151
|
Deng Q, Wang S, Huang Z, Lan Q, Lai G, Xu J, Yuan Y, Liu C, Lin X, Feng W, Ma W, Cheng M, Hao S, Duan S, Zheng H, Chen X, Hou Y, Luo Y, Liu L, Liu C. Single-cell chromatin accessibility profiling of cell-state-specific gene regulatory programs during mouse organogenesis. Front Neurosci 2023; 17:1170355. [PMID: 37440917 PMCID: PMC10333525 DOI: 10.3389/fnins.2023.1170355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 06/07/2023] [Indexed: 07/15/2023] Open
Abstract
In mammals, early organogenesis begins soon after gastrulation, accompanied by specification of various type of progenitor/precusor cells. In order to reveal dynamic chromatin landscape of precursor cells and decipher the underlying molecular mechanism driving early mouse organogenesis, we performed single-cell ATAC-seq of E8.5-E10.5 mouse embryos. We profiled a total of 101,599 single cells and identified 41 specific cell types at these stages. Besides, by performing integrated analysis of scATAC-seq and public scRNA-seq data, we identified the critical cis-regulatory elements and key transcription factors which drving development of spinal cord and somitogenesis. Furthermore, we intersected accessible peaks with human diseases/traits-related loci and found potential clinical associated single nucleotide variants (SNPs). Overall, our work provides a fundamental source for understanding cell fate determination and revealing the underlying mechanism during postimplantation embryonic development, and expand our knowledge of pathology for human developmental malformations.
Collapse
Affiliation(s)
- Qiuting Deng
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- BGI-Hangzhou, Hangzhou, China
| | - Shengpeng Wang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- BGI-Hangzhou, Hangzhou, China
| | - Zijie Huang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- BGI-Shenzhen, Shenzhen, China
| | | | | | | | | | | | - Xiumei Lin
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- BGI-Hangzhou, Hangzhou, China
| | - Weimin Feng
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- BGI-Hangzhou, Hangzhou, China
| | - Wen Ma
- BGI-Shenzhen, Shenzhen, China
| | | | - Shijie Hao
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- BGI-Hangzhou, Hangzhou, China
| | - Shanshan Duan
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- BGI-Hangzhou, Hangzhou, China
| | | | | | - Yong Hou
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- BGI-Shenzhen, Shenzhen, China
| | | | - Longqi Liu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- BGI-Hangzhou, Hangzhou, China
- BGI-Shenzhen, Shenzhen, China
- Shenzhen Bay Laboratory, Shenzhen, China
| | - Chuanyu Liu
- BGI-Shenzhen, Shenzhen, China
- Shenzhen Bay Laboratory, Shenzhen, China
| |
Collapse
|
152
|
Taye N, Singh M, Baldock C, Hubmacher D. Secreted ADAMTS-like 2 promotes myoblast differentiation by potentiating WNT signaling. Matrix Biol 2023; 120:24-42. [PMID: 37187448 PMCID: PMC10238107 DOI: 10.1016/j.matbio.2023.05.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/25/2023] [Accepted: 05/12/2023] [Indexed: 05/17/2023]
Abstract
Myogenesis is the process that generates multinucleated contractile myofibers from muscle stem cells during skeletal muscle development and regeneration. Myogenesis is governed by myogenic regulatory transcription factors, including MYOD1. Here, we identified the secreted matricellular protein ADAMTS-like 2 (ADAMTSL2) as part of a Wnt-dependent positive feedback loop, which augmented or sustained MYOD1 expression and thus promoted myoblast differentiation. ADAMTSL2 depletion resulted in severe retardation of myoblast differentiation in vitro and its ablation in myogenic precursor cells resulted in aberrant skeletal muscle architecture. Mechanistically, ADAMTSL2 potentiated WNT signaling by binding to WNT ligands and WNT receptors. We identified the WNT-binding ADAMTSL2 peptide, which was sufficient to promote myogenesis in vitro. Since ADAMTSL2 was previously described as a negative regulator of TGFβ signaling in fibroblasts, ADAMTSL2 now emerges as a signaling hub that could integrate WNT, TGFβ and potentially other signaling pathways within the dynamic microenvironment of differentiating myoblasts during skeletal muscle development and regeneration.
Collapse
Affiliation(s)
- Nandaraj Taye
- Orthopedic Research Laboratories, Leni & Peter W. May Department of Orthopedics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Mukti Singh
- Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Wellcome Centre for Cell-Matrix Research, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Clair Baldock
- Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Wellcome Centre for Cell-Matrix Research, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Dirk Hubmacher
- Orthopedic Research Laboratories, Leni & Peter W. May Department of Orthopedics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States.
| |
Collapse
|
153
|
Pomella S, Danielli SG, Alaggio R, Breunis WB, Hamed E, Selfe J, Wachtel M, Walters ZS, Schäfer BW, Rota R, Shipley JM, Hettmer S. Genomic and Epigenetic Changes Drive Aberrant Skeletal Muscle Differentiation in Rhabdomyosarcoma. Cancers (Basel) 2023; 15:2823. [PMID: 37345159 DOI: 10.3390/cancers15102823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/14/2023] [Accepted: 05/16/2023] [Indexed: 06/23/2023] Open
Abstract
Rhabdomyosarcoma (RMS), the most common soft-tissue sarcoma in children and adolescents, represents an aberrant form of skeletal muscle differentiation. Both skeletal muscle development, as well as regeneration of adult skeletal muscle are governed by members of the myogenic family of regulatory transcription factors (MRFs), which are deployed in a highly controlled, multi-step, bidirectional process. Many aspects of this complex process are deregulated in RMS and contribute to tumorigenesis. Interconnected loops of super-enhancers, called core regulatory circuitries (CRCs), define aberrant muscle differentiation in RMS cells. The transcriptional regulation of MRF expression/activity takes a central role in the CRCs active in skeletal muscle and RMS. In PAX3::FOXO1 fusion-positive (PF+) RMS, CRCs maintain expression of the disease-driving fusion oncogene. Recent single-cell studies have revealed hierarchically organized subsets of cells within the RMS cell pool, which recapitulate developmental myogenesis and appear to drive malignancy. There is a large interest in exploiting the causes of aberrant muscle development in RMS to allow for terminal differentiation as a therapeutic strategy, for example, by interrupting MEK/ERK signaling or by interfering with the epigenetic machinery controlling CRCs. In this review, we provide an overview of the genetic and epigenetic framework of abnormal muscle differentiation in RMS, as it provides insights into fundamental mechanisms of RMS malignancy, its remarkable phenotypic diversity and, ultimately, opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Silvia Pomella
- Department of Hematology/Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS Istituto Ospedale Pediatrico Bambino Gesu, Viale San Paolo 15, 00146 Rome, Italy
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Sara G Danielli
- Department of Oncology and Children's Research Center, University Children's Hospital of Zurich, 8032 Zürich, Switzerland
| | - Rita Alaggio
- Department of Pathology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Viale San Paolo 15, 00146 Rome, Italy
| | - Willemijn B Breunis
- Department of Oncology and Children's Research Center, University Children's Hospital of Zurich, 8032 Zürich, Switzerland
| | - Ebrahem Hamed
- Division of Pediatric Hematology and Oncology, Department of Pediatric and Adolescent Medicine, University Medical Center Freiburg, University of Freiburg, 79106 Freiburg, Germany
| | - Joanna Selfe
- Sarcoma Molecular Pathology Team, Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, London SM2 FNG, UK
| | - Marco Wachtel
- Department of Oncology and Children's Research Center, University Children's Hospital of Zurich, 8032 Zürich, Switzerland
| | - Zoe S Walters
- Translational Epigenomics Team, Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, UK
| | - Beat W Schäfer
- Department of Oncology and Children's Research Center, University Children's Hospital of Zurich, 8032 Zürich, Switzerland
| | - Rossella Rota
- Department of Hematology/Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS Istituto Ospedale Pediatrico Bambino Gesu, Viale San Paolo 15, 00146 Rome, Italy
| | - Janet M Shipley
- Sarcoma Molecular Pathology Team, Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, London SM2 FNG, UK
| | - Simone Hettmer
- Division of Pediatric Hematology and Oncology, Department of Pediatric and Adolescent Medicine, University Medical Center Freiburg, University of Freiburg, 79106 Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), 79104 Freiburg, Germany
- Comprehensive Cancer Centre Freiburg (CCCF), University Medical Center Freiburg, 790106 Freiburg, Germany
| |
Collapse
|
154
|
Bersin TV, Cordova KL, Saenger EK, Journey ML, Beckman BR, Lema SC. Nutritional status affects Igf1 regulation of skeletal muscle myogenesis, myostatin, and myofibrillar protein degradation pathways in gopher rockfish (Sebastes carnatus). Mol Cell Endocrinol 2023; 573:111951. [PMID: 37169322 DOI: 10.1016/j.mce.2023.111951] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/13/2023]
Abstract
Insulin-like growth factor-1 (Igf1) regulates skeletal muscle growth in fishes by increasing protein synthesis and promoting muscle hypertrophy. When fish experience periods of insufficient food intake, they undergo slower muscle growth or even muscle wasting, and those changes emerge in part from nutritional modulation of Igf1 signaling. Here, we examined how food deprivation (fasting) modulates Igf1 regulation of liver and skeletal muscle gene expression in gopher rockfish (Sebastes carnatus), a nearshore rockfish of importance for commercial and recreational fisheries in the northeastern Pacific Ocean, to understand how food limitation impacts Igf regulation of muscle growth pathways. Rockfish were either fed or fasted for 14 d, after which a subset of fish from each group was treated with recombinant Igf1 from sea bream (Sparus aurata). Fish that were fasted lost body mass and had lower body condition, reduced hepatosomatic index, and lower plasma Igf1 concentrations, as well as a decreased abundance of igf1 gene transcripts in the liver, increased hepatic mRNAs for Igf binding proteins igfbp1a, igfbp1b, and igfbp3a, and decreased mRNA abundances for igfbp2b and a putative Igf acid labile subunit (igfals) gene. In skeletal muscle, fasted fish showed a reduced abundance of intramuscular igf1 mRNAs but elevated gene transcripts encoding Igf1 receptors A (igf1ra) and B (igf1rb), which also showed downregulation by Igf1. Fasting increased skeletal muscle mRNAs for myogenin and myostatin1, as well as ubiquitin ligase F-box only protein 32 (fbxo32) and muscle RING-finger protein-1 (murf1) genes involved in muscle atrophy, while concurrently downregulating mRNAs for myoblast determination protein 2 (myod2), myostatin2, and myogenic factors 5 (myf5) and 6 (myf6 encoding Mrf4). Treatment with Igf1 downregulated muscle myostatin1 and fbxo32 under both feeding conditions, but showed feeding-dependent effects on murf1, myf5, and myf6/Mrf4 gene expression indicating that Igf1 effects on muscle growth and atrophy pathways is contingent on recent food consumption experience.
Collapse
Affiliation(s)
- Theresa V Bersin
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA, 93407, USA
| | - Kasey L Cordova
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA, 93407, USA
| | - E Kate Saenger
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA, 93407, USA
| | - Meredith L Journey
- Lynker Technology, 202 Church St SE #536, Leesburg, VA, 20175, USA; Under Contract to Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA, 98112, USA
| | - Brian R Beckman
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA, 98112, USA
| | - Sean C Lema
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA, 93407, USA.
| |
Collapse
|
155
|
Cabezas F, Cabello-Verrugio C, González N, Salas J, Ramírez MJ, de la Vega E, Olguín HC. NEDD4-1 deficiency impairs satellite cell function during skeletal muscle regeneration. Biol Res 2023; 56:21. [PMID: 37147738 PMCID: PMC10161651 DOI: 10.1186/s40659-023-00432-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 04/17/2023] [Indexed: 05/07/2023] Open
Abstract
BACKGROUND Satellite cells are tissue-specific stem cells primarily responsible for the regenerative capacity of skeletal muscle. Satellite cell function and maintenance are regulated by extrinsic and intrinsic mechanisms, including the ubiquitin-proteasome system, which is key for maintaining protein homeostasis. In this context, it has been shown that ubiquitin-ligase NEDD4-1 targets the transcription factor PAX7 for proteasome-dependent degradation, promoting muscle differentiation in vitro. Nonetheless, whether NEDD4-1 is required for satellite cell function in regenerating muscle remains to be determined. RESULTS Using conditional gene ablation, we show that NEDD4-1 loss, specifically in the satellite cell population, impairs muscle regeneration resulting in a significant reduction of whole-muscle size. At the cellular level, NEDD4-1-null muscle progenitors exhibit a significant decrease in the ability to proliferate and differentiate, contributing to the formation of myofibers with reduced diameter. CONCLUSIONS These results indicate that NEDD4-1 expression is critical for proper muscle regeneration in vivo and suggest that it may control satellite cell function at multiple levels.
Collapse
Affiliation(s)
- Felipe Cabezas
- Laboratory of Tissue Repair and Adult Stem Cells, Molecular and Cell Biology Department, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Ciencias Biológicas y Químicas, Facultad de Medicina y Ciencia, Universidad San Sebastián, Lota 2465, 7510157, Santiago, Chile
| | - Claudio Cabello-Verrugio
- Laboratory of Muscle Pathology, Fragility and Aging, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
| | - Natalia González
- Laboratory of Tissue Repair and Adult Stem Cells, Molecular and Cell Biology Department, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jeremy Salas
- Laboratory of Tissue Repair and Adult Stem Cells, Molecular and Cell Biology Department, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Manuel J Ramírez
- Laboratory of Tissue Repair and Adult Stem Cells, Molecular and Cell Biology Department, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Eduardo de la Vega
- Laboratory of Tissue Repair and Adult Stem Cells, Molecular and Cell Biology Department, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Hugo C Olguín
- Laboratory of Tissue Repair and Adult Stem Cells, Molecular and Cell Biology Department, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
156
|
Zheng X, Zhang W, Hu Y, Zhao Z, Wu J, Zhang X, Hao F, Han J, Xu J, Hao W, Wang R, Tian M, Radak Z, Nakabeppu Y, Boldogh I, Ba X. DNA repair byproduct 8-oxoguanine base promotes myoblast differentiation. Redox Biol 2023; 61:102634. [PMID: 36827746 PMCID: PMC9982643 DOI: 10.1016/j.redox.2023.102634] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/03/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
Muscle contraction increases the level of reactive oxygen species (ROS), which has been acknowledged as key signaling entities in muscle remodeling and to underlie the healthy adaptation of skeletal muscle. ROS inevitably endows damage to various cellular molecules including DNA. DNA damage ought to be repaired to ensure genome integrity; yet, how DNA repair byproducts affect muscle adaptation remains elusive. Here, we showed that exercise elicited the generation of 8-oxo-7,8-dihydroguanine (8-oxoG), that was primarily found in mitochondrial genome of myofibers. Upon exercise, TA muscle's 8-oxoG excision capacity markedly enhanced, and in the interstitial fluid of TA muscle from the post-exercise mice, the level of free 8-oxoG base was significantly increased. Addition of 8-oxoG to myoblasts triggered myogenic differentiation via activating Ras-MEK-MyoD signal axis. 8-Oxoguanine DNA glycosylase1 (OGG1) silencing from cells or Ogg1 KO from mice decreased Ras activation, ERK phosphorylation, MyoD transcriptional activation, myogenic regulatory factors gene (MRFs) expression. In reconstruction experiments, exogenously added 8-oxoG base enhanced the expression of MRFs and accelerated the recovery of the injured skeletal muscle. Collectively, these data not only suggest that DNA repair metabolite 8-oxoG function as a signal entity for muscle remodeling and contribute to exercise-induced adaptation of skeletal muscle, but also raised the potential for utilizing 8-oxoG in clinical treatment to skeletal muscle damage-related disorders.
