151
|
Soelter TM, Whitlock JH, Williams AS, Hardigan AA, Lasseigne BN. Nucleic acid liquid biopsies in Alzheimer's disease: current state, challenges, and opportunities. Heliyon 2022; 8:e09239. [PMID: 35469332 PMCID: PMC9034064 DOI: 10.1016/j.heliyon.2022.e09239] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/25/2021] [Accepted: 03/30/2022] [Indexed: 11/29/2022] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease and affects persons of all races, ethnic groups, and sexes. The disease is characterized by neuronal loss leading to cognitive decline and memory loss. There is no cure and the effectiveness of existing treatments is limited and depends on the time of diagnosis. The long prodromal period, during which patients' ability to live a normal life is not affected despite neuronal loss, often leads to a delayed diagnosis because it can be mistaken for normal aging of the brain. In order to make a substantial impact on AD patient survival, early diagnosis may provide a greater therapeutic window for future therapies to slow AD-associated neurodegeneration. Current gold standards for disease detection include magnetic resonance imaging and positron emission tomography scans, which visualize amyloid β and phosphorylated tau depositions and aggregates. Liquid biopsies, already an active field of research in precision oncology, are hypothesized to provide early disease detection through minimally or non-invasive sample collection techniques. Liquid biopsies in AD have been studied in cerebrospinal fluid, blood, ocular, oral, and olfactory fluids. However, most of the focus has been on blood and cerebrospinal fluid due to biomarker specificity and sensitivity attributed to the effects of the blood-brain barrier and inter-laboratory variation during sample collection. Many studies have identified amyloid β and phosphorylated tau levels as putative biomarkers, however, advances in next-generation sequencing-based liquid biopsy methods have led to significant interest in identifying nucleic acid species associated with AD from liquid tissues. Differences in cell-free RNAs and DNAs have been described as potential biomarkers for AD and hold the potential to affect disease diagnosis, treatment, and future research avenues.
Collapse
Affiliation(s)
- Tabea M. Soelter
- Department of Cell, Developmental and Integrative Biology, The University of Alabama at Birmingham, AL, USA
| | - Jordan H. Whitlock
- Department of Cell, Developmental and Integrative Biology, The University of Alabama at Birmingham, AL, USA
| | - Avery S. Williams
- Department of Cell, Developmental and Integrative Biology, The University of Alabama at Birmingham, AL, USA
| | - Andrew A. Hardigan
- Department of Cell, Developmental and Integrative Biology, The University of Alabama at Birmingham, AL, USA
- Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA
| | - Brittany N. Lasseigne
- Department of Cell, Developmental and Integrative Biology, The University of Alabama at Birmingham, AL, USA
| |
Collapse
|
152
|
Arakaki X, Hung SM, Rochart R, Fonteh AN, Harrington MG. Alpha desynchronization during Stroop test unmasks cognitively healthy individuals with abnormal CSF Amyloid/Tau. Neurobiol Aging 2022; 112:87-101. [PMID: 35066324 PMCID: PMC8976735 DOI: 10.1016/j.neurobiolaging.2021.11.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 11/27/2021] [Accepted: 11/30/2021] [Indexed: 01/15/2023]
Abstract
Synaptic dysfunctions precede cognitive decline in Alzheimer's disease by decades, affect executive functions, and can be detected by quantitative electroencephalography (qEEG). We used quantitative electroencephalography combined with Stroop testing to identify changes of inhibitory controls in cognitively healthy individuals with an abnormal versus normal ratio of cerebrospinal fluid (CSF) amyloid/total-tau. We studied two groups of participants (60-94 years) with either normal (CH-NAT or controls, n = 20) or abnormal (CH-PAT, n = 21) CSF amyloid/tau ratio. We compared: alpha event-related desynchronization (ERD), alpha spectral entropy (SE), and their relationships with estimated cognitive reserve. CH-PATs had more negative occipital alpha ERD, and higher frontal and occipital alpha SE during low load congruent trials, indicating hyperactivity. CH-PATs demonstrated fewer frontal SE changes with higher load, incongruent Stroop testing. Correlations of alpha ERD with estimated cognitive reserve were significant in CH-PATs but not in CH-NATs. These results suggested compensatory hyperactivity in CH-PATs compared to CH-NATs. We did not find differences in alpha ERD comparisons with individual CSF amyloid(A), p-tau(T), total-tau(N) biomarkers.
Collapse
|
153
|
Yang M, Zhou D, Xiao H, Fu X, Kong Q, Zhu C, Han Z, Mou H. Marine-derived uronic acid-containing polysaccharides: Structures, sources, production, and nutritional functions. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.02.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
154
|
Abubakar MB, Sanusi KO, Ugusman A, Mohamed W, Kamal H, Ibrahim NH, Khoo CS, Kumar J. Alzheimer’s Disease: An Update and Insights Into Pathophysiology. Front Aging Neurosci 2022; 14:742408. [PMID: 35431894 PMCID: PMC9006951 DOI: 10.3389/fnagi.2022.742408] [Citation(s) in RCA: 78] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 02/25/2022] [Indexed: 12/17/2022] Open
Abstract
Alzheimer’s disease (AD) is an irreversible brain disorder associated with slow, progressive loss of brain functions mostly in older people. The disease processes start years before the symptoms are manifested at which point most therapies may not be as effective. In the hippocampus, the key proteins involved in the JAK2/STAT3 signaling pathway, such as p-JAK2-Tyr1007 and p-STAT3-Tyr705 were found to be elevated in various models of AD. In addition to neurons, glial cells such as astrocytes also play a crucial role in the progression of AD. Without having a significant effect on tau and amyloid pathologies, the JAK2/STAT3 pathway in reactive astrocytes exhibits a behavioral impact in the experimental models of AD. Cholinergic atrophy in AD has been traced to a trophic failure in the NGF metabolic pathway, which is essential for the survival and maintenance of basal forebrain cholinergic neurons (BFCN). In AD, there is an alteration in the conversion of the proNGF to mature NGF (mNGF), in addition to an increase in degradation of the biologically active mNGF. Thus, the application of exogenous mNGF in experimental studies was shown to improve the recovery of atrophic BFCN. Furthermore, it is now coming to light that the FGF7/FGFR2/PI3K/Akt signaling pathway mediated by microRNA-107 is also involved in AD pathogenesis. Vascular dysfunction has long been associated with cognitive decline and increased risk of AD. Vascular risk factors are associated with higher tau and cerebral beta-amyloid (Aβ) burden, while synergistically acting with Aβ to induce cognitive decline. The apolipoprotein E4 polymorphism is not just one of the vascular risk factors, but also the most prevalent genetic risk factor of AD. More recently, the research focus on AD shifted toward metabolisms of various neurotransmitters, major and minor nutrients, thus giving rise to metabolomics, the most important “omics” tool for the diagnosis and prognosis of neurodegenerative diseases based on an individual’s metabolome. This review will therefore proffer a better understanding of novel signaling pathways associated with neural and glial mechanisms involved in AD, elaborate potential links between vascular dysfunction and AD, and recent developments in “omics”-based biomarkers in AD.
Collapse
Affiliation(s)
- Murtala Bello Abubakar
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Usmanu Danfodiyo University, Sokoto, Nigeria
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, Sokoto, Nigeria
| | - Kamaldeen Olalekan Sanusi
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Usmanu Danfodiyo University, Sokoto, Nigeria
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, Sokoto, Nigeria
| | - Azizah Ugusman
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Wael Mohamed
- Department of Basic Medical Science, Kulliyyah of Medicine, International Islamic University Malaysia, Kuantan, Malaysia
- Department of Clinical Pharmacology, Faculty of Medicine, Menoufia University, Shebin El-Kom, Egypt
| | - Haziq Kamal
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Nurul Husna Ibrahim
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Ching Soong Khoo
- Neurology Unit, Department of Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Jaya Kumar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
- *Correspondence: Jaya Kumar,
| |
Collapse
|
155
|
Phase-In to Phase-Out—Targeted, Inclusive Strategies Are Needed to Enable Full Replacement of Animal Use in the European Union. Animals (Basel) 2022; 12:ani12070863. [PMID: 35405853 PMCID: PMC8997151 DOI: 10.3390/ani12070863] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/17/2022] [Accepted: 03/25/2022] [Indexed: 12/04/2022] Open
Abstract
Simple Summary In the European Union (and elsewhere), the overall use of animals in laboratories has failed to undergo any significant decline, despite six decades of purported adherence to the “3Rs” principles of replacement, reduction, and refinement. In the EU, the 1986 adoption of a legal requirement to use scientific methods not entailing the use of live animals, rising public opinion against the use of animals and the almost exponential rise in development and application of non-animal new approach methodologies (NAMs) signals a readiness to end animal testing. Indeed, the European Parliament recently carried an almost unanimous vote to adopt an action plan to phase out the use of animals in research and testing. This article explores what is needed to make this action plan a success, considering all stakeholders and their needs. Abstract In September 2021, the European Parliament voted overwhelmingly in favour of a resolution to phase out animal use for research, testing, and education, through the adoption of an action plan. Here we explore the opportunity that the action plan could offer in developing a more holistic outlook for fundamental and biomedical research, which accounts for around 70% of all animal use for scientific purposes in the EU. We specifically focus on biomedical research to consider how mapping scientific advances to patient needs, taking into account the ambitious health policies of the EU, would facilitate the development of non-animal strategies to deliver safe and effective medicines, for example. We consider what is needed to help accelerate the move away from animal use, taking account of all stakeholders and setting ambitious but realistic targets for the total replacement of animals. Importantly, we envisage this as a ‘phase-in’ approach, encouraging the use of human-relevant NAMs, enabling their development and application across research (with applications for toxicology testing). We make recommendations for three pillars of activity, inspired by similar efforts for making the shift to renewable energy and reducing carbon emissions, and point out where investment—both financial and personnel—may be needed.
Collapse
|
156
|
Lasch F, Guizzaro L, Pétavy F, Gallo C. A simulation study on the estimation of the effect in the hypothetical scenario of no use of symptomatic treatment in trials for disease-modifying agents for Alzheimer’s disease. Stat Biopharm Res 2022. [DOI: 10.1080/19466315.2022.2055633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Florian Lasch
- European Medicines Agency, Amsterdam, The Netherlands
- Hannover Medical School, Hannover, Germany
| | - Lorenzo Guizzaro
- European Medicines Agency, Amsterdam, The Netherlands
- Università della Campania “Luigi Vanvitelli”, Italy
| | - Frank Pétavy
- European Medicines Agency, Amsterdam, The Netherlands
| | - Ciro Gallo
- Università della Campania “Luigi Vanvitelli”, Italy
| |
Collapse
|
157
|
Yu JC, Hlávka JP, Joe E, Richmond FJ, Lakdawalla DN. Impact of non-binding FDA guidances on primary endpoint selection in Alzheimer's disease trials. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2022; 8:e12280. [PMID: 35356740 PMCID: PMC8943597 DOI: 10.1002/trc2.12280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 02/10/2022] [Accepted: 02/11/2022] [Indexed: 11/08/2022]
Abstract
Introduction The U.S. Food and Drug Administration (FDA)'s guidances help describe the agency's current thinking on regulatory issues and serve as a means of informal policymaking that is non-binding. This study examines the impact of two guidance documents for Alzheimer's disease (AD) trials. The first guidance in 2013 encouraged the use of cognitive/functional endpoints, while the second in 2018 modified such recommendation. Methods Using pivotal trial data, we applied a regression discontinuity in time (RDiT) framework to examine trialist response to these guidance documents. Results were stratified by disease-modifying therapy (DMT) status, and controlled for disease staging, FDA registration status, and trial phase. Results Among AD DMT trials, annual use of cognitive/functional composite endpoints significantly increased after the 2013 guidance (+12.9%, P < .001), and significantly decreased after the 2018 guidance (-19.9%, P = .022). Discussion Although guidance documents do not set new legal standards or impose binding requirements, our findings indicate they are broadly followed by AD trialists.
Collapse
Affiliation(s)
- Jeffrey C. Yu
- School of PharmacyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
- Leonard D. Schaeffer Center for Health Policy & EconomicsLos AngelesCaliforniaUSA
| | - Jakub P. Hlávka
- Leonard D. Schaeffer Center for Health Policy & EconomicsLos AngelesCaliforniaUSA
- Sol Price School of Public PolicyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Elizabeth Joe
- Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | | | - Darius N. Lakdawalla
- School of PharmacyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
- Leonard D. Schaeffer Center for Health Policy & EconomicsLos AngelesCaliforniaUSA
- Sol Price School of Public PolicyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| |
Collapse
|
158
|
Kim CK, Lee YR, Ong L, Gold M, Kalali A, Sarkar J. Alzheimer's Disease: Key Insights from Two Decades of Clinical Trial Failures. J Alzheimers Dis 2022; 87:83-100. [PMID: 35342092 PMCID: PMC9198803 DOI: 10.3233/jad-215699] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Given the acknowledged lack of success in Alzheimer’s disease (AD) drug development over the past two decades, the objective of this review was to derive key insights from the myriad failures to inform future drug development. A systematic and exhaustive review was performed on all failed AD compounds for dementia (interventional phase II and III clinical trials from ClinicalTrials.gov) from 2004 to the present. Starting with the initial ∼2,700 AD clinical trials, ∼550 trials met our initial criteria, from which 98 unique phase II and III compounds with various mechanisms of action met our criteria of a failed compound. The two recent reported phase III successes of aducanumab and oligomannate are very encouraging; however, we are awaiting real-world validation of their effectiveness. These two successes against the 98 failures gives a 2.0% phase II and III success rate since 2003, when the previous novel compound was approved. Potential contributing methodological factors for the clinical trial failures were categorized into 1) insufficient evidence to initiate the pivotal trials, and 2) pivotal trial design shortcomings. Our evaluation found that rational drug development principles were not always followed for AD therapeutics development, and the question remains whether some of the failed compounds may have shown efficacy if the principles were better adhered to. Several recommendations are made for future AD therapeutic development. The whole database of the 98 failed compounds is presented in the Supplementary Material.
