151
|
Yu Z, Wang Q, Zhang Q, Tian Y, Yan G, Zhu J, Zhu G, Zhang Y. Decoding the genomic landscape of chromatin-associated biomolecular condensates. Nat Commun 2024; 15:6952. [PMID: 39138204 PMCID: PMC11322608 DOI: 10.1038/s41467-024-51426-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 08/05/2024] [Indexed: 08/15/2024] Open
Abstract
Biomolecular condensates play a significant role in chromatin activities, primarily by concentrating and compartmentalizing proteins and/or nucleic acids. However, their genomic landscapes and compositions remain largely unexplored due to a lack of dedicated computational tools for systematic identification in vivo. To address this, we develop CondSigDetector, a computational framework designed to detect condensate-like chromatin-associated protein co-occupancy signatures (CondSigs), to predict genomic loci and component proteins of distinct chromatin-associated biomolecular condensates. Applying this framework to mouse embryonic stem cells (mESC) and human K562 cells enable us to depict the high-resolution genomic landscape of chromatin-associated biomolecular condensates, and uncover both known and potentially unknown biomolecular condensates. Multi-omics analysis and experimental validation further verify the condensation properties of CondSigs. Additionally, our investigation sheds light on the impact of chromatin-associated biomolecular condensates on chromatin activities. Collectively, CondSigDetector provides an approach to decode the genomic landscape of chromatin-associated condensates, facilitating a deeper understanding of their biological functions and underlying mechanisms in cells.
Collapse
Affiliation(s)
- Zhaowei Yu
- State Key Laboratory of Cardiovascular Diseases and Medical Innovation Center, Institute for Regenerative Medicine, Department of Neurosurgery, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Qi Wang
- State Key Laboratory of Cardiovascular Diseases and Medical Innovation Center, Institute for Regenerative Medicine, Department of Neurosurgery, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Qichen Zhang
- Pancreatic Intensive Care Unit, Changhai hospital, Naval Medical University, Shanghai, 200433, China
- Lingang Laboratory, Shanghai, 200031, China
| | - Yawen Tian
- Lingang Laboratory, Shanghai, 200031, China
| | - Guo Yan
- Lingang Laboratory, Shanghai, 200031, China
| | - Jidong Zhu
- Etern Biopharma, Shanghai, 201203, China
| | - Guangya Zhu
- Lingang Laboratory, Shanghai, 200031, China.
| | - Yong Zhang
- State Key Laboratory of Cardiovascular Diseases and Medical Innovation Center, Institute for Regenerative Medicine, Department of Neurosurgery, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
152
|
Zhang B, Wang C, Kilgore H, Latham A. Non-specific yet selective interactions contribute to small molecule condensate partitioning behavior. RESEARCH SQUARE 2024:rs.3.rs-4784242. [PMID: 39184067 PMCID: PMC11343289 DOI: 10.21203/rs.3.rs-4784242/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Biomolecular condensates are essential in various cellular processes, and their misregulation has been demonstrated to be underly disease. Small molecules that modulate condensate stability and material properties offer promising therapeutic approaches, but mechanistic insights into their interactions with condensates remain largely lacking. We employ a multiscale approach to enable long-time, equilibrated all-atom simulations of various condensate-ligand systems. Systematic characterization of the ligand binding poses reveals that condensates can form diverse and heterogeneous chemical environments with one or multiple chains to bind small molecules. Unlike traditional protein-ligand interactions, these chemical environments are dominated by non-specific hydrophobic interactions. Nevertheless, the chemical environments feature unique amino acid compositions and physicochemical properties that favor certain small molecules over others, resulting in varied ligand partitioning coefficients within condensates. Notably, different condensates share similar sets of chemical environments but at different populations. This population shift drives ligand selectivity towards specific condensates. Our approach can enhance the interpretation of experimental screening data and may assist in the rational design of small molecules targeting specific condensates.
Collapse
|
153
|
Yin H, You M, Shi X, Yu H, Chen Q. New insights into pure zwitterionic hydrogels with high strength and high toughness. MATERIALS HORIZONS 2024; 11:3946-3960. [PMID: 38874530 DOI: 10.1039/d4mh00164h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Zwitterionic hydrogels are electrically neutral materials with both cationic and anionic groups that impart excellent anti-fouling properties and ion channel orientations. However, pure zwitterionic hydrogels generally exhibit low strength and toughness. In this study, it has been discovered that polymerizable zwitterionic monomers in aqueous solution exhibit a unique liquid-liquid phase separation phenomenon at a high monomer concentration of ≥50 wt%, resulting in pure and commercial zwitterionic hydrogels with high compressive strength (6.5 MPa) and high toughness (2.12 kJ m-2). This phase separation and the corresponding aggregations might be caused by strong dipole-dipole interactions among residual zwitterionic monomers under the lack of free-water condition. The synergistic effect of liquid-liquid phase separation and polymer entanglement enhances the mechanical strength, toughness, self-recovery, and anti-freezing properties of pure polyzwitterionic hydrogels. Moreover, the high fracture energy of highly elongated yet tough polyzwitterionic hydrogels facilitates the development of high crack propagation resistance, which supports an expanded role in tissue engineering, soft flexible devices, and electronics applications with improved durability. A wide range of applications for the proposed polyzwitterionic hydrogels is demonstrated by the development and testing of a strain sensor and a triboelectric nanogenerator device. Our findings provide novel insights into the network structure of pure polyzwitterionic hydrogels.
Collapse
Affiliation(s)
- Haiyan Yin
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 352001, Zhejiang, China.
| | - Min You
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 352001, Zhejiang, China.
| | - Xinlei Shi
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 352001, Zhejiang, China.
| | - Hui Yu
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 352001, Zhejiang, China.
| | - Qiang Chen
- Joint Research Center of Medicine, The Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, Zhejiang 315700, China.
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 352001, Zhejiang, China.
| |
Collapse
|
154
|
Cui Q, Liu Z, Bai G. Friend or foe: The role of stress granule in neurodegenerative disease. Neuron 2024; 112:2464-2485. [PMID: 38744273 DOI: 10.1016/j.neuron.2024.04.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/12/2024] [Accepted: 04/19/2024] [Indexed: 05/16/2024]
Abstract
Stress granules (SGs) are dynamic membraneless organelles that form in response to cellular stress. SGs are predominantly composed of RNA and RNA-binding proteins that assemble through liquid-liquid phase separation. Although the formation of SGs is considered a transient and protective response to cellular stress, their dysregulation or persistence may contribute to various neurodegenerative diseases. This review aims to provide a comprehensive overview of SG physiology and pathology. It covers the formation, composition, regulation, and functions of SGs, along with their crosstalk with other membrane-bound and membraneless organelles. Furthermore, this review discusses the dual roles of SGs as both friends and foes in neurodegenerative diseases and explores potential therapeutic approaches targeting SGs. The challenges and future perspectives in this field are also highlighted. A more profound comprehension of the intricate relationship between SGs and neurodegenerative diseases could inspire the development of innovative therapeutic interventions against these devastating diseases.
Collapse
Affiliation(s)
- Qinqin Cui
- Department of Neurology of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; Nanhu Brain-Computer Interface Institute, Hangzhou 311100, China.
| | - Zongyu Liu
- Department of Neurology of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Ge Bai
- Department of Neurology of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; Nanhu Brain-Computer Interface Institute, Hangzhou 311100, China; Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou 311121, China; NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China; Institute of Fundamental and Transdisciplinary Research, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
155
|
Washington EJ, Zhou Y, Hsu AL, Petrovich M, Tenor JL, Toffaletti DL, Guan Z, Perfect JR, Borgnia MJ, Bartesaghi A, Brennan RG. Structures of trehalose-6-phosphate synthase, Tps1, from the fungal pathogen Cryptococcus neoformans: A target for antifungals. Proc Natl Acad Sci U S A 2024; 121:e2314087121. [PMID: 39083421 PMCID: PMC11317593 DOI: 10.1073/pnas.2314087121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 06/25/2024] [Indexed: 08/02/2024] Open
Abstract
Invasive fungal diseases are a major threat to human health, resulting in more than 1.5 million annual deaths worldwide. The arsenal of antifungal therapeutics remains limited and is in dire need of drugs that target additional biosynthetic pathways that are absent from humans. One such pathway involves the biosynthesis of trehalose. Trehalose is a disaccharide that is required for pathogenic fungi to survive in their human hosts. In the first step of trehalose biosynthesis, trehalose-6-phosphate synthase (Tps1) converts UDP-glucose and glucose-6-phosphate to trehalose-6-phosphate. Here, we report the structures of full-length Cryptococcus neoformans Tps1 (CnTps1) in unliganded form and in complex with uridine diphosphate and glucose-6-phosphate. Comparison of these two structures reveals significant movement toward the catalytic pocket by the N terminus upon ligand binding and identifies residues required for substrate binding, as well as residues that stabilize the tetramer. Intriguingly, an intrinsically disordered domain (IDD), which is conserved among Cryptococcal species and closely related basidiomycetes, extends from each subunit of the tetramer into the "solvent" but is not visible in density maps. We determined that the IDD is not required for C. neoformans Tps1-dependent thermotolerance and osmotic stress survival. Studies with UDP-galactose highlight the exquisite substrate specificity of CnTps1. In toto, these studies expand our knowledge of trehalose biosynthesis in Cryptococcus and highlight the potential of developing antifungal therapeutics that disrupt the synthesis of this disaccharide or the formation of a functional tetramer and the use of cryo-EM in the structural characterization of CnTps1-ligand/drug complexes.
Collapse
Affiliation(s)
- Erica J. Washington
- Department of Biochemistry, Duke University School of Medicine, Durham, NC27710
| | - Ye Zhou
- Department of Computer Science, Duke University, Durham, NC27708
| | - Allen L. Hsu
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, Department of Health and Human Services, NIH, Research Triangle Park, NC27709
| | - Matthew Petrovich
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, Department of Health and Human Services, NIH, Research Triangle Park, NC27709
| | - Jennifer L. Tenor
- Division of Infectious Diseases, Department of Medicine, Duke University School of Medicine, Durham, NC27710
| | - Dena L. Toffaletti
- Division of Infectious Diseases, Department of Medicine, Duke University School of Medicine, Durham, NC27710
| | - Ziqiang Guan
- Department of Biochemistry, Duke University School of Medicine, Durham, NC27710
| | - John R. Perfect
- Division of Infectious Diseases, Department of Medicine, Duke University School of Medicine, Durham, NC27710
| | - Mario J. Borgnia
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, Department of Health and Human Services, NIH, Research Triangle Park, NC27709
| | - Alberto Bartesaghi
- Department of Biochemistry, Duke University School of Medicine, Durham, NC27710
- Department of Computer Science, Duke University, Durham, NC27708
| | - Richard G. Brennan
- Department of Biochemistry, Duke University School of Medicine, Durham, NC27710
| |
Collapse
|
156
|
Middendorf L, Ravi Iyengar B, Eicholt LA. Sequence, Structure, and Functional Space of Drosophila De Novo Proteins. Genome Biol Evol 2024; 16:evae176. [PMID: 39212966 PMCID: PMC11363682 DOI: 10.1093/gbe/evae176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
During de novo emergence, new protein coding genes emerge from previously nongenic sequences. The de novo proteins they encode are dissimilar in composition and predicted biochemical properties to conserved proteins. However, functional de novo proteins indeed exist. Both identification of functional de novo proteins and their structural characterization are experimentally laborious. To identify functional and structured de novo proteins in silico, we applied recently developed machine learning based tools and found that most de novo proteins are indeed different from conserved proteins both in their structure and sequence. However, some de novo proteins are predicted to adopt known protein folds, participate in cellular reactions, and to form biomolecular condensates. Apart from broadening our understanding of de novo protein evolution, our study also provides a large set of testable hypotheses for focused experimental studies on structure and function of de novo proteins in Drosophila.
Collapse
Affiliation(s)
- Lasse Middendorf
- Institute for Evolution and Biodiversity, University of Muenster, Huefferstrasse 1, 48149 Muenster, Germany
| | - Bharat Ravi Iyengar
- Institute for Evolution and Biodiversity, University of Muenster, Huefferstrasse 1, 48149 Muenster, Germany
| | - Lars A Eicholt
- Institute for Evolution and Biodiversity, University of Muenster, Huefferstrasse 1, 48149 Muenster, Germany
| |
Collapse
|
157
|
Bhushan V, Nita-Lazar A. Recent Advancements in Subcellular Proteomics: Growing Impact of Organellar Protein Niches on the Understanding of Cell Biology. J Proteome Res 2024; 23:2700-2722. [PMID: 38451675 PMCID: PMC11296931 DOI: 10.1021/acs.jproteome.3c00839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
The mammalian cell is a complex entity, with membrane-bound and membrane-less organelles playing vital roles in regulating cellular homeostasis. Organellar protein niches drive discrete biological processes and cell functions, thus maintaining cell equilibrium. Cellular processes such as signaling, growth, proliferation, motility, and programmed cell death require dynamic protein movements between cell compartments. Aberrant protein localization is associated with a wide range of diseases. Therefore, analyzing the subcellular proteome of the cell can provide a comprehensive overview of cellular biology. With recent advancements in mass spectrometry, imaging technology, computational tools, and deep machine learning algorithms, studies pertaining to subcellular protein localization and their dynamic distributions are gaining momentum. These studies reveal changing interaction networks because of "moonlighting proteins" and serve as a discovery tool for disease network mechanisms. Consequently, this review aims to provide a comprehensive repository for recent advancements in subcellular proteomics subcontexting methods, challenges, and future perspectives for method developers. In summary, subcellular proteomics is crucial to the understanding of the fundamental cellular mechanisms and the associated diseases.
