151
|
Deng H, Niu K, Zhang J, Feng Q. BmBR-C Z4 is an upstream regulatory factor of BmPOUM2 controlling the pupal specific expression of BmWCP4 in the silkworm, Bombyx mori. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2015; 66:42-50. [PMID: 26363295 DOI: 10.1016/j.ibmb.2015.09.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Revised: 09/07/2015] [Accepted: 09/07/2015] [Indexed: 06/05/2023]
Abstract
20-hydroxyecdysone (20E)-induced expression of the wing disc cuticle protein gene BmWCP4 was mediated by the transcription factor BmPOUM2, which binds to the cis-response elements (CREs) of BmWCP4 gene in Bombyx mori. In this study we report the regulation of BmPOUM2. RT-PCR analysis indicated that in response to 20E, BmPOUM2 was expressed at higher levels in the wing discs during the pre-pupal and mid-pupal stages than other stages and the expression pattern of BmBR-C Z1, BmBR-C Z2 and BmBR-C Z4 was in tandem with the expression of BmPOUM2. BmBR-C Z4 was induced by 20E in the wing discs, whereas BmBR-C Z1 and BmBR-C Z2 were not. Three potential BR-C Z4 cis-response elements (CREs) were identified in the promoter region of BmPOUM2. The expression of BmPOUM2 mRNA and protein was increased by the over-expression of BmBR-C Z4 in BmN cells, which acted at the promoter of BmPOUM2. Electrophoretic mobility shift assay (EMSA) and the luciferase activity analysis under the control of wild-type and mutants of the BR-C Z4 CREs suggested that BmBR-C Z4 protein bound to the predicted BRC-Z4 CRE C (-684 ∼ -660). Taken together the data suggest that BmBR-C Z4 is a direct upstream regulator of BmPOUM2 and regulates the pupal-specific expression of BmWCP4 through BmPOUM2.
Collapse
Affiliation(s)
- Huimin Deng
- Laboratory of Molecular and Developmental Entomology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Kangkang Niu
- Laboratory of Molecular and Developmental Entomology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Jialing Zhang
- Laboratory of Molecular and Developmental Entomology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Qili Feng
- Laboratory of Molecular and Developmental Entomology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China.
| |
Collapse
|
152
|
Polistes smithii vs. Polistes dominula: the contrasting endocrinology and epicuticular signaling of sympatric paper wasps in the field. Behav Ecol Sociobiol 2015. [DOI: 10.1007/s00265-015-2015-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
153
|
Planelló R, Herrero Ó, Gómez-Sande P, Ozáez I, Cobo F, Servia MJ. Ecdysone-Related Biomarkers of Toxicity in the Model Organism Chironomus riparius: Stage and Sex-Dependent Variations in Gene Expression Profiles. PLoS One 2015; 10:e0140239. [PMID: 26448051 PMCID: PMC4598127 DOI: 10.1371/journal.pone.0140239] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 09/23/2015] [Indexed: 12/26/2022] Open
Abstract
Despite being considered a model organism in toxicity studies, particularly in assessing the environmental impact of endocrine disrupting compounds (EDCs) and other chemicals, the molecular basis of development is largely unknown in Chironomus riparius. We have characterized the expression patterns of important genes involved in the ecdysone pathway from embryos to pupa, but specially during the different phases of C. riparius fourth larval instar, according to the development of genital and thoracic imaginal discs. Real-Time PCR was used to analyze: EcR and usp, two genes encoding the two dimerizing partners of the functional ecdysone receptor; E74, an early response gene induced by ecdysteroids; vg (vitellogenin), an effector gene; hsp70 and hsc70, two heat-shock genes involved in the correct folding of the ecdysone receptor; and rpL13, as a part of the ribosomal machinery. Our results show for the first time stage and sex-dependent variations in ecdysone-responsive genes, specially during the late larval stage of C. riparius. The induction in the expression of EcR and usp during the VII-VIII phase of the fourth instar is concomitant with a coordinated response in the activity of the other genes analyzed, suggesting the moment where larvae prepare for pupation. This work is particularly relevant given that most of the analyzed genes have been proposed previously in this species as sensitive biomarkers for the toxicological evaluation of aquatic ecosystems. Identifying the natural regulation of these molecular endpoints throughout the Chironomus development will contribute to a more in-depth and accurate evaluation of the disrupting effects of EDCs in ecotoxicological studies.
Collapse
Affiliation(s)
- Rosario Planelló
- Grupo de Biología y Toxicología Ambiental, Facultad de Ciencias, Universidad Nacional de Educación a Distancia, UNED, Paseo de la Senda del Rey 9, 28040 Madrid, Spain
- * E-mail:
| | - Óscar Herrero
- Grupo de Biología y Toxicología Ambiental, Facultad de Ciencias, Universidad Nacional de Educación a Distancia, UNED, Paseo de la Senda del Rey 9, 28040 Madrid, Spain
| | - Pablo Gómez-Sande
- Departamento de Zoología y Antropología Física, Universidad de Santiago de Compostela, USC, Campus Sur s/n, 15782 Santiago de Compostela, Spain
- Estación de Hidrobioloxía “Encoro do Con”, EHEC, Universidad de Santiago de Compostela, USC, Castroagudín s/n, 36617 Vilagarcía de Arousa, Pontevedra, Spain
| | - Irene Ozáez
- Grupo de Biología y Toxicología Ambiental, Facultad de Ciencias, Universidad Nacional de Educación a Distancia, UNED, Paseo de la Senda del Rey 9, 28040 Madrid, Spain
| | - Fernando Cobo
- Departamento de Zoología y Antropología Física, Universidad de Santiago de Compostela, USC, Campus Sur s/n, 15782 Santiago de Compostela, Spain
- Estación de Hidrobioloxía “Encoro do Con”, EHEC, Universidad de Santiago de Compostela, USC, Castroagudín s/n, 36617 Vilagarcía de Arousa, Pontevedra, Spain
| | - María J. Servia
- Departamento de Biología Animal, Biología Vegetal y Ecología, Facultad de Ciencias, Universidade da Coruña, UDC, Campus da Zapateira s/n, 15008 A Coruña, Spain
| |
Collapse
|
154
|
Pan Y, Yang C, Gao X, Peng T, Bi R, Xi J, Xin X, Zhu E, Wu Y, Shang Q. Spirotetramat resistance adaption analysis of Aphis gossypii Glover by transcriptomic survey. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2015; 124:73-80. [PMID: 26453233 DOI: 10.1016/j.pestbp.2015.04.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 04/17/2015] [Accepted: 04/17/2015] [Indexed: 06/05/2023]
Abstract
A resistant strain of the cotton aphid (SR) developed 441.26-fold and 11.97-fold resistance to spirotetramat for adult aphids and nymphs, respectively, compared with the susceptible (SS) strain. Solexa sequencing technology was employed to identify differentially expressed genes (DEGs) in the spirotetramat-resistant cotton aphid. Respective totals of 22,430,522 and 21,317,732 clean reads were obtained from SR and SS cDNA libraries and assembled into 35,222 non-redundant (Nr) consensus sequences. A total of 14,913, 9,220, 7,922, 4,314 and 4,686 sequences were annotated using Nr, Swiss-Prot, Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) and Clusters of Orthologous Groups (COG), respectively. Compared with the SS strain, the SR strain had 1287 significantly changed unigenes, of which 130 genes were up-regulated and 1157 genes were down-regulated (P ≤ 0.001). Among these genes, 440 unigenes were annotated, consisting of 114 up-regulated and 326 down-regulated genes. The expression levels of heat shock protein 70 (Hsp70) and UDP-glucuronosyltransferase were significantly up-regulated in the SR strain compared to the SS strain. The genes encoding cuticle proteins, salivary glue protein, fibroin heavy chain, energy ATP synthase, and cytochrome c oxidase were dramatically decreased. Among the DEGs, cytochrome P450 6A2 (c20965.graph_c0) was the only P450 gene up-regulated in the SR strain. The expression levels of 10 DEGs were confirmed by real-time qPCR, and the trends in gene expression observed by qPCR matched those of the Solexa expression profiles. The acetyl-CoA carboxylase (ACC) genes in the SR and SS libraries both contain four single nucleotide polymorphisms (SNPs), with three common SNPs: 1227 (C/T), 1811 (A/T: F/Y) and 3759 (C/T); however, 7540 (A/T) and 108 (G/A) occurred solely in the SS and SR strains, respectively.
Collapse
Affiliation(s)
- Yiou Pan
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Chen Yang
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Xiwu Gao
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Tianfei Peng
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Rui Bi
- Department of Entomology, Jilin Agricultural University, Changchun 130118, China
| | - Jinghui Xi
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Xuecheng Xin
- College of Plant Science, Jilin University, Changchun 130062, China
| | - E Zhu
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Yongqiang Wu
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Qingli Shang
- College of Plant Science, Jilin University, Changchun 130062, China.
| |
Collapse
|
155
|
Liu X, Dai F, Guo E, Li K, Ma L, Tian L, Cao Y, Zhang G, Palli SR, Li S. 20-Hydroxyecdysone (20E) Primary Response Gene E93 Modulates 20E Signaling to Promote Bombyx Larval-Pupal Metamorphosis. J Biol Chem 2015; 290:27370-27383. [PMID: 26378227 DOI: 10.1074/jbc.m115.687293] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Indexed: 12/15/2022] Open
Abstract
As revealed in a previous microarray study to identify genes regulated by 20-hydroxyecdysone (20E) and juvenile hormone (JH) in the silkworm, Bombyx mori, E93 expression in the fat body was markedly low prior to the wandering stage but abundant during larval-pupal metamorphosis. Induced by 20E and suppressed by JH, E93 expression follows this developmental profile in multiple silkworm alleles. The reduction of E93 expression by RNAi disrupted 20E signaling and the 20E-induced autophagy, caspase activity, and cell dissociation in the fat body. Reducing E93 expression also decreased the expression of the 20E-induced pupal-specific cuticle protein genes and prevented growth and differentiation of the wing discs. Importantly, the two HTH domains in E93 are critical for inducing the expression of a subset of 20E response genes, including EcR, USP, E74, Br-C, and Atg1. By contrast, the LLQHLL and PLDLSAK motifs in E93 inhibit its transcriptional activity. E93 binds to the EcR-USP complex via a physical association with USP through its LLQHLL motif; and this association is enhanced by 20E-induced EcR-USP interaction, which attenuates the transcriptional activity of E93. E93 acts through the two HTH domains to bind to GAGA-containing motifs present in the Atg1 promoter region for inducing gene expression. In conclusion, E93 transcriptionally modulates 20E signaling to promote Bombyx larval-pupal metamorphosis.