Collapse
Affiliation(s)
| | | | | | - Michael Gold
- Neuroscience Development, AbbVie, North Chicago, IL, USA
| | | | | |
Collapse
|
159
|
Xia LY, Tang L, Huang H, Luo J. Identification of Potential Driver Genes and Pathways Based on Transcriptomics Data in Alzheimer's Disease. Front Aging Neurosci 2022; 14:752858. [PMID: 35401145 PMCID: PMC8985410 DOI: 10.3389/fnagi.2022.752858] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 02/21/2022] [Indexed: 01/16/2023] Open
Abstract
Alzheimer's disease (AD) is one of the most common neurodegenerative diseases. To identify AD-related genes from transcriptomics and help to develop new drugs to treat AD. In this study, firstly, we obtained differentially expressed genes (DEG)-enriched coexpression networks between AD and normal samples in multiple transcriptomics datasets by weighted gene co-expression network analysis (WGCNA). Then, a convergent genomic approach (CFG) integrating multiple AD-related evidence was used to prioritize potential genes from DEG-enriched modules. Subsequently, we identified candidate genes in the potential genes list. Lastly, we combined deepDTnet and SAveRUNNER to predict interaction among candidate genes, drug and AD. Experiments on five datasets show that the CFG score of GJA1 is the highest among all potential driver genes of AD. Moreover, we found GJA1 interacts with AD from target-drugs-diseases network prediction. Therefore, candidate gene GJA1 is the most likely to be target of AD. In summary, identification of AD-related genes contributes to the understanding of AD pathophysiology and the development of new drugs.
Collapse
|
160
|
Kim J, Ahn SW, Deans K, Thompson D, Ferland B, Divakar P, Dominas C, Jonas O. Intratarget Microdosing for Deep Phenotyping of Multiple Drug Effects in the Live Brain. Front Bioeng Biotechnol 2022; 10:855755. [PMID: 35372313 PMCID: PMC8973214 DOI: 10.3389/fbioe.2022.855755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 02/22/2022] [Indexed: 01/21/2023] Open
Abstract
A main impediment to effective development of new therapeutics for central nervous system disorders, and for the in vivo testing of biological hypotheses in the brain, is the ability to rapidly measure the effect of novel agents and treatment combinations on the pathophysiology of native brain tissue. We have developed a miniaturized implantable microdevice (IMD) platform, optimized for direct stereotactic insertion into the brain, which enables the simultaneous measurement of multiple drug effects on the native brain tissue in situ. The IMD contains individual reservoirs which release microdoses of single agents or combinations into confined regions of the brain, with subsequent spatial analysis of phenotypic, transcriptomic or metabolomic effects. Using murine models of Alzheimer’s disease (AD), we demonstrate that microdoses of various approved and investigational CNS drugs released from the IMD within a local brain region exhibit in situ phenotypes indicative of therapeutic responses, such as neuroprotection, reduction of hyperphosphorylation, immune cell modulation, and anti-inflammatory effects. We also show that local treatments with drugs affecting metabolism provide evidence for regulation of metabolite profiles and immune cell function in hMAPT AD mice. The platform should prove useful in facilitating the rapid testing of pharmacological or biological treatment hypotheses directly within native brain tissues (of various animal models and in patients) and help to confirm on-target effects, in situ pharmacodynamics and drug-induced microenvironment remodeling, much more efficiently than currently feasible.
Collapse
Affiliation(s)
- Jennifer Kim
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Sebastian W. Ahn
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Kyle Deans
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Devon Thompson
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Benjamin Ferland
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Prajan Divakar
- Nanostring Technologies, Inc., Seattle, WA, United States
| | - Christine Dominas
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Oliver Jonas
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- *Correspondence: Oliver Jonas,
| |
Collapse
|
161
|
Seto M, Mahoney ER, Dumitrescu L, Ramanan VK, Engelman CD, Deming Y, Albert M, Johnson SC, Zetterberg H, Blennow K, Vemuri P, Jefferson AL, Hohman TJ. Exploring common genetic contributors to neuroprotection from amyloid pathology. Brain Commun 2022; 4:fcac066. [PMID: 35425899 PMCID: PMC9006043 DOI: 10.1093/braincomms/fcac066] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 01/13/2022] [Accepted: 03/15/2022] [Indexed: 01/25/2023] Open
Abstract
Preclinical Alzheimer's disease describes some individuals who harbour Alzheimer's pathologies but are asymptomatic. For this study, we hypothesized that genetic variation may help protect some individuals from Alzheimer's-related neurodegeneration. We therefore conducted a genome-wide association study using 5 891 064 common variants to assess whether genetic variation modifies the association between baseline beta-amyloid, as measured by both cerebrospinal fluid and positron emission tomography, and neurodegeneration defined using MRI measures of hippocampal volume. We combined and jointly analysed genotype, biomarker and neuroimaging data from non-Hispanic white individuals who were enrolled in four longitudinal ageing studies (n = 1065). Using regression models, we examined the interaction between common genetic variants (Minor Allele Frequency >0.01), including APOE-ɛ4 and APOE-ɛ2, and baseline cerebrospinal levels of amyloid (CSF Aβ42) on baseline hippocampal volume and the longitudinal rate of hippocampal atrophy. For targeted replication of top findings, we analysed an independent dataset (n = 808) where amyloid burden was assessed by Pittsburgh Compound B ([11C]-PiB) positron emission tomography. In this study, we found that APOE-ɛ4 modified the association between baseline CSF Aβ42 and hippocampal volume such that APOE-ɛ4 carriers showed more rapid atrophy, particularly in the presence of enhanced amyloidosis. We also identified a novel locus on chromosome 3 that interacted with baseline CSF Aβ42. Minor allele carriers of rs62263260, an expression quantitative trait locus for the SEMA5B gene (P = 1.46 × 10-8; 3:122675327) had more rapid neurodegeneration when amyloid burden was high and slower neurodegeneration when amyloid was low. The rs62263260 × amyloid interaction on longitudinal change in hippocampal volume was replicated in an independent dataset (P = 0.0112) where amyloid burden was assessed by positron emission tomography. In addition to supporting the established interaction between APOE and amyloid on neurodegeneration, our study identifies a novel locus that modifies the association between beta-amyloid and hippocampal atrophy. Annotation results may implicate SEMA5B, a gene involved in synaptic pruning and axonal guidance, as a high-quality candidate for functional confirmation and future mechanistic analysis.
Collapse
Affiliation(s)
- Mabel Seto
- Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University Medical Center, 1207 17th Ave S, Nashville, TN 37212, USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN 37212, USA
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - Emily R. Mahoney
- Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University Medical Center, 1207 17th Ave S, Nashville, TN 37212, USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN 37212, USA
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Logan Dumitrescu
- Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University Medical Center, 1207 17th Ave S, Nashville, TN 37212, USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN 37212, USA
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | - Corinne D. Engelman
- Department of Population Health Sciences, University of Wisconsin, School of Medicine and Public Health, Madison, WI 53726, USA
- Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
- Geriatric Education and Clinical Center, Wm.S.Middleton VA Hospital, Madison, WI 53705, USA
| | - Yuetiva Deming
- Department of Population Health Sciences, University of Wisconsin, School of Medicine and Public Health, Madison, WI 53726, USA
- Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
- Geriatric Education and Clinical Center, Wm.S.Middleton VA Hospital, Madison, WI 53705, USA
| | - Marilyn Albert
- Department of Neurology, the Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Sterling C. Johnson
- Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
- Geriatric Education and Clinical Center, Wm.S.Middleton VA Hospital, Madison, WI 53705, USA
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Mölndal 413 90, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal 413 45, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London WC1N 3BG, UK
- UK Dementia Research Institute at UCL, London WC1E 6BT, UK
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Mölndal 413 90, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal 413 45, Sweden
| | | | - Angela L. Jefferson
- Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University Medical Center, 1207 17th Ave S, Nashville, TN 37212, USA
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Timothy J. Hohman
- Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University Medical Center, 1207 17th Ave S, Nashville, TN 37212, USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN 37212, USA
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | |
Collapse
|
162
|
Savva K, Zachariou M, Bourdakou MM, Dietis N, Spyrou GM. Network-based stage-specific drug repurposing for Alzheimer's disease. Comput Struct Biotechnol J 2022; 20:1427-1438. [PMID: 35386099 PMCID: PMC8957022 DOI: 10.1016/j.csbj.2022.03.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 03/14/2022] [Indexed: 11/29/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease and the most common type of dementia. With no disease-curing drugs available and an ever-growing AD-related healthcare burden, novel approaches for identifying therapies are needed. In this work, we propose stage-specific candidate repurposed drugs against AD by using a novel network-based method for drug repurposing against different stages of AD severity. For each AD stage, this approach a) ranks the candidate repurposed drugs based on a novel network-based score emerging from the weighted sum of connections in a network resembling the structural similarity with failed, approved or currently ongoing drugs b) re-ranks the candidate drugs based on functional, structural and a priori information according to a recently developed method by our group and c) checks and re-ranks for permeability through the Blood Brain Barrier (BBB). Overall, we propose for further experimental validation 10 candidate repurposed drugs for each AD stage comprising a set of 26 elite candidate repurposed drugs due to overlaps between the three AD stages. We applied our methodology in a retrospective way on the known clinical trial drugs till 2016 and we show that we were able to highly rank a drug that did enter clinical trials in the following year. We expect that our proposed network-based drug-repurposing methodology will serve as a paradigm for application for ranking candidate repurposed drugs in other brain diseases beyond AD.
Collapse
Affiliation(s)
- Kyriaki Savva
- Bioinformatics Department, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Margarita Zachariou
- Bioinformatics Department, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Marilena M. Bourdakou
- Bioinformatics Department, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Nikolas Dietis
- Experimental Pharmacology Laboratory, Medical School, University of Cyprus, Cyprus
| | - George M. Spyrou
- Bioinformatics Department, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| |
Collapse
|
163
|
Shadyab AH, LaCroix AZ, Matthews G, Bennett D, Shadyab AA, Tan D, Thomas RG, Mason J, Lopez A, Askew B, Donahue L, Kaplita S, Qureshi IA, Huisa B, Feldman HH. T2 Protect AD: Achieving a rapid recruitment timeline in a multisite clinical trial for individuals with mild to moderate Alzheimer's disease. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2022; 8:e12265. [PMID: 35310528 PMCID: PMC8919121 DOI: 10.1002/trc2.12265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 11/02/2021] [Accepted: 01/10/2022] [Indexed: 12/02/2022]
Abstract
Introduction The reporting of approaches facilitating the most efficient and timely recruitment of Alzheimer's disease (AD) patients into pharmacologic trials is fundamental to much-needed therapeutic progress. Methods T2 Protect AD (T2), a phase 2 randomized placebo-controlled trial of troriluzole in mild to moderate AD, used multiple recruitment strategies. Results T2 exceeded its recruitment target, enrolling 350 participants between July 2018 and December 2019 (randomization rate: 0.87 randomizations/site/month, or 3-fold greater than recent trials of mild to moderate AD). The vast majority (98%) of participants were enrolled during a 10-month window of intense promotion in news media, TV and radio advertisements, and social media. The distribution of primary recruitment sources included: existing patient lists at participating sites (72.3%), news media (12.3%), physician referral (6.0%), word of mouth (3.1%), and paid advertising (2.9%). Discussion The rapid recruitment of participants with mild to moderate AD was achieved through a range of approaches with varying success.
Collapse
Affiliation(s)
- Aladdin H. Shadyab
- Herbert Wertheim School of Public Health and Human Longevity ScienceUniversity of California, San DiegoLa JollaCaliforniaUSA
- Alzheimer's Disease Cooperative StudyUniversity of California, San DiegoLa JollaCaliforniaUSA
| | - Andrea Z. LaCroix
- Herbert Wertheim School of Public Health and Human Longevity ScienceUniversity of California, San DiegoLa JollaCaliforniaUSA
- Alzheimer's Disease Cooperative StudyUniversity of California, San DiegoLa JollaCaliforniaUSA
| | - Genevieve Matthews
- Alzheimer's Disease Cooperative StudyUniversity of California, San DiegoLa JollaCaliforniaUSA
| | - Daniel Bennett
- Alzheimer's Disease Cooperative StudyUniversity of California, San DiegoLa JollaCaliforniaUSA
| | - Alexandre A. Shadyab
- Alzheimer's Disease Cooperative StudyUniversity of California, San DiegoLa JollaCaliforniaUSA
| | - Donna Tan
- Alzheimer's Disease Cooperative StudyUniversity of California, San DiegoLa JollaCaliforniaUSA
| | - Ronald G. Thomas
- Herbert Wertheim School of Public Health and Human Longevity ScienceUniversity of California, San DiegoLa JollaCaliforniaUSA
- Alzheimer's Disease Cooperative StudyUniversity of California, San DiegoLa JollaCaliforniaUSA
| | - Jennifer Mason
- Alzheimer's Disease Cooperative StudyUniversity of California, San DiegoLa JollaCaliforniaUSA
| | - Alex Lopez
- Alzheimer's Disease Cooperative StudyUniversity of California, San DiegoLa JollaCaliforniaUSA
| | - Brianna Askew
- Alzheimer's Disease Cooperative StudyUniversity of California, San DiegoLa JollaCaliforniaUSA
| | - Lia Donahue
- Biohaven Pharmaceuticals, Inc.New HavenConnecticutUSA
| | | | | | - Branko Huisa
- Alzheimer's Disease Cooperative StudyUniversity of California, San DiegoLa JollaCaliforniaUSA
| | - Howard H. Feldman
- Alzheimer's Disease Cooperative StudyUniversity of California, San DiegoLa JollaCaliforniaUSA
| | | |
Collapse
|
164
|
Lin L, Hua F, Salinas C, Young C, Bussiere T, Apgar JF, Burke JM, Kandadi Muralidharan K, Rajagovindan R, Nestorov I. Quantitative systems pharmacology model for Alzheimer's disease to predict the effect of aducanumab on brain amyloid. CPT Pharmacometrics Syst Pharmacol 2022; 11:362-372. [PMID: 35029320 PMCID: PMC8923729 DOI: 10.1002/psp4.12759] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 12/20/2021] [Accepted: 12/29/2021] [Indexed: 12/25/2022] Open
Abstract
Alzheimer's disease (AD) is an irreversible, progressive brain disorder that impairs memory and cognitive function. Dysregulation of the amyloid-β (Aβ) pathway and amyloid plaque accumulation in the brain are hallmarks of AD. Aducanumab is a human, immunoglobulin gamma 1 monoclonal antibody targeting aggregated forms of Aβ. In phase Ib and phase III studies, aducanumab reduced Aβ plaques in a dose dependent manner, as measured by standard uptake value ratio of amyloid positron emission tomography imaging. The goal of this work was to develop a quantitative systems pharmacology model describing the production, aggregation, clearance, and transport of Aβ as well as the mechanism of action for the drug to understand the relationship between aducanumab dosing regimens and changes of different Aβ species, particularly plaques in the brain. The model was used to better understand the pharmacodynamic effects observed in the clinical trials of aducanumab and assist in the clinical development of future Aβ therapies.
