151
|
LaGrassa TJ, Ungermann C. The vacuolar kinase Yck3 maintains organelle fragmentation by regulating the HOPS tethering complex. ACTA ACUST UNITED AC 2005; 168:401-14. [PMID: 15684030 PMCID: PMC2171739 DOI: 10.1083/jcb.200407141] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The regulation of cellular membrane flux is poorly understood. Yeast respond to hypertonic stress by fragmentation of the normally large, low copy vacuole. We used this phenomenon as the basis for an in vivo screen to identify regulators of vacuole membrane dynamics. We report here that maintenance of the fragmented phenotype requires the vacuolar casein kinase I Yck3: when Yck3 is absent, salt-stressed vacuoles undergo fission, but reassemble in a SNARE-dependent manner, suggesting that vacuole fusion is disregulated. Accordingly, when Yck3 is deleted, in vitro vacuole fusion is increased, and Yck3 overexpression blocks fusion. Morphological and functional studies show that Yck3 modulates the Rab/homotypic fusion and vacuole protein sorting complex (HOPS)-dependent tethering stage of vacuole fusion. Intriguingly, Yck3 mediates phosphorylation of the HOPS subunit Vps41, a bi-functional protein involved in both budding and fusion during vacuole biogenesis. Because Yck3 also promotes efficient vacuole inheritance, we propose that tethering complex phosphorylation is a part of a general, switch-like mechanism for driving changes in organelle architecture.
Collapse
Affiliation(s)
- Tracy J LaGrassa
- Biochemie-Zentrum der Universität Heidelberg, 69120 Heidelberg, Germany
| | | |
Collapse
|
152
|
Collins KM, Thorngren NL, Fratti RA, Wickner WT. Sec17p and HOPS, in distinct SNARE complexes, mediate SNARE complex disruption or assembly for fusion. EMBO J 2005; 24:1775-86. [PMID: 15889152 PMCID: PMC1142591 DOI: 10.1038/sj.emboj.7600658] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2004] [Accepted: 04/01/2005] [Indexed: 11/09/2022] Open
Abstract
SNARE functions during membrane docking and fusion are regulated by Sec1/Munc18 (SM) chaperones and Rab/Ypt GTPase effectors. These functions for yeast vacuole fusion are combined in the six-subunit HOPS complex. HOPS facilitates Ypt7p nucleotide exchange, is a Ypt7p effector, and contains an SM protein. We have dissected the associations and requirements for HOPS, Ypt7p, and Sec17/18p during SNARE complex assembly. Vacuole SNARE complexes bind either Sec17p or the HOPS complex, but not both. Sec17p and its co-chaperone Sec18p disassemble SNARE complexes. Ypt7p regulates the reassembly of unpaired SNAREs with each other and with HOPS, forming HOPS.SNARE complexes prior to fusion. After HOPS.SNARE assembly, lipid rearrangements are still required for vacuole content mixing. Thus, Sec17p and HOPS have mutually exclusive interactions with vacuole SNAREs to mediate disruption of SNARE complexes or their assembly for docking and fusion. Sec17p may displace HOPS from SNAREs to permit subsequent rounds of fusion.
Collapse
Affiliation(s)
- Kevin M Collins
- Department of Biochemistry, Dartmouth Medical School, Hanover, NH 03755, USA
| | | | | | | |
Collapse
|
153
|
|
154
|
Fratti RA, Jun Y, Merz AJ, Margolis N, Wickner W. Interdependent assembly of specific regulatory lipids and membrane fusion proteins into the vertex ring domain of docked vacuoles. ACTA ACUST UNITED AC 2005; 167:1087-98. [PMID: 15611334 PMCID: PMC2172599 DOI: 10.1083/jcb.200409068] [Citation(s) in RCA: 180] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Membrane microdomains are assembled by lipid partitioning (e.g., rafts) or by protein–protein interactions (e.g., coated vesicles). During docking, yeast vacuoles assemble “vertex” ring-shaped microdomains around the periphery of their apposed membranes. Vertices are selectively enriched in the Rab GTPase Ypt7p, the homotypic fusion and vacuole protein sorting complex (HOPS)–VpsC Rab effector complex, SNAREs, and actin. Membrane fusion initiates at vertex microdomains. We now find that the “regulatory lipids” ergosterol, diacylglycerol and 3- and 4-phosphoinositides accumulate at vertices in a mutually interdependent manner. Regulatory lipids are also required for the vertex enrichment of SNAREs, Ypt7p, and HOPS. Conversely, SNAREs and actin regulate phosphatidylinositol 3-phosphate vertex enrichment. Though the PX domain of the SNARE Vam7p has direct affinity for only 3-phosphoinositides, all the regulatory lipids which are needed for vertex assembly affect Vam7p association with vacuoles. Thus, the assembly of the vacuole vertex ring microdomain arises from interdependent lipid and protein partitioning and binding rather than either lipid partitioning or protein interactions alone.
Collapse
Affiliation(s)
- Rutilio A Fratti
- Department of Biochemistry, Dartmouth Medical School, Hanover, NH 03755, USA
| | | | | | | | | |
Collapse
|
155
|
Abstract
Fission and fusion are the two elementary steps of membrane traffic. The mechanoenzyme dynamin acts at the fission step, but, in this issue of Cell, suggest an additional role of dynamin in preparing membranes for fusion.
Collapse
Affiliation(s)
- Bruno Antonny
- Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique, Université de Nice, 06560 Valbonne, France
| |
Collapse
|
156
|
Ano Y, Hattori T, Oku M, Mukaiyama H, Baba M, Ohsumi Y, Kato N, Sakai Y. A sorting nexin PpAtg24 regulates vacuolar membrane dynamics during pexophagy via binding to phosphatidylinositol-3-phosphate. Mol Biol Cell 2004; 16:446-57. [PMID: 15563611 PMCID: PMC545876 DOI: 10.1091/mbc.e04-09-0842] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Diverse cellular processes such as autophagic protein degradation require phosphoinositide signaling in eukaryotic cells. In the methylotrophic yeast Pichia pastoris, peroxisomes can be selectively degraded via two types of pexophagic pathways, macropexophagy and micropexophagy. Both involve membrane fusion events at the vacuolar surface that are characterized by internalization of the boundary domain of the fusion complex, indicating that fusion occurs at the vertex. Here, we show that PpAtg24, a molecule with a phosphatidylinositol 3-phosphate-binding module (PX domain) that is indispensable for pexophagy, functions in membrane fusion at the vacuolar surface. CFP-tagged PpAtg24 localized to the vertex and boundary region of the pexophagosome-vacuole fusion complex during macropexophagy. Depletion of PpAtg24 resulted in the blockage of macropexophagy after pexophagosome formation and before the fusion stage. These and other results suggest that PpAtg24 is involved in the spatiotemporal regulation of membrane fusion at the vacuolar surface during pexophagy via binding to phosphatidylinositol 3-phosphate, rather than the previously suggested function in formation of the pexophagosome.
