). FGF19 is secreted and signals to the liver, where it contributes to the homeostasis of bile acid (BA), lipid and carbohydrate metabolism. FGF19 is a promising therapeutic target for the metabolic syndrome and cholestatic diseases, but enthusiasm for its use has been tempered by FGF19-mediated induction of proliferation and hepatocellular carcinoma. To inform future rational design of FGF19-variants, we have conducted temporal quantitative proteomic and gene expression analyses to identify FGF19-targets related to metabolism and proliferation. Mice were fasted for 16 hours, and injected with human FGF19 (1 mg/kg body weight) or vehicle. Liver protein extracts (containing “light” lysine) were mixed 1:1 with a spike-in protein extract from 13C6-lysine metabolically labelled mouse liver (containing “heavy” lysine) and analysed by LC-MS/MS. Our analyses provide a resource of FGF19 target proteins in the liver. 189 proteins were upregulated (≥ 1.5 folds) and 73 proteins were downregulated (≤ -1.5 folds) by FGF19. FGF19 treatment decreased the expression of proteins involved in fatty acid (FA) synthesis, i.e., Fabp5, Scd1, and Acsl3 and increased the expression of Acox1, involved in FA oxidation. As expected, FGF19 increased the expression of proteins known to drive proliferation (i.e., Tgfbi, Vcam1, Anxa2 and Hdlbp). Importantly, many of the FGF19 targets (i.e., Pdk4, Apoa4, Fas and Stat3) have a dual function in both metabolism and cell proliferation. Therefore, our findings challenge the development of FGF19-variants that fully uncouple metabolic benefit from mitogenic potential.
Collapse
Affiliation(s)
- Vittoria Massafra
- Center for Molecular Medicine, UMC Utrecht, Utrecht, The Netherlands
| | - Alexandra Milona
- Center for Molecular Medicine, UMC Utrecht, Utrecht, The Netherlands
| | - Harmjan R. Vos
- Center for Molecular Medicine, UMC Utrecht, Utrecht, The Netherlands
| | | | | |
Collapse
|
196
|
Kolosenko I, Avnet S, Baldini N, Viklund J, De Milito A. Therapeutic implications of tumor interstitial acidification. Semin Cancer Biol 2017; 43:119-133. [PMID: 28188829 DOI: 10.1016/j.semcancer.2017.01.008] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 01/25/2017] [Accepted: 01/31/2017] [Indexed: 12/12/2022]
Abstract
Interstitial acidification is a hallmark of solid tumor tissues resulting from the combination of different factors, including cellular buffering systems, defective tissue perfusion and high rates of cellular metabolism. Besides contributing to tumor pathogenesis and promoting tumor progression, tumor acidosis constitutes an important intrinsic and extrinsic mechanism modulating therapy sensitivity and drug resistance. In fact, pharmacological properties of anticancer drugs can be affected not only by tissue structure and organization but also by the distribution of the interstitial tumor pH. The acidic tumor environment is believed to create a chemical barrier that limits the effects and activity of many anticancer drugs. In this review article we will discuss the general protumorigenic effects of acidosis, the role of tumor acidosis in the modulation of therapeutic efficacy and potential strategies to overcome pH-dependent therapy-resistance.
Collapse
Affiliation(s)
- Iryna Kolosenko
- Department of Oncology-Pathology, Cancer Center Karolinska, Karolinska Institute, Stockholm, Sweden
| | - Sofia Avnet
- Orthopaedic Pathophysiology and Regenerative Medicine Unit, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Nicola Baldini
- Orthopaedic Pathophysiology and Regenerative Medicine Unit, Istituto Ortopedico Rizzoli, Bologna, Italy
| | | | - Angelo De Milito
- Department of Oncology-Pathology, Cancer Center Karolinska, Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
197
|
Quantitative global proteome and lysine succinylome analyses provide insights into metabolic regulation and lymph node metastasis in gastric cancer. Sci Rep 2017; 7:42053. [PMID: 28165029 PMCID: PMC5292683 DOI: 10.1038/srep42053] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 01/06/2017] [Indexed: 12/23/2022] Open
Abstract
With the rapid development of high-throughput quantitative proteomic and transcriptomic approaches, the molecular mechanisms of cancers have been comprehensively explored. However, cancer is a multi-dimensional disease with sophisticated regulations, and few studies focus on the crosstalk among multiomics. In order to explore the molecular mechanisms of gastric cancer (GC), particularly in the process of lymph node metastasis (LNM), we investigated dynamic profiling changes as well as crosstalk between long non-coding RNAs (lncRNAs), the proteome, and the lysine succinylome. Our study reports the first qualitative and quantitative profile of lysine succinylation in GC. We identified a novel mechanism through which the TCA cycle and pentose phosphate pathway might be regulated through lysine succinylation in their core enzymes. We then examined the potential of using lysine succinylation as a biomarker for GC and successfully developed a succinylation-dependent antibody for the K569 site in Caldesmon as putative biomarker. Finally, we investigated the relationship between the lysine succinylome and lncRNAs, identifying potential crosstalks between two lncRNAs and one succinylation site. These results expand our understanding of the mechanisms of tumorigenesis and provide new information for the diagnosis and prognosis of GC.