Collapse
Affiliation(s)
- Lin Lin
- BiogenCambridgeMassachusettsUSA
| | - Fei Hua
- Applied BioMath, LLCConcordMassachusettsUSA
| | | | | | | | | | | | | | | | | |
Collapse
|
165
|
From tryptophan-based amides to tertiary amines: Optimization of a butyrylcholinesterase inhibitor series. Eur J Med Chem 2022; 234:114248. [DOI: 10.1016/j.ejmech.2022.114248] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/20/2022] [Accepted: 02/28/2022] [Indexed: 12/29/2022]
|
166
|
den Boer JA, de Vries EJ, Borra RJ, Waarde AV, Lammertsma AA, Dierckx RA. Role of Brain Imaging in Drug Development for Psychiatry. Curr Rev Clin Exp Pharmacol 2022; 17:46-71. [DOI: 10.2174/1574884716666210322143458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/17/2020] [Accepted: 01/06/2021] [Indexed: 11/22/2022]
Abstract
Background:
Over the last decades, many brain imaging studies have contributed to
new insights in the pathogenesis of psychiatric disease. However, in spite of these developments,
progress in the development of novel therapeutic drugs for prevalent psychiatric health conditions
has been limited.
Objective:
In this review, we discuss translational, diagnostic and methodological issues that have
hampered drug development in CNS disorders with a particular focus on psychiatry. The role of
preclinical models is critically reviewed and opportunities for brain imaging in early stages of drug
development using PET and fMRI are discussed. The role of PET and fMRI in drug development
is reviewed emphasizing the need to engage in collaborations between industry, academia and
phase I units.
Conclusion:
Brain imaging technology has revolutionized the study of psychiatric illnesses, and
during the last decade, neuroimaging has provided valuable insights at different levels of analysis
and brain organization, such as effective connectivity (anatomical), functional connectivity patterns
and neurochemical information that may support both preclinical and clinical drug development.
Since there is no unifying pathophysiological theory of individual psychiatric syndromes and since
many symptoms cut across diagnostic boundaries, a new theoretical framework has been proposed
that may help in defining new targets for treatment and thus enhance drug development in CNS diseases.
In addition, it is argued that new proposals for data-mining and mathematical modelling as
well as freely available databanks for neural network and neurochemical models of rodents combined
with revised psychiatric classification will lead to new validated targets for drug development.
Collapse
Affiliation(s)
| | - Erik J.F. de Vries
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Ronald J.H. Borra
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Aren van Waarde
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Adriaan A. Lammertsma
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Rudi A. Dierckx
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
167
|
Shan G. Randomized two-stage optimal design for interval-censored data. J Biopharm Stat 2022; 32:298-307. [PMID: 34890525 PMCID: PMC9133004 DOI: 10.1080/10543406.2021.2009499] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 10/21/2021] [Indexed: 10/19/2022]
Abstract
Interval-censored data occur in a study where the exact event time of each participant is not observed but it is known to be within a certain time interval. Multiple tests were proposed for such data, including the logrank test by Sun, the proportional hazard test by Finkelstein, and the Wilcoxon-type test by Peto and Peto. We propose sample size calculations based on these tests for a parallel one-stage or two-stage design. When the proportional hazard assumption is met, the proportional hazard test and the logrank test need smaller sample sizes than the Wilcoxon-type test, and the sample size savings are substantial. But this trend is reversed when the proportional hazard assumption does not hold, and the sample size savings using the Wilcoxon-type test are sizable. An example from a lung cancer clinical trial is used to illustrate the application of the proposed sample size calculations.
Collapse
Affiliation(s)
- Guogen Shan
- Department of Biostatistics, University of Florida, Gainesville, FL 32603
| |
Collapse
|
168
|
Ibarrondo O, Huerta JM, Amiano P, Andreu-Reinón ME, Mokoroa O, Ardanaz E, Larumbe R, Colorado-Yohar SM, Navarro-Mateu F, Chirlaque MD, Mar J. Dementia Risk Score for a Population in Southern Europe Calculated Using Competing Risk Models. J Alzheimers Dis 2022; 86:1751-1762. [PMID: 35253747 PMCID: PMC9108562 DOI: 10.3233/jad-215211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: Dementia prevention can be addressed if the intervention is applied early. Objective: The objective of this study was to develop and validate competing risk models to predict the late risk of dementia based on variables assessed in middle age in a southern European population. Methods: We conducted a prospective observational study of the EPIC-Spain cohort that included 25,015 participants. Dementia cases were identified from electronic health records and validated by neurologists. Data were gathered on sociodemographic characteristics and cardiovascular risk factors. To stratify dementia risk, Fine and Gray competing risk prediction models were constructed for the entire sample and for over-55-year-olds. Risk scores were calculated for low (the 30% of the sample with the lowest risk), moderate (> 30% –60%), and high (> 60% –100%) risk. Results: The 755 cases of dementia identified represented a cumulative incidence of 3.1% throughout the study period. The AUC of the model for over-55-year-olds was much higher (80.8%) than the overall AUC (68.5%) in the first 15 years of follow-up and remained that way in the subsequent follow-up. The weight of the competing risk of death was greater than that of dementia and especially when the entire population was included. Conclusion: This study presents the first dementia risk score calculated in a southern European population in mid-life and followed up for 20 years. The score makes it feasible to achieve the early identification of individuals in a southern European population who could be targeted for the prevention of dementia based on the intensive control of risk factors.
Collapse
Affiliation(s)
- Oliver Ibarrondo
- Basque Health Service (Osakidetza), Debagoiena Integrated Healthcare Organisation, Research Unit, Arrasate-Mondragón, Spain
- Biodonostia Health Research Institute, Epidemiology and Public Health Area, San Sebastián, Spain
| | - José María Huerta
- Murcia Biomedical Research Institute (IMIB-Arrixaca), Murcia, Spain
- Department of Epidemiology. Murcia Regional Health Council, Murcia, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Pilar Amiano
- Biodonostia Health Research Institute, Epidemiology and Public Health Area, San Sebastián, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Ministry of Health of the Basque Government, Sub-Directorate for Public Health and Addictions of Gipuzkoa, SanSebastián, Spain
| | - María Encarnación Andreu-Reinón
- Murcia Biomedical Research Institute (IMIB-Arrixaca), Murcia, Spain
- Section of Neurology, Department of Internal Medicine, Rafael Méndez Hospital, Murcian Health Service, Lorca, Spain
| | - Olatz Mokoroa
- Biodonostia Health Research Institute, Epidemiology and Public Health Area, San Sebastián, Spain
- Ministry of Health of the Basque Government, Sub-Directorate for Public Health and Addictions of Gipuzkoa, SanSebastián, Spain
| | - Eva Ardanaz
- Public Health Institute of Navarra, IdiSNA, Pamplona, Spain
- Neuroepigenetics Laboratory, Navarrabiomed, Public University of Navarre (UPNA), Navarre, Spain
| | - Rosa Larumbe
- Public Health Institute of Navarra, IdiSNA, Pamplona, Spain
- Neuroepigenetics Laboratory, Navarrabiomed, Public University of Navarre (UPNA), Navarre, Spain
- Department of Neurology, Complejo Hospitalario deNavarra, Pamplona, Spain
| | - Sandra M. Colorado-Yohar
- Murcia Biomedical Research Institute (IMIB-Arrixaca), Murcia, Spain
- Department of Epidemiology. Murcia Regional Health Council, Murcia, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Research Group on Demography and Health, National Faculty of Public Health, University of Antioquia, Medellín, Colombia
| | - Fernando Navarro-Mateu
- Murcia Biomedical Research Institute (IMIB-Arrixaca), Murcia, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Unidad deDocencia, Investigación y Formación en Salud Mental(UDIF-SM), Murcian Health Service, IMIB-Arrixaca, Murcia, Spain
| | - María Dolores Chirlaque
- Murcia Biomedical Research Institute (IMIB-Arrixaca), Murcia, Spain
- Department of Epidemiology. Murcia Regional Health Council, Murcia, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Department of Health and Social Sciences, University of Murcia, Murcia, Spain
| | - Javier Mar
- Basque Health Service (Osakidetza), Debagoiena Integrated Healthcare Organisation, Research Unit, Arrasate-Mondragón, Spain
- Biodonostia Health Research Institute, Epidemiology and Public Health Area, San Sebastián, Spain
- Kronikgune Health Services Research Institute, Barakaldo, Spain
| |
Collapse
|
169
|
Pichon A, Idnay B, Marder K, Schnall R, Weng C. Cognitive Function Characterization Using Electronic Health Records Notes. AMIA ... ANNUAL SYMPOSIUM PROCEEDINGS. AMIA SYMPOSIUM 2022; 2021:999-1008. [PMID: 35308911 PMCID: PMC8861713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Cognitive impairment is a defining feature of neurological disorders such as Alzheimer's disease (AD), one of the leading causes of disability and mortality in the elderly population. Assessing cognitive impairment is important for diagnostic, clinical management, and research purposes. The Folstein Mini-Mental State Examination (MMSE) is the most common screening measure of cognitive function, yet this score is not consistently available in the electronic health records. We conducted a pilot study to extract frequently used concepts characterizing cognitive function from the clinical notes of AD patients in an Aging and Dementia clinical practice. Then we developed a model to infer the severity of cognitive impairment and created a subspecialized taxonomy for concepts associated with MMSE scores. We evaluated the taxonomy and the severity prediction model and presented example use cases of this model.
Collapse
Affiliation(s)
| | - Betina Idnay
- School of Nursing
- Department of Neurology
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, New York, USA
| | - Karen Marder
- Department of Neurology
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, New York, USA
| | | | | |
Collapse
|
170
|
Schindler SE. Predicting Symptom Onset in Sporadic Alzheimer's Disease: "How Long Do I Have?". J Alzheimers Dis 2022; 90:975-979. [PMID: 35213383 DOI: 10.3233/jad-215722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Predicting not just if but when cognitively normal individuals will develop the onset of Alzheimer's disease (AD) dementia seems increasingly feasible, as evidenced by converging findings from several approaches and cohorts. These estimates may improve the efficiency of clinical trials by better identifying cognitively normal individuals at high risk of developing AD symptoms. As models are refined, the implications of disclosing estimates of the age of AD symptom onset must be examined, since telling a cognitively normal individual the age they are expected to develop AD symptoms may have different implications than disclosing increased risk for AD dementia.
Collapse
Affiliation(s)
- Suzanne E Schindler
- Department of Neurology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| |
Collapse
|
171
|
Jack CR, Therneau TM, Lundt ES, Wiste HJ, Mielke MM, Knopman DS, Graff-Radford J, Lowe VJ, Vemuri P, Schwarz CG, Senjem ML, Gunter JL, Petersen RC. Long-term associations between amyloid positron emission tomography, sex, apolipoprotein E and incident dementia and mortality among individuals without dementia: hazard ratios and absolute risk. Brain Commun 2022; 4:fcac017. [PMID: 35310829 PMCID: PMC8924651 DOI: 10.1093/braincomms/fcac017] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 11/08/2021] [Accepted: 01/31/2022] [Indexed: 11/14/2022] Open
Abstract
Dementia and mortality rates rise inexorably with age and consequently interact. However, because of the major logistical difficulties in accounting for both outcomes in a defined population, very little work has examined how risk factors and biomarkers for incident dementia are influenced by competing mortality. The objective of this study was to examine long-term associations between amyloid PET, APOE ɛ4, sex, education and cardiovascular/metabolic conditions, and hazard and absolute risk of dementia and mortality in individuals without dementia at enrolment. Participants were enrolled in the Mayo Clinic Study of Aging, a population-based study of cognitive ageing in Olmsted County, MN, USA. All were without dementia and were age 55-92 years at enrolment and were followed longitudinally. Predictor variables were amyloid PET, APOE ɛ4 status, sex, education, cardiovascular/metabolic conditions and age. The main outcomes were incident dementia and mortality. Multivariable, multi-state models were used to estimate mortality and incident dementia rates and absolute risk of dementia and mortality by predictor variable group. Of the 4984 participants in the study, 4336 (87%) were cognitively unimpaired and 648 (13%) had mild cognitive impairment at enrolment. The median age at enrolment was 75 years; 2463 (49%) were women. The median follow-up time was 9.4 years (7.5 years after PET). High versus normal amyloid (hazard ratio 2.11, 95% confidence interval 1.43-2.79), APOE ɛ4 (women: hazard ratio 2.24, 95% confidence interval 1.80-2.77; men: hazard ratio 1.37, 95% confidence interval 1.09-1.71), older age and two additional cardiovascular/metabolic conditions (hazard ratio 1.37, 95% confidence interval 1.22-1.53) were associated with the increased hazard of dementia (all P < 0.001). Among APOE ɛ4 carriers with elevated amyloid, remaining lifetime risk of dementia at age 65 years was greater in women [74% (95% confidence interval 65-84%) high and 58% (95% confidence interval 52-65%) moderate amyloid], than men [62% (95% confidence interval 52-73%) high and 44% (95% confidence interval 35-53%) moderate amyloid]. Overall, the hazard and absolute risk of dementia varied considerably by predictor group. The absolute risk of dementia associated with predictors characteristic of Alzheimer's disease was greater in women than men while at the same time the combination of APOE ɛ4 non-carrier with normal amyloid was more protective in women than men. This set of findings may be attributed in part to different biological effects and in part to lower mortality rates in women.