Collapse
Affiliation(s)
- Vanya Bhushan
- Functional Cellular Networks Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Aleksandra Nita-Lazar
- Functional Cellular Networks Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|
158
|
Agarwal A, Chandran A, Raza F, Ungureanu IM, Hilcenko C, Stott K, Bright NA, Morone N, Warren AJ, Lautenschläger J. VAMP2 regulates phase separation of α-synuclein. Nat Cell Biol 2024; 26:1296-1308. [PMID: 38951707 PMCID: PMC11322000 DOI: 10.1038/s41556-024-01451-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 05/30/2024] [Indexed: 07/03/2024]
Abstract
α-Synuclein (αSYN), a pivotal synaptic protein implicated in synucleinopathies such as Parkinson's disease and Lewy body dementia, undergoes protein phase separation. We reveal that vesicle-associated membrane protein 2 (VAMP2) orchestrates αSYN phase separation both in vitro and in cells. Electrostatic interactions, specifically mediated by VAMP2 via its juxtamembrane domain and the αSYN C-terminal region, drive phase separation. Condensate formation is specific for R-SNARE VAMP2 and dependent on αSYN lipid membrane binding. Our results delineate a regulatory mechanism for αSYN phase separation in cells. Furthermore, we show that αSYN condensates sequester vesicles and attract complexin-1 and -2, thus supporting a role in synaptic physiology and pathophysiology.
Collapse
Affiliation(s)
- Aishwarya Agarwal
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Aswathy Chandran
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Farheen Raza
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- Protein and Cellular Sciences, GSK, Stevenage, UK
| | - Irina-Maria Ungureanu
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- Department of Clinical Neurosciences, UK Dementia Research Institute, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Christine Hilcenko
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- Wellcome Trust-Medical Research Council Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Cambridge, UK
- Department of Haematology, University of Cambridge, School of Clinical Medicine, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Cambridge, UK
| | - Katherine Stott
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Nicholas A Bright
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | | | - Alan J Warren
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- Wellcome Trust-Medical Research Council Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Cambridge, UK
- Department of Haematology, University of Cambridge, School of Clinical Medicine, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Cambridge, UK
| | - Janin Lautenschläger
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK.
| |
Collapse
|
159
|
Qu M, He Q, Bao H, Ji X, Shen T, Barkat MQ, Wu X, Zeng LH. Multiple roles of arsenic compounds in phase separation and membraneless organelles formation determine their therapeutic efficacy in tumors. J Pharm Anal 2024; 14:100957. [PMID: 39253293 PMCID: PMC11381784 DOI: 10.1016/j.jpha.2024.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/23/2024] [Accepted: 02/21/2024] [Indexed: 09/11/2024] Open
Abstract
Arsenic compounds are widely used for the therapeutic intervention of multiple diseases. Ancient pharmacologists discovered the medicinal utility of these highly toxic substances, and modern pharmacologists have further recognized the specific active ingredients in human diseases. In particular, Arsenic trioxide (ATO), as a main component, has therapeutic effects on various tumors (including leukemia, hepatocellular carcinoma, lung cancer, etc.). However, its toxicity limits its efficacy, and controlling the toxicity has been an important issue. Interestingly, recent evidence has pointed out the pivotal roles of arsenic compounds in phase separation and membraneless organelles formation, which may determine their toxicity and therapeutic efficacy. Here, we summarize the arsenic compounds-regulating phase separation and membraneless organelles formation. We further hypothesize their potential involvement in the therapy and toxicity of arsenic compounds, highlighting potential mechanisms underlying the clinical application of arsenic compounds.
Collapse
Affiliation(s)
- Meiyu Qu
- Department of Pharmacy, Second Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Qiangqiang He
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Hangyang Bao
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Xing Ji
- Department of Pharmacology, Hangzhou City University School of Medicine, Hangzhou, 310015, China
| | - Tingyu Shen
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Muhammad Qasim Barkat
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Ximei Wu
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Ling-Hui Zeng
- Department of Pharmacology, Hangzhou City University School of Medicine, Hangzhou, 310015, China
| |
Collapse
|
160
|
Joshi A, Avni A, Walimbe A, Rai SK, Sarkar S, Mukhopadhyay S. Hydrogen-Bonded Network of Water in Phase-Separated Biomolecular Condensates. J Phys Chem Lett 2024; 15:7724-7734. [PMID: 39042834 DOI: 10.1021/acs.jpclett.4c01153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Biomolecular condensates formed via phase separation of intrinsically disordered proteins/regions (IDPs/IDRs) and nucleic acids are associated with cell physiology and disease. Water makes up for ∼60-70% of the condensate volume and is thought to influence the complex interplay of chain-chain and chain-solvent interactions, modulating the mesoscale properties of condensates. The behavior of water in condensates and the key roles of protein hydration water in driving the phase separation remain elusive. Here, we employ single-droplet vibrational Raman spectroscopy to illuminate the structural redistribution within protein hydration water during the phase separation of neuronal IDPs. Our Raman measurements reveal the changes in the water hydrogen bonding network during homotypic and heterotypic phase separation governed by various molecular drivers. Such single-droplet water Raman measurements offer a potent generic tool to unmask the intriguing interplay of sequence-encoded chain-chain and chain-solvent interactions governing macromolecular phase separation into membraneless organelles, synthetic condensates, and protocells.
Collapse
|
161
|
Emmanouilidis L, Bartalucci E, Kan Y, Ijavi M, Pérez ME, Afanasyev P, Boehringer D, Zehnder J, Parekh SH, Bonn M, Michaels TCT, Wiegand T, Allain FHT. A solid beta-sheet structure is formed at the surface of FUS droplets during aging. Nat Chem Biol 2024; 20:1044-1052. [PMID: 38467846 PMCID: PMC11288893 DOI: 10.1038/s41589-024-01573-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 02/07/2024] [Indexed: 03/13/2024]
Abstract
Phase transitions are important to understand cell dynamics, and the maturation of liquid droplets is relevant to neurodegenerative disorders. We combined NMR and Raman spectroscopies with microscopy to follow, over a period of days to months, droplet maturation of the protein fused in sarcoma (FUS). Our study reveals that the surface of the droplets plays a critical role in this process, while RNA binding prevents it. The maturation kinetics are faster in an agarose-stabilized biphasic sample compared with a monophasic condensed sample, owing to the larger surface-to-volume ratio. In addition, Raman spectroscopy reports structural differences upon maturation between the inside and the surface of droplets, which is comprised of β-sheet content, as revealed by solid-state NMR. In agreement with these observations, a solid crust-like shell is observed at the surface using microaspiration. Ultimately, matured droplets were converted into fibrils involving the prion-like domain as well as the first RGG motif.
Collapse
Affiliation(s)
- Leonidas Emmanouilidis
- Department of Biology, Institute of Biochemistry, ETH Zurich, Zurich, Switzerland.
- Bringing Materials to Life Initiative, ETH Zurich, Zurich, Switzerland.
| | - Ettore Bartalucci
- Max Planck Institute for Chemical Energy Conversion, Mülheim/Ruhr, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Aachen, Germany
| | - Yelena Kan
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA
- Max Planck Institute for Polymer Research, Mainz, Germany
| | - Mahdiye Ijavi
- Department of Materials, ETH Zurich, Zurich, Switzerland
| | - Maria Escura Pérez
- Department of Biology, Institute of Biochemistry, ETH Zurich, Zurich, Switzerland
| | | | | | - Johannes Zehnder
- Laboratory of Physical Chemistry, ETH Zurich, Zurich, Switzerland
| | - Sapun H Parekh
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA
- Max Planck Institute for Polymer Research, Mainz, Germany
| | - Mischa Bonn
- Max Planck Institute for Polymer Research, Mainz, Germany
| | - Thomas C T Michaels
- Department of Biology, Institute of Biochemistry, ETH Zurich, Zurich, Switzerland
- Bringing Materials to Life Initiative, ETH Zurich, Zurich, Switzerland
| | - Thomas Wiegand
- Max Planck Institute for Chemical Energy Conversion, Mülheim/Ruhr, Germany.
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Aachen, Germany.
- Laboratory of Physical Chemistry, ETH Zurich, Zurich, Switzerland.
| | - Frédéric H-T Allain
- Department of Biology, Institute of Biochemistry, ETH Zurich, Zurich, Switzerland.
- Bringing Materials to Life Initiative, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
162
|
Wilson CB, Lee M, Yau WM, Tycko R. Conformations of a Low-Complexity Protein in Homogeneous and Phase-Separated Frozen Solutions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.25.605144. [PMID: 39372747 PMCID: PMC11451737 DOI: 10.1101/2024.07.25.605144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Solutions of the intrinsically disordered, low-complexity domain of the FUS protein (FUS-LC) undergo liquid-liquid phase separation (LLPS) below temperatures TLLPS in the 20-40° C range. To investigate whether local conformational distributions are detectably different in the homogeneous and phase-separated states of FUS-LC, we performed solid state nuclear magnetic resonance (ssNMR) measurements on solutions that were frozen on sub-millisecond time scales after equilibration at temperatures well above (50° C) or well below (4° C) TLLPS. Measurements were performed at 25 K with signal enhancements from dynamic nuclear polarization. Crosspeak patterns in two-dimensional (2D) ssNMR spectra of rapidly frozen solutions in which FUS-LC was uniformly 15N,13C-labeled were found to be nearly identical for the two states. Similar results were obtained for solutions in which FUS-LC was labeled only at Thr, Tyr, and Gly residues, as well as solutions of a FUS construct in which five specific residues were labeled by ligation of synthetic and recombinant fragments. These experiments show that local conformational distributions are nearly the same in the homogeneous and phase-separated solutions, despite the much greater protein concentrations and more abundant intermolecular interactions within phase-separated, protein-rich "droplets". Comparison of the experimental results with simulations of the sensitivity of 2D crosspeak patterns to an enhanced population of β-strand-like conformations suggests that changes in conformational distributions are no larger than 5-10%. Statement of Significance Liquid-liquid phase separation (LLPS) in solutions of proteins with intrinsically disordered domains has attracted recent attention because of its relevance to multiple biological processes and its inherent interest from the standpoint of protein biophysics. The high protein concentrations and abundant intermolecular interactions within protein-rich, phase-separated "droplets" suggests that conformational distributions of intrinsically disordered proteins may differ in homogeneous and phase-separated solutions. To investigate whether detectable differences exist, we performed experiments on the low-complexity domain of the FUS protein (FUS-LC) in which FUS-LC solutions were first equilibrated at temperatures well above or well below their LLPS transition temperatures, then rapidly frozen and examined at very low temperatures by solid state nuclear magnetic resonance (ssNMR) spectroscopy. The ssNMR data for homogeneous and phase-separated frozen solutions of FUS-LC were found to be nearly identical, showing that LLPS is not accompanied by substantial changes in the local conformational distributions of this intrinsically disordered protein.
Collapse
Affiliation(s)
- C Blake Wilson
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | - Myungwoon Lee
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
- current address: Department of Chemistry, Drexel University, Philadelphia, PA 19104
| | - Wai-Ming Yau
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | - Robert Tycko
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
163
|
Hausmann S, Geiser J, Allen G, Geslain S, Valentini M. Intrinsically disordered regions regulate RhlE RNA helicase functions in bacteria. Nucleic Acids Res 2024; 52:7809-7824. [PMID: 38874491 PMCID: PMC11260450 DOI: 10.1093/nar/gkae511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/29/2024] [Accepted: 06/03/2024] [Indexed: 06/15/2024] Open
Abstract
RNA helicases-central enzymes in RNA metabolism-often feature intrinsically disordered regions (IDRs) that enable phase separation and complex molecular interactions. In the bacterial pathogen Pseudomonas aeruginosa, the non-redundant RhlE1 and RhlE2 RNA helicases share a conserved REC catalytic core but differ in C-terminal IDRs. Here, we show how the IDR diversity defines RhlE RNA helicase specificity of function. Both IDRs facilitate RNA binding and phase separation, localizing proteins in cytoplasmic clusters. However, RhlE2 IDR is more efficient in enhancing REC core RNA unwinding, exhibits a greater tendency for phase separation, and interacts with the RNase E endonuclease, a crucial player in mRNA degradation. Swapping IDRs results in chimeric proteins that are biochemically active but functionally distinct as compared to their native counterparts. The RECRhlE1-IDRRhlE2 chimera improves cold growth of a rhlE1 mutant, gains interaction with RNase E and affects a subset of both RhlE1 and RhlE2 RNA targets. The RECRhlE2-IDRRhlE1 chimera instead hampers bacterial growth at low temperatures in the absence of RhlE1, with its detrimental effect linked to aberrant RNA droplets. By showing that IDRs modulate both protein core activities and subcellular localization, our study defines the impact of IDR diversity on the functional differentiation of RNA helicases.
