151
|
Deng C, Ji C, Qin W, Cao X, Zhong J, Li Y, Srinivas S, Feng Y, Deng X. Deoxynivalenol inhibits proliferation and induces apoptosis in human umbilical vein endothelial cells. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2016; 43:232-241. [PMID: 27037652 DOI: 10.1016/j.etap.2016.02.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 01/28/2016] [Accepted: 02/02/2016] [Indexed: 06/05/2023]
Abstract
Deoxynivalenol (DON) is a stable mycotoxins found in cereals infected by certain fungal species and causes adverse health effects in animals and human such as vomiting, diarrhea and reproductive toxicity. In this study, we investigated the toxic and apoptotic effects of DON in human umbilical vein endothelial cells (HUVECs), a good model for studying inflammation. The results show that DON significantly inhibited the viability of HUVECs. DON could also inhibit the proliferation of HUVECs through G2/M phase arrest in cell cycle progression. Moreover, oxidative stress induced by DON was indicated by observations of increased levels of reactive oxygen species (ROS). In addition, DON also causes mitochondrial damage by decreasing the mitochondrial membrane potential and inducing apoptosis by up-regulation of apoptosis-related genes like caspase-3, caspase-9, and Bax genes, and down-regulation of Bcl-2 gene. These results together suggest that DON could induce cell cycle arrest, oxidative stress, and apoptosis in HUVECs.
Collapse
Affiliation(s)
- Chao Deng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Changyun Ji
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Weisen Qin
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Xifeng Cao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Jialian Zhong
- Center for Infection & Immunity, School of Basic Medical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yugu Li
- Center for Infection & Immunity, School of Basic Medical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Swaminath Srinivas
- Department of Biochemistry, University of Illinois, Urbana, IL 61801, USA
| | - Youjun Feng
- Center for Infection & Immunity, School of Basic Medical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Xianbo Deng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
152
|
Pierron A, Alassane-Kpembi I, Oswald IP. Impact of mycotoxin on immune response and consequences for pig health. ACTA ACUST UNITED AC 2016; 2:63-68. [PMID: 29767037 PMCID: PMC5941016 DOI: 10.1016/j.aninu.2016.03.001] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 03/10/2016] [Indexed: 01/18/2023]
Abstract
Mycotoxins are fungal secondary metabolites detected in many agricultural commodities, especially cereals. Due to their high consumption of cereals, pigs are exposed to these toxins. In the European Union, regulations and/or recommendations exist in pig feed for aflatoxins, ochratoxin A, fumonisins, zearalenone, and trichothecenes, deoxynivalenol and T-2 toxin. These mycotoxins have different toxic effects, but they all target the immune system. They have immunostimulatory or immunosuppressive effects depending on the toxin, the concentration and the parameter investigated. The immune system is primarily responsible for defense against invading organisms. The consequences of the ingestion of mycotoxin-contaminated feed are an increased susceptibility to infectious diseases, a reactivation of chronic infection and a decreased vaccine efficacy. In this review we summarized the data available on the effect of mycotoxins on the immune system and the consequences for pig health.
Collapse
Affiliation(s)
- Alix Pierron
- INRA, UMR 1331, ToxAlim Research Centre in Food Toxicology, BP93173, Toulouse Cedex 03 31027, France.,Université de Toulouse, INP, UMR 1331, ToxAlim, BP93173, Toulouse Cedex 03 31027, France.,BIOMIN Research Center, Technopark 1, Tulln 3430, Austria
| | - Imourana Alassane-Kpembi
- INRA, UMR 1331, ToxAlim Research Centre in Food Toxicology, BP93173, Toulouse Cedex 03 31027, France.,Université de Toulouse, INP, UMR 1331, ToxAlim, BP93173, Toulouse Cedex 03 31027, France
| | - Isabelle P Oswald
- INRA, UMR 1331, ToxAlim Research Centre in Food Toxicology, BP93173, Toulouse Cedex 03 31027, France.,Université de Toulouse, INP, UMR 1331, ToxAlim, BP93173, Toulouse Cedex 03 31027, France
| |
Collapse
|
153
|
Male D, Mitchell N, Wu W, Bursian S, Pestka J, Wu F. Modelling the anorectic potencies of food-borne trichothecenes by benchmark dose and incremental area under the curve methodology. WORLD MYCOTOXIN J 2016. [DOI: 10.3920/wmj2015.1961] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Fusarium spp. fungi produce a spectrum of trichothecene mycotoxins that often simultaneously contaminate cereal grains. These have the potential to contribute jointly to adverse effects such as anorexia and emesis. For the purposes of risk assessment and regulation, it is desirable to assign toxic equivalency factors (TEFs) to each of these trichothecenes, as has been successfully done for anthropogenic toxicants such as polyhalogenated aromatic hydrocarbons. As a first step towards this end, we employed a mouse model to compare the anorectic potencies of deoxynivalenol (DON), 3-acetyldeoxynivalenol (3-ADON), 15-acetyldeoxynivalenol (15-ADON), nivalenol (NIV), fusarenon-X (FUS-X), T-2 and HT-2 toxin (T-2 and HT-2) following oral exposure by gavage using two approaches. In the first approach, the US Environmental Protection Agency (US EPA) benchmark dose (BMD) method for continuous data was used to calculate the BMD relative to DON 2 h after dosing. The order of potency based on BMD values was: DON(1) ≈ 3-ADON(1) ≈ 15-ADON(1) < NIV(3) < HT-2(5) < FUS-X(9) << T-2(124). In a second approach, time course effects of each toxin at fixed doses were measured by calculating the incremental area under the curve (IAUC) over 16 h. DON caused significant feed refusal within the first 30 min after exposure, lasting only 3 h while for 3-ADON and 15-ADON, feed refusal lasted 6 h. NIV, FUS-X, T-2, and HT-2 toxins caused the longest duration of feed refusal, lasting up to 16 h. Based on IAUC values, the order of relative potency was as follows: DON(1) < 3-ADON(2) ≈ 15-ADON(2) < NIV(7) < FUS-X(10) << T-2(31) < HT-2(34). These results provide a foundation for developing consensus TEFs that will be amenable to future risk assessment of trichothecene mixtures.
Collapse
Affiliation(s)
- D. Male
- Department of Food Science and Human Nutrition, Michigan State University, 469 Wilson Road, East Lansing, MI 48824, USA
| | - N.J. Mitchell
- Department of Food Science and Human Nutrition, Michigan State University, 469 Wilson Road, East Lansing, MI 48824, USA
| | - W. Wu
- Department of Food Science and Human Nutrition, Michigan State University, 469 Wilson Road, East Lansing, MI 48824, USA
- College of Veterinary Medicine, Nanjing Agricultural University, No. 1 Weigang, 210095 Nanjing, China P.R
| | - S. Bursian
- Department of Animal Science, Michigan State University, 474 S. Shaw Lane, East Lansing, MI 48824, USA
| | - J. Pestka
- Department of Food Science and Human Nutrition, Michigan State University, 469 Wilson Road, East Lansing, MI 48824, USA
| | - F. Wu
- Department of Food Science and Human Nutrition, Michigan State University, 469 Wilson Road, East Lansing, MI 48824, USA
| |
Collapse
|
154
|
Lautert C, Ferreiro L, Azevedo M, Botton S, Santos J, Gonçalves P, Schlemmer K, Machado V, Santurio J. In vitro effect of ochratoxin A and deoxynivalenol on the expression of interleukin 5 and interferon-gamma in broiler chicken lymphocytes. WORLD MYCOTOXIN J 2016. [DOI: 10.3920/wmj2014.1852] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Cytokines are proteins secreted by cells of innate and acquired immunity, produced in response to various antigens and responsible for mediating several function of these cells. Our study evaluated the profile of cytokines interleukin 5 (IL-5) and interferon gamma (IFN-γ), induced in lymphocytes of broiler chickens in response to secondary fungal metabolites ochratoxin A (OTA) and deoxynivalenol (DON) at concentrations of 0.001, 0.01, 0.1 and 1 μg/ml. The quantification of the cytokines was analysed at 24, 48 and 72 h after incubation with mycotoxins, using real-time PCR (qRT-PCR). The results obtained showed that OTA induced mRNA synthesis of IL-5 at concentrations 0.001, 0.1 and 1 μg/ml after 24 h of lymphocyte incubation, while at 48 h only the expression of the IL-5 cytokine at a concentration of 1 μg/ml (P<0.05) was detected. DON in a concentration of 1 μg/ml induced the expression of IL-5 in the lymphocytes only at 48 h post-incubation period (P<0.05). Regarding IFN-γ, gene expression was not observed in the lymphocytes of broiler chickens incubated with OTA and DON. The data obtained represent a profile of response mediated by T helper 2 cells to the exposure of broiler chicken immune cells to different concentrations of OTA and DON.
Collapse
Affiliation(s)
- C. Lautert
- Setor de Micologia, Universidade Federal do Rio Grande do Sul, 91540-000, Porto Alegre, RS, Brazil
| | - L. Ferreiro
- Setor de Micologia, Universidade Federal do Rio Grande do Sul, 91540-000, Porto Alegre, RS, Brazil
| | - M.I. Azevedo
- Setor de Micologia, Universidade Federal do Rio Grande do Sul, 91540-000, Porto Alegre, RS, Brazil
| | - S.A. Botton
- Departamento de Medicina Veterinária Preventiva, Centro de Ciências Rurais, Universidade Federal de Santa Maria, 97105-900, Santa Maria, RS, Brazil
| | - J.T. Santos
- Departamento de Clínica de Grandes Animais, Hospital Veterinário, Universidade Federal de Santa Maria, 97105-900, Santa Maria, RS, Brazil
| | - P.B.D. Gonçalves
- Departamento de Clínica de Grandes Animais, Hospital Veterinário, Universidade Federal de Santa Maria, 97105-900, Santa Maria, RS, Brazil
| | - K.B. Schlemmer
- Departamento de Microbiologia e Parasitologia, Laboratório de Pesquisas Micológicas (LAPEMI), Universidade Federal de Santa Maria, Avenida Roraima 1000, Cidade Universitária, Bairro Camobi, 97105-900, Santa Maria, RS, Brazil
| | - V.S. Machado
- Departamento de Medicina Veterinária Preventiva, Centro de Ciências Rurais, Universidade Federal de Santa Maria, 97105-900, Santa Maria, RS, Brazil
| | - J.M. Santurio
- Departamento de Microbiologia e Parasitologia, Laboratório de Pesquisas Micológicas (LAPEMI), Universidade Federal de Santa Maria, Avenida Roraima 1000, Cidade Universitária, Bairro Camobi, 97105-900, Santa Maria, RS, Brazil
| |
Collapse
|
155
|
Gu MJ, Song SK, Lee IK, Ko S, Han SE, Bae S, Ji SY, Park BC, Song KD, Lee HK, Han SH, Yun CH. Barrier protection via Toll-like receptor 2 signaling in porcine intestinal epithelial cells damaged by deoxynivalnol. Vet Res 2016; 47:25. [PMID: 26857454 PMCID: PMC4746821 DOI: 10.1186/s13567-016-0309-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Accepted: 01/05/2016] [Indexed: 12/29/2022] Open
Abstract
Intestinal barrier is the first line of defense inside the body and comprises intercellular tight junction (TJ) proteins that regulate paracellular permeability. Deoxynivalenol (DON), a fungal metabolite often found in the contaminated food of domestic animals, is known to impair intestinal barrier function and may be involved in intestinal inflammation. Unlike in humans and mice, the importance of Toll-like receptor (TLR) 2 expressed in porcine intestinal epithelial cells is largely unclear. Therefore, the aim of the present study was to investigate whether TLR2 stimulation enhances intestinal barrier function and protects against DON exposure. We found that the cells treated with TLR2 ligands decreased the epithelial barrier permeability and enhanced TJ protein expression in intestinal porcine epithelial cells (IPEC-J2). In addition, pretreatment with TLR2 ligand, including Pam3CSK4 (PCSK) and lipoteichoic acid from Bacillus subtilis, prevented DON-induced barrier dysfunction by increasing the expression of TJ proteins via the PI3K-Akt-dependent pathway. It is likely that the DON-disrupted intestinal barrier caused biological changes of immune cells in the lamina propria. Thus, we conducted co-culture of differentiated IPEC-J2 cells in the upper well together with peripheral blood mononuclear cells in the bottom well and found that apical TLR2 stimulation of IPEC-J2 cells could alleviate the reduction in cell survival and proliferation of immune cells. Conclusively, TLR2 signaling on intestinal epithelial cells may enhance intestinal barrier function and prevent DON-induced barrier dysfunction of epithelial cells.