Collapse
Affiliation(s)
| | - Terry M. Therneau
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Emily S. Lundt
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Heather J. Wiste
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Michelle M. Mielke
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | | | | | - Val J. Lowe
- Department of Nuclear Medicine, Mayo Clinic, Rochester, MN, USA
| | | | | | | | | | | |
Collapse
|
172
|
Ghazarian AL, Haim T, Sauma S, Katiyar P. National Institute on Aging seed funding enables Alzheimer's disease startups to reach key value inflection points. Alzheimers Dement 2022; 18:348-359. [PMID: 34374496 PMCID: PMC9291195 DOI: 10.1002/alz.12392] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 04/28/2021] [Accepted: 05/05/2021] [Indexed: 11/06/2022]
Abstract
INTRODUCTION The National Institute on Aging (NIA) provides funding to academic researchers and small businesses working in the Alzheimer's Disease (AD) and AD-related dementia (ADRD) fields to help commercialize their products. The NIA uses Small Business Innovation Research (SBIR) awards to bridge the funding gap in the diagnostic, therapeutic, and care interventions areas, enabling startups to reach key value inflection points to achieve scientific milestones. METHODS Only publicly available information is reported. The National Institutes of Health Report Portfolio Online Reporting Tool database and the commercial database Global Data, were used to track the progress of companies that received SBIR or Small Business Technology Transfer (STTR) funding from the NIA. RESULTS Since 2008, the NIA has awarded $280 million-including $207 million from fiscal year (FY) 2015 to FY 2019-in new small business program awards for AD/ADRD research. DISCUSSION NIA seed capital and mentoring programs are critical resources to help small businesses reach key value inflection points and advance their research from concept to commercialization.
Collapse
Affiliation(s)
- Armineh L Ghazarian
- Office of Small Business ResearchNational Institute on AgingBethesdaMarylandUSA
| | - Todd Haim
- Office of Small Business ResearchNational Institute on AgingBethesdaMarylandUSA
| | - Samir Sauma
- Office of Planning, Analysis, and EvaluationNational Institute on AgingBethesdaMarylandUSA
| | - Pragati Katiyar
- Office of Planning, Analysis, and EvaluationNational Institute on AgingBethesdaMarylandUSA
| |
Collapse
|
173
|
Weiss C, Bertolino N, Procissi D, Aleppo G, Smith QC, Viola KL, Bartley SC, Klein WL, Disterhoft JF. Diet-induced Alzheimer's-like syndrome in the rabbit. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2022; 8:e12241. [PMID: 35128030 PMCID: PMC8804622 DOI: 10.1002/trc2.12241] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 11/02/2021] [Accepted: 12/09/2021] [Indexed: 02/03/2023]
Abstract
INTRODUCTION Although mouse models of Alzheimer's disease (AD) have increased our understanding of the molecular basis of the disease, none of those models represent late-onset Alzheimer's Disease which accounts for >90% of AD cases, and no therapeutics developed in the mouse (with the possible exceptions of aduhelm/aducanumab and gantenerumab) have succeeded in preventing or reversing the disease. This technology has allowed much progress in understanding the molecular basis of AD. To further enhance our understanding, we used wild-type rabbit (with a nearly identical amino acid sequence for amyloid as in humans) to model LOAD by stressing risk factors including age, hypercholesterolemia, and elevated blood glucose levels (BGLs), upon an ε3-like isoform of apolipoprotein. We report a combined behavioral, imaging, and metabolic study using rabbit as a non-transgenic model to examine effects of AD-related risk factors on cognition, intrinsic functional connectivity, and magnetic resonance-based biomarkers of neuropathology. METHODS Aging rabbits were fed a diet enriched with either 2% cholesterol or 10% fat/30% fructose. Monthly tests of novel object recognition (NOR) and object location memory (OLM) were administered to track cognitive impairment. Trace eyeblink conditioning (EBC) was administered as a final test of cognitive impairment. Magnetic resonance imaging (MRI) was used to obtain resting state connectivity and quantitative parametric data (R2*). RESULTS Experimental diets induced hypercholesterolemia or elevated BGL. Both experimental diets induced statistically significant impairment of OLM (but not NOR) and altered intrinsic functional connectivity. EBC was more impaired by fat/fructose diet than by cholesterol. Whole brain and regional R2* MRI values were elevated in both experimental diet groups relative to rabbits on the control diet. DISCUSSION We propose that mechanisms underlying LOAD can be assessed by stressing risk factors for inducing AD and that dietary manipulations can be used to assess etiological differences in the pathologies and effectiveness of potential therapeutics against LOAD. In addition, non-invasive MRI in awake, non-anesthetized rabbits further increases the translational value of this non-transgenic model to study AD.
Collapse
Affiliation(s)
- Craig Weiss
- Department of NeuroscienceNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Nicola Bertolino
- Department of RadiologyNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Daniele Procissi
- Department of RadiologyNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Grazia Aleppo
- Division of Endocrinology, Metabolism and Molecular MedicineNorthwestern University, Feinberg School of MedicineChicagoIllinoisUSA
| | - Quinn C. Smith
- Department of NeuroscienceNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Kirsten L. Viola
- Department of NeurobiologyNorthwestern UniversityEvanstonIllinoisUSA
| | - Samuel C. Bartley
- Department of NeurobiologyNorthwestern UniversityEvanstonIllinoisUSA
| | - William L. Klein
- Department of NeurobiologyNorthwestern UniversityEvanstonIllinoisUSA
| | - John F. Disterhoft
- Department of NeuroscienceNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| |
Collapse
|
174
|
Sanderson‐Cimino M, Elman JA, Tu XM, Gross AL, Panizzon MS, Gustavson DE, Bondi MW, Edmonds EC, Eglit GM, Eppig JS, Franz CE, Jak AJ, Lyons MJ, Thomas KR, Williams ME, Kremen WS. Cognitive practice effects delay diagnosis of MCI: Implications for clinical trials. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2022; 8:e12228. [PMID: 35128027 PMCID: PMC8804942 DOI: 10.1002/trc2.12228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 07/12/2021] [Accepted: 11/15/2021] [Indexed: 02/03/2023]
Abstract
INTRODUCTION Practice effects (PEs) on cognitive tests obscure decline, thereby delaying detection of mild cognitive impairment (MCI). Importantly, PEs may be present even when there are performance declines, if scores would have been even lower without prior test exposure. We assessed how accounting for PEs using a replacement-participants method impacts incident MCI diagnosis. METHODS Of 889 baseline cognitively normal (CN) Alzheimer's Disease Neuroimaging Initiative (ADNI) participants, 722 returned 1 year later (mean age = 74.9 ± 6.8 at baseline). The scores of test-naïve demographically matched "replacement" participants who took tests for the first time were compared to returnee scores at follow-up. PEs-calculated as the difference between returnee follow-up scores and replacement participants scores-were subtracted from follow-up scores of returnees. PE-adjusted cognitive scores were then used to determine if individuals were below the impairment threshold for MCI. Cerebrospinal fluid amyloid beta, phosphorylated tau, and total tau were used for criterion validation. In addition, based on screening and recruitment numbers from a clinical trial of amyloid-positive individuals, we estimated the effect of earlier detection of MCI by accounting for cognitive PEs on a hypothetical clinical trial in which the key outcome was progression to MCI. RESULTS In the ADNI sample, PE-adjusted scores increased MCI incidence by 19% (P < .001), increased proportion of amyloid-positive MCI cases (+12%), and reduced proportion of amyloid-positive CNs (-5%; P's < .04). Additional calculations showed that the earlier detection and increased MCI incidence would also substantially reduce necessary sample size and study duration for a clinical trial of progression to MCI. Cost savings were estimated at ≈$5.41 million. DISCUSSION Detecting MCI as early as possible is of obvious importance. Accounting for cognitive PEs with the replacement-participants method leads to earlier detection of MCI, improved diagnostic accuracy, and can lead to multi-million-dollar cost reductions for clinical trials.
Collapse
Affiliation(s)
- Mark Sanderson‐Cimino
- San Diego State University/University of California San Diego Joint Doctoral Program in Clinical PsychologySan DiegoCaliforniaUSA
- Center for Behavior Genetics of AgingUniversity of CaliforniaSan DiegoLa JollaCaliforniaUSA
| | - Jeremy A. Elman
- Center for Behavior Genetics of AgingUniversity of CaliforniaSan DiegoLa JollaCaliforniaUSA
- Department of PsychiatrySchool of MedicineUniversity of CaliforniaSan DiegoLa JollaCaliforniaUSA
| | - Xin M. Tu
- Department of PsychiatrySchool of MedicineUniversity of CaliforniaSan DiegoLa JollaCaliforniaUSA
- Family Medicine and Public HealthUniversity of CaliforniaSan DiegoLa JollaCaliforniaUSA
- Sam and Rose Stein Institute for Research on AgingUniversity of CaliforniaSan DiegoLa JollaCaliforniaUSA
| | - Alden L. Gross
- Department of EpidemiologyJohns Hopkins Bloomberg School of Public HealthBaltimoreMarylandUSA
| | - Matthew S. Panizzon
- Center for Behavior Genetics of AgingUniversity of CaliforniaSan DiegoLa JollaCaliforniaUSA
- Department of PsychiatrySchool of MedicineUniversity of CaliforniaSan DiegoLa JollaCaliforniaUSA
| | - Daniel E. Gustavson
- Department of MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Mark W. Bondi
- Department of PsychiatrySchool of MedicineUniversity of CaliforniaSan DiegoLa JollaCaliforniaUSA
- Psychology ServiceVA San Diego Healthcare SystemSan DiegoCaliforniaUSA
| | - Emily C. Edmonds
- Department of PsychiatrySchool of MedicineUniversity of CaliforniaSan DiegoLa JollaCaliforniaUSA
- Research ServiceVA San Diego Healthcare SystemSan DiegoCaliforniaUSA
| | - Graham M.L. Eglit
- Center for Behavior Genetics of AgingUniversity of CaliforniaSan DiegoLa JollaCaliforniaUSA
- Department of PsychiatrySchool of MedicineUniversity of CaliforniaSan DiegoLa JollaCaliforniaUSA
- Sam and Rose Stein Institute for Research on AgingUniversity of CaliforniaSan DiegoLa JollaCaliforniaUSA
| | | | - Carol E. Franz
- Center for Behavior Genetics of AgingUniversity of CaliforniaSan DiegoLa JollaCaliforniaUSA
- Department of PsychiatrySchool of MedicineUniversity of CaliforniaSan DiegoLa JollaCaliforniaUSA
| | - Amy J. Jak
- Center for Behavior Genetics of AgingUniversity of CaliforniaSan DiegoLa JollaCaliforniaUSA
- Center of Excellence for Stress and Mental HealthVeterans Affairs San Diego Healthcare SystemSan DiegoCaliforniaUSA
| | - Michael J. Lyons
- Department of Psychological and Brain SciencesBoston UniversityBostonMassachusettsUSA
| | - Kelsey R. Thomas
- Department of PsychiatrySchool of MedicineUniversity of CaliforniaSan DiegoLa JollaCaliforniaUSA
- Research ServiceVA San Diego Healthcare SystemSan DiegoCaliforniaUSA
| | - McKenna E. Williams
- San Diego State University/University of California San Diego Joint Doctoral Program in Clinical PsychologySan DiegoCaliforniaUSA
- Center for Behavior Genetics of AgingUniversity of CaliforniaSan DiegoLa JollaCaliforniaUSA
| | - William S. Kremen
- Center for Behavior Genetics of AgingUniversity of CaliforniaSan DiegoLa JollaCaliforniaUSA
- Department of PsychiatrySchool of MedicineUniversity of CaliforniaSan DiegoLa JollaCaliforniaUSA
| | | |
Collapse
|
175
|
Travers-Lesage V, Mignani SM, Dallemagne P, Rochais C. Advances in prodrug design for Alzheimer's Disease: the state of the art. Expert Opin Drug Discov 2022; 17:325-341. [PMID: 35089846 DOI: 10.1080/17460441.2022.2031972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
INTRODUCTION : Alzheimer's disease (AD) is the most common cause of dementia with a memory loss and other cognitive abilities and is a complex and multifactorial neurodegenerative disease that remains today a challenge for drug discovery. Like many pathologies of the central nervous system, one of the first hurdles is the development of a compound with a sufficient brain exposure to ensure a potential therapeutic benefit. In this direction, the development of prodrugs has been an intense field of research in the last years. AREAS COVERED : Two main strategies of prodrugs development are analysed in this review. First, the application of the classical modulation of an active compound to incorporate a drug carrier or to prepare bioprecursor has been exemplified in the field of AD. This approach has led to several examples engaged in the clinical trials. In a second chapter, a series of innovative prodrugs based on a polypharmacological approach is described to take into account the complexity of AD. EXPERT OPINION : In the past 10 years, at least 6 prodrugs have been approved by the FDA for the treatment of central nervous system pathologies. Most of them have been developed in order to improve membrane permeability of the parent drugs. Facing the limitation of Alzheimer's disease drug discovery, the development of prodrugs will likely play a central role in the next years. Indeed, beside addressing the challenge of distribution, prodrug could also tackle the complex multifactorial origin of the disease with the rise of innovative pleiotropic prodrugs.
Collapse
Affiliation(s)
- Valentin Travers-Lesage
- Normandie Univ, UNICAEN, Centre d'Etudes et de Recherche sur le Médicament de Normandie (CERMN), Caen, France
| | - Serge M Mignani
- UMR 860, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologique, Université Paris Descartes, PRES Sorbonne Paris Cité, CNRS, 45 rue des Saints Pères, 75006 Paris, France.,CQM - Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - Patrick Dallemagne
- Normandie Univ, UNICAEN, Centre d'Etudes et de Recherche sur le Médicament de Normandie (CERMN), Caen, France
| | - Christophe Rochais
- Normandie Univ, UNICAEN, Centre d'Etudes et de Recherche sur le Médicament de Normandie (CERMN), Caen, France
| |
Collapse
|
176
|
Zamani J, Sadr A, Javadi AH. Diagnosis of early mild cognitive impairment using a multiobjective optimization algorithm based on T1-MRI data. Sci Rep 2022; 12:1020. [PMID: 35046444 PMCID: PMC8770462 DOI: 10.1038/s41598-022-04943-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 01/04/2022] [Indexed: 12/03/2022] Open
Abstract
Alzheimer's disease (AD) is the most prevalent form of dementia. The accurate diagnosis of AD, especially in the early phases is very important for timely intervention. It has been suggested that brain atrophy, as measured with structural magnetic resonance imaging (sMRI), can be an efficacy marker of neurodegeneration. While classification methods have been successful in diagnosis of AD, the performance of such methods have been very poor in diagnosis of those in early stages of mild cognitive impairment (EMCI). Therefore, in this study we investigated whether optimisation based on evolutionary algorithms (EA) can be an effective tool in diagnosis of EMCI as compared to cognitively normal participants (CNs). Structural MRI data for patients with EMCI (n = 54) and CN participants (n = 56) was extracted from Alzheimer's disease Neuroimaging Initiative (ADNI). Using three automatic brain segmentation methods, we extracted volumetric parameters as input to the optimisation algorithms. Our method achieved classification accuracy of greater than 93%. This accuracy level is higher than the previously suggested methods of classification of CN and EMCI using a single- or multiple modalities of imaging data. Our results show that with an effective optimisation method, a single modality of biomarkers can be enough to achieve a high classification accuracy.