Collapse
Affiliation(s)
- Yoshitaka Ano
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | | | | | | | | | | | | | | |
Collapse
|
157
|
Jun Y, Fratti RA, Wickner W. Diacylglycerol and its formation by phospholipase C regulate Rab- and SNARE-dependent yeast vacuole fusion. J Biol Chem 2004; 279:53186-95. [PMID: 15485855 DOI: 10.1074/jbc.m411363200] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although diacylglycerol (DAG) can trigger liposome fusion, biological membrane fusion requires Rab and SNARE proteins. We have investigated whether DAG and phosphoinositide-specific phospholipase C (PLC) have a role in the Rab- and SNARE-dependent homo-typic vacuole fusion in Saccharomyces cerevisiae. Vacuole fusion was blocked when DAG was sequestered by a recombinant C1b domain. DAG underwent ATP-dependent turnover during vacuole fusion, but was replenished by the hydrolysis of phosphatidylinositol 4,5-bisphosphate to DAG by PLC. The PLC inhibitors 3-nitrocoumarin and U73122 blocked vacuole fusion in vitro, whereas their inactive homologues did not. Plc1p is the only known PLC in yeast. Yeast cells lacking the PLC1 gene have many small vacuoles, indicating defects in protein trafficking to the vacuole or vacuole fusion, and purified Plc1p stimulates vacuole fusion. Docking-dependent Ca(2+) efflux is absent in plc1Delta vacuoles and was restored only upon the addition of both Plc1p and the Vam7p SNARE. However, vacuoles purified from plc1Delta strains still retain PLC activity and significant 3-nitrocoumarin- and U73122-sensitive fusion, suggesting that there is another PLC in S. cerevisiae with an important role in vacuole fusion.
Collapse
Affiliation(s)
- Youngsoo Jun
- Department of Biochemistry, Dartmouth Medical School, Hanover, NH 03755-3844, USA
| | | | | |
Collapse
|
158
|
Abstract
Ca2+ transients trigger many SNARE-dependent membrane fusion events. The homotypic fusion of yeast vacuoles occurs after a release of lumenal Ca2+. Here, we show that trans-SNARE interactions promote the release of Ca2+ from the vacuole lumen. Ypt7p–GTP, the Sec1p/Munc18-protein Vps33p, and Rho GTPases, all of which function during docking, are required for Ca2+ release. Inhibitors of SNARE function prevent Ca2+ release. Recombinant Vam7p, a soluble Q-SNARE, stimulates Ca2+ release. Vacuoles lacking either of two complementary SNAREs, Vam3p or Nyv1p, fail to release Ca2+ upon tethering. Mixing these two vacuole populations together allows Vam3p and Nyv1p to interact in trans and rescues Ca2+ release. Sec17/18p promote sustained Ca2+ release by recycling SNAREs (and perhaps other limiting factors), but are not required at the release step itself. We conclude that trans-SNARE assembly events during docking promote Ca2+ release from the vacuole lumen.
Collapse
Affiliation(s)
- Alexey J Merz
- Dept. of Biochemistry, 7200 Vail Bldg., Dartmouth Medical School, Hanover, NH 03755-3844, USA
| | | |
Collapse
|
159
|
Merz AJ, Wickner WT. Resolution of organelle docking and fusion kinetics in a cell-free assay. Proc Natl Acad Sci U S A 2004; 101:11548-53. [PMID: 15286284 PMCID: PMC511018 DOI: 10.1073/pnas.0404583101] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In vitro assays of compartment mixing have been key tools in the biochemical dissection of organelle docking and fusion. Many such assays measure compartment mixing through the enzymatic modification of reporter proteins. Homotypic fusion of yeast vacuoles is measured with a coupled assay of proteolytic maturation of pro-alkaline phosphatase (pro-ALP). A kinetic lag is observed between the end of docking, marked by the acquisition of resistance to anti-SNARE reagents, and ALP maturation. We therefore asked whether the time taken for pro-ALP maturation adds a kinetic lag to the measured fusion signal. Prb1p promotes ALP maturation; overproduction of Prb1p accelerates ALP activation in detergent lysates but does not alter the measured kinetics of docking or fusion. Thus, the lag between docking and ALP activation reflects a lag between docking and fusion. Many vacuoles in the population undergo multiple rounds of fusion; methods are presented for distinguishing the first round of fusion from ongoing rounds of fusion. A simple kinetic model distinguishes between two rates, the rate of fusion and the rate at which fusion competence is lost, and allows estimation of the number of rounds of fusion completed.
Collapse
Affiliation(s)
- Alexey J Merz
- Department of Biochemistry, Dartmouth Medical School, Hanover, NH 03755, USA.
