151
|
Midlik A, Navrátilová V, Moturu TR, Koča J, Svobodová R, Berka K. Uncovering of cytochrome P450 anatomy by SecStrAnnotator. Sci Rep 2021; 11:12345. [PMID: 34117311 PMCID: PMC8196199 DOI: 10.1038/s41598-021-91494-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 05/21/2021] [Indexed: 12/25/2022] Open
Abstract
Protein structural families are groups of homologous proteins defined by the organization of secondary structure elements (SSEs). Nowadays, many families contain vast numbers of structures, and the SSEs can help to orient within them. Communities around specific protein families have even developed specialized SSE annotations, always assigning the same name to the equivalent SSEs in homologous proteins. A detailed analysis of the groups of equivalent SSEs provides an overview of the studied family and enriches the analysis of any particular protein at hand. We developed a workflow for the analysis of the secondary structure anatomy of a protein family. We applied this analysis to the model family of cytochromes P450 (CYPs)-a family of important biotransformation enzymes with a community-wide used SSE annotation. We report the occurrence, typical length and amino acid sequence for the equivalent SSE groups, the conservation/variability of these properties and relationship to the substrate recognition sites. We also suggest a generic residue numbering scheme for the CYP family. Comparing the bacterial and eukaryotic part of the family highlights the significant differences and reveals a well-known anomalous group of bacterial CYPs with some typically eukaryotic features. Our workflow for SSE annotation for CYP and other families can be freely used at address https://sestra.ncbr.muni.cz .
Collapse
Affiliation(s)
- Adam Midlik
- CEITEC - Central European Institute of Technology, Masaryk University, Brno, 625 00, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, 625 00, Czech Republic
| | - Veronika Navrátilová
- Department of Physical Chemistry, Faculty of Science, Palacký University, Olomouc, 771 46, Czech Republic
| | - Taraka Ramji Moturu
- CEITEC - Central European Institute of Technology, Masaryk University, Brno, 625 00, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, 625 00, Czech Republic
| | - Jaroslav Koča
- CEITEC - Central European Institute of Technology, Masaryk University, Brno, 625 00, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, 625 00, Czech Republic
| | - Radka Svobodová
- CEITEC - Central European Institute of Technology, Masaryk University, Brno, 625 00, Czech Republic.
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, 625 00, Czech Republic.
| | - Karel Berka
- Department of Physical Chemistry, Faculty of Science, Palacký University, Olomouc, 771 46, Czech Republic.
| |
Collapse
|
152
|
Isaikina P, Tsai CJ, Dietz N, Pamula F, Grahl A, Goldie KN, Guixà-González R, Branco C, Paolini-Bertrand M, Calo N, Cerini F, Schertler GFX, Hartley O, Stahlberg H, Maier T, Deupi X, Grzesiek S. Structural basis of the activation of the CC chemokine receptor 5 by a chemokine agonist. SCIENCE ADVANCES 2021; 7:7/25/eabg8685. [PMID: 34134983 PMCID: PMC8208711 DOI: 10.1126/sciadv.abg8685] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/29/2021] [Indexed: 05/10/2023]
Abstract
The human CC chemokine receptor 5 (CCR5) is a G protein-coupled receptor (GPCR) that plays a major role in inflammation and is involved in cancer, HIV, and COVID-19. Despite its importance as a drug target, the molecular activation mechanism of CCR5, i.e., how chemokine agonists transduce the activation signal through the receptor, is yet unknown. Here, we report the cryo-EM structure of wild-type CCR5 in an active conformation bound to the chemokine super-agonist [6P4]CCL5 and the heterotrimeric Gi protein. The structure provides the rationale for the sequence-activity relation of agonist and antagonist chemokines. The N terminus of agonist chemokines pushes onto specific structural motifs at the bottom of the orthosteric pocket that activate the canonical GPCR microswitch network. This activation mechanism differs substantially from other CC chemokine receptors that bind chemokines with shorter N termini in a shallow binding mode involving unique sequence signatures and a specialized activation mechanism.
Collapse
Affiliation(s)
- Polina Isaikina
- Focal Area Structural Biology and Biophysics, Biozentrum, University of Basel, CH-4056 Basel, Switzerland
| | - Ching-Ju Tsai
- Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
| | - Nikolaus Dietz
- Focal Area Structural Biology and Biophysics, Biozentrum, University of Basel, CH-4056 Basel, Switzerland
| | - Filip Pamula
- Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
- Department of Biology, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Anne Grahl
- Focal Area Structural Biology and Biophysics, Biozentrum, University of Basel, CH-4056 Basel, Switzerland
| | - Kenneth N Goldie
- Center for Cellular Imaging and NanoAnalytics, Biozentrum, University of Basel, CH-4058 Basel, Switzerland
| | | | - Camila Branco
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Marianne Paolini-Bertrand
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Nicolas Calo
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Fabrice Cerini
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Gebhard F X Schertler
- Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland.
- Department of Biology, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Oliver Hartley
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
- Orion Biotechnology, Ottawa, Canada
| | - Henning Stahlberg
- Center for Cellular Imaging and NanoAnalytics, Biozentrum, University of Basel, CH-4058 Basel, Switzerland
| | - Timm Maier
- Focal Area Structural Biology and Biophysics, Biozentrum, University of Basel, CH-4056 Basel, Switzerland
| | - Xavier Deupi
- Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland.
| | - Stephan Grzesiek
- Focal Area Structural Biology and Biophysics, Biozentrum, University of Basel, CH-4056 Basel, Switzerland.
| |
Collapse
|
153
|
Maeda S, Shiimura Y, Asada H, Hirata K, Luo F, Nango E, Tanaka N, Toyomoto M, Inoue A, Aoki J, Iwata S, Hagiwara M. Endogenous agonist-bound S1PR3 structure reveals determinants of G protein-subtype bias. SCIENCE ADVANCES 2021; 7:7/24/eabf5325. [PMID: 34108205 PMCID: PMC8189593 DOI: 10.1126/sciadv.abf5325] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 04/21/2021] [Indexed: 05/15/2023]
Abstract
Sphingosine-1-phosphate (S1P) regulates numerous important physiological functions, including immune response and vascular integrity, via its cognate receptors (S1PR1 to S1PR5); however, it remains unclear how S1P activates S1PRs upon binding. Here, we determined the crystal structure of the active human S1PR3 in complex with its natural agonist S1P at 3.2-Å resolution. S1P exhibits an unbent conformation in the long tunnel, which penetrates through the receptor obliquely. Compared with the inactive S1PR1 structure, four residues surrounding the alkyl tail of S1P (the "quartet core") exhibit orchestrating rotamer changes that accommodate the moiety, thereby inducing an active conformation. In addition, we reveal that the quartet core determines G protein selectivity of S1PR3. These results offer insight into the structural basis of activation and biased signaling in G protein-coupled receptors and will help the design of biased ligands for optimized therapeutics.
Collapse
Affiliation(s)
- Shintaro Maeda
- Department of Anatomy and Developmental Biology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
- Department of Drug Discovery Medicine, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan
| | - Yuki Shiimura
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
- Institute of Life Science, Kurume University, Kurume, Fukuoka 830-0011, Japan
| | - Hidetsugu Asada
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Kunio Hirata
- RIKEN SPring-8 Center, Sayo-cho, Sayo-gun, Hyogo 679-5165, Japan
| | - Fangjia Luo
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
- RIKEN SPring-8 Center, Sayo-cho, Sayo-gun, Hyogo 679-5165, Japan
| | - Eriko Nango
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
- RIKEN SPring-8 Center, Sayo-cho, Sayo-gun, Hyogo 679-5165, Japan
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Nobuo Tanaka
- Medical Research Support Center, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Masayasu Toyomoto
- Department of Anatomy and Developmental Biology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
- Department of Drug Discovery for Lung Diseases, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Asuka Inoue
- Laboratory of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
| | - Junken Aoki
- Laboratory of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
| | - So Iwata
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan.
- RIKEN SPring-8 Center, Sayo-cho, Sayo-gun, Hyogo 679-5165, Japan
| | - Masatoshi Hagiwara
- Department of Anatomy and Developmental Biology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan.
- Department of Drug Discovery Medicine, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan
- Medical Research Support Center, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
- Department of Drug Discovery for Lung Diseases, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
154
|
Nakagita T, Taketani C, Narukawa M, Hirokawa T, Kobayashi T, Misaka T. Ibuprofen, a Nonsteroidal Anti-Inflammatory Drug, is a Potent Inhibitor of the Human Sweet Taste Receptor. Chem Senses 2021; 45:667-673. [PMID: 32832995 DOI: 10.1093/chemse/bjaa057] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A sweet taste receptor is composed of heterodimeric G-protein-coupled receptors T1R2 and T1R3. Although there are many sweet tastants, only a few compounds have been reported as negative allosteric modulators (NAMs), such as lactisole, its structural derivative 2,4-DP, and gymnemic acid. In this study, candidates for NAMs of the sweet taste receptor were explored, focusing on the structural motif of lactisole. Ibuprofen, a nonsteroidal anti-inflammatory drug (NSAID), has an α-methylacetic acid moiety, and this structure is also shared by lactisole and 2,4-DP. When ibuprofen was applied together with 1 mM aspartame to the cells that stably expressed the sweet taste receptor, it inhibited the receptor activity in a dose-dependent manner. The IC50 value of ibuprofen against the human sweet taste receptor was calculated as approximately 12 μM, and it was almost equal to that of 2,4-DP, which is known as the most potent NAM for the receptor to date. On the other hand, when the inhibitory activities of other profens were examined, naproxen also showed relatively potent NAM activity against the receptor. The results from both mutant analysis for the transmembrane domain (TMD) of T1R3 and docking simulation strongly suggest that ibuprofen and naproxen interact with T1R3-TMD, similar to lactisole and 2,4-DP. However, although 2,4-DP and ibuprofen had almost the same inhibitory activities, these activities were acquired by filling different spaces of the ligand pocket of T1R3-TMD; this knowledge could lead to the rational design of a novel NAM against the sweet taste receptor.
Collapse
Affiliation(s)
- Tomoya Nakagita
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, Japan.,Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, Japan.,Proteo-Science Center, Ehime University, Bunkyo-cho, Matsuyama, Ehime, Japan
| | - Chiaki Taketani
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, Japan
| | - Masataka Narukawa
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, Japan
| | - Takatsugu Hirokawa
- Molecular Profiling Research Center for Drug Discovery, National Institutes of Advanced Industrial Science and Technology, Aomi, Koto-ku, Tokyo, Japan.,Department of Chemical Biology, Faculty of Medicine, University of Tsukuba, Tennodai, Tsukuba, Ibaraki, Japan
| | - Takuya Kobayashi
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, Japan
| | - Takumi Misaka
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
155
|
Zhou Y, Ramsey S, Provasi D, El Daibani A, Appourchaux K, Chakraborty S, Kapoor A, Che T, Majumdar S, Filizola M. Predicted Mode of Binding to and Allosteric Modulation of the μ-Opioid Receptor by Kratom's Alkaloids with Reported Antinociception In Vivo. Biochemistry 2021; 60:1420-1429. [PMID: 33274929 PMCID: PMC8119294 DOI: 10.1021/acs.biochem.0c00658] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Pain management devoid of serious opioid adverse effects is still far from reach despite vigorous research and development efforts. Alternatives to classical opioids have been sought for years, and mounting reports of individuals finding pain relief with kratom have recently intensified research on this natural product. Although the composition of kratom is complex, the pharmacological characterization of its most abundant alkaloids has drawn attention to three molecules in particular, owing to their demonstrated antinociceptive activity and limited side effects in vivo. These three molecules are mitragynine (MG), its oxidized active metabolite, 7-hydroxymitragynine (7OH), and the indole-to-spiropseudoindoxy rearrangement product of MG known as mitragynine pseudoindoxyl (MP). Although these three alkaloids have been shown to preferentially activate the G protein signaling pathway by binding and allosterically modulating the μ-opioid receptor (MOP), a molecular level understanding of this process is lacking and yet important for the design of improved therapeutics. The molecular dynamics study and experimental validation reported here provide an atomic level description of how MG, 7OH, and MP bind and allosterically modulate the MOP, which can eventually guide structure-based drug design of improved therapeutics.
Collapse
Affiliation(s)
- Yuchen Zhou
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1677, New York, New York 10029-6574, United States
| | - Steven Ramsey
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1677, New York, New York 10029-6574, United States
| | - Davide Provasi
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1677, New York, New York 10029-6574, United States
| | - Amal El Daibani
- Department of Anesthesiology, Washington University in St. Louis School of Medicine, St Louis, Missouri 63110, United States
- Center for Clinical Pharmacology, University of Health Sciences and Pharmacy at St. Louis and Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Kevin Appourchaux
- Department of Anesthesiology, Washington University in St. Louis School of Medicine, St Louis, Missouri 63110, United States
- Center for Clinical Pharmacology, University of Health Sciences and Pharmacy at St. Louis and Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Soumen Chakraborty
- Department of Anesthesiology, Washington University in St. Louis School of Medicine, St Louis, Missouri 63110, United States
- Center for Clinical Pharmacology, University of Health Sciences and Pharmacy at St. Louis and Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Abhijeet Kapoor
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1677, New York, New York 10029-6574, United States
| | - Tao Che
- Department of Anesthesiology, Washington University in St. Louis School of Medicine, St Louis, Missouri 63110, United States
- Center for Clinical Pharmacology, University of Health Sciences and Pharmacy at St. Louis and Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Susruta Majumdar
- Department of Anesthesiology, Washington University in St. Louis School of Medicine, St Louis, Missouri 63110, United States
- Center for Clinical Pharmacology, University of Health Sciences and Pharmacy at St. Louis and Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Marta Filizola
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1677, New York, New York 10029-6574, United States
| |
Collapse
|
156
|
Yokoi S, Mitsutake A. Molecular Dynamics Simulations for the Determination of the Characteristic Structural Differences between Inactive and Active States of Wild Type and Mutants of the Orexin2 Receptor. J Phys Chem B 2021; 125:4286-4298. [PMID: 33885321 DOI: 10.1021/acs.jpcb.0c10985] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The orexin2 receptor (OX2R), which is classified as a class A G protein-coupled receptor (GPCR), is the target of our study. We performed over 20 several-microsecond-scale molecular dynamics simulations of the wild type and mutants of OX2R to extract the characteristics of the structural changes taking place in the active state. We introduced mutations that exhibited the stable inactive state and the constitutively active state in class A GPCRs. In these simulations, significant characteristic structural changes were observed in the V3096.40Y mutant, which corresponded to a constitutively active mutant. These conformational changes include the outward movement of the transmembrane helix 6 (TM6) and the inward movement of TM7, which are common structural changes in the activation of GPCRs. In addition, we extracted a suitable index for the quantitative evaluation of the active and inactive states of GPCRs, namely, the inter-atomic distance of Cα atoms between x(3.46) and Y(7.53). The structures of the inactive and active states solved by X-ray crystallography and cryo-electron microscopy can be classified using the inter-atomic distance. Furthermore, we clarified that the inward movement of TM7 requires the swapping of M3056.36 on TM6 and L3677.56 on TM7. Finally, we discussed the structural advantages of TM7 inward movement for GPCR activation.
