151
|
Li H, Niu X, Zhang D, Qu MH, Yang K. The role of the canonical nf-κb signaling pathway in the development of acute liver failure. Biotechnol Genet Eng Rev 2023; 39:775-795. [PMID: 36578157 DOI: 10.1080/02648725.2022.2162999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 12/21/2022] [Indexed: 12/30/2022]
Abstract
As a clinical emergency with a high mortality rate, the treatment of acute liver failure has been paid attention to by society. At present, liver transplantation is the most effective treatment for acute liver failure, but there is still an insufficient supply of liver sources and a poor prognosis. In view of the current therapeutic development of this disease, more researchers have turned their attention to the research of drugs related to the NF-κB pathway. The NF-κB canonical pathway has been proven to play a role in a variety of diseases, regulating inflammation, apoptosis, and other physiological processes. More and more evidence shows that the NF-κB canonical pathway regulates the pathogenesis of acute liver failure. In this review, we will summarize the regulation process of the NF-κB canonical pathway on acute liver failure, and develop a new way to treat acute liver failure by targeting the components of the pathway.
Collapse
Affiliation(s)
- Hanyue Li
- Biopharmaceutical Laboratory, Key Laboratory of Shandong Province Colleges and Universities, School of life science and Technology, Weifang Medical University, Weifang, China
| | - Xiao Niu
- Biopharmaceutical Laboratory, Key Laboratory of Shandong Province Colleges and Universities, School of life science and Technology, Weifang Medical University, Weifang, China
| | - Dajin Zhang
- Translational Medical Center, Weifang Second People's Hospital, Weifang Respiratory Disease Hospital, Weifang, China
| | - Mei-Hua Qu
- Biopharmaceutical Laboratory, Key Laboratory of Shandong Province Colleges and Universities, School of life science and Technology, Weifang Medical University, Weifang, China
| | - Kunning Yang
- Translational Medical Center, Weifang Second People's Hospital, Weifang Respiratory Disease Hospital, Weifang, China
| |
Collapse
|
152
|
Fox C, Ekaney ML, Runyon M, Nguyen HM, Turk PJ, McKillop IH, Murphy CM. Assessing Platelet Mitochondrial Dysfunction in a Murine Model of Acute Acetaminophen Toxicity. J Med Toxicol 2023; 19:341-351. [PMID: 37644341 PMCID: PMC10522545 DOI: 10.1007/s13181-023-00964-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 08/02/2023] [Accepted: 08/14/2023] [Indexed: 08/31/2023] Open
Abstract
INTRODUCTION Acetaminophen (APAP) toxicity remains a significant cause of adult and pediatric liver failure in North America and Europe. Previous research has evaluated the impaired mitochondrial function associated with APAP toxicity. The primary aim of this study was to evaluate the effects of APAP toxicity on platelet mitochondrial function using platelet oxygen consumption in a murine model in vivo. Our secondary objectives were to determine the effect of 4-MP on platelet mitochondrial function and hepatic toxicity in the setting of APAP overdose, and to correlate platelet mitochondrial function with other markers of APAP toxicity. METHODS Male C57Bl/6 mice were randomized to receive APAP (300 or 500 mg/kg) or vehicle followed 90 minutes later by either 4-MP (50 mg/kg) or vehicle via intraperitoneal injection. Mice were euthanized 0, 12, or 24 hours later and platelets isolated from cardiac blood and counted. Platelet oxygen consumption (POC) was determined using a closed-system respirometer. Liver injury was assessed by measuring alanine transferase (ALT) and histological evaluation. RESULTS Injection of 500 mg/kg APAP led to increased POC versus pair-matched control (vehicle) (p < 0.001). Administration of 4-MP did not affect POC in control or 300 mg/kg APAP mice. In mice receiving 500 mg/kg APAP and 4-MP, POC decreased significantly compared to mice receiving 500 mg/kg APAP alone (p < 0.01). Serum and histological analysis confirmed APAP-induced hepatic damage in mice receiving 500 mg/kg APAP and these effects blunted by treatment with 4-MP. CONCLUSIONS Platelet oxygen consumption as a measure of mitochondrial function may be useful as a biomarker of hepatic APAP toxicity in the setting of moderate to severe overdose. Treatment with 4-MP decreases hepatic necrosis and may mitigate the harmful effects of APAP on platelet mitochondrial function detected via POC.
