151
|
Gudmundsdóttir IJ, Halldórsson H, Magnúsdóttir K, Thorgeirsson G. Involvement of MAP kinases in the control of cPLA2 and arachidonic acid release in endothelial cells. Atherosclerosis 2001; 156:81-90. [PMID: 11369000 DOI: 10.1016/s0021-9150(00)00631-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Cytosolic Phospholipase A(2) (cPLA(2)) has been implicated in receptor-mediated release of arachidonic acid from membrane phospholipids, the limiting step in prostacyclin and other eicosanoid production. Its activity is controlled by Ca(++) levels and enzymatically regulated phosphorylation. The purpose of this study was to assess the importance of phosphorylation of cPLA(2) in human umbilical vein endothelial cells and to identify the kinases involved. Inhibitors were used to study the pathways leading to phosphorylation and activation of mitogen activated protein kinases (MAP-kinases) and cPLA(2), as well as release of arachidonic acid and prostacyclin production after stimulation with different agonists. We have found that agonists that release arachidonic acid, including histamine, thrombin, AlF(4)(-), and pervanadate, all activate the MAP kinases ERK, p38 and JNK and cause phosphorylation of cPLA(2). Agonist specific differences in the signal transduction pathways included variable contribution of tyrosine phosphorylation, protein kinase C and ERK activity, and different effects of pertussis toxin. Treatment with PD98059 (inhibitor of ERK-activation) or SB203580 (inhibitor of p38) caused partial decrease in arachidonic acid release and cPLA(2) activity. In contrast the nonspecific protein kinase inhibitor staurosporin completely inhibited cPLA(2) activity. We conclude that in endothelial cells arachidonic acid release is largely mediated by cPLA(2) through agonist-specific pathways. The MAP kinases ERK and p38 both have demonstrable but not major effect on agonist stimulated arachidonic acid release and the data suggest that an additional unidentified kinase also has a role.
Collapse
Affiliation(s)
- I J Gudmundsdóttir
- Department of Pharmacology, University of Iceland, PO Box 8216, 128 Reykjavik, Iceland
| | | | | | | |
Collapse
|
152
|
Downey P, Sapirstein A, O'Leary E, Sun TX, Brown D, Bonventre JV. Renal concentrating defect in mice lacking group IV cytosolic phospholipase A(2). Am J Physiol Renal Physiol 2001; 280:F607-18. [PMID: 11249852 DOI: 10.1152/ajprenal.2001.280.4.f607] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Eicosanoids regulate various cellular functions that are important in physiological and pathophysiological processes. Arachidonic acid is released from membranes by phospholipase A(2) (PLA(2)) activity. Activated macrophages derived from mice lacking the 85-kDa group IV cytosolic PLA(2) (cPLA(2)) have a markedly reduced release of prostaglandin E(2) and leukotrienes B(4) and C(4). Under basal conditions and after furosemide, urinary prostaglandin E(2) excretion is reduced in cPLA(2)-knockout (cPLA(2)(-/-)) mice. Serum creatinine, Na(+), K(+), and Ca(2+) concentrations, glomerular filtration rate, and fractional excretion of Na(+) and K(+) are not different in cPLA(2)(-/-) and cPLA(2)(+/+) mice. Maximal urinary concentration is lower in 48-h water-deprived cPLA(2)(-/-) mice compared with cPLA(2)(+/+) animals (1,934 +/- 324 vs. 3,541 +/- 251 mmol/kgH(2)O). Plasma osmolality is higher (337 +/- 5 vs. 319 +/- 3 mmol/kgH(2)O) in cPLA(2)(-/-) mice that lose a greater percentage of their body weight (20 +/- 2 vs. 13 +/- 1%) compared with cPLA(2)(+/+) mice after water deprivation. Vasopressin does not correct the concentrating defect. There is progressive reduction in urinary osmolality with age in cPLA(2)(-/-) mice. Membrane-associated aquaporin-1 (AQP1) expression, identified by immunocytochemical techniques, is reduced markedly in proximal tubules of older cPLA(2)(-/-) animals but is normal in thin descending limbs. However, Western blot analysis of kidney cortical samples revealed an equivalent AQP1 signal intensity in cPLA(2)(+/+) and cPLA(2)(-/-) animals. Young cPLA(2)(-/-) mice have normal proximal tubule AQP1 staining. Collecting duct AQP2, -3, and -4 were normally expressed in the cPLA(2)(-/-) mice. Thus mice lacking cPLA(2) develop an age-related defect in renal concentration that may be related to abnormal trafficking and/or folding of AQP1 in the proximal tubule, implicating cPLA(2) in these processes.
Collapse
Affiliation(s)
- P Downey
- Medical and Anesthesia Services, Massachusetts General Hospital, Charlestown, 02129, USA
| | | | | | | | | | | |
Collapse
|
153
|
Nalefski EA, Wisner MA, Chen JZ, Sprang SR, Fukuda M, Mikoshiba K, Falke JJ. C2 domains from different Ca2+ signaling pathways display functional and mechanistic diversity. Biochemistry 2001; 40:3089-100. [PMID: 11258923 PMCID: PMC3862187 DOI: 10.1021/bi001968a] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The ubiquitous C2 domain is a conserved Ca2+ triggered membrane-docking module that targets numerous signaling proteins to membrane surfaces where they regulate diverse processes critical for cell signaling. In this study, we quantitatively compared the equilibrium and kinetic parameters of C2 domains isolated from three functionally distinct signaling proteins: cytosolic phospholipase A2-alpha (cPLA2-alpha), protein kinase C-beta (PKC-beta), and synaptotagmin-IA (Syt-IA). The results show that equilibrium C2 domain docking to mixed phosphatidylcholine and phosphatidylserine membranes occurs at micromolar Ca2+ concentrations for the cPLA2-alpha C2 domain, but requires 3- and 10-fold higher Ca2+ concentrations for the PKC-beta and Syt-IA C2 domains ([Ca2+](1/2) = 4.7, 16, 48 microM, respectively). The Ca2+ triggered membrane docking reaction proceeds in at least two steps: rapid Ca2+ binding followed by slow membrane association. The greater Ca2+ sensitivity of the cPLA2-alpha domain results from its higher intrinsic Ca2+ affinity in the first step compared to the other domains. Assembly and disassembly of the ternary complex in response to rapid Ca2+ addition and removal, respectively, require greater than 400 ms for the cPLA2-alpha domain, compared to 13 ms for the PKC-beta domain and only 6 ms for the Syt-IA domain. Docking of the cPLA2-alpha domain to zwitterionic lipids is triggered by the binding of two Ca2+ ions and is stabilized via hydrophobic interactions, whereas docking of either the PKC-beta or the Syt-IA domain to anionic lipids is triggered by at least three Ca2+ ions and is maintained by electrostatic interactions. Thus, despite their sequence and architectural similarity, C2 domains are functionally specialized modules exhibiting equilibrium and kinetic parameters optimized for distinct Ca2+ signaling applications. This specialization is provided by the carefully tuned structural and electrostatic parameters of their Ca2+ and membrane-binding loops, which yield distinct patterns of Ca2+ coordination and contrasting mechanisms of membrane docking.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Joseph J. Falke
- To whom correspondence should be addressed. . Tel: 303-492-3503
| |
Collapse
|
154
|
Affiliation(s)
- L Koenderman
- Department of Pulmonary Diseases, University Medical Center, Utrecht, The Netherlands
| | | |
Collapse
|
155
|
Wiest R, Tsai MH, Groszmann RJ. Octreotide potentiates PKC-dependent vasoconstrictors in portal-hypertensive and control rats. Gastroenterology 2001; 120:975-83. [PMID: 11231951 DOI: 10.1053/gast.2001.22529] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND & AIMS The effect of octreotide on vascular tone in the superior mesenteric artery (SMA) was studied in portal-hypertensive (portal vein-ligated) and sham-operated rats. METHODS In vitro-perfused SMA vascular beds were tested for the cumulative dose-response to octreotide at baseline conditions and after preconstriction with different vasoconstrictors (alpha1-agonist methoxamine, endothelin [ET-1], phorbol ester [PdBu], and potassium chloride [KCl]). RESULTS Octreotide did not affect baseline perfusion pressures (without preconstriction). alpha1-Adrenergic-, ET-1-, and PdBu-, but not KCl-, induced vasoconstriction was significantly potentiated by octreotide. This effect was dose-dependent and not different in portal vein-ligated and sham rats. Amplification of alpha1-adrenergic vasoconstriction by octreotide was significantly enhanced by nitric oxide inhibition (N(W)-nitro-L-arginine, 10(-4) mol/L) as well as by removal of the endothelium, and was completely suppressed by inhibition of protein kinase C (calphostin C, 1 micromol/L), phospholipase A2 (quinacrine, 5 micromol/L), and cyclooxygenase (indomethacin, 20 micromol/L). CONCLUSIONS Not directly, but in the presence of vasoconstrictors involving activation of protein kinase C, octreotide exerts a local vasoconstrictive effect on vascular smooth muscle of SMA. This potentiation is equipotent in portal vein-ligated and sham rats, immediate in onset, and mediated via phospholipase A2 and cyclooxygenase-derived prostanoids. This indicates that in preprandial conditions octreotide enhances the vasoconstrictive effect of dependent vasoconstrictors.
Collapse
Affiliation(s)
- R Wiest
- Hepatic Hemodynamic Laboratory, Veterans Administration Medical Center, West Haven, Connecticut 06516, USA
| | | | | |
Collapse
|
156
|
Barbour SE, Marciano-Cabral F. Naegleria fowleri amoebae express a membrane-associated calcium-independent phospholipase A(2). BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1530:123-33. [PMID: 11239815 DOI: 10.1016/s1388-1981(00)00069-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Naegleria fowleri, a free-living amoeba, is the causative agent of primary amoebic meningoencephalitis. Previous reports have demonstrated that N. fowleri expresses one or more forms of phospholipase A(2) (PLA(2)) and that a secreted form of this enzyme is involved in pathogenesis. However, the molecular nature of these phospholipases remains largely unknown. This study was initiated to determine whether N. fowleri expresses analogs of the well-characterized PLA(2)s that are expressed by mammalian macrophages. Amoeba cell homogenates contain a PLA(2) activity that hydrolyzes the substrate that is preferred by the 85 kDa calcium-dependent cytosolic PLA(2), cPLA(2). However, unlike the cPLA(2) enzyme in macrophages, this activity is largely calcium-independent, is constitutively associated with membranes and shows only a modest preference for phospholipids that contain arachidonate. The amoeba PLA(2) activity is sensitive to inhibitors that block the activities of cPLA(2)-alpha and the 80 kDa calcium-independent PLA(2), iPLA(2), that are expressed by mammalian cells. One of these compounds, methylarachidonyl fluorophosphonate, partially inhibits the constitutive release of [(3)H]arachidonic acid from pre-labeled amoebae. Together, these data suggest that N. fowleri expresses a constitutively active calcium-independent PLA(2) that may play a role in the basal phospholipid metabolism of these cells.