| | | |
Collapse
|
160
|
Tedrick K, Trischuk T, Lehner R, Eitzen G. Enhanced membrane fusion in sterol-enriched vacuoles bypasses the Vrp1p requirement. Mol Biol Cell 2004; 15:4609-21. [PMID: 15254266 PMCID: PMC519153 DOI: 10.1091/mbc.e04-03-0194] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Organization of lipids into membrane microdomains is a vital mechanism of protein processing. Here we show that overexpression of ERG6, a gene involved in ergosterol synthesis, elevates sterol levels 1.5-fold on the vacuole membrane and enhances their homotypic fusion. The mechanism of sterol-enhanced fusion is not via more efficient sorting, but instead promotes increased kinetics of fusion subreactions. We initially isolated ERG6 as a suppressor of a vrp1Delta growth defect selective for vacuole function. VRP1 encodes verprolin, an actin-binding protein that colocalizes to vacuoles. The vrp1Delta mutant has fragmented vacuoles in vivo and isolated vacuoles do not fuse in vitro, indicative of a Vrp1p requirement for membrane fusion. ERG6 overexpression rescues vrp1Delta vacuole fusion in a cytosol-dependent manner. Cytosol prepared from the vrp1Delta strain remains active; therefore, cytosol is not resupplying Vrp1p. Las17p (Vrp1p functional partner) antibodies, which inhibit wild-type vacuole fusion, do not inhibit the fusion of vacuoles from the vrp1Delta-ERG6 overexpression strain. Vacuole-associated actin turnover is decreased in the vrp1Delta strain, but recovered by ERG6 overexpression linking sterol enrichment to actin remodeling. Therefore, the Vrp1p/Las17p requirement for membrane fusion is bypassed by increased sterols, which promotes actin remodeling as part the membrane fusion mechanism.
Collapse
Affiliation(s)
- Kelly Tedrick
- Department of Cell Biology, University of Alberta, Edmonton, Alberta, T6G 2H7 Canada
| | | | | | | |
Collapse
|
161
|
Thorngren N, Collins KM, Fratti RA, Wickner W, Merz AJ. A soluble SNARE drives rapid docking, bypassing ATP and Sec17/18p for vacuole fusion. EMBO J 2004; 23:2765-76. [PMID: 15241469 PMCID: PMC514947 DOI: 10.1038/sj.emboj.7600286] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2004] [Accepted: 06/02/2004] [Indexed: 11/09/2022] Open
Abstract
Membrane fusion requires priming, the disassembly of cis-SNARE complexes by the ATP-driven chaperones Sec18/17p. Yeast vacuole priming releases Vam7p, a soluble SNARE. Vam7p reassociation during docking allows trans-SNARE pairing and fusion. We now report that recombinant Vam7p (rVam7p) enters into complex with other SNAREs in vitro and bypasses the need for Sec17p, Sec18p, and ATP. Thus, the sole essential function of vacuole priming in vitro is the release of Vam7p from cis-SNARE complexes. In 'bypass fusion', without ATP but with added rVam7p, there are sufficient unpaired vacuolar SNAREs Vam3p, Vti1p, and Nyv1p to interact with Vam7p and support fusion. However, active SNARE proteins are not sufficient for bypass fusion. rVam7p does not bypass requirements for Rho GTPases,Vps33p, Vps39p, Vps41p, calmodulin, specific lipids, or Vph1p, a subunit of the V-ATPase. With excess rVam7p, reduced levels of PI(3)P or functional Ypt7p suffice for bypass fusion. High concentrations of rVam7p allow the R-SNARE Ykt6p to substitute for Nyv1p for fusion; this functional redundancy among vacuole SNAREs may explain why nyv1delta strains lack the vacuole fragmentation seen with mutants in other fusion catalysts.
Collapse
Affiliation(s)
- Naomi Thorngren
- Department of Biochemistry, Dartmouth Medical School, Hanover, NH, USA
| | - Kevin M Collins
- Department of Biochemistry, Dartmouth Medical School, Hanover, NH, USA
| | - Rutilio A Fratti
- Department of Biochemistry, Dartmouth Medical School, Hanover, NH, USA
| | - William Wickner
- Department of Biochemistry, Dartmouth Medical School, Hanover, NH, USA
- Department of Biochemistry, 7200 Vail Building, Room 425 Remsen, Dartmouth Medical School, Hanover, NH 03755-3844, USA. Tel.: +1 603 650 1701; Fax: +1 603 650 1353; E-mail: ; Lab website: http://www.dartmouth.edu/~wickner
| | - Alexey J Merz
- Department of Biochemistry, Dartmouth Medical School, Hanover, NH, USA
| |
Collapse
|
162
|
Abstract
Regulation of membrane trafficking requires the concerted actions of rab proteins, their effectors and several phosphatidylinositol 3'-kinases. Rab7 is required for late endosomal transport and here we establish that the phosphatidylinositol 3'-kinase hVPS34 and its adaptor protein p150 are rab7 interacting partners. The hVPS34/p150 complex colocalized with rab7 on late endosomes and hVPS34 activity was dependent on nucleotide cycling of rab7. In addition, total cellular phosphatidylinositol 3'-phosphate levels were modulated by rab7 expression, suggesting that rab7 activation impacted kinase cycling to early endosomes. The data identify rab7 as an important regulator of late endosomal hVPS34 function and link rab7 to the regulation of phosphatidylinositol 3'-kinase cycling between early and late endosomes.
Collapse
Affiliation(s)
- Mary-Pat Stein
- Molecular Trafficking Laboratory, Department of Pathology, University of New Mexico School of Medicine, Albuquerque, New Mexico 87131, USA
| | | | | | | | | |
Collapse
|
163
|
Meiling-Wesse K, Barth H, Voss C, Eskelinen EL, Epple UD, Thumm M. Atg21 is required for effective recruitment of Atg8 to the preautophagosomal structure during the Cvt pathway. J Biol Chem 2004; 279:37741-50. [PMID: 15194695 DOI: 10.1074/jbc.m401066200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Atg21 and Atg18 are homologue yeast proteins. Whereas Atg18 is essential for the Cvt pathway and autophagy, a lack of Atg21 only blocks the Cvt pathway. Our proteinase protection experiments now demonstrate that growing atg21Delta cells fail to form proaminopeptidase I-containing Cvt vesicles. Quantitative measurement of autophagy in starving atg21Delta cells showed only 35% of the wild-type rate. This suggests that Atg21 plays a nonessential role in improving the fidelity of autophagy. The intracellular localization of Atg21 is unique among the Atg proteins. In cells containing multiple vacuoles, Atg21-yellow fluorescent protein clearly localizes to the vertices of the vacuole junctions. Cells with a single vacuole show most of the protein at few perivacuolar punctae. This distribution pattern is reminiscent to the Vps class C(HOPS) (homotypic fusion and vacuolar protein sorting) protein complex. In growing cells, Atg21 is required for effective recruitment of Atg8 to the preautophagosomal structure. Consistently, the covalent linkage of Atg8 to the lipid phosphatidylethanolamine is significantly retarded. Lipidated Atg8 is supposed to act during the elongation of autophagosome precursors. However, despite the reduced autophagic rate and the retardation of Atg8 lipidation, electron microscopy of starved atg21Delta ypt7Delta double mutant cells demonstrates the formation of normally sized autophagosomes with an average diameter of 450 nm.