Collapse
Affiliation(s)
- Jafar Zamani
- School of Electrical Engineering, Iran University of Science and Technology, Narmak, Tehran, Iran
| | - Ali Sadr
- School of Electrical Engineering, Iran University of Science and Technology, Narmak, Tehran, Iran.
| | - Amir-Homayoun Javadi
- School of Psychology, Keynes College, University of Kent, Canterbury, UK.
- School of Rehabilitation, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
177
|
Lima E, Medeiros J. Marine Organisms as Alkaloid Biosynthesizers of Potential Anti-Alzheimer Agents. Mar Drugs 2022; 20:75. [PMID: 35049930 PMCID: PMC8780771 DOI: 10.3390/md20010075] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/11/2022] [Accepted: 01/11/2022] [Indexed: 12/12/2022] Open
Abstract
The incidence of neurodegenerative diseases, such as Alzheimer's disease (AD), increases continuously demanding the urgent development of anti-Alzheimer's agents. Marine organisms (MO) have to create their own defenses due to the adverse environment where they live and so synthesize several classes of compounds, such as akaloids, to defend themselves. Therefore, the identification of marine natural products with neuroprotective effects is a necessity. Being that AD is not only a genetic but also an environmental complex disease, a treatment for AD remains to discover. As the major clinical indications (CI) of AD are extracellular plaques formed by β-amyloid (Aβ) protein, intracellular neurofibrillary tangles (NFTs) formed by hyper phosphorylated τ-protein, uncommon inflammatory response and neuron apoptosis and death caused by oxidative stress, alkaloids that may decrease CI, might be used against AD. Most of the alkalolids with those properties are derivatives of the amino acid tryptophan mainly with a planar indole scaffold. Certainly, alkaloids targeting more than one CI, multitarget-directed ligands (MTDL), have the potential to become a lead in AD treatment. Alkaloids to have a maximum of activity against CI, should be planar and contain halogens and amine quaternization.
Collapse
Affiliation(s)
- Elisabete Lima
- Faculty of Science and Technology (FCT), Institute of Agricultural and Environmental Research and Technology (IITAA), University of Azores, 9500-321 Ponta Delgada, São Miguel, Açores, Portugal;
| | - Jorge Medeiros
- Faculty of Science and Technology (FCT), Biotechnology Centre of Azores (CBA), University of Azores, 9500-321 Ponta Delgada, São Miguel, Açores, Portugal
| |
Collapse
|
178
|
Willis BA, Lowe SL, Monk SA, Cocke PJ, Aluise CD, Boggs LN, Borders AR, Brier RA, Dean RA, Green SJ, James DE, Jhee SS, Lin Q, Lo AC, May PC, Watson BM, Winneroski LL, Yang Z, Zimmer JA, McKinzie DL, Mergott DJ. Robust Pharmacodynamic Effect of LY3202626, a Central Nervous System Penetrant, Low Dose BACE1 Inhibitor, in Humans and Nonclinical Species. J Alzheimers Dis Rep 2022; 6:1-15. [PMID: 35243208 PMCID: PMC8842743 DOI: 10.3233/adr-210037] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 12/19/2021] [Indexed: 11/15/2022] Open
Abstract
Background: The development of beta-site amyloid-beta precursor protein cleaving enzyme (BACE) 1 inhibitors for the treatment of Alzheimer’s disease requires optimization of inhibitor potency, selectivity, and brain penetration. Moreover, there is a need for low-dose compounds since liver toxicity was found with some BACE inhibitors. Objective: To determine whether the high in vitro potency and robust pharmacodynamic effect of the BACE inhibitor LY3202626 observed in nonclinical species translated to humans. Methods: The effect of LY3202626 versus vehicle on amyloid-β (Aβ) levels was evaluated in a series of in vitro assays, as well as in in vivo and multi-part clinical pharmacology studies. Aβ levels were measured using analytical biochemistry assays in brain, plasma, and cerebrospinal fluid (CSF) of mice, dogs and humans. Nonclinical data were analyzed using an ANOVA followed by Tukey’s post hoc test and clinical data used summary statistics. Results: LY3202626 exhibited significant human BACE1 inhibition, with an IC50 of 0.615±0.101 nM in a fluorescence resonance energy transfer assay and an EC50 of 0.275±0.176 nM for lowering Aβ1–40 and 0.228±0.244 nM for Aβ1–42 in PDAPP neuronal cultures. In dogs, CSF Aβ1hboxx concentrations were significantly reduced by ∼80% at 9 hours following a 1.5 mg/kg dose. In humans, CSF Aβ1–42 was reduced by 73.1±7.96 % following administration of 6 mg QD. LY3202626 was found to freely cross the blood-brain barrier in dogs and humans. Conclusion: LY3202626 is a potent BACE1 inhibitor with high blood-brain barrier permeability. The favorable safety and pharmacokinetic/pharmacodynamic profile of LY3202626 supports further clinical development.
Collapse
Affiliation(s)
- Brian A. Willis
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Stephen L. Lowe
- Lilly Centre for Clinical Pharmacology, Singapore, Singapore
| | - Scott A. Monk
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Patrick J. Cocke
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | | | - Leonard N. Boggs
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Anthony R. Borders
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Richard A. Brier
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Robert A. Dean
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Steven J. Green
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Douglas E. James
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | | | - Qun Lin
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Albert C. Lo
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Patrick C. May
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Brian M. Watson
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | | | - Zhixiang Yang
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Jennifer A. Zimmer
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - David L. McKinzie
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Dustin J. Mergott
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| |
Collapse
|
179
|
Xie C, Zhuang XX, Niu Z, Ai R, Lautrup S, Zheng S, Jiang Y, Han R, Gupta TS, Cao S, Lagartos-Donate MJ, Cai CZ, Xie LM, Caponio D, Wang WW, Schmauck-Medina T, Zhang J, Wang HL, Lou G, Xiao X, Zheng W, Palikaras K, Yang G, Caldwell KA, Caldwell GA, Shen HM, Nilsen H, Lu JH, Fang EF. Amelioration of Alzheimer's disease pathology by mitophagy inducers identified via machine learning and a cross-species workflow. Nat Biomed Eng 2022; 6:76-93. [PMID: 34992270 PMCID: PMC8782726 DOI: 10.1038/s41551-021-00819-5] [Citation(s) in RCA: 131] [Impact Index Per Article: 65.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 09/24/2021] [Indexed: 12/13/2022]
Abstract
A reduced removal of dysfunctional mitochondria is common to aging and age-related neurodegenerative pathologies such as Alzheimer’s disease (AD). Strategies for treating such impaired mitophagy would benefit from the identification of mitophagy modulators. Here we report the combined use of unsupervised machine learning (involving vector representations of molecular structures, pharmacophore fingerprinting and conformer fingerprinting) and a cross-species approach for the screening and experimental validation of new mitophagy-inducing compounds. From a library of naturally occurring compounds, the workflow allowed us to identify 18 small molecules, and among them two potent mitophagy inducers (Kaempferol and Rhapontigenin). In nematode and rodent models of AD, we show that both mitophagy inducers increased the survival and functionality of glutamatergic and cholinergic neurons, abrogated amyloid-β and tau pathologies, and improved the animals’ memory. Our findings suggest the existence of a conserved mechanism of memory loss across the AD models, this mechanism being mediated by defective mitophagy. The computational–experimental screening and validation workflow might help uncover potent mitophagy modulators that stimulate neuronal health and brain homeostasis. Two potent mitophagy inducers, identified and characterized via unsupervised machine learning and a cross-species screening approach, ameliorated the pathology of Alzheimer’s disease in worms and mice.
Collapse
Affiliation(s)
- Chenglong Xie
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, Lørenskog, Norway.,Institute of Aging, Wenzhou Medical University, Wenzhou, China.,Oujiang Laboratory, Wenzhou, Zhejiang, China.,Key Laboratory of Alzheimer's Disease of Zhejiang Province, Wenzhou, China
| | - Xu-Xu Zhuang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Zhangming Niu
- Aladdin Healthcare Technologies Ltd., London, UK.,MindRank AI Ltd., Hangzhou, Zhejiang, China
| | - Ruixue Ai
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, Lørenskog, Norway
| | - Sofie Lautrup
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, Lørenskog, Norway
| | - Shuangjia Zheng
- School of Data and Computer Science, Sun Yat-sen University, Guangzhou, China
| | | | - Ruiyu Han
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, Lørenskog, Norway
| | - Tanima Sen Gupta
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, Lørenskog, Norway
| | - Shuqin Cao
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, Lørenskog, Norway
| | - Maria Jose Lagartos-Donate
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, Lørenskog, Norway
| | - Cui-Zan Cai
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Li-Ming Xie
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Domenica Caponio
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, Lørenskog, Norway
| | - Wen-Wen Wang
- Center of Traditional Chinese Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Tomas Schmauck-Medina
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, Lørenskog, Norway
| | - Jianying Zhang
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, Lørenskog, Norway
| | - He-Ling Wang
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, Lørenskog, Norway
| | - Guofeng Lou
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, Lørenskog, Norway
| | | | - Wenhua Zheng
- Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Konstantinos Palikaras
- Department of Physiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Guang Yang
- Cardiovascular Research Centre, Royal Brompton Hospital, London, UK.,National Heart and Lung Institute, Imperial College London, London, UK
| | - Kim A Caldwell
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL, USA.,Departments of Neurology and Neurobiology, Center for Neurodegeneration and Experimental Therapeutics, Nathan Shock Center for Research on the Basic Biology of Aging, University of Alabama at Birmingham School of Medicine, Birmingham, AL, USA
| | - Guy A Caldwell
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL, USA.,Departments of Neurology and Neurobiology, Center for Neurodegeneration and Experimental Therapeutics, Nathan Shock Center for Research on the Basic Biology of Aging, University of Alabama at Birmingham School of Medicine, Birmingham, AL, USA
| | - Han-Ming Shen
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Faculty of Health Sciences, University of Macau, Macau, China
| | - Hilde Nilsen
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, Lørenskog, Norway.,The Norwegian Centre on Healthy Ageing (NO-Age), Oslo, Norway
| | - Jia-Hong Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China.
| | - Evandro F Fang
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, Lørenskog, Norway. .,The Norwegian Centre on Healthy Ageing (NO-Age), Oslo, Norway. .,Department of Geriatrics, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
180
|
Kim C, Haldiman T, Kang SG, Hromadkova L, Han ZZ, Chen W, Lissemore F, Lerner A, de Silva R, Cohen ML, Westaway D, Safar JG. Distinct populations of highly potent TAU seed conformers in rapidly progressing Alzheimer's disease. Sci Transl Med 2022; 14:eabg0253. [PMID: 34985969 DOI: 10.1126/scitranslmed.abg0253] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Chae Kim
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Tracy Haldiman
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Sang-Gyun Kang
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton T6G 2M8, Canada
| | - Lenka Hromadkova
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Zhuang Zhuang Han
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton T6G 2M8, Canada
| | - Wei Chen
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.,National Prion Disease Pathology Surveillance Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Frances Lissemore
- Department of Neurology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Alan Lerner
- Department of Neurology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Rohan de Silva
- Reta Lila Weston Institute of Neurological Studies and Department of Molecular Neuroscience, UCL Institute of Neurology, London WC1N 1PJ, UK
| | - Mark L Cohen
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.,National Prion Disease Pathology Surveillance Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - David Westaway
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton T6G 2M8, Canada
| | - Jiri G Safar
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.,Department of Neurology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| |
Collapse
|
181
|
Haghighijoo Z, Zamani L, Moosavi F, Emami S. Therapeutic potential of quinazoline derivatives for Alzheimer's disease: A comprehensive review. Eur J Med Chem 2022; 227:113949. [PMID: 34742016 DOI: 10.1016/j.ejmech.2021.113949] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 10/02/2021] [Accepted: 10/22/2021] [Indexed: 12/24/2022]
Abstract
Quinazolines are considered as a promising class of bioactive heterocyclic compounds with broad properties. Particularly, the quinazoline scaffold has an impressive role in the design and synthesis of new CNS-active drugs. The drug-like properties and pharmacological characteristics of quinazoline could lead to different drugs with various targets. Among CNS disorders, Alzheimer's disease (AD) is a progressive neurodegenerative disorder with memory loss, cognitive decline and language dysfunction. AD is a complex and multifactorial disease therefore, the need for finding multi-target drugs against this devastative disease is urgent. A literature survey revealed that quinazoline derivatives have diverse therapeutic potential for AD as modulators/inhibitors of β-amyloid, tau protein, cholinesterases, monoamine oxidases, and phosphodiesterases as well as other protective effects. Thus, we describe here the most relevant and recent studies about anti-AD agents with quinazoline structure which can further aid the development and discovery of new anti-AD agents.