Collapse
Affiliation(s)
- Shun Yokoi
- Department of Physics, School of Science and Technology, Meiji University, 1-1-1 Higashi-Mita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | - Ayori Mitsutake
- Department of Physics, School of Science and Technology, Meiji University, 1-1-1 Higashi-Mita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| |
Collapse
|
157
|
Shaye H, Stauch B, Gati C, Cherezov V. Molecular mechanisms of metabotropic GABA B receptor function. SCIENCE ADVANCES 2021; 7:7/22/eabg3362. [PMID: 34049877 PMCID: PMC8163086 DOI: 10.1126/sciadv.abg3362] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 04/14/2021] [Indexed: 05/06/2023]
Abstract
Metabotropic γ-aminobutyric acid G protein-coupled receptors (GABAB) represent one of the two main types of inhibitory neurotransmitter receptors in the brain. These receptors act both pre- and postsynaptically by modulating the transmission of neuronal signals and are involved in a range of neurological diseases, from alcohol addiction to epilepsy. A series of recent cryo-EM studies revealed critical details of the activation mechanism of GABAB Structures are now available for the receptor bound to ligands with different modes of action, including antagonists, agonists, and positive allosteric modulators, and captured in different conformational states from the inactive apo to the fully active state bound to a G protein. These discoveries provide comprehensive insights into the activation of the GABAB receptor, which not only broaden our understanding of its structure, pharmacology, and physiological effects but also will ultimately facilitate the discovery of new therapeutic drugs and neuromodulators.
Collapse
Affiliation(s)
- Hamidreza Shaye
- Department of Chemistry, University of Southern California, Los Angeles, CA, USA
- Bridge Institute, Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA, USA
| | - Benjamin Stauch
- Department of Chemistry, University of Southern California, Los Angeles, CA, USA
- Bridge Institute, Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA, USA
| | - Cornelius Gati
- Bridge Institute, Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA, USA
- Biosciences Division, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Vadim Cherezov
- Department of Chemistry, University of Southern California, Los Angeles, CA, USA.
- Bridge Institute, Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA, USA
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
158
|
Allosteric Modulation of the CB1 Cannabinoid Receptor by Cannabidiol-A Molecular Modeling Study of the N-Terminal Domain and the Allosteric-Orthosteric Coupling. Molecules 2021; 26:molecules26092456. [PMID: 33922473 PMCID: PMC8122825 DOI: 10.3390/molecules26092456] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 04/18/2021] [Accepted: 04/19/2021] [Indexed: 11/17/2022] Open
Abstract
The CB1 cannabinoid receptor (CB1R) contains one of the longest N termini among class A G protein-coupled receptors. Mutagenesis studies suggest that the allosteric binding site of cannabidiol (CBD) involves residues from the N terminal domain. In order to study the allosteric binding of CBD to CB1R we modeled the whole N-terminus of this receptor using the replica exchange molecular dynamics with solute tempering (REST2) approach. Then, the obtained structures of CB1R with the N terminus were used for ligand docking. A natural cannabinoid receptor agonist, Δ9-THC, was docked to the orthosteric site and a negative allosteric modulator, CBD, to the allosteric site positioned between extracellular ends of helices TM1 and TM2. The molecular dynamics simulations were then performed for CB1R with ligands: (i) CBD together with THC, and (ii) THC-only. Analyses of the differences in the residue-residue interaction patterns between those two cases allowed us to elucidate the allosteric network responsible for the modulation of the CB1R by CBD. In addition, we identified the changes in the orthosteric binding mode of Δ9-THC, as well as the changes in its binding energy, caused by the CBD allosteric binding. We have also found that the presence of a complete N-terminal domain is essential for a stable binding of CBD in the allosteric site of CB1R as well as for the allosteric-orthosteric coupling mechanism.
Collapse
|
159
|
Ma X, Segura MA, Zarzycka B, Vischer HF, Leurs R. Analysis of Missense Variants in the Human Histamine Receptor Family Reveals Increased Constitutive Activity of E410 6.30×30K Variant in the Histamine H 1 Receptor. Int J Mol Sci 2021; 22:ijms22073702. [PMID: 33918180 PMCID: PMC8038156 DOI: 10.3390/ijms22073702] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/19/2021] [Accepted: 03/26/2021] [Indexed: 12/12/2022] Open
Abstract
The Exome Aggregation Consortium has collected the protein-encoding DNA sequences of almost 61,000 unrelated humans. Analysis of this dataset for G protein-coupled receptor (GPCR) proteins (available at GPCRdb) revealed a total of 463 naturally occurring genetic missense variations in the histamine receptor family. In this research, we have analyzed the distribution of these missense variations in the four histamine receptor subtypes concerning structural segments and sites important for GPCR function. Four missense variants R1273.52×52H, R13934.57×57H, R4096.29×29H, and E4106.30×30K, were selected for the histamine H1 receptor (H1R) that were hypothesized to affect receptor activity by interfering with the interaction pattern of the highly conserved D(E)RY motif, the so-called ionic lock. The E4106.30×30K missense variant displays higher constitutive activity in G protein signaling as compared to wild-type H1R, whereas the opposite was observed for R1273.52×52H, R13934.57×57H, and R4096.29×29H. The E4106.30×30K missense variant displays a higher affinity for the endogenous agonist histamine than wild-type H1R, whereas antagonist affinity was not affected. These data support the hypothesis that the E4106.30×30K mutation shifts the equilibrium towards active conformations. The study of these selected missense variants gives additional insight into the structural basis of H1R activation and, moreover, highlights that missense variants can result in pharmacologically different behavior as compared to wild-type receptors and should consequently be considered in the drug discovery process.
Collapse
|
160
|
Xu P, Huang S, Zhang H, Mao C, Zhou XE, Cheng X, Simon IA, Shen DD, Yen HY, Robinson CV, Harpsøe K, Svensson B, Guo J, Jiang H, Gloriam DE, Melcher K, Jiang Y, Zhang Y, Xu HE. Structural insights into the lipid and ligand regulation of serotonin receptors. Nature 2021; 592:469-473. [PMID: 33762731 DOI: 10.1038/s41586-021-03376-8] [Citation(s) in RCA: 147] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 02/19/2021] [Indexed: 02/01/2023]
Abstract
Serotonin, or 5-hydroxytryptamine (5-HT), is an important neurotransmitter1,2 that activates the largest subtype family of G-protein-coupled receptors3. Drugs that target 5-HT1A, 5-HT1D, 5-HT1E and other 5-HT receptors are used to treat numerous disorders4. 5-HT receptors have high levels of basal activity and are subject to regulation by lipids, but the structural basis for the lipid regulation and basal activation of these receptors and the pan-agonism of 5-HT remains unclear. Here we report five structures of 5-HT receptor-G-protein complexes: 5-HT1A in the apo state, bound to 5-HT or bound to the antipsychotic drug aripiprazole; 5-HT1D bound to 5-HT; and 5-HT1E in complex with a 5-HT1E- and 5-HT1F-selective agonist, BRL-54443. Notably, the phospholipid phosphatidylinositol 4-phosphate is present at the G-protein-5-HT1A interface, and is able to increase 5-HT1A-mediated G-protein activity. The receptor transmembrane domain is surrounded by cholesterol molecules-particularly in the case of 5-HT1A, in which cholesterol molecules are directly involved in shaping the ligand-binding pocket that determines the specificity for aripiprazol. Within the ligand-binding pocket of apo-5-HT1A are structured water molecules that mimic 5-HT to activate the receptor. Together, our results address a long-standing question of how lipids and water molecules regulate G-protein-coupled receptors, reveal how 5-HT acts as a pan-agonist, and identify the determinants of drug recognition in 5-HT receptors.
Collapse
MESH Headings
- Apoproteins/chemistry
- Apoproteins/metabolism
- Apoproteins/ultrastructure
- Aripiprazole/metabolism
- Aripiprazole/pharmacology
- Binding Sites
- Cholesterol/pharmacology
- Cryoelectron Microscopy
- Heterotrimeric GTP-Binding Proteins/chemistry
- Heterotrimeric GTP-Binding Proteins/metabolism
- Heterotrimeric GTP-Binding Proteins/ultrastructure
- Humans
- Ligands
- Lipids
- Models, Molecular
- Phosphatidylinositol Phosphates/chemistry
- Phosphatidylinositol Phosphates/metabolism
- Phosphatidylinositol Phosphates/pharmacology
- Receptor, Serotonin, 5-HT1A/chemistry
- Receptor, Serotonin, 5-HT1A/metabolism
- Receptor, Serotonin, 5-HT1A/ultrastructure
- Receptors, Serotonin, 5-HT1/chemistry
- Receptors, Serotonin, 5-HT1/metabolism
- Receptors, Serotonin, 5-HT1/ultrastructure
- Serotonin 5-HT1 Receptor Agonists/chemistry
- Serotonin 5-HT1 Receptor Agonists/metabolism
- Serotonin 5-HT1 Receptor Agonists/pharmacology
- Water/chemistry
Collapse
Affiliation(s)
- Peiyu Xu
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Sijie Huang
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Huibing Zhang
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Medicine, Hangzhou, China
- Zheijang Provincial Key Laboratory of Immunity and Inflammatory Diseases, Hangzhou, China
| | - Chunyou Mao
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Medicine, Hangzhou, China
- Zheijang Provincial Key Laboratory of Immunity and Inflammatory Diseases, Hangzhou, China
| | - X Edward Zhou
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI, USA
| | - Xi Cheng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Icaro A Simon
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
- SARomics Biostructures AB, Medicon Village, Lund, Sweden
| | - Dan-Dan Shen
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Medicine, Hangzhou, China
- Zheijang Provincial Key Laboratory of Immunity and Inflammatory Diseases, Hangzhou, China
| | - Hsin-Yung Yen
- Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford, UK
| | - Carol V Robinson
- Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford, UK
| | - Kasper Harpsøe
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Bo Svensson
- SARomics Biostructures AB, Medicon Village, Lund, Sweden
| | - Jia Guo
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hualiang Jiang
- University of Chinese Academy of Sciences, Beijing, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - David E Gloriam
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Karsten Melcher
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI, USA
| | - Yi Jiang
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Yan Zhang
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China.
- MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Medicine, Hangzhou, China.
- Zheijang Provincial Key Laboratory of Immunity and Inflammatory Diseases, Hangzhou, China.
| | - H Eric Xu
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| |
Collapse
|
161
|
Mehta P, Miszta P, Filipek S. Molecular Modeling of Histamine Receptors-Recent Advances in Drug Discovery. Molecules 2021; 26:1778. [PMID: 33810008 PMCID: PMC8004658 DOI: 10.3390/molecules26061778] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/17/2021] [Accepted: 03/19/2021] [Indexed: 12/11/2022] Open
Abstract
The recent developments of fast reliable docking, virtual screening and other algorithms gave rise to discovery of many novel ligands of histamine receptors that could be used for treatment of allergic inflammatory disorders, central nervous system pathologies, pain, cancer and obesity. Furthermore, the pharmacological profiles of ligands clearly indicate that these receptors may be considered as targets not only for selective but also for multi-target drugs that could be used for treatment of complex disorders such as Alzheimer's disease. Therefore, analysis of protein-ligand recognition in the binding site of histamine receptors and also other molecular targets has become a valuable tool in drug design toolkit. This review covers the period 2014-2020 in the field of theoretical investigations of histamine receptors mostly based on molecular modeling as well as the experimental characterization of novel ligands of these receptors.
Collapse
Affiliation(s)
| | | | - Sławomir Filipek
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, 02-093 Warsaw, Poland or (P.M.); (P.M.)
| |
Collapse
|
162
|
Egyed A, Kelemen ÁA, Vass M, Visegrády A, Thee SA, Wang Z, de Graaf C, Brea J, Loza MI, Leurs R, Keserű GM. Controlling the selectivity of aminergic GPCR ligands from the extracellular vestibule. Bioorg Chem 2021; 111:104832. [PMID: 33826962 DOI: 10.1016/j.bioorg.2021.104832] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/18/2021] [Accepted: 03/15/2021] [Indexed: 11/18/2022]
Abstract
In addition to the orthosteric binding pocket (OBP) of GPCRs, recent structural studies have revealed that there are several allosteric sites available for pharmacological intervention. The secondary binding pocket (SBP) of aminergic GPCRs is located in the extracellular vestibule of these receptors, and it has been suggested to be a potential selectivity pocket for bitopic ligands. Here, we applied a virtual screening protocol based on fragment docking to the SBP of the orthosteric ligand-receptor complex. This strategy was employed for a number of aminergic receptors. First, we designed dopamine D3 preferring bitopic compounds from a D2 selective orthosteric ligand. Next, we designed 5-HT2B selective bitopic compounds starting from the 5-HT1B preferring ergoline core of LSD. Comparing the serotonergic profiles of the new derivatives to that of LSD, we found that these derivatives became significantly biased towards the desired 5-HT2B receptor target. Finally, addressing the known limitations of H1 antihistamines, our protocol was successfully used to eliminate the well-known side effects related to the muscarinic M1 activity of amitriptyline while preserving H1 potency in some of the designed bitopic compounds. These applications highlight the usefulness of our new virtual screening protocol and offer a powerful strategy towards bitopic GPCR ligands with designed receptor profiles.