Collapse
Affiliation(s)
- S E Barbour
- Department of Microbiology and Immunology, Virginia Commonwealth University, Box 980678, Richmond, VA 23298-0678, USA.
| | | |
Collapse
|
157
|
Affiliation(s)
- G Nardone
- Department of Clinical and Experimental Medicine, Federico II University, Naples, Italy.
| |
Collapse
|
158
|
Derkach DN, Ihara E, Hirano K, Nishimura J, Takahashi S, Kanaide H. Thrombin causes endothelium-dependent biphasic regulation of vascular tone in the porcine renal interlobar artery. Br J Pharmacol 2000; 131:1635-42. [PMID: 11139441 PMCID: PMC1572496 DOI: 10.1038/sj.bjp.0703737] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Using a method employing front-surface fura-2 fluorometry to measure the cytosolic Ca(2+) concentration, [Ca(2+)](i), the mechanism of endothelium-dependent regulation of vascular tone by thrombin was studied in porcine renal interlobar arterial strips. At concentrations lower than 3 u ml(-1), thrombin evoked only early transient relaxation, while at 3 u ml(-1) and higher concentrations, thrombin caused an early relaxation and a subsequent transient contraction. Both thrombin-induced relaxation and contraction were abolished by removing the endothelium. Similar biphasic responses were observed with a protease-activated receptor-1-activating peptide. Early relaxation was associated with a decrease in [Ca(2+)](i), while the transient contraction was not associated with a change in [Ca(2+)](i) of smooth muscle cells. A thromboxane A(2) (TXA(2))/prostaglandin H(2) (PGH(2)) receptor antagonist (10(-5) M ONO-3708) completely inhibited the thrombin-induced contraction, whereas a thromboxane A(2) synthase inhibitor (10(-5) M OKY-046) only partly inhibited it. When the thrombin-induced contraction was inhibited by ONO-3708, either pretreatment with N(omega)-nitro-L-arginine methylester (L-NAME) or an increase in the amount of external K(+) to 40 mM did not abolish thrombin-induced relaxation during phenylephrine-induced sustained contraction. However, the combination of pretreatment with L-NAME and an elevation of external K(+) to 40 mM completely abolished the relaxation. There was no significant difference in the concentration-dependent effects of thrombin on the initial early relaxation between conditions in which the contractile components either were or were not inhibited. Thrombin is thus considered to mainly activate protease-activated receptor-1 and cause a biphasic response, early relaxation and a transient contraction, in the porcine renal interlobar artery in an endothelium-dependent manner. The thrombin-induced endothelium-dependent relaxation was mediated by nitric oxide and hyperpolarizing factors, while the contraction was mediated by TXA(2) and PGH(2).
Collapse
Affiliation(s)
- D N Derkach
- Department of Molecular Cardiology, Research Institute of Angiocardiology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582 Japan
| | | | | | | | | | | |
Collapse
|
159
|
Hefner Y, Borsch-Haubold AG, Murakami M, Wilde JI, Pasquet S, Schieltz D, Ghomashchi F, Yates JR, Armstrong CG, Paterson A, Cohen P, Fukunaga R, Hunter T, Kudo I, Watson SP, Gelb MH. Serine 727 phosphorylation and activation of cytosolic phospholipase A2 by MNK1-related protein kinases. J Biol Chem 2000; 275:37542-51. [PMID: 10978317 DOI: 10.1074/jbc.m003395200] [Citation(s) in RCA: 189] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have previously reported that in thrombin-stimulated human platelets, cytosolic phospholipase A(2) (cPLA2) is phosphorylated on Ser-505 by p38 protein kinase and on Ser-727 by an unknown kinase. Pharmacological inhibition of p38 leads to inhibition of cPLA2 phosphorylation at both Ser-505 and Ser-727 suggesting that the kinase responsible for phosphorylation on Ser-727 is activated in a p38-dependent pathway. By using Chinese hamster ovary, HeLa, and HEK293 cells stably transfected with wild type and phosphorylation site mutant forms of cPLA2, we show that phosphorylation of cPLA2 at both Ser-505 and Ser-727 and elevation of Ca(2+) leads to its activation in agonist-stimulated cells. The p38-activated protein kinases MNK1, MSK1, and PRAK1 phosphorylate cPLA2 in vitro uniquely on Ser-727 as shown by mass spectrometry. Furthermore, MNK1 and PRAK1, but not MSK1, is present in platelets and undergo modest activation in response to thrombin. Expression of a dominant negative form of MNK1 in HEK293 cells leads to significant inhibition of cPLA2-mediated arachidonate release. The results suggest that MNK1 or a closely related kinase is responsible for in vivo phosphorylation of cPLA2 on Ser-727.
Collapse
Affiliation(s)
- Y Hefner
- Departments of Chemistry and Biochemistry, University of Washington, Seattle, Washington 98195, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
160
|
Burns PD, Graf GA, Hayes SH, Silvia WJ. Effect of oxytocin on expression of cytosolic phospholipase A2 mRNA and protein in ovine endometrial tissue in vivo. Domest Anim Endocrinol 2000; 19:237-46. [PMID: 11118788 DOI: 10.1016/s0739-7240(00)00080-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The induction of endometrial prostaglandin (PG) F2alpha synthesis by oxytocin is dependent upon activation of phospholipase (PL) A2 and mobilization of arachidonic acid. The objective of this study was to determine if oxytocin stimulates PGF2alpha synthesis by inducing synthesis of cytosolic PLA2 (cPLA2). In Experiment 1, 15 ovariectomized ewes were given progesterone and estradiol to simulate an estrous cycle. Ewes were then given an injection of oxytocin on Day 14 of the simulated estrous cycle. Jugular blood samples were collected and assayed for 13,14-dihydro-15-keto-prostaglandin F2alpha (PGFM). Uteri were collected at 0, 7.5, 25, 90, or 240 min postinjection (n = 3 ewes/time point). Total RNA was isolated from caruncular endometrium and subjected to dot-blot analysis. Oxytocin induced a rapid and transient increase in serum PGFM (P < 0.01). However, endometrial concentrations of cPLA2 mRNA did not change following oxytocin administration (P > 0.10). In Experiment 2, 11 ovary-intact ewes were given oxytocin (n = 5) or saline (n = 6) on Day 15 after estrus. Jugular blood samples were collected and assayed for serum concentrations of PGFM. Uteri were collected at 15 min postinjection. Homogenates were prepared from caruncular endometrium and subjected to Western blot analysis. Concentrations of PGFM were higher in oxytocin treated ewes compared to saline treated ewes at 15 min postinjection (P < 0.01). Endometrial concentrations of cPLA2 protein were greater in the cytosolic than in the microsomal fraction (P < 0.01). Oxytocin did not affect the amount of cPLA2 protein in either fraction (P > 0.10). In conclusion, oxytocin did not effect expression of either cPLA2 mRNA or protein in ovine endometrium. Oxytocin may stimulate PGF2alpha synthesis by activating cPLA2 protein that is already present in an inactive form.
Collapse
MESH Headings
- Animals
- Blotting, Western/veterinary
- Densitometry/veterinary
- Dinoprost/analogs & derivatives
- Dinoprost/biosynthesis
- Dinoprost/blood
- Electrophoresis, Agar Gel/veterinary
- Endometrium/chemistry
- Endometrium/physiology
- Female
- Gene Expression Regulation
- Nucleic Acid Hybridization
- Oxytocin/physiology
- Phospholipases A/biosynthesis
- Phospholipases A/blood
- Phospholipases A/genetics
- Phospholipases A2
- RNA, Ribosomal, 18S/chemistry
- RNA, Ribosomal, 18S/isolation & purification
- RNA, Ribosomal, 28S/chemistry
- RNA, Ribosomal, 28S/isolation & purification
- Radioimmunoassay/veterinary
- Sheep/physiology
Collapse
Affiliation(s)
- P D Burns
- Department of Animal Sciences and Center for Membrane Sciences, University of Kentucky, Lexington, KY 40546-0215, USA
| | | | | | | |
Collapse
|
161
|
Ishii I, Contos JJ, Fukushima N, Chun J. Functional comparisons of the lysophosphatidic acid receptors, LP(A1)/VZG-1/EDG-2, LP(A2)/EDG-4, and LP(A3)/EDG-7 in neuronal cell lines using a retrovirus expression system. Mol Pharmacol 2000; 58:895-902. [PMID: 11040035 DOI: 10.1124/mol.58.5.895] [Citation(s) in RCA: 161] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Lysophosphatidic acid (LPA) is a potent lipid mediator with diverse physiological actions on a wide variety of cells and tissues. Three cognate G-protein-coupled receptors have been identified as mammalian LPA receptors: LP(A1)/VZG-1/EDG-2, LP(A2)/EDG-4, and LP(A3)/EDG-7. The mouse forms of these genes were analyzed in rodent cell lines derived from nervous system cells that can express these receptors functionally. An efficient retrovirus expression system was used, and each receptor was heterologously expressed in B103 rat neuroblastoma cells that neither express these receptors nor respond to LPA in all assays tested. Comparative analyses of signaling pathways that are activated within minutes of ligand delivery were carried out. LPA induced cell rounding in LP(A1)- and LP(A2)-expressing cells. By contrast, LP(A3) expression resulted in neurite elongation in B103 cells and inhibited LPA-dependent cell rounding in TR mouse neuroblast cells that endogenously express LP(A1) and LP(A2) but not LP(A3). Each of the receptors could couple to multiple G-proteins and induced LPA-dependent inositol phosphate production, mitogen-activated protein kinase activation, and arachidonic acid release while inhibiting forskolin-induced cAMP accumulation, although the efficacy and potency of LPA varied from receptor to receptor. These results indicate both shared and distinct functions among the three mammalian LPA receptors. The retroviruses developed in this study should provide tools for addressing these functions in vivo.
Collapse
Affiliation(s)
- I Ishii
- Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, California, USA
| | | | | | | |
Collapse
|
162
|
Hirabayashi T, Shimizu T. Localization and regulation of cytosolic phospholipase A(2). BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1488:124-38. [PMID: 11080682 DOI: 10.1016/s1388-1981(00)00115-3] [Citation(s) in RCA: 137] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Liberation of arachidonic acid by cytosolic phospholipase A(2) (cPLA(2)) upon cell activation is often the initial and rate-limiting step in leukotriene and prostaglandin biosynthesis. This review discusses the essential features of cPLA(2) isoforms and addresses intriguing insights into the catalytic and regulatory mechanisms. Gene expression, posttranslational modification and subcellular localization can regulate these isoforms. Translocation of cPLA(2)alpha from the cytosol to the perinuclear region in response to calcium transients is critical for the immediate arachidonic acid release. Therefore, particular emphasis is placed on the mechanism of the translocation and the role of the proteins and lipids implicated in this process. The regional distribution and cellular localization of cPLA(2) may help to better understand its function as an arachidonic acid supplier to downstream enzymes and as a regulator of specific cellular processes.
Collapse
Affiliation(s)
- T Hirabayashi
- Department of Biochemistry and Molecular Biology, The University of Tokyo, Japan.
| | | |
Collapse
|
163
|
Pedersen S, Lambert IH, Thoroed SM, Hoffmann EK. Hypotonic cell swelling induces translocation of the alpha isoform of cytosolic phospholipase A2 but not the gamma isoform in Ehrlich ascites tumor cells. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:5531-9. [PMID: 10951212 DOI: 10.1046/j.1432-1327.2000.01615.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We demonstrate that two isoforms of the cytosolic phospholipase A2, cPLA2alpha and cPLA2gamma, are present in Ehrlich ascites tumor cells. Both enzymes are almost uniformly distributed throughout the cells under control conditions, as visualized by laser-scanning confocal microscopy. Stimulation by either hypotonic cell swelling or addition of the Ca2+ ionophore A23187 results in translocation of cPLA2alpha, but not cPLA2gamma, to the nucleus, where it forms hot-spot-like clusters. Our group previously showed that release of radioactively labeled arachidonic acid, incorporated into the phospholipids of Ehrlich cells, was immediately and transiently increased on hypotonic cell swelling [Thoroed, S.M., Lauritzen, L., Lambert, I.H., Hansen, H.S. & Hoffmann, E.K. (1997) J. Membr. Biol. 160, 47-58]. We now demonstrate that arachidonic acid is released from the nuclear fraction following hypotonic exposure. Stimulation of Ehrlich cells with A23187 also leads to an increase in arachidonic acid release from the nucleus. However, as hypotonic cell swelling is not accompanied by any detectable increase in intracellular concentration of free cytosolic Ca2+ ([Ca2+]i), stimulus-induced translocation of cPLA2alpha can also occur without elevation of [Ca2+]i. The stimulus-induced translocation of cPLA2alpha appears not to be prevented by inhibition of mitogen-activated protein (MAP) kinase activation, p38 MAP kinase, tyrosine kinases and protein kinase C, hence, phosphorylation is not crucial for the stimulus-induced translocation of cPLA2alpha. Disruption of F-actin did not affect the translocation process, thus, an intact F-actin cytoskeleton does not seem to be required for translocation of cPLA2alpha.