Collapse
Affiliation(s)
- Carolyn Fox
- Department of Emergency Medicine, Atrium Health's Carolinas Medical Center, 1000 Blythe Blvd., Medical Education Building 3rd Floor, Charlotte, NC, 28203, USA
| | - Michael L Ekaney
- Department of Surgery, Atrium Health's Carolinas Medical Center, 1000 Blythe Blvd., Cannon Research Building, Charlotte, NC, 28203, USA
| | - Michael Runyon
- Department of Emergency Medicine, Atrium Health's Carolinas Medical Center, 1000 Blythe Blvd., Medical Education Building 3rd Floor, Charlotte, NC, 28203, USA
| | - Hieu M Nguyen
- Center for Outcomes Research and Evaluation (CORE), 1300 Scott Ave, Office 124, Charlotte, NC, 28204, USA
| | - Philip J Turk
- Department of Data Science, University of Mississippi Medical Center, 2500 N State St, Jackson, MS, 39216, USA
| | - Iain H McKillop
- Department of Surgery, Atrium Health's Carolinas Medical Center, 1000 Blythe Blvd., Cannon Research Building, Charlotte, NC, 28203, USA
| | - Christine M Murphy
- Department of Emergency Medicine, Atrium Health's Carolinas Medical Center, 1000 Blythe Blvd., Medical Education Building 3rd Floor, Charlotte, NC, 28203, USA.
| |
Collapse
|
153
|
Wang F, Xu SJ, Ye F, Zhang B, Sun XB. Integration of Transcriptomics and Lipidomics Profiling to Reveal the Therapeutic Mechanism Underlying Ramulus mori (Sangzhi) Alkaloids for the Treatment of Liver Lipid Metabolic Disturbance in High-Fat-Diet/Streptozotocin-Induced Diabetic Mice. Nutrients 2023; 15:3914. [PMID: 37764698 PMCID: PMC10536214 DOI: 10.3390/nu15183914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common liver disorder, with a global prevalence of 25%. Currently, there remains no approved therapy. Ramulus mori (Sangzhi) alkaloids (SZ-As), a novel natural medicine, have achieved comprehensive benefits in the treatment of type 2 diabetes; however, few studies have focused on its role in ameliorating hepatic lipid metabolic disturbance. Herein, the therapeutic effect and mechanism of SZ-As on a high-fat diet (HFD) combined with streptozotocin (STZ)-induced NAFLD mice were investigated via incorporating transcriptomics and lipidomics. SZ-As reduced body weight and hepatic lipid levels, restored pathological alternation and converted the blood biochemistry perturbations. SZ-A treatment also remarkedly inhibited lipogenesis and enhanced lipolysis, fatty acid oxidation and thermogenesis. Transcriptomics analysis confirmed that SZ-As mainly altered fatty acid oxidative metabolism and the TNF signaling pathway. SZ-As were further demonstrated to downregulate inflammatory factors and effectively ameliorate hepatic inflammation. Lipidomics analysis also suggested that SZ-As affected differential lipids including triglyceride (TG) and phosphatidylcholine (PC) expression, and the main metabolic pathways included glycerophospholipid, sphingomyelins and choline metabolism. Collectively, combined with transcriptomics and metabolomics data, it is suggested that SZ-As exert their therapeutic effect on NAFLD possibly through regulating lipid metabolism pathways (glycerophospholipid metabolism and choline metabolism) and increasing levels of PC and lysophosphatidylcholine (LPC) metabolites. This study provides the basis for more widespread clinical applications of SZ-As.
Collapse
Affiliation(s)
- Fan Wang
- Institute of Medicinal Plant Development, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100193, China; (F.W.); (S.-J.X.); (F.Y.)
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing 100193, China
- Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing 100193, China
| | - Sai-Jun Xu
- Institute of Medicinal Plant Development, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100193, China; (F.W.); (S.-J.X.); (F.Y.)
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing 100193, China
- Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing 100193, China
| | - Fan Ye
- Institute of Medicinal Plant Development, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100193, China; (F.W.); (S.-J.X.); (F.Y.)
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing 100193, China
- Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing 100193, China
| | - Bin Zhang
- Institute of Medicinal Plant Development, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100193, China; (F.W.); (S.-J.X.); (F.Y.)
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing 100193, China
- Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing 100193, China
| | - Xiao-Bo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100193, China; (F.W.); (S.-J.X.); (F.Y.)