Collapse
Affiliation(s)
- Stéphane Hausmann
- Department of Microbiology and Molecular Medicine, CMU, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Johan Geiser
- Department of Microbiology and Molecular Medicine, CMU, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - George Edward Allen
- Department of Microbiology and Molecular Medicine, CMU, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Sandra Amandine Marie Geslain
- Department of Microbiology and Molecular Medicine, CMU, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Martina Valentini
- Department of Microbiology and Molecular Medicine, CMU, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
164
|
Banerjee P, Mahendran TS, Wadsworth G, Singh A. Biomolecular condensates can enhance pathological RNA clustering. RESEARCH SQUARE 2024:rs.3.rs-4557520. [PMID: 39070659 PMCID: PMC11276000 DOI: 10.21203/rs.3.rs-4557520/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Intracellular aggregation of repeat expanded RNA has been implicated in many neurological disorders. Here, we study the role of biomolecular condensates on irreversible RNA clustering. We find that physiologically relevant and disease-associated repeat RNAs spontaneously undergo an age-dependent percolation transition inside multi-component protein-nucleic acid condensates to form nanoscale clusters. Homotypic RNA clusters drive the emergence of multiphasic condensate structures with an RNA-rich solid core surrounded by an RNA-depleted fluid shell. The timescale of the RNA clustering, which drives a liquid-to-solid transition of biomolecular condensates, is determined by the sequence features, stability of RNA secondary structure, and repeat length. Importantly, G3BP1, the core scaffold of stress granules, introduces heterotypic buffering to homotypic RNA-RNA interactions and impedes intra-condensate RNA clustering in an ATP-independent manner. Our work suggests that biomolecular condensates can act as sites for RNA aggregation. It also highlights the functional role of RNA-binding proteins in suppressing aberrant RNA phase transitions.
Collapse
|
165
|
Guan J, Jakob U. The Protein Scaffolding Functions of Polyphosphate. J Mol Biol 2024; 436:168504. [PMID: 38423453 PMCID: PMC11921889 DOI: 10.1016/j.jmb.2024.168504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/31/2024] [Accepted: 02/21/2024] [Indexed: 03/02/2024]
Abstract
Inorganic polyphosphate (polyP), one of the first high-energy compound on earth, defies its extreme compositional and structural simplicity with an astoundingly wide array of biological activities across all domains of life. However, the underlying mechanism of such functional pleiotropy remains largely elusive. In this review, we will summarize recent studies demonstrating that this simple polyanion stabilizes protein folding intermediates and scaffolds select native proteins. These functions allow polyP to act as molecular chaperone that protects cells against protein aggregation, as pro-amyloidogenic factor that accelerates both physiological and disease-associated amyloid formation, and as a modulator of liquid-liquid phase separation processes. These activities help to explain polyP's known roles in bacterial stress responses and pathogenicity, provide the mechanistic foundation for its potential role in human neurodegenerative diseases, and open a new direction regarding its influence on gene expression through condensate formation. We will highlight critical unanswered questions and point out potential directions that will help to further understand the pleiotropic functions of this ancient and ubiquitous biopolymer.
Collapse
Affiliation(s)
- Jian Guan
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Ursula Jakob
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA; Biological Chemistry Department, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
166
|
Zhang W, Li Z, Wang X, Sun T. Phase separation is regulated by post-translational modifications and participates in the developments of human diseases. Heliyon 2024; 10:e34035. [PMID: 39071719 PMCID: PMC11279762 DOI: 10.1016/j.heliyon.2024.e34035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/30/2024] [Accepted: 07/02/2024] [Indexed: 07/30/2024] Open
Abstract
Liquid-liquid phase separation (LLPS) of intracellular proteins has emerged as a hot research topic in recent years. Membrane-less and liquid-like condensates provide dense spaces that ensure cells to high efficiently regulate genes transcription and rapidly respond to burst changes from the environment. The fomation and activity of LLPS are not only modulated by the cytosol conditions including but not limited to salt concentration and temperture. Interestingly, recent studies have shown that phase separation is also regulated by various post-translational modifications (PTMs) through modulating proteins multivalency, such as solubility and charge interactions. The regulation mechanism is crucial for normal functioning of cells, as aberrant protein aggregates are often closely related with the occurrence and development of human diseases including cancer and nurodegenerative diseases. Therefore, studying phase separation in the perspective of protein PTMs has long-term significance for human health. In this review, we summarized the properties and cellular physiological functions of LLPS, particularly its relationships with PTMs in human diseases according to recent researches.
Collapse
Affiliation(s)
- Weibo Zhang
- Faculty of Health Sciences Building University of Macau E12 Avenida da Universidade, Taipa, Macau, China
| | - Zhengfeng Li
- Faculty of Health Sciences Building University of Macau E12 Avenida da Universidade, Taipa, Macau, China
| | - Xianju Wang
- Faculty of Health Sciences Building University of Macau E12 Avenida da Universidade, Taipa, Macau, China
| | - Ting Sun
- Faculty of Health Sciences Building University of Macau E12 Avenida da Universidade, Taipa, Macau, China
| |
Collapse
|
167
|
Lee J, Simpson L, Li Y, Becker S, Zou F, Zhang X, Bai L. Transcription Factor Condensates Mediate Clustering of MET Regulon and Enhancement in Gene Expression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.06.579062. [PMID: 38370634 PMCID: PMC10871269 DOI: 10.1101/2024.02.06.579062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Some transcription factors (TFs) can form liquid-liquid phase separated (LLPS) condensates. However, the functions of these TF condensates in 3D genome organization and gene regulation remain elusive. In response to methionine (met) starvation, budding yeast TF Met4 and a few co-activators, including Met32, induce a set of genes involved in met biosynthesis. Here, we show that the endogenous Met4 and Met32 form co-localized puncta-like structures in yeast nuclei upon met depletion. Recombinant Met4 and Met32 form mixed droplets with LLPS properties in vitro. In relation to chromatin, Met4 puncta co-localize with target genes, and at least a subset of these target genes is clustered in 3D in a Met4-dependent manner. A MET3pr-GFP reporter inserted near several native Met4 binding sites becomes co-localized with Met4 puncta and displays enhanced transcriptional activity. A Met4 variant with a partial truncation of an intrinsically disordered region (IDR) shows less puncta formation, and this mutant selectively reduces the reporter activity near Met4 binding sites to the basal level. Overall, these results support a model where Met4 and co-activators form condensates to bring multiple target genes into a vicinity with higher local TF concentrations, which facilitates a strong response to methionine depletion.
Collapse
Affiliation(s)
- James Lee
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA
- Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Leman Simpson
- Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA, 16802, USA
- Department of Chemistry, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Yi Li
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA
- Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Samuel Becker
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Fan Zou
- Department of Physics, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Xin Zhang
- Department of Chemistry, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Lu Bai
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA
- Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA, 16802, USA
- Department of Physics, The Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
168
|
Kobayashi R, Nabika H. Liquid-liquid phase separation induced by crowding condition affects amyloid-β aggregation mechanism. SOFT MATTER 2024; 20:5331-5342. [PMID: 38847095 DOI: 10.1039/d4sm00470a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Liquid-liquid phase separation (LLPS) is common in the aggregation of proteins associated with neurodegenerative diseases. Many efforts have been made to reproduce crowded conditions with artificial polymeric materials to understand the effect of LLPS in physiological conditions with significantly highly concentrated proteins, such as intrinsically disordered proteins. Although the possibility that LLPS is involved in intracellular amyloid-β (Aβ) aggregation, a protein related to the pathogenesis of Alzheimer's disease, has been investigated, the relationship between LLPS and the aggregation of Aβ is poorly characterized. Thus, in this study, we mimicked the intracellular crowding environment using polyethylene glycol and dextran, used commonly as model polymers, to examine the relationship of Aβ with LLPS and aggregation dynamics in vitro. We confirmed that Aβ undergoes LLPS under specific polymer coexistence conditions. Moreover, the addition of different electrolytes modulated LLPS and fibril formation. These results suggest that hydrophobic and electrostatic interactions are the driving forces for the LLPS of Aβ. Similar to the role of the liposome interface, the interface of droplets induced by LLPS functioned as the site for heterogeneous nucleation. These findings offer valuable insights into the complex mechanisms of Aβ aggregation in vivo and may be useful in establishing therapeutic methods for Alzheimer's disease.
Collapse
Affiliation(s)
- Ryuki Kobayashi
- Department of Science, Graduate School of Science and Engineering, Yamagata University, 1-4-12, Kojirakawa, Yamagata 990-8560, Japan
| | - Hideki Nabika
- Faculty of Science, Yamagata University, 1-4-12 Kojirakawa, Yamagata 990-8560, Japan.
| |
Collapse
|
169
|
Zhou HX, Kota D, Qin S, Prasad R. Fundamental Aspects of Phase-Separated Biomolecular Condensates. Chem Rev 2024; 124:8550-8595. [PMID: 38885177 PMCID: PMC11260227 DOI: 10.1021/acs.chemrev.4c00138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Biomolecular condensates, formed through phase separation, are upending our understanding in much of molecular, cell, and developmental biology. There is an urgent need to elucidate the physicochemical foundations of the behaviors and properties of biomolecular condensates. Here we aim to fill this need by writing a comprehensive, critical, and accessible review on the fundamental aspects of phase-separated biomolecular condensates. We introduce the relevant theoretical background, present the theoretical basis for the computation and experimental measurement of condensate properties, and give mechanistic interpretations of condensate behaviors and properties in terms of interactions at the molecular and residue levels.
Collapse
Affiliation(s)
- Huan-Xiang Zhou
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, USA
- Department of Physics, University of Illinois Chicago, Chicago, Illinois 60607, USA
| | - Divya Kota
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, USA
| | - Sanbo Qin
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, USA
| | - Ramesh Prasad
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, USA
| |
Collapse
|
170
|
Saar KL, Scrutton RM, Bloznelyte K, Morgunov AS, Good LL, Lee AA, Teichmann SA, Knowles TPJ. Protein Condensate Atlas from predictive models of heteromolecular condensate composition. Nat Commun 2024; 15:5418. [PMID: 38987300 PMCID: PMC11237133 DOI: 10.1038/s41467-024-48496-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 05/02/2024] [Indexed: 07/12/2024] Open
Abstract
Biomolecular condensates help cells organise their content in space and time. Cells harbour a variety of condensate types with diverse composition and many are likely yet to be discovered. Here, we develop a methodology to predict the composition of biomolecular condensates. We first analyse available proteomics data of cellular condensates and find that the biophysical features that determine protein localisation into condensates differ from known drivers of homotypic phase separation processes, with charge mediated protein-RNA and hydrophobicity mediated protein-protein interactions playing a key role in the former process. We then develop a machine learning model that links protein sequence to its propensity to localise into heteromolecular condensates. We apply the model across the proteome and find many of the top-ranked targets outside the original training data to localise into condensates as confirmed by orthogonal immunohistochemical staining imaging. Finally, we segment the condensation-prone proteome into condensate types based on an overlap with biomolecular interaction profiles to generate a Protein Condensate Atlas. Several condensate clusters within the Atlas closely match the composition of experimentally characterised condensates or regions within them, suggesting that the Atlas can be valuable for identifying additional components within known condensate systems and discovering previously uncharacterised condensates.
Collapse
Affiliation(s)
- Kadi L Saar
- Transition Bio Ltd, Cambridge, UK.
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK.
| | - Rob M Scrutton
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
- Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK
| | | | - Alexey S Morgunov
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Lydia L Good
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Alpha A Lee
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, CB3 0HE, UK
| | - Sarah A Teichmann
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, CB3 0HE, UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Tuomas P J Knowles
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK.
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, CB3 0HE, UK.
| |
Collapse
|
171
|
Dupont M, Krischuns T, Gianetto QG, Paisant S, Bonazza S, Brault JB, Douché T, Arragain B, Florez-Prada A, Perez-Perri J, Hentze M, Cusack S, Matondo M, Isel C, Courtney D, Naffakh N. The RBPome of influenza A virus NP-mRNA reveals a role for TDP-43 in viral replication. Nucleic Acids Res 2024; 52:7188-7210. [PMID: 38686810 PMCID: PMC11229366 DOI: 10.1093/nar/gkae291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 03/22/2024] [Accepted: 04/05/2024] [Indexed: 05/02/2024] Open
Abstract
Genome-wide approaches have significantly advanced our knowledge of the repertoire of RNA-binding proteins (RBPs) that associate with cellular polyadenylated mRNAs within eukaryotic cells. Recent studies focusing on the RBP interactomes of viral mRNAs, notably SARS-Cov-2, have revealed both similarities and differences between the RBP profiles of viral and cellular mRNAs. However, the RBPome of influenza virus mRNAs remains unexplored. Herein, we identify RBPs that associate with the viral mRNA encoding the nucleoprotein (NP) of an influenza A virus. Focusing on TDP-43, we show that it binds several influenza mRNAs beyond the NP-mRNA, and that its depletion results in lower levels of viral mRNAs and proteins within infected cells, and a decreased yield of infectious viral particles. We provide evidence that the viral polymerase recruits TDP-43 onto viral mRNAs through a direct interaction with the disordered C-terminal domain of TDP-43. Notably, other RBPs found to be associated with influenza virus mRNAs also interact with the viral polymerase, which points to a role of the polymerase in orchestrating the assembly of viral messenger ribonucleoproteins.