Collapse
Affiliation(s)
- Min Jeong Gu
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea. .,Biomodulation Major and Center for Food Bioconvergence, Seoul National University, Seoul, 151-921, Republic of Korea.
| | - Sun Kwang Song
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea.
| | - In Kyu Lee
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea.
| | - Seongyeol Ko
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea. .,Biomodulation Major and Center for Food Bioconvergence, Seoul National University, Seoul, 151-921, Republic of Korea.
| | - Seung Eun Han
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea. .,Biomin Korea Ltd., Seoul, 153-714, Republic of Korea.
| | - Suhan Bae
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea. .,Seoulfeed Co., Ltd., Incheon, 405-819, Republic of Korea.
| | - Sang Yun Ji
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea. .,National Institute of Animal Science, Rural Development Administration, Jeonju, 565-851, Republic of Korea.
| | - Byung-Chul Park
- Institute of Green Bio Science Technology, Seoul National University, Pyeongchang, 232-916, Republic of Korea.
| | - Ki-Duk Song
- Department of Animal Biotechnology, Chonbuk National University, Jeonju, 561-756, Republic of Korea.
| | - Hak-Kyo Lee
- Department of Animal Biotechnology, Chonbuk National University, Jeonju, 561-756, Republic of Korea.
| | - Seung Hyun Han
- Department of Oral Microbiology and Immunology, School of Dentistry, Seoul National University, Seoul, 110-749, Republic of Korea.
| | - Cheol-Heui Yun
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea. .,Biomodulation Major and Center for Food Bioconvergence, Seoul National University, Seoul, 151-921, Republic of Korea. .,Institute of Green Bio Science Technology, Seoul National University, Pyeongchang, 232-916, Republic of Korea.
| |
Collapse
|
156
|
Acetylated Deoxynivalenol Generates Differences of Gene Expression that Discriminate Trichothecene Toxicity. Toxins (Basel) 2016; 8:42. [PMID: 26861396 PMCID: PMC4773795 DOI: 10.3390/toxins8020042] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 02/03/2016] [Indexed: 01/06/2023] Open
Abstract
Deoxynivalenol (DON), which is a toxic secondary metabolite generated by Fusarium species, is synthesized through two separate acetylation pathways. Both acetylation derivatives, 3-acetyl-DON (3ADON) and 15-acetyl-DON (15ADON), also contaminate grain and corn widely. These derivatives are deacetylated via a variety of processes after ingestion, so it has been suggested that they have the same toxicity as DON. However, in the intestinal entry region such as the duodenum, the derivatives might come into contact with intestinal epithelium cells because metabolism by microflora or import into the body has not progressed. Therefore, the differences of toxicity between DON and these derivatives need to be investigated. Here, we observed gene expression changes in the yeast pdr5Δ mutant strain under concentration-dependent mycotoxin exposure conditions. 15ADON exposure induced significant gene expression changes and DON exposure generally had a similar but smaller effect. However, the glucose transporter genes HXT2 and HXT4 showed converse trends. 3ADON also induced a different expression trend in these genes than DON and 15ADON. These differences in gene expression suggest that DON and its derivatives have different effects on cells.
Collapse
|
157
|
Kamala A, Kimanya M, Haesaert G, Tiisekwa B, Madege R, Degraeve S, Cyprian C, De Meulenaer B. Local post-harvest practices associated with aflatoxin and fumonisin contamination of maize in three agro ecological zones of Tanzania. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2016; 33:551-9. [DOI: 10.1080/19440049.2016.1138546] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
158
|
Tsubone H, Hanafusa M. An overview of toxicity of trichothecene mycotoxins, T-2 toxin and deoxynivalenol: Involvements of their oxidative stress and apoptosis effects. ACTA ACUST UNITED AC 2016. [DOI: 10.2520/myco.66.129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Hirokazu Tsubone
- Research Center for Food Safety, Graduate School of Agricultural and Life Sciences, The University of Tokyo
| | - Masakazu Hanafusa
- Research Center for Food Safety, Graduate School of Agricultural and Life Sciences, The University of Tokyo
| |
Collapse
|
159
|
Ren ZH, Deng HD, Wang YC, Deng JL, Zuo ZC, Wang Y, Peng X, Cui HM, Fang J, Yu SM, Shen LH, Hu YC. The Fusarium toxin zearalenone and deoxynivalenol affect murine splenic antioxidant functions, interferon levels, and T-cell subsets. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2016; 41:195-200. [PMID: 26722803 DOI: 10.1016/j.etap.2015.12.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Revised: 12/10/2015] [Accepted: 12/14/2015] [Indexed: 06/05/2023]
Abstract
This study aimed to evaluate the effects of the Fusarium toxin zearalenone (ZEA) and deoxynivalenol (DON) on splenic antioxidant functions, IFN levels, and T-cell subsets in mice. Herein, 360 mice were assigned to nine groups for a 12-day study. Mice were administered an intraperitoneal injection for 4 consecutive days with different concentrations of ZEA alone, DON alone, or ZEA+DON. Spleen and blood samples were collected on days 0, 3, 5, 8, and 12. Mice in each of the experimental groups showed dysreglated splenic antioxidant functions, IFN levels, and T-cell subset frequencies, suggesting that the immune system had been affected. The ZEA+DON-treated groups, especially the group that received a higher concentration of ZEA+DON (Group D2Z2), showed more obvious effects on the dysregulation of splenic antioxidant functions, IFN levels, and T-cell subsets. This finding suggested that DON and ZEA exerted synergistic effects.
Collapse
Affiliation(s)
- Z H Ren
- College of Veterinary Medicine, Sichuan Agricultural University, Ya'an 625014, China; Sichuan Province Key Laboratory of Animal Disease & Human Health, Ya'an 625014, China; Key Laboratory of Environmental Hazard and Human Health of Sichuan Province, Ya'an 625014, China.
| | - H D Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Ya'an 625014, China; Sichuan Province Key Laboratory of Animal Disease & Human Health, Ya'an 625014, China; Key Laboratory of Environmental Hazard and Human Health of Sichuan Province, Ya'an 625014, China.
| | - Y C Wang
- College of Veterinary Medicine, Sichuan Agricultural University, Ya'an 625014, China; Sichuan Province Key Laboratory of Animal Disease & Human Health, Ya'an 625014, China; Key Laboratory of Environmental Hazard and Human Health of Sichuan Province, Ya'an 625014, China; School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China.
| | - J L Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Ya'an 625014, China; Sichuan Province Key Laboratory of Animal Disease & Human Health, Ya'an 625014, China; Key Laboratory of Environmental Hazard and Human Health of Sichuan Province, Ya'an 625014, China.
| | - Z C Zuo
- College of Veterinary Medicine, Sichuan Agricultural University, Ya'an 625014, China; Sichuan Province Key Laboratory of Animal Disease & Human Health, Ya'an 625014, China; Key Laboratory of Environmental Hazard and Human Health of Sichuan Province, Ya'an 625014, China.
| | - Y Wang
- College of Veterinary Medicine, Sichuan Agricultural University, Ya'an 625014, China; Sichuan Province Key Laboratory of Animal Disease & Human Health, Ya'an 625014, China; Key Laboratory of Environmental Hazard and Human Health of Sichuan Province, Ya'an 625014, China.
| | - X Peng
- College of Veterinary Medicine, Sichuan Agricultural University, Ya'an 625014, China; Sichuan Province Key Laboratory of Animal Disease & Human Health, Ya'an 625014, China; Key Laboratory of Environmental Hazard and Human Health of Sichuan Province, Ya'an 625014, China.
| | - H M Cui
- College of Veterinary Medicine, Sichuan Agricultural University, Ya'an 625014, China; Sichuan Province Key Laboratory of Animal Disease & Human Health, Ya'an 625014, China; Key Laboratory of Environmental Hazard and Human Health of Sichuan Province, Ya'an 625014, China.
| | - J Fang
- College of Veterinary Medicine, Sichuan Agricultural University, Ya'an 625014, China; Sichuan Province Key Laboratory of Animal Disease & Human Health, Ya'an 625014, China; Key Laboratory of Environmental Hazard and Human Health of Sichuan Province, Ya'an 625014, China.
| | - S M Yu
- College of Veterinary Medicine, Sichuan Agricultural University, Ya'an 625014, China; Sichuan Province Key Laboratory of Animal Disease & Human Health, Ya'an 625014, China; Key Laboratory of Environmental Hazard and Human Health of Sichuan Province, Ya'an 625014, China.
| | - L H Shen
- College of Veterinary Medicine, Sichuan Agricultural University, Ya'an 625014, China; Sichuan Province Key Laboratory of Animal Disease & Human Health, Ya'an 625014, China; Key Laboratory of Environmental Hazard and Human Health of Sichuan Province, Ya'an 625014, China.
| | - Y C Hu
- College of Veterinary Medicine, Sichuan Agricultural University, Ya'an 625014, China; Sichuan Province Key Laboratory of Animal Disease & Human Health, Ya'an 625014, China; Key Laboratory of Environmental Hazard and Human Health of Sichuan Province, Ya'an 625014, China.
| |
Collapse
|
160
|
Bannert E, Tesch T, Kluess J, Frahm J, Kersten S, Kahlert S, Renner L, Rothkötter HJ, Dänicke S. Metabolic and hematological consequences of dietary deoxynivalenol interacting with systemic Escherichia coli lipopolysaccharide. Toxins (Basel) 2015; 7:4773-96. [PMID: 26580654 PMCID: PMC4663533 DOI: 10.3390/toxins7114773] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 11/02/2015] [Accepted: 11/04/2015] [Indexed: 01/12/2023] Open
Abstract
Previous studies have shown that chronic oral deoxynivalenol (DON) exposure modulated Escherichia coli lipopolysaccharide (LPS)-induced systemic inflammation, whereby the liver was suspected to play an important role. Thus, a total of 41 barrows was fed one of two maize-based diets, either a DON-diet (4.59 mg DON/kg feed, n = 19) or a control diet (CON, n = 22). Pigs were equipped with indwelling catheters for pre- or post-hepatic (portal vs. jugular catheter) infusion of either control (0.9% NaCl) or LPS (7.5 µg/kg BW) for 1h and frequent blood sampling. This design yielded six groups: CON_CONjugular‑CONportal, CON_CONjugular‑LPSportal, CON_LPSjugular‑CONportal, DON_CONjugular‑CONportal, DON_CONjugular‑LPSportal and DON_LPSjugular‑CONportal. Blood samples were analyzed for blood gases, electrolytes, glucose, pH, lactate and red hemogram. The red hemogram and electrolytes were not affected by DON and LPS. DON-feeding solely decreased portal glucose uptake (p < 0.05). LPS-decreased partial oxygen pressure (pO₂) overall (p < 0.05), but reduced pCO₂ only in arterial blood, and DON had no effect on either. Irrespective of catheter localization, LPS decreased pH and base-excess (p < 0.01), but increased lactate and anion-gap (p < 0.01), indicating an emerging lactic acidosis. Lactic acidosis was more pronounced in the group DON_LPSjugular-CONportal than in CON-fed counterparts (p < 0.05). DON-feeding aggravated the porcine acid-base balance in response to a subsequent immunostimulus dependent on its exposure site (pre- or post-hepatic).