Collapse
|
198
|
Lee SY, Jeong EK, Ju MK, Jeon HM, Kim MY, Kim CH, Park HG, Han SI, Kang HS. Induction of metastasis, cancer stem cell phenotype, and oncogenic metabolism in cancer cells by ionizing radiation. Mol Cancer 2017; 16:10. [PMID: 28137309 PMCID: PMC5282724 DOI: 10.1186/s12943-016-0577-4] [Citation(s) in RCA: 369] [Impact Index Per Article: 52.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 12/25/2016] [Indexed: 12/12/2022] Open
Abstract
Radiation therapy is one of the major tools of cancer treatment, and is widely used for a variety of malignant tumours. Radiotherapy causes DNA damage directly by ionization or indirectly via the generation of reactive oxygen species (ROS), thereby destroying cancer cells. However, ionizing radiation (IR) paradoxically promotes metastasis and invasion of cancer cells by inducing the epithelial-mesenchymal transition (EMT). Metastasis is a major obstacle to successful cancer therapy, and is closely linked to the rates of morbidity and mortality of many cancers. ROS have been shown to play important roles in mediating the biological effects of IR. ROS have been implicated in IR-induced EMT, via activation of several EMT transcription factors—including Snail, HIF-1, ZEB1, and STAT3—that are activated by signalling pathways, including those of TGF-β, Wnt, Hedgehog, Notch, G-CSF, EGFR/PI3K/Akt, and MAPK. Cancer cells that undergo EMT have been shown to acquire stemness and undergo metabolic changes, although these points are debated. IR is known to induce cancer stem cell (CSC) properties, including dedifferentiation and self-renewal, and to promote oncogenic metabolism by activating these EMT-inducing pathways. Much accumulated evidence has shown that metabolic alterations in cancer cells are closely associated with the EMT and CSC phenotypes; specifically, the IR-induced oncogenic metabolism seems to be required for acquisition of the EMT and CSC phenotypes. IR can also elicit various changes in the tumour microenvironment (TME) that may affect invasion and metastasis. EMT, CSC, and oncogenic metabolism are involved in radioresistance; targeting them may improve the efficacy of radiotherapy, preventing tumour recurrence and metastasis. This study focuses on the molecular mechanisms of IR-induced EMT, CSCs, oncogenic metabolism, and alterations in the TME. We discuss how IR-induced EMT/CSC/oncogenic metabolism may promote resistance to radiotherapy; we also review efforts to develop therapeutic approaches to eliminate these IR-induced adverse effects.
Collapse
Affiliation(s)
- Su Yeon Lee
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Pusan, 609-735, Korea
| | - Eui Kyong Jeong
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Pusan, 609-735, Korea
| | - Min Kyung Ju
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Pusan, 609-735, Korea
| | - Hyun Min Jeon
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Pusan, 609-735, Korea
| | - Min Young Kim
- Research Center, Dongnam Institute of Radiological and Medical Science (DIRAMS), Pusan, 619-953, Korea
| | - Cho Hee Kim
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Pusan, 609-735, Korea.,DNA Identification Center, National Forensic Service, Seoul, 158-707, Korea
| | - Hye Gyeong Park
- Nanobiotechnology Center, Pusan National University, Pusan, 609-735, Korea
| | - Song Iy Han
- The Division of Natural Medical Sciences, College of Health Science, Chosun University, Gwangju, 501-759, Korea
| | - Ho Sung Kang
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Pusan, 609-735, Korea.
| |
Collapse
|
199
|
Arts RJW, Novakovic B, Ter Horst R, Carvalho A, Bekkering S, Lachmandas E, Rodrigues F, Silvestre R, Cheng SC, Wang SY, Habibi E, Gonçalves LG, Mesquita I, Cunha C, van Laarhoven A, van de Veerdonk FL, Williams DL, van der Meer JWM, Logie C, O'Neill LA, Dinarello CA, Riksen NP, van Crevel R, Clish C, Notebaart RA, Joosten LAB, Stunnenberg HG, Xavier RJ, Netea MG. Glutaminolysis and Fumarate Accumulation Integrate Immunometabolic and Epigenetic Programs in Trained Immunity. Cell Metab 2016; 24:807-819. [PMID: 27866838 PMCID: PMC5742541 DOI: 10.1016/j.cmet.2016.10.008] [Citation(s) in RCA: 563] [Impact Index Per Article: 70.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Revised: 05/23/2016] [Accepted: 10/12/2016] [Indexed: 12/13/2022]
Abstract
Induction of trained immunity (innate immune memory) is mediated by activation of immune and metabolic pathways that result in epigenetic rewiring of cellular functional programs. Through network-level integration of transcriptomics and metabolomics data, we identify glycolysis, glutaminolysis, and the cholesterol synthesis pathway as indispensable for the induction of trained immunity by β-glucan in monocytes. Accumulation of fumarate, due to glutamine replenishment of the TCA cycle, integrates immune and metabolic circuits to induce monocyte epigenetic reprogramming by inhibiting KDM5 histone demethylases. Furthermore, fumarate itself induced an epigenetic program similar to β-glucan-induced trained immunity. In line with this, inhibition of glutaminolysis and cholesterol synthesis in mice reduced the induction of trained immunity by β-glucan. Identification of the metabolic pathways leading to induction of trained immunity contributes to our understanding of innate immune memory and opens new therapeutic avenues.