Collapse
Affiliation(s)
- Maud Dupont
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, RNA Biology and Influenza Viruses, Paris, France
| | - Tim Krischuns
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, RNA Biology and Influenza Viruses, Paris, France
| | - Quentin Giai Gianetto
- Institut Pasteur, Université Paris Cité, CNRS UAR2024, Proteomics Platform, Mass Spectrometry for Biology, Paris, France
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics HUB, Paris, France
| | - Sylvain Paisant
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, RNA Biology and Influenza Viruses, Paris, France
| | - Stefano Bonazza
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, BelfastBT9 7BL, Northern Ireland
| | - Jean-Baptiste Brault
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, RNA Biology and Influenza Viruses, Paris, France
| | - Thibaut Douché
- Institut Pasteur, Université Paris Cité, CNRS UAR2024, Proteomics Platform, Mass Spectrometry for Biology, Paris, France
| | - Benoît Arragain
- European Molecular Biology Laboratory, 38042Grenoble, France
| | | | | | | | - Stephen Cusack
- European Molecular Biology Laboratory, 38042Grenoble, France
| | - Mariette Matondo
- Institut Pasteur, Université Paris Cité, CNRS UAR2024, Proteomics Platform, Mass Spectrometry for Biology, Paris, France
| | - Catherine Isel
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, RNA Biology and Influenza Viruses, Paris, France
| | - David G Courtney
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, BelfastBT9 7BL, Northern Ireland
| | - Nadia Naffakh
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, RNA Biology and Influenza Viruses, Paris, France
| |
Collapse
|
172
|
Wu Y, Chen Y, Yan X, Dai X, Liao Y, Yuan J, Wang L, Liu D, Niu D, Sun L, Chen L, Zhang Y, Xiang L, Chen A, Li S, Xiang W, Ni Z, Chen M, He F, Yang M, Lian J. Lopinavir enhances anoikis by remodeling autophagy in a circRNA-dependent manner. Autophagy 2024; 20:1651-1672. [PMID: 38433354 PMCID: PMC11210930 DOI: 10.1080/15548627.2024.2325304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 02/15/2024] [Accepted: 02/26/2024] [Indexed: 03/05/2024] Open
Abstract
Macroautophagy/autophagy-mediated anoikis resistance is crucial for tumor metastasis. As a key autophagy-related protein, ATG4B has been demonstrated to be a prospective anti-tumor target. However, the existing ATG4B inhibitors are still far from clinical application, especially for tumor metastasis. In this study, we identified a novel circRNA, circSPECC1, that interacted with ATG4B. CircSPECC1 facilitated liquid-liquid phase separation of ATG4B, which boosted the ubiquitination and degradation of ATG4B in gastric cancer (GC) cells. Thus, pharmacological addition of circSPECC1 may serve as an innovative approach to suppress autophagy by targeting ATG4B. Specifically, the circSPECC1 underwent significant m6A modification in GC cells and was subsequently recognized and suppressed by the m6A reader protein ELAVL1/HuR. The activation of the ELAVL1-circSPECC1-ATG4B pathway was demonstrated to mediate anoikis resistance in GC cells. Moreover, we also verified that the above pathway was closely related to metastasis in tissues from GC patients. Furthermore, we determined that the FDA-approved compound lopinavir efficiently enhanced anoikis and prevented metastasis by eliminating repression of ELAVL1 on circSPECC1. In summary, this study provides novel insights into ATG4B-mediated autophagy and introduces a viable clinical inhibitor of autophagy, which may be beneficial for the treatment of GC with metastasis.
Collapse
Affiliation(s)
- Yaran Wu
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University, Chongqing, China
- Department of Clinical Biochemistry, Faculty of Pharmacy and Laboratory Medicine, Army Medical University, Chongqing, China
| | - Yang Chen
- Department of Clinical Biochemistry, Faculty of Pharmacy and Laboratory Medicine, Army Medical University, Chongqing, China
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Xiaojing Yan
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Army Medical University, Chongqing, China
| | - Xufang Dai
- College of Education and Science, Chongqing Normal University, Chongqing, China
| | - Yaling Liao
- Department of Clinical Biochemistry, Faculty of Pharmacy and Laboratory Medicine, Army Medical University, Chongqing, China
| | - Jing Yuan
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Army Medical University, Chongqing, China
| | - Liting Wang
- Biomedical Analysis Center, Army Medical University, Chongqing, China
| | - Dong Liu
- Department of Clinical Biochemistry, Faculty of Pharmacy and Laboratory Medicine, Army Medical University, Chongqing, China
| | - Dun Niu
- Department of Clinical Biochemistry, Faculty of Pharmacy and Laboratory Medicine, Army Medical University, Chongqing, China
| | - Liangbo Sun
- Department of Clinical Biochemistry, Faculty of Pharmacy and Laboratory Medicine, Army Medical University, Chongqing, China
| | - Lingxi Chen
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Army Medical University, Chongqing, China
| | - Yang Zhang
- Department of Clinical Biochemistry, Faculty of Pharmacy and Laboratory Medicine, Army Medical University, Chongqing, China
| | - Li Xiang
- Department of Clinical Biochemistry, Faculty of Pharmacy and Laboratory Medicine, Army Medical University, Chongqing, China
| | - An Chen
- Department of Clinical Biochemistry, Faculty of Pharmacy and Laboratory Medicine, Army Medical University, Chongqing, China
| | - Shuhui Li
- Department of Clinical Biochemistry, Faculty of Pharmacy and Laboratory Medicine, Army Medical University, Chongqing, China
| | - Wei Xiang
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Rehabilitation Medicine, Daping Hospital, Army Medical University, Chongqing, China
| | - Zhenhong Ni
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Rehabilitation Medicine, Daping Hospital, Army Medical University, Chongqing, China
| | - Ming Chen
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University, Chongqing, China
| | - Fengtian He
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Army Medical University, Chongqing, China
| | - Mingzhen Yang
- Department of Clinical Biochemistry, Faculty of Pharmacy and Laboratory Medicine, Army Medical University, Chongqing, China
| | - Jiqin Lian
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University, Chongqing, China
- Department of Clinical Biochemistry, Faculty of Pharmacy and Laboratory Medicine, Army Medical University, Chongqing, China
| |
Collapse
|
173
|
Ding M, Xu W, Pei G, Li P. Long way up: rethink diseases in light of phase separation and phase transition. Protein Cell 2024; 15:475-492. [PMID: 38069453 PMCID: PMC11214837 DOI: 10.1093/procel/pwad057] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 11/24/2023] [Indexed: 07/02/2024] Open
Abstract
Biomolecular condensation, driven by multivalency, serves as a fundamental mechanism within cells, facilitating the formation of distinct compartments, including membraneless organelles that play essential roles in various cellular processes. Perturbations in the delicate equilibrium of condensation, whether resulting in gain or loss of phase separation, have robustly been associated with cellular dysfunction and physiological disorders. As ongoing research endeavors wholeheartedly embrace this newly acknowledged principle, a transformative shift is occurring in our comprehension of disease. Consequently, significant strides have been made in unraveling the profound relevance and potential causal connections between abnormal phase separation and various diseases. This comprehensive review presents compelling recent evidence that highlight the intricate associations between aberrant phase separation and neurodegenerative diseases, cancers, and infectious diseases. Additionally, we provide a succinct summary of current efforts and propose innovative solutions for the development of potential therapeutics to combat the pathological consequences attributed to aberrant phase separation.
Collapse
Affiliation(s)
- Mingrui Ding
- State Key Laboratory of Membrane Biology & Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
- NuPhase Therapeutics, Beijing 100083, China
| | - Weifan Xu
- State Key Laboratory of Membrane Biology & Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
- NuPhase Therapeutics, Beijing 100083, China
| | - Gaofeng Pei
- State Key Laboratory of Membrane Biology & Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Pilong Li
- State Key Laboratory of Membrane Biology & Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| |
Collapse
|
174
|
Wan L, Zhu Y, Zhang W, Mu W. Recent advances in design and application of synthetic membraneless organelles. Biotechnol Adv 2024; 73:108355. [PMID: 38588907 DOI: 10.1016/j.biotechadv.2024.108355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 02/26/2024] [Accepted: 04/05/2024] [Indexed: 04/10/2024]
Abstract
Membraneless organelles (MLOs) formed by liquid-liquid phase separation (LLPS) have been extensively studied due to their spatiotemporal control of biochemical and cellular processes in living cells. These findings have provided valuable insights into the physicochemical principles underlying the formation and functionalization of biomolecular condensates, which paves the way for the development of versatile phase-separating systems capable of addressing a variety of application scenarios. Here, we highlight the potential of constructing synthetic MLOs with programmable and functional properties. Notably, we organize how these synthetic membraneless compartments have been capitalized to manipulate enzymatic activities and metabolic reactions. The aim of this review is to inspire readerships to deeply comprehend the widespread roles of synthetic MLOs in the regulation enzymatic reactions and control of metabolic processes, and to encourage the rational design of controllable and functional membraneless compartments for a broad range of bioengineering applications.
Collapse
Affiliation(s)
- Li Wan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yingying Zhu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
175
|
Zhang M, Jia F, Wang Q, Yang C, Wang X, Liu T, Tang Q, Yang Z, Wang H. Kapβ2 Inhibits Perioperative Neurocognitive Disorders in Rats with Mild Cognitive Impairment by Reversing the Nuclear-Cytoplasmic Mislocalization of hnRNPA2/B1. Mol Neurobiol 2024; 61:4488-4507. [PMID: 38102516 DOI: 10.1007/s12035-023-03789-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 11/08/2023] [Indexed: 12/17/2023]
Abstract
Harmful stimuli trigger mutations lead to uncontrolled accumulation of hnRNPA2/B1 in the cytoplasm, exacerbating neuronal damage. Kapβ2 mediates the bidirectional transport of most substances between the cytoplasm and the nucleus. Kapβ2 guides hnRNPA2/B1 back into the nucleus and restores its function, alleviating related protein toxicity. Here, we aim to explore the involvement of Kapβ2 in neurodegeneration in rats with MCI following sevoflurane anesthesia and surgery. Firstly, novel object recognition test and Barnes maze were conducted to assess behavioral performances, and we found Kapβ2 positively regulated the recovery of memory and cognitive function. In vivo electrophysiological experiments revealed that the hippocampal theta rhythm energy distribution was disrupted, coherence was reduced, and long-term potentiation was attenuated in MCI rats. LTP was greatly improved with positive modulation of Kapβ2. Next, functional MRI and BOLD imaging will be employed to examine the AFLL and FC values of dynamic connectivity between the cortex and hippocampus of the brain. The findings show that regulating Kapβ2 in the hippocampus region enhances functional activity and connections between brain regions in MCI rats. WB results showed that increasing Kapβ2 expression improved the expression and recovery of cognitive-related proteins in the hippocampus of MCI rats. Finally, WB and immunofluorescence were used to examine the changes in hnRNPA2/B1 expression in the nucleus and cytoplasm after overexpression of Kapβ2, and it was found that nucleocytoplasmic mis location was alleviated. Overall, these data show that Kapβ2 reverses the nucleoplasmic misalignment of hnRNPA2/B1, which slows neurodegeneration towards dementia in MCI after sevoflurane anesthesia and surgery. Our findings may lead to new approaches for perioperative neuroprotection of MCI patients.
Collapse
Affiliation(s)
- Miao Zhang
- The Third Central Clinical College of Tianjin Medical University, Tianjin, China
- Nankai University Affinity the Third Central Hospital, Tianjin, China
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Artificial Cell Engineering Technology Research Center, Tianjin Institute of Hepatobiliary Disease, Tianjin Third Central Hospital, Tianjin, China
| | - Feiyu Jia
- The Third Central Clinical College of Tianjin Medical University, Tianjin, China
- Nankai University Affinity the Third Central Hospital, Tianjin, China
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Artificial Cell Engineering Technology Research Center, Tianjin Institute of Hepatobiliary Disease, Tianjin Third Central Hospital, Tianjin, China
| | - Qiang Wang
- The Third Central Clinical College of Tianjin Medical University, Tianjin, China
- Nankai University Affinity the Third Central Hospital, Tianjin, China
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Artificial Cell Engineering Technology Research Center, Tianjin Institute of Hepatobiliary Disease, Tianjin Third Central Hospital, Tianjin, China
| | - Chenyi Yang
- Nankai University Affinity the Third Central Hospital, Tianjin, China
| | - Xinyi Wang
- Nankai University Affinity the Third Central Hospital, Tianjin, China
| | - Tianyue Liu
- Nankai University Affinity the Third Central Hospital, Tianjin, China
| | - Qingkai Tang
- Nankai University Affinity the Third Central Hospital, Tianjin, China
| | - Zhuo Yang
- College of Medicine, Nankai University, Tianjin, China.
| | - Haiyun Wang
- The Third Central Clinical College of Tianjin Medical University, Tianjin, China.