Collapse
Affiliation(s)
- Xi Liu
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China,; the State Key Laboratory of Silkworm Genome Biology and College of Biotechnology, Southwest University, Chongqing 400715, China
| | - Fangyin Dai
- the State Key Laboratory of Silkworm Genome Biology and College of Biotechnology, Southwest University, Chongqing 400715, China
| | - Enen Guo
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China,; the Laboratory of Insect Molecular Biology and Biotechnology, Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Kang Li
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China,; the Laboratory of Insect Molecular Biology and Biotechnology, Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Li Ma
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Ling Tian
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yang Cao
- the Laboratory of Insect Molecular Biology and Biotechnology, Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Guozheng Zhang
- the Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212018, China
| | - Subba R Palli
- Department of Entomology, College of Agriculture, University of Kentucky, Lexington, Kentucky 40546
| | - Sheng Li
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China,.
| |
Collapse
|
156
|
Insight into the Unfolding Properties of Chd64, a Small, Single Domain Protein with a Globular Core and Disordered Tails. PLoS One 2015; 10:e0137074. [PMID: 26325194 PMCID: PMC4556635 DOI: 10.1371/journal.pone.0137074] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 08/13/2015] [Indexed: 11/28/2022] Open
Abstract
Two major lipophilic hormones, 20-hydroxyecdysone (20E) and juvenile hormone (JH), govern insect development and growth. While the mode of action of 20E is well understood, some understanding of JH-dependent signalling has been attained only in the past few years, and the crosstalk of the two hormonal pathways remains unknown. Two proteins, the calponin-like Chd64 and immunophilin FKBP39 proteins, have recently been found to play pivotal roles in the formation of dynamic, multiprotein complex that cross-links these two signalling pathways. However, the molecular mechanism of the interaction remains unexplored. The aim of this work was to determine structural elements of Chd64 to provide an understanding of molecular basis of multiple interactions. We analysed Chd64 in two unrelated insect species, Drosophila melanogaster (DmChd64) and Tribolium castaneum (TcChd64). Using hydrogen-deuterium exchange mass spectrometry (HDX-MS), we showed that both Chd64 proteins have disordered tails that outflank the globular core. The folds of the globular cores of both Chd64 resemble the calponin homology (CH) domain previously resolved by crystallography. Monitoring the unfolding of DmChd64 and TcChd64 by far-ultraviolet (UV) circular dichroism (CD) spectroscopy, fluorescence spectroscopy and size-exclusion chromatography (SEC) revealed a highly complex process. Chd64 unfolds and forms of a molten globule (MG)—like intermediate state. Furthermore, our data indicate that in some conditions, Chd64 may exists in discrete structural forms, indicating that the protein is pliable and capable of easily acquiring different conformations. The plasticity of Chd64 and the existence of terminal intrinsically disordered regions (IDRs) may be crucial for multiple interactions with many partners.
Collapse
|
157
|
Das S. Morphological, Molecular, and Hormonal Basis of Limb Regeneration across Pancrustacea: Table 1. Integr Comp Biol 2015; 55:869-77. [DOI: 10.1093/icb/icv101] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
158
|
Verma P, Tapadia MG. Early gene Broad complex plays a key role in regulating the immune response triggered by ecdysone in the Malpighian tubules of Drosophila melanogaster. Mol Immunol 2015; 66:325-39. [DOI: 10.1016/j.molimm.2015.03.249] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 03/24/2015] [Accepted: 03/27/2015] [Indexed: 11/28/2022]
|
159
|
Xie XJ, Hsu FN, Gao X, Xu W, Ni JQ, Xing Y, Huang L, Hsiao HC, Zheng H, Wang C, Zheng Y, Xiaoli AM, Yang F, Bondos SE, Ji JY. CDK8-Cyclin C Mediates Nutritional Regulation of Developmental Transitions through the Ecdysone Receptor in Drosophila. PLoS Biol 2015. [PMID: 26222308 PMCID: PMC4519132 DOI: 10.1371/journal.pbio.1002207] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The steroid hormone ecdysone and its receptor (EcR) play critical roles in orchestrating developmental transitions in arthropods. However, the mechanism by which EcR integrates nutritional and developmental cues to correctly activate transcription remains poorly understood. Here, we show that EcR-dependent transcription, and thus, developmental timing in Drosophila, is regulated by CDK8 and its regulatory partner Cyclin C (CycC), and the level of CDK8 is affected by nutrient availability. We observed that cdk8 and cycC mutants resemble EcR mutants and EcR-target genes are systematically down-regulated in both mutants. Indeed, the ability of the EcR-Ultraspiracle (USP) heterodimer to bind to polytene chromosomes and the promoters of EcR target genes is also diminished. Mass spectrometry analysis of proteins that co-immunoprecipitate with EcR and USP identified multiple Mediator subunits, including CDK8 and CycC. Consistently, CDK8-CycC interacts with EcR-USP in vivo; in particular, CDK8 and Med14 can directly interact with the AF1 domain of EcR. These results suggest that CDK8-CycC may serve as transcriptional cofactors for EcR-dependent transcription. During the larval–pupal transition, the levels of CDK8 protein positively correlate with EcR and USP levels, but inversely correlate with the activity of sterol regulatory element binding protein (SREBP), the master regulator of intracellular lipid homeostasis. Likewise, starvation of early third instar larvae precociously increases the levels of CDK8, EcR and USP, yet down-regulates SREBP activity. Conversely, refeeding the starved larvae strongly reduces CDK8 levels but increases SREBP activity. Importantly, these changes correlate with the timing for the larval–pupal transition. Taken together, these results suggest that CDK8-CycC links nutrient intake to developmental transitions (EcR activity) and fat metabolism (SREBP activity) during the larval–pupal transition. During the larval-pupal transition in Drosophila, CDK8-CycC helps to link nutrient intake to development by activating ecdysone receptor-dependent transcription and to fat metabolism by inhibiting SREBP-activated gene expression. Arthropods are estimated to account for over 80% of animal species on earth. Characterized by their rigid exoskeletons, juvenile arthropods must periodically shed their thick outer cuticles by molting in order to grow. The steroid hormone ecdysone plays an essential role in regulating the timing of developmental transitions, but exactly how ecdysone and its receptor EcR activates transcription correctly after integrating nutritional and developmental cues remains unknown. Our developmental genetic analyses of two Drosophila mutants, cdk8 and cycC, show that they are lethal during the prepupal stage, with aberrant accumulation of fat and a severely delayed larval–pupal transition. As we have reported previously, CDK8-CycC inhibits fat accumulation by directly inactivating SREBP, a master transcription factor that controls the expression of lipogenic genes, which explains the abnormal fat accumulation in the cdk8 and cycC mutants. We find that CDK8 and CycC are required for EcR to bind to its target genes, serving as transcriptional cofactors for EcR-dependent gene expression. The expression of EcR target genes is compromised in cdk8 and cycC mutants and underpins the retarded pupariation phenotype. Starvation of feeding larvae precociously up-regulates CDK8 and EcR, prematurely down-regulates SREBP activity, and leads to early pupariation, whereas re-feeding starved larvae has opposite effects. Taken together, these results suggest that CDK8 and CycC play important roles in coordinating nutrition intake with fat metabolism by directly inhibiting SREBP-dependent gene expression and regulating developmental timing by activating EcR-dependent transcription in Drosophila.
Collapse
Affiliation(s)
- Xiao-Jun Xie
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, College Station, Texas, United States of America
| | - Fu-Ning Hsu
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, College Station, Texas, United States of America
| | - Xinsheng Gao
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, College Station, Texas, United States of America
| | - Wu Xu
- Department of Chemistry, University of Louisiana at Lafayette, Lafayette, Los Angeles, United States of America
| | - Jian-Quan Ni
- Gene Regulatory Laboratory, School of Medicine, Tsinghua University, Beijing, China
| | - Yue Xing
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, College Station, Texas, United States of America
| | - Liying Huang
- Department of Chemistry, University of Louisiana at Lafayette, Lafayette, Los Angeles, United States of America
| | - Hao-Ching Hsiao
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, College Station, Texas, United States of America
| | - Haiyan Zheng
- Biological Mass Spectrometry Facility, Robert Wood Johnson Medical School and Rutgers, the State University of New Jersey, Frelinghuysen Road, Piscataway, New Jersey, United States of America
| | - Chenguang Wang
- Key Laboratory of Tianjin Radiation and Molecular Nuclear Medicine; Institute of Radiation Medicine, Peking Union Medical College & Chinese Academy of Medical Sciences, Tianjin, China
| | - Yani Zheng
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, College Station, Texas, United States of America
| | - Alus M. Xiaoli
- Department of Medicine, Division of Endocrinology, Diabetes Research and Training Center, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Fajun Yang
- Department of Medicine, Division of Endocrinology, Diabetes Research and Training Center, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Sarah E. Bondos
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, College Station, Texas, United States of America
- Department of Biosciences, Rice University, Houston, Texas, United States of America
| | - Jun-Yuan Ji
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, College Station, Texas, United States of America
- * E-mail:
| |
Collapse
|
160
|
Bombyx E75 isoforms display stage- and tissue-specific responses to 20-hydroxyecdysone. Sci Rep 2015; 5:12114. [PMID: 26166384 PMCID: PMC4499807 DOI: 10.1038/srep12114] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 04/27/2015] [Indexed: 01/06/2023] Open
Abstract
Resulted from alternative splicing of the 5′ exons, the nuclear receptor gene E75 in the silkworm, Bombyx mori, processes three mRNA isoforms, BmE75A, BmE75B and BmE75C. From the early 5th larval instar to the prepupal stages, BmE75A mRNA and protein levels in the prothoracic glands display developmental profiles similar to ecdysteroid titer. In the fat body, mRNA levels but not protein levels of all three BmE75 isoforms correlate with ecdysteroid titer; moreover, proteins of all three BmE75 isoforms disappear at the prepupal stages, and a modified BmE75 protein with smaller molecular weight and cytoplasm localization occurs. At the early 5th larval instar stage, treatment of the prothoracic glands and fat body with 20-hydroxyecdysone (20E) and/or cycloheximide (CHX) revealed that BmE75A is 20E primary-responsive at both mRNA and protein levels, while BmE75B and BmE75C exhibit various responses to 20E. At the early wandering stage, RNAi-mediated reduction of gene expression of the 20E nuclear receptor complex, EcR-USP, significantly decreased mRNA and protein levels of all three BmE75 isoforms in both tissues. In conclusion, BmE75 isoforms display stage- and tissue-specific responses to 20E at both mRNA and protein levels; moreover, they are regulated by other unknown factors at the protein level.
Collapse
|
161
|
Qu Z, Kenny NJ, Lam HM, Chan TF, Chu KH, Bendena WG, Tobe SS, Hui JHL. How Did Arthropod Sesquiterpenoids and Ecdysteroids Arise? Comparison of Hormonal Pathway Genes in Noninsect Arthropod Genomes. Genome Biol Evol 2015; 7:1951-9. [PMID: 26112967 PMCID: PMC4524487 DOI: 10.1093/gbe/evv120] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The phylum Arthropoda contains the largest number of described living animal species, with insects and crustaceans dominating the terrestrial and aquatic environments, respectively. Their successful radiations have long been linked to their rigid exoskeleton in conjunction with their specialized endocrine systems. In order to understand how hormones can contribute to the evolution of these animals, here, we have categorized the sesquiterpenoid and ecdysteroid pathway genes in the noninsect arthropod genomes, which are known to play important roles in the regulation of molting and metamorphosis in insects. In our analyses, the majority of gene homologs involved in the biosynthetic, degradative, and signaling pathways of sesquiterpenoids and ecdysteroids can be identified, implying these two hormonal systems were present in the last common ancestor of arthropods. Moreover, we found that the “Broad-Complex” was specifically gained in the Pancrustacea, and the innovation of juvenile hormone (JH) in the insect linage correlates with the gain of the JH epoxidase (CYP15A1/C1) and the key residue changes in the binding domain of JH receptor (“Methoprene-tolerant”). Furthermore, the gain of “Phantom” differentiates chelicerates from the other arthropods in using ponasterone A rather than 20-hydroxyecdysone as molting hormone. This study establishes a comprehensive framework for interpreting the evolution of these vital hormonal pathways in these most successful animals, the arthropods, for the first time.