Collapse
Affiliation(s)
- S Pedersen
- August Krogh Institute, Department of Biochemistry, University of Copenhagen, Denmark
| | | | | | | |
Collapse
|
164
|
Choudhury QG, Mckay DT, Flower RJ, Croxtall JD. Investigation into the involvement of phospholipases A(2) and MAP kinases in modulation of AA release and cell growth in A549 cells. Br J Pharmacol 2000; 131:255-65. [PMID: 10991918 PMCID: PMC1572326 DOI: 10.1038/sj.bjp.0703573] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
1. We have investigated the contribution of specific PLA(2)s to eicosanoid release from A549 cells by using specific inhibitors of secretory PLA(2) (ONO-RS-82 and oleyloxyethylphosphocholine), cytosolic PLA(2) (AACOCF(3) and MAFP) and calcium-independent PLA(2) (HELSS, MAFP and PACOCF(3)). Similarly, by using specific inhibitors of p38 MAPK (SB 203580), ERK1/2 MAPK (Apigenin) and MEK1/2 (PD 98059) we have further evaluated potential pathways of AA release in this cell line. 2. ONO-RS-82 and oleyloxyethylphosphocholine had no significant effect on EGF or IL-1beta stimulated (3)H-AA or PGE(2) release or cell proliferation. AACOCF(3), HELSS, MAFP and PACOCF(3) significantly inhibited both EGF and IL-1beta stimulated (3)H-AA and PGE(2) release as well as cell proliferation. Apigenin and PD 98509 significantly inhibited both EGF and IL-1beta stimulated (3)H-AA and PGE(2) release and cell proliferation whereas, SB 203580 had no significant effect on EGF or IL-1beta stimulated (3)H-AA release, or cell proliferation but significantly suppressed EGF or IL-1beta stimulated PGE(2) release. 3. These results confirm that the liberation of AA release, generation of PGE(2) and cell proliferation is mediated largely through the actions of cPLA(2) whereas, sPLA(2) plays no significant role. We now also report a hitherto unsuspected contribution of iPLA(2) to this process and demonstrate that the stimulating action of EGF and IL-1beta in AA release and cell proliferation is mediated in part via a MEK and ERK-dependent pathway (but not through p38MAPK). We therefore propose that selective inhibitors of MEK and MAPK pathways may be useful in controlling AA release, eicosanoid production and cell proliferation.
Collapse
Affiliation(s)
- Qamrul G Choudhury
- Department of Biochemical Pharmacology, The William Harvey Research Institute, St. Bartholomew's and the Royal London School of Medicine and Dentistry (Queen Mary and Westfield College), Charterhouse Square, London EC1M 6BQ
| | - Diane T Mckay
- Department of Biochemical Pharmacology, The William Harvey Research Institute, St. Bartholomew's and the Royal London School of Medicine and Dentistry (Queen Mary and Westfield College), Charterhouse Square, London EC1M 6BQ
| | - Roderick J Flower
- Department of Biochemical Pharmacology, The William Harvey Research Institute, St. Bartholomew's and the Royal London School of Medicine and Dentistry (Queen Mary and Westfield College), Charterhouse Square, London EC1M 6BQ
| | - Jamie D Croxtall
- Department of Biochemical Pharmacology, The William Harvey Research Institute, St. Bartholomew's and the Royal London School of Medicine and Dentistry (Queen Mary and Westfield College), Charterhouse Square, London EC1M 6BQ
- Author for correspondence:
| |
Collapse
|
165
|
Wood MW, Segal JA, Mark RJ, Ogden AM, Felder CC. Inflammatory cytokines enhance muscarinic-mediated arachidonic acid release through p38 mitogen-activated protein kinase in A2058 cells. J Neurochem 2000; 74:2033-40. [PMID: 10800946 DOI: 10.1046/j.1471-4159.2000.0742033.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The human melanoma cell line A2058 expresses the Gq-coupled M5 subtype of muscarinic receptor. Stimulation with the cholinergic agonist, carbachol, induces a dose-dependent increase in arachidonic acid release. The carbachol-induced arachidonate release is potentiated two- to threefold by pretreatment of A2058 cells with either of the inflammatory cytokines, tumor necrosis factor-alpha or interleukin-1beta . Cytokine-induced enhancement of muscarinic-mediated arachidonic acid release peaks near 1 h. Western analysis suggests that both cytokines are capable of activating the nuclear factor-kappaB (NF-kappaB) and p38 mitogen-activated protein kinase (MAPK) pathways. Anisomycin (1 microM) treatment mimics the cytokine-induced enhancement of arachidonic acid production and activates the p38 MAPK pathway, but does not activate the NF-kappaB pathway. Furthermore, pre-treatment of A2058 cells with the putative p38 MAPK inhibitor, SB202190, ablates the cytokine-dependent augmentation without interfering with the muscarinic-mediated arachidonic acid release in untreated cells. Moreover, cytokine treatment does not affect other M5-coupled pathways (e.g., phospholipase C activity or intracellular Ca2+ mobilization), suggesting that p38 MAPK activation principally modulates muscarinic-mediated phospholipase A2 activity. Finally, in primary cultures of cells taken from rat cerebellum, key aspects of this finding are repeated in cultures enriched for glia, but not in cultures enriched for granule neurons.
Collapse
Affiliation(s)
- M W Wood
- Neuroscience Division, Lilly Research Laboratories, Indianapolis, Indiana 46285, USA
| | | | | | | | | |
Collapse
|
166
|
Ekokoski E, Dugué B, Vainio M, Vainio PJ, Törnquist K. Extracellular ATP-mediated phospholipase A(2) activation in rat thyroid FRTL-5 cells: regulation by a G(i)/G(o) protein, Ca(2+), and mitogen-activated protein kinase. J Cell Physiol 2000; 183:155-62. [PMID: 10737891 DOI: 10.1002/(sici)1097-4652(200005)183:2<155::aid-jcp2>3.0.co;2-r] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We investigated the mechanism of phospholipase A(2) (PLA(2)) activation in response to the P2 receptor agonist ATP in rat thyroid FRTL-5 cells. The PLA(2) activity was determined by measuring the release of [(3)H]-arachidonic acid (AA) from prelabeled cells. ATP evoked a dose- and time-dependent AA release. This release was totally inhibited by pertussis toxin (PTX) treatment, indicating the involvement of a G(i)/G(o) protein. The AA release was also diminished by chelating extracellular Ca(2+) with EGTA or by inhibiting influx of Ca(2+) using Ni(2+). Although the activation of protein kinase C (PKC) by 12-phorbol 13-myristate acetate (PMA) alone did not induce any AA release, the ATP-evoked AA release was significantly reduced when PKC was inhibited by GF109203X or by a long incubation with PMA to downregulate PKC. Both the ATP-evoked AA release and the mitogen-activated protein kinase (MAP kinase) phosphorylation were decreased by the MAP kinase kinase (MEK) inhibitor PD98059. Furthermore, the ATP-evoked MAP kinase phosphorylation was also inhibited by GF109203X and by downregulation of PKC, suggesting a PKC-mediated activation of MAP kinase. Inhibiting Src-like kinases by PP1 attenuated both the MAP kinase phosphorylation and the AA release. These results suggest that these kinases are involved in the regulation of MAP kinase and PLA(2) activation. Elevation of intracellular cAMP by TSH or by dBucAMP did not induce a phosphorylation of MAP kinase. Furthermore, neither the ATP-evoked AA release nor the MAP kinase phosphorylation were attenuated by TSH or dBucAMP. Taken together, our results suggest that ATP regulates the activation of PLA(2) by a G(i)/G(o) protein-dependent mechanism. Moreover, Ca(2+), PKC, MAP kinase, and Src-like kinases are also involved in this regulatory process.
Collapse
Affiliation(s)
- E Ekokoski
- Department of Biosciences, Division of Animal Physiology, University of Helsinki, Helsinki, Finland
| | | | | | | | | |
Collapse
|
167
|
Bae YS, Kim Y, Kim JH, Lee TG, Suh PG, Ryu SH. Independent functioning of cytosolic phospholipase A2 and phospholipase D1 in Trp-Lys-Tyr-Met-Val-D-Met-induced superoxide generation in human monocytes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 164:4089-96. [PMID: 10754302 DOI: 10.4049/jimmunol.164.8.4089] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Recently, a novel peptide (Trp-Lys-Tyr-Met-Val-D-Met, WKYMVm) has been shown to induce superoxide generation in human monocytes. The peptide stimulated phospholipase A2 (PLA2) activity in a concentration- and time-dependent manner. Superoxide generation as well as arachidonic acid (AA) release evoked by treatment with WKYMVm could be almost completely blocked by pretreatment of the cells with cytosolic PLA2 (cPLA2)-specific inhibitors. The involvement of cPLA2 in the peptide-induced AA release was further supported by translocation of cPLA2 to the nuclear membrane of monocytes incubated with WKYMVm. WKYMVm-induced phosphatidylbutanol formation was completely abolished by pretreatment with PKC inhibitors. Immunoblot showed that monocytes express phospholipase D1 (PLD1), but not PLD2. GF109203X as well as butan-1-ol inhibited peptide-induced superoxide generation in monocytes. Furthermore, the interrelationship between the two phospholipases, cPLA2 and PLD1, and upstream signaling molecules involved in WKYMVm-dependent activation was investigated. The inhibition of cPLA2 did not blunt peptide-stimulated PLD1 activation or vice versa. Intracellular Ca2+ mobilization was indispensable for the activation of PLD1 as well as cPLA2. The WKYMVm-dependent stimulation of cPLA2 activity was partially dependent on the activation of PKC and mitogen-activated protein kinase, while PKC activation, but not mitogen-activated protein kinase activation, was an essential prerequisite for stimulation of PLD1. Taken together, activation of the two phospholipases, which are absolutely required for superoxide generation, takes place through independent signaling pathways that diverge from a common pathway at a point downstream of Ca2+.
Collapse
Affiliation(s)
- Y S Bae
- Department of Life Science, Pohang University of Science and Technology, Pohang, Korea
| | | | | | | | | | | |
Collapse
|
168
|
Geijsen N, Dijkers PF, Lammers JJ, Koenderman L, Coffer PJ. Cytokine-mediated cPLA(2) phosphorylation is regulated by multiple MAPK family members. FEBS Lett 2000; 471:83-8. [PMID: 10760518 DOI: 10.1016/s0014-5793(00)01373-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Cytosolic phospholipase A(2) (cPLA(2)) plays a critical role in various neutrophil functions including the generation of leukotrienes and platelet-activating factor release. Enzyme activity is regulated both by translocation to the membrane in a Ca(2+)-dependent manner and serine phosphorylation by members of the mitogen-activated protein kinase (MAPK) family. In this report, we have investigated the role of granulocyte/macrophage colony-stimulating factor (GM-CSF)-mediated signalling pathways in the regulation of cPLA(2). GM-CSF-induced cPLA(2) phosphorylation was not affected by pharmacological inhibition of p38 MAPK, phosphatidylinositol 3-kinase or Src. However, inhibition of extracellular signal-regulated kinase (ERK) MAPK activation resulted in a partial inhibition of cPLA(2) phosphorylation, revealed in a slower onset of phosphorylation. A cell line stably transfected with the GM-CSF receptor was used to further analyze GM-CSF-mediated cPLA(2) phosphorylation. Mutation of tyrosine residues 577 and 612 resulted in a delayed cPLA(2) phosphorylation similar to the pharmacological ERK inhibition. Furthermore, inhibition of p38 MAPK in cells bearing the double mutant betac577/612 completely abrogated GM-CSF-induced cPLA(2) phosphorylation. We conclude that GM-CSF can mediate cPLA(2) phosphorylation through the redundant activation of both p38 and ERK MAP kinases.