Collapse
Affiliation(s)
- Zahra Haghighijoo
- Department of Chemistry, University of Louisiana at Lafayette, Lafayette, LA, 70504, USA
| | - Leila Zamani
- Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA, 01609, USA
| | - Fatemeh Moosavi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saeed Emami
- Department of Medicinal Chemistry and Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
182
|
Szabo MP, Mishra S, Knupp A, Young JE. The role of Alzheimer's disease risk genes in endolysosomal pathways. Neurobiol Dis 2022; 162:105576. [PMID: 34871734 PMCID: PMC9071255 DOI: 10.1016/j.nbd.2021.105576] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 11/23/2021] [Accepted: 12/02/2021] [Indexed: 12/25/2022] Open
Abstract
There is ample pathological and biological evidence for endo-lysosomal dysfunction in Alzheimer's disease (AD) and emerging genetic studies repeatedly implicate endo-lysosomal genes as associated with increased AD risk. The endo-lysosomal network (ELN) is essential for all cell types of the central nervous system (CNS), yet each unique cell type utilizes cellular trafficking differently (see Fig. 1). Challenges ahead involve defining the role of AD associated genes in the functionality of the endo-lysosomal network (ELN) and understanding how this impacts the cellular dysfunction that occurs in AD. This is critical to the development of new therapeutics that will impact, and potentially reverse, early disease phenotypes. Here we review some early evidence of ELN dysfunction in AD pathogenesis and discuss the role of selected AD-associated risk genes in this pathway. In particular, we review genes that have been replicated in multiple genome-wide association studies(Andrews et al., 2020; Jansen et al., 2019; Kunkle et al., 2019; Lambert et al., 2013; Marioni et al., 2018) and reviewed in(Andrews et al., 2020) that have defined roles in the endo-lysosomal network. These genes include SORL1, an AD risk gene harboring both rare and common variants associated with AD risk and a role in trafficking cargo, including APP, through the ELN; BIN1, a regulator of clathrin-mediated endocytosis whose expression correlates with Tau pathology; CD2AP, an AD risk gene with roles in endosome morphology and recycling; PICALM, a clathrin-binding protein that mediates trafficking between the trans-Golgi network and endosomes; and Ephrin Receptors, a family of receptor tyrosine kinases with AD associations and interactions with other AD risk genes. Finally, we will discuss how human cellular models can elucidate cell-type specific differences in ELN dysfunction in AD and aid in therapeutic development.
Collapse
Affiliation(s)
- Marcell P Szabo
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98109, United States of America; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, United States of America
| | - Swati Mishra
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98109, United States of America; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, United States of America
| | - Allison Knupp
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98109, United States of America; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, United States of America
| | - Jessica E Young
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98109, United States of America; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, United States of America.
| |
Collapse
|
183
|
Gonzales MM, Garbarino VR, Marques Zilli E, Petersen RC, Kirkland JL, Tchkonia T, Musi N, Seshadri S, Craft S, Orr ME. Senolytic Therapy to Modulate the Progression of Alzheimer's Disease (SToMP-AD): A Pilot Clinical Trial. J Prev Alzheimers Dis 2022; 9:22-29. [PMID: 35098970 PMCID: PMC8612719 DOI: 10.14283/jpad.2021.62] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 07/25/2021] [Indexed: 12/13/2022]
Abstract
Preclinical studies indicate an age-associated accumulation of senescent cells across multiple organ systems. Emerging evidence suggests that tau protein accumulation, which closely correlates with cognitive decline in Alzheimer's disease and other tauopathies, drives cellular senescence in the brain. Pharmacologically clearing senescent cells in mouse models of tauopathy reduced brain pathogenesis. Compared to vehicle treated mice, intermittent senolytic administration reduced tau accumulation and neuroinflammation, preserved neuronal and synaptic density, restored aberrant cerebral blood flow, and reduced ventricular enlargement. Intermittent dosing of the senolytics, dasatinib plus quercetin, has shown an acceptable safety profile in clinical studies for other senescence-associated conditions. With these data, we proposed and herein describe the objectives and methods for a clinical vanguard study. This initial open-label clinical trial pilots an intermittent senolytic combination therapy of dasatinib plus quercetin in five older adults with early-stage Alzheimer's disease. The primary objective is to evaluate the central nervous system penetration of dasatinib and quercetin through analysis of cerebrospinal fluid collected at baseline and after 12 weeks of treatment. Further, through a series of secondary outcome measures to assess target engagement of the senolytic compounds and Alzheimer's disease-relevant cognitive, functional, and physical outcomes, we will collect preliminary data on safety, feasibility, and efficacy. The results of this study will be used to inform the development of a randomized, double-blind, placebo-controlled multicenter phase II trial to further explore of the safety, feasibility, and efficacy of senolytics for modulating the progression of Alzheimer's disease. Clinicaltrials.gov registration number and date: NCT04063124 (08/21/2019).
Collapse
Affiliation(s)
- Mitzi M. Gonzales
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, Department of Neurology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229 USA
| | - V. R. Garbarino
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, Department of Neurology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229 USA
| | - E. Marques Zilli
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, Department of Neurology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229 USA
| | | | - J. L. Kirkland
- Mayo Clinic, Robert and Arlene Kogod Center on Aging, Rochester, MN USA
| | - T. Tchkonia
- Mayo Clinic, Robert and Arlene Kogod Center on Aging, Rochester, MN USA
| | - N. Musi
- University of Texas Health Science Center at San Antonio, Barshop Institute for Longevity and Aging Studies, San Antonio Geriatric Research, Education and Clinical Center (GRECC), Department of Medicine, San Antonio, TX USA
| | - S. Seshadri
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, Department of Neurology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229 USA
- Boston University School of Medicine, Department of Neurology, Boston, MA USA
| | - S. Craft
- Wake Forest School of Medicine, Gerontology and Geriatric Medicine, 575 Patterson Avenue, Winston-Salem, NC 27101 USA
| | - Miranda E. Orr
- Wake Forest School of Medicine, Gerontology and Geriatric Medicine, 575 Patterson Avenue, Winston-Salem, NC 27101 USA
| |
Collapse
|
184
|
Frisoni GB, Altomare D, Thal DR, Ribaldi F, van der Kant R, Ossenkoppele R, Blennow K, Cummings J, van Duijn C, Nilsson PM, Dietrich PY, Scheltens P, Dubois B. The probabilistic model of Alzheimer disease: the amyloid hypothesis revised. Nat Rev Neurosci 2022; 23:53-66. [PMID: 34815562 PMCID: PMC8840505 DOI: 10.1038/s41583-021-00533-w] [Citation(s) in RCA: 185] [Impact Index Per Article: 92.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2021] [Indexed: 01/03/2023]
Abstract
The current conceptualization of Alzheimer disease (AD) is driven by the amyloid hypothesis, in which a deterministic chain of events leads from amyloid deposition and then tau deposition to neurodegeneration and progressive cognitive impairment. This model fits autosomal dominant AD but is less applicable to sporadic AD. Owing to emerging information regarding the complex biology of AD and the challenges of developing amyloid-targeting drugs, the amyloid hypothesis needs to be reconsidered. Here we propose a probabilistic model of AD in which three variants of AD (autosomal dominant AD, APOE ε4-related sporadic AD and APOE ε4-unrelated sporadic AD) feature decreasing penetrance and decreasing weight of the amyloid pathophysiological cascade, and increasing weight of stochastic factors (environmental exposures and lower-risk genes). Together, these variants account for a large share of the neuropathological and clinical variability observed in people with AD. The implementation of this model in research might lead to a better understanding of disease pathophysiology, a revision of the current clinical taxonomy and accelerated development of strategies to prevent and treat AD.
Collapse
Affiliation(s)
- Giovanni B Frisoni
- Laboratory of Neuroimaging of Aging (LANVIE), University of Geneva, Geneva, Switzerland.
- Memory Clinic, Geneva University Hospitals, Geneva, Switzerland.
| | - Daniele Altomare
- Laboratory of Neuroimaging of Aging (LANVIE), University of Geneva, Geneva, Switzerland
- Memory Clinic, Geneva University Hospitals, Geneva, Switzerland
| | - Dietmar Rudolf Thal
- Laboratory for Neuropathology, Department of Imaging and Pathology, and Leuven Brain Institute, University of Leuven, Leuven, Belgium
- Department of Pathology, University Hospital Leuven, Leuven, Belgium
| | - Federica Ribaldi
- Laboratory of Neuroimaging of Aging (LANVIE), University of Geneva, Geneva, Switzerland
- Memory Clinic, Geneva University Hospitals, Geneva, Switzerland
- Laboratory of Alzheimer's Neuroimaging and Epidemiology (LANE), IRCCS Centro S. Giovanni di Dio Fatebenefratelli, Brescia, Italy
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Rik van der Kant
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, Netherlands
- Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, Netherlands
| | - Rik Ossenkoppele
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, Netherlands
- Clinical Memory Research Unit, Lund University, Lund, Sweden
| | - Kaj Blennow
- Cinical Neurochemistry Laboratory, Institute of Neuroscience and Physiology, University of Gothenburg, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Jeffrey Cummings
- Chambers-Grundy Center for Transformative Neuroscience, Department of Brain Health, School of Integrated Health Sciences; University of Nevada, Las Vegas, Las Vegas, NV, USA
| | - Cornelia van Duijn
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, Netherlands
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Peter M Nilsson
- Department of Clinical Sciences, Lund University, Skåne University Hospital, Malmö, Sweden
| | | | - Philip Scheltens
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, Netherlands
- Life Science Partners, Amsterdam, Netherlands
| | - Bruno Dubois
- Institut de la Mémoire et de la Maladie d'Alzheimer, IM2A, Groupe Hospitalier Pitié-Salpêtrière, Sorbonne Université, Paris, France
- Institut du Cerveau et de la Moelle Épinière, UMR-S975, INSERM, Paris, France
| |
Collapse
|
185
|
Patel B, Irwin DJ, Kaufer D, Boeve BF, Taylor A, Armstrong MJ. Outcome Measures for Dementia With Lewy Body Clinical Trials: A Review. Alzheimer Dis Assoc Disord 2022; 36:64-72. [PMID: 34393189 PMCID: PMC8847491 DOI: 10.1097/wad.0000000000000473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 07/07/2021] [Indexed: 01/03/2023]
Abstract
BACKGROUND Dementia with Lewy bodies (DLB) is one of the most common degenerative dementias. Clinical trials for individuals with DLB are increasing. We aimed to identify commonly used outcome measures for trials in DLB. METHODS A pragmatic literature search of PubMed and clinicaltrials.gov identified interventional studies including populations with DLB. Studies were included if they enrolled participants with DLB and met the National Institutes of Health criteria for a clinical trial. Data were collected using standardized forms. Outcome measures were categorized according to core and supportive features of DLB. RESULTS After de-duplication, 58 trials were identified. The most common cognitive outcome measures were the Mini Mental State Examination (n=24) and Cognitive Drug Research computerized Assessment System (n=5). The Clinician's Assessment of Fluctuations was the most commonly used measure for fluctuations (n=4). Over half of studies used the Neuropsychiatric Inventory to assess behavioral symptoms (n=31). The Unified Parkinson's Disease Rating Scale was frequently used for motor assessment (n=23). CONCLUSIONS AND RELEVANCE Clinical trial outcomes used in DLB are rarely validated in this population and some lack face validity. There is a need to validate existing scales in DLB and develop DLB-specific outcome measures.
Collapse
Affiliation(s)
- Bhavana Patel
- Department of Neurology, University of Florida College of Medicine, McKnight Brain Institute
| | | | - Daniel Kaufer
- Departments of Neurology and Psychiatry, University of North Carolina
| | - Bradley F. Boeve
- Department of Neurology and Center for Sleep Medicine, Mayo Clinic Rochester
| | - Angela Taylor
- Lewy Body Dementia Association
- Comprehensive Center for Brain Health, Department of Neurology, University of Miami Miller School of Medicine
| | - Melissa J. Armstrong
- Department of Neurology, University of Florida College of Medicine, McKnight Brain Institute
| |
Collapse
|
186
|
Tolomeu HV, Fraga CAM. The Outcomes of Small-Molecule Kinase Inhibitors and the Role of ROCK2 as a Molecular Target for the Treatment of Alzheimer's Disease. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2022; 21:188-205. [PMID: 34414875 DOI: 10.2174/1871527320666210820092220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 02/17/2021] [Accepted: 03/13/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Alzheimer's disease is rapidly becoming a major threat to public health, with an increasing number of individuals affected as the world's population ages. In this sense, studies have been carried out aiming at the identification of new small-molecule kinase inhibitors useful for the treatment of Alzheimer's disease. OBJECTIVE In the present study, we investigated the compounds developed as inhibitors of different protein kinases associated with the pathogenesis of Alzheimer's disease. METHODS The applied methodology was the use of the Clarivate Analytics Integrity and ClinicalTrials. com databases. Moreover, we highlight ROCK2 as a promising target despite being little studied for this purpose. A careful structure-activity relationship analysis of the ROCK2 inhibitors was performed to identify important structural features and fragments for the interaction with the kinase active site, aiming to rationally design novel potent and selective inhibitors. RESULTS We were able to notice some structural characteristics that could serve as the basis to better guide the rational design of new ROCK2 inhibitors as well as some more in-depth characteristics regarding the topology of the active site of both isoforms of these enzymes, thereby identifying differences that could lead to planning more selective compounds. CONCLUSION We hope that this work can be useful to update researchers working in this area, enabling the emergence of new ideas and a greater direction of efforts for designing new ROCK2 inhibitors to identify new therapeutic alternatives for Alzheimer's disease.
Collapse
Affiliation(s)
- Heber Victor Tolomeu
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio), Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, 21941-902 Rio de Janeiro, RJ, Brazil | Programa de Pós-Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, 21941- 902 Rio de Janeiro, RJ, Brazil
| | - Carlos Alberto Manssour Fraga
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio), Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, 21941-902 Rio de Janeiro, RJ, Brazil | Programa de Pós-Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, 21941- 902 Rio de Janeiro, RJ, Brazil
| |
Collapse
|
187
|
Lee KH, Kang KM. Association between Cerebral Small Vessel and Alzheimer’s Disease. JOURNAL OF THE KOREAN SOCIETY OF RADIOLOGY 2022; 83:486-507. [PMID: 36238505 PMCID: PMC9514514 DOI: 10.3348/jksr.2022.0041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/15/2022] [Accepted: 05/16/2022] [Indexed: 11/15/2022]
Abstract
뇌소혈관질환은 뇌 자기공명영상에서 흔히 관찰되는 혈관성 변화로 뇌백질 고신호강도, 뇌미세출혈, 열공성 경색, 혈관주위공간 등을 포함한다. 이러한 혈관성 변화가 알츠하이머병(Alzheimer’s disease; 이하 AD)의 발병 및 진행과 관련되어 있고, 대표 병리인 베타 아밀로이드 및 타우 단백의 침착과도 연관되어 있다는 증거들이 축적되고 있다. 혈관성 변화는 생활 습관 개선이나 약물 치료를 통해 예방과 개선이 가능하기 때문에 뇌소혈관질환과 AD 및 AD 생체지표의 관련성을 연구하는 것이 중요하다. 본 종설에서는 AD와 AD 생체지표에 대해 간략히 소개하고, AD와 혈관성 변화의 관련성에 대해 축적된 증거들을 제시한 다음, 뇌소혈관질환의 병태 생리와 MR 영상 소견을 설명하고자 한다. 또 뇌소혈관질환과 AD 진단의 위험도 및 AD 생체지표와의 관련성에 대한 기존 연구 결과들을 정리하고자 한다.