- Nankai University Affinity the Third Central Hospital, Tianjin, China.
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Artificial Cell Engineering Technology Research Center, Tianjin Institute of Hepatobiliary Disease, Tianjin Third Central Hospital, Tianjin, China.
| |
Collapse
|
176
|
Kiang KM, Ahad L, Zhong X, Lu QR. Biomolecular condensates: hubs of Hippo-YAP/TAZ signaling in cancer. Trends Cell Biol 2024; 34:566-577. [PMID: 38806345 DOI: 10.1016/j.tcb.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 04/14/2024] [Accepted: 04/30/2024] [Indexed: 05/30/2024]
Abstract
Biomolecular condensates, the membraneless cellular compartments formed by liquid-liquid phase separation (LLPS), represent an important mechanism for physiological and tumorigenic processes. Recent studies have advanced our understanding of how these condensates formed in the cytoplasm or nucleus regulate Hippo signaling, a central player in organogenesis and tumorigenesis. Here, we review recent findings on the dynamic formation and function of biomolecular condensates in regulating the Hippo-yes-associated protein (YAP)/transcription coactivator with PDZ-binding motif (TAZ) signaling pathway under physiological and pathological processes. We further discuss how the nuclear condensates of YAP- or TAZ-fusion oncoproteins compartmentalize crucial transcriptional co-activators and alter chromatin architecture to promote oncogenic programs. Finally, we highlight key questions regarding how these findings may pave the way for novel therapeutics to target cancer.
Collapse
Affiliation(s)
- Karrie M Kiang
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Surgery, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong
| | - Leena Ahad
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Xiaowen Zhong
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Q Richard Lu
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| |
Collapse
|
177
|
Shin M, Chang E, Lee D, Kim N, Cho B, Cha N, Koranteng F, Song JJ, Shim J. Drosophila immune cells transport oxygen through PPO2 protein phase transition. Nature 2024; 631:350-359. [PMID: 38926577 PMCID: PMC11236712 DOI: 10.1038/s41586-024-07583-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 05/17/2024] [Indexed: 06/28/2024]
Abstract
Insect respiration has long been thought to be solely dependent on an elaborate tracheal system without assistance from the circulatory system or immune cells1,2. Here we describe that Drosophila crystal cells-myeloid-like immune cells called haemocytes-control respiration by oxygenating Prophenoloxidase 2 (PPO2) proteins. Crystal cells direct the movement of haemocytes between the trachea of the larval body wall and the circulation to collect oxygen. Aided by copper and a neutral pH, oxygen is trapped in the crystalline structures of PPO2 in crystal cells. Conversely, PPO2 crystals can be dissolved when carbonic anhydrase lowers the intracellular pH and then reassembled into crystals in cellulo by adhering to the trachea. Physiologically, larvae lacking crystal cells or PPO2, or those expressing a copper-binding mutant of PPO2, display hypoxic responses under normoxic conditions and are susceptible to hypoxia. These hypoxic phenotypes can be rescued by hyperoxia, expression of arthropod haemocyanin or prevention of larval burrowing activity to expose their respiratory organs. Thus, we propose that insect immune cells collaborate with the tracheal system to reserve and transport oxygen through the phase transition of PPO2 crystals, facilitating internal oxygen homeostasis in a process that is comparable to vertebrate respiration.
Collapse
Affiliation(s)
- Mingyu Shin
- Department of Life Science, College of Natural Science, Hanyang University, Seoul, Republic of Korea
| | - Eunji Chang
- Department of Life Science, College of Natural Science, Hanyang University, Seoul, Republic of Korea
| | - Daewon Lee
- Department of Life Science, College of Natural Science, Hanyang University, Seoul, Republic of Korea
| | - Nayun Kim
- Department of Biological Sciences, KI for BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Bumsik Cho
- Department of Life Science, College of Natural Science, Hanyang University, Seoul, Republic of Korea
| | - Nuri Cha
- Department of Life Science, College of Natural Science, Hanyang University, Seoul, Republic of Korea
| | - Ferdinand Koranteng
- Department of Life Science, College of Natural Science, Hanyang University, Seoul, Republic of Korea
| | - Ji-Joon Song
- Department of Biological Sciences, KI for BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Jiwon Shim
- Department of Life Science, College of Natural Science, Hanyang University, Seoul, Republic of Korea.
- Research Institute for Natural Science, Hanyang University, Seoul, Republic of Korea.
- Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul, Republic of Korea.
- Hanyang Institute of Advanced BioConvergence, Hanyang University, Seoul, Republic of Korea.
| |
Collapse
|
178
|
Freund MM, Harrison MM, Torres-Zelada EF. Exploring the reciprocity between pioneer factors and development. Development 2024; 151:dev201921. [PMID: 38958075 PMCID: PMC11266817 DOI: 10.1242/dev.201921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Development is regulated by coordinated changes in gene expression. Control of these changes in expression is largely governed by the binding of transcription factors to specific regulatory elements. However, the packaging of DNA into chromatin prevents the binding of many transcription factors. Pioneer factors overcome this barrier owing to unique properties that enable them to bind closed chromatin, promote accessibility and, in so doing, mediate binding of additional factors that activate gene expression. Because of these properties, pioneer factors act at the top of gene-regulatory networks and drive developmental transitions. Despite the ability to bind target motifs in closed chromatin, pioneer factors have cell type-specific chromatin occupancy and activity. Thus, developmental context clearly shapes pioneer-factor function. Here, we discuss this reciprocal interplay between pioneer factors and development: how pioneer factors control changes in cell fate and how cellular environment influences pioneer-factor binding and activity.
Collapse
Affiliation(s)
- Meghan M. Freund
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 52706, USA
| | - Melissa M. Harrison
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 52706, USA
| | - Eliana F. Torres-Zelada
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 52706, USA
| |
Collapse
|
179
|
Gee CW, Andersen-Ranberg J, Boynton E, Rosen RZ, Jorgens D, Grob P, Holman HYN, Niyogi KK. Implicating the red body of Nannochloropsis in forming the recalcitrant cell wall polymer algaenan. Nat Commun 2024; 15:5456. [PMID: 38937455 PMCID: PMC11211512 DOI: 10.1038/s41467-024-49277-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 05/31/2024] [Indexed: 06/29/2024] Open
Abstract
Stramenopile algae contribute significantly to global primary productivity, and one class, Eustigmatophyceae, is increasingly studied for applications in high-value lipid production. Yet much about their basic biology remains unknown, including the nature of an enigmatic, pigmented globule found in vegetative cells. Here, we present an in-depth examination of this "red body," focusing on Nannochloropsis oceanica. During the cell cycle, the red body forms adjacent to the plastid, but unexpectedly it is secreted and released with the autosporangial wall following cell division. Shed red bodies contain antioxidant ketocarotenoids, and overexpression of a beta-carotene ketolase results in enlarged red bodies. Infrared spectroscopy indicates long-chain, aliphatic lipids in shed red bodies and cell walls, and UHPLC-HRMS detects a C32 alkyl diol, a potential precursor of algaenan, a recalcitrant cell wall polymer. We propose that the red body transports algaenan precursors from plastid to apoplast to be incorporated into daughter cell walls.
Collapse
Affiliation(s)
- Christopher W Gee
- Howard Hughes Medical Institute, University of California, Berkeley, CA, 94720, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
| | - Johan Andersen-Ranberg
- University of Copenhagen, Department of Plant and Environmental Sciences, Frederiksberg, DK-1871, Denmark
| | - Ethan Boynton
- Howard Hughes Medical Institute, University of California, Berkeley, CA, 94720, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
| | - Rachel Z Rosen
- Department of Chemistry, University of California, Berkeley, CA, 94702, USA
| | - Danielle Jorgens
- Electron Microscope Laboratory, University of California, Berkeley, CA, 94720, USA
| | - Patricia Grob
- Howard Hughes Medical Institute, University of California, Berkeley, CA, 94720, USA
- California Institute of Quantitative Biosciences, University of California, Berkeley, CA, 94720, USA
| | - Hoi-Ying N Holman
- Electron Microscope Laboratory, University of California, Berkeley, CA, 94720, USA
| | - Krishna K Niyogi
- Howard Hughes Medical Institute, University of California, Berkeley, CA, 94720, USA.
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA.
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| |
Collapse
|
180
|
Harel I, Chen YR, Ziv I, Singh PP, Heinzer D, Navarro Negredo P, Goshtchevsky U, Wang W, Astre G, Moses E, McKay A, Machado BE, Hebestreit K, Yin S, Sánchez Alvarado A, Jarosz DF, Brunet A. Identification of protein aggregates in the aging vertebrate brain with prion-like and phase-separation properties. Cell Rep 2024; 43:112787. [PMID: 38810650 PMCID: PMC11285089 DOI: 10.1016/j.celrep.2023.112787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/23/2023] [Accepted: 06/26/2023] [Indexed: 05/31/2024] Open
Abstract
Protein aggregation, which can sometimes spread in a prion-like manner, is a hallmark of neurodegenerative diseases. However, whether prion-like aggregates form during normal brain aging remains unknown. Here, we use quantitative proteomics in the African turquoise killifish to identify protein aggregates that accumulate in old vertebrate brains. These aggregates are enriched for prion-like RNA-binding proteins, notably the ATP-dependent RNA helicase DDX5. We validate that DDX5 forms aggregate-like puncta in the brains of old killifish and mice. Interestingly, DDX5's prion-like domain allows these aggregates to propagate across many generations in yeast. In vitro, DDX5 phase separates into condensates. Mutations that abolish DDX5 prion propagation also impair the protein's ability to phase separate. DDX5 condensates exhibit enhanced enzymatic activity, but they can mature into inactive, solid aggregates. Our findings suggest that protein aggregates with prion-like properties form during normal brain aging, which could have implications for the age-dependency of cognitive decline.
Collapse
Affiliation(s)
- Itamar Harel
- Department of Genetics, Stanford University, Stanford, CA 94305, USA; The Silberman Institute, the Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel.
| | - Yiwen R Chen
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
| | - Inbal Ziv
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
| | - Param Priya Singh
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Daniel Heinzer
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | | | - Uri Goshtchevsky
- The Silberman Institute, the Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel
| | - Wei Wang
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Gwendoline Astre
- The Silberman Institute, the Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel
| | - Eitan Moses
- The Silberman Institute, the Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel
| | - Andrew McKay
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Ben E Machado
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Katja Hebestreit
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Sifei Yin
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
| | | | - Daniel F Jarosz
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA.
| | - Anne Brunet
- Department of Genetics, Stanford University, Stanford, CA 94305, USA; Glenn Laboratories for the Biology of Aging, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
181
|
Han W, Wei M, Xu F, Niu Z. Aggregation and phase separation of α-synuclein in Parkinson's disease. Chem Commun (Camb) 2024; 60:6581-6590. [PMID: 38808534 DOI: 10.1039/d4cc01591f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
The deposition of α-synuclein (α-Syn) in Lewy bodies serves as a prominent pathological hallmark of Parkinson's disease (PD). Recent research has revealed that α-Syn can undergo liquid-liquid phase separation (LLPS) during its fibrillization. Over time, the maturation of the resulting condensates leads to a liquid-to-solid phase transition (LSPT) ultimately resulting in the amyloid deposition in cells which is linked to the pathogenesis and development of PD. Herein, we summarize the understanding of α-Syn aggregation which can be described by nucleation and elongation steps to obtain insights into the correlation of protein aggregation, structural polymorphism, and PD progression. Additionally, we discuss the LLPS phenomena of α-Syn and heterotypic cross-amyloid interactions with a focus on aberrant LSPT in the aggregation process. Exploring the underlying mechanisms and interplay between α-Syn aberrant aggregation, pathological phase transitions, and PD pathogenesis will shed light on potential therapeutic interventions.