Collapse
Affiliation(s)
- N Geijsen
- Department of Pulmonary Diseases, G03.550, University Medical Centre, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
169
|
Johnson JD, Chang JP. Function- and agonist-specific Ca2+signalling: The requirement for and mechanism of spatial and temporal complexity in Ca2+signals. Biochem Cell Biol 2000. [DOI: 10.1139/o00-012] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Calcium signals have been implicated in the regulation of many diverse cellular processes. The problem of how information from extracellular signals is delivered with specificity and fidelity using fluctuations in cytosolic Ca2+concentration remains unresolved. The capacity of cells to generate Ca2+signals of sufficient spatial and temporal complexity is the primary constraint on their ability to effectively encode information through Ca2+. Over the past decade, a large body of literature has dealt with some basic features of Ca2+-handling in cells, as well as the multiplicity and functional diversity of intracellular Ca2+stores and extracellular Ca2+influx pathways. In principle, physiologists now have the necessary information to attack the problem of function- and agonist-specificity in Ca2+signal transduction. This review explores the data indicating that Ca2+release from diverse sources, including many types of intracellular stores, generates Ca2+signals with sufficient complexity to regulate the vast number of cellular functions that have been reported as Ca2+-dependent. Some examples where such complexity may relate to neuroendocrine regulation of hormone secretion/synthesis are discussed. We show that the functional and spatial heterogeneity of Ca2+stores generates Ca2+signals with sufficient spatiotemporal complexity to simultaneously control multiple Ca2+-dependent cellular functions in neuroendocrine systems.Key words: signal coding, IP3receptor, ryanodine receptor, endoplasmic reticulum, Golgi, secretory granules, mitochondria, exocytosis.
Collapse
|
170
|
Khaselev N, Murphy RC. Electrospray ionization mass spectrometry of lysoglycerophosphocholine lipid subclasses. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2000; 11:283-291. [PMID: 10757164 DOI: 10.1016/s1044-0305(99)00158-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Lysoglycerophosphocholine lipids (lyso-GPC) are important intermediates in the synthesis and metabolism of glycerophosphocholine lipids which are major components of the cellular lipid bilayer. Significant differences in the collisional induced decomposition (CID) behavior were observed for each of the four different subtypes of lyso-GPC in both positive and negative ions. A major difference was observed in the initial CID product ions derived from lyso-GPC [M + H]+ with the loss of water that was very abundant for acyl lyso-GPC which have a fatty acid ester substituent at either the sn-1 or sn-2 positions. Loss of neutral water was not very prominent in the case of plasmenyl and plasmanyl lyso-GPC species. The mechanism responsible for this difference in behavior of lyso-GPC subtypes was consistent with a higher proton affinity of carboxyl carbonyl oxygen atoms and vinyl ether oxygen atoms found in acyl and plasmenyl lyso-GPC lipids, respectively, as compared to the carbinol oxygen atom common to all lyso-GPC species. Collisional activation of lyso-GPC negative ions [M - 15]- also revealed distinctive differences in product ions derived from acyl and ether lyso-GPC species. The acyl compounds showed the facile elimination of a highly stable carboxylate anion, whereas plasmenyl species underwent fragmentation with loss of a neutral aldehyde, likely a result of rearrangement involving the double bond in the vinyl ether moiety. The alkyl ether species (plasmanyl lyso-GPC lipids) did not undergo either decomposition reaction observed for the other lyso-GPC subtypes which permitted differentiation of acyl, plasmenyl, and plasmanyl lyso-GPC subtypes.
Collapse
Affiliation(s)
- N Khaselev
- Department of Pediatrics, National Jewish Medical and Research Center, Denver, Colorado 80206, USA
| | | |
Collapse
|
171
|
Llorente A, van Deurs B, Garred O, Eker P, Sandvig K. Apical endocytosis of ricin in MDCK cells is regulated by the cyclooxygenase pathway. J Cell Sci 2000; 113 ( Pt 7):1213-21. [PMID: 10704372 DOI: 10.1242/jcs.113.7.1213] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Addition of arachidonic acid or stimulation of arachidonic acid production by secretory phospholipase A2 selectively upregulated apical endocytosis of ricin in MDCK cells without affecting basolateral endocytosis. Electron microscopic studies revealed that MDCK cells treated with secretory phospholipase A2 and incubated with horseradish peroxidase had an increased number of normal appearing peroxidase-labeled endosomes and no sign of membrane ruffling. Moreover, inhibition of basal arachidonic acid release, either by decreasing the cytosolic phospholipase A(2) activity or the diacylglycerol lipase activity, reduced the rate of apical endocytosis. Furthermore, indomethacin, an inhibitor of the cyclooxygenase pathway, counteracted the stimulation of endocytosis seen with both secretory phospholipase A2 and arachidonic acid, suggesting that formation of eicosanoids such as prostaglandins could be essential for the regulation. This idea was supported by the finding that prostaglandin E2, the predominant prostaglandin formed in kidney, also upregulated ricin uptake. The regulatory effect of the cyclooxygenase pathway on apical endocytosis of ricin was found to be independent of protein kinases A and C, which are known to selectively control apical clathrin-independent endocytosis in polarized cells.
Collapse
Affiliation(s)
- A Llorente
- Institute for Cancer Research at The Norwegian Radium Hospital, Montebello, Norway
| | | | | | | | | |
Collapse
|
172
|
Muñoz NM, Kim KP, Han SK, Boetticher E, Sperling AI, Sano H, Zhu X, Cho W, Leff AR. Characterization of monoclonal antibodies specific for 14-kDa human group V secretory phospholipase A2 (hVPLA2). Hybridoma (Larchmt) 2000; 19:171-6. [PMID: 10868798 DOI: 10.1089/02724570050031220] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Secretory phospholipase A2 (PLA2) consists of several 14-kDa isoforms with extensive homology, which makes it difficult to identify a specific isoform. In this study, we have developed and characterized monoclonal antibodies (MAbs) directed specifically against human group V sPLA2 (hVPLA2) derived from cultured hybridomas. These hybridomas were produced from the fusion of BALB/c-derived myeloma s/p20-Ag14 and splenocytes from mice immunized with purified recombinant hVPLA2. Three hybridomas secreting MAbs, MCL-3G1, MCL-2A5, and MCL-1B7, were selected and subcloned on the basis of their specificity to recognize hVPLA2 using solid-phase enzyme-linked immunoadsorbent assay (ELISA). The purified MAbs demonstrated a common pattern of immunoreactivity to hVPLA2, but not to human group IIa isoform (hIIaPLA2). Isotype analysis indicates that these hybridomas are of the IgG1 type. Under reducing conditions, MCL-3G1 sensitively detected hVPLA2 and demonstrated no cross-reactivity to either hIIaPLA2 or group IV cytosolic PLA2. Although specific for hVPLA2, a relatively modest signal was recognized with MCL-1B7 and MCL-2A5. These newly developed MAbs allow for determination of tissue distribution and cell-specific functions of hVPLA2.
Collapse
Affiliation(s)
- N M Muñoz
- Department of Medicine, The University of Chicago, IL 60637, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
173
|
Rys-Sikora KE, Konger RL, Schoggins JW, Malaviya R, Pentland AP. Coordinate expression of secretory phospholipase A(2) and cyclooxygenase-2 in activated human keratinocytes. Am J Physiol Cell Physiol 2000; 278:C822-33. [PMID: 10751330 DOI: 10.1152/ajpcell.2000.278.4.c822] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
PGE(2) levels are altered in human epidermis after in vivo wounding; however, mechanisms modulating PGE(2) production in activated keratinocytes are unclear. In previous studies, we showed that PGE(2) is a growth-promoting autacoid in human primary keratinocyte cultures, and its production is modulated by plating density, suggesting that regulated PGE(2) synthesis is an important component of wound healing. Here, we examine the role of phospholipase A(2) (PLA(2)) and cyclooxygenase (COX) enzymes in modulation of PGE(2) production. We report that the increased PGE(2) production that occurs in keratinocytes grown in nonconfluent conditions is also observed after in vitro wounding, indicating that similar mechanisms are involved. This increase was associated with coordinate upregulation of both COX-2 and secretory PLA(2) (sPLA(2)) proteins. Increased sPLA(2) activity was also observed. By RT-PCR, we identified the presence of type IIA and type V sPLA(2), along with the M-type sPLA(2) receptor. Thus the coordinate expression of sPLA(2) and COX-2 may be responsible for the increased prostaglandin synthesis in activated keratinocytes during wound repair.
Collapse
Affiliation(s)
- K E Rys-Sikora
- Department of Dermatology, University of Rochester Medical Center, Rochester, New York 14642, USA
| | | | | | | | | |
Collapse
|
174
|
Osterhout JL, Shuttleworth TJ. A Ca(2+)-independent activation of a type IV cytosolic phospholipase A(2) underlies the receptor stimulation of arachidonic acid-dependent noncapacitative calcium entry. J Biol Chem 2000; 275:8248-54. [PMID: 10713151 DOI: 10.1074/jbc.275.11.8248] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The oscillatory [Ca(2+)](i) signals typically seen following physiologically relevant stimulation of phospholipase C-linked receptors are associated with a receptor-activated entry of Ca(2+), which plays a critical role in driving the oscillations and influencing their frequency. We have recently shown that this receptor-activated entry of Ca(2+) does not conform to the widely accepted "capacitative" model and, instead, reflects the activity of a distinct, novel Ca(2+) entry pathway regulated by arachidonic acid (Shuttleworth, T. J., and Thompson, J. L. (1998) J. Biol. Chem. 273, 32636-32643). We now show that the generation of arachidonic acid under these conditions results from the activity of a type IV cytosolic phospholipase A(2) (cPLA(2)). Although cPLA(2) activation commonly involves a Ca(2+)-dependent translocation to the membrane, at these low agonist concentrations cPLA(2) activation was independent of increases in [Ca(2+)](i), and no detectable translocation to the membrane occurs. Nevertheless, stimulation of cPLA(2) activity was confined to the membrane fraction, where an increase in phosphorylation of the enzyme was observed. We suggest that, at the low agonist concentrations associated with oscillatory [Ca(2+)](i) signals, cPLA(2) activation involves an increased phosphorylation of a discrete pool of the total cellular cPLA(2) that is already localized within the membrane fraction at resting [Ca(2+)](i).
Collapse
Affiliation(s)
- J L Osterhout
- Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | | |
Collapse
|
175
|
Marks F, Fürstenberger G. Cancer chemoprevention through interruption of multistage carcinogenesis. The lessons learnt by comparing mouse skin carcinogenesis and human large bowel cancer. Eur J Cancer 2000; 36:314-29. [PMID: 10708932 DOI: 10.1016/s0959-8049(99)00318-4] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Whilst in the early stages, neoplastic development is predominantly triggered by environmental genotoxic and non-genotoxic carcinogens, tumour progression becomes more and more autonomous at later stages. In this context a dysregulation of arachidonic acid metabolism seems to play a disastrous role. Conversely, non-steroidal anti-inflammatory drugs (NSAIDs) rank among the most potent and most promising agents for cancer chemoprevention probably because of their ability to inhibit prostaglandin biosynthesis, in particular, at the level of the 'pro-inflammatory' enzyme cyclooxygenase-2 (COX-2). A pathological overexpression of COX-2 resulting in excessive prostaglandin production has been found already in early stages of carcinogenesis and seems to be a consistent feature of neoplastic development in a wide variety of tissues. COX-2 overexpression is thought to occur along signalling pathways of inflammation and tissue repair which become activated in the course of tumour promotion and, due to autocrine and auto-stimulatory mechanisms, finally lead to some autonomy of tumour development (self-promotion). Prostaglandins formed along a dysregulated COX pathway have been shown to mediate tumour promotion in animal experiments and may play a role, in addition, in other processes involved in tumour growth such as angiogenesis, metastasis and immunosuppression. Moreover, genotoxic byproducts such as organic free radicals, reactive oxygen species and malondialdehyde produced in the course of prostanoid biosynthesis may contribute to genetic instability (mutator phenotype) of neoplastic cells thereby promoting malignant progression. Such mixtures of physiologically highly active mediators and genotoxic byproducts are, in addition, formed along the various lipoxygenase-catalysed pathways of arachidonic acid metabolism some of which also become dysregulated during tumour development and, therefore, provide novel targets of future chemopreventive approaches.