Collapse
Affiliation(s)
- Erik Bannert
- Institute of Animal Nutrition, Friedrich-Loeffler Institute (FLI), Federal Research Institute for Animal Health, Bundesallee 50, Braunschweig 38116, Germany.
| | - Tanja Tesch
- Institute of Animal Nutrition, Friedrich-Loeffler Institute (FLI), Federal Research Institute for Animal Health, Bundesallee 50, Braunschweig 38116, Germany.
| | - Jeannette Kluess
- Institute of Animal Nutrition, Friedrich-Loeffler Institute (FLI), Federal Research Institute for Animal Health, Bundesallee 50, Braunschweig 38116, Germany.
| | - Jana Frahm
- Institute of Animal Nutrition, Friedrich-Loeffler Institute (FLI), Federal Research Institute for Animal Health, Bundesallee 50, Braunschweig 38116, Germany.
| | - Susanne Kersten
- Institute of Animal Nutrition, Friedrich-Loeffler Institute (FLI), Federal Research Institute for Animal Health, Bundesallee 50, Braunschweig 38116, Germany.
| | - Stefan Kahlert
- Institute of Anatomy, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, Magdeburg 39120, Germany.
| | - Lydia Renner
- Institute of Anatomy, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, Magdeburg 39120, Germany.
| | - Hermann-Josef Rothkötter
- Institute of Anatomy, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, Magdeburg 39120, Germany.
| | - Sven Dänicke
- Institute of Animal Nutrition, Friedrich-Loeffler Institute (FLI), Federal Research Institute for Animal Health, Bundesallee 50, Braunschweig 38116, Germany.
| |
Collapse
|
161
|
Cano-Sancho G, González-Arias C, Ramos A, Sanchis V, Fernández-Cruz M. Cytotoxicity of the mycotoxins deoxynivalenol and ochratoxin A on Caco-2 cell line in presence of resveratrol. Toxicol In Vitro 2015; 29:1639-46. [DOI: 10.1016/j.tiv.2015.06.020] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 06/17/2015] [Accepted: 06/18/2015] [Indexed: 12/30/2022]
|
162
|
Wan D, Wang X, Wu Q, Lin P, Pan Y, Sattar A, Huang L, Ahmad I, Zhang Y, Yuan Z. Integrated Transcriptional and Proteomic Analysis of Growth Hormone Suppression Mediated by Trichothecene T-2 Toxin in Rat GH3 Cells. Toxicol Sci 2015; 147:326-38. [PMID: 26141394 DOI: 10.1093/toxsci/kfv131] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
Chronic exposure to trichothecenes is known to disturb insulin-like growth factor 1 and signaling of insulin and leptin hormones and causes considerable growth retardation in animals. However, limited information was available on mechanisms underlying trichothecene-induced growth retardation. In this study, we employed an integrated transcriptomics, proteomics, and RNA interference (RNAi) approach to study the molecular mechanisms underlying trichothecene cytotoxicity in rat pituitary adenoma GH3 cells. Our results showed that trichothecenes suppressed the synthesis of growth hormone 1 (Gh1) and inhibited the eukaryotic transcription and translation initiation by suppressing aminoacyl-tRNA synthetases transcription, inducing eukaryotic translation initiation factor 2-alpha kinase 2 (EIF2AK2) and reducing eukaryotic translation initiation factor 5 a. The sulfhydryl oxidases , protein disulfide isomerase,and heat shock protein 90 (were greatly reduced, which resulted in adverse regulation of protein processing and folding. Differential genes and proteins associated with a decline in energy metabolism and cell cycle arrest were also found in our study. However, use of RNAi to interfere with hemopoietic cell kinase (Hck) and EIF2AK2 transcriptions or use of chemical inhibitors of MAPK, p38, Ras, and JNK partially reversed the reduction of Gh1 levels induced by trichothecenes. It indicated that the activation of MAPKs, Hck, and EIF2AK2 were important for trichothecene-induced growth hormone suppression. Considering the potential hazards of exposure to trichothecenes, our findings could help to improve our understanding regarding human and animal health implications.
Collapse
Affiliation(s)
- Dan Wan
- *National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University; Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, Hubei, China; Research Center of Healthy Livestock Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Xu Wang
- *National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University; Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, Hubei, China
| | - Qinghua Wu
- *National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues; College of Life Science, Yangtze University, Jingzhou, Hubei, China; and Center for Basic and Applied Research, Faculty of Informatics and Management, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Pingping Lin
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University; Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, Hubei, China
| | - Yuanhu Pan
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University; Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, Hubei, China
| | - Adeel Sattar
- *National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues; Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, Hubei, China
| | - Lingli Huang
- *National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University
| | - Ijaz Ahmad
- *National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues; Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, Hubei, China
| | - Yuanyuan Zhang
- *National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University
| | - Zonghui Yuan
- *National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University; Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, Hubei, China;
| |
Collapse
|
163
|
Cheli F, Giromini C, Baldi A. Mycotoxin mechanisms of action and health impact: ‘in vitro’ or ‘in vivo’ tests, that is the question. WORLD MYCOTOXIN J 2015. [DOI: 10.3920/wmj2014.1864] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The aim of this paper is to present examples of in vitro and in vivo tests for mycotoxin mechanisms of action and evaluation of health effects, with a focus on the gut environment and toxicity testing. In vivo investigations may provide information on the net effects of mycotoxins in whole animals, whereas in vitro models represent effective tools to perform simplified experiments under uniform and well-controlled conditions and a suitable alternative to in vivo animal testing providing insights not achievable with animal studies. The main limits of in vitro models are the lack of interactions with other cells and extracellular factors, lack of hormonal or immunological influences, and lack or different levels of in vitro expression of genes involved in the overall response to mycotoxins. The translation of in vitro data into meaningful in vivo effects remains an unsolved problem. The main issues to be considered are the mycotoxin concentration range in accordance with levels encountered in realistic situations, the identification of reliable biomarkers of mycotoxin toxicity, the measurement of the chronic toxicity, the evaluation of single- or multi-toxin challenge. The gastrointestinal wall is the first barrier preventing the entry of undesirable substances. The intestinal epithelium can be exposed to high concentrations of mycotoxins upon ingestion of contaminated food and the amount of mycotoxin consumed via food does not always reflect the amount available to exert toxic actions in a target organ. In vitro digestion models in combination with intestinal epithelial cells are powerful tools to screen and predict the in vivo bioavailability and digestibility of mycotoxins in contaminated food and correctly estimate health effects. In conclusion, in vitro and in vivo tests are complementary approaches for providing a more accurate picture of the health impact of mycotoxins and improved understanding and evaluation of relevant dietary exposure and risk scenarios.
Collapse
Affiliation(s)
- F. Cheli
- Department of Health, Animal Science and Food Safety, Università degli Studi di Milano, Via Trentacoste 2, 20134, Milano, Italy
| | - C. Giromini
- Department of Health, Animal Science and Food Safety, Università degli Studi di Milano, Via Trentacoste 2, 20134, Milano, Italy
| | - A. Baldi
- Department of Health, Animal Science and Food Safety, Università degli Studi di Milano, Via Trentacoste 2, 20134, Milano, Italy
| |
Collapse
|
164
|
Yekkour A, Tran D, Arbelet-Bonnin D, Briand J, Mathieu F, Lebrihi A, Errakhi R, Sabaou N, Bouteau F. Early events induced by the toxin deoxynivalenol lead to programmed cell death in Nicotiana tabacum cells. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 238:148-57. [PMID: 26259183 DOI: 10.1016/j.plantsci.2015.06.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 06/04/2015] [Accepted: 06/05/2015] [Indexed: 06/04/2023]
Abstract
Deoxynivalenol (DON) is a mycotoxin affecting animals and plants. This toxin synthesized by Fusarium culmorum and Fusarium graminearum is currently believed to play a decisive role in the fungal phytopathogenesis as a virulence factor. Using cultured cells of Nicotiana tabacum BY2, we showed that DON-induced programmed cell death (PCD) could require transcription and translation processes, in contrast to what was observed in animal cells. DON could induce different cross-linked pathways involving (i) reactive oxygen species (ROS) generation linked, at least partly, to a mitochondrial dysfunction and a transcriptional down-regulation of the alternative oxidase (Aox1) gene and (ii) regulation of ion channel activities participating in cell shrinkage, to achieve PCD.
Collapse
Affiliation(s)
- Amine Yekkour
- Université Paris Diderot, Sorbonne Paris Cité, Institut des Energies de Demain, Paris, France; Ecole Normale Supérieure de Kouba, Laboratoire de Biologie de Systèmes Microbiens, Alger, Algeria; Institut National de la Recherche Agronomique d'Algérie, Centre de Recherche polyvalent Mehdi Boualem, Alger, Algeria
| | - Daniel Tran
- Université Paris Diderot, Sorbonne Paris Cité, Institut des Energies de Demain, Paris, France
| | - Delphine Arbelet-Bonnin
- Université Paris Diderot, Sorbonne Paris Cité, Institut des Energies de Demain, Paris, France
| | - Joël Briand
- Université Paris Diderot, Sorbonne Paris Cité, Institut des Energies de Demain, Paris, France
| | - Florence Mathieu
- Université de Toulouse, Laboratoire de Génie Chimique UMR 5503 (CNRS/INPT/UPS), ENSAT/INP de Toulouse, Castanet-Tolosan Cedex, France
| | - Ahmed Lebrihi
- Université de Toulouse, Laboratoire de Génie Chimique UMR 5503 (CNRS/INPT/UPS), ENSAT/INP de Toulouse, Castanet-Tolosan Cedex, France; Université Moulay Ismail, Marjane 2, BP 298, Meknès, Maroc
| | - Rafik Errakhi
- Université Moulay Ismail, Marjane 2, BP 298, Meknès, Maroc
| | - Nasserdine Sabaou
- Ecole Normale Supérieure de Kouba, Laboratoire de Biologie de Systèmes Microbiens, Alger, Algeria
| | - François Bouteau
- Université Paris Diderot, Sorbonne Paris Cité, Institut des Energies de Demain, Paris, France.
| |
Collapse
|
165
|
Raiola A, Tenore GC, Manyes L, Meca G, Ritieni A. Risk analysis of main mycotoxins occurring in food for children: An overview. Food Chem Toxicol 2015; 84:169-80. [PMID: 26327433 DOI: 10.1016/j.fct.2015.08.023] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 08/22/2015] [Accepted: 08/24/2015] [Indexed: 01/11/2023]
Abstract
Mycotoxins are secondary metabolites produced by fungi contaminating the food chain that are toxic to animals and humans. Children up to 12 years old are recognized as a potentially vulnerable subgroup with respect to consumption of these contaminants. Apart from having a higher exposure per kg body weight, they have a different physiology from that of adults. Therefore they may be more sensitive to neurotoxic, endocrine and immunological effects. For these reasons, a specific and up-to-date risk analysis for this category is of great interest. In this review, an accurate analysis of the main mycotoxins occurring in food intended for children (deoxynivalenol, aflatoxins, ochratoxins, patulin and fumonisins) is presented. In particular, known mechanisms of toxicity and levels of exposure and bioaccessibility in children are shown. In addition, recent discoveries about the strategies of mycotoxins managing are discussed.