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing 100193, China
- Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing 100193, China
| |
Collapse
|
154
|
Hassan GS, Flores Molina M, Shoukry NH. The multifaceted role of macrophages during acute liver injury. Front Immunol 2023; 14:1237042. [PMID: 37736102 PMCID: PMC10510203 DOI: 10.3389/fimmu.2023.1237042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/15/2023] [Indexed: 09/23/2023] Open
Abstract
The liver is situated at the interface of the gut and circulation where it acts as a filter for blood-borne and gut-derived microbes and biological molecules, promoting tolerance of non-invasive antigens while driving immune responses against pathogenic ones. Liver resident immune cells such as Kupffer cells (KCs), a subset of macrophages, maintain homeostasis under physiological conditions. However, upon liver injury, these cells and others recruited from circulation participate in the response to injury and the repair of tissue damage. Such response is thus spatially and temporally regulated and implicates interconnected cells of immune and non-immune nature. This review will describe the hepatic immune environment during acute liver injury and the subsequent wound healing process. In its early stages, the wound healing immune response involves a necroinflammatory process characterized by partial depletion of resident KCs and lymphocytes and a significant infiltration of myeloid cells including monocyte-derived macrophages (MoMFs) complemented by a wave of pro-inflammatory mediators. The subsequent repair stage includes restoring KCs, initiating angiogenesis, renewing extracellular matrix and enhancing proliferation/activation of resident parenchymal and mesenchymal cells. This review will focus on the multifaceted role of hepatic macrophages, including KCs and MoMFs, and their spatial distribution and roles during acute liver injury.
Collapse
Affiliation(s)
- Ghada S. Hassan
- Centre de Recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Manuel Flores Molina
- Centre de Recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
- Département de microbiologie, infectiologie et immunologie, Faculté de médecine, Université de Montréal, Montréal, QC, Canada
| | - Naglaa H. Shoukry
- Centre de Recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
- Département de médecine, Faculté de médecine, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
155
|
Sharma N, Pandey S, Yadav M, Mathew B, Bindal V, Sharma N, Tripathi G, Bhat SH, Gupta A, Maiwall R, Sharma S, Sarin SK, Maras JS. Biomolecular map of albumin identifies signatures of severity and early mortality in acute liver failure. J Hepatol 2023; 79:677-691. [PMID: 37116716 DOI: 10.1016/j.jhep.2023.04.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 03/24/2023] [Accepted: 04/10/2023] [Indexed: 04/30/2023]
Abstract
BACKGROUND & AIMS Acute liver failure (ALF) is associated with high mortality. Alterations in albumin structure and function have been shown to correlate with outcomes in cirrhosis. We undertook a biomolecular analysis of albumin to determine its correlation with hepatocellular injury and early mortality in ALF. METHODS Altogether, 225 participants (200 patients with ALF and 25 healthy controls [HC]) were enrolled. Albumin was purified from the baseline plasma of the training cohort (ALF, n = 40; survivors, n = 8; non-survivors, n = 32; and HC, n = 5); analysed for modifications, functionality, and bound multi-omics signatures; and validated in a test cohort (ALF, n = 160; survivors, n = 53; non-survivors, n = 107; and HC, n = 20). RESULTS In patients with ALF, albumin is more oxidised and glycosylated with a distinct multi-omics profile than that in HC, more so in non-survivors (p <0.05). In non-survivors, albumin was more often bound (p <0.05, false discovery rate <0.01) to proteins associated with inflammation, advanced glycation end product, metabolites linked to arginine, proline metabolism, bile acid, and mitochondrial breakdown products. Increased bacterial taxa (Listeria, Clostridium, etc.) correlated with lipids (triglycerides [4:0/12:0/12:0] and phosphatidylserine [39:0]) and metabolites (porphobilinogen and nicotinic acid) in non-survivors (r2 >0.7). Multi-omics signature-based probability of detection for non-survival was >90% and showed direct correlation with albumin functionality and clinical parameters (r2 >0.85). Probability-of-detection metabolites built on the top five metabolites, namely, nicotinic acid, l-acetyl carnitine, l-carnitine, pregnenolone sulfate, and N-(3-hydroxybutanoyl)-l-homoserine lactone, showed diagnostic accuracy of 98% (AUC 0.98, 95% CI 0.95-1.0) and distinguish patients with ALF predisposed to early mortality (log-rank <0.05). On validation using high-resolution mass spectrometry and five machine learning algorithms in test cohort 1 (plasma and paired one-drop blood), the metabolome panel showed >92% accuracy/sensitivity and specificity for prediction of mortality. CONCLUSIONS In ALF, albumin is hyperoxidised and substantially dysfunctional. Our study outlines distinct 'albuminome' signatures capable of distinguishing patients with ALF predisposed to early mortality or requiring emergency liver transplantation. IMPACTS AND IMPLICATIONS Here, we report that the biomolecular map of albumin is distinct and linked to severity and outcome in patients with acute liver failure (ALF). Detailed structural, functional, and albumin-omics analysis in patients with ALF led to the identification and classification of albumin-bound biomolecules, which could segregate patients with ALF predisposed to early mortality. More importantly, we found albumin-bound metabolites indicative of mitochondrial damage and hyperinflammation as a putative indicator of <30-day mortality in patients with ALF. This preclinical study validates the utility of albuminome analysis for understanding the pathophysiology and development of poor outcome indicators in patients with ALF.