Collapse
Affiliation(s)
- F Marks
- Research Programme Tumour Cell Regulation, Deutsches Krebsforschungzentrum, Im Neuenheimer Feld 280, D-69009, Heidelberg, Germany.
| | | |
Collapse
|
176
|
Nakatani Y, Tanioka T, Sunaga S, Murakami M, Kudo I. Identification of a cellular protein that functionally interacts with the C2 domain of cytosolic phospholipase A(2)alpha. J Biol Chem 2000; 275:1161-8. [PMID: 10625659 DOI: 10.1074/jbc.275.2.1161] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cytosolic phospholipase A(2) (cPLA(2)) alpha plays critical roles in lipid mediator synthesis. We performed far-Western analysis and identified a 60-kDa protein (P60) that interacted with cPLA(2)alpha in a Ca(2+)-dependent manner. Peptide microsequencing revealed that purified P60 was identical to vimentin, a major component of the intermediate filament. The interaction occurred between the C2 domain of cPLA(2)alpha and the head domain of vimentin. Immunofluorescence microscopic analysis demonstrated that cPLA(2)alpha and vimentin colocalized around the perinuclear area in cPLA(2)alpha-overexpressing human embryonic kidney 293 cells following A23187 stimulation. Forcible expression of vimentin in vimentin-deficient SW13 cells augmented A23187-induced arachidonate release. Moreover, overexpression of the vimentin head domain in rat fibroblastic 3Y1 cells exerted a dominant inhibitory effect on arachidonate metabolism, significantly reducing A23187-induced arachidonate release and attendant prostanoid generation. These results suggest that vimentin is an adaptor for cPLA(2)alpha to function properly during the eicosanoid-biosynthetic process.
Collapse
Affiliation(s)
- Y Nakatani
- Department of Health Chemistry, School of Pharmaceutical Sciences, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | | | | | | | | |
Collapse
|
177
|
Mizuno N, Naruse S, Kitagawa M, Ishiguro H, Hayakawa T. Effects of phospholipase A2 inhibitors on Ca2+ oscillations in pancreatic acinar cells. Pancreas 2000; 20:77-83. [PMID: 10630387 DOI: 10.1097/00006676-200001000-00011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
High-affinity cholecystokinin (CCK) receptors were reported to be coupled with phospholipase A2 (PLA2)-arachidonic acid (AA) pathways to mediate Ca2+ oscillations and amylase secretion in rat pancreatic acinar cells. To investigate which types of PLA2 were involved in PLA2-AA pathways, the effects of specific inhibitors for type II and type IV PLA2 on Ca2+ oscillations and amylase secretion were studied in isolated rat pancreatic acini. An inhibitor of type IV (cytosolic) PLA2, AACOCF3 inhibited Ca2+ oscillations elicited by CCK-8 (30 pM) and JMV-180 (100 nM). AACOCF3 inhibited amylase secretion stimulated by JMV-180 and low concentrations of CCK-8 (< or =30 pM). On the other hand, an inhibitor of type II (secretory, nonpancreatic) PLA2 had no effects on Ca2+ oscillations and amylase secretion stimulated by CCK-8 and JMV-180. These results suggest that high-affinity CCK receptors are coupled to cytosolic PLA2 to mediate Ca2+ oscillations and amylase secretion in rat pancreatic acinar cells.
Collapse
Affiliation(s)
- N Mizuno
- Department of Internal Medicine II, Nagoya University School of Medicine, Japan
| | | | | | | | | |
Collapse
|
178
|
Brekke OL, Sagen E, Bjerve KS. Specificity of endogenous fatty acid release during tumor necrosis factor-induced apoptosis in WEHI 164 fibrosarcoma cells. J Lipid Res 1999. [DOI: 10.1016/s0022-2275(20)32097-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
179
|
Kim JH, Lee BD, Kim Y, Lee SD, Suh PG, Ryu SH. Cytosolic Phospholipase A2-Mediated Regulation of Phospholipase D2 in Leukocyte Cell Lines. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.163.10.5462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
Phospholipase D (PLD) has been implicated in a variety of cellular processes, including inflammation, secretion, and respiratory burst. Two distinct PLD isoforms, designated PLD1 and PLD2, have been cloned; however, the regulatory mechanism for each PLD isoform is not clear. In our present study we investigated how PLD2 activity is regulated in mouse lymphocytic leukemia L1210 cells, which mainly contain PLD2 , and in PLD2 -transfected COS-7 cells. Intriguingly, A23187, a calcium ionophore that induces calcium influx, potently stimulates PLD activity in these two cell lines, suggesting that Ca2+ might be implicated in the regulation of the PLD2 activity. In addition to the A23187-induced PLD2 activation, A23187 also increases PLA2-mediated arachidonic acid release, and the A23187-stimulated PLD2 and PLA2 activities could be blocked by pretreatment of the cells with cytosolic calcium-dependent PLA2 (cPLA2) inhibitors, such as arachidonyl trifluoromethyl ketone and methyl arachidonyl fluorophosphonate in these two cell lines. Moreover, the A23187-induced PLD2 and PLA2 activities could be inhibited by cotransfection with antisense cPLA2 oligonucleotide. These results suggest a role for cPLA2 in the regulation of PLD2 activity in vivo. The inhibitory effect of arachidonyl trifluoromethyl ketone on the A23187-induced PLD2 activity could be recovered by addition of exogenous lysophosphatidylcholine. This study is the first to demonstrate that PLD2 activity is up-regulated by Ca2+ influx and that cPLA2 may play a key role in the Ca2+-dependent regulation of PLD2 through generation of lysophosphatidylcholine.
Collapse
Affiliation(s)
- Jae Ho Kim
- *National Creative Research Initiative Center for Calcium and Learning,
- †Department of Life Science and School of Environmental Engineering, Pohang University of Science and Technology, Pohang, South Korea
| | - Byoung Dae Lee
- †Department of Life Science and School of Environmental Engineering, Pohang University of Science and Technology, Pohang, South Korea
| | - Yong Kim
- †Department of Life Science and School of Environmental Engineering, Pohang University of Science and Technology, Pohang, South Korea
| | - Sang Do Lee
- †Department of Life Science and School of Environmental Engineering, Pohang University of Science and Technology, Pohang, South Korea
| | - Pann-Ghill Suh
- †Department of Life Science and School of Environmental Engineering, Pohang University of Science and Technology, Pohang, South Korea
| | - Sung Ho Ryu
- †Department of Life Science and School of Environmental Engineering, Pohang University of Science and Technology, Pohang, South Korea
| |
Collapse
|
180
|
Klapisz E, Ziari M, Wendum D, Koumanov K, Brachet-Ducos C, Olivier JL, Béréziat G, Trugnan G, Masliah J. N-terminal and C-terminal plasma membrane anchoring modulate differently agonist-induced activation of cytosolic phospholipase A2. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 265:957-66. [PMID: 10518790 DOI: 10.1046/j.1432-1327.1999.00797.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The 85 kDa cytosolic phospholipase A2 (cPLA2) plays a key role in liberating arachidonic acid from the sn-2 position of membrane phospholipids. When activated by extracellular stimuli, cPLA2 undergoes calcium-dependent translocation from cytosol to membrane sites which are still a matter of debate. In order to evaluate the effect of plasma membrane association on cPLA2 activation, we constructed chimeras of cPLA2 constitutively targeted to the plasma membrane by the N-terminal targeting sequence of the protein tyrosine kinase Lck (Lck-cPLA2) or the C-terminal targeting signal of K-Ras4B (cPLA2-Ras). Constitutive expression of these chimeras in Chinese hamster ovary cells overproducing the alpha2B adrenergic receptor (CHO-2B cells) did not affect the basal release of [3H]arachidonic acid, indicating that constitutive association of cPLA2 with cellular membranes did not ensure the hydrolysis of membrane phospholipids. However, Lck-cPLA2 increased [3H]arachidonic acid release in response to receptor stimulation and to increased intracellular calcium, whereas cPLA2-Ras inhibited it, compared with parental CHO-2B cells and CHO-2B cells producing comparable amounts of recombinant wild-type cPLA2. The lack of stimulation of cPLA2-Ras was not due to a decreased enzymatic activity as measured using an exogenous substrate, or to a decreased phosphorylation of the protein. These results show that the plasma membrane is a suitable site for cPLA2 activation when orientated correctly.
Collapse
|
181
|
Ruiz A, Nadal M, Puig S, Estivill X. Cloning of the human phospholipase A2 activating protein (hPLAP) gene on the chromosome 9p21 melanoma deleted region. Gene 1999; 239:155-61. [PMID: 10571045 DOI: 10.1016/s0378-1119(99)00354-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cutaneous malignant melanoma (CMM) is a common skin cancer. About 50% of CMM sporadic tumours have lost one copy of the chromosome 9p21 region. To identify genes involved in the initiation and/or progression of CMM we have characterised the 9p21 melanoma deleted region and screened the human expressed sequence tag (EST) databases (dbEST) to search for expressed genes. We have identified the gene that encodes the human orthologue of the rat phospholipase A2 activating protein (PLAP). PLAP was considered a potential candidate to be involved in malignant melanoma because it maps to the critical region for CMM and because the PLA2 gene has been identified as a modifier of the APC gene, responsible for the adenomatous polyposis phenotype in the mouse. PLAP encodes a protein of 738 amino acids and has a high DNA (90%) and protein (97%) sequence similarity with the rat and mouse PLAP protein. PLAP has a region of WD40 repeats in the amino-terminus, which allows us to include this protein in the superfamily of beta-transducin proteins. Northern blot hybridisation gave a fragment of 4.5 kb, with higher expression in heart compared to other tissues. PLAP was localised at chromosome 9p21, between marker AFM218xg11 and TEK. SSCP analysis of the coding region of PLAP revealed no variants in the studied samples, but one of six CMM samples analysed by RT-PCR showed specific inactivation of PLAP. Despite PLAP's important role in mediating several cellular responses and its localisation to the chromosome 9p21 region deleted in CMM, it is unlikely that point mutations or deletions in the coding region of PLAP are responsible for the initiation or progression of CMM. Further studies on PLAP inactivation should be performed to clarify its potential involvement in CMM.
Collapse
MESH Headings
- Amino Acid Sequence
- Base Sequence
- Blotting, Northern
- Chromosome Deletion
- Chromosome Mapping
- Chromosomes, Human, Pair 9/genetics
- Cloning, Molecular
- DNA Mutational Analysis
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- Databases, Factual
- Gene Expression
- Humans
- In Situ Hybridization, Fluorescence
- Melanoma/genetics
- Molecular Sequence Data
- Polymorphism, Single-Stranded Conformational
- Proteins/genetics
- RNA/genetics
- RNA/metabolism
- Repetitive Sequences, Amino Acid
- Sequence Analysis, DNA
- Skin Neoplasms/genetics
- Tissue Distribution
Collapse
Affiliation(s)
- A Ruiz
- Medical and Molecular Genetics Center-IRO, Hospital Duran i Reynals, L'Hospitalet de Llobregat, Barcelona, Catalonia, Spain
| | | | | | | |
Collapse
|
182
|
Parfenova H, Haffner J, Leffler CW. Phosphorylation-dependent stimulation of prostanoid synthesis by nigericin in cerebral endothelial cells. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 277:C728-38. [PMID: 10516103 DOI: 10.1152/ajpcell.1999.277.4.c728] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nigericin decreases intracellular pH (pH(i)) and stimulates prostanoid (PG) synthesis in endothelial cells from cerebral microvessels of newborn pigs. Nigericin-induced PG production was abolished by protein tyrosine kinase (PTK) inhibitors and amplified by phorbol 12-myristate 13-acetate (PMA) or protein tyrosine phosphatase (PTP) inhibitors. Nigericin-induced PG production in PMA-primed cells was potentiated by PTP inhibitors and abrogated by PTK inhibitors. Phospholipase A(2) (PLA(2)) activity was stimulated by nigericin in a phosphorylation-dependent manner. Nigericin's effects on PG production and PLA(2) activity were reproduced by ionomycin, which activates cytosolic PLA(2) (cPLA(2)). cPLA(2) was immunodetected in endothelial cell lysates. We found no evidence that nigericin's effects are mediated via mitogen-activated protein (MAP) kinase [extracellularly regulated kinase 1 (ERK1) and ERK2] activation: although nigericin stimulated detergent-soluble MAP kinase, its effects were not amplified by PMA or PTP inhibitors. Phosphorylation-dependent stimulation of PG synthesis was also observed when pH(i) was decreased by sodium propionate or a high level of CO(2). Altogether, our data indicate that nigericin and decreased pH(i) stimulate PG synthesis by a protein phosphorylation-dependent mechanism involving cross talk between pathways mediated by PTK and PTP and by protein kinase C; cPLA(2) appears to be a key enzyme affected by nigericin and decreased pH(i).