Collapse
Affiliation(s)
- Assunta Raiola
- Department of Agriculture, Faculty of Agriculture, University of Naples "Federico II", Via Universitá 100, 80055, Portici, Napoli, Italy.
| | - Gian Carlo Tenore
- Department of Pharmacy, Faculty of Pharmacy, University of Naples "Federico II", Via Domenico Montesano 49, 80131, Napoli, Italy
| | - Lara Manyes
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Avenue Vicent Andrés Estellés s/n, 46100 Burjassot, Spain
| | - Giuseppe Meca
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Avenue Vicent Andrés Estellés s/n, 46100 Burjassot, Spain
| | - Alberto Ritieni
- Department of Pharmacy, Faculty of Pharmacy, University of Naples "Federico II", Via Domenico Montesano 49, 80131, Napoli, Italy
| |
Collapse
|
166
|
Morris G, Berk M, Walder K, Maes M. The Putative Role of Viruses, Bacteria, and Chronic Fungal Biotoxin Exposure in the Genesis of Intractable Fatigue Accompanied by Cognitive and Physical Disability. Mol Neurobiol 2015; 53:2550-71. [PMID: 26081141 DOI: 10.1007/s12035-015-9262-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 05/28/2015] [Indexed: 01/08/2023]
Abstract
Patients who present with severe intractable apparently idiopathic fatigue accompanied by profound physical and or cognitive disability present a significant therapeutic challenge. The effect of psychological counseling is limited, with significant but very slight improvements in psychometric measures of fatigue and disability but no improvement on scientific measures of physical impairment compared to controls. Similarly, exercise regimes either produce significant, but practically unimportant, benefit or provoke symptom exacerbation. Many such patients are afforded the exclusionary, non-specific diagnosis of chronic fatigue syndrome if rudimentary testing fails to discover the cause of their symptoms. More sophisticated investigations often reveal the presence of a range of pathogens capable of establishing life-long infections with sophisticated immune evasion strategies, including Parvoviruses, HHV6, variants of Epstein-Barr, Cytomegalovirus, Mycoplasma, and Borrelia burgdorferi. Other patients have a history of chronic fungal or other biotoxin exposure. Herein, we explain the epigenetic factors that may render such individuals susceptible to the chronic pathology induced by such agents, how such agents induce pathology, and, indeed, how such pathology can persist and even amplify even when infections have cleared or when biotoxin exposure has ceased. The presence of active, reactivated, or even latent Herpes virus could be a potential source of intractable fatigue accompanied by profound physical and or cognitive disability in some patients, and the same may be true of persistent Parvovirus B12 and mycoplasma infection. A history of chronic mold exposure is a feasible explanation for such symptoms, as is the presence of B. burgdorferi. The complex tropism, life cycles, genetic variability, and low titer of many of these pathogens makes their detection in blood a challenge. Examination of lymphoid tissue or CSF in such circumstances may be warranted.
Collapse
Affiliation(s)
- Gerwyn Morris
- Tir Na Nog, Bryn Road seaside 87, Llanelli, SA15 2LW, Wales, UK
| | - Michael Berk
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, Geelong, Australia.,Orygen, The National Centre of Excellence in Youth Mental Health, Department of Psychiatry and The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia
| | - Ken Walder
- Centre for Molecular and Medical Research, School of Medicine, Deakin University, Geelong, Australia
| | - Michael Maes
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, Geelong, Australia. .,Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
167
|
Deoxynivalenol Impairs Weight Gain and Affects Markers of Gut Health after Low-Dose, Short-Term Exposure of Growing Pigs. Toxins (Basel) 2015; 7:2071-95. [PMID: 26067367 PMCID: PMC4488690 DOI: 10.3390/toxins7062071] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 05/26/2015] [Accepted: 06/01/2015] [Indexed: 12/22/2022] Open
Abstract
Deoxynivalenol (DON) is one of the major mycotoxins produced by Fusarium fungi, and exposure to this mycotoxin requires an assessment of the potential adverse effects, even at low toxin levels. The aim of this study was to investigate the effects of a short-term, low-dose DON exposure on various gut health parameters in pigs. Piglets received a commercial feed or the same feed contaminated with DON (0.9 mg/kg feed) for 10 days, and two hours after a DON bolus (0.28 mg/kg BW), weight gain was determined and samples of different segments of the intestine were collected. Even the selected low dose of DON in the diet negatively affected weight gain and induced histomorphological alterations in the duodenum and jejunum. The mRNA expression of different tight junction (TJ) proteins, especially occludin, of inflammatory markers, like interleukin-1 beta and interleukin-10 and the oxidative stress marker heme-oxigenase1, were affected along the intestine by low levels of DON in the diet. Taken together, our results indicate that even after low-level exposure to DON, which has been generally considered as acceptable in animal feeds, clinically-relevant changes are measurable in markers of gut health and integrity.
Collapse
|
168
|
Hassan YI, Watts C, Li XZ, Zhou T. A novel Peptide-binding motifs inference approach to understand deoxynivalenol molecular toxicity. Toxins (Basel) 2015; 7:1989-2005. [PMID: 26043274 PMCID: PMC4488686 DOI: 10.3390/toxins7061989] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 05/26/2015] [Accepted: 05/26/2015] [Indexed: 11/16/2022] Open
Abstract
Deoxynivalenol (DON) is a type B trichothecene mycotoxin that is commonly detected in cereals and grains world-wide. The low-tolerated levels of this mycotoxin, especially in mono-gastric animals, reflect its bio-potency. The toxicity of DON is conventionally attributed to its ability to inhibit ribosomal protein biosynthesis, but recent advances in molecular tools have elucidated novel mechanisms that further explain DON’s toxicological profile, complementing the diverse symptoms associated with its exposure. This article summarizes the recent findings related to novel mechanisms of DON toxicity as well as how structural modifications to DON alter its potency. In addition, it explores feasible ways of expanding our understating of DON-cellular targets and their roles in DON toxicity, clearance, and detoxification through the utilization of computational biology approaches.
Collapse
Affiliation(s)
- Yousef I Hassan
- Guelph Food Research Centre, Agriculture and Agri-Food Canada (AAFC), Guelph, ON N1G 5C9, Canada.
| | - Christena Watts
- Guelph Food Research Centre, Agriculture and Agri-Food Canada (AAFC), Guelph, ON N1G 5C9, Canada.
| | - Xiu-Zhen Li
- Guelph Food Research Centre, Agriculture and Agri-Food Canada (AAFC), Guelph, ON N1G 5C9, Canada.
| | - Ting Zhou
- Guelph Food Research Centre, Agriculture and Agri-Food Canada (AAFC), Guelph, ON N1G 5C9, Canada.
| |
Collapse
|
169
|
Effects of Wheat Naturally Contaminated with Fusarium Mycotoxins on Growth Performance and Selected Health Indices of Red Tilapia (Oreochromis niloticus × O. mossambicus). Toxins (Basel) 2015; 7:1929-44. [PMID: 26035489 PMCID: PMC4488682 DOI: 10.3390/toxins7061929] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 05/16/2015] [Accepted: 05/20/2015] [Indexed: 12/04/2022] Open
Abstract
An 8-week feeding trial was conducted to examine effects of wheat naturally contaminated with Fusarium mycotoxins (deoxynivalenol, DON 41 mg·kg−1) on growth performance and selected health indices of red tilapia (Oreochromis niloticus × O. mossambicus; initial weight = 4.3 g/fish). Five experimental diets were formulated by replacement of clean wheat with naturally contaminated wheat resulting in graded levels of DON and zearalenone (ZEN) (Diet 1 0.07/0.01, Diet 2 0.31/0.09, Diet 3 0.50/0.21, Diet 4 0.92/0.37 and Diet 5 1.15/0.98 mg·kg−1). Groups of 50 fish were randomly allocated into each of 20 aquaria and fed to near-satiety for eight weeks. Growth rate, feed intake and feed efficiency of fish fed the experimental diets decreased linearly with increasing levels of Fusarium mycotoxins (p < 0.05). Although growth depression was associated with feeding diets naturally contaminated with Fusarium mycotoxins, especially DON, no biochemical and histopathological parameters measured in blood and liver appeared affected by Fusarium mycotoxin concentrations of diets (p > 0.05). Though there was no clear evidence of overt DON toxicity to red tilapia, it is recommended that feed ingredients should be screened for Fusarium mycotoxin contamination to ensure optimal growth performance.
Collapse
|
170
|
Pietsch C, Katzenback BA, Garcia-Garcia E, Schulz C, Belosevic M, Burkhardt-Holm P. Acute and subchronic effects on immune responses of carp (Cyprinus carpio L.) after exposure to deoxynivalenol (DON) in feed. Mycotoxin Res 2015; 31:151-64. [DOI: 10.1007/s12550-015-0226-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Revised: 05/07/2015] [Accepted: 05/10/2015] [Indexed: 12/13/2022]
|
171
|
Dysregulation of energy balance by trichothecene mycotoxins: Mechanisms and prospects. Neurotoxicology 2015; 49:15-27. [PMID: 25956358 DOI: 10.1016/j.neuro.2015.04.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 04/14/2015] [Accepted: 04/26/2015] [Indexed: 11/23/2022]
Abstract
Trichothecenes are toxic metabolites produced by fungi that constitute a worldwide hazard for agricultural production and both animal and human health. More than 40 countries have introduced regulations or guidelines for food and feed contamination levels of the most prevalent trichothecene, deoxynivalenol (DON), on the basis of its ability to cause growth suppression. With the development of analytical tools, evaluation of food contamination and exposure revealed that a significant proportion of the human population is chronically exposed to DON doses exceeding the provisional maximum tolerable daily dose. Accordingly, a better understanding of trichothecene impact on health is needed. Upon exposure to low or moderate doses, DON and other trichothecenes induce anorexia, vomiting and reduced weight gain. Several recent studies have addressed the mechanisms by which trichothecenes induce these symptoms and revealed a multifaceted action targeting gut, liver and brain and causing dysregulation in neuroendocrine signaling, immune responses, growth hormone axis, and central neurocircuitries involved in energy homeostasis. Newly identified trichothecene toxicosis biomarkers are just beginning to be exploited and already open up new questions on the potential harmful effects of chronic exposure to DON at apparently asymptomatic very low levels. This review summarizes our current understanding of the effects of DON and other trichothecenes on food intake and weight growth.