Collapse
Affiliation(s)
- Xu Zheng
- The Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, Jilin, 130024, China; School of Life Sciences, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Wenhe Zhang
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Yinchao Hu
- The Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, Jilin, 130024, China; School of Life Sciences, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Zhexuan Zhao
- The Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, Jilin, 130024, China; School of Life Sciences, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Jiaxin Wu
- The Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, Jilin, 130024, China; School of Life Sciences, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Xiaoqing Zhang
- The Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, Jilin, 130024, China; School of Life Sciences, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Fengqi Hao
- The Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, Jilin, 130024, China; School of Physical Education, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Jinling Han
- The Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, Jilin, 130024, China; School of Life Sciences, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Jing Xu
- The Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, Jilin, 130024, China; School of Life Sciences, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Wenjing Hao
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ruoxi Wang
- Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Meihong Tian
- School of Physical Education, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Zsolt Radak
- Research Institute of Sport Science, University of Physical Education, H-1123, Budapest, Hungary
| | - Yusaku Nakabeppu
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan
| | - Istvan Boldogh
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX77555, USA
| | - Xueqing Ba
- The Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, Jilin, 130024, China; School of Life Sciences, Northeast Normal University, Changchun, Jilin, 130024, China.
| |
Collapse
|
157
|
Atmakuru PS, Dhawan J. The cilium-centrosome axis in coupling cell cycle exit and cell fate. J Cell Sci 2023; 136:308872. [PMID: 37144419 DOI: 10.1242/jcs.260454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023] Open
Abstract
The centrosome is an evolutionarily conserved, ancient organelle whose role in cell division was first described over a century ago. The structure and function of the centrosome as a microtubule-organizing center, and of its extracellular extension - the primary cilium - as a sensory antenna, have since been extensively studied, but the role of the cilium-centrosome axis in cell fate is still emerging. In this Opinion piece, we view cellular quiescence and tissue homeostasis from the vantage point of the cilium-centrosome axis. We focus on a less explored role in the choice between distinct forms of mitotic arrest - reversible quiescence and terminal differentiation, which play distinct roles in tissue homeostasis. We outline evidence implicating the centrosome-basal body switch in stem cell function, including how the cilium-centrosome complex regulates reversible versus irreversible arrest in adult skeletal muscle progenitors. We then highlight exciting new findings in other quiescent cell types that suggest signal-dependent coupling of nuclear and cytoplasmic events to the centrosome-basal body switch. Finally, we propose a framework for involvement of this axis in mitotically inactive cells and identify future avenues for understanding how the cilium-centrosome axis impacts central decisions in tissue homeostasis.
Collapse
Affiliation(s)
- Priti S Atmakuru
- CSIR Centre for Cellular and Molecular Biology, Hyderabad 500 007, India
| | - Jyotsna Dhawan
- CSIR Centre for Cellular and Molecular Biology, Hyderabad 500 007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
158
|
Kurosaka M, Hung YL, Machida S, Kohda K. IL-4 Signaling Promotes Myoblast Differentiation and Fusion by Enhancing the Expression of MyoD, Myogenin, and Myomerger. Cells 2023; 12:cells12091284. [PMID: 37174683 PMCID: PMC10177410 DOI: 10.3390/cells12091284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/20/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
Myoblast fusion is essential for skeletal muscle development, growth, and regeneration. However, the molecular mechanisms underlying myoblast fusion and differentiation are not fully understood. Previously, we reported that interleukin-4 (IL-4) promotes myoblast fusion; therefore, we hypothesized that IL-4 signaling might regulate the expression of the molecules involved in myoblast fusion. In this study, we showed that in addition to fusion, IL-4 promoted the differentiation of C2C12 myoblast cells by inducing myoblast determination protein 1 (MyoD) and myogenin, both of which regulate the expression of myomerger and myomaker, the membrane proteins essential for myoblast fusion. Unexpectedly, IL-4 treatment increased the expression of myomerger, but not myomaker, in C2C12 cells. Knockdown of IL-4 receptor alpha (IL-4Rα) in C2C12 cells by small interfering RNA impaired myoblast fusion and differentiation. We also demonstrated a reduction in the expression of MyoD, myogenin, and myomerger by knockdown of IL-4Rα in C2C12 cells, while the expression level of myomaker remained unchanged. Finally, cell mixing assays and the restoration of myomerger expression partially rescued the impaired fusion in the IL-4Rα-knockdown C2C12 cells. Collectively, these results suggest that the IL-4/IL-4Rα axis promotes myoblast fusion and differentiation via the induction of myogenic regulatory factors, MyoD and myogenin, and myomerger.
Collapse
Affiliation(s)
- Mitsutoshi Kurosaka
- Department of Physiology, St. Marianna University School of Medicine, Kanagawa 216-8511, Japan
| | - Yung-Li Hung
- Institute of Health and Sports & Medicine, Juntendo University, Chiba 270-1695, Japan
| | - Shuichi Machida
- Institute of Health and Sports & Medicine, Juntendo University, Chiba 270-1695, Japan
- Graduate School of Health and Sports Science, Juntendo University, Chiba 270-1695, Japan
| | - Kazuhisa Kohda
- Department of Physiology, St. Marianna University School of Medicine, Kanagawa 216-8511, Japan
| |
Collapse
|
159
|
White LJ, Russell AJ, Pizzey AR, Dasmahapatra KK, Pownall ME. The Presence of Two MyoD Genes in a Subset of Acanthopterygii Fish Is Associated with a Polyserine Insert in MyoD1. J Dev Biol 2023; 11:jdb11020019. [PMID: 37218813 DOI: 10.3390/jdb11020019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/20/2023] [Accepted: 04/26/2023] [Indexed: 05/24/2023] Open
Abstract
The MyoD gene was duplicated during the teleost whole genome duplication and, while a second MyoD gene (MyoD2) was subsequently lost from the genomes of some lineages (including zebrafish), many fish lineages (including Alcolapia species) have retained both MyoD paralogues. Here we reveal the expression patterns of the two MyoD genes in Oreochromis (Alcolapia) alcalica using in situ hybridisation. We report our analysis of MyoD1 and MyoD2 protein sequences from 54 teleost species, and show that O. alcalica, along with some other teleosts, include a polyserine repeat between the amino terminal transactivation domains (TAD) and the cysteine-histidine rich region (H/C) in MyoD1. The evolutionary history of MyoD1 and MyoD2 is compared to the presence of this polyserine region using phylogenetics, and its functional relevance is tested using overexpression in a heterologous system to investigate subcellular localisation, stability, and activity of MyoD proteins that include and do not include the polyserine region.
Collapse
Affiliation(s)
- Lewis J White
- Biology Department, University of York, York YO10 5DD, UK
| | | | | | | | - Mary E Pownall
- Biology Department, University of York, York YO10 5DD, UK
| |
Collapse
|
160
|
Suroto H, Wardana GR, Sugianto JA, Aprilya D, Samijo S. Time to surgery and myo-d expression in biceps muscle of adult brachial plexus injury: a preliminary study. BMC Res Notes 2023; 16:51. [PMID: 37055794 PMCID: PMC10103435 DOI: 10.1186/s13104-023-06317-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 03/27/2023] [Indexed: 04/15/2023] Open
Abstract
BACKGROUND Brachial Plexus Injury (BPI) is one of the peripheral nerve injuries which causes severe functional impairment and disability. Without prompt treatment, prolonged denervation will cause severe muscle atrophy. MyoD, which is expressed by satellite cells, is one of the parameters that relate to the regeneration process in post-injury muscle and it is presumed to determine the clinical outcome following neurotization procedure. This study aims to understand the correlation between time to surgery (TTS) and MyoD expression in satellite cells in the biceps muscle of adult brachial plexus injury patients. METHODS Analytic observational study with a cross-sectional design was conducted at Dr. Soetomo General Hospital. All patients with BPI who underwent surgery between May 2013 and December 2015 were included. Muscle biopsy was taken and stained using immunohistochemistry for MyoD expression. Pearson correlation test was used to assess the correlation between MyoD expression with TTS and with age. RESULTS Twenty-two biceps muscle samples were examined. Most patients are males (81.8%) with an average age of 25.5 years. MyoD expression was found to be highest at TTS of 4 months and then dropped significantly (and plateau) from 9 to 36 months. MyoD expression is significantly correlated with TTS (r=-0.895; p = 0.00) but not with age (r=-0.294; p = 0.184). CONCLUSION Our study found, from the cellular point of view, that treatment of BPI needs to be done as early as possible before the regenerative potential - as indicated by MyoD expression - declined.
Collapse
Affiliation(s)
- Heri Suroto
- Department of Orthopaedic & Traumatology, Faculty of Medicine, Universitas Airlangga/Dr. Soetomo General Hospital, Surabaya, 60132, Indonesia.
- Cell and Tissue Bank-Regenerative Medicine, Faculty of Medicine, Dr Soetomo General Academic Hospital, Universitas Airlangga, Surabaya, 60132, Indonesia.
| | - Gestana Retaha Wardana
- Department of Orthopaedic & Traumatology, Faculty of Medicine, Universitas Airlangga/Dr. Soetomo General Hospital, Surabaya, 60132, Indonesia
| | - Julius Albert Sugianto
- Department of Orthopaedic & Traumatology, Faculty of Medicine, Universitas Airlangga/Dr. Soetomo General Hospital, Surabaya, 60132, Indonesia
| | - Dina Aprilya
- Orthopedic and Traumatology Department, Siloam Agora Hospital, Jakarta, Indonesia
| | | |
Collapse
|
161
|
Hirota J, Hasegawa T, Inui A, Takeda D, Amano-Iga R, Yatagai N, Saito I, Arimoto S, Akashi M. Local application of a transcutaneous carbon dioxide paste prevents excessive scarring and promotes muscle regeneration in a bupivacaine-induced rat model of muscle injury. Int Wound J 2023; 20:1151-1159. [PMID: 36250918 PMCID: PMC10031219 DOI: 10.1111/iwj.13974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/20/2022] [Accepted: 09/27/2022] [Indexed: 11/29/2022] Open
Abstract
In postoperative patients with head and neck cancer, scar tissue formation may interfere with the healing process, resulting in incomplete functional recovery and a reduced quality of life. Percutaneous application of carbon dioxide (CO2 ) has been reported to improve hypoxia, stimulate angiogenesis, and promote fracture repair and muscle damage. However, gaseous CO2 cannot be applied to the head and neck regions. Previously, we developed a paste that holds non-gaseous CO2 in a carrier and can be administered transdermally. Here, we investigated whether this paste could prevent excessive scarring and promote muscle regeneration using a bupivacaine-induced rat model of muscle injury. Forty-eight Sprague Dawley rats were randomly assigned to either a control group or a CO2 group. Both groups underwent surgery to induce muscle injury, but the control group received no treatment, whereas the CO2 group received the CO2 paste daily after surgery. Then, samples of the experimental sites were taken on days 3, 7, 14, and 21 post-surgery to examine the following: (1) inflammatory (interleukin [IL]-1β, IL-6), and transforming growth factor (TGF)-β and myogenic (MyoD and myogenin) gene expression by polymerase chain reaction, (2) muscle regeneration with haematoxylin and eosin staining, and (3) MyoD and myogenin protein expression using immunohistochemical staining. Rats in the CO2 group showed higher MyoD and myogenin expression and lower IL-1β, IL-6, and TGF-β expression than the control rats. In addition, treated rats showed evidence of accelerated muscle regeneration. Our study demonstrated that the CO2 paste prevents excessive scarring and accelerates muscle regeneration. This action may be exerted through the induction of an artificial Bohr effect, which leads to the upregulation of MyoD and myogenin, and the downregulation of IL-1β, IL-6, and TGF-β. The paste is inexpensive and non-invasive. Thus, it may be the treatment of choice for patients with muscle damage.
Collapse
Affiliation(s)
- Junya Hirota
- Department of Oral and Maxillofacial Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takumi Hasegawa
- Department of Oral and Maxillofacial Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Atsuyuki Inui
- Department of Orthopedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Daisuke Takeda
- Department of Oral and Maxillofacial Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Rika Amano-Iga
- Department of Oral and Maxillofacial Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Nanae Yatagai
- Department of Oral and Maxillofacial Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Izumi Saito
- Department of Oral and Maxillofacial Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Satomi Arimoto
- Department of Oral and Maxillofacial Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Masaya Akashi
- Department of Oral and Maxillofacial Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
162
|
Pallaoro M, Modina SC, Fiorati A, Altomare L, Mirra G, Scocco P, Di Giancamillo A. Towards a More Realistic In Vitro Meat: The Cross Talk between Adipose and Muscle Cells. Int J Mol Sci 2023; 24:ijms24076630. [PMID: 37047600 PMCID: PMC10095036 DOI: 10.3390/ijms24076630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/22/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
According to statistics and future predictions, meat consumption will increase in the coming years. Considering both the environmental impact of intensive livestock farming and the importance of protecting animal welfare, the necessity of finding alternative strategies to satisfy the growing meat demand is compelling. Biotechnologies are responding to this demand by developing new strategies for producing meat in vitro. The manufacturing of cultured meat has faced criticism concerning, above all, the practical issues of culturing together different cell types typical of meat that are partly responsible for meat’s organoleptic characteristics. Indeed, the existence of a cross talk between adipose and muscle cells has critical effects on the outcome of the co-culture, leading to a general inhibition of myogenesis in favor of adipogenic differentiation. This review aims to clarify the main mechanisms and the key molecules involved in this cross talk and provide an overview of the most recent and successful meat culture 3D strategies for overcoming this challenge, focusing on the approaches based on farm-animal-derived cells.
Collapse
Affiliation(s)
- Margherita Pallaoro
- Department of Veterinary Medicine and Animal Sciences (DIVAS), University of Milan, Via dell’Università 6, 26900 Lodi, Italy
| | - Silvia Clotilde Modina
- Department of Veterinary Medicine and Animal Sciences (DIVAS), University of Milan, Via dell’Università 6, 26900 Lodi, Italy
| | - Andrea Fiorati
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Polytechnic University of Milan, Via Luigi Mancinelli, 7, 20131 Milan, Italy
- National Interuniversity Consortium of Materials Science and Technology (INSTM), 50121 Florence, Italy
| | - Lina Altomare
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Polytechnic University of Milan, Via Luigi Mancinelli, 7, 20131 Milan, Italy
- National Interuniversity Consortium of Materials Science and Technology (INSTM), 50121 Florence, Italy
| | - Giorgio Mirra
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell’Università 16, 35020 Legnaro, Italy
| | - Paola Scocco
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, 62032 Camerino, Italy
| | - Alessia Di Giancamillo
- Department of Biomedical Sciences for Health, University of Milan, Via Mangiagalli 31, 20133 Milan, Italy
| |
Collapse
|
163
|
Olie CS, Pinto-Fernández A, Damianou A, Vendrell I, Mei H, den Hamer B, van der Wal E, de Greef JC, Raz V, Kessler BM. USP18 is an essential regulator of muscle cell differentiation and maturation. Cell Death Dis 2023; 14:231. [PMID: 37002195 PMCID: PMC10066380 DOI: 10.1038/s41419-023-05725-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 02/14/2023] [Accepted: 03/07/2023] [Indexed: 04/03/2023]
Abstract
The ubiquitin proteasomal system is a critical regulator of muscle physiology, and impaired UPS is key in many muscle pathologies. Yet, little is known about the function of deubiquitinating enzymes (DUBs) in the muscle cell context. We performed a genetic screen to identify DUBs as potential regulators of muscle cell differentiation. Surprisingly, we observed that the depletion of ubiquitin-specific protease 18 (USP18) affected the differentiation of muscle cells. USP18 depletion first stimulated differentiation initiation. Later, during differentiation, the absence of USP18 expression abrogated myotube maintenance. USP18 enzymatic function typically attenuates the immune response by removing interferon-stimulated gene 15 (ISG15) from protein substrates. However, in muscle cells, we found that USP18, predominantly nuclear, regulates differentiation independent of ISG15 and the ISG response. Exploring the pattern of RNA expression profiles and protein networks whose levels depend on USP18 expression, we found that differentiation initiation was concomitant with reduced expression of the cell-cycle gene network and altered expression of myogenic transcription (co) factors. We show that USP18 depletion altered the calcium channel gene network, resulting in reduced calcium flux in myotubes. Additionally, we show that reduced expression of sarcomeric proteins in the USP18 proteome was consistent with reduced contractile force in an engineered muscle model. Our results revealed nuclear USP18 as a critical regulator of differentiation initiation and maintenance, independent of ISG15 and its role in the ISG response.