Collapse
Affiliation(s)
- Zhe Qu
- Simon F.S. Li Marine Science Laboratory of School of Life Sciences and Center for Soybean Research of Partner State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Nathan James Kenny
- Simon F.S. Li Marine Science Laboratory of School of Life Sciences and Center for Soybean Research of Partner State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Hon Ming Lam
- Simon F.S. Li Marine Science Laboratory of School of Life Sciences and Center for Soybean Research of Partner State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Ting Fung Chan
- Simon F.S. Li Marine Science Laboratory of School of Life Sciences and Center for Soybean Research of Partner State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Ka Hou Chu
- Simon F.S. Li Marine Science Laboratory of School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | | | - Stephen S Tobe
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Jerome Ho Lam Hui
- Simon F.S. Li Marine Science Laboratory of School of Life Sciences and Center for Soybean Research of Partner State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| |
Collapse
|
162
|
Zhang K, Su J, Chen S, Yu S, Tan J, Xu M, Liang H, Zhao Y, Chao H, Yang L, Cui H. Molecular cloning, characterization and expression analysis of cathepsin O in silkworm Bombyx mori related to bacterial response. Mol Immunol 2015; 66:409-17. [PMID: 25996894 DOI: 10.1016/j.molimm.2015.04.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 04/13/2015] [Accepted: 04/13/2015] [Indexed: 10/23/2022]
Abstract
Cathepsins are the main members of the cysteine family and play important roles in immune response in vertebrates. The Cathepsin O of Bombyx mori (BmCathepsin O) was cloned from the hemocytes by the rapid amplification of cDNA ends (RACE). The genomic DNA was 6131bp long with a total of six exons and five introns. Its pre-mRNA was spliced to generate two spliceosomes. By comparisons with other reported cathepsins O, it was concluded that the identity between them ranged from 29 to 39%. Expression analysis indicated that BmCathepsin O was specific-expressed in hemocytes, and highly expressed at the 4th molting and metamorphosis stages. Immunofluorescence assay and qRT-PCR showed that BmCathepsin O was expressed in granulocytes and plasmatocytes. Interestingly, BmCathepsin O was significantly up-regulated after stimulated by 20-hydroxyecdysone (20-E) in vivo, which suggested that BmCathepsin O may be regulated by 20E. Moreover, activation of BmCathepsin O was also observed in hemocytes challenged by Escherichia coli, indicating its potential involvement in the innate immune system of silkworm, B. mori. In summary, our studies provide a new insight into the functional features of Cathepsin O.
Collapse
Affiliation(s)
- Kui Zhang
- State Key Laboratory of Silkworm Genome Biology, The Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400716, China
| | - Jingjing Su
- State Key Laboratory of Silkworm Genome Biology, The Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400716, China
| | - Siyuan Chen
- State Key Laboratory of Silkworm Genome Biology, The Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400716, China
| | - Shuang Yu
- State Key Laboratory of Silkworm Genome Biology, The Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400716, China
| | - Juan Tan
- State Key Laboratory of Silkworm Genome Biology, The Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400716, China
| | - Man Xu
- State Key Laboratory of Silkworm Genome Biology, The Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400716, China
| | - Hanghua Liang
- State Key Laboratory of Silkworm Genome Biology, The Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400716, China
| | - Yuzu Zhao
- State Key Laboratory of Silkworm Genome Biology, The Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400716, China
| | - Huijuan Chao
- State Key Laboratory of Silkworm Genome Biology, The Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400716, China
| | - Liqun Yang
- State Key Laboratory of Silkworm Genome Biology, The Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400716, China
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, The Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400716, China.
| |
Collapse
|
163
|
Dai W, Jiang L, Lay YAE, Chen H, Jin G, Zhang H, Kot A, Ritchie RO, Lane NE, Yao W. Prevention of glucocorticoid induced bone changes with beta-ecdysone. Bone 2015; 74:48-57. [PMID: 25585248 PMCID: PMC4355031 DOI: 10.1016/j.bone.2015.01.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 12/15/2014] [Accepted: 01/05/2015] [Indexed: 12/20/2022]
Abstract
Beta-ecdysone (βEcd) is a phytoecdysteroid found in the dry roots and seeds of the asteraceae and achyranthes plants, and is reported to increase osteogenesis in vitro. Since glucocorticoid (GC) excess is associated with a decrease in bone formation, the purpose of this study was to determine if treatment with βEcd could prevent GC-induced osteoporosis. Two-month-old male Swiss-Webster mice (n=8-10/group) were randomized to either placebo or slow release prednisolone pellets (3.3mg/kg/day) and treated with vehicle control or βEcd (0.5mg/kg/day) for 21days. GC treatment inhibited age-dependent trabecular gain and cortical bone expansion and this was accompanied by a 30-50% lower bone formation rate (BFR) at both the endosteal and periosteal surfaces. Mice treated with only βEcd significantly increased bone formation on the endosteal and periosteal bone surfaces, and increased cortical bone mass were their controls to compare to GC alone. Concurrent treatment of βEcd and GC completely prevented the GC-induced reduction in BFR, trabecular bone volume and partially prevented cortical bone loss. In vitro studies determined that βEcd prevented the GC increase in autophagy of the bone marrow stromal cells as well as in whole bone. In summary, βEcd prevented GC induced changes in bone formation, bone cell viability and bone mass. Additional studies are warranted of βEcd for the treatment of GC induced bone loss.
Collapse
Affiliation(s)
- Weiwei Dai
- Center for Musculoskeletal Health, Internal Medicine, University of California at Davis Medical Center, Sacramento, CA 95817, USA; Department of Science and Technology, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Li Jiang
- Center for Musculoskeletal Health, Internal Medicine, University of California at Davis Medical Center, Sacramento, CA 95817, USA
| | - Yu-An Evan Lay
- Center for Musculoskeletal Health, Internal Medicine, University of California at Davis Medical Center, Sacramento, CA 95817, USA
| | - Haiyan Chen
- Center for Musculoskeletal Health, Internal Medicine, University of California at Davis Medical Center, Sacramento, CA 95817, USA
| | - Guoqin Jin
- Department of Science and Technology, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Hongliang Zhang
- Center for Musculoskeletal Health, Internal Medicine, University of California at Davis Medical Center, Sacramento, CA 95817, USA
| | - Alexander Kot
- Center for Musculoskeletal Health, Internal Medicine, University of California at Davis Medical Center, Sacramento, CA 95817, USA
| | - Robert O Ritchie
- Department of Materials Science and Engineering, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Nancy E Lane
- Center for Musculoskeletal Health, Internal Medicine, University of California at Davis Medical Center, Sacramento, CA 95817, USA
| | - Wei Yao
- Center for Musculoskeletal Health, Internal Medicine, University of California at Davis Medical Center, Sacramento, CA 95817, USA.
| |
Collapse
|
164
|
Luo J, Pei S, Jing W, Zou E, Wang L. Cadmium inhibits molting of the freshwater crab Sinopotamon henanense by reducing the hemolymph ecdysteroid content and the activities of chitinase and N-acetyl-β-glucosaminidase in the epidermis. Comp Biochem Physiol C Toxicol Pharmacol 2015; 169:1-6. [PMID: 25463647 DOI: 10.1016/j.cbpc.2014.10.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 10/07/2014] [Accepted: 10/09/2014] [Indexed: 11/21/2022]
Abstract
Molting is an essential process during the growth of crustaceans, which is coordinated by ecdysteroids secreted by the Y-organ, molting inhibiting hormone secreted by the X-organ sinus-gland complex, as well as chitinase and N-acetyl-β-glucosaminidase synthesized by the epidermis. Cadmium is one of the toxic metals in the aquatic environment. However, the endocrine effects of cadmium on the molting of freshwater crabs and the underlying mechanisms are unknown. To investigate these, freshwater crabs (Sinopotamon henanense) were acutely exposed to 0, 7.25, 14.5 and 29 mg/l Cd for 3, 4, 5 days or in some experiments for 4 days after eyestalk-ablation. The concentration of hemolymph ecdysone and the activities of the molting enzymes chitinase and NAG were measured. Histological changes in the epidermal tissues were documented. Our results showed that eyestalk ablation increased the ecdysteroid content as well as the activities of chitinase and NAG, which were inhibited by cadmium in a concentration-dependent manner; histological examinations demonstrated that eyestalk ablation produced storage particles in the epidermal tissues, which was also reduced by cadmium in a concentration-dependent manner. Our data suggest that cadmium disrupts endocrine function through inhibiting the secretion of ecdysteroids by the Y-organ and altering with the regulation of chitinase and NAG activity in the epidermis. This work provides new insights into the mechanisms underlying the molting inhibition effect of cadmium on the crabs.
Collapse
Affiliation(s)
- Jixian Luo
- School of Life Science, Shanxi University, Taiyuan 030006, People's Republic of China
| | - Sihui Pei
- School of Life Science, Shanxi University, Taiyuan 030006, People's Republic of China
| | - Weixin Jing
- School of Life Science, Shanxi University, Taiyuan 030006, People's Republic of China
| | - Enmin Zou
- Department of Biological Sciences, Nicholls State University, Thibodaux, LA 70310, USA
| | - Lan Wang
- School of Life Science, Shanxi University, Taiyuan 030006, People's Republic of China.
| |
Collapse
|
165
|
Ables ET, Bois KE, Garcia CA, Drummond-Barbosa D. Ecdysone response gene E78 controls ovarian germline stem cell niche formation and follicle survival in Drosophila. Dev Biol 2015; 400:33-42. [PMID: 25624267 DOI: 10.1016/j.ydbio.2015.01.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 01/14/2015] [Accepted: 01/16/2015] [Indexed: 11/15/2022]
Abstract
Nuclear hormone receptors have emerged as important regulators of mammalian and Drosophila adult physiology, affecting such seemingly diverse processes as adipogenesis, carbohydrate metabolism, circadian rhythm, stem cell function, and gamete production. Although nuclear hormone receptors Ecdysone Receptor (EcR) and Ultraspiracle (Usp) have multiple known roles in Drosophila development and regulate key processes during oogenesis, the adult function of the majority of nuclear hormone receptors remains largely undescribed. Ecdysone-induced protein 78C (E78), a nuclear hormone receptor closely related to Drosophila E75 and to mammalian Rev-Erb and Peroxisome Proliferator Activated Receptors, was originally identified as an early ecdysone target; however, it has remained unclear whether E78 significantly contributes to adult physiology or reproductive function. To further explore the biological function of E78 in oogenesis, we used available E78 reporters and created a new E78 loss-of-function allele. We found that E78 is expressed throughout the germline during oogenesis, and is important for proper egg production and for the maternal control of early embryogenesis. We showed that E78 is required during development to establish the somatic germline stem cell (GSC) niche, and that E78 function in the germline promotes the survival of developing follicles. Consistent with its initial discovery as an ecdysone-induced target, we also found significant genetic interactions between E78 and components of the ecdysone-signaling pathway. Taken together with the previously described roles of EcR, Usp, and E75, our results suggest that nuclear hormone receptors are critical for the broad transcriptional control of a wide variety of cellular processes during oogenesis.
Collapse
Affiliation(s)
- Elizabeth T Ables
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA; Division of Reproductive Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Biology, East Carolina University, Greenville, NC 27858, USA.
| | - Kelly E Bois
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA; Division of Reproductive Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Caroline A Garcia
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| | - Daniela Drummond-Barbosa
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Environmental Health Sciences, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA; Division of Reproductive Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA.
| |
Collapse
|
166
|
Liu T, Li Y, Zhao X, Zhang M, Gu W. Ethylparaben affects lifespan, fecundity, and the expression levels of ERR, EcR and YPR in Drosophila melanogaster. JOURNAL OF INSECT PHYSIOLOGY 2014; 71:1-7. [PMID: 25265034 DOI: 10.1016/j.jinsphys.2014.09.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 09/12/2014] [Accepted: 09/18/2014] [Indexed: 06/03/2023]
Abstract
Parabens, which mainly include methylparaben (MP), ethylparaben (EP), propylparaben (PP), and butylparaben (BP), are widely used as cosmetic and food preservatives. Although these chemicals, when used as preservatives, are thought to be safe for humans, many studies have demonstrated that they have estrogenic effects, and can affect the normal development and functions of the reproductive systems in a number of animal species. By treating fruit flies (Drosophila melanogaster) with EP, here we show that lower concentration of EP (0.02%) enhanced fertility while higher concentration of EP (0.10% and 0.20%) shortened the lifespan and reduced the fecundity of fruit flies. When we analyzed the expression levels of the estrogen-related receptor gene (ERR), ecdysone receptor gene (EcR) and Yolk protein receptor gene (YPR) from control and EP-treated fruit flies by using quantitative real-time PCR, we found that the expression levels of all three genes were significantly changed by EP treatment, and that female fruit flies are more sensitive to EP than males. Our data suggests that the estrogenic and the toxic effects of EP to fruit flies may have a molecular basis through the hormonal effect of EP.