Collapse
Affiliation(s)
- Attila Egyed
- Medicinal Chemistry Research Group, Research Center for Natural Sciences Magyar tudósok krt. 2, Budapest, H-1117, Hungary
| | - Ádám A Kelemen
- Medicinal Chemistry Research Group, Research Center for Natural Sciences Magyar tudósok krt. 2, Budapest, H-1117, Hungary
| | - Márton Vass
- Medicinal Chemistry Research Group, Research Center for Natural Sciences Magyar tudósok krt. 2, Budapest, H-1117, Hungary; Division of Medicinal Chemistry, Faculty of Sciences, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, Amsterdam, 1081 HZ, Netherlands
| | | | - Stephanie A Thee
- Division of Medicinal Chemistry, Faculty of Sciences, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, Amsterdam, 1081 HZ, Netherlands
| | - Zhiyong Wang
- Division of Medicinal Chemistry, Faculty of Sciences, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, Amsterdam, 1081 HZ, Netherlands
| | - Chris de Graaf
- Sosei Heptares, Steinmetz Granta Park, Great Abington, Cambridge CB21 6DG, UK
| | - Jose Brea
- Innopharma Screening Platform, BioFarma Research Group, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Maria Isabel Loza
- Innopharma Screening Platform, BioFarma Research Group, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Rob Leurs
- Division of Medicinal Chemistry, Faculty of Sciences, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, Amsterdam, 1081 HZ, Netherlands
| | - György M Keserű
- Medicinal Chemistry Research Group, Research Center for Natural Sciences Magyar tudósok krt. 2, Budapest, H-1117, Hungary.
| |
Collapse
|
163
|
Yadav VD, Kumar L, Kumari P, Kumar S, Singh M, Siddiqi MI, Yadav PN, Batra S. Synthesis and Assessment of Fused β-Carboline Derivatives as Kappa Opioid Receptor Agonists. ChemMedChem 2021; 16:1917-1926. [PMID: 33599108 DOI: 10.1002/cmdc.202100029] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/17/2021] [Indexed: 12/17/2022]
Abstract
The synthesis of 5-formyl-6-aryl-6H-indolo[3,2,1-de][1,5] naphthyridine-2-carboxylates by reaction between 1-formyl-9H-β-carbolines and cinnamaldehydes in the presence of pyrrolidine in water with microwave irradiation is described. Pharmacophoric modification of the formyl group offered several new fused β-carboline derivatives, which were investigated for their κ-opioid receptor (KOR) agonistic activity. Two compounds 4 a and 4 c produced appreciable agonist activity on KOR with EC50 values of 46±19 and 134±9 nM, respectively. Moreover, compound-induced KOR signaling studies suggested both compounds to be extremely G-protein-biased agonists. The analgesic effect of 4 a was validated by the increase in tail flick latency in mice in a time-dependent manner, which was completely blocked by the KOR-selective antagonist norBNI. Moreover, unlike U50488, an unbiased full KOR agonist, 4 a did not induce sedation. The docking of 4 a with the human KOR was studied to rationalize the result.
Collapse
Affiliation(s)
- Veena D Yadav
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, Uttar Pradesh, India
| | - Lalan Kumar
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, Uttar Pradesh, India
| | - Poonam Kumari
- Neuroscience and Ageing Biology Division, CSIR-Central Drug Research Institute Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, Uttar Pradesh, India
| | - Sakesh Kumar
- Neuroscience and Ageing Biology Division, CSIR-Central Drug Research Institute Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, Uttar Pradesh, India.,Academy of Scientific and Innovative Research, CSIR-Human Resource Development Centre, CSIR-HRDC) Campus Sector 19, Kamla Nehru Nagar, Ghaziabad, 201002, Uttar Pradesh, India
| | - Maninder Singh
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, Uttar Pradesh, India
| | - Mohammad I Siddiqi
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, Uttar Pradesh, India.,Academy of Scientific and Innovative Research, CSIR-Human Resource Development Centre, CSIR-HRDC) Campus Sector 19, Kamla Nehru Nagar, Ghaziabad, 201002, Uttar Pradesh, India
| | - Prem N Yadav
- Neuroscience and Ageing Biology Division, CSIR-Central Drug Research Institute Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, Uttar Pradesh, India.,Academy of Scientific and Innovative Research, CSIR-Human Resource Development Centre, CSIR-HRDC) Campus Sector 19, Kamla Nehru Nagar, Ghaziabad, 201002, Uttar Pradesh, India
| | - Sanjay Batra
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, Uttar Pradesh, India.,Academy of Scientific and Innovative Research, CSIR-Human Resource Development Centre, CSIR-HRDC) Campus Sector 19, Kamla Nehru Nagar, Ghaziabad, 201002, Uttar Pradesh, India
| |
Collapse
|
164
|
Stoddart LA, Kilpatrick LE, Corriden R, Kellam B, Briddon SJ, Hill SJ. Efficient G protein coupling is not required for agonist-mediated internalization and membrane reorganization of the adenosine A 3 receptor. FASEB J 2021; 35:e21211. [PMID: 33710641 PMCID: PMC9328438 DOI: 10.1096/fj.202001729rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 11/03/2020] [Accepted: 11/09/2020] [Indexed: 01/09/2023]
Abstract
Organization of G protein‐coupled receptors at the plasma membrane has been the focus of much recent attention. Advanced microscopy techniques have shown that these receptors can be localized to discrete microdomains and reorganization upon ligand activation is crucial in orchestrating their signaling. Here, we have compared the membrane organization and downstream signaling of a mutant (R108A, R3.50A) of the adenosine A3 receptor (A3AR) to that of the wild‐type receptor. Fluorescence Correlation Spectroscopy (FCS) studies with a fluorescent agonist (ABEA‐X‐BY630) demonstrated that both wild‐type and mutant receptors bind agonist with high affinity but in subsequent downstream signaling assays the R108A mutation abolished agonist‐mediated inhibition of cAMP production and ERK phosphorylation. In further FCS studies, both A3AR and A3AR R108A underwent similar agonist‐induced increases in receptor density and molecular brightness which were accompanied by a decrease in membrane diffusion after agonist treatment. Using bimolecular fluorescence complementation, experiments showed that the R108A mutant retained the ability to recruit β‐arrestin and these receptor/arrestin complexes displayed similar membrane diffusion and organization to that observed with wild‐type receptors. These data demonstrate that effective G protein signaling is not a prerequisite for agonist‐stimulated β‐arrestin recruitment and membrane reorganization of the A3AR.
Collapse
Affiliation(s)
- Leigh A Stoddart
- Cell Signalling and Pharmacology Research Group, Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, UK.,Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, UK
| | - Laura E Kilpatrick
- Cell Signalling and Pharmacology Research Group, Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, UK.,Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, UK.,School of Pharmacy, Biodiscovery Institute, University Park Nottingham, Nottingham, UK
| | - Ross Corriden
- Cell Signalling and Pharmacology Research Group, Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, UK.,Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, UK
| | - Barrie Kellam
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, UK.,School of Pharmacy, Biodiscovery Institute, University Park Nottingham, Nottingham, UK
| | - Stephen J Briddon
- Cell Signalling and Pharmacology Research Group, Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, UK.,Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, UK
| | - Stephen J Hill
- Cell Signalling and Pharmacology Research Group, Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, UK.,Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, UK
| |
Collapse
|
165
|
Brouwers B, de Oliveira EM, Marti-Solano M, Monteiro FBF, Laurin SA, Keogh JM, Henning E, Bounds R, Daly CA, Houston S, Ayinampudi V, Wasiluk N, Clarke D, Plouffe B, Bouvier M, Babu MM, Farooqi IS, Mokrosiński J. Human MC4R variants affect endocytosis, trafficking and dimerization revealing multiple cellular mechanisms involved in weight regulation. Cell Rep 2021; 34:108862. [PMID: 33761344 PMCID: PMC7994375 DOI: 10.1016/j.celrep.2021.108862] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/29/2021] [Accepted: 02/19/2021] [Indexed: 12/13/2022] Open
Abstract
The Melanocortin-4 Receptor (MC4R) plays a pivotal role in energy homeostasis. We used human MC4R mutations associated with an increased or decreased risk of obesity to dissect mechanisms that regulate MC4R function. Most obesity-associated mutations impair trafficking to the plasma membrane (PM), whereas obesity-protecting mutations either accelerate recycling to the PM or decrease internalization, resulting in enhanced signaling. MC4R mutations that do not affect canonical Gαs protein-mediated signaling, previously considered to be non-pathogenic, nonetheless disrupt agonist-induced internalization, β-arrestin recruitment, and/or coupling to Gαs, establishing their causal role in severe obesity. Structural mapping reveals ligand-accessible sites by which MC4R couples to effectors and residues involved in the homodimerization of MC4R, which is disrupted by multiple obesity-associated mutations. Human genetic studies reveal that endocytosis, intracellular trafficking, and homodimerization regulate MC4R function to a level that is physiologically relevant, supporting the development of chaperones, agonists, and allosteric modulators of MC4R for weight loss therapy.
Collapse
Affiliation(s)
- Bas Brouwers
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Edson Mendes de Oliveira
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | | | - Fabiola B F Monteiro
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Suli-Anne Laurin
- Institute for Research in Immunology and Cancer, Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Julia M Keogh
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Elana Henning
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Rebecca Bounds
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Carole A Daly
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast BT9 7BL, UK
| | - Shane Houston
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast BT9 7BL, UK
| | - Vikram Ayinampudi
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Natalia Wasiluk
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - David Clarke
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Bianca Plouffe
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast BT9 7BL, UK
| | - Michel Bouvier
- Institute for Research in Immunology and Cancer, Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - M Madan Babu
- MRC Laboratory of Molecular Biology, Cambridge, UK; Department of Structural Biology and Center for Data Driven Discovery, St Jude Children's Research Hospital, Memphis, TN, USA
| | - I Sadaf Farooqi
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK.
| | - Jacek Mokrosiński
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| |
Collapse
|
166
|
Role of Gonadotropin-Releasing Hormone (GnRH) in Ovarian Cancer. Cells 2021; 10:cells10020437. [PMID: 33670761 PMCID: PMC7922220 DOI: 10.3390/cells10020437] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/28/2021] [Accepted: 02/17/2021] [Indexed: 12/15/2022] Open
Abstract
The hypothalamus–pituitary–gonadal (HPG) axis is the endocrine regulation system that controls the woman’s cycle. The gonadotropin-releasing hormone (GnRH) plays the central role. In addition to the gonadotrophic cells of the pituitary, GnRH receptors are expressed in other reproductive organs, such as the ovary and in tumors originating from the ovary. In ovarian cancer, GnRH is involved in the regulation of proliferation and metastasis. The effects on ovarian tumors can be indirect or direct. GnRH acts indirectly via the HPG axis and directly via GnRH receptors on the surface of ovarian cancer cells. In this systematic review, we will give an overview of the role of GnRH in ovarian cancer development, progression and therapy.
Collapse
|
167
|
Xu P, Huang S, Mao C, Krumm BE, Zhou XE, Tan Y, Huang XP, Liu Y, Shen DD, Jiang Y, Yu X, Jiang H, Melcher K, Roth BL, Cheng X, Zhang Y, Xu HE. Structures of the human dopamine D3 receptor-G i complexes. Mol Cell 2021; 81:1147-1159.e4. [PMID: 33548201 DOI: 10.1016/j.molcel.2021.01.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 11/21/2020] [Accepted: 01/04/2021] [Indexed: 02/07/2023]
Abstract
The dopamine system, including five dopamine receptors (D1R-D5R), plays essential roles in the central nervous system (CNS), and ligands that activate dopamine receptors have been used to treat many neuropsychiatric disorders. Here, we report two cryo-EM structures of human D3R in complex with an inhibitory G protein and bound to the D3R-selective agonists PD128907 and pramipexole, the latter of which is used to treat patients with Parkinson's disease. The structures reveal agonist binding modes distinct from the antagonist-bound D3R structure and conformational signatures for ligand-induced receptor activation. Mutagenesis and homology modeling illuminate determinants of ligand specificity across dopamine receptors and the mechanisms for Gi protein coupling. Collectively our work reveals the basis of agonist binding and ligand-induced receptor activation and provides structural templates for designing specific ligands to treat CNS diseases targeting the dopaminergic system.
Collapse
Affiliation(s)
- Peiyu Xu
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Sijie Huang
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Life Science and Technology, ShanghaiTech University, 201210 Shanghai, China
| | - Chunyou Mao
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Brian E Krumm
- Department of Pharmacology, University of North Carolina Chapel Hill Medical School, Chapel Hill, NC 27514, USA
| | - X Edward Zhou
- Center for Cancer and Cell Biology, Program for Structural Biology, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Yangxia Tan
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Life Science and Technology, ShanghaiTech University, 201210 Shanghai, China
| | - Xi-Ping Huang
- Department of Pharmacology, University of North Carolina Chapel Hill Medical School, Chapel Hill, NC 27514, USA
| | - Yongfeng Liu
- Department of Pharmacology, University of North Carolina Chapel Hill Medical School, Chapel Hill, NC 27514, USA
| | - Dan-Dan Shen
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yi Jiang
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xuekui Yu
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; Cryo-Electron Microscopy Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Hualiang Jiang
- State Key Laboratory of Drug Research and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Karsten Melcher
- Center for Cancer and Cell Biology, Program for Structural Biology, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Bryan L Roth
- Department of Pharmacology, University of North Carolina Chapel Hill Medical School, Chapel Hill, NC 27514, USA.
| | - Xi Cheng
- State Key Laboratory of Drug Research and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Yan Zhang
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Zhejiang Laboratory for Systems & Precison Medicine, Zhejiang University Medical Center, Hangzhou 311121, China; MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China; Key Laboratory of Immunity and Inflammatory Diseases of Zhejiang Province, Hangzhou 310058, Zhejiang, China.
| | - H Eric Xu
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Life Science and Technology, ShanghaiTech University, 201210 Shanghai, China.
| |
Collapse
|
168
|
Jimenez RC, Casajuana-Martin N, García-Recio A, Alcántara L, Pardo L, Campillo M, Gonzalez A. The mutational landscape of human olfactory G protein-coupled receptors. BMC Biol 2021; 19:21. [PMID: 33546694 PMCID: PMC7866472 DOI: 10.1186/s12915-021-00962-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 01/15/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Olfactory receptors (ORs) constitute a large family of sensory proteins that enable us to recognize a wide range of chemical volatiles in the environment. By contrast to the extensive information about human olfactory thresholds for thousands of odorants, studies of the genetic influence on olfaction are limited to a few examples. To annotate on a broad scale the impact of mutations at the structural level, here we analyzed a compendium of 119,069 natural variants in human ORs collected from the public domain. RESULTS OR mutations were categorized depending on their genomic and protein contexts, as well as their frequency of occurrence in several human populations. Functional interpretation of the natural changes was estimated from the increasing knowledge of the structure and function of the G protein-coupled receptor (GPCR) family, to which ORs belong. Our analysis reveals an extraordinary diversity of natural variations in the olfactory gene repertoire between individuals and populations, with a significant number of changes occurring at the structurally conserved regions. A particular attention is paid to mutations in positions linked to the conserved GPCR activation mechanism that could imply phenotypic variation in the olfactory perception. An interactive web application (hORMdb, Human Olfactory Receptor Mutation Database) was developed for the management and visualization of this mutational dataset. CONCLUSION We performed topological annotations and population analysis of natural variants of human olfactory receptors and provide an interactive application to explore human OR mutation data. We envisage that the utility of this information will increase as the amount of available pharmacological data for these receptors grow. This effort, together with ongoing research in the study of genetic changes in other sensory receptors could shape an emerging sensegenomics field of knowledge, which should be considered by food and cosmetic consumer product manufacturers for the benefit of the general population.