Collapse
Affiliation(s)
- Wanlu Han
- School of Pharmacy, Henan University, Kaifeng, Henan 475004, China.
| | - Mengrui Wei
- School of Pharmacy, Henan University, Kaifeng, Henan 475004, China.
| | - Fei Xu
- School of Pharmacy, Henan University, Kaifeng, Henan 475004, China.
| | - Zheng Niu
- School of Pharmacy, Henan University, Kaifeng, Henan 475004, China.
| |
Collapse
|
182
|
Wang Y, Zhou L, Wu X, Yang S, Wang X, Shen Q, Liu Y, Zhang W, Ji L. Molecular Mechanisms and Potential Antiviral Strategies of Liquid-Liquid Phase Separation during Coronavirus Infection. Biomolecules 2024; 14:748. [PMID: 39062463 PMCID: PMC11274562 DOI: 10.3390/biom14070748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/05/2024] [Accepted: 06/17/2024] [Indexed: 07/28/2024] Open
Abstract
Highly pathogenic coronaviruses have caused significant outbreaks in humans and animals, posing a serious threat to public health. The rapid global spread of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has resulted in millions of infections and deaths. However, the mechanisms through which coronaviruses evade a host's antiviral immune system are not well understood. Liquid-liquid phase separation (LLPS) is a recently discovered mechanism that can selectively isolate cellular components to regulate biological processes, including host antiviral innate immune signal transduction pathways. This review focuses on the mechanism of coronavirus-induced LLPS and strategies for utilizing LLPS to evade the host antiviral innate immune response, along with potential antiviral therapeutic drugs and methods. It aims to provide a more comprehensive understanding and novel insights for researchers studying LLPS induced by pandemic viruses.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Wen Zhang
- School of Medicine, Jiangsu University, Zhenjiang 212013, China; (Y.W.); (L.Z.); (X.W.); (S.Y.); (X.W.); (Q.S.); (Y.L.)
| | - Likai Ji
- School of Medicine, Jiangsu University, Zhenjiang 212013, China; (Y.W.); (L.Z.); (X.W.); (S.Y.); (X.W.); (Q.S.); (Y.L.)
| |
Collapse
|
183
|
Latham AP, Zhu L, Sharon DA, Ye S, Willard AP, Zhang X, Zhang B. Microphase Separation Produces Interfacial Environment within Diblock Biomolecular Condensates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.03.30.534967. [PMID: 37034777 PMCID: PMC10081284 DOI: 10.1101/2023.03.30.534967] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The phase separation of intrinsically disordered proteins is emerging as an important mechanism for cellular organization. However, efforts to connect protein sequences to the physical properties of condensates, i.e., the molecular grammar, are hampered by a lack of effective approaches for probing high-resolution structural details. Using a combination of multiscale simulations and fluorescence lifetime imaging microscopy experiments, we systematically explored a series of systems consisting of diblock elastin-like polypeptides (ELP). The simulations succeeded in reproducing the variation of condensate stability upon amino acid substitution and revealed different microenvironments within a single condensate, which we verified with environmentally sensitive fluorophores. The interspersion of hydrophilic and hydrophobic residues and a lack of secondary structure formation result in an interfacial environment, which explains both the strong correlation between ELP condensate stability and interfacial hydrophobicity scales, as well as the prevalence of protein-water hydrogen bonds. Our study uncovers new mechanisms for condensate stability and organization that may be broadly applicable.
Collapse
Affiliation(s)
- Andrew P Latham
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Longchen Zhu
- Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, Zhejiang Province, China
- Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Dina A Sharon
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Songtao Ye
- Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, Zhejiang Province, China
- Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Adam P Willard
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Xin Zhang
- Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, Zhejiang Province, China
- Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Bin Zhang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139
| |
Collapse
|
184
|
Campelo F, Lillo JV, von Blume J. Protein condensates in the the secretory pathway: Unraveling biophysical interactions and function. Biophys J 2024; 123:1531-1541. [PMID: 38698644 PMCID: PMC11214006 DOI: 10.1016/j.bpj.2024.04.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/23/2024] [Accepted: 04/30/2024] [Indexed: 05/05/2024] Open
Abstract
The emergence of phase separation phenomena among macromolecules has identified biomolecular condensates as fundamental cellular organizers. These condensates concentrate specific components and accelerate biochemical reactions without relying on membrane boundaries. Although extensive studies have revealed a large variety of nuclear and cytosolic membraneless organelles, we are witnessing a surge in the exploration of protein condensates associated with the membranes of the secretory pathway, such as the endoplasmic reticulum and the Golgi apparatus. This review focuses on protein condensates in the secretory pathway and discusses their impact on the organization and functions of this cellular process. Moreover, we explore the modes of condensate-membrane association and the biophysical and cellular consequences of protein condensate interactions with secretory pathway membranes.
Collapse
Affiliation(s)
- Felix Campelo
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, Spain.
| | - Javier Vera Lillo
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, Spain
| | - Julia von Blume
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut.
| |
Collapse
|
185
|
Dindo M, Bevilacqua A, Soligo G, Calabrese V, Monti A, Shen AQ, Rosti ME, Laurino P. Chemotactic Interactions Drive Migration of Membraneless Active Droplets. J Am Chem Soc 2024; 146:15965-15976. [PMID: 38620052 DOI: 10.1021/jacs.4c02823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
In nature, chemotactic interactions are ubiquitous and play a critical role in driving the collective behavior of living organisms. Reproducing these interactions in vitro is still a paramount challenge due to the complexity of mimicking and controlling cellular features, such as tangled metabolic networks, cytosolic macromolecular crowding, and cellular migration, on a microorganism size scale. Here, we generate enzymatically active cell-sized droplets able to move freely, and by following a chemical gradient, able to interact with the surrounding droplets in a collective manner. The enzyme within the droplets generates a pH gradient that extends outside the edge of the droplets. We discovered that the external pH gradient triggers droplet migration and controls its directionality, which is selectively toward the neighboring droplets. Hence, by changing the enzyme activity inside the droplet, we tuned the droplet migration speed. Furthermore, we showed that these cellular-like features can facilitate the reconstitution of a simple and linear protometabolic pathway and increase the final reaction product generation. Our work suggests that simple and stable membraneless droplets can reproduce complex biological phenomena, opening new perspectives as bioinspired materials and synthetic biology tools.
Collapse
Affiliation(s)
- Mirco Dindo
- Protein Engineering and Evolution Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0412, Japan
| | - Alessandro Bevilacqua
- Protein Engineering and Evolution Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0412, Japan
| | - Giovanni Soligo
- Complex Fluids and Flows Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0412, Japan
| | - Vincenzo Calabrese
- Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0412, Japan
| | - Alessandro Monti
- Complex Fluids and Flows Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0412, Japan
| | - Amy Q Shen
- Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0412, Japan
| | - Marco Edoardo Rosti
- Complex Fluids and Flows Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0412, Japan
| | - Paola Laurino
- Protein Engineering and Evolution Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0412, Japan
- Institute for Protein Research, Osaka University, Suita 565-0871, Japan
| |
Collapse
|
186
|
Kamatar A, Bravo JPK, Yuan F, Wang L, Lafer EM, Taylor DW, Stachowiak JC, Parekh SH. Lipid droplets as substrates for protein phase separation. Biophys J 2024; 123:1494-1507. [PMID: 38462838 PMCID: PMC11163294 DOI: 10.1016/j.bpj.2024.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/26/2024] [Accepted: 03/07/2024] [Indexed: 03/12/2024] Open
Abstract
Membrane-associated protein phase separation plays critical roles in cell biology, driving essential cellular phenomena from immune signaling to membrane traffic. Importantly, by reducing dimensionality from three to two dimensions, lipid bilayers can nucleate phase separation at far lower concentrations compared with those required for phase separation in solution. How might other intracellular lipid substrates, such as lipid droplets, contribute to nucleation of phase separation? Distinct from bilayer membranes, lipid droplets consist of a phospholipid monolayer surrounding a core of neutral lipids, and they are energy storage organelles that protect cells from lipotoxicity and oxidative stress. Here, we show that intrinsically disordered proteins can undergo phase separation on the surface of synthetic and cell-derived lipid droplets. Specifically, we find that the model disordered domains FUS LC and LAF-1 RGG separate into protein-rich and protein-depleted phases on the surfaces of lipid droplets. Owing to the hydrophobic nature of interactions between FUS LC proteins, increasing ionic strength drives an increase in its phase separation on droplet surfaces. The opposite is true for LAF-1 RGG, owing to the electrostatic nature of its interprotein interactions. In both cases, protein-rich phases on the surfaces of synthetic and cell-derived lipid droplets demonstrate molecular mobility indicative of a liquid-like state. Our results show that lipid droplets can nucleate protein condensates, suggesting that protein phase separation could be key in organizing biological processes involving lipid droplets.
Collapse
Affiliation(s)
- Advika Kamatar
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas
| | - Jack P K Bravo
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas
| | - Feng Yuan
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas
| | - Liping Wang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Eileen M Lafer
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - David W Taylor
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas; Interdisciplinary Life Sciences Graduate Program, University of Texas at Austin, Austin, Texas; Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, Texas; LIVESTRONG Cancer Institutes, Dell Medical School, Austin, Texas
| | - Jeanne C Stachowiak
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas; McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas.
| | - Sapun H Parekh
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas.
| |
Collapse
|
187
|
Islam M, Shen F, Regmi D, Petersen K, Karim MRU, Du D. Tau liquid-liquid phase separation: At the crossroads of tau physiology and tauopathy. J Cell Physiol 2024; 239:e30853. [PMID: 35980344 PMCID: PMC9938090 DOI: 10.1002/jcp.30853] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/12/2022] [Accepted: 07/22/2022] [Indexed: 12/14/2022]
Abstract
Abnormal deposition of tau in neurons is a hallmark of Alzheimer's disease and several other neurodegenerative disorders. In the past decades, extensive efforts have been made to explore the mechanistic pathways underlying the development of tauopathies. Recently, the discovery of tau droplet formation by liquid-liquid phase separation (LLPS) has received a great deal of attention. It has been reported that tau condensates have a biological role in promoting and stabilizing microtubule (MT) assembly. Furthermore, it has been hypothesized that the transition of phase-separated tau droplets to a gel-like state and then to fibrils is associated with the pathology of neurodegenerative diseases. In this review, we outline LLPS, the structural disorder that facilitates tau droplet formation, the effects of posttranslational modification of tau on condensate formation, the physiological function of tau droplets, the pathways from droplet to toxic fibrils, and the therapeutic strategies for tauopathies that might evolve from toxic droplets. We expect a deeper understanding of tau LLPS will provide additional insights into tau physiology and tauopathies.
Collapse
Affiliation(s)
- Majedul Islam
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, Florida 33431, United States
| | - Fengyun Shen
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, Florida 33431, United States
| | - Deepika Regmi
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, Florida 33431, United States
| | - Katherine Petersen
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, Florida 33431, United States
| | - Md Raza Ul Karim
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, Florida 33431, United States
| | - Deguo Du
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, Florida 33431, United States
| |
Collapse
|
188
|
Evangelista NN, Micheletto MC, Kava E, Mendes LFS, Costa-Filho AJ. Biomolecular condensates of Chlorocatechol 1,2-Dioxygenase as prototypes of enzymatic microreactors for the degradation of polycyclic aromatic hydrocarbons. Int J Biol Macromol 2024; 270:132294. [PMID: 38735602 DOI: 10.1016/j.ijbiomac.2024.132294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 05/07/2024] [Accepted: 05/09/2024] [Indexed: 05/14/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are molecules with two or more fused aromatic rings that occur naturally in the environment due to incomplete combustion of organic substances. However, the increased demand for fossil fuels in recent years has increased anthropogenic activity, contributing to the environmental concentration of PAHs. The enzyme chlorocatechol 1,2-dioxygenase from Pseudomonas putida (Pp 1,2-CCD) is responsible for the breakdown of the aromatic ring of catechol, making it a potential player in bioremediation strategies. Pp 1,2-CCD can tolerate a broader range of substrates, including halogenated compounds, than other dioxygenases. Here, we report the construction of a chimera protein able to form biomolecular condensates with potential application in bioremediation. The chimera protein was built by conjugating Pp 1,2-CCD to low complex domains (LCDs) derived from the DEAD-box protein Dhh1. We showed that the chimera could undergo liquid-liquid phase separation (LLPS), forming a protein-rich liquid droplet under different conditions (variable protein and PEG8000 concentrations and pH values), in which the protein maintained its structure and main biophysical properties. The condensates were active against 4-chlorocatechol, showing that the chimera droplets preserved the enzymatic activity of the native protein. Therefore, it constitutes a prototype of a microreactor with potential use in bioremediation.
Collapse
Affiliation(s)
- Nathan N Evangelista
- Laboratório de Biofísica Molecular, Departamento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Mariana C Micheletto
- Laboratório de Biofísica Molecular, Departamento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Emanuel Kava
- Laboratório de Biofísica Molecular, Departamento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Luis F S Mendes
- Laboratório de Biofísica Molecular, Departamento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil; Grupo de Biofísica Molecular Sérgio Mascarenhas, Departamento de Física e Ciência Interdisciplinar, Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, SP, Brazil
| | - Antonio J Costa-Filho
- Laboratório de Biofísica Molecular, Departamento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
189
|
Dormann D, Lemke EA. Adding intrinsically disordered proteins to biological ageing clocks. Nat Cell Biol 2024; 26:851-858. [PMID: 38783141 DOI: 10.1038/s41556-024-01423-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 04/12/2024] [Indexed: 05/25/2024]
Abstract
Research into how the young and old differ, and which biomarkers reflect the diverse biological processes underlying ageing, is a current and fast-growing field. Biological clocks provide a means to evaluate whether a molecule, cell, tissue or even an entire organism is old or young. Here we summarize established and emerging molecular clocks as timepieces. We emphasize that intrinsically disordered proteins (IDPs) tend to transform into a β-sheet-rich aggregated state and accumulate in non-dividing or slowly dividing cells as they age. We hypothesize that understanding these protein-based molecular ageing mechanisms might provide a conceptual pathway to determining a cell's health age by probing the aggregation state of IDPs, which we term the IDP clock.
Collapse
Affiliation(s)
- Dorothee Dormann
- Biocenter, Johannes Gutenberg University, Mainz, Germany.
- Institute for Molecular Biology, Mainz, Germany.
| | - Edward Anton Lemke
- Biocenter, Johannes Gutenberg University, Mainz, Germany.