Collapse
Affiliation(s)
- Ting Liu
- College of Life Sciences, Shaanxi Normal University, Xi'an 710062, PR China
| | - Yajuan Li
- College of Life Sciences, Shaanxi Normal University, Xi'an 710062, PR China
| | - Xiaojun Zhao
- College of Life Sciences, Shaanxi Normal University, Xi'an 710062, PR China
| | - Min Zhang
- College of Life Sciences, Shaanxi Normal University, Xi'an 710062, PR China
| | - Wei Gu
- College of Life Sciences, Shaanxi Normal University, Xi'an 710062, PR China.
| |
Collapse
|
167
|
Wang J, Wang S, Li S. Sumoylation modulates 20-hydroxyecdysone signaling by maintaining USP protein levels in Drosophila. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2014; 54:80-88. [PMID: 25240618 DOI: 10.1016/j.ibmb.2014.09.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Revised: 08/28/2014] [Accepted: 09/03/2014] [Indexed: 06/03/2023]
Abstract
The nuclear receptor complex for the insect steroid hormone, 20-hydroxyecdysone (20E), is a heterodimer of EcR and USP. It has been shown that Drosophila EcR and USP can be sumoylated in mammalian cells, but it is unknown whether EcR-USP sumoylation naturally occurs in Drosophila. In Drosophila cells, USP, but not EcR, was sumoylated by Smt3, the only Drosophila SUMO protein. The presence of EcR enhanced USP sumoylation, which is further enhanced by 20E treatment. In addition to the Lys20 sumoylation site, five potential acceptor lysine residues in USP were predicted and verified. Mutation of the USP sumoylation sites or reduction of smt3 expression by RNAi attenuated 20E-induced reporter activity. Moreover, in the salivary glands, reducing smt3 expression by RNAi decreased 20E-induced reporter activity, gene expression, and autolysosome formation. Importantly, at least partially, the smt3 RNAi-mediated reduction in 20E signaling resulted from decreased protein levels of USP. In conclusion, sumoylation modulates 20E signaling by maintaining USP protein levels in Drosophila.
Collapse
Affiliation(s)
- Jiawan Wang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Sheng Wang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China; Division of Neuropathology, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA.
| | - Sheng Li
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.
| |
Collapse
|
168
|
Parvy JP, Wang P, Garrido D, Maria A, Blais C, Poidevin M, Montagne J. Forward and feedback regulation of cyclic steroid production in Drosophila melanogaster. Development 2014; 141:3955-65. [PMID: 25252945 DOI: 10.1242/dev.102020] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In most animals, steroid hormones are crucial regulators of physiology and developmental life transitions. Steroid synthesis depends on extrinsic parameters and autoregulatory processes to fine-tune the dynamics of hormone production. In Drosophila, transient increases of the steroid prohormone ecdysone, produced at each larval stage, are necessary to trigger moulting and metamorphosis. Binding of the active ecdysone (20-hydroxyecdysone) to its receptor (EcR) is followed by the sequential expression of the nuclear receptors E75, DHR3 and βFtz-f1, representing a model for steroid hormone signalling. Here, we have combined genetic and imaging approaches to investigate the precise role of this signalling cascade within theprothoracic gland (PG), where ecdysone synthesis takes place. We show that these receptors operate through an apparent unconventional hierarchy in the PG to control ecdysone biosynthesis. At metamorphosis onset, DHR3 emerges as the downstream component that represses steroidogenic enzymes and requires an early effect of EcR for this repression. To avoid premature repression of steroidogenesis, E75 counteracts DHR3 activity, whereas EcR and βFtz-f1 act early in development through a forward process to moderate DHR3 levels. Our findings suggest that within the steroidogenic tissue, a given 20-hydroxyecdysone peak induces autoregulatory processes to sharpen ecdysone production and to confer competence for ecdysteroid biosynthesis at the next developmental phase, providing novel insights into steroid hormone kinetics.
Collapse
Affiliation(s)
- Jean-Philippe Parvy
- CGM, UPR 3404, CNRS, Gif sur Yvette 91190, France Université Pierre et Marie Curie, Paris 75005, France
| | - Peng Wang
- CGM, UPR 3404, CNRS, Gif sur Yvette 91190, France Université Paris-Sud 11, Orsay 91400, France
| | - Damien Garrido
- CGM, UPR 3404, CNRS, Gif sur Yvette 91190, France Université Paris-Sud 11, Orsay 91400, France
| | | | | | - Mickael Poidevin
- CGM, UPR 3404, CNRS, Gif sur Yvette 91190, France Université Paris-Sud 11, Orsay 91400, France
| | - Jacques Montagne
- CGM, UPR 3404, CNRS, Gif sur Yvette 91190, France Université Paris-Sud 11, Orsay 91400, France
| |
Collapse
|
169
|
Durica DS, Das S, Najar F, Roe B, Phillips B, Kappalli S, Anilkumar G. Alternative splicing in the fiddler crab cognate ecdysteroid receptor: variation in receptor isoform expression and DNA binding properties in response to hormone. Gen Comp Endocrinol 2014; 206:80-95. [PMID: 25025945 DOI: 10.1016/j.ygcen.2014.05.034] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Revised: 04/19/2014] [Accepted: 05/16/2014] [Indexed: 01/07/2023]
Abstract
RXR cDNA cloning from three Uca species led to the identification of 4 conserved isoforms, indicative of alternative splicing in the hinge and ligand binding domains (LBD). Sequencing of overlapping clones from a Ucapugilator genomic library identified EcR isoforms matching previously identified cDNA variants; in addition, a cryptic exon in the LBD was detected and evidence for expression of this new isoform was obtained from next-generation sequencing. RNA-seq analysis also identified a new amino terminal EcR variant. EcR and RXR transcript abundance increases throughout ovarian maturation in U. pugilator, while cognate receptor transcript abundance remains constant in a related Indo-Pacific species with a different reproductive strategy. To examine if crab RXR LBD isoforms have different physical properties in vitro, electromobility shift assays were performed with different EcR isoforms. The cognate crab and fruit fly receptors differ in their responses to hormone. Ecdysteroids did not increase DNA binding for the crab heterodimers, while ecdysteroids stimulate binding for Drosophilamelanogaster EcR/USP heterodimers. In swapping experiments, UpEcR/USP heterodimers did not show ligand-responsive differences in DNA binding; both crab RXR LBD isoforms, however, conferred ligand-responsive increases in DNA binding with DmEcRs. These data indicate that both UpRXR LBD isoforms can heterodimerize with the heterologous DmEcR receptors and promote ligand and DNA binding. Unresponsiveness of the cognate receptors to ecdysteroid, however, suggest additional factors may be required to mediate endogenous, perhaps isoform-specific, differences in EcR conformation, consistent with previously reported effects of UpRXR isoforms on UpEcR ligand-binding affinities.
Collapse
Affiliation(s)
- David S Durica
- Department of Biology, University of Oklahoma, Norman, OK 73019, USA.
| | - Sunetra Das
- Department of Biology, University of Oklahoma, Norman, OK 73019, USA
| | - Fares Najar
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019, USA
| | - Bruce Roe
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019, USA
| | - Barret Phillips
- Department of Biology, University of Oklahoma, Norman, OK 73019, USA
| | | | - Gopinathan Anilkumar
- School of Biotechnology, Chemical and Biomedical Engineering, VIT University, Vellore 632 014, India
| |
Collapse
|
170
|
Huang MX, Du J, Su BJ, Zhao GD, Shen WD, Wei ZG. The expression profile and promoter analysis of ultraspiracle gene in the silkworm Bombyx mori. Mol Biol Rep 2014; 41:7955-65. [DOI: 10.1007/s11033-014-3690-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 08/21/2014] [Indexed: 12/01/2022]
|
171
|
Yang C, Lin Y, Liu H, Shen G, Luo J, Zhang H, Peng Z, Chen E, Xing R, Han C, Xia Q. The Broad Complex isoform 2 (BrC-Z2) transcriptional factor plays a critical role in vitellogenin transcription in the silkworm Bombyx mori. Biochim Biophys Acta Gen Subj 2014; 1840:2674-84. [DOI: 10.1016/j.bbagen.2014.05.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 04/22/2014] [Accepted: 05/16/2014] [Indexed: 11/16/2022]
|
172
|
Kozłowska M, Tarczewska A, Jakób M, Szpotkowski K, Wojtas M, Rymarczyk G, Ożyhar A. Calponin-like Chd64 is partly disordered. PLoS One 2014; 9:e96809. [PMID: 24805353 PMCID: PMC4013081 DOI: 10.1371/journal.pone.0096809] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 04/11/2014] [Indexed: 11/18/2022] Open
Abstract
20-hydroxyecdysone (20E) and juvenile hormone (JH) signaling pathways interact to regulate insect development. Recently, two proteins, a calponin-like Chd64 and immunophilin FKBP39 have been found to play a pivotal role in the cross-talk between 20E and JH, although the molecular basis of interaction remains unknown. The aim of this work was to identify the structural features that would provide understanding of the role of Chd64 in multiple and dynamic complex that cross-links the signaling pathways. Here, we demonstrate the results of in silico and in vitro analyses of the structural organization of Chd64 from Drosophila melanogaster and its homologue from Tribolium castaneum. Computational analysis predicted the existence of disordered regions on the termini of both proteins, while the central region appeared to be globular, probably corresponding to the calponin homology (CH) domain. In vitro analyses of the hydrodynamic properties of the proteins from analytical size-exclusion chromatography and analytical ultracentrifugation revealed that DmChd64 and TcChd64 had an asymmetrical, elongated shape, which was further confirmed by small angle X-ray scattering (SAXS). The Kratky plot indicated disorderness in both Chd64 proteins, which could possibly be on the protein termini and which would give rise to specific hydrodynamic properties. Disordered tails are often involved in diverse interactions. Therefore, it is highly possible that there are intrinsically disordered regions (IDRs) on both termini of the Chd64 proteins that serve as platforms for multiple interaction with various partners and constitute the foundation for their regulatory function.