Collapse
Affiliation(s)
- Ramón Cierco Jimenez
- Laboratori de Medicina Computacional, Unitat de Bioestadística, Facultat de Medicina, Universitat Autònoma de Barcelona, E-08193, Bellaterra, Spain
- Present Address: International Agency for Research on Cancer, Evidence Synthesis and Classification Section, WHO Classification of Tumours Group, 150 Cours Albert Thomas, 69008, Lyon, France
| | - Nil Casajuana-Martin
- Laboratori de Medicina Computacional, Unitat de Bioestadística, Facultat de Medicina, Universitat Autònoma de Barcelona, E-08193, Bellaterra, Spain
| | - Adrián García-Recio
- Laboratori de Medicina Computacional, Unitat de Bioestadística, Facultat de Medicina, Universitat Autònoma de Barcelona, E-08193, Bellaterra, Spain
| | - Lidia Alcántara
- Laboratori de Medicina Computacional, Unitat de Bioestadística, Facultat de Medicina, Universitat Autònoma de Barcelona, E-08193, Bellaterra, Spain
| | - Leonardo Pardo
- Laboratori de Medicina Computacional, Unitat de Bioestadística, Facultat de Medicina, Universitat Autònoma de Barcelona, E-08193, Bellaterra, Spain
| | - Mercedes Campillo
- Laboratori de Medicina Computacional, Unitat de Bioestadística, Facultat de Medicina, Universitat Autònoma de Barcelona, E-08193, Bellaterra, Spain
| | - Angel Gonzalez
- Laboratori de Medicina Computacional, Unitat de Bioestadística, Facultat de Medicina, Universitat Autònoma de Barcelona, E-08193, Bellaterra, Spain.
| |
Collapse
|
169
|
Shahraki A, Işbilir A, Dogan B, Lohse MJ, Durdagi S, Birgul-Iyison N. Structural and Functional Characterization of Allatostatin Receptor Type-C of Thaumetopoea pityocampa, a Potential Target for Next-Generation Pest Control Agents. J Chem Inf Model 2021; 61:715-728. [PMID: 33476150 DOI: 10.1021/acs.jcim.0c00985] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Insect neuropeptide receptors, including allatostatin receptor type C (AstR-C), a G protein-coupled receptor, are among the potential targets for designing next-generation pesticides that despite their importance in offering a new mode-of-action have been overlooked. Focusing on AstR-C of Thaumetopoea pityocampa, a common pest in Mediterranean countries, by employing resonance energy transfer-based methods, we showed Gαi/o coupling and β-arrestin recruitment of the receptor at sub-nanomolar and nanomolar ranges of the endogenous ligand, AST-C, respectively. Molecular docking and molecular dynamics simulation studies revealed the importance of extracellular loop 2 in AstRC/AST-C interaction, and a combination of in silico and in vitro approaches showed the substantial role of Q2716.55 in G protein-dependent activation of AstR-C possibly via contributing to the flexibility of the receptor's structure. The functional and structural insights obtained on T. pit AstR-C positively assist future efforts in developing environmentally friendly pest control agents that are needed urgently.
Collapse
Affiliation(s)
- Aida Shahraki
- Department of Molecular Biology and Genetics, Bogazici University, 34342 Istanbul, Turkey.,Computational Biology and Molecular Simulations Laboratory, Department of Biophysics, School of Medicine, Bahcesehir University, 34734 Istanbul, Turkey
| | - Ali Işbilir
- Max Delbrück Center for Molecular Medicine in Helmholz Association, 13125 Berlin, Germany.,Institute of Pharmacology and Toxicology, University of Würzburg, 97078 Würzburg, Germany
| | - Berna Dogan
- Computational Biology and Molecular Simulations Laboratory, Department of Biophysics, School of Medicine, Bahcesehir University, 34734 Istanbul, Turkey
| | - Martin J Lohse
- Max Delbrück Center for Molecular Medicine in Helmholz Association, 13125 Berlin, Germany.,Institute of Pharmacology and Toxicology, University of Würzburg, 97078 Würzburg, Germany.,ISAR Bioscience Institute, Planegg, 82152 Munich, Germany
| | - Serdar Durdagi
- Computational Biology and Molecular Simulations Laboratory, Department of Biophysics, School of Medicine, Bahcesehir University, 34734 Istanbul, Turkey
| | - Necla Birgul-Iyison
- Department of Molecular Biology and Genetics, Bogazici University, 34342 Istanbul, Turkey
| |
Collapse
|
170
|
Tzoupis H, Nteli A, Androutsou ME, Tselios T. Gonadotropin-Releasing Hormone and GnRH Receptor: Structure, Function and Drug Development. Curr Med Chem 2021; 27:6136-6158. [PMID: 31309882 DOI: 10.2174/0929867326666190712165444] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 06/18/2019] [Accepted: 06/19/2019] [Indexed: 01/11/2023]
Abstract
BACKGROUND Gonadotropin-Releasing Hormone (GnRH) is a key element in sexual maturation and regulation of the reproductive cycle in the human organism. GnRH interacts with the pituitary cells through the activation of the Gonadotropin Releasing Hormone Receptors (GnRHR). Any impairments/dysfunctions of the GnRH-GnRHR complex lead to the development of various cancer types and disorders. Furthermore, the identification of GnRHR as a potential drug target has led to the development of agonist and antagonist molecules implemented in various treatment protocols. The development of these drugs was based on the information derived from the functional studies of GnRH and GnRHR. OBJECTIVE This review aims at shedding light on the versatile function of GnRH and GnRH receptor and offers an apprehensive summary regarding the development of different agonists, antagonists and non-peptide GnRH analogues. CONCLUSION The information derived from these studies can enhance our understanding of the GnRH-GnRHR versatile nature and offer valuable insight into the design of new more potent molecules.
Collapse
Affiliation(s)
| | - Agathi Nteli
- Department of Chemistry, University of Patras, Rion GR-26504, Greece
| | - Maria-Eleni Androutsou
- Vianex S.A., Tatoiou Str., 18th km Athens-Lamia National Road, Nea Erythrea 14671, Greece
| | - Theodore Tselios
- Department of Chemistry, University of Patras, Rion GR-26504, Greece
| |
Collapse
|
171
|
Kooistra AJ, Mordalski S, Pándy-Szekeres G, Esguerra M, Mamyrbekov A, Munk C, Keserű GM, Gloriam D. GPCRdb in 2021: integrating GPCR sequence, structure and function. Nucleic Acids Res 2021; 49:D335-D343. [PMID: 33270898 PMCID: PMC7778909 DOI: 10.1093/nar/gkaa1080] [Citation(s) in RCA: 228] [Impact Index Per Article: 76.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 10/20/2020] [Accepted: 10/22/2020] [Indexed: 01/27/2023] Open
Abstract
G protein-coupled receptors (GPCRs) form both the largest family of membrane proteins and drug targets, mediating the action of one-third of medicines. The GPCR database, GPCRdb serves >4 000 researchers every month and offers reference data, analysis of own or literature data, experiment design and dissemination of published datasets. Here, we describe new and updated GPCRdb resources with a particular focus on integration of sequence, structure and function. GPCRdb contains all human non-olfactory GPCRs (and >27 000 orthologs), G-proteins and arrestins. It includes over 2 000 drug and in-trial agents and nearly 200 000 ligands with activity and availability data. GPCRdb annotates all published GPCR structures (updated monthly), which are also offered in a refined version (with re-modeled missing/distorted regions and reverted mutations) and provides structure models of all human non-olfactory receptors in inactive, intermediate and active states. Mutagenesis data in the GPCRdb spans natural genetic variants, GPCR-G protein interfaces, ligand sites and thermostabilising mutations. A new sequence signature tool for identification of functional residue determinants has been added and two data driven tools to design ligand site mutations and constructs for structure determination have been updated extending their coverage of receptors and modifications. The GPCRdb is available at https://gpcrdb.org.
Collapse
Affiliation(s)
- Albert J Kooistra
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Stefan Mordalski
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Gáspár Pándy-Szekeres
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
- Medicinal Chemistry Research Group, Research Center for Natural Sciences, Budapest H-1117, Hungary
| | - Mauricio Esguerra
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Alibek Mamyrbekov
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Christian Munk
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - György M Keserű
- Medicinal Chemistry Research Group, Research Center for Natural Sciences, Budapest H-1117, Hungary
| | - David E Gloriam
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| |
Collapse
|
172
|
Orgován Z, Ferenczy GG, Keserű GM. Allosteric Molecular Switches in Metabotropic Glutamate Receptors. ChemMedChem 2021; 16:81-93. [PMID: 32686363 PMCID: PMC7818470 DOI: 10.1002/cmdc.202000444] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Indexed: 12/22/2022]
Abstract
Metabotropic glutamate receptors (mGlu) are class C G protein-coupled receptors of eight subtypes that are omnipresently expressed in the central nervous system. mGlus have relevance in several psychiatric and neurological disorders, therefore they raise considerable interest as drug targets. Allosteric modulators of mGlus offer advantages over orthosteric ligands owing to their increased potential to achieve subtype selectivity, and this has prompted discovery programs that have produced a large number of reported allosteric mGlu ligands. However, the optimization of allosteric ligands into drug candidates has proved to be challenging owing to induced-fit effects, flat or steep structure-activity relationships and unexpected changes in theirpharmacology. Subtle structural changes identified as molecular switches might modulate the functional activity of allosteric ligands. Here we review these switches discovered in the metabotropic glutamate receptor family..
Collapse
Affiliation(s)
- Zoltán Orgován
- Medicinal Chemistry Research GroupResearch Centre for Natural SciencesMagyar tudósok krt. 2Budapest1117Hungary
| | - György G. Ferenczy
- Medicinal Chemistry Research GroupResearch Centre for Natural SciencesMagyar tudósok krt. 2Budapest1117Hungary
| | - György M. Keserű
- Medicinal Chemistry Research GroupResearch Centre for Natural SciencesMagyar tudósok krt. 2Budapest1117Hungary
| |
Collapse
|
173
|
Rowe JB, Kapolka NJ, Taghon GJ, Morgan WM, Isom DG. The evolution and mechanism of GPCR proton sensing. J Biol Chem 2021; 296:100167. [PMID: 33478938 PMCID: PMC7948426 DOI: 10.1074/jbc.ra120.016352] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/02/2020] [Accepted: 12/09/2020] [Indexed: 12/13/2022] Open
Abstract
Of the 800 G protein-coupled receptors (GPCRs) in humans, only three (GPR4, GPR65, and GPR68) regulate signaling in acidified microenvironments by sensing protons (H+). How these receptors have uniquely obtained this ability is unknown. Here, we show these receptors evolved the capability to sense H+ signals by acquiring buried acidic residues. Using our informatics platform pHinder, we identified a triad of buried acidic residues shared by all three receptors, a feature distinct from all other human GPCRs. Phylogenetic analysis shows the triad emerged in GPR65, the immediate ancestor of GPR4 and GPR68. To understand the evolutionary and mechanistic importance of these triad residues, we developed deep variant profiling, a yeast-based technology that utilizes high-throughput CRISPR to build and profile large libraries of GPCR variants. Using deep variant profiling and GPCR assays in HEK293 cells, we assessed the pH-sensing contributions of each triad residue in all three receptors. As predicted by our calculations, most triad mutations had profound effects consistent with direct regulation of receptor pH sensing. In addition, we found that an allosteric modulator of many class A GPCRs, Na+, synergistically regulated pH sensing by maintaining the pKa values of triad residues within the physiologically relevant pH range. As such, we show that all three receptors function as coincidence detectors of H+ and Na+. Taken together, these findings elucidate the molecular evolution and long-sought mechanism of GPR4, GPR65, and GPR68 pH sensing and provide pH-insensitive variants that should be valuable for assessing the therapeutic potential and (patho)physiological importance of GPCR pH sensing.
Collapse
Affiliation(s)
- Jacob B Rowe
- The Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Nicholas J Kapolka
- The Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Geoffrey J Taghon
- The Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - William M Morgan
- The Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Daniel G Isom
- The Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida, USA; The Department of Tumor Biology, University of Miami Sylvester Comprehensive Cancer Center, Miami, Florida, USA; The Institute for Data Science Computing, University of Miami, Coral Gables, Florida, USA.
| |
Collapse
|
174
|
Renault P, Giraldo J. Dynamical Correlations Reveal Allosteric Sites in G Protein-Coupled Receptors. Int J Mol Sci 2020; 22:ijms22010187. [PMID: 33375427 PMCID: PMC7795036 DOI: 10.3390/ijms22010187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/22/2020] [Accepted: 12/24/2020] [Indexed: 01/14/2023] Open
Abstract
G protein-coupled Receptors (GPCRs) play a central role in many physiological processes and, consequently, constitute important drug targets. In particular, the search for allosteric drugs has recently drawn attention, since they could be more selective and lead to fewer side effects. Accordingly, computational tools have been used to estimate the druggability of allosteric sites in these receptors. In spite of many successful results, the problem is still challenging, particularly the prediction of hydrophobic sites in the interface between the protein and the membrane. In this work, we propose a complementary approach, based on dynamical correlations. Our basic hypothesis was that allosteric sites are strongly coupled to regions of the receptor that undergo important conformational changes upon activation. Therefore, using ensembles of experimental structures, normal mode analysis and molecular dynamics simulations we calculated correlations between internal fluctuations of different sites and a collective variable describing the activation state of the receptor. Then, we ranked the sites based on the strength of their coupling to the collective dynamics. In the β2 adrenergic (β2AR), glucagon (GCGR) and M2 muscarinic receptors, this procedure allowed us to correctly identify known allosteric sites, suggesting it has predictive value. Our results indicate that this dynamics-based approach can be a complementary tool to the existing toolbox to characterize allosteric sites in GPCRs.
Collapse
Affiliation(s)
- Pedro Renault
- Laboratory of Molecular Neuropharmacology and Bioinformatics, Unitat de Bioestadística and Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain;
- Unitat de Neurociència Traslacional, Parc Taulí Hospital Universitari, Institut d’Investigació i Innovació Parc Taulí (I3PT), Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, 08193 Bellaterra, Spain
| | - Jesús Giraldo
- Laboratory of Molecular Neuropharmacology and Bioinformatics, Unitat de Bioestadística and Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain;
- Unitat de Neurociència Traslacional, Parc Taulí Hospital Universitari, Institut d’Investigació i Innovació Parc Taulí (I3PT), Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, 08193 Bellaterra, Spain
- Correspondence:
| |
Collapse
|
175
|
Calebiro D, Koszegi Z, Lanoiselée Y, Miljus T, O'Brien S. G protein-coupled receptor-G protein interactions: a single-molecule perspective. Physiol Rev 2020; 101:857-906. [PMID: 33331229 DOI: 10.1152/physrev.00021.2020] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
G protein-coupled receptors (GPCRs) regulate many cellular and physiological processes, responding to a diverse range of extracellular stimuli including hormones, neurotransmitters, odorants, and light. Decades of biochemical and pharmacological studies have provided fundamental insights into the mechanisms of GPCR signaling. Thanks to recent advances in structural biology, we now possess an atomistic understanding of receptor activation and G protein coupling. However, how GPCRs and G proteins interact in living cells to confer signaling efficiency and specificity remains insufficiently understood. The development of advanced optical methods, including single-molecule microscopy, has provided the means to study receptors and G proteins in living cells with unprecedented spatio-temporal resolution. The results of these studies reveal an unexpected level of complexity, whereby GPCRs undergo transient interactions among themselves as well as with G proteins and structural elements of the plasma membrane to form short-lived signaling nanodomains that likely confer both rapidity and specificity to GPCR signaling. These findings may provide new strategies to pharmaceutically modulate GPCR function, which might eventually pave the way to innovative drugs for common diseases such as diabetes or heart failure.