Collapse
Affiliation(s)
- H Parfenova
- Laboratory for Research in Neonatal Physiology, Department of Physiology, University of Tennessee, Memphis, Tennessee 38163, USA
| | | | | |
Collapse
|
183
|
Kohjimoto Y, Kennington L, Scheid CR, Honeyman TW. Role of phospholipase A2 in the cytotoxic effects of oxalate in cultured renal epithelial cells. Kidney Int 1999; 56:1432-41. [PMID: 10504495 DOI: 10.1046/j.1523-1755.1999.00683.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Oxalate, a common constituent of kidney stones, is cytotoxic for renal epithelial cells. Although the exact mechanism of oxalate-induced cell death remains unclear, studies in various cell types, including renal epithelial cells, have implicated phospholipase A2 (PLA2) as a prominent mediator of cellular injury. Thus, these studies examined the role of PLA2 in the cytotoxic effects of oxalate. METHODS The release of [3H]-arachidonic acid (AA) or [3H]-oleic acid (OA) from prelabeled Madin-Darby canine kidney (MDCK) cells was measured as an index for PLA2 activity. The cell viability was assessed by the exclusion of ethidium homodimer-1. RESULTS Oxalate exposure (175 to 550 microM free) increased the release of [3H]-AA in MDCK cells but had no effect on the release of [3H]-OA. Oxalate-induced [3H]-AA release was abolished by arachidonyl trifluoromethyl ketone (AACOCF3), a selective inhibitor of cytosolic PLA2 (cPLA2), but was not affected by selective inhibitors of secretory PLA2 and calcium-independent PLA2. The [3H]-AA release could be demonstrated within 15 minutes after exposure to oxalate, which is considerably earlier than the observed changes in cell viability. Furthermore, AACOCF3 significantly reduced oxalate toxicity in MDCK cells. CONCLUSIONS Oxalate increases AA release from MDCK cells by a process involving cPLA2. In addition, based on the evidence obtained using a selective inhibitor of this isoform, it would appear that the activity of this enzyme is responsible, at least in part, for the cytotoxic effects of oxalate. The finding that oxalate can trigger a known lipid-signaling pathway may provide new insight into the initial events in the pathogenesis of nephrolithiasis.
Collapse
Affiliation(s)
- Y Kohjimoto
- Department of Physiology, University of Massachusetts Medical School, Worcester 01655-0127, USA
| | | | | | | |
Collapse
|
184
|
Börsch-Haubold AG, Ghomashchi F, Pasquet S, Goedert M, Cohen P, Gelb MH, Watson SP. Phosphorylation of cytosolic phospholipase A2 in platelets is mediated by multiple stress-activated protein kinase pathways. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 265:195-203. [PMID: 10491174 DOI: 10.1046/j.1432-1327.1999.00722.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Stress-activated protein kinases (SAPKs) are stimulated by cell damaging agents as well as by physiological receptor agonists. In this study we show that human platelets contain the isoforms SAPK2a, SAPK2b, SAPK3 and SAPK4 as determined by immunoblotting with specific antibodies. All four kinases were activated in thrombin-stimulated platelets whereas only SAPK2a and SAPK2b were significantly stimulated by collagen. All four isoforms were able to phosphorylate wild-type human cPLA2 in vitro, although to different extents, but not cPLA2 mutants that had Ser505 replaced by alanine. Phosphorylation at Ser505 was confirmed by phosphopeptide mapping using microbore HPLC. SAPK2a and 42-kDa mitogen-activated protein kinase incorporated similar levels of phosphate into cPLA2 relative to the ability of each kinase to stimulate phosphorylation of myelin basic protein. SAPK2b and SAPK4 incorporated less phosphate, and cPLA2 was a poor substrate for SAPK3. The inhibitor of SAPK2a and SAPK2b, SB 202190, completely blocked collagen-induced phosphorylation of cPLA2 at its two phosphorylation sites in vivo, Ser505 and Ser727. We have also reported previously that SB 202190 partially ( approximately 50%) blocks phosphorylation at both sites and to a similar extent in thrombin-stimulated platelets. Inhibition of phosphorylation resulted in a two- to threefold shift to the right in the concentration response curves for arachidonic acid release from thrombin- and collagen-stimulated platelets. Our data suggest that cPLA2 is a substrate for several SAPK cascades and that phosphorylation of cPLA2 augments arachidonic acid release.
Collapse
|
185
|
Pitcher GM, Henry JL. Mediation and modulation by eicosanoids of responses of spinal dorsal horn neurons to glutamate and substance P receptor agonists: results with indomethacin in the rat in vivo. Neuroscience 1999; 93:1109-21. [PMID: 10473275 DOI: 10.1016/s0306-4522(99)00192-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In view of the widespread use of non-steroidal anti-inflammatory drugs for treatment of inflammatory pain, we determined the effects of the non-steroidal anti-inflammatory drug, indomethacin, on dorsal horn neurons in the rat spinal cord in vivo. At 2.0-12.0 mg/kg (i.v.), indomethacin depressed the responses of spinal dorsal horn neurons to the effects of iontophoretic application of substance P, N-methyl-D-aspartate, quisqualate and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate. As indomethacin inhibits cyclo-oxygenase, these are the first data linking prostanoids and possibly arachidonic acid and other eicosanoids to the effects of substance P and glutamate in the spinal dorsal horn. As responses to iontophoretic application can be assumed to have been postsynaptic and as indomethacin had an effect generalized to all excitatory responses, we suggest a postsynaptic site for cyclo-oxygenase. We also suggest that elements in the cyclo-oxygenase signal transduction pathway may thus mediate at least some of the effects of substance P and glutamate receptor activation. Activation of the cyclo-oxygenase pathway in CNS neurons is Ca2- dependent, and activation of both N-methyl-D-aspartate and substance P receptors increases intracellular Ca2+. This led to the expectation that indomethacin would have a greater effect on responses to N-methyl-D-aspartate than to alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate, but the reverse was observed. Thus, in addition to a mediator role, we hypothesize that an element(s) of the cyclo-oxygenase pathway may regulate the efficacy of excitation of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate receptors and perhaps other membrane-bound receptors. The cyclo-oxygenase signal transduction pathway thus appears to play at least two major roles in regulation of sensory processing in the spinal cord. Therefore, non-steroidal anti-inflammatory drugs, via cyclo-oxygenase inhibition, may have multiple actions in control of spinal sensory mechanisms.
Collapse
Affiliation(s)
- G M Pitcher
- Department of Physiology, McGill University, Montreal, Quebec, Canada
| | | |
Collapse
|
186
|
Primitive Myeloid Cells Express High Levels of Phospholipase A2 Activity in the Absence of Leukotriene Release: Selective Regulation by Stem Cell Factor Involving the MAP Kinase Pathway. Blood 1999. [DOI: 10.1182/blood.v94.4.1261.416k17_1261_1272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The activation of phospholipase A2 (PLA2) with release of eicosanoids and prostanoids in mature myeloid cells and the augmentation (priming) of this activity by cytokines such as granulocyte-macrophage colony-stimulating factor (GM-CSF) are central to the inflammatory process. Yet, there are few data concerning PLA2 activity and its regulation by growth factors in primary hematopoietic cells. We therefore analyzed the PLA2activity of mobilized human CD34 antigen-positive (CD34+) stem cells by quantitation of the extracellular release of3H-arachidonate. The PLA2 activity of CD34+ cells stimulated with calcium ionophore (A23187) was of similar magnitude to that of mature neutrophils and monocytes. Preincubation of CD34+ cells with stem cell factor (SCF) before A23187-stimulation resulted in primed PLA2 activity, whereas interleukin-3 (IL-3), GM-CSF, and tumor necrosis factor had no significant effect. When CD34+ cells were induced to differentiate, PLA2 activity remained responsive to SCF for several days, but after 8 days, at which stage morphological and functional evidence of maturation was occurring, priming of PLA2 by SCF could no longer be elicited, whereas responses to GM-CSF and IL-3 had developed. The further metabolism of arachidonic acid to eicosanoids by CD34+ cells was not detected by either thin-layer chromatography, enzyme immunoassay, or differential spectroscopy. SCF stimulated the rapid but transient activation of ERK2 (p42 MAP kinase) in CD34+ cells, and we used the MAP kinase kinase inhibitor, PD 098059, which at 30 μmol/L blocks ERK2 activation in CD34+ cells, to investigate whether SCF-mediated priming of arachidonate release was mediated by this kinase. PD 098059 only partially inhibited A23187-stimulated PLA2 activity primed by SCF, suggesting the involvement of ERK2 and possibly a further signal transduction pathway. Methyl arachidonyl fluorophosphonate (5 μmol/L), a dual inhibitor of i and cPLA2 isoforms, completely inhibited arachidonate release without affecting ERK2 activation, demonstrating the lack of cellular toxicity. These data provide the first evidence that primitive myeloid cells have the capacity to release arachidonate, which is regulated by an early acting hematopoietic growth factor important for the growth and survival of these cells.
Collapse
|
187
|
Primitive Myeloid Cells Express High Levels of Phospholipase A2 Activity in the Absence of Leukotriene Release: Selective Regulation by Stem Cell Factor Involving the MAP Kinase Pathway. Blood 1999. [DOI: 10.1182/blood.v94.4.1261] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractThe activation of phospholipase A2 (PLA2) with release of eicosanoids and prostanoids in mature myeloid cells and the augmentation (priming) of this activity by cytokines such as granulocyte-macrophage colony-stimulating factor (GM-CSF) are central to the inflammatory process. Yet, there are few data concerning PLA2 activity and its regulation by growth factors in primary hematopoietic cells. We therefore analyzed the PLA2activity of mobilized human CD34 antigen-positive (CD34+) stem cells by quantitation of the extracellular release of3H-arachidonate. The PLA2 activity of CD34+ cells stimulated with calcium ionophore (A23187) was of similar magnitude to that of mature neutrophils and monocytes. Preincubation of CD34+ cells with stem cell factor (SCF) before A23187-stimulation resulted in primed PLA2 activity, whereas interleukin-3 (IL-3), GM-CSF, and tumor necrosis factor had no significant effect. When CD34+ cells were induced to differentiate, PLA2 activity remained responsive to SCF for several days, but after 8 days, at which stage morphological and functional evidence of maturation was occurring, priming of PLA2 by SCF could no longer be elicited, whereas responses to GM-CSF and IL-3 had developed. The further metabolism of arachidonic acid to eicosanoids by CD34+ cells was not detected by either thin-layer chromatography, enzyme immunoassay, or differential spectroscopy. SCF stimulated the rapid but transient activation of ERK2 (p42 MAP kinase) in CD34+ cells, and we used the MAP kinase kinase inhibitor, PD 098059, which at 30 μmol/L blocks ERK2 activation in CD34+ cells, to investigate whether SCF-mediated priming of arachidonate release was mediated by this kinase. PD 098059 only partially inhibited A23187-stimulated PLA2 activity primed by SCF, suggesting the involvement of ERK2 and possibly a further signal transduction pathway. Methyl arachidonyl fluorophosphonate (5 μmol/L), a dual inhibitor of i and cPLA2 isoforms, completely inhibited arachidonate release without affecting ERK2 activation, demonstrating the lack of cellular toxicity. These data provide the first evidence that primitive myeloid cells have the capacity to release arachidonate, which is regulated by an early acting hematopoietic growth factor important for the growth and survival of these cells.