Collapse
Affiliation(s)
- Khuyen Meiling-Wesse
- Center of Biochemistry and Molecular Cell Biology, Georg-August-University, Heinrich-Dueker-Weg 12, D-37073 Goettingen, Germany
| | | | | | | | | | | |
Collapse
|
164
|
Leikina E, Mittal A, Cho MS, Melikov K, Kozlov MM, Chernomordik LV. Influenza hemagglutinins outside of the contact zone are necessary for fusion pore expansion. J Biol Chem 2004; 279:26526-32. [PMID: 15078874 DOI: 10.1074/jbc.m401883200] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Current models for membrane fusion in diverse biological processes are focused on the local action of fusion proteins present in the contact zone where the proteins anchored in one membrane might interact directly with the other membrane. Are the fusion proteins outside of the contact zone just bystanders? Here we assess the role of these "outsider" proteins in influenza virus hemagglutinin-mediated fusion between red blood cells and either hemagglutinin-expressing cells or viral particles. To selectively inhibit or enhance the actions of hemagglutinin outsiders, the antibodies that bind to hemagglutinin and proteases that cleave it were conjugated to polystyrene microspheres too large to enter the contact zone. We also involved hemagglutinin outsiders into interactions with additional red blood cells. We find the hemagglutinin outsiders to be necessary and sufficient for fusion. Interfering with the activity of the hemagglutinin outsiders inhibited fusion. Selective conversion of hemagglutinin outsiders alone into fusion-competent conformation was sufficient to achieve fusion. The discovered functional role of fusion proteins located outside of the contact zone suggests a tempting analogy to mechanisms by which proteins mediate membrane fission from outside of the fission site.
Collapse
Affiliation(s)
- Eugenia Leikina
- Section on Membrane Biology, Laboratory of Cellular and Molecular Biophysics, NICHD, National Institutes of Health, Bethesda, Maryland 20892-1855, USA
| | | | | | | | | | | |
Collapse
|
165
|
Wang CW, Stromhaug PE, Kauffman EJ, Weisman LS, Klionsky DJ. Yeast homotypic vacuole fusion requires the Ccz1-Mon1 complex during the tethering/docking stage. ACTA ACUST UNITED AC 2004; 163:973-85. [PMID: 14662743 PMCID: PMC1705953 DOI: 10.1083/jcb.200308071] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The function of the yeast lysosome/vacuole is critically linked with the morphology of the organelle. Accordingly, highly regulated processes control vacuolar fission and fusion events. Analysis of homotypic vacuole fusion demonstrated that vacuoles from strains defective in the CCZ1 and MON1 genes could not fuse. Morphological evidence suggested that these mutant vacuoles could not proceed to the tethering/docking stage. Ccz1 and Mon1 form a stable protein complex that binds the vacuole membrane. In the absence of the Ccz1–Mon1 complex, the integrity of vacuole SNARE pairing and the unpaired SNARE class C Vps/HOPS complex interaction were both impaired. The Ccz1–Mon1 complex colocalized with other fusion components on the vacuole as part of the cis-SNARE complex, and the association of the Ccz1–Mon1 complex with the vacuole appeared to be regulated by the class C Vps/HOPS complex proteins. Accordingly, we propose that the Ccz1–Mon1 complex is critical for the Ypt7-dependent tethering/docking stage leading to the formation of a trans-SNARE complex and subsequent vacuole fusion.
Collapse
Affiliation(s)
- Chao-Wen Wang
- Life Sciences Institute, Department of Molecular, Cellular and Developmental Biology and Biological Chemistry, University of Michigan, Ann Arbor, MI 48109-2216, USA
| | | | | | | | | |
Collapse
|
166
|
Abstract
The vacuole/lysosome of the budding yeast Saccharomyces cerevisiae is actively divided between mother and daughter cells. Vacuole inheritance initiates early in the cell cycle and ends in G2, just prior to nuclear migration. The process begins with a portion of the vacuole extending into the emerging bud. This tubular-vesicular entity, the segregation structure, enables continued exchange of vacuole contents between mother and daughter vacuoles. Genetic, biochemical, and cytological analyses of vacuole inheritance have provided insight into the molecular basis of membrane movement, the spatial and temporal control of organelle transport, and the molecular basis of membrane fusion and fission.
Collapse
Affiliation(s)
- Lois S Weisman
- Department of Biochemistry, University of Iowa, Iowa City, Iowa 52242, USA.
| |
Collapse
|
167
|
Abstract
Trafficking of cargo molecules through the secretory pathway relies on packaging and delivery of membrane vesicles. These vesicles, laden with cargo, carry integral membrane proteins that can determine with which target membrane the vesicle might productively fuse. The membrane fusion process is highly conserved in all eukaryotes and the central components driving membrane fusion events involved in vesicle delivery to target membranes are a set of integral membrane proteins called SNAREs. The yeast Saccharomyces cerevisiae has served as an extremely useful model for characterizing components of membrane fusion through genetics, biochemistry and bioinformatics, and it is now likely that the complete set of SNAREs is at hand. Here, we present the details from the searches for SNAREs, summarize the domain structures of the complete set, review what is known about localization of SNAREs to discrete membranes, and highlight some of the surprises that have come from the search.