- Institute for Molecular Biology, Mainz, Germany.
- Institute for Quantitative and Computational Biosciences, Johannes Gutenberg University, Mainz, Germany.
| |
Collapse
|
190
|
Rathnayaka-Mudiyanselage IW, Nandana V, Schrader JM. Proteomic composition of eukaryotic and bacterial RNA decay condensates suggests convergent evolution. Curr Opin Microbiol 2024; 79:102467. [PMID: 38569418 PMCID: PMC11162941 DOI: 10.1016/j.mib.2024.102467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/21/2024] [Accepted: 03/12/2024] [Indexed: 04/05/2024]
Abstract
Bacterial cells have a unique challenge to organize their cytoplasm without the use of membrane-bound organelles. Biomolecular condensates (henceforth BMCs) are a class of nonmembrane-bound organelles, which, through the physical process of phase separation, can form liquid-like droplets with proteins/nucleic acids. BMCs have been broadly characterized in eukaryotic cells, and BMCs have been recently identified in bacteria, with the first and best studied example being bacterial ribonucleoprotein bodies (BR-bodies). BR-bodies contain the RNA decay machinery and show functional parallels to eukaryotic P-bodies (PBs) and stress granules (SGs). Due to the finding that mRNA decay machinery is compartmentalized in BR-bodies and in eukaryotic PBs/SGs, we will explore the functional similarities in the proteins, which are known to enrich in these structures based on recent proteomic studies. Interestingly, despite the use of different mRNA decay and post-transcriptional regulatory machinery, this analysis has revealed evolutionary convergence in the classes of enriched enzymes in these structures.
Collapse
Affiliation(s)
- I W Rathnayaka-Mudiyanselage
- Wayne State University, Department of Biological Sciences, Detroit, MI, USA; Wayne State University, Department of Chemistry, Detroit, MI, USA
| | - V Nandana
- Wayne State University, Department of Biological Sciences, Detroit, MI, USA
| | - J M Schrader
- Wayne State University, Department of Biological Sciences, Detroit, MI, USA.
| |
Collapse
|
191
|
Qin M, Geng E, Wang J, Yu M, Dong T, Li S, Zhang X, Lin J, Shi M, Li J, Zhang H, Chen L, Cao X, Huang L, Wang M, Li Y, Yang XP, Zhao B, Sun S. LATS2 condensates organize signalosomes for Hippo pathway signal transduction. Nat Chem Biol 2024; 20:710-720. [PMID: 38200110 DOI: 10.1038/s41589-023-01516-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 12/01/2023] [Indexed: 01/12/2024]
Abstract
Biomolecular condensates have been proposed to mediate cellular signaling transduction. However, the mechanism and functional consequences of signal condensates are not well understood. Here we report that LATS2, the core kinase of the Hippo pathway, responds to F-actin cytoskeleton reduction and forms condensates. The proline-rich motif (PRM) of LATS2 mediates its condensation. LATS2 partitions with the main components of the Hippo pathway to assemble a signalosome for LATS2 activation and for its stability by physically compartmentalizing from E3 ligase FBXL16 complex-dependent degradation, which in turn mediates yes-associated protein (YAP)-transcriptional coactivator with PDZ-binding motif (TAZ) recruitment and inactivation. This oncogenic FBXL16 complex blocks LATS2 condensation by binding to the PRM region to promote its degradation. Disruption of LATS2 condensation leads to tumor progression. Thus, our study uncovers that the signalosomes assembled by LATS2 condensation provide a compartmentalized and reversible platform for Hippo signaling transduction and protein stability, which have potential implications in cancer diagnosis and therapeutics.
Collapse
Affiliation(s)
- Min Qin
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ershuo Geng
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingning Wang
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Man Yu
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tianqi Dong
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shasha Li
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao Zhang
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiaming Lin
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mingjun Shi
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Juebei Li
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huixia Zhang
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lian Chen
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaolei Cao
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, China
| | - Liu Huang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mingwei Wang
- Department of Pathology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Li
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiang-Ping Yang
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bin Zhao
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, China
| | - Shuguo Sun
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
192
|
Hu Z, Li M, Chen Y, Chen L, Han Y, Chen C, Lu X, You N, Lou Y, Huang Y, Huo Z, Liu C, Liang C, Liu S, Deng K, Chen L, Chen S, Wan G, Wu X, Fu Y, Xu A. Disruption of PABPN1 phase separation by SNRPD2 drives colorectal cancer cell proliferation and migration through promoting alternative polyadenylation of CTNNBIP1. SCIENCE CHINA. LIFE SCIENCES 2024; 67:1212-1225. [PMID: 38811444 DOI: 10.1007/s11427-023-2495-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 11/26/2023] [Indexed: 05/31/2024]
Abstract
Generally shortened 3' UTR due to alternative polyadenylation (APA) is widely observed in cancer, but its regulation mechanisms for cancer are not well characterized. Here, with profiling of APA in colorectal cancer tissues and poly(A) signal editing, we firstly identified that the shortened 3' UTR of CTNNIBP1 in colorectal cancer promotes cell proliferation and migration. We found that liquid-liquid phase separation (LLPS) of PABPN1 is reduced albeit with higher expression in cancer, and the reduction of LLPS leads to the shortened 3' UTR of CTNNBIP1 and promotes cell proliferation and migration. Notably, the splicing factor SNRPD2 upregulated in colorectal cancer, can interact with glutamic-proline (EP) domain of PABPN1, and then disrupt LLPS of PABPN1, which attenuates the repression effect of PABPN1 on the proximal poly(A) sites. Our results firstly reveal a new regulation mechanism of APA by disruption of LLPS of PABPN1, suggesting that regulation of APA by interfering LLPS of 3' end processing factor may have the potential as a new way for the treatment of cancer.
Collapse
Affiliation(s)
- Zhijie Hu
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Department of Biochemistry, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Mengxia Li
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Department of Biochemistry, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yufeng Chen
- Department of General Surgery (Colorectal Surgery) & Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases & Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
| | - Liutao Chen
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Department of Biochemistry, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yuting Han
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Department of Biochemistry, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Chengyong Chen
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Department of Biochemistry, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Xin Lu
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Department of Biochemistry, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Nan You
- National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, National Engineering Research Center for New Drug and Druggability (cultivation), Guangdong Province Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yawen Lou
- National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, National Engineering Research Center for New Drug and Druggability (cultivation), Guangdong Province Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yingye Huang
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Department of Biochemistry, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Zhanfeng Huo
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Department of Biochemistry, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Chao Liu
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Department of Biochemistry, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Cheng Liang
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Department of Biochemistry, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Susu Liu
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Department of Biochemistry, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Ke Deng
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Department of Biochemistry, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Liangfu Chen
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Department of Biochemistry, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Shangwu Chen
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Department of Biochemistry, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Guohui Wan
- National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, National Engineering Research Center for New Drug and Druggability (cultivation), Guangdong Province Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Xiaojian Wu
- Department of General Surgery (Colorectal Surgery) & Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases & Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China.
| | - Yonggui Fu
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Department of Biochemistry, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Anlong Xu
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Department of Biochemistry, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
193
|
Kuzin S, Stolba D, Wu X, Syryamina VN, Boulos S, Jeschke G, Nyström L, Yulikov M. Quantification of Distributions of Local Proton Concentrations in Heterogeneous Soft Matter and Non-Anfinsen Biomacromolecules. J Phys Chem Lett 2024; 15:5625-5632. [PMID: 38758534 PMCID: PMC11145652 DOI: 10.1021/acs.jpclett.4c00825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/13/2024] [Accepted: 05/15/2024] [Indexed: 05/18/2024]
Abstract
A new method to quantitatively analyze heterogeneous distributions of local proton densities around paramagnetic centers in unstructured and weakly structured biomacromolecules and soft matter is introduced, and its feasibility is demonstrated on aqueous solutions of stochastically spin-labeled polysaccharides. This method is based on the pulse EPR experiment ih-RIDME (intermolecular hyperfine relaxation-induced dipolar modulation enhancement). Global analysis of a series of RIDME traces allows for a mathematically stable transformation of the time-domain data to the distribution of local proton concentrations. Two pulse sequences are proposed and tested, which combine the ih-RIDME block and the double-electron-electron resonance (DEER) experiment. Such experiments can be potentially used to correlate the local proton concentration with the macromolecular chain conformation. We anticipate an application of this approach in studies of intrinsically disordered proteins, biomolecular aggregates, and biomolecular condensates.
Collapse
Affiliation(s)
- Sergei Kuzin
- Department
of Chemistry and Applied Biosciences, ETH
Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Dario Stolba
- Department
of Chemistry and Applied Biosciences, ETH
Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Xiaowen Wu
- Department
of Health Sciences and Technology, ETH Zurich, Schmelzbergstrasse 9, 8092 Zurich, Switzerland
- Max
Planck Institute of Colloids and Interfaces, 14476 Potsdam, Germany
| | - Victoria N. Syryamina
- Department
of Health Sciences and Technology, ETH Zurich, Schmelzbergstrasse 9, 8092 Zurich, Switzerland
- Voevodsky
Institute of Chemical Kinetics and Combustion, Novosibirsk 630090, Russia
| | - Samy Boulos
- Department
of Health Sciences and Technology, ETH Zurich, Schmelzbergstrasse 9, 8092 Zurich, Switzerland
| | - Gunnar Jeschke
- Department
of Chemistry and Applied Biosciences, ETH
Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Laura Nyström
- Department
of Health Sciences and Technology, ETH Zurich, Schmelzbergstrasse 9, 8092 Zurich, Switzerland
| | - Maxim Yulikov
- Department
of Chemistry and Applied Biosciences, ETH
Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| |
Collapse
|
194
|
Zhang J, Yao S, Cheng X, Zhao Y, Yu W, Ren X, Ji K, Yu Q. Genome-Wide Identification and Expression Analysis of the YTH Domain-Containing RNA-Binding Protein Family in Cinnamomum camphora. Int J Mol Sci 2024; 25:5960. [PMID: 38892149 PMCID: PMC11173211 DOI: 10.3390/ijms25115960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/20/2024] [Accepted: 05/25/2024] [Indexed: 06/21/2024] Open
Abstract
N6-methyladenosine (m6A) is one of the most abundant chemical modifications on mRNA in eukaryotes. RNA-binding proteins containing the YT521-B (YTH) domain play crucial roles in post-transcriptional regulation of plant growth, development, and stress response by reading the m6A mark. However, the YTH domain-containing RNA-binding protein family has not been studied in a valuable and medicinal tree such as Cinnamomum camphora (C. camphora) yet. In this study, we identified 10 YTH genes in C. camphora, located on eight out of 12 chromosomes. Phylogenetic analysis revealed that these genes can be classified into two major classes, YTHDF (CcDF) and YTHDC (CcDC). Closely related CcYTHs within the same class exhibited a similar distribution of conserved motifs and domain organization, suggesting functional similarities among these closely related CcYTHs. All CcYTH proteins possessed a highly conserved YTH domain, with CcDC1A containing an additional CCCH domain. The liquid-liquid phase separation (LLPS) predictions indicate that CcDC1A, CcDF1A, CcDF1C, CcDF3C, CcDF4C, and CcDF5C may undergo phase transitions. Quantitative expression analysis revealed that tissue-specific expression was observed fo CcYTHs. Notably, there were two genes, CcDF1A and CcDF5C; both exhibited significantly higher expression levels in various tissues than other genes, indicating that the m6A-YTH regulatory network in C. camphora might be quite distinct from that in most plants such as Arabidopsis thaliana (A. thaliana) with only one abundant YTH protein. According to the analysis of the up-stream cis-regulatory elements of these YTH genes, these genes could be closely related to stress, hormones, and development. The following stress response experiments further verified that their expression levels indeed changed under both PEG and NaCl treatments. These findings not only provide a foundation for future functional analysis of CcYTHs in C. camphora, but also provide insights into the functions of epigenetic mark m6A in forest trees.
Collapse
Affiliation(s)
- Jingjing Zhang
- State Key Laboratory of Tree Genetics and Breeding, Nanjing Forestry University, Nanjing 210037, China (K.J.)
- Key Open Laboratory of Forest Genetics and Gene Engineering of National Forestry & Grassland, Nanjing Forestry University, Nanjing 210037, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Sheng Yao
- State Key Laboratory of Tree Genetics and Breeding, Nanjing Forestry University, Nanjing 210037, China (K.J.)
- Key Open Laboratory of Forest Genetics and Gene Engineering of National Forestry & Grassland, Nanjing Forestry University, Nanjing 210037, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Xiang Cheng
- State Key Laboratory of Tree Genetics and Breeding, Nanjing Forestry University, Nanjing 210037, China (K.J.)
- Key Open Laboratory of Forest Genetics and Gene Engineering of National Forestry & Grassland, Nanjing Forestry University, Nanjing 210037, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Yulu Zhao
- State Key Laboratory of Tree Genetics and Breeding, Nanjing Forestry University, Nanjing 210037, China (K.J.)
- Key Open Laboratory of Forest Genetics and Gene Engineering of National Forestry & Grassland, Nanjing Forestry University, Nanjing 210037, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Wenya Yu
- State Key Laboratory of Tree Genetics and Breeding, Nanjing Forestry University, Nanjing 210037, China (K.J.)