Collapse
Affiliation(s)
- Kyung Hoon Lee
- Department of Radiology, Seoul National University Hospital, Seoul, Korea
| | - Koung Mi Kang
- Department of Radiology, Seoul National University Hospital, Seoul, Korea
- Department of Radiology, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
188
|
Zhang Y, Chen H, Long X, Xu T. Three-dimensional-engineered bioprinted in vitro human neural stem cell self-assembling culture model constructs of Alzheimer's disease. Bioact Mater 2021; 11:192-205. [PMID: 34938923 PMCID: PMC8665263 DOI: 10.1016/j.bioactmat.2021.09.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 08/26/2021] [Accepted: 09/16/2021] [Indexed: 12/31/2022] Open
Abstract
The pathogenic cascade of Alzheimer's disease (AD) characterized by amyloid-β protein accumulation is still poorly understood, partially owing to the limitations of relevant models without in vivo neural tissue microenvironment to recapitulate cell-cell interactions. To better mimic neural tissue microenvironment, three-dimensional (3D) core-shell AD model constructs containing human neural progenitor cells (NSCs) with 2% matrigel as core bioink and 2% alginate as shell bioink have been bioprinted by a co-axial bioprinter, with a suitable shell thickness for nutrient exchange and barrier-free cell interaction cores. These constructs exhibit cell self-clustering and -assembling properties and engineered reproducibility with long-term cell viability and self-renewal, and a higher differentiation level compared to 2D and 3D MIX models. The different effects of 3D bioprinted, 2D, and MIX microenvironments on the growth of NSCs are mainly related to biosynthesis of amino acids and glyoxylate and dicarboxylate metabolism on day 2 and ribosome, biosynthesis of amino acids and proteasome on day 14. Particularly, the model constructs demonstrated Aβ aggregation and higher expression of Aβ and tau isoform genes compared to 2D and MIX controls. AD model constructs will provide a promising strategy to facilitate the development of a 3D in vitro AD model for neurodegeneration research.
Collapse
Affiliation(s)
- Yi Zhang
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Haiyan Chen
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Xiaoyan Long
- East China Institute of Digital Medical Engineering, Shangrao, 334000, China
| | - Tao Xu
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China.,Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, People's Republic of China
| |
Collapse
|
189
|
Suo WZ. GRK5 Deficiency Causes Mild Cognitive Impairment due to Alzheimer's Disease. J Alzheimers Dis 2021; 85:1399-1410. [PMID: 34958040 DOI: 10.3233/jad-215379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Prevention of Alzheimer's disease (AD) is a high priority mission while searching for a disease modifying therapy for AD, a devastating major public health crisis. Clinical observations have identified a prodromal stage of AD for which the patients have mild cognitive impairment (MCI) though do not yet meet AD diagnostic criteria. As an identifiable transitional stage before the onset of AD, MCI should become the high priority target for AD prevention, assuming successful prevention of MCI and/or its conversion to AD also prevents the subsequent AD. By pulling this string, one demonstrated cause of amnestic MCI appears to be the deficiency of G protein-coupled receptor-5 (GRK5). The most compelling evidence is that GRK5 knockout (GRK5KO) mice naturally develop into aMCI during aging. Moreover, GRK5 deficiency was reported to occur during prodromal stage of AD in CRND8 transgenic mice. When a GRK5KO mouse was crossbred with Tg2576 Swedish amyloid precursor protein transgenic mouse, the resulted double transgenic GAP mice displayed exaggerated behavioral and pathological changes across the spectrum of AD pathogenesis. Therefore, the GRK5 deficiency possesses unique features and advantage to serve as a prophylactic therapeutic target for MCI due to AD.
Collapse
Affiliation(s)
- William Z Suo
- Laboratory for Alzheimer's Disease & Aging Research, VA Medical Center, Kansas City, MO, USA.,Department of Neurology, University of Kansas Medical Center, Kansas City, KS, USA.,Department of Molecular & Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA.,The University of Kansas Alzheimer's Disease Center, Kansas City, KS, USA
| |
Collapse
|
190
|
Shobo A, James N, Dai D, Röntgen A, Black C, Kwizera JR, Hancock MA, Huy Bui K, Multhaup G. The Amyloid-β 1-42-oligomer interacting peptide D-AIP possesses favorable biostability, pharmacokinetics, and brain region distribution. J Biol Chem 2021; 298:101483. [PMID: 34896396 PMCID: PMC8752909 DOI: 10.1016/j.jbc.2021.101483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/24/2021] [Accepted: 11/30/2021] [Indexed: 01/02/2023] Open
Abstract
We have previously developed a unique 8-amino acid Aβ42 oligomer-Interacting Peptide (AIP) as a novel anti-amyloid strategy for the treatment of Alzheimer’s disease. Our lead candidate has successfully progressed from test tubes (i.e., in vitro characterization of protease-resistant D-AIP) to transgenic flies (i.e., in vivo rescue of human Aβ42-mediated toxicity via D-AIP-supplemented food). In the present study, we examined D-AIP in terms of its stability in multiple biological matrices (i.e., ex-vivo mouse plasma, whole blood, and liver S9 fractions) using MALDI mass spectrometry, pharmacokinetics using a rapid and sensitive LC-MS method, and blood brain barrier (BBB) penetrance in WT C57LB/6 mice. D-AIP was found to be relatively stable over 3 h at 37 °C in all matrices tested. Finally, label-free MALDI imaging showed that orally administered D-AIP can readily penetrate the intact BBB in both male and female WT mice. Based upon the favorable stability, pharmacokinetics, and BBB penetration outcomes for orally administered D-AIP in WT mice, we then examined the effect of D-AIP on amyloid “seeding” in vitro (i.e., freshly monomerized versus preaggregated Aβ42). Complementary biophysical assays (ThT, TEM, and MALDI-TOF MS) showed that D-AIP can directly interact with synthetic Aβ42 aggregates to disrupt primary and/or secondary seeding events. Taken together, the unique mechanistic and desired therapeutic potential of our lead D-AIP candidate warrants further investigation, that is, testing of D-AIP efficacy on the altered amyloid/tau pathology in transgenic mouse models of Alzheimer’s disease.
Collapse
Affiliation(s)
- Adeola Shobo
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Nicholas James
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Daniel Dai
- Strathcona Anatomy Dentistry Building, McGill University, Montreal, QC, Canada
| | - Alexander Röntgen
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada; Institute of Biochemistry, University of Cologne, Cologne, Germany
| | - Corbin Black
- Strathcona Anatomy Dentistry Building, McGill University, Montreal, QC, Canada
| | - Jean-Robert Kwizera
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Mark A Hancock
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Khanh Huy Bui
- Strathcona Anatomy Dentistry Building, McGill University, Montreal, QC, Canada
| | - Gerhard Multhaup
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada; Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada.
| |
Collapse
|
191
|
Li X, Li J, Huang Y, Gong Q, Fu Y, Xu Y, Huang J, You H, Zhang D, Zhang D, Mao F, Zhu J, Wang H, Zhang H, Li J. The novel therapeutic strategy of vilazodone-donepezil chimeras as potent triple-target ligands for the potential treatment of Alzheimer's disease with comorbid depression. Eur J Med Chem 2021; 229:114045. [PMID: 34922191 DOI: 10.1016/j.ejmech.2021.114045] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/24/2021] [Accepted: 12/05/2021] [Indexed: 12/14/2022]
Abstract
Depression is one of the most frequent comorbid psychiatric symptoms of Alzheimer's disease (AD), and no efficacious drugs have been approved specifically for this purpose thus far. Herein, we proposed a novel therapeutic strategy that merged the key pharmacophores of the antidepressant vilazodone (5-HT1A receptor partial agonist and serotonin transporter inhibitor) and the anti-AD drug donepezil (acetylcholinesterase inhibitor) together to develop a series of multi-target-directed ligands for potential therapy of the comorbidity of AD and depression. Accordingly, 55 vilazodone-donepezil chimeric derivatives were designed and synthesized, and their triple-target activities against acetylcholinesterase, 5-HT1A receptor, and serotonin transporter were systematically evaluated. Among them, compound 5 displayed strong triple-target bioactivities in vitro, low hERG potassium channel inhibition and acceptable brain distribution. Importantly, oral intake of 5 mg/kg of the compound 5 dihydrochloride significantly alleviated the depressive symptoms and ameliorated cognitive dysfunction in mouse models. In brief, these results highlight vilazodone-donepezil chimeras as a prospective therapeutic approach for the treatment of the comorbidity of AD and depression.
Collapse
Affiliation(s)
- Xiaokang Li
- State Key Laboratory of Bioreactor Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China
| | - Jinwen Li
- State Key Laboratory of Bioreactor Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China
| | - Yunyuan Huang
- State Key Laboratory of Bioreactor Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China
| | - Qi Gong
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China
| | - Yan Fu
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China
| | - Yixiang Xu
- State Key Laboratory of Bioreactor Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China
| | - Junyang Huang
- State Key Laboratory of Bioreactor Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China
| | - Haolan You
- State Key Laboratory of Bioreactor Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China
| | - Dong Zhang
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China
| | - Dan Zhang
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China
| | - Fei Mao
- State Key Laboratory of Bioreactor Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China
| | - Jin Zhu
- State Key Laboratory of Bioreactor Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China
| | - Huan Wang
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China.
| | - Haiyan Zhang
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China.
| | - Jian Li
- State Key Laboratory of Bioreactor Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China; Yunnan Key Laboratory of Screening and Research on Anti-pathogenic Plant Resources from West Yunnan, College of Pharmacy, Dali University, 5 Xue Ren Road, Dali, Yunnan, 671000, China; Clinical Medicine Scientific and Technical Innovation Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
192
|
Nuño MM, Grill JD, Gillen DL. On the design of early-phase Alzheimer's disease clinical trials with cerebrospinal fluid tau outcomes. Clin Trials 2021; 18:714-723. [PMID: 34325548 PMCID: PMC8595611 DOI: 10.1177/17407745211034497] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND/AIMS The focus of Alzheimer's disease studies has shifted to earlier disease stages, including mild cognitive impairment. Biomarker inclusion criteria are often incorporated into mild cognitive impairment clinical trials to identify individuals with "prodromal Alzheimer's disease" to ensure appropriate drug targets and enrich for participants likely to develop Alzheimer's disease dementia. The use of these eligibility criteria may affect study power. METHODS We investigated outcome variability and study power in the setting of proof-of-concept prodromal Alzheimer's disease trials that incorporate cerebrospinal fluid levels of total tau (t-tau) and phosphorylated (p-tau) as primary outcomes and how differing biomarker inclusion criteria affect power. We used data from the Alzheimer's Disease Neuroimaging Initiative to model trial scenarios and to estimate the variance and within-subject correlation of total and phosphorylated tau. These estimates were then used to investigate the differences in study power for trials considering these two surrogate outcomes. RESULTS Patient characteristics were similar for all eligibility criteria. The lowest outcome variance and highest within-subject correlation were obtained when phosphorylated tau was used as an eligibility criterion, compared to amyloid beta or total tau, regardless of whether total tau or phosphorylated tau were used as primary outcomes. Power increased when eligibility criteria were broadened to allow for enrollment of subjects with either low amyloid beta or high phosphorylated tau. CONCLUSION Specific biomarker inclusion criteria may impact statistical power in trials using total tau or phosphorylated tau as the primary outcome. In concert with other important considerations such as treatment target and population of clinical interest, these results may have implications to the integrity and efficiency of prodromal Alzheimer's disease trial designs.
Collapse
Affiliation(s)
- Michelle M. Nuño
- Children’s Oncology Group, Monrovia, CA, USA
- Department of Preventive Medicine, University of Southern California, Los Angeles, CA, USA
| | - Joshua D. Grill
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, USA
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, USA
- Department of Psychiatry and Human Behavior, University of California, Irvine, Irvine, CA, USA
| | - Daniel L. Gillen
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, USA
- Department of Statistics, University of California, Irvine, Irvine, CA, USA
| | | |
Collapse
|
193
|
Verdi S, Marquand AF, Schott JM, Cole JH. Beyond the average patient: how neuroimaging models can address heterogeneity in dementia. Brain 2021; 144:2946-2953. [PMID: 33892488 PMCID: PMC8634113 DOI: 10.1093/brain/awab165] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 02/24/2021] [Accepted: 04/08/2021] [Indexed: 11/25/2022] Open
Abstract
Dementia is a highly heterogeneous condition, with pronounced individual differences in age of onset, clinical presentation, progression rates and neuropathological hallmarks, even within a specific diagnostic group. However, the most common statistical designs used in dementia research studies and clinical trials overlook this heterogeneity, instead relying on comparisons of group average differences (e.g. patient versus control or treatment versus placebo), implicitly assuming within-group homogeneity. This one-size-fits-all approach potentially limits our understanding of dementia aetiology, hindering the identification of effective treatments. Neuroimaging has enabled the characterization of the average neuroanatomical substrates of dementias; however, the increasing availability of large open neuroimaging datasets provides the opportunity to examine patterns of neuroanatomical variability in individual patients. In this update, we outline the causes and consequences of heterogeneity in dementia and discuss recent research that aims to tackle heterogeneity directly, rather than assuming that dementia affects everyone in the same way. We introduce spatial normative modelling as an emerging data-driven technique, which can be applied to dementia data to model neuroanatomical variation, capturing individualized neurobiological 'fingerprints'. Such methods have the potential to detect clinically relevant subtypes, track an individual's disease progression or evaluate treatment responses, with the goal of moving towards precision medicine for dementia.