Collapse
Affiliation(s)
- Neha Sharma
- Departments of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Sushmita Pandey
- Departments of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Manisha Yadav
- Departments of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Babu Mathew
- Departments of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Vasundhra Bindal
- Departments of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Nupur Sharma
- Departments of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Gaurav Tripathi
- Departments of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Sadam H Bhat
- Departments of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Abhishak Gupta
- Departments of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Rakhi Maiwall
- Department of Hepatology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Shvetank Sharma
- Departments of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Shiv Kumar Sarin
- Department of Hepatology, Institute of Liver and Biliary Sciences, New Delhi, India.
| | - Jaswinder Singh Maras
- Departments of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India.
| |
Collapse
|
156
|
Boster JM, Adams MA, Moore HB. Commentary on "Robust coagulation activation and coagulopathy in mice with experimental acetaminophen-induced liver failure". J Thromb Haemost 2023; 21:2365-2366. [PMID: 37597895 DOI: 10.1016/j.jtha.2023.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/12/2023] [Accepted: 05/12/2023] [Indexed: 08/21/2023]
Affiliation(s)
- Julia M Boster
- Division of Hepatology, Department of Medicine, Children's Hospital Colorado, Aurora, Colorado, USA
| | - Megan A Adams
- Division of Transplant Surgery, Department of Surgery, Children's Hospital Colorado, Aurora, Colorado, USA; Division of Transplant Surgery, Department of Surgery, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Hunter B Moore
- Division of Transplant Surgery, Department of Surgery, Children's Hospital Colorado, Aurora, Colorado, USA; Division of Transplant Surgery, Department of Surgery, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, USA.
| |
Collapse
|
157
|
Yao Q, Tang Y, Dai S, Huang L, Jiang Z, Zheng S, Sun M, Xu Y, Lu R, Sun T, Huang H, Jiang X, Yao X, Lin G, Kou L, Chen R. A Biomimetic Nanoparticle Exerting Protection against Acute Liver Failure by Suppressing CYP2E1 Activity and Scavenging Excessive ROS. Adv Healthc Mater 2023; 12:e2300571. [PMID: 37236618 DOI: 10.1002/adhm.202300571] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/19/2023] [Indexed: 05/28/2023]
Abstract
Acute liver failure (ALF) is a severe liver disease caused by many reasons. One of them is the overdosed acetaminophen (APAP), which is metabolized into N-acetyl-p-benzoquinone imine (NAPQI), an excessive toxic metabolite, by CYP2E1, resulting in excessive reactive oxygen species (ROS), exhausted glutathione (GSH), and thereafter hepatocyte necrosis. N-acetylcysteine is the Food and Drug Administration-approved drug for detoxification of APAP, but it has limited clinical application due to the short therapeutic time window and concentration-related adverse effects. In this study, a carrier-free and bilirubin dotted nanoparticle (B/BG@N) is developed, which is formed using bilirubin and 18β-Glycyrrhetinic acid, and bovine serum albumin (BSA) is then adsorbed to mimic the in vivo behavior of the conjugated bilirubin for hitchhiking. The results demonstrate that B/BG@N can effectively reduce the production of NAPQI as well as exhibit antioxidant effects against intracellular oxidative stress via regulating the nuclear factor erythroid 2-related factor 2/heme oxygenase-1 signal axis and reducing the production of inflammatory factors. In vivo study shows that B/BG@N can effectively improve the clinical symptom of the mice model. This study suggests that B/BG@N own increases circulation half-life, improves accumulation in the liver, and dual detoxification, providing a promising strategy for clinical ALF treatment.