Collapse
Affiliation(s)
- Lena Burri
- Russell Grimwade School of Biochemistry & Molecular Biology, University of Melbourne, Parkville 3010, Australia
| | | |
Collapse
|
168
|
Kjeken R, Egeberg M, Habermann A, Kuehnel M, Peyron P, Floetenmeyer M, Walther P, Jahraus A, Defacque H, Kuznetsov SA, Griffiths G. Fusion between phagosomes, early and late endosomes: a role for actin in fusion between late, but not early endocytic organelles. Mol Biol Cell 2003; 15:345-58. [PMID: 14617814 PMCID: PMC307552 DOI: 10.1091/mbc.e03-05-0334] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Actin is implicated in membrane fusion, but the precise mechanisms remain unclear. We showed earlier that membrane organelles catalyze the de novo assembly of F-actin that then facilitates the fusion between latex bead phagosomes and a mixture of early and late endocytic organelles. Here, we correlated the polymerization and organization of F-actin with phagosome and endocytic organelle fusion processes in vitro by using biochemistry and light and electron microscopy. When membrane organelles and cytosol were incubated at 37 degrees C with ATP, cytosolic actin polymerized rapidly and became organized into bundles and networks adjacent to membrane organelles. By 30-min incubation, a gel-like state was formed with little further polymerization of actin thereafter. Also during this time, the bulk of in vitro fusion events occurred between phagosomes/endocytic organelles. The fusion between latex bead phagosomes and late endocytic organelles, or between late endocytic organelles themselves was facilitated by actin, but we failed to detect any effect of perturbing F-actin polymerization on early endosome fusion. Consistent with this, late endosomes, like phagosomes, could nucleate F-actin, whereas early endosomes could not. We propose that actin assembled by phagosomes or late endocytic organelles can provide tracks for fusion-partner organelles to move vectorially toward them, via membrane-bound myosins, to facilitate fusion.
Collapse
Affiliation(s)
- Rune Kjeken
- European Molecular Biology Laboratory, D-69117 Heidelberg, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
169
|
Abstract
The SNARE superfamily has become, since its discovery approximately a decade ago, the most intensively studied element of the protein machinery involved in intracellular trafficking. Intracellular membrane fusion in eukaryotes requires SNARE (soluble N-ethylmaleimide-sensitive-factor attachment protein receptor) proteins that form complexes bridging the two membranes. Although common themes have emerged from structural and functional studies of SNAREs and other components of the eukaryotic membrane fusion machinery, there is still much to learn about how the assembly and activity of this machinery is choreographed in living cells.
Collapse
Affiliation(s)
- Daniel Ungar
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA.
| | | |
Collapse
|
170
|
Harrison RE, Bucci C, Vieira OV, Schroer TA, Grinstein S. Phagosomes fuse with late endosomes and/or lysosomes by extension of membrane protrusions along microtubules: role of Rab7 and RILP. Mol Cell Biol 2003; 23:6494-506. [PMID: 12944476 PMCID: PMC193691 DOI: 10.1128/mcb.23.18.6494-6506.2003] [Citation(s) in RCA: 332] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nascent phagosomes must undergo a series of fusion and fission reactions to acquire the microbicidal properties required for the innate immune response. Here we demonstrate that this maturation process involves the GTPase Rab7. Rab7 recruitment to phagosomes was found to precede and to be essential for their fusion with late endosomes and/or lysosomes. Active Rab7 on the phagosomal membrane associates with the effector protein RILP (Rab7-interacting lysosomal protein), which in turn bridges phagosomes with dynein-dynactin, a microtubule-associated motor complex. The motors not only displace phagosomes in the centripetal direction but, strikingly, promote the extension of phagosomal tubules toward late endocytic compartments. Fusion of tubules with these organelles was documented by fluorescence and electron microscopy. Tubule extension and fusion with late endosomes and/or lysosomes were prevented by expression of a truncated form of RILP lacking the dynein-dynactin-recruiting domain. We conclude that full maturation of phagosomes requires the retrograde emission of tubular extensions, which are generated by activation of Rab7, recruitment of RILP, and consequent association of phagosomes with microtubule-associated motors.
Collapse
Affiliation(s)
- Rene E Harrison
- Division of Cell Biology, The Hospital for Sick Children, 555 University Avenue, Toronto, Ontario, Canada M5G 1X8
| | | | | | | | | |
Collapse
|
171
|
Abstract
Exocytic fusion reactions triggered by Ca(2+) are widespread in neural, endocrine, exocrine, hemapoetic and perhaps all cell types. These processes exhibit tremendous variation in latencies to fusion following a Ca(2+) rise and in rates of fusion. We review reported differences for synaptic vesicle (SV) and dense-core vesicle (DCV) exocytosis and attempt to identify key features in the molecular mechanisms of docking, priming and fusion of SVs and DCVs that may account for differences in speed.
Collapse
Affiliation(s)
- Thomas F J Martin
- Department of Biochemistry, University of Wisconsin, 433 Babcock Drive, Madison, WI 53706, USA.
| |
Collapse
|
172
|
Abstract
Actin and its associated proteins participate in several intracellular trafficking mechanisms. This review assesses recent work that shows how actin participates in the terminal trafficking event of membrane bilayer fusion. A recent flurry of reports defines a role for Rho proteins in membrane fusion and also demonstrates that this role is distinct from any vesicle transport mechanism. Rho proteins are well known to govern actin remodeling, which implicates this process as a condition of membrane fusion. A small but significant body of work examines actin-regulated events of intracellular membrane fusion, exocytosis and endocytosis. In general, actin has been shown to act as a negative regulator of exocytosis. Cortical actin filaments act as a barrier that requires transient removal to allow vesicles to undergo docking at the plasma membrane. However, once docked, F-actin synthesis may act as a positive regulator to give the final stimulus to drive membrane fusion. F-actin synthesis is clearly needed for endocytosis and intracellular membrane fusion events. What may seem like dissimilar results are perhaps snapshots of a single mechanism of membranous actin remodeling (i.e. dynamic disassembly and reassembly) that is universally needed for all membrane fusion events.