Collapse
Affiliation(s)
- Cyriel Sebastiaan Olie
- Human Genetics department, Leiden University Medical Centre, 2333ZC, Leiden, The Netherlands
| | - Adán Pinto-Fernández
- Chinese Academy for Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, UK
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| | - Andreas Damianou
- Chinese Academy for Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, UK
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| | - Iolanda Vendrell
- Chinese Academy for Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, UK
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| | - Hailiang Mei
- Sequencing Analysis Support Core, Leiden University Medical Centre, 2333ZC, Leiden, The Netherlands
| | - Bianca den Hamer
- Human Genetics department, Leiden University Medical Centre, 2333ZC, Leiden, The Netherlands
| | - Erik van der Wal
- Human Genetics department, Leiden University Medical Centre, 2333ZC, Leiden, The Netherlands
| | - Jessica C de Greef
- Human Genetics department, Leiden University Medical Centre, 2333ZC, Leiden, The Netherlands
| | - Vered Raz
- Human Genetics department, Leiden University Medical Centre, 2333ZC, Leiden, The Netherlands.
| | - Benedikt M Kessler
- Chinese Academy for Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, UK.
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK.
| |
Collapse
|
164
|
Yeh CJ, Sattler KM, Lepper C. Molecular regulation of satellite cells via intercellular signaling. Gene 2023; 858:147172. [PMID: 36621659 PMCID: PMC9928918 DOI: 10.1016/j.gene.2023.147172] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/21/2022] [Accepted: 01/03/2023] [Indexed: 01/07/2023]
Abstract
Somatic stem cells are tissue-specific reserve cells tasked to sustain tissue homeostasis in adulthood and/or effect tissue regeneration after traumatic injury. The stem cells of skeletal muscle tissue are the satellite cells, which were originally described and named after their localization beneath the muscle fiber lamina and attached to the multi-nucleated muscle fibers. During adult homeostasis, satellite cells are maintained in quiescence, a state of reversible cell cycle arrest. Yet, upon injury, satellite cells are rapidly activated, becoming highly mitotically active to generate large numbers of myoblasts that differentiate and fuse to regenerate the injured muscle fibers. A subset self-renews to replenish the pool of muscle stem cells.Complex intrinsic gene regulatory networks maintain the quiescent state of satellite cells, or upon injury, direct their activation, proliferation, differentiation and self-renewal. Molecular cues from the satellite cells' environment provide the essential information as to when and where satellite cells are to stay quiescent or break quiescence and effect regenerative myogenesis. Predominantly, these cues are secreted, diffusible or membrane-bound ligands that bind to and activate their specific cognate receptors on the satellite cell to activate downstream signaling cascades and elicit context-specific cell behavior. This review aims to offer a concise overview of major intercellular signaling pathways regulating satellite cells during quiescence and in injury-induced skeletal muscle regeneration.
Collapse
Affiliation(s)
- Chung-Ju Yeh
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, United States
| | - Kristina M Sattler
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, United States
| | - Christoph Lepper
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, United States.
| |
Collapse
|
165
|
Xiong Z, Wang M, Wu J, Shi X. Tceal7 Regulates Skeletal Muscle Development through Its Interaction with Cdk1. Int J Mol Sci 2023; 24:ijms24076264. [PMID: 37047236 PMCID: PMC10094454 DOI: 10.3390/ijms24076264] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/23/2023] [Accepted: 03/25/2023] [Indexed: 03/29/2023] Open
Abstract
We have previously reported Tceal7 as a muscle-specific gene that represses myoblast proliferation and promotes myogenic differentiation. The regulatory mechanism of Tceal7 gene expression has been well clarified recently. However, the underlying mechanism of Tceal7 function in skeletal muscle development remains to be elucidated. In the present study, we have generated an MCK 6.5 kb-HA-Tceal7 transgenic model. The transgenic mice are born normally, while they have displayed defects in the growth of body weight and skeletal muscle myofiber during postnatal development. Although four RxL motifs have been identified in the Tceal7 protein sequence, we have not detected any direct protein-protein interaction between Tceal7 and Cyclin A2, Cyclin B1, Cylin D1, or Cyclin E1. Further analysis has revealed the interaction between Tceal7 and Cdk1 instead of Cdk2, Cdk4, or Cdk6. Transgenic overexpression of Tceal7 reduces phosphorylation of 4E-BP1 Ser65, p70S6K1 Thr389, and Cdk substrates in skeletal muscle. In summary, these studies have revealed a novel mechanism of Tceal7 in skeletal muscle development.
Collapse
|
166
|
Di Carlo D, Chisholm J, Kelsey A, Alaggio R, Bisogno G, Minard-Colin V, Jenney M, Dávila Fajardo R, Merks JHM, Shipley JM, Selfe JL. Biological Role and Clinical Implications of MYOD1L122R Mutation in Rhabdomyosarcoma. Cancers (Basel) 2023; 15:cancers15061644. [PMID: 36980529 PMCID: PMC10046495 DOI: 10.3390/cancers15061644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/13/2023] [Accepted: 03/02/2023] [Indexed: 03/30/2023] Open
Abstract
Major progress in recent decades has furthered our clinical and biological understanding of rhabdomyosarcoma (RMS) with improved stratification for treatment based on risk factors. Clinical risk factors alone were used to stratify patients for treatment in the European Pediatric Soft Tissue Sarcoma Study Group (EpSSG) RMS 2005 protocol. The current EpSSG overarching study for children and adults with frontline and relapsed rhabdomyosarcoma (FaR-RMS NCT04625907) includes FOXO1 fusion gene status in place of histology as a risk factor. Additional molecular features of significance have recently been recognized, including the MYOD1L122R gene mutation. Here, we review biological information showing that MYOD1L122R blocks cell differentiation and has a MYC-like activity that enhances tumorigenesis and is linked to an aggressive cellular phenotype. MYOD1L122R mutations can be found together with mutations in other genes, such as PIK3CA, as potentially cooperating events. Using Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, ten publications in the clinical literature involving 72 cases were reviewed. MYOD1L122R mutation in RMS can occur in both adults and children and is frequent in sclerosing/spindle cell histology, although it is also significantly reported in a subset of embryonal RMS. MYOD1L122R mutated tumors most frequently arise in the head and neck and extremities and are associated with poor outcome, raising the issue of how to use MYOD1L122R in risk stratification and how to treat these patients most effectively.
Collapse
Affiliation(s)
- Daniela Di Carlo
- Department of Women's and Children's Health, University of Padova, 35128 Padua, Italy
- Pediatric Hematology-Oncology Division, University Hospital of Padova, 35128 Padova, Italy
| | - Julia Chisholm
- Children and Young People's Unit, Royal Marsden Hospital, Institute of Cancer Research, Sutton SM2 5NG, UK
| | - Anna Kelsey
- Department of Pediatric Histopathology, Manchester University Foundation Trust, Manchester M13 9WL, UK
| | - Rita Alaggio
- Pathology Unit, Department of Laboratories, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
| | - Gianni Bisogno
- Department of Women's and Children's Health, University of Padova, 35128 Padua, Italy
- Pediatric Hematology-Oncology Division, University Hospital of Padova, 35128 Padova, Italy
| | - Veronique Minard-Colin
- Department of Pediatric and Adolescent Oncology, INSERM U1015, Gustave Roussy, Université Paris-Saclay, 94800 Villejuif, France
| | - Meriel Jenney
- Department of Pediatric Oncology, Children's Hospital for Wales, Cardiff CF14 4XW, UK
| | - Raquel Dávila Fajardo
- Department of Radiation Oncology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands
| | - Johannes H M Merks
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands
- Division of Imaging and Oncology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Janet M Shipley
- Sarcoma Molecular Pathology Team, Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, London SM2 5NG, UK
| | - Joanna L Selfe
- Sarcoma Molecular Pathology Team, Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, London SM2 5NG, UK
| |
Collapse
|
167
|
Li S, Wang Z, Chen M, Xiao Y, Min J, Hu M, Tang J, Hong L. ArfGAP3 regulates vesicle transport and glucose uptake in myoblasts. Cell Signal 2023; 103:110551. [PMID: 36476390 DOI: 10.1016/j.cellsig.2022.110551] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 11/19/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
Skeletal muscle injuries are common, and damaged myofibers are repaired through proliferation and differentiation of muscle satellite cells. GLUT4 is enriched in GLUT4 storage vesicles (GSVs) and plays a crucial role in the maintenance of muscle function. ArfGAP3 regulates the vesicle transport especially for COPI coat assembly, but its effects on GSVs and the repair process after skeletal muscle injury remains unclear. In this study, datasets related to skeletal muscle injury and myoblast differentiation GSE469, GSE5413, GSE45577 and GSE108040 were retrieved through the GEO database and the expression of heptameric coat protein complex I (COPI) and Golgi vesicle transport-related genes in various datasets, as well as the expression correlation between ArfGAP2, ArfGAP3 and COPI-related genes COPA, COPB1, COPB2, COPE, COPZ1, COPZ2 were analyzed. The results suggested that ArfGAP3 was expressed in the process of repair after skeletal muscle injury and myoblast differentiation and that ArfGAP3 was positively correlated with COPI-related genes. In vitro experimental results showed that ArfGAP3 was colocalized with COPA, COPB, COPG protein, and GLUT4 in C2C12 myoblasts. After the downregulation of ArfGAP3 expression, intracellular vesicle transport, and glucose uptake were blocked, the proliferation of myoblasts under low glucose culture conditions was impaired, the proportion of apoptosis increased, and myotube differentiation was impaired. In summary, ArfGAP3 regulates COPI-associated vesicle and GSVs transport and affects the proliferation and differentiation ability of myoblasts by influencing glucose uptake, thereby modulating the repair process after skeletal muscle injury.
Collapse
Affiliation(s)
- Suting Li
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People's Republic of China
| | - Zhi Wang
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People's Republic of China
| | - Mao Chen
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People's Republic of China
| | - Ya Xiao
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People's Republic of China
| | - Jie Min
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People's Republic of China
| | - Ming Hu
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People's Republic of China
| | - Jianming Tang
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People's Republic of China
| | - Li Hong
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People's Republic of China.
| |
Collapse
|
168
|
Ma L, Zhang C, Gui Y, Zou T, Xi S, Guo X. Fluoride regulates the differentiation and atrophy through FGF21/ERK signaling pathway in C2C12 cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 252:114626. [PMID: 36764073 DOI: 10.1016/j.ecoenv.2023.114626] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Excess intake of fluoride leads to a serious health issue called fluorosis. Fluorosis patients exhibit the symptom of muscle damage, but the specific mechanism remains unclear. Fibroblast growth factor 21 (FGF21) is a novel myokine that is involved in the regulation of myogenic differentiation, but whether fluoride induces skeletal muscle damage via FGF21 signaling has not been reported yet. In the current study, C2C12 cells were used to investigate the impact of fluoride on myogenic development and the involved regulatory role of FGF21/ERK signaling pathway. The expressions of the markers of myoblasts development and FGF21/ERK signaling pathway-related molecules were detected after fluoride treatment. The results indicated that fluoride notably inhibited the expressions of myogenic regulatory genes MyoD, MyoG and MyHC in C2C12 cells. In addition, fluoride increased the expressions of muscle atrophy-related markers MuRF1 and MAFbx. We proved that fluoride significantly inhibited the expression of FGF21 based on the RNA-seq results, and detected the expressions of downstream molecules FGFR1, KLB, Raf, MEK and ERK. Moreover, FGF21 pretreatment reversed the adverse effect of fluoride on the C2C12 cells and alleviated the atrophy of myotubes. Taken together, these findings indicated that fluoride suppressed differentiation and aggravated atrophy via FGF21/ERK signaling pathway in C2C12 cells. Our study has provided new evidence for the role of FGF21/ERK in fluoride-induced skeletal muscle damage and FGF21 may be one of the potential targets for prevention and treatment of fluorosis.
Collapse
Affiliation(s)
- Lan Ma
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, PR China
| | - Chengmei Zhang
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, PR China
| | - Yu Gui
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, PR China
| | - Tingling Zou
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, PR China
| | - Shuhua Xi
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, PR China
| | - Xiaoying Guo
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, PR China.
| |
Collapse
|
169
|
miR-103-3p Regulates the Differentiation and Autophagy of Myoblasts by Targeting MAP4. Int J Mol Sci 2023; 24:ijms24044130. [PMID: 36835542 PMCID: PMC9959477 DOI: 10.3390/ijms24044130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/09/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Skeletal muscle is the most abundant tissue in mammals, and myogenesis and differentiation require a series of regulatory factors such as microRNAs (miRNAs). In this study, we found that miR-103-3p was highly expressed in the skeletal muscle of mice, and the effects of miR-103-3p on skeletal muscle development were explored using myoblast C2C12 cells as a model. The results showed that miR-103-3p could significantly reduce myotube formation and restrain the differentiation of C2C12 cells. Additionally, miR-103-3p obviously prevented the production of autolysosomes and inhibited the autophagy of C2C12 cells. Moreover, bioinformatics prediction and dual-luciferase reporter assays confirmed that miR-103-3p could directly target the microtubule-associated protein 4 (MAP4) gene. The effects of MAP4 on the differentiation and autophagy of myoblasts were then elucidated. MAP4 promoted both the differentiation and autophagy of C2C12 cells, which was contrary to the role of miR-103-3p. Further research revealed that MAP4 colocalized with LC3 in C2C12 cell cytoplasm, and the immunoprecipitation assay showed that MAP4 interacted with autophagy marker LC3 to regulate the autophagy of C2C12 cells. Overall, these results indicated that miR-103-3p regulated the differentiation and autophagy of myoblasts by targeting MAP4. These findings enrich the understanding of the regulatory network of miRNAs involved in the myogenesis of skeletal muscle.