- Key Open Laboratory of Forest Genetics and Gene Engineering of National Forestry & Grassland, Nanjing Forestry University, Nanjing 210037, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Xingyue Ren
- State Key Laboratory of Tree Genetics and Breeding, Nanjing Forestry University, Nanjing 210037, China (K.J.)
- Key Open Laboratory of Forest Genetics and Gene Engineering of National Forestry & Grassland, Nanjing Forestry University, Nanjing 210037, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Kongshu Ji
- State Key Laboratory of Tree Genetics and Breeding, Nanjing Forestry University, Nanjing 210037, China (K.J.)
- Key Open Laboratory of Forest Genetics and Gene Engineering of National Forestry & Grassland, Nanjing Forestry University, Nanjing 210037, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Qiong Yu
- State Key Laboratory of Tree Genetics and Breeding, Nanjing Forestry University, Nanjing 210037, China (K.J.)
- Key Open Laboratory of Forest Genetics and Gene Engineering of National Forestry & Grassland, Nanjing Forestry University, Nanjing 210037, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- Beijing National Laboratory for Molecular Sciences, Beijing 100190, China
| |
Collapse
|
195
|
Gu Y, Wei K, Wang J. Phase separation and transcriptional regulation in cancer development. J Biomed Res 2024; 38:307-321. [PMID: 39113127 PMCID: PMC11300516 DOI: 10.7555/jbr.37.20230214] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/29/2023] [Accepted: 01/02/2024] [Indexed: 08/10/2024] Open
Abstract
Liquid-liquid phase separation, a novel biochemical phenomenon, has been increasingly studied for its medical applications. It underlies the formation of membrane-less organelles and is involved in many cellular and biological processes. During transcriptional regulation, dynamic condensates are formed through interactions between transcriptional elements, such as transcription factors, coactivators, and mediators. Cancer is a disease characterized by uncontrolled cell proliferation, but the precise mechanisms underlying tumorigenesis often remain to be elucidated. Emerging evidence has linked abnormal transcriptional condensates to several diseases, especially cancer, implying that phase separation plays an important role in tumorigenesis. Condensates formed by phase separation may have an effect on gene transcription in tumors. In the present review, we focus on the correlation between phase separation and transcriptional regulation, as well as how this phenomenon contributes to cancer development.
Collapse
Affiliation(s)
- Yan Gu
- Department of Thoracic Surgery, Jiangsu Province Hospital, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Ke Wei
- Department of Thoracic Surgery, Jiangsu Province Hospital, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Jun Wang
- Department of Thoracic Surgery, Jiangsu Province Hospital, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| |
Collapse
|
196
|
Zhu S, Shen Z, Wu X, Han W, Jia B, Lu W, Zhang M. Demixing is a default process for biological condensates formed via phase separation. Science 2024; 384:920-928. [PMID: 38781377 DOI: 10.1126/science.adj7066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 04/15/2024] [Indexed: 05/25/2024]
Abstract
Excitatory and inhibitory synapses do not overlap even when formed on one submicron-sized dendritic protrusion. How excitatory and inhibitory postsynaptic cytomatrices or densities (e/iPSDs) are segregated is not understood. Broadly, why membraneless organelles are naturally segregated in cellular subcompartments is unclear. Using biochemical reconstitutions in vitro and in cells, we demonstrate that ePSDs and iPSDs spontaneously segregate into distinct condensed molecular assemblies through phase separation. Tagging iPSD scaffold gephyrin with a PSD-95 intrabody (dissociation constant ~4 nM) leads to mistargeting of gephyrin to ePSD condensates. Unexpectedly, formation of iPSD condensates forces the intrabody-tagged gephyrin out of ePSD condensates. Thus, instead of diffusion-governed spontaneous mixing, demixing is a default process for biomolecules in condensates. Phase separation can generate biomolecular compartmentalization specificities that cannot occur in dilute solutions.
Collapse
Affiliation(s)
- Shihan Zhu
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong, China
- School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zeyu Shen
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong, China
- School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xiandeng Wu
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong, China
| | - Wenyan Han
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20824, USA
| | - Bowen Jia
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong, China
| | - Wei Lu
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20824, USA
| | - Mingjie Zhang
- School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
197
|
Walker C, Chandrasekaran A, Mansour D, Graham K, Torres A, Wang L, Lafer EM, Rangamani P, Stachowiak JC. Liquid-like condensates that bind actin drive filament polymerization and bundling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.04.592527. [PMID: 38826190 PMCID: PMC11142076 DOI: 10.1101/2024.05.04.592527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Liquid-like protein condensates perform diverse physiological functions. Previous work showed that VASP, a processive actin polymerase, forms condensates that polymerize and bundle actin. To minimize their curvature, filaments accumulated at the inner condensate surface, ultimately deforming the condensate into a rod-like shape, filled with a bundle of parallel filaments. Here we show that this behavior does not require proteins with specific polymerase activity. Specifically, we found that condensates composed of Lamellipodin, a protein that binds actin but is not an actin polymerase, were also capable of polymerizing and bundling actin filaments. To probe the minimum requirements for condensate-mediated actin bundling, we developed an agent-based computational model. Guided by its predictions, we hypothesized that any condensate-forming protein that binds actin could bundle filaments through multivalent crosslinking. To test this idea, we added an actin-binding motif to Eps15, a condensate-forming protein that does not normally bind actin. The resulting chimera formed condensates that drove efficient actin polymerization and bundling. Collectively, these findings broaden the family of proteins that could organize cytoskeletal filaments to include any actin-binding protein that participates in protein condensation.
Collapse
Affiliation(s)
- Caleb Walker
- Biomedical Engineering, The University of Texas at Austin, Austin, TX, United States
| | - Aravind Chandrasekaran
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA, United States
| | - Daniel Mansour
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA, United States
| | - Kristin Graham
- Cell and Molecular Biology, The University of Texas at Austin, Austin, TX, United States
| | - Andrea Torres
- Biomedical Engineering, The University of Texas at Austin, Austin, TX, United States
| | - Liping Wang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Eileen M. Lafer
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Padmini Rangamani
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA, United States
| | - Jeanne C. Stachowiak
- Biomedical Engineering, The University of Texas at Austin, Austin, TX, United States
- Chemical Engineering, The University of Texas at Austin, Austin, TX, United States
| |
Collapse
|
198
|
Gu Y, Bian C, Wang H, Fu C, Xue W, Zhang W, Mu G, Xia Y, Wei K, Wang J. Inflammation-based lung adenocarcinoma molecular subtype identification and construction of an inflammation-related signature with bulk and single-cell RNA-seq data. Aging (Albany NY) 2024; 16:8822-8842. [PMID: 38771142 PMCID: PMC11164500 DOI: 10.18632/aging.205840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 04/15/2024] [Indexed: 05/22/2024]
Abstract
The role of inflammation is increasingly understood to have a central influence on therapeutic outcomes and prognosis in lung adenocarcinoma (LUAD). However, the detailed molecular divisions involved in inflammatory responses are yet to be fully elucidated. Our study identified two main inflammation-oriented LUAD grades: the inflammation-low (INF-low) and the inflammation-high (INF-high) subtypes. Both presented with unique clinicopathological features, implications for prognosis, and distinctive tumor microenvironment profiles. Broadly, the INF-low grade, marked by its dominant immunosuppressive tumor microenvironment, was accompanied by less favorable prognostic outcomes and a heightened prevalence of oncogenic mutations. In contrast, the INF-high grade exhibited more optimistic clinical trajectories, underscored by its immune-active environment. In addition, our efforts led to the conceptualization and empirical validation of an inflammation-centric predictive model with considerable predictive potency. Our study paves the way for a refined inflammation-centric LUAD classification and fosters a deeper understanding of tumor microenvironment intricacies.
Collapse
Affiliation(s)
- Yan Gu
- Department of Thoracic Surgery, Jiangsu Province Hospital and the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Chengyu Bian
- Department of Thoracic Surgery, The First People’s Hospital of Changzhou and The Third Affiliated Hospital of Soochow University, Changzhou 213004, Jiangsu, China
| | - Hongchang Wang
- Department of Thoracic Surgery, Jiangsu Province Hospital and the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Chenghao Fu
- Department of Thoracic Surgery, Jiangsu Province Hospital and the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Wentao Xue
- Department of Thoracic Surgery, Jiangsu Province Hospital and the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Wenhao Zhang
- Department of Thoracic Surgery, Jiangsu Province Hospital and the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Guang Mu
- Department of Thoracic Surgery, Jiangsu Province Hospital and the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Yang Xia
- Department of Thoracic Surgery, Jiangsu Province Hospital and the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Ke Wei
- Department of Thoracic Surgery, Jiangsu Province Hospital and the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Jun Wang
- Department of Thoracic Surgery, Jiangsu Province Hospital and the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| |
Collapse
|
199
|
Mukherjee S, Poudyal M, Dave K, Kadu P, Maji SK. Protein misfolding and amyloid nucleation through liquid-liquid phase separation. Chem Soc Rev 2024; 53:4976-5013. [PMID: 38597222 DOI: 10.1039/d3cs01065a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Liquid-liquid phase separation (LLPS) is an emerging phenomenon in cell physiology and diseases. The weak multivalent interaction prerequisite for LLPS is believed to be facilitated through intrinsically disordered regions, which are prevalent in neurodegenerative disease-associated proteins. These aggregation-prone proteins also exhibit an inherent property for phase separation, resulting in protein-rich liquid-like droplets. The very high local protein concentration in the water-deficient confined microenvironment not only drives the viscoelastic transition from the liquid to solid-like state but also most often nucleate amyloid fibril formation. Indeed, protein misfolding, oligomerization, and amyloid aggregation are observed to be initiated from the LLPS of various neurodegeneration-related proteins. Moreover, in these cases, neurodegeneration-promoting genetic and environmental factors play a direct role in amyloid aggregation preceded by the phase separation. These cumulative recent observations ignite the possibility of LLPS being a prominent nucleation mechanism associated with aberrant protein aggregation. The present review elaborates on the nucleation mechanism of the amyloid aggregation pathway and the possible early molecular events associated with amyloid-related protein phase separation. It also summarizes the recent advancement in understanding the aberrant phase transition of major proteins contributing to neurodegeneration focusing on the common disease-associated factors. Overall, this review proposes a generic LLPS-mediated multistep nucleation mechanism for amyloid aggregation and its implication in neurodegeneration.
Collapse
Affiliation(s)
- Semanti Mukherjee
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| | - Manisha Poudyal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| | - Kritika Dave
- Sunita Sanghi Centre of Aging and Neurodegenerative Diseases, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Pradeep Kadu
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| | - Samir K Maji
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
- Sunita Sanghi Centre of Aging and Neurodegenerative Diseases, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
200
|
Jordan J, Gibb CL, Tran T, Yao W, Rose A, Mague JT, Easson MW, Gibb BC. Anion Binding to Ammonium and Guanidinium Hosts: Implications for the Reverse Hofmeister Effects Induced by Lysine and Arginine Residues. J Org Chem 2024; 89:6877-6891. [PMID: 38662908 PMCID: PMC11110012 DOI: 10.1021/acs.joc.4c00242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 05/18/2024]
Abstract
Anions have a profound effect on the properties of soluble proteins. Such Hofmeister effects have implications in biologics stability, protein aggregation, amyloidogenesis, and crystallization. However, the interplay between the important noncovalent interactions (NCIs) responsible for Hofmeister effects is poorly understood. To contribute to improving this state of affairs, we report on the NCIs between anions and ammonium and guanidinium hosts 1 and 2, and the consequences of these. Specifically, we investigate the properties of cavitands designed to mimic two prime residues for anion-protein NCIs─lysines and arginines─and the solubility consequences of complex formation. Thus, we report NMR and ITC affinity studies, X-ray analysis, MD simulations, and anion-induced critical precipitation concentrations. Our findings emphasize the multitude of NCIs that guanidiniums can form and how this repertoire qualitatively surpasses that of ammoniums. Additionally, our studies demonstrate the ease by which anions can dispense with a fraction of their hydration-shell waters, rearrange those that remain, and form direct NCIs with the hosts. This raises many questions concerning how solvent shell plasticity varies as a function of anion, how the energetics of this impact the different NCIs between anions and ammoniums/guanidiniums, and how this affects the aggregation of solutes at high anion concentrations.
Collapse
Affiliation(s)
- Jacobs
H. Jordan
- The
Southern Regional Research Center, Agricultural Research Service, US Department of Agriculture, 1100 Allen Toussaint Blvd., New Orleans, Louisiana 70124, United States
| | - Corinne L.D. Gibb
- Department
of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| | - Thien Tran
- Department
of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| | - Wei Yao
- Department
of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| | - Austin Rose
- Department
of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| | - Joel T. Mague
- Department
of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| | - Michael W. Easson
- The
Southern Regional Research Center, Agricultural Research Service, US Department of Agriculture, 1100 Allen Toussaint Blvd., New Orleans, Louisiana 70124, United States
| | - Bruce C. Gibb
- Department
of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| |
Collapse
|