Collapse
Affiliation(s)
- Serena Verdi
- Centre for Medical Image Computing, Medical Physics and Biomedical Engineering, University College London, London WC1V 6LJ, UK
- Dementia Research Centre, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Andre F Marquand
- Donders Centre for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, 6525EN, The Netherlands
- Department of Cognitive Neuroscience, Radboud University Medical Centre, Nijmegen, 6525EN, The Netherlands
| | - Jonathan M Schott
- Dementia Research Centre, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - James H Cole
- Centre for Medical Image Computing, Medical Physics and Biomedical Engineering, University College London, London WC1V 6LJ, UK
- Dementia Research Centre, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| |
Collapse
|
194
|
Network medicine for disease module identification and drug repurposing with the NeDRex platform. Nat Commun 2021; 12:6848. [PMID: 34824199 PMCID: PMC8617287 DOI: 10.1038/s41467-021-27138-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 11/04/2021] [Indexed: 12/17/2022] Open
Abstract
Traditional drug discovery faces a severe efficacy crisis. Repurposing of registered drugs provides an alternative with lower costs and faster drug development timelines. However, the data necessary for the identification of disease modules, i.e. pathways and sub-networks describing the mechanisms of complex diseases which contain potential drug targets, are scattered across independent databases. Moreover, existing studies are limited to predictions for specific diseases or non-translational algorithmic approaches. There is an unmet need for adaptable tools allowing biomedical researchers to employ network-based drug repurposing approaches for their individual use cases. We close this gap with NeDRex, an integrative and interactive platform for network-based drug repurposing and disease module discovery. NeDRex integrates ten different data sources covering genes, drugs, drug targets, disease annotations, and their relationships. NeDRex allows for constructing heterogeneous biological networks, mining them for disease modules, prioritizing drugs targeting disease mechanisms, and statistical validation. We demonstrate the utility of NeDRex in five specific use-cases.
Collapse
|
195
|
Filley CM. Cognitive Dysfunction in White Matter Disorders: New Perspectives in Treatment and Recovery. J Neuropsychiatry Clin Neurosci 2021; 33:349-355. [PMID: 34340526 DOI: 10.1176/appi.neuropsych.21030080] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
White matter disorders are increasingly appreciated as capable of disrupting cognitive function, and this impairment may be sufficiently severe to produce the syndrome of white matter dementia. Although recognizing this problem is important for diagnostic accuracy, the treatment of cognitive dysfunction and dementia in the white matter disorders has received relatively little attention. Similarly, few data are available regarding the potential for cognitive recovery in these disorders. Recent clinical and laboratory advances, however, indicate that effective treatment and meaningful recovery may be achievable goals for many patients with macrostructural or microstructural white matter pathology. One recent observation is that leukoaraiosis has been observed to regress with treatment of hypertension, often with concomitant improvement in cognition. Equally novel is emerging evidence that white matter exhibits substantial plasticity related to activity-dependent myelination and that this phenomenon may produce clinical benefit. These insights suggest that noninvasive and inexpensive interventions targeting white matter are warranted for a wide range of cognitively impaired patients. Moreover, given the well-established risk that vascular white matter pathology portends for developing dementia-including both vascular dementia and Alzheimer's disease-the application of these principles before dementia onset may also be efficacious for prevention. In view of the increasingly compelling case for early white matter involvement in the etiopathogenesis of late-life dementia and the continuing lack of disease-modifying therapy, progress in treating cognitive disturbances arising from white matter disorders offers the prospect that this approach may enhance the prevention of dementia as well as the treatment of cognitive dysfunction.
Collapse
Affiliation(s)
- Christopher M Filley
- Behavioral Neurology Section, Departments of Neurology and Psychiatry, University of Colorado School of Medicine, Aurora; and Marcus Institute for Brain Health, Aurora, Colo
| |
Collapse
|
196
|
Destabilization of the Alzheimer's amyloid-β peptide by a proline-rich β-sheet breaker peptide: a molecular dynamics simulation study. J Mol Model 2021; 27:356. [PMID: 34796404 DOI: 10.1007/s00894-021-04968-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 10/25/2021] [Indexed: 11/27/2022]
Abstract
The amyloid-β peptide exists in the form of fibrils in the plaques found in the brains of patients with Alzheimer's disease. One of the therapeutic strategies is the design of molecules which can destabilize these fibrils. We present a designed peptide KLVFFP5 with two segments: the self-recognition sequence KLVFF and a β-sheet breaker proline pentamer. Molecular dynamics simulations and docking results showed that this peptide could bind to the protofibrils and destabilize them by establishing hydrophobic contacts and hydrogen bonds with a higher affinity than the KLVFF peptide. In the presence of the KLVFFP5 peptide, the β-sheet content of the protofibrils was reduced significantly; the hydrogen bonding network and the salt bridges were disrupted to a greater extent than the KLVFF peptide. Our results indicate that the KLVFFP5 peptide is an effective β-sheet disruptor which can be considered in the therapy of Alzheimer's disease.
Collapse
|
197
|
Wu J, Wu M, Zhang H, Zhan X, Wu N. An Oligomannuronic Acid-Sialic Acid Conjugate Capable of Inhibiting Aβ42 Aggregation and Alleviating the Inflammatory Response of BV-2 Microglia. Int J Mol Sci 2021; 22:ijms222212338. [PMID: 34830217 PMCID: PMC8621211 DOI: 10.3390/ijms222212338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 11/16/2022] Open
Abstract
Oligomannuronic acid (MOS) from seaweed has antioxidant and anti-inflammatory activities. In this study, MOS was activated at the terminal to obtain three different graft complexes modified with sialic acid moiety (MOS-Sia). The results show that MOS-Sia addition can reduce the β-structure formation of Aβ42, and the binding effect of MOS-Sia3 is more obvious. MOS-Sia conjugates also have a better complexing effect with Ca2+ while reducing the formation of Aβ42 oligomers in solutions. MOS-Sia3 (25–50 μg/mL) can effectively inhibit the activation state of BV-2 cells stimulated by Aβ42, whereas a higher dose of MOS-Sia3 (>50 μg/mL) can inhibit the proliferation of BV-2 cells to a certain extent. A lower dose of MOS-Sia3 can also inhibit the expression of IL-1β, IL-6, TNF-α, and other proinflammatory factors in BV-2 cells induced by Aβ42 activation. In the future, the MOS-Sia3 conjugate can be used to treat Alzheimer’s disease.
Collapse
Affiliation(s)
- Jianrong Wu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (M.W.); (H.Z.); (X.Z.)
- Correspondence: ; Tel.: +86-510-85918299
| | - Miaosen Wu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (M.W.); (H.Z.); (X.Z.)
| | - Hongtao Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (M.W.); (H.Z.); (X.Z.)
| | - Xiaobei Zhan
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (M.W.); (H.Z.); (X.Z.)
| | - Nian Wu
- Division of Histology and Embryology, International Joint Laboratory for Embryonic Development and Prenatal Medicine, Medical College, Jinan University, Guangzhou 510632, China;
| |
Collapse
|
198
|
Sirtuins and Autophagy in Age-Associated Neurodegenerative Diseases: Lessons from the C. elegans Model. Int J Mol Sci 2021; 22:ijms222212263. [PMID: 34830158 PMCID: PMC8619060 DOI: 10.3390/ijms222212263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/06/2021] [Accepted: 11/10/2021] [Indexed: 11/17/2022] Open
Abstract
Age-associated neurodegenerative diseases are known to have "impaired protein clearance" as one of the key features causing their onset and progression. Hence, homeostasis is the key to maintaining balance throughout the cellular system as an organism ages. Any imbalance in the protein clearance machinery is responsible for accumulation of unwanted proteins, leading to pathological consequences-manifesting in neurodegeneration and associated debilitating outcomes. Multiple processes are involved in regulating this phenomenon; however, failure to regulate the autophagic machinery is a critical process that hampers the protein clearing pathway, leading to neurodegeneration. Another important and widely known component that plays a role in modulating neurodegeneration is a class of proteins called sirtuins. These are class III histone deacetylases (HDACs) that are known to regulate various vital processes such as longevity, genomic stability, transcription and DNA repair. These enzymes are also known to modulate neurodegeneration in an autophagy-dependent manner. Considering its genetic relevance and ease of studying disease-related endpoints in neurodegeneration, the model system Caenorhabditis elegans has been successfully employed in deciphering various functional outcomes related to critical protein molecules, cell death pathways and their association with ageing. This review summarizes the vital role of sirtuins and autophagy in ageing and neurodegeneration, in particular highlighting the knowledge obtained using the C. elegans model system.
Collapse
|
199
|
Venkataraman AV, Bai W, Whittington A, Myers JF, Rabiner EA, Lingford-Hughes A, Matthews PM. Boosting the diagnostic power of amyloid-β PET using a data-driven spatially informed classifier for decision support. Alzheimers Res Ther 2021; 13:185. [PMID: 34758867 PMCID: PMC8582159 DOI: 10.1186/s13195-021-00910-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 10/02/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Amyloid-β (Aβ) PET has emerged as clinically useful for more accurate diagnosis of patients with cognitive decline. Aβ deposition is a necessary cause or response to the cellular pathology of Alzheimer's disease (AD). Usual clinical and research interpretation of amyloid PET does not fully utilise all information regarding the spatial distribution of signal. We present a data-driven, spatially informed classifier to boost the diagnostic power of amyloid PET in AD. METHODS Voxel-wise k-means clustering of amyloid-positive voxels was performed; clusters were mapped to brain anatomy and tested for their associations by diagnostic category and disease severity with 758 amyloid PET scans from volunteers in the AD continuum from the Alzheimer's Disease Neuroimaging Initiative (ADNI). A machine learning approach based on this spatially constrained model using an optimised quadratic support vector machine was developed for automatic classification of scans for AD vs non-AD pathology. RESULTS This classifier boosted the accuracy of classification of AD scans to 81% using the amyloid PET alone with an area under the curve (AUC) of 0.91 compared to other spatial methods. This increased sensitivity to detect AD by 15% and the AUC by 9% compared to the use of a composite region of interest SUVr. CONCLUSIONS The diagnostic classification accuracy of amyloid PET was improved using an automated data-driven spatial classifier. Our classifier highlights the importance of considering the spatial variation in Aβ PET signal for optimal interpretation of scans. The algorithm now is available to be evaluated prospectively as a tool for automated clinical decision support in research settings.
Collapse
Affiliation(s)
- Ashwin V Venkataraman
- Department of Brain Sciences, Imperial College London, 5th Floor Burlington Danes Building, 160 Du Cane Road, London, W12 0NN, UK.
- UK Dementia Research Institute at Imperial College London, London, UK.
| | - Wenjia Bai
- Department of Brain Sciences, Imperial College London, 5th Floor Burlington Danes Building, 160 Du Cane Road, London, W12 0NN, UK
- Data Science Institute, Imperial College London, London, UK
| | | | - James F Myers
- Department of Brain Sciences, Imperial College London, 5th Floor Burlington Danes Building, 160 Du Cane Road, London, W12 0NN, UK
| | | | - Anne Lingford-Hughes
- Department of Brain Sciences, Imperial College London, 5th Floor Burlington Danes Building, 160 Du Cane Road, London, W12 0NN, UK
| | - Paul M Matthews
- Department of Brain Sciences, Imperial College London, 5th Floor Burlington Danes Building, 160 Du Cane Road, London, W12 0NN, UK
- UK Dementia Research Institute at Imperial College London, London, UK
| |
Collapse
|
200
|
Tomoto T, Repshas J, Zhang R, Tarumi T. Midlife aerobic exercise and dynamic cerebral autoregulation: associations with baroreflex sensitivity and central arterial stiffness. J Appl Physiol (1985) 2021; 131:1599-1612. [PMID: 34647828 PMCID: PMC8616602 DOI: 10.1152/japplphysiol.00243.2021] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 10/04/2021] [Accepted: 10/11/2021] [Indexed: 12/20/2022] Open
Abstract
Midlife aerobic exercise may significantly impact age-related changes in the cerebro- and cardiovascular regulations. This study investigated the associations of midlife aerobic exercise with dynamic cerebral autoregulation (dCA), cardiovagal baroreflex sensitivity (BRS), and central arterial stiffness. Twenty middle-aged athletes (MA) who had aerobic training for >10 yr were compared with 20 young (YS) and 20 middle-aged sedentary (MS) adults. Beat-to-beat cerebral blood flow velocity, blood pressure (BP), and heart rate were measured at rest and during forced BP oscillations induced by repeated sit-stand maneuvers at 0.05 Hz. Transfer function analysis was used to calculate dCA and BRS parameters. Carotid distensibility was measured by ultrasonography. MA had the highest peak oxygen uptake (V̇o2peak) among all groups. During forced BP oscillations, MS showed lower BRS gain than YS, but this age-related reduction was absent in MA. Conversely, dCA was similar among all groups. At rest, BRS and dCA gains at low frequency (∼0.1 Hz) were higher in the MA than in MS and YS groups. Carotid distensibility was similar between MA and YS groups, but it was lower in the MS. Across all subjects, V̇o2peak was positively associated with BRS gains at rest and during forced BP oscillations (r = 0.257∼0.382, P = 0.003∼0.050) and carotid distensibility (r = 0.428∼0.490, P = 0.001). Furthermore, dCA gain at rest and carotid distensibility were positively correlated with BRS gain at rest in YS and MA groups (all P < 0.05). These findings suggest that midlife aerobic exercise improves central arterial elasticity and BRS, which may contribute to cerebral blood flow (CBF) regulation through dCA.NEW & NOTEWORTHY Middle-aged athletes (MA) showed intact dynamic cerebral autoregulation (dCA) during sit-stand maneuvers when compared with young (YS) and middle-aged sedentary (MS) adults. Conversely, MA showed the significant attenuation of age-related carotid distensibility and baroreflex sensitivity (BRS) impairments. In MA and YS groups, BRS was positively associated with dCA gain at rest and carotid distensibility. Our findings suggest that midlife aerobic exercise improves BRS by reducing central arterial stiffness, which contributes to CBF regulation through dCA.
Collapse
Affiliation(s)
- Tsubasa Tomoto
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, Texas
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Justin Repshas
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, Texas
| | - Rong Zhang
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, Texas
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, Texas
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Takashi Tarumi
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, Texas
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, Texas
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| |
Collapse
|