Collapse
|
170
|
Identification and Quantification of Proliferating Cells in Skeletal Muscle of Glutamine Supplemented Low- and Normal-Birth-Weight Piglets. Cells 2023; 12:cells12040580. [PMID: 36831247 PMCID: PMC9953894 DOI: 10.3390/cells12040580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/17/2023] Open
Abstract
One way to improve the growth of low-birth-weight (LBW) piglets can be stimulation of the cellular development of muscle by optimized amino acid supply. In the current study, it was investigated how glutamine (Gln) supplementation affects muscle tissue of LBW and normal-birth-weight (NBW) piglets. Longissimus and semitendinosus muscles of 96 male piglets, which were supplemented with 1 g Gln/kg body weight or alanine, were collected at slaughter on day 5 or 26 post natum (dpn), one hour after injection with Bromodeoxyuridine (BrdU, 12 mg/kg). Immunohistochemistry was applied to detect proliferating, BrdU-positive cells in muscle cross-sections. Serial stainings with cell type specific antibodies enabled detection and subsequent quantification of proliferating satellite cells and identification of further proliferating cell types, e.g., preadipocytes and immune cells. The results indicated that satellite cells and macrophages comprise the largest fractions of proliferating cells in skeletal muscle of piglets early after birth. The Gln supplementation somewhat stimulated satellite cells. We observed differences between the two muscles, but no influence of the piglets' birth weight was observed. Thus, Gln supplements may not be considered as effective treatment in piglets with low birth weight for improvement of muscle growth.
Collapse
|
171
|
Lazzarin MC, Dos Santos JF, Quintana HT, Pidone FAM, de Oliveira F. Duchenne muscular dystrophy progression induced by downhill running is accompanied by increased endomysial fibrosis and oxidative damage DNA in muscle of mdx mice. J Mol Histol 2023; 54:41-54. [PMID: 36348131 DOI: 10.1007/s10735-022-10109-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 10/25/2022] [Indexed: 11/09/2022]
Abstract
Duchenne muscular dystrophy (DMD) is characterized by progressive muscle necrosis. One of the major challenges for prescribing physical rehabilitation exercises for DMD patients is associated with the lack of a thorough knowledge of dystrophic muscle responsiveness to exercise. This study aims to understand the relationship between myogenic regulation, inflammation and oxidative stress parameters, and disease progression induced by downhill running in the skeletal muscle of an experimental model of DMD. Six-month-old C57BL/10 and C57BL/10-DMDmdx male mice were distributed into three groups: Control (C), mdx, and mdx + Exercise (mdx + Ex). Animals were trained in a downhill running protocol for seven weeks. The gastrocnemius muscle was subjected to histopathology, muscle regeneration (myoD and myogenin), inflammation (COX-2), oxidative stress (8-OHdG) immunohistochemistry markers, and gene expression (qPCR) of NF-kB and NADP(H)Oxidase 2 (NOX-2) analysis. In the mdx + Ex group, the gastrocnemius muscle showed a higher incidence of endomysial fibrosis and a lower myonecrosis percentage area. Immunohistochemical analysis revealed decreased myogenin immunoexpression in the mdx group, as well as accentuated immunoexpression of nuclear 8-OHdG in both mdx groups and increase in cytoplasmic 8-OHdG only in the mdx + Ex. COX-2 immunoexpression was related to areas of regeneration process and inflammatory infiltrate in the mdx group, while associated with areas of muscle fibrosis in the mdx + Ex. Moreover, the NF-kB gene expression was not influenced by exercise; however, a NAD(P)HOxidase 2 increase was observed. Oxidative stress and oxidative DNA damage play a significant role in the DMD phenotype progression induced by exercise, compromising cellular patterns resulting in increased endomysial fibrosis.
Collapse
Affiliation(s)
- Mariana Cruz Lazzarin
- Department of Biosciences, Federal University of São Paulo - UNIFESP, Rua Silva Jardim, 136 - Lab 328, Santos, SP, CEP: 11015-020, Brazil.,Laboratory of Pathophysiology, Institute Butantan, São Paulo, SP, Brazil
| | - José Fontes Dos Santos
- Department of Biosciences, Federal University of São Paulo - UNIFESP, Rua Silva Jardim, 136 - Lab 328, Santos, SP, CEP: 11015-020, Brazil
| | - Hananiah Tardivo Quintana
- Department of Biosciences, Federal University of São Paulo - UNIFESP, Rua Silva Jardim, 136 - Lab 328, Santos, SP, CEP: 11015-020, Brazil
| | - Flavia Andressa Mazzuco Pidone
- Department of Biosciences, Federal University of São Paulo - UNIFESP, Rua Silva Jardim, 136 - Lab 328, Santos, SP, CEP: 11015-020, Brazil
| | - Flavia de Oliveira
- Department of Biosciences, Federal University of São Paulo - UNIFESP, Rua Silva Jardim, 136 - Lab 328, Santos, SP, CEP: 11015-020, Brazil.
| |
Collapse
|
172
|
Telles GD, Libardi CA, Conceição MS, Vechin FC, Lixandrão ME, Mangone FRR, Pavanelli AC, Nagai MA, Camera DM, Hawley JA, Ugrinowitsch C. Interrelated but Not Time-Aligned Response in Myogenic Regulatory Factors Demethylation and mRNA Expression after Divergent Exercise Bouts. Med Sci Sports Exerc 2023; 55:199-208. [PMID: 36136603 DOI: 10.1249/mss.0000000000003049] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
INTRODUCTION DNA methylation regulates exercise-induced changes in the skeletal muscle transcriptome. However, the specificity and the time course responses in the myogenic regulatory factors DNA methylation and mRNA expression after divergent exercise modes are unknown. PURPOSE This study aimed to compare the time course changes in DNA methylation and mRNA expression for selected myogenic regulatory factors ( MYOD1 , MYF5 , and MYF6 ) immediately after, 4 h after, and 8 h after a single bout of resistance exercise (RE), high-intensity interval exercise (HIIE), and concurrent exercise (CE). METHODS Nine healthy but untrained males (age, 23.9 ± 2.8 yr; body mass, 70.1 ± 14.9 kg; peak oxygen uptake [V̇O 2peak ], 41.4 ± 5.2 mL·kg -1 ·min -1 ; mean ± SD) performed a counterbalanced, randomized order of RE (4 × 8-12 repetition maximum), HIIE (12 × 1 min sprints at V̇O 2peak running velocity), and CE (RE followed by HIIE). Skeletal muscle biopsies (vastus lateralis) were taken before (REST) immediately (0 h), 4 h, and 8 h after each exercise bout. RESULTS Compared with REST, MYOD1 , MYF5 , and MYF6 , mean methylation across all CpGs analyzed was reduced after 4 and 8 h in response to all exercise protocols ( P < 0.05). Reduced levels of MYOD1 methylation were observed after HIIE and CE compared with RE ( P < 0.05). Compared with REST, all exercise bouts increased mRNA expression over time ( MYOD1 at 4 and 8 h, and MYF6 at 4 h; P < 0.05). MYF5 mRNA expression was lower after 4 h compared with 0 h and higher at 8 h compared with 4 h ( P < 0.05). CONCLUSIONS We observed an interrelated but not time-aligned response between the exercise-induced changes in myogenic regulatory factors demethylation and mRNA expression after divergent exercise modes. Despite divergent contractile stimuli, changes in DNA methylation and mRNA expression in skeletal muscle were largely confined to the late (4-8 h) recovery period and similar between the different exercise challenges.
Collapse
Affiliation(s)
- Guilherme Defante Telles
- Laboratory of Neuromuscular Adaptations to Strength Training, School of Physical Education and Sport, University of São Paulo, São Paulo, São Paulo, BRAZIL
| | - Cleiton Augusto Libardi
- MUSCULAB-Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos, São Carlos, São Paulo, BRAZIL
| | - Miguel Soares Conceição
- MUSCULAB-Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos, São Carlos, São Paulo, BRAZIL
| | - Felipe Cassaro Vechin
- Laboratory of Neuromuscular Adaptations to Strength Training, School of Physical Education and Sport, University of São Paulo, São Paulo, São Paulo, BRAZIL
| | | | | | | | | | - Donny Michael Camera
- Department of Health and Medical Sciences, Swinburne University, Melbourne, VIC, AUSTRALIA
| | - John A Hawley
- Mary MacKillop Institute for Health Research, Exercise and Nutrition Research Program, Australian Catholic University, Melbourne, VIC, AUSTRALIA
| | - Carlos Ugrinowitsch
- Laboratory of Neuromuscular Adaptations to Strength Training, School of Physical Education and Sport, University of São Paulo, São Paulo, São Paulo, BRAZIL
| |
Collapse
|
173
|
Hao Y, Xue T, Liu S, Geng S, Shi X, Qian P, He W, Zheng J, Li Y, Lou J, Shi T, Wang G, Wang X, Wang Y, Li Y, Song Y. Loss of CRY2 promotes regenerative myogenesis by enhancing PAX7 expression and satellite cell proliferation. MedComm (Beijing) 2023; 4:e202. [PMID: 36636367 PMCID: PMC9830134 DOI: 10.1002/mco2.202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 01/11/2023] Open
Abstract
The regenerative capacity of skeletal muscle is dependent on satellite cells. The circadian clock regulates the maintenance and function of satellite cells. Cryptochrome 2 (CRY2) is a critical component of the circadian clock, and its role in skeletal muscle regeneration remains controversial. Using the skeletal muscle lineage and satellite cell-specific CRY2 knockout mice (CRY2scko), we show that the deletion of CRY2 enhances muscle regeneration. Single myofiber analysis revealed that deletion of CRY2 stimulates the proliferation of myoblasts. The differentiation potential of myoblasts was enhanced by the loss of CRY2 evidenced by increased expression of myosin heavy chain (MyHC) and myotube formation in CRY2-/- cells versus CRY2+/+ cells. Immunostaining revealed that the number of mononucleated paired box protein 7 (PAX7+) cells associated with myotubes formed by CRY2-/- cells was increased compared with CRY2+/+ cells, suggesting that more reserve cells were produced in the absence of CRY2. Loss of CRY2 leads to the activation of the ERK1/2 signaling pathway and ETS1, which binds to the promoter of PAX7 to induce its transcription. CRY2 deficient myoblasts survived better in ischemic muscle. Therefore, CRY2 is essential in regulating skeletal muscle repair.
Collapse
Affiliation(s)
- Yingxue Hao
- Cyrus Tang Hematology CenterCollaborative Innovation Center of HematologySoochow UniversitySuzhouP. R. China
- National Clinical Research Center for Hematologic DiseasesThe First Affiliated Hospital of Soochow UniversitySuzhouP. R. China
- State Key Laboratory of Radiation Medicine and ProtectionSoochow UniversitySuzhouP. R. China
| | - Ting Xue
- Cyrus Tang Hematology CenterCollaborative Innovation Center of HematologySoochow UniversitySuzhouP. R. China
- National Clinical Research Center for Hematologic DiseasesThe First Affiliated Hospital of Soochow UniversitySuzhouP. R. China
- State Key Laboratory of Radiation Medicine and ProtectionSoochow UniversitySuzhouP. R. China
| | - Song‐Bai Liu
- Suzhou Vocational Health College, Suzhou Key Laboratory of Biotechnology for Laboratory MedicineSuzhouJiangsuP. R. China
| | - Sha Geng
- Cyrus Tang Hematology CenterCollaborative Innovation Center of HematologySoochow UniversitySuzhouP. R. China
- National Clinical Research Center for Hematologic DiseasesThe First Affiliated Hospital of Soochow UniversitySuzhouP. R. China
- State Key Laboratory of Radiation Medicine and ProtectionSoochow UniversitySuzhouP. R. China
| | - Xinghong Shi
- Cyrus Tang Hematology CenterCollaborative Innovation Center of HematologySoochow UniversitySuzhouP. R. China
- National Clinical Research Center for Hematologic DiseasesThe First Affiliated Hospital of Soochow UniversitySuzhouP. R. China
- State Key Laboratory of Radiation Medicine and ProtectionSoochow UniversitySuzhouP. R. China
| | - Panting Qian
- Cyrus Tang Hematology CenterCollaborative Innovation Center of HematologySoochow UniversitySuzhouP. R. China
- National Clinical Research Center for Hematologic DiseasesThe First Affiliated Hospital of Soochow UniversitySuzhouP. R. China
- State Key Laboratory of Radiation Medicine and ProtectionSoochow UniversitySuzhouP. R. China
| | - Wei He
- Cyrus Tang Hematology CenterCollaborative Innovation Center of HematologySoochow UniversitySuzhouP. R. China
- National Clinical Research Center for Hematologic DiseasesThe First Affiliated Hospital of Soochow UniversitySuzhouP. R. China
- State Key Laboratory of Radiation Medicine and ProtectionSoochow UniversitySuzhouP. R. China
| | - Jiqing Zheng
- Cyrus Tang Hematology CenterCollaborative Innovation Center of HematologySoochow UniversitySuzhouP. R. China
- National Clinical Research Center for Hematologic DiseasesThe First Affiliated Hospital of Soochow UniversitySuzhouP. R. China
- State Key Laboratory of Radiation Medicine and ProtectionSoochow UniversitySuzhouP. R. China
| | - Yanfang Li
- Cyrus Tang Hematology CenterCollaborative Innovation Center of HematologySoochow UniversitySuzhouP. R. China
- National Clinical Research Center for Hematologic DiseasesThe First Affiliated Hospital of Soochow UniversitySuzhouP. R. China
- State Key Laboratory of Radiation Medicine and ProtectionSoochow UniversitySuzhouP. R. China
| | - Jing Lou
- Cyrus Tang Hematology CenterCollaborative Innovation Center of HematologySoochow UniversitySuzhouP. R. China
- National Clinical Research Center for Hematologic DiseasesThe First Affiliated Hospital of Soochow UniversitySuzhouP. R. China
- State Key Laboratory of Radiation Medicine and ProtectionSoochow UniversitySuzhouP. R. China
| | - Tianze Shi
- Cyrus Tang Hematology CenterCollaborative Innovation Center of HematologySoochow UniversitySuzhouP. R. China
- National Clinical Research Center for Hematologic DiseasesThe First Affiliated Hospital of Soochow UniversitySuzhouP. R. China
- State Key Laboratory of Radiation Medicine and ProtectionSoochow UniversitySuzhouP. R. China
| | - Ge Wang
- Cyrus Tang Hematology CenterCollaborative Innovation Center of HematologySoochow UniversitySuzhouP. R. China
- National Clinical Research Center for Hematologic DiseasesThe First Affiliated Hospital of Soochow UniversitySuzhouP. R. China
- State Key Laboratory of Radiation Medicine and ProtectionSoochow UniversitySuzhouP. R. China
| | - Xiaoxiao Wang
- Suzhou Vocational Health College, Suzhou Key Laboratory of Biotechnology for Laboratory MedicineSuzhouJiangsuP. R. China
| | - Yanli Wang
- Institutefor Cardiovascular Science and Department of Cardiovascular SurgeryFirst Affiliated Hospital and Medical College of Soochow UniversitySuzhouJiangsuP. R. China
- Collaborative Innovation Center of HematologySoochow UniversitySuzhouJiangsuP. R. China
| | - Yangxin Li
- Institutefor Cardiovascular Science and Department of Cardiovascular SurgeryFirst Affiliated Hospital and Medical College of Soochow UniversitySuzhouJiangsuP. R. China
- Collaborative Innovation Center of HematologySoochow UniversitySuzhouJiangsuP. R. China
| | - Yao‐Hua Song
- Cyrus Tang Hematology CenterCollaborative Innovation Center of HematologySoochow UniversitySuzhouP. R. China
- National Clinical Research Center for Hematologic DiseasesThe First Affiliated Hospital of Soochow UniversitySuzhouP. R. China
- State Key Laboratory of Radiation Medicine and ProtectionSoochow UniversitySuzhouP. R. China
| |
Collapse
|
174
|
Jiang X, Ji S, Yuan F, Li T, Cui S, Wang W, Ye X, Wang R, Chen Y, Zhu S. Pyruvate dehydrogenase B regulates myogenic differentiation via the FoxP1-Arih2 axis. J Cachexia Sarcopenia Muscle 2023; 14:606-621. [PMID: 36564038 PMCID: PMC9891931 DOI: 10.1002/jcsm.13166] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 11/15/2022] [Accepted: 11/25/2022] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Sarcopenia, the age-related decline in skeletal muscle mass and function, diminishes life quality in elderly people. Improving the capacity of skeletal muscle differentiation is expected to counteract sarcopenia. However, the mechanisms underlying skeletal muscle differentiation are complex, and effective therapeutic targets are largely unknown. METHODS The human Gene Expression Omnibus database, aged mice and primary skeletal muscle cells were used to assess the expression level of pyruvate dehydrogenase B (PDHB) in human and mouse aged state. d-Galactose (d-gal)-induced sarcopenia mouse model and two classic cell models (C2C12 and HSkMC) were used to assess the myogenic effect of PDHB and the underlying mechanisms via immunocytochemistry, western blotting, quantitative real-time polymerase chain reaction, RNA interference or overexpression, dual-luciferase reporter assay, RNA sequencing and untargeted metabolomics. RESULTS We identified that a novel target PDHB promoted myogenic differentiation. PDHB expression decreased in aged mouse muscle relative to the young state (-50% of mRNA level, P < 0.01) and increased during mouse and primary human muscle cell differentiation (+3.97-fold, P < 0.001 and +3.79-fold, P < 0.001). Knockdown or overexpression of PDHB modulated the expression of genes related to muscle differentiation, namely, myogenic factor 5 (Myf5) (-46%, P < 0.01 and -27%, P < 0.05; +1.8-fold, P < 0.01), myogenic differentiation (MyoD) (-55%, P < 0.001 and -34%, P < 0.01; +2.27-fold, P < 0.001), myogenin (MyoG) (-60%, P < 0.001 and -70%, P < 0.001; +5.46-fold, P < 0.001) and myosin heavy chain (MyHC) (-70%, P < 0.001 and -69%, P < 0.001; +3.44-fold, P < 0.001) in both C2C12 cells and HSkMC. Metabolomic and transcriptomic analyses revealed that PDHB knockdown suppressed pyruvate metabolism (P < 0.001) and up-regulated ariadne RBR E3 ubiquitin protein ligase 2 (Arih2) (+7.23-fold, P < 0.001) in cellular catabolic pathways. The role of forkhead box P1 (FoxP1) (+4.18-fold, P < 0.001)-mediated Arih2 transcription was the key downstream regulator of PDHB in muscle differentiation. PDHB overexpression improved d-gal-induced muscle atrophy in mice, which was characterized by significant increases in grip strength, muscle mass and mean muscle cross-sectional area (1.19-fold to 1.5-fold, P < 0.01, P < 0.05 and P < 0.001). CONCLUSIONS The comprehensive results show that PDHB plays a sarcoprotective role by suppressing the FoxP1-Arih2 axis and may serve as a therapeutic target in sarcopenia.