Collapse
|
172
|
Chamoun R, Aliferis KA, Jabaji S. Identification of signatory secondary metabolites during mycoparasitism of Rhizoctonia solani by Stachybotrys elegans. Front Microbiol 2015; 6:353. [PMID: 25972848 PMCID: PMC4413796 DOI: 10.3389/fmicb.2015.00353] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 04/08/2015] [Indexed: 11/24/2022] Open
Abstract
Stachybotrys elegans is able to parasitize the fungal plant pathogen Rhizoctonia solani AG-3 following a complex and intimate interaction, which, among others, includes the production of cell wall-degrading enzymes, intracellular colonization, and expression of pathogenic process encoding genes. However, information on the metabolome level is non-existent during mycoparasitism. Here, we performed a direct-infusion mass spectrometry (DIMS) metabolomics analysis using an LTQ Orbitrap analyzer in order to detect changes in the profiles of induced secondary metabolites of both partners during this mycoparasitic interaction 4 and 5 days following its establishment. The diketopiperazine(s) (DKPs) cyclo(S-Pro-S-Leu)/cyclo(S-Pro-S-Ile), ethyl 2-phenylacetate, and 3-nitro-4-hydroxybenzoic acid were detected as the primary response of Rhizoctonia 4 days following dual-culturing with Stachybotrys, whereas only the latter metabolite was up-regulated 1 day later. On the other hand, trichothecenes and atranones were mycoparasite-derived metabolites identified during mycoparasitism 4 and 5 days following dual-culturing. All the above secondary metabolites are known to exhibit bioactivity, including fungitoxicity, and represent key elements that determine the outcome of the interaction being studied. Results could be further exploited in programs for the evaluation of the bioactivity of these metabolites per se or their chemical analogs, and/or genetic engineering programs to obtain more efficient mycoparasite strains with improved efficacy and toxicological profiles.
Collapse
Affiliation(s)
- Rony Chamoun
- Department of Plant Science, McGill University Sainte-Anne-de-Bellevue, QC, Canada
| | | | - Suha Jabaji
- Department of Plant Science, McGill University Sainte-Anne-de-Bellevue, QC, Canada
| |
Collapse
|
173
|
Ghareeb K, Awad WA, Zebeli Q, Böhm J. Deoxynivalenol in chicken feed alters the vaccinal immune response and clinical biochemical serum parameters but not the intestinal and carcass characteristics. J Anim Physiol Anim Nutr (Berl) 2015; 100:53-60. [PMID: 25900321 DOI: 10.1111/jpn.12328] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 03/10/2015] [Indexed: 11/30/2022]
Abstract
This study was conducted to investigate the impacts of deoxynivalenol (DON) feeding either alone or in combination with a microbial feed additive (MFA) on the immune response to a viral vaccine and serum clinical chemical parameters. Forty 1-day-old boiler chicks were weighed and randomly divided into four groups, 10 birds in each group: (i) control group fed with basal diet; (ii) DON group fed with basal diet artificially contaminated with 10 mg DON/kg feed; (iii) DON + MFA group fed with basal diet contaminated with 10 mg DON/kg feed and supplemented with 2.5 kg of MFA/ton feed; and (iv) MFA group fed with basal diet supplemented with 2.5 kg of MFA/ton feed. At 35 days of age, birds were slaughtered and blood was collected for investigating the antibody titre against infectious bronchitis virus (IBV) and clinical chemical parameters. The results showed that DON reduced (p = 0.032) the titre against IBV, decreased (p = 0.005) the level of alanine transaminase (ALT) (4.2 ± 0.5 U/l) compared with control birds (6.4 ± 0.5 U/l), increased (p = 0.002) the serum cholesterol concentration (144 ± 6 mg/dl) compared with their control counterparts (123 ± 5 mg/dl) and increased (p = 0.074) the amount of circulating triglycerides (62.25 ± 7.50 mg/dl) compared with controls (39.55 ± 4.74). These results indicate that dietary DON altered the humoral immune response to viral vaccine and affected the serum clinical biochemistry. However, DON in combination with MFA did not affect serum IBV titre. Taken together, DON in the feed of broilers produced an impairment of the success of IBV vaccine and affected the health of birds.
Collapse
Affiliation(s)
- K Ghareeb
- Department for Farm Animals and Veterinary Public Health, Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine Vienna, Vienna, Austria.,Department of Animal Behaviour and Management, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - W A Awad
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria.,Department of Animal Hygiene, Poultry and Environment, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Q Zebeli
- Department for Farm Animals and Veterinary Public Health, Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine Vienna, Vienna, Austria
| | - J Böhm
- Department for Farm Animals and Veterinary Public Health, Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine Vienna, Vienna, Austria
| |
Collapse
|
174
|
Ren Z, Wang Y, Deng H, Deng Y, Deng J, Zuo Z, Wang Y, Peng X, Cui H, Shen L, Ma X, Fang J. Deoxynivalenol-induced cytokines and related genes in concanavalin A-stimulated primary chicken splenic lymphocytes. Toxicol In Vitro 2015; 29:558-63. [DOI: 10.1016/j.tiv.2014.12.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Revised: 10/14/2014] [Accepted: 12/05/2014] [Indexed: 11/26/2022]
|
175
|
Kemmerling J, Fehlert E, Kuper CF, Rühl-Fehlert C, Stropp G, Vogels J, Krul C, Vohr HW. The transferability from rat subacute 4-week oral toxicity study to translational research exemplified by two pharmaceutical immunosuppressants and two environmental pollutants with immunomodulating properties. Eur J Pharmacol 2015; 759:326-42. [PMID: 25823813 DOI: 10.1016/j.ejphar.2015.03.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 03/05/2015] [Accepted: 03/12/2015] [Indexed: 01/29/2023]
Abstract
Exposure to chemicals may have an influence on the immune system. Often, this is an unwanted effect but in some pharmaceuticals, it is the intended mechanism of action. Immune function tests and in depth histopathological investigations of immune organs were integrated in rodent toxicity studies performed according to an extended OECD test guideline 407 protocol. Exemplified by two immunosuppressive drugs, azathioprine and cyclosporine A, and two environmental chemicals, hexachlorobenzene and benzo[a]pyrene, results of subacute rat studies were compared to knowledge in other species particular in humans. Although immune function has a high concordance in mammalian species, regarding the transferability from rodents to humans various factors have to be taken into account. In rats, sensitivity seems to depend on factors such as strain, sex, stress levels as well as metabolism. The two immunosuppressive drugs showed a high similarity of effects in animals and humans as the immune system was the most sensitive target in both. Hexachlorobenzene gave an inconsistent pattern of effects when considering the immune system of different species. In some species pronounced inflammation was observed, whereas in primates liver toxicity seemed more obvious. Generally, the immune system was not the most sensitive target in hexachlorobenzene-treatment. Immune function tests in rats gave evidence of a reaction to systemic inflammation rather than a direct impact on immune cells. Data from humans are likewise equivocal. In the case of benzo[a]pyrene, the immune system was the most sensitive target in rats. In the in vitro plaque forming cell assay (Mishell-Dutton culture) a direct comparison of cells from different species including rat and human was possible and showed similar reactions. The doses in the rat study had, however, no realistic relation to human exposure, which occurs exclusively in mixtures and in a much lower range. In summary, a case by case approach is necessary when testing immunotoxicity. Improvements for the translation from animals to humans related to immune cells can be expected from in vitro tests which offer direct comparison with reactions of human immune cells. This may lead to a better understanding of results and variations seen in animal studies.
Collapse
Affiliation(s)
- Jessica Kemmerling
- Bayer Pharma AG, GDD-GED-TOX-IT-Immunotoxicology, Aprather Weg, 42096 Wuppertal, Germany.
| | - Ellen Fehlert
- Department of Medicine IV, Eberhard-Karls University, Otfried-Müller Street 10, 72076 Tübingen, Germany
| | - C Frieke Kuper
- TNO Innovation for Life, PO Box 360, 3700 AJ Zeist, The Netherlands
| | | | - Gisela Stropp
- Bayer Pharma AG, GDD-GED-Product Stewardship Industrial Chemicals, Aprather Weg, 42096 Wuppertal, Germany
| | - Jack Vogels
- TNO Innovation for Life, PO Box 360, 3700 AJ Zeist, The Netherlands
| | - Cyrille Krul
- TNO Innovation for Life, PO Box 360, 3700 AJ Zeist, The Netherlands
| | - Hans-Werner Vohr
- Bayer Pharma AG, GDD-GED-TOX-IT-Immunotoxicology, Aprather Weg, 42096 Wuppertal, Germany
| |
Collapse
|
176
|
Hrubošová D, Vytřasová J, Brožková I. Production of T-2 toxin and deoxynivalenol in the presence of different disinfectants. POTRAVINARSTVO 2015. [DOI: 10.5219/417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The aim of the work was to examine the effect of different disinfectants on production trichothecenes (especially of T-2 toxin and deoxynivalenol). Lipophilicity, chemical structure, the presence of bioactive groups and functional groups in their structure modifies biological activity and toxic potency of trichothecenes. For this reason, limits have been established designating maximum levels of mycotoxins in cereals while maintaining proper growing practices. Appropriate nutritive media were prepared with different concentration of tested disinfectants (Desanal A plus, ProCura spray and Guaa-Pool) and were inoculated using Fusarium strains. The density of Fusarium was 105 spores per mililitre. Nutrient media was cultivated at 15 °C and 25 °C for seven days. The strains of Fusarium graminearum CCM F-683 and Fusarium species (isolated from barley) produced quantities of deoxynivalenol. Fusarium poae CCM F-584 and Fusarium species (isolated from malthouse air) produced quantities of T-2 toxin. Desanal A plus prevented Fusarium growth and production of T-2 toxin and deoxynivalenol at the concentration 10%. It is an alkaline disinfectant on the basis of active chlorine and the surfactant that contains ˂5% of NaClO. ProCura spray at the concentration 0.6% proved to be very effective. This disinfectant contains 35% of propan-1-ol and 25% of propan-2-ol. Guaa-Pool at the concentration 0.004% proved to be very effective. It is a polymeric disinfectant with anion surface-acting agent and it contains ˂0.9% of polyhexamethylene guanidine hydrochloride and ˂0.2% of alkyl (C12-C16) dimethylbenzyl ammonium chloride. Lower contentration of disinfectants that not prevented growth of Fusarium caused higher production of T-2 toxin and deoxynivalenol. The contents of T-2 toxin and deoxynivalenol were analyzed by enzyme-linked immunosorbent assay (ELISA) using commercially produced kits (Agra Quant® Deoxynivalenol Test kit and Agra Quant® T-2 toxin Test kit). The experiment showed that the variability in the production of T-2 toxin and deoxynivalenol depended on the Fusarium strain used, concentration of disinfectants and temperature of cultivation.