Collapse
Affiliation(s)
- Małgorzata Kozłowska
- Department of Biochemistry, Faculty of Chemistry, Wrocław University of Technology, Wrocław, Poland
| | - Aneta Tarczewska
- Department of Biochemistry, Faculty of Chemistry, Wrocław University of Technology, Wrocław, Poland
| | - Michał Jakób
- Department of Biochemistry, Faculty of Chemistry, Wrocław University of Technology, Wrocław, Poland
| | - Kamil Szpotkowski
- Center for Biocrystallographic Research, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| | - Magdalena Wojtas
- Department of Biochemistry, Faculty of Chemistry, Wrocław University of Technology, Wrocław, Poland
| | - Grzegorz Rymarczyk
- Department of Biochemistry, Faculty of Chemistry, Wrocław University of Technology, Wrocław, Poland
| | - Andrzej Ożyhar
- Department of Biochemistry, Faculty of Chemistry, Wrocław University of Technology, Wrocław, Poland
| |
Collapse
|
173
|
Tan KL, Vlisidou I, Wood W. Ecdysone mediates the development of immunity in the Drosophila embryo. Curr Biol 2014; 24:1145-52. [PMID: 24794300 PMCID: PMC4030305 DOI: 10.1016/j.cub.2014.03.062] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 02/06/2014] [Accepted: 03/24/2014] [Indexed: 10/27/2022]
Abstract
Beyond their role in cell metabolism, development, and reproduction, hormones are also important modulators of the immune system. In the context of inflammatory disorders, systemic administration of pharmacological doses of synthetic glucocorticoids (GCs) is widely used as an anti-inflammatory treatment [1, 2]. However, not all actions of GCs are immunosuppressive, and many studies have suggested that physiological concentrations of GCs can have immunoenhancing effects [3-7]. For a more comprehensive understanding of how steroid hormones regulate immunity and inflammation, a simple in vivo system is required. The Drosophila embryo has recently emerged as a powerful model system to study the recruitment of immune cells to sterile wounds [8] and host-pathogen dynamics [9]. Here we investigate the immune response of the fly embryo to bacterial infections and find that the steroid hormone 20-hydroxyecdysone (20-HE) can regulate the quality of the immune response and influence the resolution of infection in Drosophila embryos.
Collapse
Affiliation(s)
- Kiri Louise Tan
- Faculty of Medical and Veterinary Sciences, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Isabella Vlisidou
- Faculty of Medical and Veterinary Sciences, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Will Wood
- Faculty of Medical and Veterinary Sciences, University of Bristol, University Walk, Bristol BS8 1TD, UK.
| |
Collapse
|
174
|
Wang HB, Iwanaga M, Kawasaki H. Stage-specific activation of the E74B promoter by low ecdysone concentrations in the wing disc of Bombyx mori. Gene 2014; 537:322-7. [PMID: 24393712 DOI: 10.1016/j.gene.2013.12.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Revised: 11/26/2013] [Accepted: 12/02/2013] [Indexed: 11/27/2022]
Abstract
To understand the transcriptional regulation of E74B by low concentrations of ecdysone, the promoter activity of Bombyx mori E74B was assessed in the B. mori wing disc using a transient reporter assay. We identified the transcription start sites of BmE74B and found that the core promoter region consists of initiator (Inr) and downstream promoter elements (DPE). The 3.6-kb upstream promoter region of BmE74B was responsive to 20-hydroxyecdysone (20E) in a dose-dependent manner, and the highest luciferase activity was observed in the presence of 0.2 μg/ml 20E. Moreover, the upstream BmE74B promoter activity was induced by 20E in a stage-specific and time-dependent manner, and the 3.6-kb promoter contained essential elements for the temporal regulation of BmE74B. Furthermore, we found a set of putative ecdysone response elements (EcREs). Five of these elements are highly conserved, capable of binding to the ecdysone receptor. Mutation of more than three putative EcREs, followed by introduction into the wing discs, abolished the activation of the BmE74B promoter by a low concentration of ecdysone. The results confirmed the role of ecdysone response elements in the transcription regulation of BmE74B and demonstrated that multiple putative EcREs were involved in the maximum response of BmE74B to low concentrations of ecdysone.
Collapse
Affiliation(s)
- Hua-Bing Wang
- Faculty of Agriculture, Utsunomiya University, 350 Mine, Utsunomiya, Tochigi 321-8505, Japan
| | - Masashi Iwanaga
- Faculty of Agriculture, Utsunomiya University, 350 Mine, Utsunomiya, Tochigi 321-8505, Japan
| | - Hideki Kawasaki
- Faculty of Agriculture, Utsunomiya University, 350 Mine, Utsunomiya, Tochigi 321-8505, Japan.
| |
Collapse
|
175
|
Liu H, Wang J, Li S. E93 predominantly transduces 20-hydroxyecdysone signaling to induce autophagy and caspase activity in Drosophila fat body. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2014; 45:30-9. [PMID: 24316411 DOI: 10.1016/j.ibmb.2013.11.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 11/10/2013] [Accepted: 11/21/2013] [Indexed: 05/23/2023]
Abstract
During the larval-prepupal transition in Drosophila, a balancing crosstalk occurs between autophagy and caspase activity in the remodeling fat body: the inhibition of autophagy induces caspase activity and the inhibition of caspases induces autophagy. Both autophagy and caspase activity are induced by a pulse of molting hormone (20-hydroxyecdysone, 20E) via the 20E nuclear receptor complex, EcR-USP. We here demonstrate that E93, a 20E primary-response gene encoding an HTH transcription factor, predominantly transduces 20E signaling to induce autophagy and caspase activity in the remodeling fat body. RNAi knockdown or mutation of E93 blocks autophagy and caspase activity, E93 overexpression induces them both, while E93 overexpression has a better rescuing effect on the inhibition of autophagy than caspase activity caused by EcR(DN) overexpression. At the transcriptional level, E93 not only greatly impacts the 20E-triggered transcriptional cascade, but also upregulates essential autophagy and apoptosis genes. Meanwhile, at the phosphorylational level, E93 blocks the PI3K-TORC1 signaling to initiate autophagy. Taken together, we conclude that autophagy and caspase activity are induced by 20E and predominantly transduced by E93 in the remodeling fat body of Drosophila.
Collapse
Affiliation(s)
- Hanhan Liu
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jin Wang
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Department of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Sheng Li
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
176
|
Shyamal S, Sudha K, Gayathri N, Anilkumar G. The Y-organ secretory activity fluctuates in relation to seasons of molt and reproduction in the brachyuran crab, Metopograpsus messor (Grapsidae): Ultrastructural and immunohistochemical study. Gen Comp Endocrinol 2014; 196:81-90. [PMID: 24291010 DOI: 10.1016/j.ygcen.2013.11.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 11/13/2013] [Accepted: 11/15/2013] [Indexed: 11/22/2022]
Abstract
This paper presents a first-time report on the localization, structure and seasonal secretory activity of the Y-organ of a grapsid brachyuran crab (Metopograpsus messor). Having exhibited discrete seasonality with reference to the programming of molt and reproduction, this brachyuran crab has offered us an excellent model to obtain a clear picture of the fluctuating secretory nature of the Yorgan, all the way through the reproductive (August-December) as well as the molt-reproduction active (January-May) and inactive (June-July) seasons. Ultrastructural studies revealed that the secretion of the Y-organ was at its peak in premolt crabs during molt-reproduction season (January-May). Interestingly, the Y-organs of the intermolt females that engaged in breeding activity showed higher levels of secretion than those of the molt-reproduction inactive season (June-July), implicating the gland's involvement in reproduction. Immunohistochemical studies using the antiserum raised against 2-succinyl conjugate of ecdysone have demonstrated the ecdysteroid nature of the secretion from the Y-organ, and results of the quantitative assay of ecdysteroids (through radioimmunoassay) revealed that the hormone titer fluctuates in consonance with the Y-organ's secretory activity during seasons of molt and reproduction. Pertinently, not only that the paper gives us a comprehensive understanding on the secretory activity of the Y-organ in a season-dependent fashion, it also allows us to have a better insight into the gland's function related to molting and reproduction (for the first time) in a grapsid brachyuran crab.
Collapse
Affiliation(s)
- Sharmishtha Shyamal
- School of Biosciences & Technology, VIT University, Vellore 632014, Tamil Nadu, India
| | - K Sudha
- PG Department of Zoology, Sree Narayana College, Kannur 670007, Kerala, India
| | - N Gayathri
- Department of Neuropathology, National Institute of Mental Health and Neurosciences, Bangalore 560027, India
| | - G Anilkumar
- School of Biosciences & Technology, VIT University, Vellore 632014, Tamil Nadu, India.
| |
Collapse
|
177
|
Tedjakumala SR, Aimable M, Giurfa M. Pharmacological modulation of aversive responsiveness in honey bees. Front Behav Neurosci 2014; 7:221. [PMID: 24431993 PMCID: PMC3882874 DOI: 10.3389/fnbeh.2013.00221] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 12/20/2013] [Indexed: 11/16/2022] Open
Abstract
Within a honey bee colony, individuals performing different tasks exhibit different sensitivities to noxious stimuli. Noxious-stimulus sensitivity can be quantified in harnessed bees by measuring the sting extension response (SER) to a series of increasing voltages. Biogenic amines play a crucial role in the control of insect responsiveness. Whether or not these neurotransmitters affect the central control of aversive responsiveness, and more specifically of electric-shock responsiveness, remains unknown. Here we studied the involvement of the biogenic amines octopamine, dopamine and serotonin, and of the ecdysteroid 20-hydroxyecdisone in the central control of sting responsiveness to electric shocks. We injected pharmacological antagonists of these signaling pathways into the brain of harnessed bees and determined the effect of blocking these different forms of neurotransmission on shock responsiveness. We found that both octopamine and 20-hydroxyecdisone are dispensable for shock responsiveness while dopamine and serotonin act as down-regulators of sting responsiveness. As a consequence, antagonists of these two biogenic amines induce an increase in shock responsiveness to shocks of intermediate voltage; serotonin, can also increase non-specific responsiveness. We suggest that different classes of dopaminergic neurons exist in the bee brain and we define at least two categories: an instructive class mediating aversive labeling of conditioned stimuli in associative learning, and a global gain-control class which down-regulates responsiveness upon perception of noxious stimuli. Serotonergic signaling together with down-regulating dopaminergic signaling may play an essential role in attentional processes by suppressing responses to irrelevant, non-predictive stimuli, thereby allowing efficient behavioral performances.
Collapse
Affiliation(s)
- Stevanus R Tedjakumala
- Centre National de la Recherche Scientifique (CNRS), Research Center on Animal Cognition (UMR5169) Toulouse, France ; University Paul-Sabatier, Research Center on Animal Cognition (UMR5169) Toulouse, France
| | - Margaux Aimable
- Centre National de la Recherche Scientifique (CNRS), Research Center on Animal Cognition (UMR5169) Toulouse, France ; University Paul-Sabatier, Research Center on Animal Cognition (UMR5169) Toulouse, France
| | - Martin Giurfa
- Centre National de la Recherche Scientifique (CNRS), Research Center on Animal Cognition (UMR5169) Toulouse, France ; University Paul-Sabatier, Research Center on Animal Cognition (UMR5169) Toulouse, France
| |
Collapse
|
178
|
Nijhout HF, Riddiford LM, Mirth C, Shingleton AW, Suzuki Y, Callier V. The developmental control of size in insects. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2014; 3:113-34. [PMID: 24902837 PMCID: PMC4048863 DOI: 10.1002/wdev.124] [Citation(s) in RCA: 192] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The mechanisms that control the sizes of a body and its many parts remain among the great puzzles in developmental biology. Why do animals grow to a species-specific body size, and how is the relative growth of their body parts controlled to so they grow to the right size, and in the correct proportion with body size, giving an animal its species-characteristic shape? Control of size must involve mechanisms that somehow assess some aspect of size and are upstream of mechanisms that regulate growth. These mechanisms are now beginning to be understood in the insects, in particular in Manduca sexta and Drosophila melanogaster. The control of size requires control of the rate of growth and control of the cessation of growth. Growth is controlled by genetic and environmental factors. Insulin and ecdysone, their receptors, and intracellular signaling pathways are the principal genetic regulators of growth. The secretion of these growth hormones, in turn, is controlled by complex interactions of other endocrine and molecular mechanisms, by environmental factors such as nutrition, and by the physiological mechanisms that sense body size. Although the general mechanisms of growth regulation appear to be widely shared, the mechanisms that regulate final size can be quite diverse.