Collapse
Affiliation(s)
- Gary Eitzen
- Department of Cell Biology, MSB 5-14, University of Alberta, Edmonton, Alberta, Canada T6G 2H7.
| |
Collapse
|
173
|
Schraw TD, Lemons PP, Dean WL, Whiteheart SW. A role for Sec1/Munc18 proteins in platelet exocytosis. Biochem J 2003; 374:207-17. [PMID: 12773094 PMCID: PMC1223584 DOI: 10.1042/bj20030610] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2003] [Revised: 05/27/2003] [Accepted: 05/29/2003] [Indexed: 11/17/2022]
Abstract
A critical aspect of haemostasis is the release of clot-forming components from the three intra-platelet stores: dense-core granules, alpha granules and lysosomes. Exocytosis from these granules is mediated by soluble proteins [N-ethylmaleimide-sensitive fusion protein (NSF) and soluble NSF attachment proteins (SNAPs)] and integral membrane proteins [vesicle and target SNAP receptors (v- and t-SNAREs)]. Three Sec1/Munc18 proteins (SM proteins) are present in platelets (Munc18a, Munc18b and Munc18c) and they bind to and potentially regulate specific syntaxin t-SNAREs. In resting platelets, these SM proteins associate with granules and open canalicular system membranes predominantly but not with the plasma membrane. Munc18a binds to syntaxin 2 alone and does not associate with other members of the core SNARE complex. Munc18b associates with a larger complex that contains synaptosome-associated protein of 23 kDa (SNAP-23) and cellubrevin/vesicle-associated membrane protein 3. Munc18c associates with both syntaxins 2 and 4, with synaptosome-associated protein of 23 kDa (SNAP-23) and with a v-SNARE. On stimulation, most of the platelet SM proteins are still found in membrane fractions. Phosphorylation of each Munc18 increases in thrombin-treated cells and phosphorylated Munc18c remains associated with syntaxins 2 and 4, but its affinity for the SNAREs appears to be reduced. To determine the functional role of the platelet SM proteins, we examined the effects of Munc18-based peptides (Munc18a peptide 3 and Munc18c peptide 3). Addition of the peptides to permeabilized platelets inhibits secretion from all three platelet granules. These peptides also inhibit agonist-induced aggregation in saponin-permeabilized platelets. These studies demonstrate a clear role for SM proteins in platelet exocytosis and aggregation and suggest a dominant role for Munc18c in all three granule-release events.
Collapse
Affiliation(s)
- Todd D Schraw
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, 800 Rose Street, Lexington, KY 40536, USA
| | | | | | | |
Collapse
|
174
|
Abstract
Soluble N-ethylmaleimide-sensitive factor activating protein receptor (SNARE) proteins have been at the fore-front of research on biological membrane fusion for some time. The subcellular localization of SNAREs and their ability to form the so-called SNARE complex may be integral to determining the specificity of intracellular fusion (the SNARE hypothesis) and/or serving as the minimal fusion machinery. Both the SNARE hypothesis and the idea of the minimal fusion machinery have been challenged by a number of experimental observations in various model systems, suggesting that SNAREs may have other functions. Considering recent advances in the SNARE literature, it appears that SNAREs may actually function as part of a complex fusion "machine." Their role in the machinery could be any one or a combination of roles, including establishing tight membrane contact, formation of a scaffolding on which to build the machine, binding of lipid surfaces, and many others. It is also possible that complexations other than the classic SNARE complex participate in membrane fusion.
Collapse
Affiliation(s)
- Joseph G Duman
- Department of Molecular and Cell Biology, Univ. of California, Berkeley, CA 94720, USA
| | | |
Collapse
|
175
|
Bayer MJ, Reese C, Buhler S, Peters C, Mayer A. Vacuole membrane fusion: V0 functions after trans-SNARE pairing and is coupled to the Ca2+-releasing channel. J Cell Biol 2003; 162:211-22. [PMID: 12876274 PMCID: PMC2172786 DOI: 10.1083/jcb.200212004] [Citation(s) in RCA: 158] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Pore models of membrane fusion postulate that cylinders of integral membrane proteins can initiate a fusion pore after conformational rearrangement of pore subunits. In the fusion of yeast vacuoles, V-ATPase V0 sectors, which contain a central cylinder of membrane integral proteolipid subunits, associate to form a transcomplex that might resemble an intermediate postulated in some pore models. We tested the role of V0 sectors in vacuole fusion. V0 functions in fusion and proton translocation could be experimentally separated via the differential effects of mutations and inhibitory antibodies. Inactivation of the V0 subunit Vph1p blocked fusion in the terminal reaction stage that is independent of a proton gradient. Deltavph1 mutants were capable of docking and trans-SNARE pairing and of subsequent release of lumenal Ca2+, but they did not fuse. The Ca2+-releasing channel appears to be tightly coupled to V0 because inactivation of Vph1p by antibodies blocked Ca2+ release. Vph1 deletion on only one fusion partner sufficed to severely reduce fusion activity. The functional requirement for Vph1p correlates to V0 transcomplex formation in that both occur after docking and Ca2+ release. These observations establish V0 as a crucial factor in vacuole fusion acting downstream of trans-SNARE pairing.
Collapse
Affiliation(s)
- Martin J Bayer
- Friedrich-Miescher-Laboratorium der Max-Planck-Gesellschaft, 72076 Tübingen, Germany
| | | | | | | | | |
Collapse
|
176
|
Abstract
Disparate biological processes involve fusion of two membranes into one and fission of one membrane into two. To formulate the possible job description for the proteins that mediate remodeling of biological membranes, we analyze the energy price of disruption and bending of membrane lipid bilayers at the different stages of bilayer fusion. The phenomenology and the pathways of the well-characterized reactions of biological remodeling, such as fusion mediated by influenza hemagglutinin, are compared with those studied for protein-free bilayers. We briefly consider some proteins involved in fusion and fission, and the dependence of remodeling on the lipid composition of the membranes. The specific hypothetical mechanisms by which the proteins can lower the energy price of the bilayer rearrangement are discussed in light of the experimental data and the requirements imposed by the elastic properties of the bilayer.