Collapse
Affiliation(s)
- Qing Yao
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, P. R. China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, P. R. China
| | - Yingying Tang
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, P. R. China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, 325027, P. R. China
| | - Sheng Dai
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, P. R. China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, 325027, P. R. China
| | - Lihui Huang
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, P. R. China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, 325027, P. R. China
| | - Zewei Jiang
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, P. R. China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, 325027, P. R. China
| | - Shiming Zheng
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, P. R. China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, 325027, P. R. China
| | - Meng Sun
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, P. R. China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, 325027, P. R. China
| | - Yitianhe Xu
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, P. R. China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, P. R. China
| | - Ruijie Lu
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, P. R. China
| | - Tuyue Sun
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, P. R. China
| | - Huirong Huang
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, P. R. China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, P. R. China
| | - Xinyu Jiang
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, P. R. China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, 325027, P. R. China
| | - Xiaomin Yao
- Faculty of Pharmacy, Zhejiang Pharmaceutical University, Ningbo, 315100, P. R. China
| | - Guangyong Lin
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, P. R. China
| | - Longfa Kou
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, P. R. China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, 325027, P. R. China
- Zhejiang Engineering Research Center for Innovation and Application of Intelligent Radiotherapy Technology, Wenzhou, 325000, P. R. China
- Wenzhou Key Laboratory of Basic Science and Translational Research of Radiation Oncology, Wenzhou, 325027, P. R. China
- Zhejiang-Hong Kong Precision Theranostics of Thoracic Tumors Joint Laboratory, Wenzhou, 325000, P. R. China
| | - Ruijie Chen
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, P. R. China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, P. R. China
| |
Collapse
|
158
|
Xue H, Wei M, Ji L. Chlorogenic acids: A pharmacological systematic review on their hepatoprotective effects. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 118:154961. [PMID: 37453191 DOI: 10.1016/j.phymed.2023.154961] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/30/2023] [Accepted: 07/08/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND Liver diseases have a negative impact on global health and are a leading cause of death worldwide. Chlorogenic acids (CGAs), a family of esters formed between certain trans-cinnamic acids and quinic acid, are natural polyphenols abundant in coffee, tea, and a variety of traditional Chinese medicines (TCMs). They are reported to have good hepatoprotective effects against various liver diseases. PURPOSE This review aims to analyze the available literature on the hepatoprotective effect of CGAs, with particular emphasis on their mechanisms. METHODS Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were followed. PubMed and Web of Science databases were adopted to retrieve all relevant literature on CGAs for liver disease from 2013 to March 2023. RESULTS Research has indicated that CGAs play a crucial role in improving different types of liver diseases, including drug-induced liver injury (DILI), alcoholic liver disease (ALD), metabolic (dysfunction)-associated fatty liver disease (MAFLD), cholestatic liver disease (CLD), liver fibrosis, and liver cancer. CGAs display remarkable antioxidant and anti-inflammatory effects by activating erythroid 2-related factor 2 (Nrf2) and inhibiting toll-like receptor 4 (TLR4)/nuclear factor-κB (NF-κB) signaling pathways. Some important molecules such as AMP-activated protein kinase (AMPK) and extracellular signal-regulated kinases 1 and 2 (ERK1/2), and other key physiological processes like intestinal barrier and gut microbiota have also been discovered to participate in CGAs-provided amelioration on various liver diseases. CONCLUSION In this review, different studies indicate that CGAs have an excellent protective effect against various liver diseases associated with various signaling pathways.
Collapse
Affiliation(s)
- Haoyu Xue
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Mengjuan Wei
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Lili Ji
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China.
| |
Collapse
|
159
|
Biswas S, Shalimar. Liver Transplantation for Acute Liver Failure- Indication, Prioritization, Timing, and Referral. J Clin Exp Hepatol 2023; 13:820-834. [PMID: 37693253 PMCID: PMC10483009 DOI: 10.1016/j.jceh.2023.01.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 01/17/2023] [Indexed: 09/12/2023] Open
Abstract
Acute liver failure (ALF) is a major success story in gastroenterology, with improvements in critical care and liver transplant resulting in significant improvements in patient outcomes in the current era compared to the dismal survival rates in the pretransplant era. However, the ever-increasing list of transplant candidates and limited organ pool makes judicious patient selection and organ use mandatory to achieve good patient outcomes and prevent organ wastage. Several scoring systems exist to facilitate the identification of patients who need a liver transplant and would therefore need an early referral to a specialized liver unit. The timing of the liver transplant is also crucial as transplanting a patient too early would lead to those who would recover spontaneously receiving an organ (wastage), and a late decision might result in the patient becoming unfit for transplant (delisted) or have an advanced disease which would result in poor post-transplant outcomes. The current article reviews the indications and contraindications of liver transplant in ALF patients, the various prognostic scoring systems, etiology-specific outcomes, prioritization and timing of referral.