Collapse
Affiliation(s)
- Davide Calebiro
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom; Centre of Membrane Proteins and Receptors (COMPARE), Universities of Nottingham and Birmingham, Birmingham, United Kingdom
| | - Zsombor Koszegi
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom; Centre of Membrane Proteins and Receptors (COMPARE), Universities of Nottingham and Birmingham, Birmingham, United Kingdom
| | - Yann Lanoiselée
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom; Centre of Membrane Proteins and Receptors (COMPARE), Universities of Nottingham and Birmingham, Birmingham, United Kingdom
| | - Tamara Miljus
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom; Centre of Membrane Proteins and Receptors (COMPARE), Universities of Nottingham and Birmingham, Birmingham, United Kingdom
| | - Shannon O'Brien
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom; Centre of Membrane Proteins and Receptors (COMPARE), Universities of Nottingham and Birmingham, Birmingham, United Kingdom
| |
Collapse
|
176
|
Velazhahan V, Ma N, Pándy-Szekeres G, Kooistra AJ, Lee Y, Gloriam DE, Vaidehi N, Tate CG. Structure of the class D GPCR Ste2 dimer coupled to two G proteins. Nature 2020; 589:148-153. [PMID: 33268889 PMCID: PMC7116888 DOI: 10.1038/s41586-020-2994-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 09/25/2020] [Indexed: 01/08/2023]
Abstract
G-protein-coupled receptors (GPCRs) are divided phylogenetically into six classes1,2, denoted A to F. More than 370 structures of vertebrate GPCRs (belonging to classes A, B, C and F) have been determined, leading to a substantial understanding of their function3. By contrast, there are no structures of class D GPCRs, which are found exclusively in fungi where they regulate survival and reproduction. Here we determine the structure of a class D GPCR, the Saccharomyces cerevisiae pheromone receptor Ste2, in an active state coupled to the heterotrimeric G protein Gpa1-Ste4-Ste18. Ste2 was purified as a homodimer coupled to two G proteins. The dimer interface of Ste2 is formed by the N terminus, the transmembrane helices H1, H2 and H7, and the first extracellular loop ECL1. We establish a class D1 generic residue numbering system (CD1) to enable comparisons with orthologues and with other GPCR classes. The structure of Ste2 bears similarities in overall topology to class A GPCRs, but the transmembrane helix H4 is shifted by more than 20 Å and the G-protein-binding site is a shallow groove rather than a cleft. The structure provides a template for the design of novel drugs to target fungal GPCRs, which could be used to treat numerous intractable fungal diseases4.
Collapse
Affiliation(s)
| | - Ning Ma
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, Duarte, CA, USA
| | - Gáspár Pándy-Szekeres
- Department of Drug Design and Pharmacology, Universitetsparken 2, Copenhagen, Denmark.,Medicinal Chemistry Research Group, Research Center for Natural Sciences, Budapest, Hungary
| | - Albert J Kooistra
- Department of Drug Design and Pharmacology, Universitetsparken 2, Copenhagen, Denmark
| | - Yang Lee
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | - David E Gloriam
- Department of Drug Design and Pharmacology, Universitetsparken 2, Copenhagen, Denmark
| | - Nagarajan Vaidehi
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, Duarte, CA, USA
| | | |
Collapse
|
177
|
Bertalan É, Lešnik S, Bren U, Bondar AN. Protein-water hydrogen-bond networks of G protein-coupled receptors: Graph-based analyses of static structures and molecular dynamics. J Struct Biol 2020; 212:107634. [DOI: 10.1016/j.jsb.2020.107634] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 09/06/2020] [Accepted: 09/24/2020] [Indexed: 12/15/2022]
|
178
|
Zhang L, Song J, Zang Z, Tang H, Li W, Lai S, Deng C. Adaptive evolution of GPR39 in diverse directions in vertebrates. Gen Comp Endocrinol 2020; 299:113610. [PMID: 32916170 DOI: 10.1016/j.ygcen.2020.113610] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/27/2020] [Accepted: 08/30/2020] [Indexed: 02/08/2023]
Abstract
G protein-coupled receptors (GPCRs) play an important role in physiology and disease and represent productive drug targets. Orphan GPCRs, which have unknown endogenous ligands, are considered drug targets and consequently have attracted great interest in identifying their endogenous cognate ligands for deorphanization. However, additional studies have shown that GPCRs, including many orphan GPCRs, can constitutively activate G protein signaling in a ligand-independent manner. GPR39 is such an orphan GPCR with constitutive activity. Here, we performed a phylogenetic and selection analysis of GPR39 in vertebrates, and we found that GPR39 underwent positive selection in different branches of vertebrates. Using luciferase reporter assays, we demonstrated that human, frog and chicken GPR39 can constitutively activate Gq and G12 signaling pathways in a ligand-independent manner. Zebrafish GPR39 can constitutively activate Gs, Gq and G12 signaling pathways in a ligand-independent manner. We further found that the zebrafish-H2967.35 site is crucial for the activity of the Gs signaling pathway. In addition, our mutagenesis studies indicated that the positive selection sites of GPR39 from different species had important effects on the constitutive activity of the receptor. Our results revealed the adaptive evolution of GPR39 in diverse directions, which led to differences in constitutive activity.
Collapse
Affiliation(s)
- Lina Zhang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Jingjing Song
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Zhuqing Zang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Huihao Tang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Wei Li
- Department of Dermatovenereology, Rare Disease Center, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang Street, Chengdu, Sichuan 610041, China
| | - Shanshan Lai
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China.
| | - Cheng Deng
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
179
|
Talmont F, Veneziano R, Dietrich G, Moulédous L, Mollereau C, Zajac JM. Pharmacological insight into the activation of the human neuropeptide FF2 receptor. Peptides 2020; 134:170406. [PMID: 32920044 DOI: 10.1016/j.peptides.2020.170406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 08/13/2020] [Accepted: 09/08/2020] [Indexed: 01/14/2023]
Abstract
The neuropeptide FF2 (NPFF2) receptor, predominantly expressed in the central nervous system, plays an important role in the modulation of sensory input and opioid analgesia, as well as in locomotion, feeding, intestinal motility, reward, and the control of obesity. The NPFF2 receptor belongs to the RFamide peptide receptor family and to the G protein coupled receptor (GPCR) super family, but contrary to many other class A GPCRs, no 3D structure has been solved. Thus, it is essential to perform mutagenesis to gain information on the fine functioning of the NPFF2 receptor. In this study, we examined the role of aspartic acid (D) from the "D/ERY/F" motif found in the second intracellular loop (ICL2) and the role of the C-terminal end of the receptor in ligand binding and signal transduction. We found that mutation D3.49A does not impair binding capacities but inhibits G protein activation as well as adenylyl cyclase regulation. Truncation of the C terminal part of the receptor has different effects depending on the position of truncation. When truncation was realized downstream of the putative acylation site, ligand binding and signal transduction capabilities were not lost, contrary to total deletion of the C terminus, which totally impairs the activity of the receptor.
Collapse
Affiliation(s)
- Franck Talmont
- CNRS, IPBS (Institut De Pharmacologie Et De Biologie Structurale) 205 Route De Narbonne, 31077 Toulouse, Cedex 4, France; Université Paul Sabatier Toulouse III, F-31300 Toulouse, France.
| | - Remi Veneziano
- CNRS, IPBS (Institut De Pharmacologie Et De Biologie Structurale) 205 Route De Narbonne, 31077 Toulouse, Cedex 4, France; Université Paul Sabatier Toulouse III, F-31300 Toulouse, France
| | - Gilles Dietrich
- INSERM IRSD (Institut De Recherche En Santé Digestive) U1220, CHU Purpan Place Du Docteur Baylac, CS 60039 31024, Toulouse Cedex 3, France
| | - Lionel Moulédous
- CNRS, IPBS (Institut De Pharmacologie Et De Biologie Structurale) 205 Route De Narbonne, 31077 Toulouse, Cedex 4, France; Université Paul Sabatier Toulouse III, F-31300 Toulouse, France
| | - Catherine Mollereau
- CNRS, IPBS (Institut De Pharmacologie Et De Biologie Structurale) 205 Route De Narbonne, 31077 Toulouse, Cedex 4, France; Université Paul Sabatier Toulouse III, F-31300 Toulouse, France
| | - Jean-Marie Zajac
- CNRS, IPBS (Institut De Pharmacologie Et De Biologie Structurale) 205 Route De Narbonne, 31077 Toulouse, Cedex 4, France; Université Paul Sabatier Toulouse III, F-31300 Toulouse, France
| |
Collapse
|
180
|
Sarkar P, Mozumder S, Bej A, Mukherjee S, Sengupta J, Chattopadhyay A. Structure, dynamics and lipid interactions of serotonin receptors: excitements and challenges. Biophys Rev 2020; 13:10.1007/s12551-020-00772-8. [PMID: 33188638 PMCID: PMC7930197 DOI: 10.1007/s12551-020-00772-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 11/05/2020] [Indexed: 12/13/2022] Open
Abstract
Serotonin (5-hydroxytryptamine, 5-HT) is an intrinsically fluorescent neurotransmitter found in organisms spanning a wide evolutionary range. Serotonin exerts its diverse actions by binding to distinct cell membrane receptors which are classified into many groups. Serotonin receptors are involved in regulating a diverse array of physiological signaling pathways and belong to the family of either G protein-coupled receptors (GPCRs) or ligand-gated ion channels. Serotonergic signaling appears to play a key role in the generation and modulation of various cognitive and behavioral functions such as sleep, mood, pain, anxiety, depression, aggression, and learning. Serotonin receptors act as drug targets for a number of diseases, particularly neuropsychiatric disorders. The signaling mechanism and efficiency of serotonin receptors depend on their amazing ability to rapidly access multiple conformational states. This conformational plasticity, necessary for the wide variety of functions displayed by serotonin receptors, is regulated by binding to various ligands. In this review, we provide a succinct overview of recent developments in generating and analyzing high-resolution structures of serotonin receptors obtained using crystallography and cryo-electron microscopy. Capturing structures of distinct conformational states is crucial for understanding the mechanism of action of these receptors, which could provide important insight for rational drug design targeting serotonin receptors. We further provide emerging information and insight from studies on interactions of membrane lipids (such as cholesterol) with serotonin receptors. We envision that a judicious combination of analysis of high-resolution structures and receptor-lipid interaction would allow a comprehensive understanding of GPCR structure, function and dynamics, thereby leading to efficient drug discovery.
Collapse
Affiliation(s)
- Parijat Sarkar
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500 007, India
| | - Sukanya Mozumder
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata, 700 032, India
- Academy of Scientific and Innovative Research, Ghaziabad, 201 002, India
| | - Aritra Bej
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata, 700 032, India
| | - Sujoy Mukherjee
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata, 700 032, India
| | - Jayati Sengupta
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata, 700 032, India
- Academy of Scientific and Innovative Research, Ghaziabad, 201 002, India
| | | |
Collapse
|
181
|
Structural Basis for Activation of the Heterodimeric GABAB Receptor. J Mol Biol 2020; 432:5966-5984. [DOI: 10.1016/j.jmb.2020.09.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 09/11/2020] [Accepted: 09/29/2020] [Indexed: 12/18/2022]
|
182
|
Marti-Solano M, Crilly SE, Malinverni D, Munk C, Harris M, Pearce A, Quon T, Mackenzie AE, Wang X, Peng J, Tobin AB, Ladds G, Milligan G, Gloriam DE, Puthenveedu MA, Babu MM. Combinatorial expression of GPCR isoforms affects signalling and drug responses. Nature 2020; 587:650-656. [PMID: 33149304 PMCID: PMC7611127 DOI: 10.1038/s41586-020-2888-2] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 09/24/2020] [Indexed: 02/06/2023]
Abstract
G-protein-coupled receptors (GPCRs) are membrane proteins that modulate physiology across human tissues in response to extracellular signals. GPCR-mediated signalling can differ because of changes in the sequence1,2 or expression3 of the receptors, leading to signalling bias when comparing diverse physiological systems4. An underexplored source of such bias is the generation of functionally diverse GPCR isoforms with different patterns of expression across different tissues. Here we integrate data from human tissue-level transcriptomes, GPCR sequences and structures, proteomics, single-cell transcriptomics, population-wide genetic association studies and pharmacological experiments. We show how a single GPCR gene can diversify into several isoforms with distinct signalling properties, and how unique isoform combinations expressed in different tissues can generate distinct signalling states. Depending on their structural changes and expression patterns, some of the detected isoforms may influence cellular responses to drugs and represent new targets for developing drugs with improved tissue selectivity. Our findings highlight the need to move from a canonical to a context-specific view of GPCR signalling that considers how combinatorial expression of isoforms in a particular cell type, tissue or organism collectively influences receptor signalling and drug responses.
Collapse
Affiliation(s)
| | - Stephanie E Crilly
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, USA
| | - Duccio Malinverni
- MRC Laboratory of Molecular Biology, Cambridge, UK
- Department of Structural Biology and Center for Data Driven Discovery, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Christian Munk
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Matthew Harris
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - Abigail Pearce
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - Tezz Quon
- Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Amanda E Mackenzie
- Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Xusheng Wang
- Center for Proteomics and Metabolomics, St Jude Children's Research Hospital, Memphis, TN, USA
- Department of Biology, University of North Dakota, Grand Forks, ND, USA
| | - Junmin Peng
- Center for Proteomics and Metabolomics, St Jude Children's Research Hospital, Memphis, TN, USA
- Departments of Structural Biology and Developmental Neurobiology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Andrew B Tobin
- Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Graham Ladds
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - Graeme Milligan
- Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - David E Gloriam
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Manojkumar A Puthenveedu
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, USA
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - M Madan Babu
- MRC Laboratory of Molecular Biology, Cambridge, UK.