Collapse
|
177
|
Savard C, Provost C, Alvarez F, Pinilla V, Music N, Jacques M, Gagnon CA, Chorfi Y. Effect of deoxynivalenol (DON) mycotoxin on in vivo and in vitro porcine circovirus type 2 infections. Vet Microbiol 2015; 176:257-67. [PMID: 25717015 DOI: 10.1016/j.vetmic.2015.02.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 12/22/2014] [Accepted: 02/03/2015] [Indexed: 12/30/2022]
Abstract
Deoxynivalenol (DON) is a mycotoxin produced by Fusarium spp and is a common contaminant of grains in North America. Among farm animals, swine are the most susceptible to DON because it markedly reduces feed intake and decreases weight gain. Porcine circovirus type 2 (PCV2) is the main causative agent of several syndromes in weaning piglets collectively known as porcine circovirus-associated disease (PCVAD). The objectives of this study were to investigate the impact of DON on PCV2 replication in NPTr permissive cell line, and to determine eventual potentiating effects of DON on PCV2 infection in pigs. Noninfected and infected cells with PCV2 were treated with increasing concentrations of DON (0, 70, 140, 280, 560, 1200 ng/mL) and cell survival and virus titer were evaluated 72 h postinfection. Thirty commercial piglets were randomly divided into 3 experimental groups of 10 animals based on DON content of served diets (0, 2.5 and 3.5 mg/kg DON). All groups were further divided into subgroups of 6 pigs and were inoculated with PCV2b virus. The remaining pigs (control) were sham-inoculated with PBS. In vitro results showed that low concentrations of DON could potentially increase PCV2 replication depending on virus genotype. In vivo results showed that even though viremia and lung viral load tend to be higher in animal ingesting DON contaminated diet at 2.5 mg/kg, DON had no significant effect on clinical manifestation of PCVAD in PCV2b infected animals. DON has neither in vitro nor in vivo clear potentiating effects in the development of porcine circovirus infection despite slight increases in viral replication.
Collapse
Affiliation(s)
- Christian Savard
- Groupe de recherche sur les maladies infectieuses du porc (GREMIP), Centre de recherche en infectiologie porcine et avicole (CRIPA), Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - Chantale Provost
- Groupe de recherche sur les maladies infectieuses du porc (GREMIP), Centre de recherche en infectiologie porcine et avicole (CRIPA), Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - Fernando Alvarez
- Groupe de recherche sur les maladies infectieuses du porc (GREMIP), Centre de recherche en infectiologie porcine et avicole (CRIPA), Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - Vicente Pinilla
- Département de Biomédecine vétérinaire, Saint-Hyacinthe, QC, Canada
| | - Nedzad Music
- Groupe de recherche sur les maladies infectieuses du porc (GREMIP), Centre de recherche en infectiologie porcine et avicole (CRIPA), Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - Mario Jacques
- Groupe de recherche sur les maladies infectieuses du porc (GREMIP), Centre de recherche en infectiologie porcine et avicole (CRIPA), Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - Carl A Gagnon
- Groupe de recherche sur les maladies infectieuses du porc (GREMIP), Centre de recherche en infectiologie porcine et avicole (CRIPA), Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - Younes Chorfi
- Département de Biomédecine vétérinaire, Saint-Hyacinthe, QC, Canada.
| |
Collapse
|
178
|
Singh S, Banerjee S, Chattopadhyay P, Borthakur SK, Veer V. Deoxynivalenol induces cytotoxicity and genotoxicity in animal primary cell culture. Toxicol Mech Methods 2015; 25:184-91. [DOI: 10.3109/15376516.2015.1006743] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
179
|
Gerez JR, Pinton P, Callu P, Grosjean F, Oswald IP, Bracarense APF. Deoxynivalenol alone or in combination with nivalenol and zearalenone induce systemic histological changes in pigs. ACTA ACUST UNITED AC 2015; 67:89-98. [DOI: 10.1016/j.etp.2014.10.001] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 09/22/2014] [Accepted: 10/20/2014] [Indexed: 02/04/2023]
|
180
|
Wan Q, Wu G, He Q, Tang H, Wang Y. The toxicity of acute exposure to T-2 toxin evaluated by the metabonomics technique. MOLECULAR BIOSYSTEMS 2015; 11:882-91. [PMID: 25588579 DOI: 10.1039/c4mb00622d] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
T-2 toxin is a common contaminant in grains and animal feedstuff, which becomes an increasing threat to human and animal health due to its high toxicity. Investigating the systemic effects of T-2 toxin is important to evaluate the toxicity and facilitate the assessment of food safety. In our investigation, rats were treated with a single dose of T-2 toxin at dosage levels of 0, 0.5, 2.0 and 4.0 mg kg(-1) body weight via gavage. The metabolic profiles of body fluids and multiple organs were obtained by NMR spectroscopy and analyzed by multivariate data analysis methods. The results showed that low and moderate doses of T-2 toxin only influenced the urinary metabonomes, while a high dose of T-2 toxin induced metabolic alterations in urine and multiple organs. These changes included alterations in the levels of membrane metabolites, TCA cycle intermediates, a range of amino acids, nucleosides and nucleotides. T-2 toxin exposure impaired spleen function, causing immunotoxicity, and inhibited protein and DNA biosynthesis. In addition, T-2 toxin also caused oxidative stress and disturbance in energy metabolism and gut microbiome. Our work provided a comprehensive insight into T-2 toxicity and revealed the great potential of metabonomics in assessing the impact of a toxic compound.
Collapse
Affiliation(s)
- Qianfen Wan
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Centre for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, P. R. China.
| | | | | | | | | |
Collapse
|
181
|
Zhou HR, He K, Landgraf J, Pan X, Pestka JJ. Direct activation of ribosome-associated double-stranded RNA-dependent protein kinase (PKR) by deoxynivalenol, anisomycin and ricin: a new model for ribotoxic stress response induction. Toxins (Basel) 2014; 6:3406-25. [PMID: 25521494 PMCID: PMC4280541 DOI: 10.3390/toxins6123406] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 11/29/2014] [Accepted: 12/08/2014] [Indexed: 01/04/2023] Open
Abstract
Double-stranded RNA (dsRNA)-activated protein kinase (PKR) is a critical upstream mediator of the ribotoxic stress response (RSR) to the trichothecene deoxynivalenol (DON) and other translational inhibitors. Here, we employed HeLa cell lysates to: (1) characterize PKR’s interactions with the ribosome and ribosomal RNA (rRNA); (2) demonstrate cell-free activation of ribosomal-associated PKR and (3) integrate these findings in a unified model for RSR. Robust PKR-dependent RSR was initially confirmed in intact cells. PKR basally associated with 40S, 60S, 80S and polysome fractions at molar ratios of 7, 2, 23 and 3, respectively. Treatment of ATP-containing HeLa lysates with DON or the ribotoxins anisomycin and ricin concentration-dependently elicited phosphorylation of PKR and its substrate eIF2α. These phosphorylations could be blocked by PKR inhibitors. rRNA immunoprecipitation (RNA-IP) of HeLa lysates with PKR-specific antibody and sequencing revealed that in the presence of DON or not, the kinase associated with numerous discrete sites on both the 18S and 28S rRNA molecules, a number of which contained double-stranded hairpins. These findings are consistent with a sentinel model whereby multiple PKR molecules basally associate with the ribosome positioning them to respond to ribotoxin-induced alterations in rRNA structure by dimerizing, autoactivating and, ultimately, evoking RSR.
Collapse
Affiliation(s)
- Hui-Ren Zhou
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA.
| | - Kaiyu He
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA.
| | - Jeff Landgraf
- Research Technology Support Facility, Michigan State University, East Lansing, MI 48824, USA.
| | - Xiao Pan
- Center for Integrative Toxicology, Michigan State University, East Lansing, MI 48824, USA.
| | - James J Pestka
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
182
|
Savard C, Pinilla V, Provost C, Gagnon CA, Chorfi Y. In vivo effect of deoxynivalenol (DON) naturally contaminated feed on porcine reproductive and respiratory syndrome virus (PRRSV) infection. Vet Microbiol 2014; 174:419-426. [PMID: 25465662 DOI: 10.1016/j.vetmic.2014.10.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 10/17/2014] [Accepted: 10/21/2014] [Indexed: 10/24/2022]
Abstract
Deoxynivalenol (DON), also known as vomitoxin, is the most prevalent type B trichothecene mycotoxin worldwide. Pigs show a great sensitivity to DON, and because of the high proportion of grains in their diets, they are frequently exposed to this mycotoxin. The objective of this study was to determine the impact of DON naturally contaminated feed on porcine reproductive and respiratory syndrome virus (PRRSV) infection, the most important porcine viral pathogen in swine. Experimental infections were performed with 30 animals. Piglets were randomly divided into three groups of 10 animals based on DON content of diets (0, 2.5 and 3.5 mg/kg DON). All experimental groups were further divided into subgroups of 6 pigs and were inoculated with PRRSV. The remaining pigs (control) were sham-inoculated with PBS. Pigs were daily monitored for temperature, weight and clinical signs for 21 days. Blood samples were collected and tested for PRRSV RNA and for virus specific antibodies. Results of PRRSV infection showed that ingestion of diet highly contaminated with DON greatly increases the effect of PRRSV infection on weight gain, lung lesions and mortality, without increasing significantly viral replication, for which the tendency is rather directed toward a decrease of replication. These results suggest that PRRSV infection could exacerbate anorectic effect of DON, when ingested in large doses. Results also demonstrate a DON negative effect on PRRSV-specific humoral responses. This study demonstrate that high concentrations of DON naturally contaminated feed decreased the immune response against PRRSV and influenced the course of PRRSV infection in pigs.
Collapse
Affiliation(s)
- Christian Savard
- Groupe de Recherche sur les Maladies Infectieuses du Porc (GREMIP), Swine and Poultry Infectious Diseases Research Center (CRIPA), Saint-Hyacinthe, Québec, Canada
| | - Vicente Pinilla
- Département de Biomédecine Vétérinaire, Saint-Hyacinthe, Québec, Canada
| | - Chantale Provost
- Groupe de Recherche sur les Maladies Infectieuses du Porc (GREMIP), Swine and Poultry Infectious Diseases Research Center (CRIPA), Saint-Hyacinthe, Québec, Canada
| | - Carl A Gagnon
- Groupe de Recherche sur les Maladies Infectieuses du Porc (GREMIP), Swine and Poultry Infectious Diseases Research Center (CRIPA), Saint-Hyacinthe, Québec, Canada
| | - Younes Chorfi
- Département de Biomédecine Vétérinaire, Saint-Hyacinthe, Québec, Canada.
| |
Collapse
|
183
|
Ghareeb K, Awad WA, Böhm J, Zebeli Q. Impacts of the feed contaminant deoxynivalenol on the intestine of monogastric animals: poultry and swine. J Appl Toxicol 2014; 35:327-37. [PMID: 25352520 DOI: 10.1002/jat.3083] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 09/18/2014] [Indexed: 12/20/2022]
Abstract
Deoxynivalenol (DON) is one of the most prevalent cereal contaminants with major public health concerns owing to its high toxigenic potentials. Once ingested, DON first and foremost targets epithelial cells of the gastrointestinal tract, whose proper functioning, as the first line of defence, is of paramount importance for the host's health. Emerging evidences, summarized in this article, suggest that DON produces its toxicity primarily via activation of the mitogen-activated protein kinases (MAPKs) signalling pathway and alteration in the expression of genes responsible for key physiological and immunological functions of the intestinal tissue of chickens and pigs. The activation of MAPKs signalling cascade results in disruption of the gut barrier function and an increase in the permeability by reducing expression of the tight junction proteins. Exposure to DON also down-regulates the expression of multiple transporter systems in the enterocytes with subsequent impairment of the absorption of key nutrients. Other major intestinal cytotoxic effects of DON described herein are modulation of mucosal immune responses, leading to immunosupression or stimulation of local immune cells and cytokine release, and also facilitation of the persistence of intestinal pathogens in the gut. Both of the last events potentiate enteric infections and local inflammation in pigs and poultry, rendering enterocytes and the host more vulnerable to luminal toxic compounds. This review highlights the cytotoxic risks associated with the intake of even low levels of DON and also identifies gaps of knowledge that need to be addressed by future research.