Collapse
|
179
|
Upregulation of the expression of prodeath serine/threonine protein kinase for programmed cell death by steroid hormone 20-hydroxyecdysone. Apoptosis 2013. [PMID: 23203537 DOI: 10.1007/s10495-012-0784-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Serine/threonine protein kinases phosphorylate protein substrates to initiate further cellular events. Different serine/threonine protein kinases have varied functions despite their highly conserved homology. We propose prodeath-S/TK, a prodeath serine/threonine protein kinase from the lepidopteran insect Helicoverpa armigera, promotes programmed cell death (PCD) during metamorphosis. Prodeath-S/TK is expressed in various tissues with a high expression level during molting and metamorphosis by 20-hydroxyecdysone (20E) induction. Prodeath-S/TK is localized in the larval midgut during metamorphosis. Prodeath-S/TK knockdown by injecting dsRNA into larval hemocoel suppresses the 20E-induced metamorphosis and PCD, as well as downregulates a set of genes involved in the PCD and 20E signaling pathway. 20E upregulates prodeath-S/TK expression through its nuclear receptor EcR-B1 and USP1. Prodeath-S/TK overexpression in the epidermal cell line leads to PCD with DNA fragmentation and the activation of caspases 3 and 7. Prodeath-S/TK plays role in the cytoplasm. The N-terminal and C-terminal sequences of prodeath-S/TK determine its subcellular location. These data indicate that prodeath-S/TK participates in PCD by regulating gene expression in the 20E signaling pathway.
Collapse
|
180
|
Ishimoto H, Wang Z, Rao Y, Wu CF, Kitamoto T. A novel role for ecdysone in Drosophila conditioned behavior: linking GPCR-mediated non-canonical steroid action to cAMP signaling in the adult brain. PLoS Genet 2013; 9:e1003843. [PMID: 24130506 PMCID: PMC3794910 DOI: 10.1371/journal.pgen.1003843] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 08/15/2013] [Indexed: 12/19/2022] Open
Abstract
The biological actions of steroid hormones are mediated primarily by their cognate nuclear receptors, which serve as steroid-dependent transcription factors. However, steroids can also execute their functions by modulating intracellular signaling cascades rapidly and independently of transcriptional regulation. Despite the potential significance of such "non-genomic" steroid actions, their biological roles and the underlying molecular mechanisms are not well understood, particularly with regard to their effects on behavioral regulation. The major steroid hormone in the fruit fly Drosophila is 20-hydroxy-ecdysone (20E), which plays a variety of pivotal roles during development via the nuclear ecdysone receptors. Here we report that DopEcR, a G-protein coupled receptor for ecdysteroids, is involved in activity- and experience-dependent plasticity of the adult central nervous system. Remarkably, a courtship memory defect in rutabaga (Ca²⁺/calmodulin-responsive adenylate cyclase) mutants was rescued by DopEcR overexpression or acute 20E feeding, whereas a memory defect in dunce (cAMP-specific phosphodiestrase) mutants was counteracted when a loss-of-function DopEcR mutation was introduced. A memory defect caused by suppressing dopamine synthesis was also restored through enhanced DopEcR-mediated ecdysone signaling, and rescue and phenocopy experiments revealed that the mushroom body (MB)--a brain region central to learning and memory in Drosophila--is critical for the DopEcR-dependent processing of courtship memory. Consistent with this finding, acute 20E feeding induced a rapid, DopEcR-dependent increase in cAMP levels in the MB. Our multidisciplinary approach demonstrates that DopEcR mediates the non-canonical actions of 20E and rapidly modulates adult conditioned behavior through cAMP signaling, which is universally important for neural plasticity. This study provides novel insights into non-genomic actions of steroids, and opens a new avenue for genetic investigation into an underappreciated mechanism critical to behavioral control by steroids.
Collapse
Affiliation(s)
- Hiroshi Ishimoto
- Department of Anesthesia and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Zhe Wang
- Department of Biology, College of Liberal Arts and Sciences, University of Iowa, Iowa City, Iowa, United States of America
| | - Yi Rao
- National Institute of Biological Sciences, Beijing, People's Republic of China
- Peking-Tsinghua Center for Life Sciences, Peking University School of Life Sciences, Beijing, People's Republic of China
| | - Chun-Fang Wu
- Department of Biology, College of Liberal Arts and Sciences, University of Iowa, Iowa City, Iowa, United States of America
- Interdisciplinary Programs in Genetics and Neuroscience, University of Iowa, Iowa City, Iowa, United States of America
| | - Toshihiro Kitamoto
- Department of Anesthesia and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
- Interdisciplinary Programs in Genetics and Neuroscience, University of Iowa, Iowa City, Iowa, United States of America
- * E-mail:
| |
Collapse
|
181
|
Zirin J, Cheng D, Dhanyasi N, Cho J, Dura JM, Vijayraghavan K, Perrimon N. Ecdysone signaling at metamorphosis triggers apoptosis of Drosophila abdominal muscles. Dev Biol 2013; 383:275-84. [PMID: 24051228 DOI: 10.1016/j.ydbio.2013.08.029] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 08/12/2013] [Accepted: 08/19/2013] [Indexed: 11/28/2022]
Abstract
One of the most dramatic examples of programmed cell death occurs during Drosophila metamorphosis, when most of the larval tissues are destroyed in a process termed histolysis. Much of our understanding of this process comes from analyses of salivary gland and midgut cell death. In contrast, relatively little is known about the degradation of the larval musculature. Here, we analyze the programmed destruction of the abdominal dorsal exterior oblique muscle (DEOM) which occurs during the first 24h of metamorphosis. We find that ecdysone signaling through Ecdysone receptor isoform B1 is required cell autonomously for the muscle death. Furthermore, we show that the orphan nuclear receptor FTZ-F1, opposed by another nuclear receptor, HR39, plays a critical role in the timing of DEOM histolysis. Finally, we show that unlike the histolysis of salivary gland and midgut, abdominal muscle death occurs by apoptosis, and does not require autophagy. Thus, there is no set rule as to the role of autophagy and apoptosis during Drosophila histolysis.
Collapse
|
182
|
Dendritic growth gated by a steroid hormone receptor underlies increases in activity in the developing Drosophila locomotor system. Proc Natl Acad Sci U S A 2013; 110:E3878-87. [PMID: 24043825 DOI: 10.1073/pnas.1311711110] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
As animals grow, their nervous systems also increase in size. How growth in the central nervous system is regulated and its functional consequences are incompletely understood. We explored these questions, using the larval Drosophila locomotor system as a model. In the periphery, at neuromuscular junctions, motoneurons are known to enlarge their presynaptic axon terminals in size and strength, thereby compensating for reductions in muscle excitability that are associated with increases in muscle size. Here, we studied how motoneurons change in the central nervous system during periods of animal growth. We find that within the central nervous system motoneurons also enlarge their postsynaptic dendritic arbors, by the net addition of branches, and that these scale with overall animal size. This dendritic growth is gated on a cell-by-cell basis by a specific isoform of the steroid hormone receptor ecdysone receptor-B2, for which functions have thus far remained elusive. The dendritic growth is accompanied by synaptic strengthening and results in increased neuronal activity. Electrical properties of these neurons, however, are independent of ecdysone receptor-B2 regulation. We propose that these structural dendritic changes in the central nervous system, which regulate neuronal activity, constitute an additional part of the adaptive response of the locomotor system to increases in body and muscle size as the animal grows.
Collapse
|
183
|
Weng H, Shen W, Liu Y, He L, Niu B, Meng Z, Mu J. Cloning and characterization of two EcR isoforms from Japanese pine sawyer, Monochamus alternates. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2013; 84:27-42. [PMID: 23922284 DOI: 10.1002/arch.21111] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The ecdysone receptor (EcR) is the hormonal receptor of ecdysteroids, which regulates insect growth and development. In this study, we cloned and characterized two isoforms of EcR in Monochamus alternates named MaEcR A and MaEcR B. The cDNAs of MaEcR A and MaEcR B have open repeating frames of 1,695 and 1,392 bp, respectively. The deduced proteins have the same C-terminal sequence and varied in N-terminal, and are consistent with reports on other insect species, particularly with the receptor of another coleopteran, Tribolium castaneum. The isoform-specific developmental expression profile of EcR in the epidermis and the midgut were analyzed with quantitative real-time reverse-transcriptase polymerase chain reaction in the pupal stage. RNA interference (RNAi) with common or isoform-specific regions induced developmental stagnation. When treated in the later larval stage, RNAi with either the common sequence or an EcR A specific sequence caused more severe effects and most larvae died prior to adulthood. The EcR B specific sequence caused less severe effects and about half of the treated larvae became adults, but some showed developmental defects. RNAi with both isoforms at early pupal stage attenuated the expression of 20E-regulated genes E74, E75, and HR3. The study demonstrates the role of EcR in the transduction of ecdysteroid response in Monochamus alternatus.
Collapse
Affiliation(s)
- Hongbiao Weng
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Sericultural Research Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, PR China
| | | | | | | | | | | | | |
Collapse
|
184
|
Tedjakumala SR, Giurfa M. Rules and mechanisms of punishment learning in honey bees: the aversive conditioning of the sting extension response. J Exp Biol 2013; 216:2985-97. [DOI: 10.1242/jeb.086629] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Summary
Honeybees constitute established model organisms for the study of appetitive learning and memory. In recent years, the establishment of the technique of olfactory conditioning of the sting extension response (SER) has yielded new insights into the rules and mechanisms of aversive learning in insects. In olfactory SER conditioning, a harnessed bee learns to associate an olfactory stimulus as the conditioned stimulus with the noxious stimulation of an electric shock as the unconditioned stimulus. Here, we review the multiple aspects of honeybee aversive learning that have been uncovered using Pavlovian conditioning of the SER. From its behavioral principles and sensory variants to its cellular bases and implications for understanding social organization, we present the latest advancements in the study of punishment learning in bees and discuss its perspectives in order to define future research avenues and necessary improvements. The studies presented here underline the importance of studying honeybee learning not only from an appetitive but also from an aversive perspective, in order to uncover behavioral and cellular mechanisms of individual and social plasticity.
Collapse
Affiliation(s)
- Stevanus Rio Tedjakumala
- Université de Toulouse, UPS, Research Centre for Animal Cognition, 118 route de Narbonne, 31062 Toulouse Cedex 9, France
- Centre national de la recherche scientifique (CNRS), Research Centre for Animal Cognition, 118 route de Narbonne, 31062 Toulouse Cedex 9, France
| | - Martin Giurfa
- Université de Toulouse, UPS, Research Centre for Animal Cognition, 118 route de Narbonne, 31062 Toulouse Cedex 9, France
- Centre national de la recherche scientifique (CNRS), Research Centre for Animal Cognition, 118 route de Narbonne, 31062 Toulouse Cedex 9, France
| |
Collapse
|
185
|
Molecular Cloning, Characterization, and Expression Pattern of the Ultraspiracle Gene Homolog (RXR/USP) from the Hemimetabolous Insect Periplaneta americana (Dictyoptera, Blattidae) During Vitellogenesis. Mol Biotechnol 2013; 56:126-35. [DOI: 10.1007/s12033-013-9688-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
186
|
Geddes LH, McQuillan HJ, Aiken A, Vergoz V, Mercer AR. Steroid hormone (20-hydroxyecdysone) modulates the acquisition of aversive olfactory memories in pollen forager honeybees. Learn Mem 2013; 20:399-409. [DOI: 10.1101/lm.030825.113] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
187
|
Kucherenko MM, Shcherbata HR. Steroids as external temporal codes act via microRNAs and cooperate with cytokines in differential neurogenesis. Fly (Austin) 2013; 7:173-83. [PMID: 23839338 PMCID: PMC4049850 DOI: 10.4161/fly.25241] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The generation of neuronal cell diversity is controlled by interdependent mechanisms, including cell intrinsic programs and environmental cues. During development, the astonishing variety of neurons is originated according to a precise timetable that is managed by a complex network of genes specifying individual types of neurons. Different neurons express specific sets of transcription factors, and they can be recognized by morphological characteristics and spatial localization, but, most importantly, they connect to each other and form functional units in a stereotyped fashion. This connectivity depends, mostly, on selective cell adhesion that is strictly regulated. While intrinsic factors specifying neuronal temporal identity have been extensively studied, an extrinsic temporal factor controlling neuronal temporal identity switch has not been shown. Our data demonstrate that pulses of steroid hormone act as a temporal cue to fine-tune neuronal cell differentiation. Here we also provide evidence that extrinsic JAK/STAT cytokine signaling acts as a spatial code in the process. Particularly, in Drosophila mushroom bodies, neuronal identity transition is controlled by steroid-dependent microRNAs that regulate spatially distributed cytokine-dependent signaling factors that in turn modulate cell adhesion. A new era of neuronal plasticity assessment via managing external temporal cues such as hormones and cytokines that specify individual types of neurons might open new possibilities for brain regenerative therapeutics.