Collapse
Affiliation(s)
- Sagnik Biswas
- Department of Gastroenterology and Human Nutrition Unit, All India Institute of Medical Sciences New Delhi, India
| | - Shalimar
- Department of Gastroenterology and Human Nutrition Unit, All India Institute of Medical Sciences New Delhi, India
| |
Collapse
|
160
|
Kong X, Liu W, Zhang X, Zhou C, Sun X, Cheng L, Lin J, Xie Z, Li J. HIF-1α inhibition in macrophages preserves acute liver failure by reducing IL-1β production. FASEB J 2023; 37:e23140. [PMID: 37584647 DOI: 10.1096/fj.202300428rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 07/13/2023] [Accepted: 08/01/2023] [Indexed: 08/17/2023]
Abstract
The development of acute liver failure (ALF) is dependent on its local inducer. Inflammation is a high-frequency and critical factor that accelerates hepatocyte death and liver failure. In response to injury stress, the expression of the transcription factor hypoxia-inducible factor-1α (HIF-1α) in macrophages is promoted by both oxygen-dependent and oxygen-independent mechanisms, thus promoting the expression and secretion of the cytokine interleukin-1β (IL-1β). IL-1β further induces hepatocyte apoptosis or necrosis by signaling through the receptor (IL-1R) on hepatocyte. HIF-1α knockout in macrophages or IL-1R knockout in hepatocytes protects against liver failure. However, whether HIF-1α inhibition in macrophages has a protective role in ALF is unclear. In this study, we revealed that the small molecule HIF-1α inhibitor PX-478 inhibits the expression and secretion of IL-1β, but not tumor necrosis factor α (TNFα), in bone marrow-derived macrophages (BMDMs). PX-478 pretreatment alleviates liver injury in LPS/D-GalN-induced ALF mice by decreasing the hepatic inflammatory response. In addition, preventive or therapeutic administration of PX-478 combined with TNFα neutralizing antibody markedly improved LPS/D-GalN-induced ALF. Taken together, our data suggest that PX-478 administration leads to HIF-1α inhibition and decreased IL-1β secretion in macrophages, which represents a promising therapeutic strategy for inflammation-induced ALF.
Collapse
Affiliation(s)
- Xiangrong Kong
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, P.R. China
| | - Wei Liu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P.R. China
- University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Xinwen Zhang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P.R. China
| | - Chendong Zhou
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P.R. China
| | - Xinyu Sun
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P.R. China
| | - Long Cheng
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P.R. China
- University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Jinxia Lin
- Zhangzhou Pien Tze Huang Pharmaceutical Co., Ltd, Zhangzhou, P.R. China
| | - Zhifu Xie
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P.R. China
| | - Jingya Li
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, P.R. China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P.R. China
- University of Chinese Academy of Sciences, Beijing, P.R. China
| |
Collapse
|
161
|
De Stefano N, Calleri A, Faini AC, Navarro-Tableros V, Martini S, Deaglio S, Patrono D, Romagnoli R. Extracellular Vesicles in Liver Transplantation: Current Evidence and Future Challenges. Int J Mol Sci 2023; 24:13547. [PMID: 37686354 PMCID: PMC10488298 DOI: 10.3390/ijms241713547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
Extracellular vesicles (EVs) are emerging as a promising field of research in liver disease. EVs are small, membrane-bound vesicles that contain various bioactive molecules, such as proteins, lipids, and nucleic acids and are involved in intercellular communication. They have been implicated in numerous physiological and pathological processes, including immune modulation and tissue repair, which make their use appealing in liver transplantation (LT). This review summarizes the current state of knowledge regarding the role of EVs in LT, including their potential use as biomarkers and therapeutic agents and their role in graft rejection. By providing a comprehensive insight into this emerging topic, this research lays the groundwork for the potential application of EVs in LT.