Collapse
Affiliation(s)
- Khaled Ghareeb
- Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, 1210, Vienna, Austria; Department of Animal Hygiene, Behaviour and Management, Faculty of Veterinary Medicine, South Valley University, 83523, Qena, Egypt
| | | | | | | |
Collapse
|
184
|
Mishra S, Dwivedi PD, Pandey HP, Das M. Role of oxidative stress in Deoxynivalenol induced toxicity. Food Chem Toxicol 2014; 72:20-9. [DOI: 10.1016/j.fct.2014.06.027] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 06/25/2014] [Accepted: 06/30/2014] [Indexed: 10/25/2022]
|
185
|
Wu Q, Wang X, Wan D, Li J, Yuan Z. Crosstalk of JNK1-STAT3 is critical for RAW264.7 cell survival. Cell Signal 2014; 26:2951-60. [PMID: 25269780 DOI: 10.1016/j.cellsig.2014.09.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 09/07/2014] [Accepted: 09/23/2014] [Indexed: 01/09/2023]
Abstract
T-2 toxin, a major compound of trichothecenes, inhibits protein synthesis and induces inflammation and cell apoptosis through the activation of MAPK pathway. The JAK/STAT pathway has recently been shown to be downstream targets of trichothecenes. However, whether there is any crosstalk between JNK and JAK/STAT pathways in trichothecene toxicity has not been studied. In the present study, we explored this potential in RAW264.7 cells treated with T-2 toxin. Our results revealed a crosstalk between JNK1 and STAT3 after T-2 toxin treatment, which was mediated by K-Ras. T-2 toxin treatment resulted in rapid phosphorylation, and more importantly, JNK1-STAT3 signaling pathway was shown to maintain the normal function of the mitochondria and to inhibit T-2 toxin-induced apoptosis. Therefore, this pathway was considered to be a potential cell survival pathway. Breakdown and degranulation of ribosomes in the rough endoplasmic reticulum and swelling of mitochondria were clearly visible after the cells had been incubated with T-2 toxin for 12h. Our data suggest that T-2 toxin had a Janus face: it induced both apoptotic and cell survival pathways. These results suggest that the crosstalk and the balance between MAPK and JAK/STAT pathway might be involved in T-2 toxin-induced apoptosis in RAW264.7 cells.
Collapse
Affiliation(s)
- Qinghua Wu
- National Reference Laboratory of Veterinary Drug Residues (HZAU), MOA Laboratory of Risk Assessment for Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China; MAO Key Laboratory for Detection of Veterinary Drug Residues, MOA Laboratory of Risk Assessment for Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China; College of Life Science, Yangtze University, Jingzhou, Hubei 434025, China; Center for Basic and Applied Research, Faculty of Informatics and Management, University of Hradec Kralove, Hradec Kralove, Czech Republic.
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU), MOA Laboratory of Risk Assessment for Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China; MAO Key Laboratory for Detection of Veterinary Drug Residues, MOA Laboratory of Risk Assessment for Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Dan Wan
- National Reference Laboratory of Veterinary Drug Residues (HZAU), MOA Laboratory of Risk Assessment for Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China; MAO Key Laboratory for Detection of Veterinary Drug Residues, MOA Laboratory of Risk Assessment for Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Juan Li
- National Reference Laboratory of Veterinary Drug Residues (HZAU), MOA Laboratory of Risk Assessment for Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China; MAO Key Laboratory for Detection of Veterinary Drug Residues, MOA Laboratory of Risk Assessment for Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Zonghui Yuan
- National Reference Laboratory of Veterinary Drug Residues (HZAU), MOA Laboratory of Risk Assessment for Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China; MAO Key Laboratory for Detection of Veterinary Drug Residues, MOA Laboratory of Risk Assessment for Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| |
Collapse
|
186
|
Deoxynivalenol: signaling pathways and human exposure risk assessment—an update. Arch Toxicol 2014; 88:1915-28. [DOI: 10.1007/s00204-014-1354-z] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Accepted: 08/27/2014] [Indexed: 10/24/2022]
|
187
|
Mishra S, Tripathi A, Chaudhari BP, Dwivedi PD, Pandey HP, Das M. Deoxynivalenol induced mouse skin cell proliferation and inflammation via MAPK pathway. Toxicol Appl Pharmacol 2014; 279:186-97. [DOI: 10.1016/j.taap.2014.06.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 06/05/2014] [Accepted: 06/06/2014] [Indexed: 02/07/2023]
|
188
|
Zhu CC, Hou YJ, Han J, Liu HL, Cui XS, Kim NH, Sun SC. Effect of mycotoxin-containing diets on epigenetic modifications of mouse oocytes by fluorescence microscopy analysis. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2014; 20:1158-1166. [PMID: 24810297 DOI: 10.1017/s1431927614000919] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Mycotoxins, such as aflatoxin (AF), fumonisin B1, zearalenone (ZEA), and deoxynivalenol (DON), are commonly found in many food commodities. Mycotoxins have been shown to increase DNA methylation levels in a human intestinal cell line. We previously showed that the developmental competence of oocytes was affected in mice that had been fed a mycotoxin-containing diet. In this study, we explored possible mechanisms of low mouse oocyte developmental competence after mycotoxin treatment in an epigenetic modification perspective. Mycotoxin-contaminated maize (DON at 3,875 μg/kg, ZEA at 1,897 μg/kg, and AF at 806 μg/kg) was included in diets at three different doses (mass percentage: 0, 15, and 30%) and fed to mice for 4 weeks. The fluorescence intensity analysis showed that the general DNA methylation levels increased in oocytes from high dose mycotoxin-fed mice. Mouse oocyte histone methylation was also altered. H3K9me3 and H4K20me3 level increased in oocytes from mycotoxin-fed mice, whereas H3K27me3 and H4K20me2 level decreased in oocytes from mycotoxin-fed mice. Thus, our results indicate that naturally occurring mycotoxins have effects on epigenetic modifications in mouse oocytes, which may be one of the reasons for reduced oocyte developmental competence.
Collapse
Affiliation(s)
- Cheng-Cheng Zhu
- 1College of Animal Science and Technology,Nanjing Agricultural University,Nanjing 210095,China
| | - Yan-Jun Hou
- 1College of Animal Science and Technology,Nanjing Agricultural University,Nanjing 210095,China
| | - Jun Han
- 1College of Animal Science and Technology,Nanjing Agricultural University,Nanjing 210095,China
| | - Hong-Lin Liu
- 1College of Animal Science and Technology,Nanjing Agricultural University,Nanjing 210095,China
| | - Xiang-Shun Cui
- 2Department of Animal Sciences,Chungbuk National University,Cheongju 361-763,Korea
| | - Nam-Hyung Kim
- 2Department of Animal Sciences,Chungbuk National University,Cheongju 361-763,Korea
| | - Shao-Chen Sun
- 1College of Animal Science and Technology,Nanjing Agricultural University,Nanjing 210095,China
| |
Collapse
|
189
|
Gu MJ, Song SK, Park SM, Lee IK, Yun CH. Bacillus subtilis Protects Porcine Intestinal Barrier from Deoxynivalenol via Improved Zonula Occludens-1 Expression. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2014; 27:580-6. [PMID: 25049991 PMCID: PMC4093535 DOI: 10.5713/ajas.2013.13744] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2013] [Revised: 01/08/2014] [Accepted: 12/10/2013] [Indexed: 02/07/2023]
Abstract
Intestinal epithelial cells (IECs) forming the barrier for the first-line of protection are interconnected by tight junction (TJ) proteins. TJ alteration results in impaired barrier function, which causes potentially excessive inflammation leading to intestinal disorders. It has been suggested that toll-like receptor (TLR) 2 ligands and some bacteria enhance epithelial barrier function in humans and mice. However, no such study has yet to be claimed in swine. The aim of the present study was to examine whether Bacillus subtilis could improve barrier integrity and protection against deoxynivalenol (DON)-induced barrier disruption in porcine intestinal epithelial cell line (IPEC-J2). We found that B. subtilis decreased permeability of TJ and improved the expression of zonula occludens (ZO)-1 and occludin during the process of forming TJ. In addition, ZO-1 expression of IPEC-J2 cells treated with B. subtilis was up-regulated against DON-induced damage. In conclusion, B. subtilis may have potential to enhance epithelial barrier function and to prevent the cells from DON-induced barrier dysfunction.
Collapse
Affiliation(s)
- Min Jeong Gu
- WCU Biomodulation major and Center for Food and Bioconvergence, Seoul National University, Seoul, 151-742, Korea
| | - Sun Kwang Song
- WCU Biomodulation major and Center for Food and Bioconvergence, Seoul National University, Seoul, 151-742, Korea
| | - Sung Moo Park
- WCU Biomodulation major and Center for Food and Bioconvergence, Seoul National University, Seoul, 151-742, Korea
| | - In Kyu Lee
- WCU Biomodulation major and Center for Food and Bioconvergence, Seoul National University, Seoul, 151-742, Korea
| | - Cheol-Heui Yun
- WCU Biomodulation major and Center for Food and Bioconvergence, Seoul National University, Seoul, 151-742, Korea
| |
Collapse
|
190
|
Alassane-Kpembi I, Puel O, Oswald IP. Toxicological interactions between the mycotoxins deoxynivalenol, nivalenol and their acetylated derivatives in intestinal epithelial cells. Arch Toxicol 2014; 89:1337-46. [DOI: 10.1007/s00204-014-1309-4] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 07/01/2014] [Indexed: 10/25/2022]
|
191
|
Katika MR, Hendriksen PJM, van Loveren H, A. C. M. Peijnenburg A. Characterization of the modes of action of deoxynivalenol (DON) in the human Jurkat T-cell line. J Immunotoxicol 2014; 12:206-16. [DOI: 10.3109/1547691x.2014.925995] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
192
|
Li D, Ma H, Ye Y, Ji C, Tang X, Ouyang D, Chen J, Li Y, Ma Y. Deoxynivalenol induces apoptosis in mouse thymic epithelial cells through mitochondria-mediated pathway. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2014; 38:163-171. [PMID: 24952344 DOI: 10.1016/j.etap.2014.05.015] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 05/25/2014] [Accepted: 05/28/2014] [Indexed: 06/03/2023]
Abstract
Deoxynivalenol (DON) is a mycotoxin produced as a secondary metabolite by fungal species. In this report, we investigated the apoptotic effect of DON in mouse thymic epithelial cell line 1 (MTEC1). MTEC1 cell apoptosis induced by DON was confirmed by nuclei morphology change, TUNEL positive staining, annexin V/propidium iodide positive staining and increased protein levels of caspase-3, caspase-8, caspase-9 and poly(ADP-ribose) polymerase (PARP). The effects of DON on reactive oxygen species (ROS) levels and mitochondrial membrane potential were investigated via fluorescence microscope and flow cytometry, respectively. In addition, DON could significantly increase the protein levels of p53 and Bax/Bcl-2 ratio in MTEC1 cells. Taken together, our results suggest that DON causes the activation of p53, increased levels of ROS and the induction of mitochondrial dysfunction, which may contribute to DON-induced apoptosis in MTEC1 cells.