Collapse
Affiliation(s)
- Mariya M Kucherenko
- Max Planck Research Group of Gene Expression and Signaling; Max Planck Institute for Biophysical Chemistry; Goettingen, Germany
| | | |
Collapse
|
188
|
Teratocyte-secreting proteins of an endoparasitoid wasp, Cotesia plutellae, prevent host metamorphosis by altering endocrine signals. Comp Biochem Physiol A Mol Integr Physiol 2013; 166:251-62. [PMID: 23830810 DOI: 10.1016/j.cbpa.2013.06.028] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 06/26/2013] [Accepted: 06/26/2013] [Indexed: 12/22/2022]
Abstract
An endoparasitoid wasp, Cotesia plutellae, parasitizes young larvae of the diamondback moth, Plutella xylostella, with its parasitic factors of polydnavirus, venom, ovarian proteins, and teratocytes (TCs). TCs are originated from embryonic serosal membrane at hatch of C. plutellae egg. Injection of in vitro cultured TCs significantly prolonged a larval period of nonparasitized P. xylostella and impaired a larva-to-pupa metamorphosis. This developmental alteration was also induced by injection of TC-cultured medium (TCM). However, heat-treated TCM significantly lost the inhibitory activity against larval development of P. xylostella. Larvae treated with TC or TCM appeared to undergo abnormal endocrine conditions. Juvenile hormone esterase activity was significantly suppressed at early last instar by injection of TC or TCM. In addition, expression of ecdysone receptor at final instar was lost, but that of insulin receptor was maintained until the end of the larval period in TC or TCM treatment. A proteomic analysis of TCM predicted several teratocyte-secreting proteins (TSPs). The inhibitory effect of host development by TCs was significantly enhanced by an addition of another parasitic factor, C. plutellae bracovirus. These results suggest that C. plutellae TC plays a crucial role in alteration of host development by secreting TSPs.
Collapse
|
189
|
Gerrard DT, Fricke C, Edward DA, Edwards DR, Chapman T. Genome-Wide Responses of Female Fruit Flies Subjected to Divergent Mating Regimes. PLoS One 2013; 8:e68136. [PMID: 23826372 PMCID: PMC3694895 DOI: 10.1371/journal.pone.0068136] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2013] [Accepted: 05/24/2013] [Indexed: 11/19/2022] Open
Abstract
Elevated rates of mating and reproduction cause decreased female survival and lifetime reproductive success across a wide range of taxa from flies to humans. These costs are fundamentally important to the evolution of life histories. Here we investigate the potential mechanistic basis of this classic life history component. We conducted 4 independent replicated experiments in which female Drosophila melanogaster were subjected to ‘high’ and ‘low’ mating regimes, resulting in highly significant differences in lifespan. We sampled females for transcriptomic analysis at day 10 of life, before the visible onset of ageing, and used Tiling expression arrays to detect differential gene expression in two body parts (abdomen versus head+thorax). The divergent mating regimes were associated with significant differential expression in a network of genes showing evidence for interactions with ecdysone receptor. Preliminary experimental manipulation of two genes in that network with roles in post-transcriptional modification (CG11486, eyegone) tended to enhance sensitivity to mating costs. However, the subtle nature of those effects suggests substantial functional redundancy or parallelism in this gene network, which could buffer females against excessive responses. There was also evidence for differential expression in genes involved in germline maintenance, cell proliferation and in gustation / odorant reception. Interestingly, we detected differential expression in three specific genes (EcR, keap1, lbk1) and one class of genes (gustation / odorant receptors) with previously reported roles in determining lifespan. Our results suggest that high and low mating regimes that lead to divergence in lifespan are associated with changes in the expression of genes such as reproductive hormones, that influence resource allocation to the germ line, and that may modify post-translational gene expression. This predicts that the correct signalling of nutrient levels to the reproductive system is important for maintaining organismal integrity.
Collapse
Affiliation(s)
- Dave T. Gerrard
- Faculty of Life Sciences and Faculty of Medical and Human Sciences, University of Manchester, Manchester, United Kingdom
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Claudia Fricke
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
- Institute for Evolution and Biodiversity, Westfaelische Wilhelms-University, Muenster, Germany
| | - Dominic A. Edward
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
- Mammalian Behaviour & Evolution, Institute of Integrative Biology, University of Liverpool, Leahurst Campus, Neston, United Kingdom
| | - Dylan R. Edwards
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Tracey Chapman
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
- * E-mail:
| |
Collapse
|
190
|
Chen HY, Roer RD, Watson RD. Molecular cloning of a plasma membrane Ca2+ ATPase (PMCA) from Y-organs of the blue crab (Callinectes sapidus), and determination of spatial and temporal patterns of PMCA gene expression. Gene 2013; 522:8-17. [DOI: 10.1016/j.gene.2013.03.085] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 02/26/2013] [Accepted: 03/16/2013] [Indexed: 10/27/2022]
|
191
|
Tian L, Ma L, Guo E, Deng X, Ma S, Xia Q, Cao Y, Li S. 20-Hydroxyecdysone upregulates Atg genes to induce autophagy in the Bombyx fat body. Autophagy 2013; 9:1172-87. [PMID: 23674061 DOI: 10.4161/auto.24731] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Autophagy is finely regulated at multiple levels and plays crucial roles in development and disease. In the fat body of the silkworm, Bombyx mori, autophagy occurs and Atg gene expression peaks during the nonfeeding molting and pupation stages when the steroid hormone (20-hydroxyecdysone; 20E) is high. Injection of 20E into the feeding larvae upregulated Atg genes and reduced TORC1 activity resulting in autophagy induction in the fat body. Conversely, RNAi knockdown of the 20E receptor partner (USP) or targeted overexpression of a dominant negative mutant of the 20E receptor (EcR (DN) ) in the larval fat body reduced autophagy and downregulated the Atg genes, confirming the importance of 20E-induction of Atg gene expression during pupation. Moreover, in vitro treatments of the larval fat body with 20E upregulated the Atg genes. Five Atg genes were potentially 20E primary-responsive, and a 20E response element was identified in the Atg1 (ortholog of human ULK1) promoter region. Furthermore, RNAi knockdown of 4 key genes (namely Br-C, E74, HR3 and βftz-F1) in the 20E-triggered transcriptional cascade reduced autophagy and downregulated Atg genes to different levels. Taken together, we conclude that in addition to blocking TORC1 activity for autophagosome initiation, 20E upregulates Atg genes to induce autophagy in the Bombyx fat body.
Collapse
Affiliation(s)
- Ling Tian
- Key Laboratory of Insect Developmental and Evolutionary Biology; Institute of Plant Physiology and Ecology; Shanghai Institutes for Biological Sciences; Chinese Academy of Sciences; Shanghai, China; State Key Laboratory of Silkworm Genome Biology; Southwest University; Chongqing, China
| | | | | | | | | | | | | | | |
Collapse
|
192
|
Davis MB, Li T. Genomic analysis of the ecdysone steroid signal at metamorphosis onset using ecdysoneless and EcRnullDrosophila melanogaster mutants. Genes Genomics 2013; 35:21-46. [PMID: 23482860 PMCID: PMC3585846 DOI: 10.1007/s13258-013-0061-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Accepted: 07/23/2012] [Indexed: 12/13/2022]
Abstract
Steroid hormone gene regulation is often depicted as a linear transduction of the signal, from molecule release to the gene level, by activation of a receptor protein after being bound by its steroid ligand. Such an action would require that the hormone be present and bound to the receptor in order to have target gene response. Here, we present data that presents a novel perspective of hormone gene regulation, where the hormone molecule and its receptor have exclusive target gene regulation function, in addition to the traditional direct target genes. Our study is the first genome-wide analysis of conditional mutants simultaneously modeling the steroid and steroid receptor gene expression regulation. We have integrated classical genetic mutant experiments with functional genomics techniques in the Drosophila melanogaster model organism, where we interrogate the 20-hydroxyecdysone signaling response at the onset of metamorphosis. Our novel catalog of ecdysone target genes illustrates the separable transcriptional responses among the hormone, the pre-hormone receptor and the post-hormone receptor. We successfully detected traditional ecdysone target genes as common targets and also identified novel sets of target genes which where exclusive to each mutant condition. Around 12 % of the genome responds to the ecdysone hormone signal at the onset of metamorphosis and over half of these are independent of the receptor. In addition, a significant portion of receptor regulated genes are differentially regulated by the receptor, depending on its ligand state. Gene ontology enrichment analyses confirm known ecdysone regulated biological functions and also validate implicated pathways that have been indirectly associated with ecdysone signaling.
Collapse
Affiliation(s)
- Melissa B Davis
- Department of Genetics, Coverdell Biomedical Research Center, University of Georgia, 500 DW Brooks Dr S 270C, Athens, GA 30602 USA
| | | |
Collapse
|
193
|
Ecdysone-dependent and ecdysone-independent programmed cell death in the developing optic lobe of Drosophila. Dev Biol 2013; 374:127-41. [DOI: 10.1016/j.ydbio.2012.11.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 10/30/2012] [Accepted: 11/02/2012] [Indexed: 12/14/2022]
|
194
|
Das S, Durica DS. Ecdysteroid receptor signaling disruption obstructs blastemal cell proliferation during limb regeneration in the fiddler crab, Uca pugilator. Mol Cell Endocrinol 2013; 365:249-59. [PMID: 23142248 DOI: 10.1016/j.mce.2012.10.026] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 10/22/2012] [Accepted: 10/26/2012] [Indexed: 12/31/2022]
Abstract
To study ecdysteroid signaling during limb regeneration, we have applied RNAi (dsRNA) mediated silencing to EcR/RXR, the genes encoding the ecdysteroid receptor heterodimer, in the fiddler crab Uca pugilator. We injected RNAi into the blastemal chamber during early limb regeneration. Silencing was evaluated by knockdown in receptor transcript abundance, and disruption was evaluated by changes in growth rate and morphology of limb regenerates. q-PCR results indicated a 50% drop in transcript abundance 48h post injection in both RNAi (dsEcR/dsRXR) injected ipsilateral and uninjected contralateral blastemas in experimental animals relative to controls. EcR/RXR transcript levels further decreased over time. Several phenotypes were associated with knockdown. The experimental blastema failed to develop; microscopic examination of the arrested blastema revealed an absence of the cuticular ingrowths characteristic of the beginnings of limb segmentation and cell proliferation assays revealed that the arrested blastema had few dividing cells. Ecdysteroid levels were also lowered in experimental animals; given the bilateral effects of RNAi on limb buds in experimental animals, these results suggest RNAi had a systemic effect. Although hormone titers in experimental animals rose to comparable control levels during the late proecdysial phase of limb regeneration, most experimental crabs failed to molt and died. The overall failure to molt indicates that RNAi receptor knockdown has long-term effects. The combined effects of receptor knockdown indicate that, although circulating ecdysteroid titers are normally low during basal limb bud growth, signaling via the ecdysteroid receptor pathway is necessary for establishment of blastemal cell proliferation and development in the regenerating limbs of U. pugilator.