Collapse
Affiliation(s)
- Nicola De Stefano
- General Surgery 2U-Liver Transplant Unit, Department of Surgical Sciences, Azienda Ospedaliero Universitaria Città Della Salute e Della Scienza Di Torino, University of Turin, Corso Bramante 88-90, 10126 Turin, Italy; (N.D.S.); (R.R.)
| | - Alberto Calleri
- Gastrohepatology Unit, Azienda Ospedaliero Universitaria Città Della Salute e Della Scienza Di Torino, University of Turin, 10126 Turin, Italy; (A.C.); (S.M.)
| | - Angelo Corso Faini
- Immunogenetics and Transplant Biology Unit, Azienda Ospedaliero Universitaria Città Della Salute e Della Scienza Di Torino, University of Turin, 10126 Turin, Italy; (A.C.F.); (S.D.)
| | - Victor Navarro-Tableros
- 2i3T, Società Per La Gestione Dell’incubatore Di Imprese e Per Il Trasferimento Tecnologico, University of Turin, 10126 Turin, Italy;
| | - Silvia Martini
- Gastrohepatology Unit, Azienda Ospedaliero Universitaria Città Della Salute e Della Scienza Di Torino, University of Turin, 10126 Turin, Italy; (A.C.); (S.M.)
| | - Silvia Deaglio
- Immunogenetics and Transplant Biology Unit, Azienda Ospedaliero Universitaria Città Della Salute e Della Scienza Di Torino, University of Turin, 10126 Turin, Italy; (A.C.F.); (S.D.)
| | - Damiano Patrono
- General Surgery 2U-Liver Transplant Unit, Department of Surgical Sciences, Azienda Ospedaliero Universitaria Città Della Salute e Della Scienza Di Torino, University of Turin, Corso Bramante 88-90, 10126 Turin, Italy; (N.D.S.); (R.R.)
| | - Renato Romagnoli
- General Surgery 2U-Liver Transplant Unit, Department of Surgical Sciences, Azienda Ospedaliero Universitaria Città Della Salute e Della Scienza Di Torino, University of Turin, Corso Bramante 88-90, 10126 Turin, Italy; (N.D.S.); (R.R.)
| |
Collapse
|
162
|
Yin N, Zhang W, Sun XX, Wei R, Yang Q, He F, Li C, Guo L, Feng M. Artificial cells delivering itaconic acid induce anti-inflammatory memory-like macrophages to reverse acute liver failure and prevent reinjury. Cell Rep Med 2023; 4:101132. [PMID: 37541252 PMCID: PMC10439255 DOI: 10.1016/j.xcrm.2023.101132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 04/01/2023] [Accepted: 07/07/2023] [Indexed: 08/06/2023]
Abstract
Hepatic macrophages represent a key cellular component of the liver and are essential for the progression of acute liver failure (ALF). We construct artificial apoptotic cells loaded with itaconic acid (AI-Cells), wherein the compositions of the synthetic plasma membrane and surface topology are rationally engineered. AI-Cells are predominantly localized to the liver and further transport to hepatic macrophages. Intravenous administration of AI-Cells modulates macrophage inflammation to protect the liver from acetaminophen-induced ALF. Mechanistically, AI-Cells act on caspase-1 to suppress NLRP3 inflammasome-mediated cleavage of pro-IL-1β into its active form in macrophages. Notably, AI-Cells specifically induce anti-inflammatory memory-like hepatic macrophages in ALF mice, which prevent constitutive overproduction of IL-1β when liver reinjury occurs. In light of AI-Cells' precise delivery and training of memory-like hepatic macrophages, they offer promising therapeutic potential in reversing ALF by finely controlling inflammatory responses and orchestrating liver homeostasis, which potentially affect the treatment of various types of liver failure.
Collapse
Affiliation(s)
- Na Yin
- School of Pharmaceutical Sciences, Sun Yat-Sen University, University Town, Guangzhou 510006, China
| | - Wenjun Zhang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, University Town, Guangzhou 510006, China
| | - Xiao-Xin Sun
- Department of Molecular & Medical Genetics, Oregon Health & Science University, Portland, OR 97239, USA
| | - Runxiu Wei
- School of Pharmaceutical Sciences, Sun Yat-Sen University, University Town, Guangzhou 510006, China
| | - Qiang Yang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, University Town, Guangzhou 510006, China
| | - Fengming He
- School of Pharmaceutical Sciences, Xiamen University, South Xiang-An Road, Xiamen 361102, China
| | - Changrui Li
- Guangzhou Zhixin High School, Zhixin South Road, Guangzhou 510080, China
| | - Ling Guo
- School of Pharmaceutical Sciences, Sun Yat-Sen University, University Town, Guangzhou 510006, China; Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China.
| | - Min Feng
- School of Pharmaceutical Sciences, Sun Yat-Sen University, University Town, Guangzhou 510006, China.