Collapse
Affiliation(s)
- Daotong Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Haoran Ma
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Yaqiong Ye
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Changyun Ji
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Xiaohong Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Dan Ouyang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Jian Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Yugu Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Yongjiang Ma
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
193
|
Lin T, Wang G, Zhou Y, Zeng D, Liu X, Ding R, Jiang X, Zhu D, Shan W, Chen H. Structure elucidation and biological activity of two new trichothecenes from an endophyte, Myrothecium roridum. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:5993-6000. [PMID: 24909753 DOI: 10.1021/jf501724a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Worldwide, many different grains are infected by various fungi that may produce trichothecene mycotoxins. Fungi that produce trichothecenes, as well as the trichothecenes themselves, are potential problems for public health. On the other hand, trichothecenes possess multiple biological activities. Reduced toxicity may result in their applications in the pharmaceutical field. Two new trichothecenes along with seven known trichothecenes were isolated from an endophyte of the herb plant Ajuga decumbens. Their structures were deduced from 1D and 2D NMR data. The results of MTT assays revealed that new trichothecene 2',3'-epoxymyrothecine A, 1, and myrothecine A, 3, exhibited much lower toxicity compared to other trichothecenes. New trichothecene 2',3'-epoxymyrothecine A, 1, could induce phosphorylation of JNK (c-Jun N-terminal protein kinase) protein and the PARP (poly ADP-ribose polymerase) cleavage, and eventually induce apoptosis in cancer cells. These results point out the possibility for application of trichothecenes as chemotherapeutic agent.
Collapse
Affiliation(s)
- Ting Lin
- School of Pharmaceutical Sciences, Xiamen University , South Xiangan Road, Xiamen, Fujian 361102, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
194
|
Pietsch C, Michel C, Kersten S, Valenta H, Dänicke S, Schulz C, Kloas W, Burkhardt-Holm P. In vivo effects of deoxynivalenol (DON) on innate immune responses of carp (Cyprinus carpio L.). Food Chem Toxicol 2014; 68:44-52. [DOI: 10.1016/j.fct.2014.03.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 02/09/2014] [Accepted: 03/07/2014] [Indexed: 12/29/2022]
|
195
|
Kimura M, Tokai T, Takahashi-Ando N, Ohsato S, Fujimura M. Molecular and Genetic Studies ofFusariumTrichothecene Biosynthesis: Pathways, Genes, and Evolution. Biosci Biotechnol Biochem 2014; 71:2105-23. [PMID: 17827683 DOI: 10.1271/bbb.70183] [Citation(s) in RCA: 272] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Trichothecenes are a large family of sesquiterpenoid secondary metabolites of Fusarium species (e.g., F. graminearum) and other molds. They are major mycotoxins that can cause serious problems when consumed via contaminated cereal grains. In the past 20 years, an outline of the trichothecene biosynthetic pathway has been established based on the results of precursor feeding experiments and blocked mutant analyses. Following the isolation of the pathway gene Tri5 encoding the first committed enzyme trichodiene synthase, 10 biosynthesis genes (Tri genes; two regulatory genes, seven pathway genes, and one transporter gene) were functionally identified in the Tri5 gene cluster. At least three pathway genes, Tri101 (separated alone), and Tri1 and Tri16 (located in the Tri1-Tri16 two-gene cluster), were found outside of the Tri5 gene cluster. In this review, we summarize the current understanding of the pathways of biosynthesis, the functions of cloned Tri genes, and the evolution of Tri genes, focusing on Fusarium species.
Collapse
Affiliation(s)
- Makoto Kimura
- Plant & Microbial Metabolic Engineering Research Unit, Discovery Research Institute, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| | | | | | | | | |
Collapse
|
196
|
Kostoff RN. Literature-related discovery: common factors for Parkinson’s Disease and Crohn’s Disease. Scientometrics 2014. [DOI: 10.1007/s11192-014-1298-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
197
|
Korsnes MS, Røed SS, Tranulis MA, Espenes A, Christophersen B. Yessotoxin triggers ribotoxic stress. Toxicol In Vitro 2014; 28:975-81. [PMID: 24780217 DOI: 10.1016/j.tiv.2014.04.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Revised: 02/23/2014] [Accepted: 04/17/2014] [Indexed: 01/24/2023]
Abstract
This work tests the hypothesis that the marine algal toxin yessotoxin (YTX) can trigger ribotoxic stress response in L6 and BC3H1 myoblast cells. YTX exposure at a concentration of 100 nM displays the characteristics of a ribotoxic stress response in such cells. The exposure leads to activation of the p38 mitogen-activated protein kinase, the stress-activated protein kinase c-jun, and the double-stranded RNA-activated protein kinase (PKR). YTX treatment also causes ribosomal RNA cleavage and inhibits protein synthesis. These observations support the idea that YTX can act as a ribotoxin.
Collapse
Affiliation(s)
- Mónica Suárez Korsnes
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Campus Ås, P.O. Box 5003, NO-1432 ÅS, Norway.
| | - Susan Skogtvedt Røed
- Norwegian University of Life Sciences (NMBU), Campus Adamstuen, P.O. Box 8146, NO-0033 OSLO, Norway
| | - Michael A Tranulis
- Norwegian University of Life Sciences (NMBU), Campus Adamstuen, P.O. Box 8146, NO-0033 OSLO, Norway
| | - Arild Espenes
- Norwegian University of Life Sciences (NMBU), Campus Adamstuen, P.O. Box 8146, NO-0033 OSLO, Norway
| | - Berit Christophersen
- Norwegian University of Life Sciences (NMBU), Campus Adamstuen, P.O. Box 8146, NO-0033 OSLO, Norway
| |
Collapse
|
198
|
The effect of mycotoxin deoxynivalenol on haematological and biochemical indicators and histopathological changes in rainbow trout (Oncorhynchus mykiss). BIOMED RESEARCH INTERNATIONAL 2014; 2014:310680. [PMID: 24729967 PMCID: PMC3960512 DOI: 10.1155/2014/310680] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 01/27/2014] [Accepted: 01/27/2014] [Indexed: 11/18/2022]
Abstract
Deoxynivalenol (DON), produced by the Fusarium genus, is a major contaminant of cereal grains used in the production of fish feed. The effect of mycotoxin deoxynivalenol on rainbow trout (Oncorhynchus mykiss) was studied using a commercial feed with the addition of DON in a dose of 2 mg/kg feed. The fish (n=40) were exposed to the mycotoxin for 23 days. The trout were divided into two groups, control and experimental groups. Control groups were fed a commercial feed naturally contaminated with a low concentration of DON (225 μg/kg feed); experimental groups were fed a commercial feed with the addition of DON (1964 μg/kg feed). Plasma biochemical and haematological indices, biometric parameters, and histopathological changes were assessed at the end of the experiment. The experimental groups showed significantly lower values in MCH (P<0.05). In biochemical indices, after 23-day exposure, a significant decrease in glucose, cholesterol (P<0.05), and ammonia (P<0.01) was recorded in the experimental group compared to the control group. Our assessment showed no significant changes in biometric parameters. The histopathological examination revealed disorders in the caudal kidney of the exposed fish. The obtained data show the sensitivity of rainbow trout (O. mykiss) to deoxynivalenol.
Collapse
|
199
|
Herter I, Geginat G, Hof H, Kupfahl C. Modulation of innate and antigen-specific immune functions directed against Listeria monocytogenes by fungal toxins in vitro. Mycotoxin Res 2014; 30:79-87. [PMID: 24526341 DOI: 10.1007/s12550-014-0191-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 01/19/2014] [Accepted: 01/21/2014] [Indexed: 11/26/2022]
Abstract
Mycotoxins, a large group of secondary fungal metabolites, are ubiquitously present in the environment and are potentially harmful to exposed humans and animals. Despite increasing interest in this group of fungal metabolites it is still difficult to estimate the relative toxic potential of one individual mycotoxin compared with others. We therefore compared the effects of some of the most important mycotoxins on effector cells of the innate and adaptive immune system in an in vitro model. Our data show clear differences of various mycotoxins in regard of their immunotoxic potential on mouse macrophages and T cells. Our results also indicate differences in the susceptibility of specific immune effector functions of macrophages and T cells exposed to mycotoxins. Thus, our results enhance the understanding of role of mycotoxins in the pathogenesis of human and animal diseases.
Collapse
Affiliation(s)
- I Herter
- Institute for Medical Microbiology and Hygiene, Medical Faculty Mannheim of the University Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | | | | | | |
Collapse
|
200
|
Awad WA, Ghareeb K, Dadak A, Hess M, Böhm J. Single and combined effects of deoxynivalenol mycotoxin and a microbial feed additive on lymphocyte DNA damage and oxidative stress in broiler chickens. PLoS One 2014; 9:e88028. [PMID: 24498242 PMCID: PMC3909330 DOI: 10.1371/journal.pone.0088028] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Accepted: 01/03/2014] [Indexed: 12/03/2022] Open
Abstract
The immune and intestinal epithelial cells are particularly sensitive to the toxic effects of deoxynivalenol (DON). The aim of this experiment was to study the effects of DON and/or a microbial feed additive on the DNA damage of blood lymphocytes and on the level of thiobarbituric acid reactive substance (TBARS) as an indicator of lipid peroxidation and oxidative stress in broilers. A total of forty 1-d-old broiler chicks were randomly assigned to 1 of 4 dietary treatments (10 birds per group) for 5 wk. The dietary treatments were 1) basal diet; 2) basal diet contaminated with 10 mg DON/kg feed; 3) basal diet contaminated with 10 mg DON/kg feed and supplemented with 2.5 kg/ton of feed of Mycofix Select; 4) basal diet supplemented with Mycofix Select (2.5 kg/ton of feed). At the end of the feeding trial, blood were collected for measuring the level of lymphocyte DNA damage of blood and the TBARS level was measured in plasma, heart, kidney, duodenum and jejunum. The dietary exposure of DON caused a significant increase (P = 0.001) of DNA damage in blood lymphocytes (31.99±0.89%) as indicated in the tail of comet assay. Interestingly addition of Mycofix Select to DON contaminated diet decreased (P = 0.001) the DNA damage (19.82±1.75%) induced by DON. In order to clarify the involvement of lipid peroxidation in the DNA damage of DON, TBARS levels was measured. A significant increase (P = 0.001) in the level of TBARS (23±2 nmol/mg) was observed in the jejunal tissue suggesting that the lipid peroxidation might be involved in the DNA damage. The results indicate that DON is cytotoxic and genotoxic to the chicken intestinal and immune cells and the feed additive have potential ability to prevent DNA damage induced by DON.
Collapse
Affiliation(s)
- Wageha A. Awad
- Department for Farm Animals and Veterinary Public Health, Clinic for Avian, Reptile and Fish Medicine, University of Veterinary Medicine, Vienna, Austria
- Department of Animal Hygiene, Behaviour and Management, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
- * E-mail:
| | - Khaled Ghareeb
- Department of Animal Hygiene, Behaviour and Management, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
- Department for Farm Animals and Veterinary Public Health, Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine, Vienna, Austria
| | - Agnes Dadak
- Department of Biomedical Sciences, Institute of Pharmacology and Toxicology, University of Veterinary Medicine, Vienna, Austria
| | - Michael Hess
- Department for Farm Animals and Veterinary Public Health, Clinic for Avian, Reptile and Fish Medicine, University of Veterinary Medicine, Vienna, Austria
| | - Josef Böhm
- Department of Animal Hygiene, Behaviour and Management, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| |
Collapse
|