- Department of Structural Biology and Center for Data Driven Discovery, St Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
183
|
Zhou F, Zhang H, Cong Z, Zhao LH, Zhou Q, Mao C, Cheng X, Shen DD, Cai X, Ma C, Wang Y, Dai A, Zhou Y, Sun W, Zhao F, Zhao S, Jiang H, Jiang Y, Yang D, Eric Xu H, Zhang Y, Wang MW. Structural basis for activation of the growth hormone-releasing hormone receptor. Nat Commun 2020; 11:5205. [PMID: 33060564 PMCID: PMC7567103 DOI: 10.1038/s41467-020-18945-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 09/14/2020] [Indexed: 02/06/2023] Open
Abstract
Growth hormone-releasing hormone (GHRH) regulates the secretion of growth hormone that virtually controls metabolism and growth of every tissue through its binding to the cognate receptor (GHRHR). Malfunction in GHRHR signaling is associated with abnormal growth, making GHRHR an attractive therapeutic target against dwarfism (e.g., isolated growth hormone deficiency, IGHD), gigantism, lipodystrophy and certain cancers. Here, we report the cryo-electron microscopy (cryo-EM) structure of the human GHRHR bound to its endogenous ligand and the stimulatory G protein at 2.6 Å. This high-resolution structure reveals a characteristic hormone recognition pattern of GHRH by GHRHR, where the α-helical GHRH forms an extensive and continuous network of interactions involving all the extracellular loops (ECLs), all the transmembrane (TM) helices except TM4, and the extracellular domain (ECD) of GHRHR, especially the N-terminus of GHRH that engages a broad set of specific interactions with the receptor. Mutagenesis and molecular dynamics (MD) simulations uncover detailed mechanisms by which IGHD-causing mutations lead to the impairment of GHRHR function. Our findings provide insights into the molecular basis of peptide recognition and receptor activation, thereby facilitating the development of structure-based drug discovery and precision medicine. Growth hormone-releasing hormone (GHRH) controls metabolism and tissue growth through binding to the cognate receptor (GHRHR). Here authors report the structure of the human GHRHR bound to its endogenous ligand and the stimulatory G protein which reveals a characteristic hormone recognition pattern of GHRH by GHRHR.
Collapse
Affiliation(s)
- Fulai Zhou
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China.,The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China
| | - Huibing Zhang
- Department of Biophysics, and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China
| | - Zhaotong Cong
- School of Pharmacy, Fudan University, 201203, Shanghai, China
| | - Li-Hua Zhao
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China
| | - Qingtong Zhou
- iHuman Institute, ShanghaiTech University, 201210, Shanghai, China
| | - Chunyou Mao
- Department of Biophysics, and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China
| | - Xi Cheng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China.,Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China
| | - Dan-Dan Shen
- Department of Biophysics, and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China
| | - Xiaoqing Cai
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China.,The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China
| | - Cheng Ma
- Department of Biophysics, and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China
| | - Yuzhe Wang
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China.,The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Antao Dai
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China.,The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China
| | - Yan Zhou
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China.,The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China
| | - Wen Sun
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China.,The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Fenghui Zhao
- School of Pharmacy, Fudan University, 201203, Shanghai, China
| | - Suwen Zhao
- iHuman Institute, ShanghaiTech University, 201210, Shanghai, China.,School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - Hualiang Jiang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China.,Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China.,University of Chinese Academy of Sciences, 100049, Beijing, China.,School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - Yi Jiang
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China
| | - Dehua Yang
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China. .,The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China. .,University of Chinese Academy of Sciences, 100049, Beijing, China.
| | - H Eric Xu
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China. .,University of Chinese Academy of Sciences, 100049, Beijing, China.
| | - Yan Zhang
- Department of Biophysics, and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China.
| | - Ming-Wei Wang
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China. .,The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China. .,School of Pharmacy, Fudan University, 201203, Shanghai, China. .,University of Chinese Academy of Sciences, 100049, Beijing, China. .,School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China. .,School of Basic Medical Sciences, Fudan University, 200032, Shanghai, China.
| |
Collapse
|
184
|
Masuho I, Balaji S, Muntean BS, Skamangas NK, Chavali S, Tesmer JJG, Babu MM, Martemyanov KA. A Global Map of G Protein Signaling Regulation by RGS Proteins. Cell 2020; 183:503-521.e19. [PMID: 33007266 PMCID: PMC7572916 DOI: 10.1016/j.cell.2020.08.052] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 07/03/2020] [Accepted: 08/29/2020] [Indexed: 12/24/2022]
Abstract
The control over the extent and timing of G protein signaling is provided by the regulator of G protein signaling (RGS) proteins that deactivate G protein α subunits (Gα). Mammalian genomes encode 20 canonical RGS and 16 Gα genes with key roles in physiology and disease. To understand the principles governing the selectivity of Gα regulation by RGS, we examine the catalytic activity of all canonical human RGS proteins and their selectivity for a complete set of Gα substrates using real-time kinetic measurements in living cells. The data reveal rules governing RGS-Gα recognition, the structural basis of its selectivity, and provide principles for engineering RGS proteins with defined selectivity. The study also explores the evolution of RGS-Gα selectivity through ancestral reconstruction and demonstrates how naturally occurring non-synonymous variants in RGS alter signaling. These results provide a blueprint for decoding signaling selectivity and advance our understanding of molecular recognition principles. Systematic analysis reveals G protein selectivity of all canonical RGS proteins RGS proteins rely on selectivity bar codes for selective G protein recognition Transplantation of bar codes across RGS proteins switches their G protein preferences Natural variants, mutations, and evolution shape RGS selectivity
Collapse
Affiliation(s)
- Ikuo Masuho
- Department of Neuroscience, The Scripps Research Institute Florida, Jupiter, FL 33458, USA
| | - Santhanam Balaji
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK; Departments of Structural Biology and Center for Data Driven Discovery, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Brian S Muntean
- Department of Neuroscience, The Scripps Research Institute Florida, Jupiter, FL 33458, USA
| | - Nickolas K Skamangas
- Department of Neuroscience, The Scripps Research Institute Florida, Jupiter, FL 33458, USA
| | - Sreenivas Chavali
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK; Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Karakambadi Road, Tirupati 517 507, India
| | - John J G Tesmer
- Departments of Biological Sciences and Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907-2054, USA
| | - M Madan Babu
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK; Departments of Structural Biology and Center for Data Driven Discovery, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Kirill A Martemyanov
- Department of Neuroscience, The Scripps Research Institute Florida, Jupiter, FL 33458, USA.
| |
Collapse
|
185
|
Bender BJ, Marlow B, Meiler J. Improving homology modeling from low-sequence identity templates in Rosetta: A case study in GPCRs. PLoS Comput Biol 2020; 16:e1007597. [PMID: 33112852 PMCID: PMC7652349 DOI: 10.1371/journal.pcbi.1007597] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 11/09/2020] [Accepted: 08/11/2020] [Indexed: 01/16/2023] Open
Abstract
As sequencing methodologies continue to advance, the availability of protein sequences far outpaces the ability of structure determination. Homology modeling is used to bridge this gap but relies on high-identity templates for accurate model building. G-protein coupled receptors (GPCRs) represent a significant target class for pharmaceutical therapies in which homology modeling could fill the knowledge gap for structure-based drug design. To date, only about 17% of druggable GPCRs have had their structures characterized at atomic resolution. However, modeling of the remaining 83% is hindered by the low sequence identity between receptors. Here we test key inputs in the model building process using GPCRs as a focus to improve the pipeline in two critical ways: Firstly, we use a blended sequence- and structure-based alignment that accounts for structure conservation in loop regions. Secondly, by merging multiple template structures into one comparative model, the best possible template for every region of a target can be used expanding the conformational space sampled in a meaningful way. This optimization allows for accurate modeling of receptors using templates as low as 20% sequence identity, which accounts for nearly the entire druggable space of GPCRs. A model database of all non-odorant GPCRs is made available at www.rosettagpcr.org. Additionally, all protocols are made available with insights into modifications that may improve accuracy at new targets.
Collapse
Affiliation(s)
- Brian Joseph Bender
- Department of Pharmacology, Department of Chemistry, and Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Brennica Marlow
- Department of Pharmacology, Department of Chemistry, and Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Jens Meiler
- Department of Pharmacology, Department of Chemistry, and Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, United States of America
- Institute for Drug Discovery, Leipzig University Medical School, Leipzig, SAC, Germany
| |
Collapse
|
186
|
Lamim Ribeiro JM, Provasi D, Filizola M. A combination of machine learning and infrequent metadynamics to efficiently predict kinetic rates, transition states, and molecular determinants of drug dissociation from G protein-coupled receptors. J Chem Phys 2020; 153:124105. [PMID: 33003748 PMCID: PMC7515652 DOI: 10.1063/5.0019100] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 08/31/2020] [Indexed: 11/14/2022] Open
Abstract
Determining the drug-target residence time (RT) is of major interest in drug discovery given that this kinetic parameter often represents a better indicator of in vivo drug efficacy than binding affinity. However, obtaining drug-target unbinding rates poses significant challenges, both computationally and experimentally. This is particularly palpable for complex systems like G Protein-Coupled Receptors (GPCRs) whose ligand unbinding typically requires very long timescales oftentimes inaccessible by standard molecular dynamics simulations. Enhanced sampling methods offer a useful alternative, and their efficiency can be further improved by using machine learning tools to identify optimal reaction coordinates. Here, we test the combination of two machine learning techniques, automatic mutual information noise omission and reweighted autoencoded variational Bayes for enhanced sampling, with infrequent metadynamics to efficiently study the unbinding kinetics of two classical drugs with different RTs in a prototypic GPCR, the μ-opioid receptor. Dissociation rates derived from these computations are within one order of magnitude from experimental values. We also use the simulation data to uncover the dissociation mechanisms of these drugs, shedding light on the structures of rate-limiting transition states, which, alongside metastable poses, are difficult to obtain experimentally but important to visualize when designing drugs with a desired kinetic profile.
Collapse
Affiliation(s)
- João Marcelo Lamim Ribeiro
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Davide Provasi
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Marta Filizola
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| |
Collapse
|
187
|
Atanasio S, Deganutti G, Reynolds CA. Addressing free fatty acid receptor 1 (FFAR1) activation using supervised molecular dynamics. J Comput Aided Mol Des 2020; 34:1181-1193. [PMID: 32851580 DOI: 10.1007/s10822-020-00338-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 08/18/2020] [Indexed: 01/12/2023]
Abstract
The free fatty acid receptor 1 (FFAR1, formerly GPR40), is a potential G protein-coupled receptor (GPCR) target for the treatment of type 2 diabetes mellitus (T2DM), as it enhances glucose-dependent insulin secretion upon activation by endogenous long-chain free fatty acids. The presence of two allosterically communicating binding sites and the lack of the conserved GPCR structural motifs challenge the general knowledge of its activation mechanism. To date, four X-ray crystal structures are available for computer-aided drug design. In this study, we employed molecular dynamics (MD) and supervised molecular dynamics (SuMD) to deliver insights into the (un)binding mechanism of the agonist MK-8666, and the allosteric communications between the two experimentally determined FFAR1 binding sites. We found that FFAR1 extracellular loop 2 (ECL2) mediates the binding of the partial agonist MK-8666. Moreover, simulations showed that the agonists MK-8666 and AP8 are reciprocally stabilized and that AP8 influences MK-8666 unbinding from FFAR1.
Collapse
Affiliation(s)
- Silvia Atanasio
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
| | - Giuseppe Deganutti
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK. .,Centre for Sport, Exercise and Life Sciences, Coventry University, Alison Gingell Building, Coventry, CV1 5FB, UK.
| | - Christopher A Reynolds
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK.,Centre for Sport, Exercise and Life Sciences, Coventry University, Alison Gingell Building, Coventry, CV1 5FB, UK
| |
Collapse
|
188
|
Tsutsumi N, Mukherjee S, Waghray D, Janda CY, Jude KM, Miao Y, Burg JS, Aduri NG, Kossiakoff AA, Gati C, Garcia KC. Structure of human Frizzled5 by fiducial-assisted cryo-EM supports a heterodimeric mechanism of canonical Wnt signaling. eLife 2020; 9:e58464. [PMID: 32762848 PMCID: PMC7442489 DOI: 10.7554/elife.58464] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 08/06/2020] [Indexed: 01/19/2023] Open
Abstract
Frizzleds (Fzd) are the primary receptors for Wnt morphogens, which are essential regulators of stem cell biology, yet the structural basis of Wnt signaling through Fzd remains poorly understood. Here we report the structure of an unliganded human Fzd5 determined by single-particle cryo-EM at 3.7 Å resolution, with the aid of an antibody chaperone acting as a fiducial marker. We also analyzed the topology of low-resolution XWnt8/Fzd5 complex particles, which revealed extreme flexibility between the Wnt/Fzd-CRD and the Fzd-TM regions. Analysis of Wnt/β-catenin signaling in response to Wnt3a versus a 'surrogate agonist' that cross-links Fzd to LRP6, revealed identical structure-activity relationships. Thus, canonical Wnt/β-catenin signaling appears to be principally reliant on ligand-induced Fzd/LRP6 heterodimerization, versus the allosteric mechanisms seen in structurally analogous class A G protein-coupled receptors, and Smoothened. These findings deepen our mechanistic understanding of Wnt signal transduction, and have implications for harnessing Wnt agonism in regenerative medicine.