Collapse
|
188
|
Jiménez R, Andriambeloson E, Duarte J, Andriantsitohaina R, Jiménez J, Pérez-Vizcaino F, Zarzuelo A, Tamargo J. Involvement of thromboxane A2 in the endothelium-dependent contractions induced by myricetin in rat isolated aorta. Br J Pharmacol 1999; 127:1539-44. [PMID: 10455307 PMCID: PMC1566141 DOI: 10.1038/sj.bjp.0702694] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. The present study was undertaken to analyse the mechanism of the contractile response induced by the bioflavonoid myricetin in isolated rat aortic rings. 2. Myricetin induced endothelium-dependent contractile responses (maximal value=21+/-2% of the response induced by 80 mM KCl and pD2=5.12+/-0.03). This effect developed slowly, reached a peak within 6 min and then declined progressively. 3. Myricetin-induced contractions were almost abolished by the phospholipase A2 (PLA2) inhibitor, quinacrine (10 microM), the cyclo-oxygenase inhibitor, indomethacin (10 microM), the thromboxane synthase inhibitor, dazoxiben (100 microM), the putative thromboxane A2 (TXA2)/prostaglandin endoperoxide receptor antagonist, ifetroban (3 microM). These contractions were abolished in Ca2+-free medium but were not affected by the Ca2+ channel blocker verapamil (10 microM). 4. In cultured bovine endothelial cells (BAEC), myricetin (50 microM) produced an increase in cytosolic free calcium ([Ca2+]i) which peaked within 1 min and remained sustained for 6 min, as determined by the fluorescent probe fura 2. This rise in [Ca2+]i was abolished after removal of extracellular Ca2+ in the medium. 5. Myricetin (50 microM) significantly increased TXB2 production both in aortic rings with and without endothelium and in BAEC. These increases were abolished both by Ca2+-free media and by indomethacin. 6. Taken together, these results suggests that myricetin stimulates Ca2+ influx and subsequently triggers the activation of the PLA2 and cyclo-oxygenase pathways releasing TXA2 from the endothelium to contract rat aortic rings. The latter response occurs via the activation of Tp receptors on vascular smooth muscle cells.
Collapse
Affiliation(s)
- Rosario Jiménez
- Department of Pharmacology, School of Pharmacy, University of Granada, 18071 Granada, Spain
| | - Emile Andriambeloson
- Laboratoire de Pharmacologie et Physiopathologie Cellulaires, Université Louis Pasteur de Strasbourg, ERS CNRS 653 Faculté de Pharmacie, BP 24, 67401 Illkirch-Cedex, France
| | - Juan Duarte
- Department of Pharmacology, School of Pharmacy, University of Granada, 18071 Granada, Spain
- Author for correspondence:
| | - Ramaroson Andriantsitohaina
- Laboratoire de Pharmacologie et Physiopathologie Cellulaires, Université Louis Pasteur de Strasbourg, ERS CNRS 653 Faculté de Pharmacie, BP 24, 67401 Illkirch-Cedex, France
| | - José Jiménez
- Department of Pharmacology, School of Pharmacy, University of Granada, 18071 Granada, Spain
| | | | - Antonio Zarzuelo
- Department of Pharmacology, School of Pharmacy, University of Granada, 18071 Granada, Spain
| | - Juan Tamargo
- Department of Pharmacology, School of Medicine, Universidad Complutense, 28040 Madrid, Spain
| |
Collapse
|
189
|
Chaminade B, Le Balle F, Fourcade O, Nauze M, Delagebeaudeuf C, Gassama-Diagne A, Simon MF, Fauvel J, Chap H. New developments in phospholipase A2. Lipids 1999; 34 Suppl:S49-55. [PMID: 10419088 DOI: 10.1007/bf02562228] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Some of the most recent data concerning various phospholipases A2, with special emphasis on secretory, cytosolic, and calcium-independent phospholipases A2 are summarized. Besides their contribution to the production of proinflammatory lipid mediators, the involvement of these enzymes in key cell responses such as apoptosis or tumor cell metastatic potential is also discussed, taking advantage of transgenic models based on gene invalidation by homologous recombination. The possible role of secretory and cytosolic platelet-activating factor acetyl hydrolases is also briefly mentioned. Finally, the ectopic expression in epididymis of an intestinal phospholipase B opens some novel issues as to the possible function of phospholipases in reproduction.
Collapse
Affiliation(s)
- B Chaminade
- Institut Fédératif de Recherche en Immunologie Cellulaire et Moléculaire, Université Paul Sabatier and Centre Hospitalo-Universitaire de Toulouse, France
| | | | | | | | | | | | | | | | | |
Collapse
|
190
|
Barbour SE, Kapur A, Deal CL. Regulation of phosphatidylcholine homeostasis by calcium-independent phospholipase A2. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1439:77-88. [PMID: 10395967 DOI: 10.1016/s1388-1981(99)00078-5] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Phosphatidylcholine (PtdCho) is the most abundant phospholipid in mammalian cell membranes and is essential for cell viability. The levels of this lipid must be tightly controlled to maintain homeostasis. Therefore, changes in the rate of PtdCho synthesis are generally balanced by changes in PtdCho catabolism and vice versa. It is commonly accepted that the rate of PtdCho synthesis is regulated by CTP:phosphocholine cytidylyltransferase (CT). However, it is not certain if PtdCho mass is regulated by specific catabolic enzyme(s). Our goal is to determine if PtdCho homeostasis is regulated by a phospholipase A2 (PLA2). To this end, we have prepared Chinese hamster ovary (CHO) cell lines that overexpress CT. CT activity is 7-10-fold higher in the transfected cells than in parental CHO cells. This increase in CT activity is associated with increases in both PtdCho synthesis and PtdCho catabolism. Glycerophosphocholine is the PtdCho catabolite that accumulates in the transfected cells, which suggests that PtdCho turnover is mediated by a phospholipase A2 (PLA2). Indeed, higher levels of calcium-independent PLA2 activity are measured in the cytosols of the CHO cells that overexpress CT, compared to parental CHO cells. The elevated calcium-independent PLA2 activity is associated with increases in the expression of the 80-kDa calcium-independent PLA2 (iPLA2). Together, these data suggest that the 80-kDa iPLA2 may be modulated in response to changes in PtdCho levels and therefore is involved in the regulation of PtdCho homeostasis in CHO cells.
Collapse
Affiliation(s)
- S E Barbour
- Department of Microbiology and Immunology, Virginia Commonwealth University, Box 980678, Richmond, VA 23298-0678, USA.
| | | | | |
Collapse
|
191
|
Affiliation(s)
- A Wang
- Department of Chemistry and Biochemistry, Revelle College and School of Medicine, University of California at San Diego, La Jolla, CA 92093-0601, USA
| | | |
Collapse
|
192
|
Daniele JJ, Fidelio GD, Bianco ID. Calcium dependency of arachidonic acid incorporation into cellular phospholipids of different cell types. Prostaglandins Other Lipid Mediat 1999; 57:341-50. [PMID: 10480488 DOI: 10.1016/s0090-6980(98)00084-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Ca2+ -independent phospholipase A2 (iPLA2) is involved in the incorporation of arachidonic acid (AA) into resting macrophages by the generation of the lysophospholipid acceptor. The role of iPLA2 in AA remodeling in different cells was evaluated by studying the Ca2+ dependency of AA uptake from the medium, the incorporation into cellular phospholipids, and the effect of the iPLA2 inhibitor bromoenol lactone on these events. Uptake and esterification of AA into phospholipids were not affected by Ca2+ depletion in human polymorphonuclear neutrophils and rat fibroblasts. The uptake was Ca2+ independent in chick embryo glial cells, but the incorporation into phospholipids was partially dependent on extracellular Ca2+. Both events were fully dependent on extra and intracellular Ca2+ in human platelets. In human polymorphonuclear neutrophils, the kinetics of incorporation in several isospecies of phospholipids was not affected by the absence of Ca2+ at short times (<30 min). The involvement of iPLA2 in the incorporation of AA from the medium was confirmed by the selective inhibition of this enzyme with bromoenol lactone, which reduced < or =50% of the incorporation of AA into phospholipids of human neutrophils. These data provide evidence that suggests iPLA2 plays a major role in regulating AA turnover in different cell types.
Collapse
Affiliation(s)
- J J Daniele
- Departamento de Química Biológica, Universidad Nacional de Córdoba, Argentina
| | | | | |
Collapse
|
193
|
Benrezzouk R, Terencio MC, Ferrándiz ML, San Feliciano A, Gordaliza M, Miguel del Corral JM, de la Puente ML, Alcaraz MJ. Inhibition of human sPLA2 and 5-lipoxygenase activities by two neo-clerodane diterpenoids. Life Sci 1999; 64:PL205-11. [PMID: 10353635 DOI: 10.1016/s0024-3205(99)00119-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The inhibitory effect of two neo-clerodane diterpenoids, E-isolinaridial (EI) and its methylketone derivative (EIM), isolated from Linaria saxatilis var. glutinosa, on PLA2 and other enzyme activities involved in the inflammatory process was studied. Both compounds inhibited human synovial sPLA2 in a concentration-dependent manner with IC50 values of 0.20 and 0.49 microM, respectively, similar to scalaradial. Besides, these compounds decreased the cell-free 5-lipoxygenase activity and A23187-induced neutrophil LTB4 biosynthesis. Another function of human neutrophils, such as receptor-mediated degranulation, was also significantly reduced. In contrast, none of the compounds affected superoxide generation in leukocytes, or cyclooxygenase-1, cyclooxygenase-2 and inducible nitric oxide synthase activities in cell-free assays.
Collapse
Affiliation(s)
- R Benrezzouk
- Department of Pharmacology, University of Valencia, Spain
| | | | | | | | | | | | | | | |
Collapse
|
194
|
Perisic O, Paterson HF, Mosedale G, Lara-González S, Williams RL. Mapping the phospholipid-binding surface and translocation determinants of the C2 domain from cytosolic phospholipase A2. J Biol Chem 1999; 274:14979-87. [PMID: 10329700 DOI: 10.1074/jbc.274.21.14979] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cytosolic phospholipase A2 (cPLA2) plays a key role in the generation of arachidonic acid, a precursor of potent inflammatory mediators. Intact cPLA2 is known to translocate in a calcium-dependent manner from the cytosol to the nuclear envelope and endoplasmic reticulum. We show here that the C2 domain of cPLA2 alone is sufficient for this calcium-dependent translocation in living cells. We have identified sets of exposed hydrophobic residues in loops known as calcium-binding region (CBR) 1 and CBR3, which surround the C2 domain calcium-binding sites, whose mutation dramatically decreased phospholipid binding in vitro without significantly affecting calcium binding. Mutation of a residue that binds calcium ions (D43N) also eliminated phospholipid binding. The same mutations that prevent phospholipid binding of the isolated C2 domain in vitro abolished the calcium-dependent translocation of cPLA2 to internal membranes in vivo, suggesting that the membrane targeting is driven largely by direct interactions with the phospholipid bilayer. Using fluorescence quenching by spin-labeled phospholipids for a series of mutants containing a single tryptophan residue at various positions in the cPLA2 C2 domain, we show that two of the calcium-binding loops, CBR1 and CBR3, penetrate in a calcium-dependent manner into the hydrophobic core of the phospholipid bilayer, establishing an anchor for docking the domain onto the membrane.