Collapse
Affiliation(s)
- Leonid V Chernomordik
- Section on Membrane Biology, Laboratory of Cellular and Molecular Biophysics, NICHD, National Institutes of Health, 10 Center Drive, Bethesda, Maryland 20892-1855, USA.
| | | |
Collapse
|
177
|
Abstract
The Sec1-Munc18 (SM) proteins are required for cellular exocytosis, but their mechanistic function remains poorly understood. We examined SM-syntaxin complexes in human platelets, which are terminally differentiated, anuclear cells that secrete the contents of their intracellular granules through syntaxin 2- and syntaxin 4-dependent mechanisms. Munc18a, Munc18b, and Munc18c were detected in human platelets by immunoblotting and/or PCR. The SM proteins and syntaxin 2 were found in the membrane and cytosolic fractions of cells, whereas syntaxin 4 was detected only in the membrane. Platelet membranes contain Munc18c-syntaxin 4 complexes, but minimal if any Munc18c-syntaxin 2 complexes were found. No significant amounts of Munc18a or Munc18b complexes were seen with either syntaxin. Munc18c-syntaxin 4 complexes were dissociated when cells were activated to secrete. Two potential inhibitors of Munc18c-syntaxin 4 complexes were generated to examine whether complex dissociation may lead to exocytosis. Peptides that mimic the projected intermolecular contact sites of Munc18c with syntaxin enhanced Ca2+-triggered dense granule exocytosis in permeabilized cells. Similarly, an anti-Munc18c monoclonal antibody that inhibited the Munc18c-syntaxin complex potently amplified Ca2+-induced platelet granule secretion. In summary, Munc18 proteins bind to specific syntaxin isoforms in platelets despite the presence of other potential binding partners. Acute inhibition of the SM-syntaxin complex promotes Ca2+-induced exocytosis, suggesting that complex formation per se has a regulatory effect on triggered secretion.
Collapse
Affiliation(s)
- Aiilyan Houng
- Cardiovascular Biology Laboratory, Harvard School of Public Health, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
178
|
Kato M, Wickner W. Vam10p defines a Sec18p-independent step of priming that allows yeast vacuole tethering. Proc Natl Acad Sci U S A 2003; 100:6398-403. [PMID: 12748377 PMCID: PMC164458 DOI: 10.1073/pnas.1132162100] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
YOR068c, termed VAM10 (altered vacuole morphology), lies within the VPS5 gene on the opposite DNA strand. VAM10 deletion causes vacuole fragmentation in vivo. The in vitro fusion of purified yeast vacuoles is stimulated by recombinant Vam10p and blocked by antibody to Vam10p. Vam10p acts early in the priming stage of fusion, independent of Sec18p. After priming, recombinant Vam10p will not stimulate fusion and anti-Vam10p antibodies will not inhibit; Vam10p provides a functional marker for this Sec18p-independent priming step. Pure Vam10p restores normal, Ypt7p-dependent tethering to vacuoles from a vam10Delta strain.
Collapse
Affiliation(s)
- Masashi Kato
- Department of Biochemistry, Dartmouth Medical School, 7200 Vail Building, Hanover, NH 03755-3844, USA
| | | |
Collapse
|
179
|
Wang L, Merz AJ, Collins KM, Wickner W. Hierarchy of protein assembly at the vertex ring domain for yeast vacuole docking and fusion. J Cell Biol 2003; 160:365-74. [PMID: 12566429 PMCID: PMC2172665 DOI: 10.1083/jcb.200209095] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Vacuole tethering, docking, and fusion proteins assemble into a "vertex ring" around the apposed membranes of tethered vacuoles before catalyzing fusion. Inhibitors of the fusion reaction selectively interrupt protein assembly into the vertex ring, establishing a causal assembly hierarchy: (a) The Rab GTPase Ypt7p mediates vacuole tethering and forms the initial vertex ring, independent of t-SNAREs or actin; (b) F-actin disassembly and GTP-bound Ypt7p direct the localization of other fusion factors; (c) The t-SNAREs Vam3p and Vam7p regulate each other's vertex enrichment, but do not affect Ypt7p localization. The v-SNARE Vti1p is enriched at vertices by a distinct pathway that is independent of the t-SNAREs, whereas both t-SNAREs will localize to vertices when trans-pairing of SNAREs is blocked. Thus, trans-SNARE pairing is not required for SNARE vertex enrichment; and (d) The t-SNAREs regulate the vertex enrichment of both G-actin and the Ypt7p effector complex for homotypic fusion and vacuole protein sorting (HOPS). In accord with this hierarchy concept, the HOPS complex, at the end of the vertex assembly hierarchy, is most enriched at those vertices with abundant Ypt7p, which is at the start of the hierarchy. Our findings provide a unique view of the functional relationships between GTPases, SNAREs, and actin in membrane fusion.
Collapse
Affiliation(s)
- Li Wang
- Department of Biochemistry, Dartmouth Medical School, Hanover, NH 03755, USA
| | | | | | | |
Collapse
|
180
|
Rojo E, Zouhar J, Kovaleva V, Hong S, Raikhel NV. The AtC-VPS protein complex is localized to the tonoplast and the prevacuolar compartment in arabidopsis. Mol Biol Cell 2003; 14:361-9. [PMID: 12589039 PMCID: PMC149977 DOI: 10.1091/mbc.e02-08-0509] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Plant cells contain several types of vacuoles with specialized functions. Although the biogenesis of these organelles is well understood at the morphological level, the machinery involved in plant vacuole formation is largely unknown. We have recently identified an Arabidopsis mutant, vcl1, that is deficient in vacuolar formation. VCL1 is homologous to a protein that regulates membrane fusion at the tonoplast in yeast. On the basis of these observations, VCL1 is predicted to play a direct role in vacuolar biogenesis and vesicular trafficking to the vacuole in plants. In this work, we show that VCL1 forms a complex with AtVPS11 and AtVPS33 in vivo. These two proteins are homologues of proteins that have a well-characterized role in membrane fusion at the tonoplast in yeast. VCL1, AtVPS11, and AtVPS33 are membrane-associated and cofractionate with tonoplast and denser endomembrane markers in subcellular fractionation experiments. Consistent with this, VCL1, AtVPS11, and AtVPS33 are found on the tonoplast and the prevacuolar compartment (PVC) by immunoelectron microscopy. We also show that a VCL1-containing complex includes SYP2-type syntaxins and is most likely involved in membrane fusion on both the PVC and tonoplast in vivo. VCL1, AtVPS11, and AtVPS33 are the first components of the vacuolar biogenesis machinery to be identified in plants.