Collapse
Affiliation(s)
- Naotaka Tsutsumi
- Department of Molecular and Cellular Physiology, Stanford University School of MedicineStanfordUnited States
- Department of Structural Biology, Stanford University School of MedicineStanfordUnited States
- Howard Hughes Medical Institute, Stanford University School of MedicineStanfordUnited States
| | - Somnath Mukherjee
- Department of Biochemistry and Molecular Biology, The University of ChicagoChicagoUnited States
| | - Deepa Waghray
- Department of Molecular and Cellular Physiology, Stanford University School of MedicineStanfordUnited States
| | - Claudia Y Janda
- Department of Molecular and Cellular Physiology, Stanford University School of MedicineStanfordUnited States
- Department of Structural Biology, Stanford University School of MedicineStanfordUnited States
- Princess Máxima Center for Pediatric OncologyUtrechtNetherlands
| | - Kevin M Jude
- Department of Molecular and Cellular Physiology, Stanford University School of MedicineStanfordUnited States
- Department of Structural Biology, Stanford University School of MedicineStanfordUnited States
- Howard Hughes Medical Institute, Stanford University School of MedicineStanfordUnited States
| | - Yi Miao
- Department of Molecular and Cellular Physiology, Stanford University School of MedicineStanfordUnited States
- Department of Structural Biology, Stanford University School of MedicineStanfordUnited States
| | - John S Burg
- Department of Molecular and Cellular Physiology, Stanford University School of MedicineStanfordUnited States
- Department of Structural Biology, Stanford University School of MedicineStanfordUnited States
| | - Nanda Gowtham Aduri
- Department of Structural Biology, Stanford University School of MedicineStanfordUnited States
- SLAC National Accelerator Laboratory, Bioscience DivisionMenlo ParkUnited States
| | - Anthony A Kossiakoff
- Department of Biochemistry and Molecular Biology, The University of ChicagoChicagoUnited States
| | - Cornelius Gati
- Department of Structural Biology, Stanford University School of MedicineStanfordUnited States
- SLAC National Accelerator Laboratory, Bioscience DivisionMenlo ParkUnited States
| | - K Christopher Garcia
- Department of Molecular and Cellular Physiology, Stanford University School of MedicineStanfordUnited States
- Department of Structural Biology, Stanford University School of MedicineStanfordUnited States
- Howard Hughes Medical Institute, Stanford University School of MedicineStanfordUnited States
| |
Collapse
|
189
|
Rodríguez-Espigares I, Torrens-Fontanals M, Tiemann JKS, Aranda-García D, Ramírez-Anguita JM, Stepniewski TM, Worp N, Varela-Rial A, Morales-Pastor A, Medel-Lacruz B, Pándy-Szekeres G, Mayol E, Giorgino T, Carlsson J, Deupi X, Filipek S, Filizola M, Gómez-Tamayo JC, Gonzalez A, Gutiérrez-de-Terán H, Jiménez-Rosés M, Jespers W, Kapla J, Khelashvili G, Kolb P, Latek D, Marti-Solano M, Matricon P, Matsoukas MT, Miszta P, Olivella M, Perez-Benito L, Provasi D, Ríos S, R Torrecillas I, Sallander J, Sztyler A, Vasile S, Weinstein H, Zachariae U, Hildebrand PW, De Fabritiis G, Sanz F, Gloriam DE, Cordomi A, Guixà-González R, Selent J. GPCRmd uncovers the dynamics of the 3D-GPCRome. Nat Methods 2020; 17:777-787. [PMID: 32661425 DOI: 10.1038/s41592-020-0884-y] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 05/29/2020] [Indexed: 11/08/2022]
Abstract
G-protein-coupled receptors (GPCRs) are involved in numerous physiological processes and are the most frequent targets of approved drugs. The explosion in the number of new three-dimensional (3D) molecular structures of GPCRs (3D-GPCRome) over the last decade has greatly advanced the mechanistic understanding and drug design opportunities for this protein family. Molecular dynamics (MD) simulations have become a widely established technique for exploring the conformational landscape of proteins at an atomic level. However, the analysis and visualization of MD simulations require efficient storage resources and specialized software. Here we present GPCRmd (http://gpcrmd.org/), an online platform that incorporates web-based visualization capabilities as well as a comprehensive and user-friendly analysis toolbox that allows scientists from different disciplines to visualize, analyze and share GPCR MD data. GPCRmd originates from a community-driven effort to create an open, interactive and standardized database of GPCR MD simulations.
Collapse
Affiliation(s)
- Ismael Rodríguez-Espigares
- Research Programme on Biomedical Informatics, Hospital del Mar Medical Research Institute-Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona, Spain
| | - Mariona Torrens-Fontanals
- Research Programme on Biomedical Informatics, Hospital del Mar Medical Research Institute-Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona, Spain
| | - Johanna K S Tiemann
- Institute of Medical Physics and Biophysics, Charite University Medicine Berlin, Berlin, Germany
- Institute of Medical Physics and Biophysics, Medical University Leipzig, Leipzig, Sachsen, Germany
| | - David Aranda-García
- Research Programme on Biomedical Informatics, Hospital del Mar Medical Research Institute-Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona, Spain
| | - Juan Manuel Ramírez-Anguita
- Research Programme on Biomedical Informatics, Hospital del Mar Medical Research Institute-Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona, Spain
| | - Tomasz Maciej Stepniewski
- Research Programme on Biomedical Informatics, Hospital del Mar Medical Research Institute-Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona, Spain
| | - Nathalie Worp
- Research Programme on Biomedical Informatics, Hospital del Mar Medical Research Institute-Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona, Spain
| | - Alejandro Varela-Rial
- Computational Science Laboratory, Universitat Pompeu Fabra, Barcelona Biomedical Research Park, Barcelona, Spain
- Acellera, Barcelona, Spain
| | - Adrián Morales-Pastor
- Research Programme on Biomedical Informatics, Hospital del Mar Medical Research Institute-Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona, Spain
| | - Brian Medel-Lacruz
- Research Programme on Biomedical Informatics, Hospital del Mar Medical Research Institute-Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona, Spain
| | - Gáspár Pándy-Szekeres
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Eduardo Mayol
- Laboratori de Medicina Computacional, Unitat de Bioestadistica, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Toni Giorgino
- Biophysics Institute, National Research Council of Italy, Milan, Italy
- Department of Biosciences, University of Milan, Milan, Italy
| | - Jens Carlsson
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Xavier Deupi
- Laboratory of Biomolecular Research, Paul Scherrer Institute (PSI), Villigen PSI, Switzerland
- Condensed Matter Theory Group, PSI, Villigen PSI, Switzerland
| | - Slawomir Filipek
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Marta Filizola
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - José Carlos Gómez-Tamayo
- Laboratori de Medicina Computacional, Unitat de Bioestadistica, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Angel Gonzalez
- Laboratori de Medicina Computacional, Unitat de Bioestadistica, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Hugo Gutiérrez-de-Terán
- Department of Cell and Molecular Biology, Uppsala University, Biomedical Center, Uppsala, Sweden
| | - Mireia Jiménez-Rosés
- Laboratori de Medicina Computacional, Unitat de Bioestadistica, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Willem Jespers
- Department of Cell and Molecular Biology, Uppsala University, Biomedical Center, Uppsala, Sweden
| | - Jon Kapla
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - George Khelashvili
- Department of Physiology and Biophysics, Weill Cornell Medical College of Cornell University, New York, NY, USA
- Institute for Computational Biomedicine, Weill Cornell Medical College of Cornell University, New York, NY, USA
| | - Peter Kolb
- Department of Pharmaceutical Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Dorota Latek
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Maria Marti-Solano
- Department of Pharmaceutical Chemistry, Philipps-University Marburg, Marburg, Germany
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Pierre Matricon
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Minos-Timotheos Matsoukas
- Laboratori de Medicina Computacional, Unitat de Bioestadistica, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Department of Pharmacy, University of Patras, Patras, Greece
| | - Przemyslaw Miszta
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Mireia Olivella
- Laboratori de Medicina Computacional, Unitat de Bioestadistica, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Laura Perez-Benito
- Laboratori de Medicina Computacional, Unitat de Bioestadistica, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Davide Provasi
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Santiago Ríos
- Laboratori de Medicina Computacional, Unitat de Bioestadistica, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Iván R Torrecillas
- Laboratori de Medicina Computacional, Unitat de Bioestadistica, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Jessica Sallander
- Department of Cell and Molecular Biology, Uppsala University, Biomedical Center, Uppsala, Sweden
| | - Agnieszka Sztyler
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Silvana Vasile
- Department of Cell and Molecular Biology, Uppsala University, Biomedical Center, Uppsala, Sweden
| | - Harel Weinstein
- Department of Physiology and Biophysics, Weill Cornell Medical College of Cornell University, New York, NY, USA
- Institute for Computational Biomedicine, Weill Cornell Medical College of Cornell University, New York, NY, USA
| | - Ulrich Zachariae
- Computational Biology, School of Life Sciences, University of Dundee, Dundee, UK
- Physics, School of Science and Engineering, University of Dundee, Dundee, UK
| | - Peter W Hildebrand
- Institute of Medical Physics and Biophysics, Charite University Medicine Berlin, Berlin, Germany
- Institute of Medical Physics and Biophysics, Medical University Leipzig, Leipzig, Sachsen, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Gianni De Fabritiis
- Computational Science Laboratory, Universitat Pompeu Fabra, Barcelona Biomedical Research Park, Barcelona, Spain
- Acellera, Barcelona, Spain
| | - Ferran Sanz
- Research Programme on Biomedical Informatics, Hospital del Mar Medical Research Institute-Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona, Spain
| | - David E Gloriam
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Arnau Cordomi
- Laboratori de Medicina Computacional, Unitat de Bioestadistica, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Ramon Guixà-González
- Laboratory of Biomolecular Research, Paul Scherrer Institute (PSI), Villigen PSI, Switzerland.
- Condensed Matter Theory Group, PSI, Villigen PSI, Switzerland.
| | - Jana Selent
- Research Programme on Biomedical Informatics, Hospital del Mar Medical Research Institute-Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona, Spain.
| |
Collapse
|
190
|
Structural basis of GPBAR activation and bile acid recognition. Nature 2020; 587:499-504. [PMID: 32698187 DOI: 10.1038/s41586-020-2569-1] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 07/10/2020] [Indexed: 02/08/2023]
Abstract
The G-protein-coupled bile acid receptor (GPBAR) conveys the cross-membrane signalling of a vast variety of bile acids and is a signalling hub in the liver-bile acid-microbiota-metabolism axis1-3. Here we report the cryo-electron microscopy structures of GPBAR-Gs complexes stabilized by either the high-affinity P3954 or the semisynthesized bile acid derivative INT-7771,3 at 3 Å resolution. These structures revealed a large oval pocket that contains several polar groups positioned to accommodate the amphipathic cholic core of bile acids, a fingerprint of key residues to recognize diverse bile acids in the orthosteric site, a putative second bile acid-binding site with allosteric properties and structural features that contribute to bias properties. Moreover, GPBAR undertakes an atypical mode of activation and G protein coupling that features a different set of key residues connecting the ligand-binding pocket to the Gs-coupling site, and a specific interaction motif that is localized in intracellular loop 3. Overall, our study not only reveals unique structural features of GPBAR that are involved in bile acid recognition and allosteric effects, but also suggests the presence of distinct connecting mechanisms between the ligand-binding pocket and the G-protein-binding site in the G-protein-coupled receptor superfamily.
Collapse
|
191
|
Sengmany K, Hellyer SD, Christopoulos A, Lapinsky DJ, Leach K, Gregory KJ. Differential contribution of metabotropic glutamate receptor 5 common allosteric binding site residues to biased allosteric agonism. Biochem Pharmacol 2020; 177:114011. [DOI: 10.1016/j.bcp.2020.114011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 04/29/2020] [Indexed: 01/06/2023]
|
192
|
Probe dependence and biased potentiation of metabotropic glutamate receptor 5 is mediated by differential ligand interactions in the common allosteric binding site. Biochem Pharmacol 2020; 177:114013. [DOI: 10.1016/j.bcp.2020.114013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 04/30/2020] [Indexed: 01/04/2023]
|
193
|
Distinct binding of cetirizine enantiomers to human serum albumin and the human histamine receptor H 1. J Comput Aided Mol Des 2020; 34:1045-1062. [PMID: 32572668 DOI: 10.1007/s10822-020-00328-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 06/18/2020] [Indexed: 02/02/2023]
Abstract
Cetirizine, a major metabolite of hydroxyzine, became a marketed second-generation H1 antihistamine that is orally active and has a rapid onset of action, long duration of effects and a very good safety record at recommended doses. The approved drug is a racemic mixture of (S)-cetirizine and (R)-cetirizine, the latter being the levorotary enantiomer that also exists in the market as a third-generation, non-sedating and highly selective antihistamine. Both enantiomers bind tightly to the human histamine H1 receptor (hH1R) and behave as inverse agonists but the affinity and residence time of (R)-cetirizine are greater than those of (S)-cetirizine. In blood plasma, cetirizine exists in the zwitterionic form and more than 90% of the circulating drug is bound to human serum albumin (HSA), which acts as an inactive reservoir. Independent X-ray crystallographic work has solved the structure of the hH1R:doxepin complex and has identified two drug-binding sites for cetirizine on equine serum albumin (ESA). Given this background, we decided to model a membrane-embedded hH1R in complex with either (R)- or (S)-cetirizine and also the complexes of both ESA and HSA with these two enantiomeric drugs to analyze possible differences in binding modes between enantiomers and also among targets. The ensuing molecular dynamics simulations in explicit solvent and additional computational chemistry calculations provided structural and energetic information about all of these complexes that is normally beyond current experimental possibilities. Overall, we found very good agreement between our binding energy estimates and extant biochemical and pharmacological evidence. A much higher degree of solvent exposure in the cetirizine-binding site(s) of HSA and ESA relative to the more occluded orthosteric binding site in hH1R is translated into larger positional fluctuations and considerably lower affinities for these two nonspecific targets. Whereas it is demonstrated that the two known pockets in ESA provide enough stability for cetirizine binding, only one such site does so in HSA due to a number of amino acid replacements. At the histamine-binding site in hH1R, the distinct interactions established between the phenyl and chlorophenyl moieties of the two enantiomers with the amino acids lining up the pocket and between their free carboxylates and Lys179 in the second extracellular loop account for the improved pharmacological profile of (R)-cetirizine.
Collapse
|
194
|
Shaye H, Ishchenko A, Lam JH, Han GW, Xue L, Rondard P, Pin JP, Katritch V, Gati C, Cherezov V. Structural basis of the activation of a metabotropic GABA receptor. Nature 2020; 584:298-303. [PMID: 32555460 PMCID: PMC8020835 DOI: 10.1038/s41586-020-2408-4] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 04/07/2020] [Indexed: 12/26/2022]
Abstract
Metabotropic γ-aminobutyric acid receptors (GABAB) are involved in the modulation of synaptic responses in the central nervous system and are implicated in various neuropsychological conditions, ranging from addiction to psychosis1. GABAB belongs to G protein-coupled receptor class C, and its functional entity consists of an obligate heterodimer composed of GB1 and GB22. Each subunit possesses an extracellular Venus flytrap domain, connected to a canonical seven-transmembrane domain. Here, we present four cryo-EM structures of the human full-length GB1-GB2 heterodimer in its inactive apo, two intermediate agonist-bound, and active agonist/positive allosteric modulator bound forms. The structures reveal startling differences, shedding light onto the complex motions underlying the unique activation mechanism of GABAB. Our results show that agonist binding in the GB1 Venus flytrap domain triggers a series of transitions, first rearranging and bringing the two transmembrane domains into close contact along transmembrane helix 6 and ultimately inducing conformational rearrangements in the GB2 transmembrane domain via a lever-like mechanism, potentiated by a positive allosteric modulator binding at the dimerization interface, to initiate downstream signaling.