Collapse
Affiliation(s)
- Rob J W Arts
- Department of Internal Medicine, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands.
| | - Boris Novakovic
- Department of Molecular Biology, Faculty of Science, Radboud University, 6525 HP Nijmegen, the Netherlands
| | - Rob Ter Horst
- Department of Internal Medicine, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Agostinho Carvalho
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, 4806-909 Braga/Guimarães, Portugal
| | - Siroon Bekkering
- Department of Internal Medicine, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Ekta Lachmandas
- Department of Internal Medicine, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Fernando Rodrigues
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, 4806-909 Braga/Guimarães, Portugal
| | - Ricardo Silvestre
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, 4806-909 Braga/Guimarães, Portugal
| | - Shih-Chin Cheng
- Department of Internal Medicine, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands; Institute of Molecular Medicine, National Tsing Hua University, 300 Hsinchu City, Taiwan
| | - Shuang-Yin Wang
- Department of Molecular Biology, Faculty of Science, Radboud University, 6525 HP Nijmegen, the Netherlands
| | - Ehsan Habibi
- Department of Molecular Biology, Faculty of Science, Radboud University, 6525 HP Nijmegen, the Netherlands
| | - Luís G Gonçalves
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
| | - Inês Mesquita
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, 4806-909 Braga/Guimarães, Portugal
| | - Cristina Cunha
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, 4806-909 Braga/Guimarães, Portugal
| | - Arjan van Laarhoven
- Department of Internal Medicine, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Frank L van de Veerdonk
- Department of Internal Medicine, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - David L Williams
- Department of Surgery, Quillen College of Medicine and Center for Inflammation, Infectious Disease and Immunity, East Tennessee State University, Johnson City, TN 37604, USA
| | - Jos W M van der Meer
- Department of Internal Medicine, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Colin Logie
- Department of Molecular Biology, Faculty of Science, Radboud University, 6525 HP Nijmegen, the Netherlands
| | - Luke A O'Neill
- Trinity Biomedical Sciences Institute, Trinity College, Dublin 2, Ireland
| | - Charles A Dinarello
- Department of Internal Medicine, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands; Department of Medicine, University of Colorado Denver, Aurora, CO 80045, USA
| | - Niels P Riksen
- Department of Internal Medicine, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Reinout van Crevel
- Department of Internal Medicine, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Clary Clish
- Broad Institute of Harvard University and Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Richard A Notebaart
- Department of Internal Medicine, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Leo A B Joosten
- Department of Internal Medicine, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Hendrik G Stunnenberg
- Department of Molecular Biology, Faculty of Science, Radboud University, 6525 HP Nijmegen, the Netherlands
| | - Ramnik J Xavier
- Broad Institute of Harvard University and Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Center for Computational and Integrative Biology and Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Mihai G Netea
- Department of Internal Medicine, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| |
Collapse
|
200
|
Parrales A, Iwakuma T. p53 as a Regulator of Lipid Metabolism in Cancer. Int J Mol Sci 2016; 17:ijms17122074. [PMID: 27973397 PMCID: PMC5187874 DOI: 10.3390/ijms17122074] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 12/01/2016] [Accepted: 12/06/2016] [Indexed: 12/13/2022] Open
Abstract
Enhanced proliferation and survival are common features of cancer cells. Cancer cells are metabolically reprogrammed which aids in their survival in nutrient-poor environments. Indeed, changes in metabolism of glucose and glutamine are essential for tumor progression. Thus, metabolic reprogramming is now well accepted as a hallmark of cancer. Recent findings suggest that reprogramming of lipid metabolism also occurs in cancer cells, since lipids are used for biosynthesis of membranes, post-translational modifications, second messengers for signal transduction, and as a source of energy during nutrient deprivation. The tumor suppressor p53 is a transcription factor that controls the expression of proteins involved in cell cycle arrest, DNA repair, apoptosis, and senescence. p53 also regulates cellular metabolism, which appears to play a key role in its tumor suppressive activities. In this review article, we summarize non-canonical functions of wild-type and mutant p53 on lipid metabolism and discuss their association with cancer progression.
Collapse
Affiliation(s)
- Alejandro Parrales
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| | - Tomoo Iwakuma
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| |
Collapse
|