Collapse
Affiliation(s)
- Xuan Jiang
- Wuxi School of Medicine, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Siyu Ji
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Fenglai Yuan
- Wuxi School of Medicine, Jiangnan University, Wuxi, China.,Institute of Integrated Traditional Chinese and Western Medicine, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Tushuai Li
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Siyuan Cui
- Wuxi No. 2 People's Hospital, Wuxi, China
| | - Wei Wang
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Xianlong Ye
- Ganjiang Chinese Medicine Innovation Center, Nanchang, China
| | - Rong Wang
- Wuxi School of Medicine, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yongquan Chen
- Wuxi School of Medicine, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Translational Medicine, Jiangnan University, Wuxi, China
| | - Shenglong Zhu
- Wuxi School of Medicine, Jiangnan University, Wuxi, China.,School of Translational Medicine, Jiangnan University, Wuxi, China
| |
Collapse
|
175
|
Turner MC, Brett R, Saini A, Stewart CE, Renshaw D. Serum concentration impacts myosin heavy chain expression but not cellular respiration in human LHCN-M2 myoblasts undergoing differentiation. Exp Physiol 2023; 108:169-176. [PMID: 36621799 PMCID: PMC10103887 DOI: 10.1113/ep090564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 12/09/2022] [Indexed: 01/10/2023]
Abstract
NEW FINDINGS What is the central question of this study? Does the concentration of human serum affect skeletal muscle differentiation and cellular respiration of LHCN-M2 myoblasts? What is the main finding and its importance? The concentration of serum used to differentiate LHCN-M2 skeletal muscle cells impacts the coverage of myosin heavy chain, a marker of terminally differentiated myotubes. Normalisation of mitochondrial function data to total protein negates the differences observed in absolute values, which differ as a result of increased protein content when differentiation occurs with increasing concentration of serum. ABSTRACT The human LHCN-M2 myoblast cell line has the potential to be used to investigate skeletal muscle development and metabolism. Experiments were performed to determine how different concentrations of human serum affect myogenic differentiation and mitochondrial function of LHCN-M2 cells. LHCN-M2 myoblasts were differentiated in serum-free medium, 0.5% or 2% human serum for 5 and 10 days. Myotube formation was assessed by immunofluorescence staining of myosin heavy chain (MHC) and molecularly by mRNA expression of Myogenic differentiation 1 (MYOD1) and Myoregulatory factor 5 (MYF5). Following differentiation, mitochondrial function was assessed to establish the impact of serum concentration on mitochondrial function. Time in differentiation increased mRNA expression of MYOD1 (day 5, 6.58 ± 1.33-fold; and day 10, 4.28 ± 1.71-fold) (P = 0.012), while suppressing the expression of MYF5 (day 5, 0.21 ± 0.11-fold; and day 10, 0.06 ± 0.03-fold) (P = 0.001), regardless of the serum concentration. Higher serum concentrations increased MHC area (serum free, 11.92 ± 0.85%; 0.5%, 23.10 ± 5.82%; 2%, 43.94 ± 8.92%) (P = 0.001). Absolute basal respiration approached significance (P = 0.06) with significant differences in baseline oxygen consumption rate (P = 0.025) and proton leak (P = 0.006) when differentiated in 2% human serum, but these were not different between conditions when normalised to total protein. Our findings show that increasing concentrations of serum of LHCN-M2 skeletal muscle cells into multinucleated myotubes, but this does not affect relative mitochondrial function.
Collapse
Affiliation(s)
- Mark C. Turner
- Centre for Sport, Exercise and Life SciencesInstitute for Health and WellbeingCoventry UniversityCoventryUK
| | - Ryan Brett
- Centre for Sport, Exercise and Life SciencesInstitute for Health and WellbeingCoventry UniversityCoventryUK
| | - Amarjit Saini
- Division of Clinical PhysiologyDepartment of Laboratory MedicineKarolinska, InstitutetKarolinska University Hospital HuddingeStockholmSweden
| | - Claire E. Stewart
- Research Institute of Sport and Exercise ScienceLife Sciences BuildingLiverpool John Moores UniversityLiverpoolUK
| | - Derek Renshaw
- Centre for Sport, Exercise and Life SciencesInstitute for Health and WellbeingCoventry UniversityCoventryUK
| |
Collapse
|
176
|
Cai S, Hu B, Wang X, Liu T, Lin Z, Tong X, Xu R, Chen M, Duo T, Zhu Q, Liang Z, Li E, Chen Y, Li J, Liu X, Mo D. Integrative single-cell RNA-seq and ATAC-seq analysis of myogenic differentiation in pig. BMC Biol 2023; 21:19. [PMID: 36726129 PMCID: PMC9893630 DOI: 10.1186/s12915-023-01519-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 01/18/2023] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Skeletal muscle development is a multistep process whose understanding is central in a broad range of fields and applications, from the potential medical value to human society, to its economic value associated with improvement of agricultural animals. Skeletal muscle initiates in the somites, with muscle precursor cells generated in the dermomyotome and dermomyotome-derived myotome before muscle differentiation ensues, a developmentally regulated process that is well characterized in model organisms. However, the regulation of skeletal muscle ontogeny during embryonic development remains poorly defined in farm animals, for instance in pig. Here, we profiled gene expression and chromatin accessibility in developing pig somites and myotomes at single-cell resolution. RESULTS We identified myogenic cells and other cell types and constructed a differentiation trajectory of pig skeletal muscle ontogeny. Along this trajectory, the dynamic changes in gene expression and chromatin accessibility coincided with the activities of distinct cell type-specific transcription factors. Some novel genes upregulated along the differentiation trajectory showed higher expression levels in muscular dystrophy mice than that in healthy mice, suggesting their involvement in myogenesis. Integrative analysis of chromatin accessibility, gene expression data, and in vitro experiments identified EGR1 and RHOB as critical regulators of pig embryonic myogenesis. CONCLUSIONS Collectively, our results enhance our understanding of the molecular and cellular dynamics in pig embryonic myogenesis and offer a high-quality resource for the further study of pig skeletal muscle development and human muscle disease.
Collapse
Affiliation(s)
- Shufang Cai
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510006 Guangdong China
- Guangdong Key Laboratory of Animal Breeding and Nutrition, State Key Laboratory of Livestock and Poultry Breeding, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 Guangdong China
| | - Bin Hu
- Guangdong Key Laboratory of Animal Breeding and Nutrition, State Key Laboratory of Livestock and Poultry Breeding, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 Guangdong China
| | - Xiaoyu Wang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510006 Guangdong China
| | - Tongni Liu
- Faculty of Forestry, University of British Columbia, Vancouver, BC V6T 1Z4 Canada
| | - Zhuhu Lin
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510006 Guangdong China
| | - Xian Tong
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510006 Guangdong China
| | - Rong Xu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510006 Guangdong China
| | - Meilin Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510006 Guangdong China
| | - Tianqi Duo
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510006 Guangdong China
| | - Qi Zhu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510006 Guangdong China
| | - Ziyun Liang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510006 Guangdong China
| | - Enru Li
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510006 Guangdong China
| | - Yaosheng Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510006 Guangdong China
| | - Jianhao Li
- Guangdong Key Laboratory of Animal Breeding and Nutrition, State Key Laboratory of Livestock and Poultry Breeding, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 Guangdong China
| | - Xiaohong Liu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510006 Guangdong China
| | - Delin Mo
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510006 Guangdong China
| |
Collapse
|
177
|
Papanikolaou NA, Nikolaidis M, Amoutzias GD, Fouza A, Papaioannou M, Pandey A, Papavassiliou AG. The Dynamic and Crucial Role of the Arginine Methylproteome in Myoblast Cell Differentiation. Int J Mol Sci 2023; 24:2124. [PMID: 36768448 PMCID: PMC9916730 DOI: 10.3390/ijms24032124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/14/2023] [Accepted: 01/17/2023] [Indexed: 01/25/2023] Open
Abstract
Protein arginine methylation is an extensive and functionally significant post-translational modification. However, little is known about its role in differentiation at the systems level. Using stable isotope labeling by amino acids in cell culture (SILAC) proteomics of whole proteome analysis in proliferating or five-day differentiated mouse C2C12 myoblasts, followed by high-resolution mass spectrometry, biochemical assays, and specific immunoprecipitation of mono- or dimethylated arginine peptides, we identified several protein families that were differentially methylated on arginine. Our study is the first to reveal global changes in the arginine mono- or dimethylation of proteins in proliferating myoblasts and differentiated myocytes and to identify enriched protein domains and novel short linear motifs (SLiMs). Our data may be crucial for dissecting the links between differentiation and cancer growth.
Collapse
Affiliation(s)
- Nikolaos A. Papanikolaou
- Laboratory of Biological Chemistry, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Macedonia, Greece
| | - Marios Nikolaidis
- Bioinformatics Laboratory, Department of Biochemistry and Biotechnology, University of Thessaly, 41500 Larisa, Greece
| | - Grigorios D. Amoutzias
- Bioinformatics Laboratory, Department of Biochemistry and Biotechnology, University of Thessaly, 41500 Larisa, Greece
| | - Ariadni Fouza
- Fifth Surgical Department, Ippokrateio General Hospital, School of Medicine, Aristotle University of Thessaloniki, 54643 Thessaloniki, Macedonia, Greece
| | - Maria Papaioannou
- Laboratory of Biological Chemistry, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Macedonia, Greece
| | - Akhilesh Pandey
- Department of Laboratory Medicine and Pathology, Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India
| | - Athanasios G. Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
178
|
Shi P, Ruan Y, Liu W, Sun J, Xu J, Xu H. Analysis of Promoter Methylation of the Bovine FOXO1 Gene and Its Effect on Proliferation and Differentiation of Myoblasts. Animals (Basel) 2023; 13:ani13020319. [PMID: 36670858 PMCID: PMC9854826 DOI: 10.3390/ani13020319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/01/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
This study aimed to explore the regulatory role of FOXO1 promoter methylation on its transcriptional level and unravel the effect of FOXO1 on the proliferation and differentiation of bovine myoblasts. Bisulfite sequencing polymerase chain reaction (BSP) and real-time quantitative PCR were performed to determine the methylation status and transcript levels of the FOXO1 promoter region at different growth stages. BSP results showed that the methylation level in the calf bovine (CB) group was significantly higher than that in the adult bovine (AB) group (p < 0.05). On the other hand, qRT-PCR results indicated that the mRNA expression level in the AB group was significantly higher than that in the CB group (p < 0.05), suggesting a significant decrease in gene expression at high levels of DNA methylation. CCK-8 and flow cytometry were applied to determine the effect of silencing the FOXO1 gene on the proliferation of bovine myoblasts. Furthermore, qRT-PCR and Western blot were conducted to analyze the expression of genes associated with the proliferation and differentiation of bovine myoblasts. Results from CCK-8 revealed that the short hairpin FOXO1 (shFOXO1) group significantly promoted the proliferation of myoblasts compared to the short-hairpin negative control (shNC) group (p < 0.05). Flow cytometry results showed a significant decrease in the number of the G1 phase cells (p < 0.05) and a significant increase in the number of the S phase cells (p < 0.05) in the shFOXO1 group compared to the shNC group. In addition, the expression of key genes for myoblast proliferation (CDK2, PCNA, and CCND1) and differentiation (MYOG, MYOD, and MYHC) was significantly increased at both mRNA and protein levels (p < 0.05). In summary, this study has demonstrated that FOXO1 transcription is regulated by methylation in the promoter region and that silencing FOXO1 promotes the proliferation and differentiation of bovine myoblasts. Overall, our findings lay the foundation for further studies on the regulatory role of epigenetics in the development of bovine myoblasts.