Collapse
Affiliation(s)
- Hamidreza Shaye
- Bridge Institute, USC Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA, USA.,Department of Chemistry, University of Southern California, Los Angeles, CA, USA
| | - Andrii Ishchenko
- Bridge Institute, USC Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA, USA.,Department of Chemistry, University of Southern California, Los Angeles, CA, USA
| | - Jordy Homing Lam
- Bridge Institute, USC Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA, USA.,Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Gye Won Han
- Bridge Institute, USC Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA, USA.,Department of Chemistry, University of Southern California, Los Angeles, CA, USA
| | - Li Xue
- Institut de Génomique Fonctionnelle (IGF), CNRS, INSERM, Université de Montpellier, Montpellier, France
| | - Philippe Rondard
- Institut de Génomique Fonctionnelle (IGF), CNRS, INSERM, Université de Montpellier, Montpellier, France
| | - Jean-Philippe Pin
- Institut de Génomique Fonctionnelle (IGF), CNRS, INSERM, Université de Montpellier, Montpellier, France
| | - Vsevolod Katritch
- Bridge Institute, USC Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA, USA.,Department of Chemistry, University of Southern California, Los Angeles, CA, USA.,Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Cornelius Gati
- Biosciences Division, SLAC National Accelerator Laboratory, Menlo Park, CA, USA. .,Department of Structural Biology, Stanford University, Stanford, CA, USA.
| | - Vadim Cherezov
- Bridge Institute, USC Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA, USA. .,Department of Chemistry, University of Southern California, Los Angeles, CA, USA. .,Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
195
|
Yang J, Gong Z, Lu YB, Xu CJ, Wei TF, Yang MS, Zhan TW, Yang YH, Lin L, Liu J, Tang C, Zhang WP. FLIM-FRET-Based Structural Characterization of a Class-A GPCR Dimer in the Cell Membrane. J Mol Biol 2020; 432:4596-4611. [PMID: 32553728 DOI: 10.1016/j.jmb.2020.06.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 06/10/2020] [Accepted: 06/10/2020] [Indexed: 12/30/2022]
Abstract
Class-A G protein-coupled receptors (GPCRs) are known to homo-dimerize in the membrane. Yet, methods to characterize the structure of GPCR dimer in the native environment are lacking. Accordingly, the molecular basis and functional relevance of the class-A GPCR dimerization remain unclear. Here, we present the dimeric structural model of GPR17 in the cell membrane. The dimer mainly involves transmembrane helix 5 (TM5) at the interface, with F229 in TM5, a critical residue. An F229A mutation makes GPR17 monomeric regardless of the expression level of the receptor. Monomeric mutants of GPR17 display impaired ERK1/2 activation and cannot be properly internalized upon agonist treatment. Conversely, the F229C mutant is cross-linked as a dimer and behaves like wild-type. Importantly, the GPR17 dimer structure has been modeled using sparse inter-protomer FRET distance restraints obtained from fluorescence lifetime imaging microscopy. The same approach can be applied to characterizing the interactions of other important membrane proteins in the cell.
Collapse
Affiliation(s)
- Ju Yang
- Key Laboratory of Magnetic Resonance in Biological Systems of the Chinese Academy of Sciences, State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance at Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhou Gong
- Key Laboratory of Magnetic Resonance in Biological Systems of the Chinese Academy of Sciences, State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance at Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
| | - Yun-Bi Lu
- Department of Pharmacology and Department Of Neurosurgery, Key Laboratory of Medical Neurobiology of Ministry of Health of China, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Chan-Juan Xu
- College of Life Science and Technology, International Research Center for Sensory Biology and Technology of MOST, Key Laboratory of Molecular Biophysics of Ministry of Education, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Tao-Feng Wei
- Department of Pharmacology and Department Of Neurosurgery, Key Laboratory of Medical Neurobiology of Ministry of Health of China, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Meng-Shi Yang
- Key Laboratory of Magnetic Resonance in Biological Systems of the Chinese Academy of Sciences, State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance at Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
| | - Tian-Wei Zhan
- Department of Thoracic Surgery, the Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang 310009, China
| | - Yu-Hong Yang
- Key Laboratory of Magnetic Resonance in Biological Systems of the Chinese Academy of Sciences, State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance at Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
| | - Li Lin
- College of Life Science and Technology, International Research Center for Sensory Biology and Technology of MOST, Key Laboratory of Molecular Biophysics of Ministry of Education, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Jianfeng Liu
- College of Life Science and Technology, International Research Center for Sensory Biology and Technology of MOST, Key Laboratory of Molecular Biophysics of Ministry of Education, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China.
| | - Chun Tang
- Key Laboratory of Magnetic Resonance in Biological Systems of the Chinese Academy of Sciences, State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance at Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China; Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei Province 430074, China.
| | - Wei-Ping Zhang
- Department of Pharmacology and Department Of Neurosurgery, Key Laboratory of Medical Neurobiology of Ministry of Health of China, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
196
|
Foster SR, Hauser AS, Vedel L, Strachan RT, Huang XP, Gavin AC, Shah SD, Nayak AP, Haugaard-Kedström LM, Penn RB, Roth BL, Bräuner-Osborne H, Gloriam DE. Discovery of Human Signaling Systems: Pairing Peptides to G Protein-Coupled Receptors. Cell 2020; 179:895-908.e21. [PMID: 31675498 PMCID: PMC6838683 DOI: 10.1016/j.cell.2019.10.010] [Citation(s) in RCA: 129] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 08/18/2019] [Accepted: 10/08/2019] [Indexed: 01/18/2023]
Abstract
The peptidergic system is the most abundant network of ligand-receptor-mediated signaling in humans. However, the physiological roles remain elusive for numerous peptides and more than 100 G protein-coupled receptors (GPCRs). Here we report the pairing of cognate peptides and receptors. Integrating comparative genomics across 313 species and bioinformatics on all protein sequences and structures of human class A GPCRs, we identify universal characteristics that uncover additional potential peptidergic signaling systems. Using three orthogonal biochemical assays, we pair 17 proposed endogenous ligands with five orphan GPCRs that are associated with diseases, including genetic, neoplastic, nervous and reproductive system disorders. We also identify additional peptides for nine receptors with recognized ligands and pathophysiological roles. This integrated computational and multifaceted experimental approach expands the peptide-GPCR network and opens the way for studies to elucidate the roles of these signaling systems in human physiology and disease. Video Abstract
Universal characteristics enabled prediction of peptide ligands and receptors Multifaceted screening enabled detection of pathway- and assay-dependent responses Peptide ligands discovered for BB3, GPR1, GPR15, GPR55, and GPR68 Each signaling system is a link to human physiology and is associated with disease
Collapse
Affiliation(s)
- Simon R Foster
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark.
| | - Alexander S Hauser
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark.
| | - Line Vedel
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Ryan T Strachan
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Xi-Ping Huang
- Department of Pharmacology, School of Medicine, and the Division of Medicinal Chemistry and Chemical Biology, Eshelman School of Pharmacy, and the NIMH Psychoactive Drug Screening Program, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ariana C Gavin
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Sushrut D Shah
- Department of Medicine, Center for Translational Medicine and Division of Pulmonary, Allergy and Critical Care Medicine; Jane and Leonard Korman Respiratory Institute, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Ajay P Nayak
- Department of Medicine, Center for Translational Medicine and Division of Pulmonary, Allergy and Critical Care Medicine; Jane and Leonard Korman Respiratory Institute, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Linda M Haugaard-Kedström
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Raymond B Penn
- Department of Medicine, Center for Translational Medicine and Division of Pulmonary, Allergy and Critical Care Medicine; Jane and Leonard Korman Respiratory Institute, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Bryan L Roth
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA; Department of Pharmacology, School of Medicine, and the Division of Medicinal Chemistry and Chemical Biology, Eshelman School of Pharmacy, and the NIMH Psychoactive Drug Screening Program, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Hans Bräuner-Osborne
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark.
| | - David E Gloriam
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark.
| |
Collapse
|
197
|
Wu FJ, Williams LM, Abdul-Ridha A, Gunatilaka A, Vaid TM, Kocan M, Whitehead AR, Griffin MDW, Bathgate RAD, Scott DJ, Gooley PR. Probing the correlation between ligand efficacy and conformational diversity at the α 1A-adrenoreceptor reveals allosteric coupling of its microswitches. J Biol Chem 2020; 295:7404-7417. [PMID: 32303636 PMCID: PMC7247315 DOI: 10.1074/jbc.ra120.012842] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/14/2020] [Indexed: 12/11/2022] Open
Abstract
G protein-coupled receptors (GPCRs) use a series of conserved microswitches to transmit signals across the cell membrane via an allosteric network encompassing the ligand-binding site and the G protein-binding site. Crystal structures of GPCRs provide snapshots of their inactive and active states, but poorly describe the conformational dynamics of the allosteric network that underlies GPCR activation. Here, we analyzed the correlation between ligand binding and receptor conformation of the α1A-adrenoreceptor, a GPCR that stimulates smooth muscle contraction in response to binding noradrenaline. NMR of [13CϵH3]methionine-labeled α1A-adrenoreceptor variants, each exhibiting differing signaling capacities, revealed how different classes of ligands modulate the conformational equilibria of this receptor. [13CϵH3]Methionine residues near the microswitches exhibited distinct states that correlated with ligand efficacies, supporting a conformational selection mechanism. We propose that allosteric coupling among the microswitches controls the conformation of the α1A-adrenoreceptor and underlies the mechanism of ligand modulation of GPCR signaling in cells.
Collapse
Affiliation(s)
- Feng-Jie Wu
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville 3052, VIC, Australia; Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville 3052, VIC, Australia; The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville 3052, VIC, Australia
| | - Lisa M Williams
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville 3052, VIC, Australia
| | - Alaa Abdul-Ridha
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville 3052, VIC, Australia
| | - Avanka Gunatilaka
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville 3052, VIC, Australia
| | - Tasneem M Vaid
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville 3052, VIC, Australia; Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville 3052, VIC, Australia; The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville 3052, VIC, Australia
| | - Martina Kocan
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville 3052, VIC, Australia
| | - Alice R Whitehead
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville 3052, VIC, Australia
| | - Michael D W Griffin
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville 3052, VIC, Australia; Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville 3052, VIC, Australia
| | - Ross A D Bathgate
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville 3052, VIC, Australia; The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville 3052, VIC, Australia
| | - Daniel J Scott
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville 3052, VIC, Australia; The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville 3052, VIC, Australia.
| | - Paul R Gooley
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville 3052, VIC, Australia; Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville 3052, VIC, Australia.
| |
Collapse
|
198
|
Wingler LM, Skiba MA, McMahon C, Staus DP, Kleinhenz ALW, Suomivuori CM, Latorraca NR, Dror RO, Lefkowitz RJ, Kruse AC. Angiotensin and biased analogs induce structurally distinct active conformations within a GPCR. Science 2020; 367:888-892. [PMID: 32079768 DOI: 10.1126/science.aay9813] [Citation(s) in RCA: 146] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 01/23/2020] [Indexed: 12/13/2022]
Abstract
Biased agonists of G protein-coupled receptors (GPCRs) preferentially activate a subset of downstream signaling pathways. In this work, we present crystal structures of angiotensin II type 1 receptor (AT1R) (2.7 to 2.9 angstroms) bound to three ligands with divergent bias profiles: the balanced endogenous agonist angiotensin II (AngII) and two strongly β-arrestin-biased analogs. Compared with other ligands, AngII promotes more-substantial rearrangements not only at the bottom of the ligand-binding pocket but also in a key polar network in the receptor core, which forms a sodium-binding site in most GPCRs. Divergences from the family consensus in this region, which appears to act as a biased signaling switch, may predispose the AT1R and certain other GPCRs (such as chemokine receptors) to adopt conformations that are capable of activating β-arrestin but not heterotrimeric Gq protein signaling.
Collapse
Affiliation(s)
- Laura M Wingler
- Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710, USA.,Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Meredith A Skiba
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Conor McMahon
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Dean P Staus
- Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710, USA.,Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Alissa L W Kleinhenz
- Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710, USA.,Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA.,School of Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Carl-Mikael Suomivuori
- Department of Computer Science, Stanford University, Stanford, CA 94305, USA.,Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.,Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Naomi R Latorraca
- Department of Computer Science, Stanford University, Stanford, CA 94305, USA.,Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.,Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA 94305, USA.,Biophysics Program, Stanford University, Stanford, CA 94305, USA
| | - Ron O Dror
- Department of Computer Science, Stanford University, Stanford, CA 94305, USA.,Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.,Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA 94305, USA.,Biophysics Program, Stanford University, Stanford, CA 94305, USA
| | - Robert J Lefkowitz
- Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710, USA. .,Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA.,Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | - Andrew C Kruse
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
199
|
Davenport AP, Scully CCG, de Graaf C, Brown AJH, Maguire JJ. Advances in therapeutic peptides targeting G protein-coupled receptors. Nat Rev Drug Discov 2020; 19:389-413. [PMID: 32494050 DOI: 10.1038/s41573-020-0062-z] [Citation(s) in RCA: 152] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2020] [Indexed: 02/06/2023]
Abstract
Dysregulation of peptide-activated pathways causes a range of diseases, fostering the discovery and clinical development of peptide drugs. Many endogenous peptides activate G protein-coupled receptors (GPCRs) - nearly 50 GPCR peptide drugs have been approved to date, most of them for metabolic disease or oncology, and more than 10 potentially first-in-class peptide therapeutics are in the pipeline. The majority of existing peptide therapeutics are agonists, which reflects the currently dominant strategy of modifying the endogenous peptide sequence of ligands for peptide-binding GPCRs. Increasingly, novel strategies are being employed to develop both agonists and antagonists, to both introduce chemical novelty and improve drug-like properties. Pharmacodynamic improvements are evolving to allow biasing ligands to activate specific downstream signalling pathways, in order to optimize efficacy and reduce side effects. In pharmacokinetics, modifications that increase plasma half-life have been revolutionary. Here, we discuss the current status of the peptide drugs targeting GPCRs, with a focus on evolving strategies to improve pharmacokinetic and pharmacodynamic properties.
Collapse
Affiliation(s)
- Anthony P Davenport
- Experimental Medicine and Immunotherapeutics, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK.
| | | | | | | | - Janet J Maguire
- Experimental Medicine and Immunotherapeutics, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| |
Collapse
|
200
|
Activation of the α 2B adrenoceptor by the sedative sympatholytic dexmedetomidine. Nat Chem Biol 2020; 16:507-512. [PMID: 32152538 DOI: 10.1038/s41589-020-0492-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 12/31/2019] [Accepted: 02/04/2020] [Indexed: 12/20/2022]
Abstract
The α2 adrenergic receptors (α2ARs) are G protein-coupled receptors (GPCRs) that respond to adrenaline and noradrenaline and couple to the Gi/o family of G proteins. α2ARs play important roles in regulating the sympathetic nervous system. Dexmedetomidine is a highly selective α2AR agonist used in post-operative patients as an anxiety-reducing, sedative medicine that decreases the requirement for opioids. As is typical for selective αAR agonists, dexmedetomidine consists of an imidazole ring and a substituted benzene moiety lacking polar groups, which is in contrast to βAR-selective agonists, which share an ethanolamine group and an aromatic system with polar, hydrogen-bonding substituents. To better understand the structural basis for the selectivity and efficacy of adrenergic agonists, we determined the structure of the α2BAR in complex with dexmedetomidine and Go at a resolution of 2.9 Å by single-particle cryo-EM. The structure reveals the mechanism of α2AR-selective activation and provides insights into Gi/o coupling specificity.
Collapse
|