Collapse
Affiliation(s)
- O Perisic
- Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, United Kingdom
| | | | | | | | | |
Collapse
|
195
|
Rupprecht G, Scholz K, Beck KF, Geiger H, Pfeilschifter J, Kaszkin M. Cross-talk between group IIA-phospholipase A2 and inducible NO-synthase in rat renal mesangial cells. Br J Pharmacol 1999; 127:51-6. [PMID: 10369455 PMCID: PMC1565987 DOI: 10.1038/sj.bjp.0702500] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Features of glomerulonephritis are expression of the inducible form of NO synthase (iNOS) as well as expression of the secretory group IIA-phospholipase A2 (sPLA2) in mesangial cells. Interleukin 1beta (IL-1beta) induces both enzymes with a similar time course resulting in an increase in nitrite production and sPLA2-IIA activity. In this study we investigated the relationship between the formation of NO and sPLA2-IIA induction in rat renal mesangial cells. Incubation of mesangial cells with the NO-donor, spermine-NONOate, for 24 h induced sPLA2-IIA mRNA expression and activity, whereas S-nitroso glutathione alone had only a small stimulatory effect. Stimulation of cells with IL-1beta caused a marked increase in sPLA2-IIA mRNA and activity that were potentiated 3 fold by both NO donors. Coincubation of cells with IL-1beta and the NOS inhibitor, L-N(G) monomethylarginine (L-NMMA), caused a dose-dependent inhibition of cytokine-induced sPLA2-IIA mRNA expression and activity. sPLA2-IIA activity was not stimulated by 8-bromo-cyclic GMP indicating that NO-induced sPLA2-IIA induction is independent of cyclic GMP-mediated signal transduction. These data show that NO contributes to the expression by cytokines of sPLA2-IIA and establishes a novel type of interaction between iNOS and sPLA2-IIA in mesangial cells. This cross-talk between inflammatory mediators may help to promote and sustain an inflammatory state in the kidney.
Collapse
Affiliation(s)
- Gerhard Rupprecht
- Klinikum der Johann-Wolfgang-Goethe-Universität, Medizinische Klinik IV, Funktionsbereich Nephrologie, Theodor-Stern-Kai-7, D-60590 Frankfurt am Main, Germany
| | - Kirsten Scholz
- Klinikum der Johann Wolfgang Goethe-Universität, Zentrum der Pharmakologie, Theodor-Stern-Kai-7, D-60590, Frankfurt am Main, Germany
| | - Karl-Friedrich Beck
- Klinikum der Johann Wolfgang Goethe-Universität, Zentrum der Pharmakologie, Theodor-Stern-Kai-7, D-60590, Frankfurt am Main, Germany
| | - Helmut Geiger
- Klinikum der Johann-Wolfgang-Goethe-Universität, Medizinische Klinik IV, Funktionsbereich Nephrologie, Theodor-Stern-Kai-7, D-60590 Frankfurt am Main, Germany
| | - Josef Pfeilschifter
- Klinikum der Johann Wolfgang Goethe-Universität, Zentrum der Pharmakologie, Theodor-Stern-Kai-7, D-60590, Frankfurt am Main, Germany
| | - Marietta Kaszkin
- Klinikum der Johann Wolfgang Goethe-Universität, Zentrum der Pharmakologie, Theodor-Stern-Kai-7, D-60590, Frankfurt am Main, Germany
- Author for correspondence:
| |
Collapse
|
196
|
Nucciarelli F, Gresele P, Nardicchi V, Porcellati S, Macchioni L, Nenci GG, Goracci G. Evidence that cytosolic phospholipase A2 is down-regulated by protein kinase C in intact human platelets stimulated with fluoroaluminate. FEBS Lett 1999; 450:39-43. [PMID: 10350053 DOI: 10.1016/s0014-5793(99)00436-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We reported that protein kinase C (PKC) inhibitors increase the release of arachidonic acid induced by fluoroaluminate (AlF4-), an unspecific G-protein activator, in intact human platelets. Now we demonstrate that this effect is independent of the extracellular Ca2+ concentration and that AlF4(-)-induced release of AA is abolished by BAPTA, an intracellular Ca2+ chelator, even in the presence of GF 109203X, a specific and potent PKC inhibitor. This compound also blocks the liberation of the secretory phospholipase A2 in the extracellular medium, indicating that this enzyme is not involved in the potentiation of arachidonic acid by PKC inhibitors. On the other hand, the latter effect is completely abolished by treatment of platelets with AACOCF3, a specific inhibitor of cytosolic phospholipase A2 (cPLA2). These observations indicate that cPLA2 is responsible for the AlF4(-)-induced release of arachidonic acid by a mechanism that is down-regulated by PKC.
Collapse
Affiliation(s)
- F Nucciarelli
- Institute of Medical Biochemistry, University of Perugia, Italy
| | | | | | | | | | | | | |
Collapse
|
197
|
Pickard RT, Strifler BA, Kramer RM, Sharp JD. Molecular cloning of two new human paralogs of 85-kDa cytosolic phospholipase A2. J Biol Chem 1999; 274:8823-31. [PMID: 10085124 DOI: 10.1074/jbc.274.13.8823] [Citation(s) in RCA: 157] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Two new cloned human cDNAs encode paralogs of the 85-kDa cytosolic phospholipase A2 (cPLA2). We propose to call these cPLA2beta (114 kDa) and cPLA2gamma (61 kDa), giving the name cPLA2alpha to the well known 85-kDa enzyme. cPLA2beta mRNA is expressed more highly in cerebellum and pancreas and cPLA2gamma more highly in cardiac and skeletal muscle. Sequence-tagged site mapping places cPLA2beta on chromosome 15 in a region near a phosphoinositol bisphosphate phosphatase. The mRNA for cPLA2beta is spliced only at a very low level, and Northern blots in 24 tissues show exclusively the unspliced form. cPLA2beta has much lower activity on 2-arachidonoyl-phosphatidylcholine liposomes than either of the other two enzymes. Its sequence contains a histidine motif characteristic of the catalytic center of caspase proteases of the apoptotic cascade but no region characteristic of the catalytic cysteine. Sequence-tagged site mapping places cPLA2gamma on chromosome 19 near calmodulin. cPLA2gamma lacks the C2 domain, which gives cPLA2alpha its Ca2+ sensitivity, and accordingly cPLA2gamma has no dependence upon calcium, although cPLA2beta does. cPLA2gamma contains a prenyl group-binding site motif and appears to be largely membrane-bound. cPLA2alpha residues activated by phosphorylation do not appear to be well conserved in either new enzyme. In contrast, all three previously known catalytic residues, as well as one additional essential arginine, Arg-566 in cPLA2alpha, are conserved in both new enzyme sequences. Mutagenesis shows strong dependence on these residues for catalytic activity of all three enzymes.
Collapse
Affiliation(s)
- R T Pickard
- Lilly Research Laboratory, Indianapolis, Indiana 46285, USA
| | | | | | | |
Collapse
|
198
|
Hirabayashi T, Kume K, Hirose K, Yokomizo T, Iino M, Itoh H, Shimizu T. Critical duration of intracellular Ca2+ response required for continuous translocation and activation of cytosolic phospholipase A2. J Biol Chem 1999; 274:5163-9. [PMID: 9988766 DOI: 10.1074/jbc.274.8.5163] [Citation(s) in RCA: 139] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
When cells are exposed to certain external stimuli, arachidonic acid (AA) is released from the membrane and serves as a precursor of various types of eicosanoids. A Ca2+-regulated cytosolic phospholipase A2 (cPLA2) plays a dominant role in the release of AA. To closely examine the relation between Ca2+ response and AA release by stimulation of G protein-coupled receptors, we established several lines of Chinese hamster ovary cells expressing platelet-activating factor receptor or leukotriene B4 receptor. Measurement of intracellular Ca2+ concentration ([Ca2+]i) demonstrated that cell lines capable of releasing AA elicited a sustained [Ca2+]i increase when stimulated by agonists. The prolonged [Ca2+]i elevation is the result of Ca2+ entry, because this elevation was blocked by EGTA treatment or in the presence of Ca2+ channel blockers (SKF 96365 and methoxyverapamil). cPLA2 fused with a green fluorescent protein (cPLA2-GFP) translocated from the cytosol to the perinuclear region in response to increases in [Ca2+]i. When EGTA was added shortly after [Ca2+]i increase, the cPLA2-GFP returned to the cytosol, without liberating AA. After a prolonged [Ca2+]i increase, even by EGTA treatment, the enzyme was not readily redistributed to the cytosol. Thus, we propose that a critical time length of [Ca2+]i elevation is required for continuous membrane localization and full activation of cPLA2.
Collapse
Affiliation(s)
- T Hirabayashi
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Tokyo, Hongo, Toyko, Japan
| | | | | | | | | | | | | |
Collapse
|
199
|
Oishi H, Morimoto T, Watanabe Y, Tamai Y. Purification and characterization of phospholipase B from Kluyveromyces lactis, and cloning of phospholipase B gene. Biosci Biotechnol Biochem 1999; 63:83-90. [PMID: 10052126 DOI: 10.1271/bbb.63.83] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Phospholipase B (PLB) from the yeast Kluyveromyces lactis was purified to homogeneity from culture medium. The enzyme was highly glycosylated with apparent molecular mass of 160-250 kDa, and had two pH optima, at pH 2.0 and pH 7.5. At acidic pH the enzyme hydrolyzed all phospholipid substrates tested here without metal ion. On the other hand, at alkaline pH the enzyme showed substrate specificity for phosphatidylcholine and lysophosphatidylcholine and required Ca2+, Fe3+, or Al3+ for the activity. The alkaline activity was increased more than 20-fold in the presence of Al3+ compared to that in the presence of Ca2+. cDNA sequence of PLB (KlPLB) was analyzed by a combination of several PCR procedures. KlPLB encoded a protein consist of 640 amino acids and the deduced amino acid sequence showed 66.7% similarity with the T. delbrueckii PLB. The amino acid sequence contained the lipase consensus sequence (G-X-S-X-G) and the catalytic aspartic acid motif. Replacement of Arg-112 or Asp-406 with alanine caused loss of the enzymatic activity at both pH. These results suggested that PLB activity are dependent on a catalytic mechanism similar to that of cytosolic phospholipase A2.
Collapse
Affiliation(s)
- H Oishi
- Department of Bioresources, Faculty of Agriculture, Ehime University, Japan
| | | | | | | |
Collapse
|
200
|
Isaji S, Hayashi J, Higashiguchi T, Yokoi H, Ogura Y, Noguchi T, Kawarada Y. Effect of IS-741 (a new synthetic antiinflammatory agent) on acute necrotizing pancreatitis in dogs. Significance of its inhibitory effect on cytosolic phospholipase A2. Digestion 1999; 60 Suppl 1:47-51. [PMID: 10026431 DOI: 10.1159/000051453] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
IS-741, a new synthetic anti-inflammatory agent, is known to have some inhibitory effect on cytosolic phospholipase A2 (cPLA2), an enzyme which hydrolyzes cellular phospholipids, liberating fatty acids and lysophospholipids and providing the precursor substrates for the biosynthesis of eicosanoids and platelet-activating factor. cPLA2 is therefore an attractive target for the development of novel therapies. During infusion of lactated Ringer's solution at a rate of 10 ml/kg/h, acute pancreatitis was induced in dogs by injecting autologous gallbladder bile into the main pancreatic duct. The dogs were then divided into two groups: group A (nontreatment), no treatment during the experiment, and group B (IS-741), intravenously injected with IS-741 at 6 and 30 h after induction of acute pancreatitis. As a result, the survival rate was significantly higher in group B than in group A. Mean arterial pressure and PaO2 were well maintained in group B as compared with group A. The NAG index, which is known to be markedly increased in renal tubular damage, was significantly lower in group B than in group A. Histological examination of the pancreas, lung, and kidney in group B showed milder changes than in group A. cPLA2 activity in the pancreas, lung and renal cortex was much lower in group B than in group A, but sPLA2 activity in these tissues did not differ significantly between the two groups. In conclusion, IS-741 exerts a potentially therapeutic effect on experimental acute pancreatitis by mitigating the degree of damage in the pancreas, lung, and kidney. The inhibitory effect of IS-741 on cPLA2 may contribute to one of the antiinflammatory mechanisms of actions of this agent.
Collapse
Affiliation(s)
- S Isaji
- First Department of Surgery, Mie University School of Medicine, Tsu, Mie, Japan.
| | | | | | | | | | | | | |
Collapse
|