Collapse
Affiliation(s)
- Sunetra Das
- Department of Biology, University of Oklahoma, 730 Van Vleet Oval, Norman, OK 73019, USA
| | | |
Collapse
|
195
|
Chaitanya RK, Sridevi P, Senthilkumaran B, Dutta Gupta A. Effect of juvenile hormone analog, methoprene on H-fibroin regulation during the last instar larval development of Corcyra cephalonica. Gen Comp Endocrinol 2013; 181:10-7. [PMID: 22929589 DOI: 10.1016/j.ygcen.2012.08.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2012] [Revised: 08/10/2012] [Accepted: 08/13/2012] [Indexed: 11/28/2022]
Abstract
Juvenile hormone (JH) and 20-hydroxyecdysone (20E), co-ordinately orchestrate insect growth and development. The process of silk synthesis and secretion in lepidopteran insects is known to be under hormonal control. However, the role of JH in this process has not been demonstrated hitherto. The present study is aimed to elucidate the role of JH in H-fibroin regulation in Corcyra cephalonica, a serious lepidopteran pest. Reiterated amino acid stretches and the large molecular weight of H-fibroin render its cloning and characterization cumbersome. To address this, a commercially synthesized short amino acid peptide conjugated with a carrier protein was used to generate antibodies against the N-terminal region of H-fibroin. ELISA and immunoblot experiments demonstrated the sensitivity and specificity of antibody. Further, immunohistochemical analyses revealed the antibody's cross-reactivity with H-fibroins of C. cephalonica and Bombyx mori in the silk gland lumen. Quantitative RT-PCR and Western blot analysis demonstrated the tissue-specificity and developmental expression of H-fibroin. Hormonal studies revealed that JH alone does not alter the expression of H-fibroin. However, in the presence 20E, JH reverses the declined expression caused by 20E administration to normal levels. This study provides molecular evidence for the regulation of H-fibroin by the cumulative action of JH and 20E.
Collapse
Affiliation(s)
- R K Chaitanya
- Department of Animal Sciences, School of Life Sciences, Sir CR Rao Road, University of Hyderabad, Hyderabad 500 046, India
| | | | | | | |
Collapse
|
196
|
Abstract
Macroautophagy (autophagy) is a conserved catabolic process that targets cytoplasmic components to lysosomes for degradation. Autophagy is required for cellular homeostasis and cell survival in response to starvation and stress, and paradoxically, it also plays a role in programmed cell death during development. The mechanisms that regulate the relationship between autophagy, cell survival, and cell death are poorly understood. Here we review research in Drosophila that has provided insights into the regulation of autophagy by steroid hormones and nutrient restriction and discuss how autophagy influences cell growth, nutrient utilization, cell survival, and cell death.
Collapse
|
197
|
Wang S, Wang J, Sun Y, Song Q, Li S. PKC-mediated USP phosphorylation at Ser35 modulates 20-hydroxyecdysone signaling in Drosophila. J Proteome Res 2012; 11:6187-96. [PMID: 23136906 DOI: 10.1021/pr3008804] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The nuclear receptor complex of the steroid hormone, 20-hydroxyecdysone (20E), is a heterodimer composed of EcR and USP. Our previous studies in Drosophila suggest that PKC modulates 20E signaling by phosphorylating EcR-USP. However, the exact phosphorylation sites in EcR and USP have not been identified. Using LC-MS/MS analysis, we first identified Ser35 of USP as a PKC phosphorylation site. Mutation of USP Ser35 to Ala35 in S2 cells not only eliminated USP phosphorylation, but also attenuated the 20E-induced luciferase activity, mimicking the treatment with a PKC-specific inhibitor chelerythrine chloride in Kc cells. In the larval salivary glands (SG), inhibition of PKC activity with the binary GAL4/UAS system reduced USP phosphorylation and down-regulated the 20E primary-response genes, E75B and Br-C, and RNAi knockdown of Rack1 had stronger inhibitory effects than overexpression of PKCi. Moreover, RNAi knockdown of four PKC isozyme genes expressed in the SG exhibited a variety of inhibitory effects on USP phosphorylation and expression of E75B and Br-C, with the strongest inhibitory effects occurring when aPKC was knocked down by RNAi. Taken together, we conclude that PKC-mediated USP phosphorylation at Ser35 modulates 20E signaling in Drosophila.
Collapse
Affiliation(s)
- Sheng Wang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | | | | | | | | |
Collapse
|
198
|
Shirai H, Kamimura M, Yamaguchi J, Imanishi S, Kojima T, Fujiwara H. Two adjacent cis-regulatory elements are required for ecdysone response of ecdysone receptor (EcR) B1 transcription. PLoS One 2012; 7:e49348. [PMID: 23166644 PMCID: PMC3498158 DOI: 10.1371/journal.pone.0049348] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Accepted: 10/09/2012] [Indexed: 12/01/2022] Open
Abstract
Three distinct classes of nuclear receptors, EcR, E75, and HR3, are key regulators in the ecdysone-inducible gene activation cascade in insects. The transcription of these genes is induced by ecdysone (20E) differently, although the detailed mechanisms underlying their responses to 20E are largely unknown. We identified ecdysone response elements (EcREs) present in the promoters of genes coding BmEcR-B1, BmE75-A, and BHR3-B isoforms from Bombyx mori employing luciferase reporter assays in an ecdysteroid-responsive cultured cell line, NIAS-Bm-aff3 (aff3). The EcRE of BmEcR-B1 at −2800 comprises of two adjacent elements separated by 5 bp, E1 (15 bp) and E2 (21 bp), both of which are required for the 20E response. Further analysis using electrophoretic mobility shift assays showed that E1 binds to the EcR/USP heterodimer and that E2 may bind to the E-box (CACGTG) binding factor such as bHLH protein. The unique E1+E2-type EcRE is also detected in the promoter upstream regions of EcR-B1 from seven lepidopteran species studied. In contrast, both a 20 bp EcRE identified in the promoter of BmE75-A and a 18 bp EcRE identified in the BHR3-B promoter, contained only E1-type EcR/USP binding element but the E2 type element was not in the promoter regions of these genes. The combination of presence of the E2 element or other cis-regulatory elements in promoter regions explains the different 20E response of each class of nuclear receptor genes. Furthermore, the E1+E2 structure for EcR-B1 can be involved in a possible cross-talk between ecdysteroid and other regulatory pathways.
Collapse
Affiliation(s)
- Hiroyuki Shirai
- Department of Integrated Biosciences Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Manabu Kamimura
- National Institute of Agrobiological Sciences, Ibaraki, Japan
| | - Junichi Yamaguchi
- Department of Integrated Biosciences Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Shigeo Imanishi
- National Institute of Agrobiological Sciences, Ibaraki, Japan
| | - Tetsuya Kojima
- Department of Integrated Biosciences Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Haruhiko Fujiwara
- Department of Integrated Biosciences Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
- * E-mail:
| |
Collapse
|
199
|
Bielska K, Seliga J, Wieczorek E, Kędracka-Krok S, Niedenthal R, Ożyhar A. Alternative sumoylation sites in the Drosophila nuclear receptor Usp. J Steroid Biochem Mol Biol 2012; 132:227-38. [PMID: 22676916 DOI: 10.1016/j.jsbmb.2012.05.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Revised: 05/24/2012] [Accepted: 05/28/2012] [Indexed: 01/09/2023]
Abstract
The ultraspiracle protein (Usp), together with an ecdysone receptor (EcR) forms a heterodimeric ecdysteroid receptor complex, which controls metamorphosis in Drosophila melanogaster. Although the ecdysteroid receptor is considered to be a source of elements for ecdysteroid inducible gene switches in mammals, nothing is known about posttranslational modifications of the receptor constituents in mammalian cells. Up until now there has been no study about Usp sumoylation. Using Ubc9 fusion-directed sumoylation system, we identified Usp as a new target of SUMO1 and SUMO3 modification. Mutagenesis studies on the fragments of Usp indicated that sumoylation can occur alternatively on several defined Lys residues, i.e. three (Lys16, Lys20, Lys37) in A/B region, one (Lys424) in E region and one (Lys506) in F region. However, sumoylation of one Lys residue within A/B region prevents modification of other residues in this region. This was also observed for Lys residues in carboxyl-terminal fragment of Usp, i.e. comprising E and F regions. Mass spectrometry analysis of the full-length Usp indicated that the main SUMO attachment site is at Lys20. EcR, the heterodimerization partner of Usp, and muristerone A, the EcR ligand, do not influence sumoylation patterns of Usp. Another heterodimerization partner of Usp - HR38 fused with Ubc9 interacts with Usp in HEK293 cells and allows sumoylation of Usp independent of the direct fusion to Ubc9. Taken together, we propose that sumoylation of DmUsp can be an important factor in modulating its activity by changing molecular interactions.
Collapse
Affiliation(s)
- Katarzyna Bielska
- Department of Biochemistry, Faculty of Chemistry, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | | | | | | | | | | |
Collapse
|
200
|
Michail X, Kontogiannatos D, Syriou V, Kourti A. Bisphenol-A affects the developmental progression and expression of heat-shock protein genes in the moth Sesamia nonagrioides. ECOTOXICOLOGY (LONDON, ENGLAND) 2012; 21:2244-2253. [PMID: 22847829 DOI: 10.1007/s10646-012-0980-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/17/2012] [Indexed: 06/01/2023]
Abstract
The effects of bisphenol A (BPA) on the endocrine system of vertebrates have been demonstrated in several studies. Here, we report the impact of BPA on the developmental progression and expression of heat shock protein genes on the terrestrial insect Sesamia nonagrioides (Lepidoptera: Noctuidae). S. nonagrioides 1st instar larvae were exposed until the end of 6th (last) instar to selected concentrations of BPA (1 μg/L, 10 μg/L, 100 μg/L, 1 mg/L and 10 mg/L) applied in their artificial diets. The lower doses of BPA (1-10 μg/L) were found to decrease larvae's weight while the 100 μg/L dose increased it. The higher doses of BPA were found to induce various abnormal phenotypes during 5th instar larval molting, larval-pupal transformation and metamorphosis. The developmental and metamorphosis endpoints presented here may indicate the possible impact of BPA on terrestrial insects. Additionally, 6th instar larvae were injected with several concentrations of BPA. Semi-quantitative and Real-Time PCR assays were used to identify the effects of BPA in the transcriptional regulation of five heat shock protein genes (SnoHsp19.5, SnoHsp20.8, SnoHsp70, SnoHsc70 and SnoHsp83). Application of BPA by feeding or by injection induced the synthesis of the SnoHsp19.5 and SnoHsp20.8 mRNAs. The expression levels of SnoHsp70 were not affected. In contrast, SnoHsc70 and SnoHsp83, which play a pivotal role in vertebrate sex steroid signal transduction, were elevated by BPA. Our results suggest that SnoHsp19.5, SnoHsp20.8, SnoHsp83 and SnoHsc70 genes can be modulated by BPA.
Collapse
Affiliation(s)
- Xenia Michail
- Department of Agricultural Biotechnology, Agricultural University of Athens, Iera Odos 75, 11855, Athens, Greece
| | | | | | | |
Collapse
|