Collapse
Affiliation(s)
- Pengfei Shi
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Yong Ruan
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Wenjiao Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Jinkui Sun
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Jiali Xu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Houqiang Xu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China
- College of Animal Science, Guizhou University, Guiyang 550025, China
- Correspondence:
| |
Collapse
|
179
|
Liao H, Wang F, Lu K, Ma X, Yan J, Luo L, Sun Y, Liang X. Requirement for PINCH in skeletal myoblast differentiation. Cell Tissue Res 2023; 391:205-215. [PMID: 36385586 PMCID: PMC9839796 DOI: 10.1007/s00441-022-03701-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 11/06/2022] [Indexed: 11/18/2022]
Abstract
PINCH, an adaptor of focal adhesion complex, plays essential roles in multiple cellular processes and organogenesis. Here, we ablated PINCH1 or both of PINCH1 and PINCH2 in skeletal muscle progenitors using MyoD-Cre. Double ablation of PINCH1 and PINCH2 resulted in early postnatal lethality with reduced size of skeletal muscles and detachment of diaphragm muscles from the body wall. PINCH mutant myofibers failed to undergo multinucleation and exhibited disrupted sarcomere structures. The mutant myoblasts in culture were able to adhere to newly formed myotubes but impeded in cell fusion and subsequent sarcomere genesis and cytoskeleton organization. Consistent with this, expression of integrin β1 and some cytoskeleton proteins and phosphorylation of ERK and AKT were significantly reduced in PINCH mutants. However, N-cadherin was correctly expressed at cell adhesion sites in PINCH mutant cells, suggesting that PINCH may play a direct role in myoblast fusion. Expression of MRF4, the most highly expressed myogenic factor at late stages of myogenesis, was abolished in PINCH mutants that could contribute to observed phenotypes. In addition, mice with PINCH1 being ablated in myogenic progenitors exhibited only mild centronuclear myopathic changes, suggesting a compensatory role of PINCH2 in myogenic differentiation. Our results revealed a critical role of PINCH proteins in myogenic differentiation.
Collapse
Affiliation(s)
- Huimin Liao
- Key Laboratory of Arrhythmia, Ministry of Education, East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
| | - Fei Wang
- Key Laboratory of Arrhythmia, Ministry of Education, East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
| | - Ke Lu
- Key Laboratory of Arrhythmia, Ministry of Education, East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
| | - Xiaolei Ma
- Key Laboratory of Arrhythmia, Ministry of Education, East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
| | - Jie Yan
- Key Laboratory of Arrhythmia, Ministry of Education, East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
| | - Lina Luo
- Key Laboratory of Arrhythmia, Ministry of Education, East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
| | - Yunfu Sun
- Key Laboratory of Arrhythmia, Ministry of Education, East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China.
| | - Xingqun Liang
- Key Laboratory of Arrhythmia, Ministry of Education, East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China.
| |
Collapse
|
180
|
Lahmann I, Birchmeier C. Visualizing MyoD Oscillations in Muscle Stem Cells. Methods Mol Biol 2023; 2640:259-276. [PMID: 36995601 DOI: 10.1007/978-1-0716-3036-5_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
The bHLH transcription factor MyoD is a master regulator of myogenic differentiation, and its sustained expression in fibroblasts suffices to differentiate them into muscle cells. MyoD expression oscillates in activated muscle stem cells of developing, postnatal and adult muscle under various conditions: when the stem cells are dispersed in culture, when they remain associated with single muscle fibers, or when they reside in muscle biopsies. The oscillatory period is around 3 h and thus much shorter than the cell cycle or circadian rhythm. Unstable MyoD oscillations and long periods of sustained MyoD expression are observed when stem cells undergo myogenic differentiation. The oscillatory expression of MyoD is driven by the oscillatory expression of the bHLH transcription factor Hes1 that periodically represses MyoD. Ablation of the Hes1 oscillator interferes with stable MyoD oscillations and leads to prolonged periods of sustained MyoD expression. This interferes with the maintenance of activated muscle stem cells and impairs muscle growth and repair. Thus, oscillations of MyoD and Hes1 control the balance between the proliferation and differentiation of muscle stem cells. Here, we describe time-lapse imaging methods using luciferase reporters, which can monitor dynamic MyoD gene expression in myogenic cells.
Collapse
Affiliation(s)
- Ines Lahmann
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Developmental Biology/Signal Transduction Group, Berlin, Germany
- Neurowissenschaftliches Forschungzentrum, NeuroCure Cluster of Excellence, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Carmen Birchmeier
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Developmental Biology/Signal Transduction Group, Berlin, Germany.
- Neurowissenschaftliches Forschungzentrum, NeuroCure Cluster of Excellence, Charité-Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
181
|
Uchiyama H, Muramatsu D, Higashi H, Kida H, Iwai A. Effects of chondroitin sulfate oligosaccharides on osteoclast differentiation of RAW264 cells, and myotube differentiation of C2C12 cells. PLoS One 2023; 18:e0284343. [PMID: 37053208 PMCID: PMC10101473 DOI: 10.1371/journal.pone.0284343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 03/28/2023] [Indexed: 04/14/2023] Open
Abstract
Chondroitin sulfate (CS) is a glycosaminoglycan, and CS derived from various animal species is used in drugs and food supplements to alleviate arthralgia. The CS is a high molecular weight compound, and hydrolysis of CS by intestinal microbiota is thought to be required for absorption in mammalians. Chondroitin sulfate oligosaccharides (Oligo-CS) are produced by hydrolysis with subcritical water from CS isolated from a species of skate, Raja pulchra for the improvement of bioavailability. The present study conducted in vitro experiments using murine cell lines, to compare the biological activities of Oligo-CS and high molecular weight CS composed with the similar disaccharide isomer units of D-glucuronic acid and N-acetyl-D-glucosamine (CS-C). The results show that Oligo-CS inhibits osteoclast differentiation of RAW264 cells significantly at lower concentrations than in CS. The cell viability of a myoblast cell line, C2C12 cells, was increased when the cells were grown in a differentiated medium for myotubes with Oligo-CS, where there were no effects on the cell viability in CS. These results suggest that in vitro Oligo-CS exhibits stronger bioactivity than high-molecular weight CS.
Collapse
Affiliation(s)
- Hirofumi Uchiyama
- Aureo Science Co., Ltd., Kita-ku, Sapporo, Hokkaido, Japan
- Division of Bioscience in Sapporo, Aureo Co., Ltd., Kita-ku, Sapporo, Hokkaido, Japan
| | - Daisuke Muramatsu
- Aureo Science Co., Ltd., Kita-ku, Sapporo, Hokkaido, Japan
- Division of Bioscience in Sapporo, Aureo Co., Ltd., Kita-ku, Sapporo, Hokkaido, Japan
| | - Hideaki Higashi
- Division of Infection and Immunity, International Institute for Zoonosis Control, Hokkaido University, Kita-ku, Sapporo, Hokkaido, Japan
| | - Hiroshi Kida
- International Institute for Zoonosis Control, Hokkaido University, Kita-ku, Sapporo, Hokkaido, Japan
| | - Atsushi Iwai
- Aureo Science Co., Ltd., Kita-ku, Sapporo, Hokkaido, Japan
- Division of Bioscience in Sapporo, Aureo Co., Ltd., Kita-ku, Sapporo, Hokkaido, Japan
| |
Collapse
|
182
|
Interleukin-11 (IL11) inhibits myogenic differentiation of C2C12 cells through activation of extracellular signal-regulated kinase (ERK). Cell Signal 2023; 101:110509. [PMID: 36328118 DOI: 10.1016/j.cellsig.2022.110509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022]
Abstract
Cancer-associated cachexia (CAC) is a multifactorial wasting syndrome characterized by loss of skeletal muscle. Interleukin-11 (IL11), one of the IL6 family cytokines, is highly expressed in various types of cancer including cancers frequently associated with cachexia. However, the impact of IL11 on muscle metabolism remains to be determined. Since one of the mechanisms of muscle wasting in cachexia is defective muscle regeneration due to impaired myogenic differentiation, we examined the effect of IL11 on the differentiation of C2C12 mouse myoblasts. Treatment of C2C12 cells with recombinant mouse IL11 resulted in decreased myotube formation. In addition, IL11 treatment reduced the protein and mRNA levels of myosin heavy chain (MHC), a marker of myogenic differentiation. Moreover, the levels of myogenic regulatory factors including myogenin and Mrf4 were significantly reduced by IL11 treatment. IL11 treatment increased the number of BrdU-positive cells and the level of phosphorylated retinoblastoma (Rb) protein, while the levels of p21Waf1 and p27Kip1 were reduced by IL11 treatment in differentiating C2C12 cells, suggesting that IL11 interferes with cell cycle exit during the early stages of myogenic differentiation. Consistent with this, IL11 treatment at the late stage of differentiation did not affect myotube formation and MHC expression. IL11 treatment resulted in an activation of ERK, STAT3, and AKT in differentiating C2C12 cells. However, only ERK inhibitors including PD98059 and U0126 were able to ameliorate the suppressive effect of IL11 on the expression of MHC and myogenin. Additionally, pretreatment with PD98059 and U0126 resulted in improved myotube formation and reduced BrdU staining in IL11-treated cells. Together, our results suggest that IL11 inhibits myogenic differentiation through delayed cell cycle exit in an ERK-dependent manner. To our knowledge, this study is the first to demonstrate an inhibitory role of IL11 in myogenic differentiation and identifies the previously unrecognized role of IL11 as a possible mediator of CAC.
Collapse
|
183
|
Colasuonno F, Price R, Moreno S. Upper and Lower Motor Neurons and the Skeletal Muscle: Implication for Amyotrophic Lateral Sclerosis (ALS). ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2023; 236:111-129. [PMID: 37955773 DOI: 10.1007/978-3-031-38215-4_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
The relationships between motor neurons and the skeletal muscle during development and in pathologic contexts are addressed in this Chapter.We discuss the developmental interplay of muscle and nervous tissue, through neurotrophins and the activation of differentiation and survival pathways. After a brief overview on muscular regulatory factors, we focus on the contribution of muscle to early and late neurodevelopment. Such a role seems especially intriguing in relation to the epigenetic shaping of developing motor neuron fate choices. In this context, emphasis is attributed to factors regulating energy metabolism, which may concomitantly act in muscle and neural cells, being involved in common pathways.We then review the main features of motor neuron diseases, addressing the cellular processes underlying clinical symptoms. The involvement of different muscle-associated neurotrophic factors for survival of lateral motor column neurons, innervating MyoD-dependent limb muscles, and of medial motor column neurons, innervating Myf5-dependent back musculature is discussed. Among the pathogenic mechanisms, we focus on oxidative stress, that represents a common and early trait in several neurodegenerative disorders. The role of organelles primarily involved in reactive oxygen species scavenging and, more generally, in energy metabolism-namely mitochondria and peroxisomes-is discussed in the frame of motor neuron degeneration.We finally address muscular involvement in amyotrophic lateral sclerosis (ALS), a multifactorial degenerative disorder, hallmarked by severe weight loss, caused by imbalanced lipid metabolism. Even though multiple mechanisms have been recognized to play a role in the disease, current literature generally assumes that the primum movens is neuronal degeneration and that muscle atrophy is only a consequence of such pathogenic event. However, several lines of evidence point to the muscle as primarily involved in the disease, mainly through its role in energy homeostasis. Data from different ALS mouse models strongly argue for an early mitochondrial dysfunction in muscle tissue, possibly leading to motor neuron disturbances. Detailed understanding of skeletal muscle contribution to ALS pathogenesis will likely lead to the identification of novel therapeutic strategies.
Collapse
Affiliation(s)
- Fiorella Colasuonno
- Department of Experimental Medicine , University of Rome "Tor Vergata", Rome, Italy
- Department of Science, LIME, University Roma Tre, Rome, Italy
| | - Rachel Price
- Department of Science, LIME, University Roma Tre, Rome, Italy
- Laboratory of Neurodevelopmental Biology, Neurogenetics and Molecular Neurobiology, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Sandra Moreno
- Department of Science, LIME, University Roma Tre, Rome, Italy.
- Laboratory of Neurodevelopmental Biology, Neurogenetics and Molecular Neurobiology, IRCCS Fondazione Santa Lucia, Rome, Italy.
| |
Collapse
|
184
|
Caron L, Testa S, Magdinier F. Induced Pluripotent Stem Cells for Modeling Physiological and Pathological Striated Muscle Complexity. J Neuromuscul Dis 2023; 10:761-776. [PMID: 37522215 PMCID: PMC10578229 DOI: 10.3233/jnd-230076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/13/2023] [Indexed: 08/01/2023]
Abstract
Neuromuscular disorders (NMDs) are a large group of diseases associated with either alterations of skeletal muscle fibers, motor neurons or neuromuscular junctions. Most of these diseases is characterized with muscle weakness or wasting and greatly alter the life of patients. Animal models do not always recapitulate the phenotype of patients. The development of innovative and representative human preclinical models is thus strongly needed for modeling the wide diversity of NMDs, characterization of disease-associated variants, investigation of novel genes function, or the development of therapies. Over the last decade, the use of patient's derived induced pluripotent stem cells (hiPSC) has resulted in tremendous progress in biomedical research, including for NMDs. Skeletal muscle is a complex tissue with multinucleated muscle fibers supported by a dense extracellular matrix and multiple cell types including motor neurons required for the contractile activity. Major challenges need now to be tackled by the scientific community to increase maturation of muscle fibers in vitro, in particular for modeling adult-onset diseases affecting this tissue (neuromuscular disorders, cachexia, sarcopenia) and the evaluation of therapeutic strategies. In the near future, rapidly evolving bioengineering approaches applied to hiPSC will undoubtedly become highly instrumental for investigating muscle pathophysiology and the development of therapeutic strategies.
Collapse
Affiliation(s)
- Leslie Caron
- Aix-Marseille Univ-INSERM, MMG, Marseille, France
| | | | | |
Collapse
|
185
|
Phosphodiesterase 5a Signalling in Skeletal Muscle Pathophysiology. Int J Mol Sci 2022; 24:ijms24010703. [PMID: 36614143 PMCID: PMC9820699 DOI: 10.3390/ijms24010703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/20/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
Phosphodiesterase 5A (PDE5A) is involved in cGMP hydrolysis, regulating many physiological processes. Increased activity of PDE5A has been found in several pathological conditions, and the pharmacological inhibition of PDE5 has been demonstrated to have several therapeutic applications. We have identified the presence of three different Pde5a isoforms in cardiomyocytes, and we have found that the expression of specific Pde5a isoforms may have a causal role in the onset of pathological responses in these cells. In our previous study, we demonstrated that PDE5A inhibition could ameliorate muscular dystrophy by acting at different levels, as assessed by the altered genomic response of muscular cells following treatment with the PDE5A inhibitor tadalafil. Thus, considering the importance of PDE5A in various pathophysiological conditions, we further investigated the regulation of this enzyme. Here, we analysed the expression of Pde5a isoforms in the pathophysiology of skeletal muscle. We found that skeletal muscle tissues and myogenic cells express Pde5a1 and Pde5a2 isoforms, and we observed an increased expression of Pde5a1 in damaged skeletal muscles, while Pde5a2 levels remained unchanged. We also cloned and characterized the promoters that control the transcription of Pde5a isoforms, investigating which of the transcription factors predicted by bioinformatics analysis could be involved in their modulation. In conclusion, we found an overexpression of Pde5a1 in compromised muscle and identified an involvement of MyoD and Runx1 in Pde5a1 transcriptional activity.