Collapse
Affiliation(s)
- Enrique Rojo
- Department of Botany and Plant Sciences, University of California, Riverside 92521, USA
| | | | | | | | | |
Collapse
|
181
|
Abstract
The compartmental organization of eukaryotic cells has fascinated cell biologists for several decades. Detailed morphological, genetic, and biochemical studies have unraveled astonishingly complex molecular machineries involved in establishing and maintaining organelle identity and cell polarization. Many of the transport steps in the secretory and endocytic pathways are subject to manifold regulatory mechanisms, which in turn are interconnected with a plethora of signaling pathways. It therefore does not seem surprising that the cell biology of intracellular protein and lipid transport continues to thrive. The topics covered at the recent meeting on "Protein Transport in the Secretory Pathway" reflect the enormous complexity of how compartmentalization in eukaryotic cells is achieved.
Collapse
Affiliation(s)
- Volker Haucke
- Zentrum Biochemie und Molekulare Zellbiologie, University of Göttingen, Humboldtallee 23, 37073 Göttingen, Germany.
| |
Collapse
|
182
|
Rohde J, Dietrich L, Langosch D, Ungermann C. The transmembrane domain of Vam3 affects the composition of cis- and trans-SNARE complexes to promote homotypic vacuole fusion. J Biol Chem 2003; 278:1656-62. [PMID: 12427733 DOI: 10.1074/jbc.m209522200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
It is presently not clear how the function of SNARE proteins is affected by their transmembrane domains. Here, we analyzed the role of the transmembrane domain of the vacuolar SNARE Vam3 by replacing it by a lipid anchor. Vacuoles with mutant Vam3 fuse poorly and have increased amounts of cis-SNARE complexes, indicating that they are more stable. As a consequence efficient cis-SNARE complex disassembly that occurs at priming as a prerequisite of fusion requires addition of exogenous Sec18. trans-SNARE complexes in this mutant accumulate up to 4-fold over wild type, suggesting that the transmembrane domain of Vam3 is required to transit through this step. Finally, palmitoylation of Vac8, a reaction that also occurs early during priming is reduced by almost one-half. Since palmitoylated Vac8 is required beyond trans-SNARE complex formation, this may partially explain the fusion deficiency.
Collapse
Affiliation(s)
- Jan Rohde
- Interdisziplinäres Zentrum für Neurowissenschaften, University of Heidelberg, Im Neuenheimer Feld 307, 69120 Heidelberg, Germany
| | | | | | | |
Collapse
|
183
|
Eitzen G, Wang L, Thorngren N, Wickner W. Remodeling of organelle-bound actin is required for yeast vacuole fusion. J Cell Biol 2002; 158:669-79. [PMID: 12177043 PMCID: PMC2174018 DOI: 10.1083/jcb.200204089] [Citation(s) in RCA: 139] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Actin participates in several intracellular trafficking pathways. We now find that actin, bound to the surface of purified yeast vacuoles in the absence of cytosol or cytoskeleton, regulates the last compartment mixing stage of homotypic vacuole fusion. The Cdc42p GTPase is known to be required for vacuole fusion. We now show that proteins of the Cdc42p-regulated actin remodeling cascade (Cdc42p --> Cla4p --> Las17p/Vrp1p --> Arp2/3 complex --> actin) are enriched on isolated vacuoles. Vacuole fusion is dramatically altered by perturbation of the vacuole-bound actin, either by mutation of the ACT1 gene, addition of specific actin ligands such as latrunculin B or jasplakinolide, antibody to the actin regulatory proteins Las17p (yeast Wiskott-Aldrich syndrome protein) or Arp2/3, or deletion of actin regulatory genes. On docked vacuoles, actin is enriched at the "vertex ring" membrane microdomain where fusion occurs and is required for the terminal steps leading to membrane fusion. This role for actin may extend to other trafficking systems.
Collapse
Affiliation(s)
- Gary Eitzen
- Department of Biochemistry, Dartmouth Medical School, 7200 Vail Building, Hanover, NH 03755-3844, USA
| | | | | | | |
Collapse
|
184
|
Olas B, Lundell K, Holmsen H, Fukami MH. Biochemical properties of platelet microparticle membranes formed during exocytosis resemble organelles more than plasma membrane. FEBS Lett 2002; 525:29-32. [PMID: 12163156 DOI: 10.1016/s0014-5793(02)03060-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Studies of [3H]glycerol turnover in phosphatidylcholine (PC) in platelets revealed two metabolic pools, a 'low turnover PC' in collagen-induced microparticles with specific radioactivity only 10% of that found in the 'high turnover PC' of bulk platelet PC. Isolated organelle fractions of [3H]glycerol-labelled platelets contained [3H]PC with specific radioactivities about 20% of that in membrane fractions. These results together with studies on distribution of concanavalin A-FITC and GPlb, a plasma membrane receptor, indicate that microparticles formed during exocytosis are not simple vesiculations of plasma membrane, but they seem rather to originate from a relatively metabolically static membrane pool not accessible to extracellular reagents.
Collapse
Affiliation(s)
- Beata Olas
- Department of Biochemistry and Molecular Biology, University of Bergen, Arstadveien 19, 5009, Bergen, Norway
| | | | | | | |
Collapse
|
185
|
Affiliation(s)
- Josep Rizo
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390, USA.
| | | |
Collapse
|
186
|
Abstract
Selective membrane fusion underlies subcellular compartmentation, cell growth, neurotransmission and hormone secretion. Its fundamental mechanisms are conserved among organelles, tissues and organisms. As befits a conserved process, reductionism led to its study in microorganisms. Homotypic fusion of the vacuole of Saccharomyces cerevisiae is particularly accessible to study as vacuoles are readily visualized, there is a rapid and quantitative in vitro assay of vacuole fusion, and the genetics and genomics of this organism and of vacuole fusion are highly advanced. Recent progress is reviewed in the context of general questions in the membrane fusion field.
Collapse
Affiliation(s)
- William Wickner
- Department of Biochemistry, Dartmouth Medical School, 7200 Vail Building, Hanover, NH 03755-3844, USA
| |
Collapse
|
187
|
Abstract
In the February 8th issue of Cell, Wang et al. report the surprising finding that vacuolar fusion occurs at the periphery of the contact area of the vacuoles and not by the expansion of a central fusion pore. During fusion, a disk of boundary membrane is excised and left behind within the fused vacuoles.
Collapse
Affiliation(s)
- Thorsten Lang
- Department of Neurobiology, Max Planck Institute for Biophysical Chemistry, D-37077 Göttingen, Germany
| | | |
Collapse
|