Collapse
|
186
|
Liu H, Lin X, Gong R, Shen H, Qu Z, Zhao Q, Shen J, Xiao H, Deng H. Identification and Functional Characterization of Metabolites for Skeletal Muscle Mass in Early Postmenopausal Chinese Women. J Gerontol A Biol Sci Med Sci 2022; 77:2346-2355. [PMID: 35352111 PMCID: PMC9799191 DOI: 10.1093/gerona/glac075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Indexed: 01/20/2023] Open
Abstract
Low skeletal muscle mass (SMM) is a crucial component of the sarcopenia phenotypes. In the present study, we aim to identify the specific metabolites associated with SMM variation and their functional mechanisms of decreased SMM in early postmenopausal women. We performed an untargeted metabolomics analysis in 430 early postmenopausal women to identify specific metabolite associated with skeletal muscle mass indexes (SMIes). Then, the potential causal effect of specific metabolite on SMM variation was accessed by one-sample Mendelian randomization (MR) analysis. Finally, in vitro experiments and transcriptomics bioinformatics analysis were conducted to explore the impact and potential functional mechanisms of specific metabolite on SMM variation. We detected 65 metabolites significantly associated with at least one SMI (variable importance in projection > 1.5 by partial least squares regression and p < .05 in multiple linear regression analysis). Remarkably, stearic acid (SA) was negatively associated with all SMIes, and subsequent MR analyses showed that increased serum SA level had a causal effect on decreased SMM (p < .05). Further in vitro experiments showed that SA could repress myoblast's differentiation at mRNA, protein, and phenotype levels. By combining transcriptome bioinformatics analysis, our study supports that SA may inhibit myoblast differentiation and myotube development by regulating the migration, adhesion, and fusion of myoblasts. This metabolomics study revealed specific metabolic profiles associated with decreased SMM in postmenopausal women, first highlighted the importance of SA in regulating SMM variation, and illustrated its potential mechanism on decreased SMM.
Collapse
Affiliation(s)
- Huimin Liu
- Center for System Biology, Data Sciences, and Reproductive Health, School of Basic Medical Science, Central South University, Changsha, Hunan Province, P.R. China
| | - Xu Lin
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Rui Gong
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Hui Shen
- Tulane Center of Biomedical Informatics and Genomics, Deming Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Zhihao Qu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P.R. China
| | - Qi Zhao
- Department of Preventive Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Jie Shen
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- Shunde Hospital of Southern Medical University (The First People’s Hospital of Shunde), Foshan City, Guangdong Province, China
| | - Hongmei Xiao
- Center for System Biology, Data Sciences, and Reproductive Health, School of Basic Medical Science, Central South University, Changsha, Hunan Province, P.R. China
| | - Hongwen Deng
- Tulane Center of Biomedical Informatics and Genomics, Deming Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana, USA
| |
Collapse
|
187
|
Zheng J, Li B, Yan Y, Huang X, Zhang E. β-Hydroxy-β-Methylbutyric Acid Promotes Repair of Sheep Myoblast Injury by Inhibiting IL-17/NF-κB Signaling. Int J Mol Sci 2022; 24:444. [PMID: 36613892 PMCID: PMC9820147 DOI: 10.3390/ijms24010444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/18/2022] [Accepted: 12/20/2022] [Indexed: 12/29/2022] Open
Abstract
Delayed muscle development and impaired tissue repair are common occurrences in sheep reared for mutton. Therefore, understanding the regulatory mechanisms involved in muscle growth and development is critical for animal production. Skeletal muscle satellite cells (SMSCs) can simulate the proliferation and differentiation of muscle cells and could be induced to differentiate into myoblasts. β-hydroxy-β-methylbutyric acid (HMB) is an additive commonly used in animal production. This study examined the effect of HMB on myoblast injury repair using flow cytometry, EdU assay, RNA sequencing, Western blot, and ELISA. Our results showed that HMB could inhibit IL-17 expression and, in turn, inhibit NF-κB signaling. By acting on the downstream genes of NF-κB pathway IL-6, TNF-α and IL-1β, HMB inhibits the apoptosis and promotes the proliferation of myoblasts. The findings of this study provide insight into the mechanism by which HMB mediates myoblast injury repair in sheep.
Collapse
Affiliation(s)
| | | | | | | | - Enping Zhang
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China
| |
Collapse
|
188
|
Lu P, Morawong T, Molee A, Molee W. L-arginine alters myogenic genes expression but does not affect breast muscle characteristics by in ovo feeding technique in slow-growing chickens. Front Vet Sci 2022; 9:1030873. [PMID: 36590799 PMCID: PMC9794582 DOI: 10.3389/fvets.2022.1030873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/22/2022] [Indexed: 12/15/2022] Open
Abstract
In ovo feeding (IOF) of nutrients is a viable method for increasing muscle mass through hyperplasia and hypertrophy. The objective of this study was to evaluate the effects of IOF of L-arginine (Arg) on breast muscle weight, muscle morphology, amino acid profile, and gene expression of muscle development in slow-growing chickens. Four hundred eighty fertilized eggs were randomly divided into two groups: the first group was the non-injected control group, and the second group was the Arg group, injected with 1% Arg (0.5 mL) into the amnion on day 18 of incubation. After hatching, 160 birds from each group were randomly divided into four replicates of 40 birds each. This experiment lasted for 63 days. The results showed that IOF of Arg did not affect (P > 0.05) breast muscle weight, muscle morphology, and mRNA expression of mammalian target of rapamycin (mTOR) signaling pathway in slow-growing chickens. However, the amino acid profile of breast muscle was altered (P < 0.05) on the day of hatching (DOH), day 21 (D21), and day 42 (D42) post-hatch, respectively. Myogenic factor 5 (Myf5) mRNA expression was upregulated (P < 0.05) on D21 post-hatch. Myogenic regulator 4 (MRF4) mRNA expression was increased (P < 0.05) on DOH. And myogenin (MyoG) was increased (P < 0.05) on DOH and D21 post-hatch, in the Arg group compared to the control group. Overall, IOF of 1% Arg improved the expression of myogenic genes but did not influence muscle morphology and BMW. These results indicate that in ovo Arg dosage (0.5 mL/egg) has no adverse effect on breast muscle development of slow-growing chickens.
Collapse
|
189
|
Teng T, Song X, Sun G, Ding H, Sun H, Bai G, Shi B. Glucose supplementation improves intestinal amino acid transport and muscle amino acid pool in pigs during chronic cold exposure. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2022; 12:360-374. [PMID: 36788930 PMCID: PMC9898627 DOI: 10.1016/j.aninu.2022.10.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/26/2022] [Accepted: 10/07/2022] [Indexed: 12/14/2022]
Abstract
Mammals in northern regions chronically suffer from low temperatures during autumn-winter seasons. The aim of this study was to investigate the response of intestinal amino acid transport and the amino acid pool in muscle to chronic cold exposure via Min pig models (cold adaptation) and Yorkshire pig models (non-cold adaptation). Furthermore, this study explored the beneficial effects of glucose supplementation on small intestinal amino acid transport and amino acid pool in muscle of cold-exposed Yorkshire pigs. Min pigs (Exp. 1) and Yorkshire pigs (Exp. 2) were divided into a control group (17 °C, n = 6) and chronic cold exposure group (7 °C, n = 6), respectively. Twelve Yorkshire pigs (Exp. 3) were divided into a cold control group and cold glucose supplementation group (8 °C). The results showed that chronic cold exposure inhibited peptide transporter protein 1 (PepT1) and excitatory amino acid transporter 3 (EAAT3) expression in ileal mucosa and cationic amino acid transporter-1 (CAT-1) in the jejunal mucosa of Yorkshire pigs (P < 0.05). In contrast, CAT-1, PepT1 and EAAT3 expression was enhanced in the duodenal mucosa of Min pigs (P < 0.05). Branched amino acids (BCAA) in the muscle of Yorkshire pigs were consumed by chronic cold exposure, accompanied by increased muscle RING-finger protein-1 (MuRF1) and muscle atrophy F-box (atrogin-1) expression (P < 0.05). More importantly, reduced concentrations of dystrophin were detected in the muscle of Yorkshire pigs (P < 0.05). However, glycine concentration in the muscle of Min pigs was raised (P < 0.05). In the absence of interaction between chronic cold exposure and glucose supplementation, glucose supplementation improved CAT-1 expression in the jejunal mucosa and PepT1 expression in the ileal mucosa of cold-exposed Yorkshire pigs (P < 0.05). It also improved BCAA and inhibited MuRF1 and atrogin-1 expression in muscle (P < 0.05). Moreover, dystrophin concentration was improved by glucose supplementation (P < 0.05). In summary, chronic cold exposure inhibits amino acid absorption in the small intestine, depletes BCAA and promotes protein degradation in muscle. Glucose supplementation ameliorates the negative effects of chronic cold exposure on amino acid transport and the amino acid pool in muscle.
Collapse
|
190
|
Tan B, Zeng J, Meng F, Wang S, Xiao L, Zhao X, Hong L, Zheng E, Wu Z, Li Z, Gu T. Comprehensive analysis of pre-mRNA alternative splicing regulated by m6A methylation in pig oxidative and glycolytic skeletal muscles. BMC Genomics 2022; 23:804. [PMID: 36474138 PMCID: PMC9724443 DOI: 10.1186/s12864-022-09043-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 11/23/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Different types of skeletal myofibers exhibit distinct physiological and metabolic properties that are associated with meat quality traits in livestock. Alternative splicing (AS) of pre-mRNA can generate multiple transcripts from an individual gene by differential selection of splice sites. N6-methyladenosine (m6A) is the most abundant modification in mRNAs, but its regulation for AS in different muscles remains unknown. RESULTS: We characterized AS events and m6A methylation pattern in pig oxidative and glycolytic muscles. A tota1 of 1294 differential AS events were identified, and differentially spliced genes were significantly enriched in processes related to different phenotypes between oxidative and glycolytic muscles. We constructed the regulatory network between splicing factors and corresponding differential AS events and identified NOVA1 and KHDRBS2 as key splicing factors. AS event was enriched in m6A-modified genes, and the methylation level was positively correlated with the number of AS events in genes. The dynamic change in m6A enrichment was associated with 115 differentially skipping exon (SE-DAS) events within 92 genes involving in various processes, including muscle contraction and myofibril assembly. We obtained 23.4% SE-DAS events (27/115) regulated by METTL3-meditaed m6A and experimentally validated the aberrant splicing of ZNF280D, PHE4DIP, and NEB. The inhibition of m6A methyltransferase METTL3 could induce the conversion of oxidative fiber to glycolytic fiber in PSCs. CONCLUSION Our study suggested that m6A modification could contribute to significant difference in phenotypes between oxidative and glycolytic muscles by mediating the regulation of AS. These findings would provide novel insights into mechanisms underlying muscle fiber conversion.
Collapse
Affiliation(s)
- Baohua Tan
- grid.20561.300000 0000 9546 5767National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, 510642 Guangzhou, China ,grid.20561.300000 0000 9546 5767Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, 510642 Guangzhou, China
| | - Jiekang Zeng
- grid.20561.300000 0000 9546 5767National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, 510642 Guangzhou, China ,grid.20561.300000 0000 9546 5767Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, 510642 Guangzhou, China
| | - Fanming Meng
- grid.135769.f0000 0001 0561 6611State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, 510640 Guangzhou, Guangdong People’s Republic of China
| | - Shanshan Wang
- grid.20561.300000 0000 9546 5767National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, 510642 Guangzhou, China ,grid.20561.300000 0000 9546 5767Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, 510642 Guangzhou, China
| | - Liyao Xiao
- grid.20561.300000 0000 9546 5767National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, 510642 Guangzhou, China ,grid.20561.300000 0000 9546 5767Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, 510642 Guangzhou, China
| | - Xinming Zhao
- grid.20561.300000 0000 9546 5767National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, 510642 Guangzhou, China ,grid.20561.300000 0000 9546 5767Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, 510642 Guangzhou, China
| | - Linjun Hong
- grid.20561.300000 0000 9546 5767National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, 510642 Guangzhou, China ,grid.20561.300000 0000 9546 5767Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, 510642 Guangzhou, China
| | - Enqin Zheng
- grid.20561.300000 0000 9546 5767National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, 510642 Guangzhou, China ,grid.20561.300000 0000 9546 5767Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, 510642 Guangzhou, China
| | - Zhenfang Wu
- grid.20561.300000 0000 9546 5767National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, 510642 Guangzhou, China ,grid.20561.300000 0000 9546 5767Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, 510642 Guangzhou, China ,State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, 510642 Guangzhou, China
| | - Zicong Li
- grid.20561.300000 0000 9546 5767National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, 510642 Guangzhou, China ,grid.20561.300000 0000 9546 5767Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, 510642 Guangzhou, China
| | - Ting Gu
- grid.20561.300000 0000 9546 5767National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, 510642 Guangzhou, China ,grid.20561.300000 0000 9546 5767Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, 510642 Guangzhou, China
| |
Collapse
|
191
|
Dong Y, Zhang X, Miao R, Cao W, Wei H, Jiang W, Gao R, Yang Y, Sun H, Qiu J. Branched-chain amino acids promotes the repair of exercise-induced muscle damage via enhancing macrophage polarization. Front Physiol 2022; 13:1037090. [PMID: 36561213 PMCID: PMC9763461 DOI: 10.3389/fphys.2022.1037090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 11/24/2022] [Indexed: 12/12/2022] Open
Abstract
The repair of exercise-induced muscle damage (EIMD) is closely related with inflammation. Branched-chain amino acids (BCAAs), as a nutritional supplement, promote EIMD repair; however, the underlying mechanism remains unclear. In vivo, Sprague-Dawley rats were subjected to Armstrong's eccentric exercise (a 120-min downhill run with a slope of -16° and a speed of 16 m min-1) to induce EIMD and BCAA supplement was administered by oral gavage. Protein expression of macrophages (CD68 and CD163) and myogenic regulatory factors (MYOD and MYOG) in gastrocnemius was analyzed. Inflammatory cytokines and creatine kinase (CK) levels in serum was also measured. In vitro, peritoneal macrophages from mice were incubated with lipopolysaccharide (LPS) or IL-4 with or without BCAAs in culture medium. For co-culture experiment, C2C12 cells were cultured with the conditioned medium from macrophages prestimulated with LPS or IL-4 in the presence or absence of BCAAs. The current study indicated BCAA supplementation enhanced the M1/M2 polarization of macrophages in skeletal muscle during EIMD repair, and BCAAs promoted M1 polarization through enhancing mTORC1-HIF1α-glycolysis pathway, and promoted M2 polarization independently of mTORC1. In addition, BCAA-promoted M1 macrophages further stimulated the proliferation of muscle satellite cells, whereas BCAA-promoted M2 macrophages stimulated their differentiation. Together, these results show macrophages mediate the BCAAs' beneficial impacts on EIMD repair via stimulating the proliferation and differentiation of muscle satellite cells, shedding light on the critical role of inflammation in EIMD repair and the potential nutritional strategies to ameliorate muscle damage.
Collapse
Affiliation(s)
- Yunfeng Dong
- Department of Exercise Biochemistry, School of Sports Science, Beijing Sport University, Beijing, China,Institute of Physical Education, Shanxi Datong University, Datong, China
| | - Xuejiao Zhang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China,Center for Cardiovascular Diseases, The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Rui Miao
- Department of Exercise Biochemistry, School of Sports Science, Beijing Sport University, Beijing, China
| | - Wei Cao
- Department of Exercise Biochemistry, School of Sports Science, Beijing Sport University, Beijing, China
| | - Hao Wei
- Department of Exercise Biochemistry, School of Sports Science, Beijing Sport University, Beijing, China
| | - Wei Jiang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Ruirui Gao
- Department of Exercise Biochemistry, School of Sports Science, Beijing Sport University, Beijing, China
| | - Yanhui Yang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Haipeng Sun
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China,Center for Cardiovascular Diseases, The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Tianjin, China,*Correspondence: Haipeng Sun, ; Junqiang Qiu,
| | - Junqiang Qiu
- Department of Exercise Biochemistry, School of Sports Science, Beijing Sport University, Beijing, China,Beijing Sports Nutrition Engineering Research Center, Beijing, China,*Correspondence: Haipeng Sun, ; Junqiang Qiu,
| |
Collapse
|
192
|
Bolívar-Monsalve EJ, Ceballos-González CF, Chávez-Madero C, de la Cruz-Rivas BG, Velásquez Marín S, Mora-Godínez S, Reyes-Cortés LM, Khademhosseini A, Weiss PS, Samandari M, Tamayol A, Alvarez MM, Trujillo-de Santiago G. One-Step Bioprinting of Multi-Channel Hydrogel Filaments Using Chaotic Advection: Fabrication of Pre-Vascularized Muscle-Like Tissues. Adv Healthc Mater 2022; 11:e2200448. [PMID: 35930168 DOI: 10.1002/adhm.202200448] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 07/07/2022] [Indexed: 01/28/2023]
Abstract
The biofabrication of living constructs containing hollow channels is critical for manufacturing thick tissues. However, current technologies are limited in their effectiveness in the fabrication of channels with diameters smaller than hundreds of micrometers. It is demonstrated that the co-extrusion of cell-laden hydrogels and sacrificial materials through printheads containing Kenics static mixing elements enables the continuous and one-step fabrication of thin hydrogel filaments (1 mm in diameter) containing dozens of hollow microchannels with widths as small as a single cell. Pre-vascularized skeletal muscle-like filaments are bioprinted by loading murine myoblasts (C2C12 cells) in gelatin methacryloyl - alginate hydrogels and using hydroxyethyl cellulose as a sacrificial material. Higher viability and metabolic activity are observed in filaments with hollow multi-channels than in solid constructs. The presence of hollow channels promotes the expression of Ki67 (a proliferation biomarker), mitigates the expression of hypoxia-inducible factor 1-alpha , and markedly enhances cell alignment (i.e., 82% of muscle myofibrils aligned (in ±10°) to the main direction of the microchannels after seven days of culture). The emergence of sarcomeric α-actin is verified through immunofluorescence and gene expression. Overall, this work presents an effective and practical tool for the fabrication of pre-vascularized engineered tissues.
Collapse
Affiliation(s)
| | | | - Carolina Chávez-Madero
- Centro de Biotecnología-FEMSA, Tecnologico de Monterrey, Monterrey, NL, 64849, México.,Departamento de Ingeniería Mecatrónica y Eléctrica, Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Monterrey, NL, 64849, México
| | - Brenda Guadalupe de la Cruz-Rivas
- Centro de Biotecnología-FEMSA, Tecnologico de Monterrey, Monterrey, NL, 64849, México.,Departamento de Ingeniería Mecatrónica y Eléctrica, Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Monterrey, NL, 64849, México
| | - Silvana Velásquez Marín
- Centro de Biotecnología-FEMSA, Tecnologico de Monterrey, Monterrey, NL, 64849, México.,Departamento de Ingeniería Mecatrónica y Eléctrica, Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Monterrey, NL, 64849, México
| | - Shirley Mora-Godínez
- Centro de Biotecnología-FEMSA, Tecnologico de Monterrey, Monterrey, NL, 64849, México
| | | | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90024, USA
| | - Paul S Weiss
- Department of Chemistry and Biochemistry, Department of Bioengineering, Department of Materials Science and Engineering, California NanoSystems Institute (CNSI), University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Mohamadmahdi Samandari
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT, 06030, USA
| | - Ali Tamayol
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT, 06030, USA
| | - Mario Moisés Alvarez
- Centro de Biotecnología-FEMSA, Tecnologico de Monterrey, Monterrey, NL, 64849, México.,Departamento de Bioingeniería, Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Monterrey, NL, 64849, México
| | - Grissel Trujillo-de Santiago
- Centro de Biotecnología-FEMSA, Tecnologico de Monterrey, Monterrey, NL, 64849, México.,Departamento de Ingeniería Mecatrónica y Eléctrica, Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Monterrey, NL, 64849, México
| |
Collapse
|
193
|
Hayashi S, Yonekura S. Mild heat stimulation facilitates muscle hypertrophy in C2C12 and mouse satellite cells through myokine release to the culture medium. Biochem Biophys Res Commun 2022; 635:161-168. [DOI: 10.1016/j.bbrc.2022.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 10/04/2022] [Indexed: 11/02/2022]
|
194
|
Baldwin C, Kim J, Sivaraman S, Rao RR. Stem cell-based strategies for skeletal muscle tissue engineering. J Tissue Eng Regen Med 2022; 16:1061-1068. [PMID: 36223074 DOI: 10.1002/term.3355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 09/06/2022] [Accepted: 09/27/2022] [Indexed: 01/05/2023]
Abstract
Skeletal muscle tissue engineering has been a key area of focus over the years and has been of interest for developing regenerative strategies for injured or degenerative skeletal muscle tissue. Stem cells have gained increased attention as sources for developing skeletal muscle tissue for subsequent studies or potential treatments. Focus has been placed on understanding the molecular pathways that govern skeletal muscle formation in development to advance differentiation of stem cells towards skeletal muscle fates in vitro. Use of growth factors and transcription factors have long been the method for guiding skeletal muscle differentiation in vitro. However, further research in small molecule induced differentiation offers a xeno-free option that could result from use of animal derived factors.
Collapse
Affiliation(s)
- Christofer Baldwin
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, Arkansas, USA
| | - Johntaehwan Kim
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Srikanth Sivaraman
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, Arkansas, USA
| | - Raj R Rao
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, Arkansas, USA
| |
Collapse
|
195
|
Pro-Myogenic Environment Promoted by the Synergistic Effect of Conductive Polymer Nanocomposites Combined with Extracellular Zinc Ions. BIOLOGY 2022; 11:biology11121706. [PMID: 36552216 PMCID: PMC9774464 DOI: 10.3390/biology11121706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/16/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022]
Abstract
A new strategy based on the combination of electrically conductive polymer nanocomposites and extracellular Zn2+ ions as a myogenic factor was developed to assess its ability to synergically stimulate myogenic cell response. The conductive nanocomposite was prepared with a polymeric matrix and a small amount of graphene (G) nanosheets (0.7% wt/wt) as conductive filler to produce an electrically conductive surface. The nanocomposites' surface electrical conductivity presented values in the range of human skeletal muscle tissue. The biological evaluation of the cell environment created by the combination of the conductive surface and extracellular Zn2+ ions showed no cytotoxicity and good cell adhesion (murine C2C12 myoblasts). Amazingly, the combined strategy, cell-material interface with conductive properties and Zn bioactive ions, was found to have a pronounced synergistic effect on myoblast proliferation and the early stages of differentiation. The ratio of differentiated myoblasts cultured on the conductive nanocomposites with extracellular Zn2+ ions added in the differentiation medium (serum-deprived medium) was enhanced by more than 170% over that of non-conductive surfaces (only the polymeric matrix), and more than 120% over both conductive substrates (without extracellular Zn2+ ions) and non-conductive substrates with extracellular Zn2+. This synergistic effect was also found to increase myotube density, myotube area and diameter, and multinucleated myotube formation. MyoD-1 gene expression was also enhanced, indicating the positive effect in the early stages of myogenic differentiation. These results demonstrate the great potential of this combined strategy, which stands outs for its simplicity and robustness, for skeletal muscle tissue engineering applications.
Collapse
|
196
|
Lactate Activates AMPK Remodeling of the Cellular Metabolic Profile and Promotes the Proliferation and Differentiation of C2C12 Myoblasts. Int J Mol Sci 2022; 23:ijms232213996. [PMID: 36430479 PMCID: PMC9694550 DOI: 10.3390/ijms232213996] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/02/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
Lactate is a general compound fuel serving as the fulcrum of metabolism, which is produced from glycolysis and shuttles between different cells, tissues and organs. Lactate is usually accumulated abundantly in muscles during exercise. It remains unclear whether lactate plays an important role in the metabolism of muscle cells. In this research, we assessed the effects of lactate on myoblasts and clarified the underlying metabolic mechanisms through NMR-based metabonomic profiling. Lactate treatment promoted the proliferation and differentiation of myoblasts, as indicated by significantly enhanced expression levels of the proteins related to cellular proliferation and differentiation, including p-AKT, p-ERK, MyoD and myogenin. Moreover, lactate treatment profoundly regulated metabolisms in myoblasts by promoting the intake and intracellular utilization of lactate, activating the TCA cycle, and thereby increasing energy production. For the first time, we found that lactate treatment evidently promotes AMPK signaling as reflected by the elevated expression levels of p-AMPK and p-ACC. Our results showed that lactate as a metabolic regulator activates AMPK, remodeling the cellular metabolic profile, and thereby promoting the proliferation and differentiation of myoblasts. This study elucidates molecular mechanisms underlying the effects of lactate on skeletal muscle in vitro and may be of benefit to the exploration of lactate acting as a metabolic regulator.
Collapse
|
197
|
Lyu P, Jiang H. RNA-Sequencing Reveals Upregulation and a Beneficial Role of Autophagy in Myoblast Differentiation and Fusion. Cells 2022; 11:cells11223549. [PMID: 36428978 PMCID: PMC9688917 DOI: 10.3390/cells11223549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/02/2022] [Accepted: 11/08/2022] [Indexed: 11/12/2022] Open
Abstract
Myoblast differentiation is a complex process whereby the mononuclear muscle precursor cells myoblasts express skeletal-muscle-specific genes and fuse with each other to form multinucleated myotubes. The objective of this study was to identify potentially novel mechanisms that mediate myoblast differentiation. We first compared transcriptomes in C2C12 myoblasts before and 6 days after induction of myogenic differentiation by RNA-seq. This analysis identified 11,046 differentially expressed genes, of which 5615 and 5431 genes were upregulated and downregulated, respectively, from before differentiation to differentiation. Functional enrichment analyses revealed that the upregulated genes were associated with skeletal muscle contraction, autophagy, and sarcomeres while the downregulated genes were associated with ribonucleoprotein complex biogenesis, mRNA processing, ribosomes, and other biological processes or cellular components. Western blot analyses showed an increased conversion of LC3-I to LC3-II protein during myoblast differentiation, further demonstrating the upregulation of autophagy during myoblast differentiation. Blocking the autophagic flux in C2C12 cells with chloroquine inhibited the expression of skeletal-muscle-specific genes and the formation of myotubes, confirming a positive role for autophagy in myoblast differentiation and fusion.
Collapse
|
198
|
Tcf12 is required to sustain myogenic genes synergism with MyoD by remodelling the chromatin landscape. Commun Biol 2022; 5:1201. [DOI: 10.1038/s42003-022-04176-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 10/26/2022] [Indexed: 11/11/2022] Open
Abstract
AbstractMuscle stem cells (MuSCs) are essential for skeletal muscle development and regeneration, ensuring muscle integrity and normal function. The myogenic proliferation and differentiation of MuSCs are orchestrated by a cascade of transcription factors. In this study, we elucidate the specific role of transcription factor 12 (Tcf12) in muscle development and regeneration based on loss-of-function studies. Muscle-specific deletion of Tcf12 cause muscle weight loss owing to the reduction of myofiber size during development. Inducible deletion of Tcf12 specifically in adult MuSCs delayed muscle regeneration. The examination of MuSCs reveal that Tcf12 deletion resulted in cell-autonomous defects during myogenesis and Tcf12 is necessary for proper myogenic gene expression. Mechanistically, TCF12 and MYOD work together to stabilise chromatin conformation and sustain muscle cell fate commitment-related gene and chromatin architectural factor expressions. Altogether, our findings identify Tcf12 as a crucial regulator of MuSCs chromatin remodelling that regulates muscle cell determination and participates in skeletal muscle development and regeneration.
Collapse
|
199
|
Zhu A, Liu N, Shang Y, Zhen Y, An Y. Signaling pathways of adipose stem cell-derived exosomes promoting muscle regeneration. Chin Med J (Engl) 2022; 135:2525-2534. [PMID: 36583914 PMCID: PMC9945488 DOI: 10.1097/cm9.0000000000002404] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Indexed: 12/31/2022] Open
Abstract
ABSTRACT Severe muscle injury is still a challenging clinical problem. Exosomes derived from adipose stem cells (ASC-exos) may be a potential therapeutic tool, but their mechanism is not completely clear. This review aims to elaborate the possible mechanism of ASC-exos in muscle regeneration from the perspective of signal pathways and provide guidance for further study. Literature cited in this review was acquired through PubMed using keywords or medical subject headings, including adipose stem cells, exosomes, muscle regeneration, myogenic differentiation, myogenesis, wingless/integrated (Wnt), mitogen-activated protein kinases, phosphatidylinositol-4,5-bisphosphate 3-kinase/protein kinase B (PI3K/Akt), Janus kinase/signal transducers and activators of transcription, and their combinations. We obtained the related signal pathways from proteomics analysis of ASC-exos in the literature, and identified that ASC-exos make different contributions to multiple stages of skeletal muscle regeneration by those signal pathways.
Collapse
Affiliation(s)
- Aoxuan Zhu
- Department of Plastic Surgery, Peking University Third Hospital, Beijing 100191, China
| | - Na Liu
- Department of Plastic Surgery, Peking University Third Hospital, Beijing 100191, China
- Department of Natural Products Chemistry, School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Yujia Shang
- Department of Plastic Surgery, Peking University Third Hospital, Beijing 100191, China
- Department of Natural Products Chemistry, School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Yonghuan Zhen
- Department of Plastic Surgery, Peking University Third Hospital, Beijing 100191, China
| | - Yang An
- Department of Plastic Surgery, Peking University Third Hospital, Beijing 100191, China
| |
Collapse
|
200
|
Battistelli C, Garbo S, Maione R. MyoD-Induced Trans-Differentiation: A Paradigm for Dissecting the Molecular Mechanisms of Cell Commitment, Differentiation and Reprogramming. Cells 2022; 11:3435. [PMID: 36359831 PMCID: PMC9654159 DOI: 10.3390/cells11213435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 10/23/2022] [Accepted: 10/28/2022] [Indexed: 10/20/2023] Open
Abstract
The discovery of the skeletal muscle-specific transcription factor MyoD represents a milestone in the field of transcriptional regulation during differentiation and cell-fate reprogramming. MyoD was the first tissue-specific factor found capable of converting non-muscle somatic cells into skeletal muscle cells. A unique feature of MyoD, with respect to other lineage-specific factors able to drive trans-differentiation processes, is its ability to dramatically change the cell fate even when expressed alone. The present review will outline the molecular strategies by which MyoD reprograms the transcriptional regulation of the cell of origin during the myogenic conversion, focusing on the activation and coordination of a complex network of co-factors and epigenetic mechanisms. Some molecular roadblocks, found to restrain MyoD-dependent trans-differentiation, and the possible ways for overcoming these barriers, will also be discussed. Indeed, they are of critical importance not only to expand our knowledge of basic muscle biology but also to improve the generation skeletal muscle cells for translational research.
Collapse
Affiliation(s)
| | | | - Rossella Maione
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
| |
Collapse
|