| |
Collapse
|
163
|
Cen Y, Qi J, Chen L, Xia C, Zheng M, Liu Y, Lou G. Decreased miR-17-92 cluster correlates with senescence features, disrupted oxidative homeostasis, and impaired therapeutic efficacy of mesenchymal stem cells. Am J Physiol Cell Physiol 2023; 325:C443-C455. [PMID: 37366574 DOI: 10.1152/ajpcell.00515.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 06/23/2023] [Accepted: 06/23/2023] [Indexed: 06/28/2023]
Abstract
Aging and replicative cellular senescence are associated with the reduced therapeutic potential of mesenchymal stem cells (MSCs) on a variety of diseases. This study aimed to determine the mechanism in MSC senescence and further explore a modification strategy to reverse senescence-associated cell dysfunction to improve the therapeutic efficacy of MSCs on acute liver failure (ALF). We found that the adipose tissue-derived MSCs from old mice (oAMSCs) exhibited senescence phenotypes and showed reduced therapeutic efficacy in lipopolysaccharide and D-galactosamine-induced ALF, as shown by the increased hepatic necrosis, liver histology activity index scores, serum liver function indicator levels, and inflammatory cytokine levels. The expression of miR-17-92 cluster members, especially miR-17 and miR-20a, was obviously decreased in oAMSCs and replicatively senescent AMSCs, and was consistent with the decreased oncogene c-Myc level during AMSC senescence and may mediate c-Myc stemness addiction. Further experiments revealed that c-Myc-regulated miR-17-92 expression contributed to increased p21 expression and redox system dysregulation during AMSC senescence. Furthermore, modification of AMSCs with the two key miRNAs in the miR-17-92 cluster mentioned above reversed the senescence features of oAMSCs and restored the therapeutic effect of senescent AMSCs on ALF. In conclusion, the cellular miR-17-92 cluster level is correlated with AMSC senescence and can be used both as an index for evaluating and as a modification target for improving the therapeutic potential of AMSCs.NEW & NOTEWORTHY We reported for the first time that c-Myc-regulated miR-17-92 contributed to increased p21 expression and redox system dysregulation during AMSC senescence and was associated with the reduced therapeutic effects of senescent AMSCs on ALF. Moreover, modifying the expression of the miR-17-92 cluster members, especially miR-17 and/or miR-20a, could reverse AMSC senescence. Thus, miR-17-92 cluster can be used both as an index for evaluating and as a modification strategy for improving the therapeutic potential of AMSCs.
Collapse
Affiliation(s)
- Yelei Cen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jinjin Qi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Liang Chen
- Thyroid Disease Diagnosis and Treatment Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Caixia Xia
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Department of Infectious Diseases, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Min Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yanning Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Guohua Lou
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
164
|
Wang R, Jing K, Liu Y, Zhao H, Cai J. Viral hepatitis is associated with increased risk of decompensated cirrhosis or liver failure in patients positive for liver cytosol antibody type 1. Scand J Immunol 2023; 98:e13281. [PMID: 38441215 DOI: 10.1111/sji.13281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/01/2023] [Indexed: 03/07/2024]
Abstract
Liver cytosol antibody type 1 (anti-LC1) is reported to be a marker of type 2 autoimmune hepatitis (AIH), a type of autoimmune liver disease (AILD). However, anti-LC1 is not entirely disease-specific, and its clinical value in other hepatic diseases has not been well elucidated. Our study aimed to explore the associations between the diagnoses and outcome of decompensated cirrhosis or liver failure (DC/LF) in patients positive for anti-LC1. A total of 157 patients positive for anti-LC1 were included in our final analysis. DC/LF was defined as the outcome of patients positive for anti-LC1. The risk of DC/LF according to diagnosis was estimated using multivariable Cox proportional hazards models, while stratified Cox regression models were used in the subgroup analyses. The diagnoses of patients positive for anti-LC1 were found to be comprised of various liver disorders. Versus other diagnoses, viral hepatitis was associated with a 2.25-fold increased risk of DC/LF in these patients, independent of sex, age, disease course, treatment and drinking history. Additionally, the associations were more significant by subgroup analysis in male patients, younger patients, non-newly diagnosed patients, patients without treatment and patients without drinking history. Anti-LC1 is not a disease-specific antibody, as it was found in multiple types of hepatic disease. Furthermore, viral hepatitis rather than AILD was associated with an increased risk of DC/LF in patients positive for anti-LC1. These findings emphasize the important role of viral hepatitis in the progression of DC/LF in patients positive for anti-LC1.
Collapse
Affiliation(s)
- Rong Wang
- Department of Clinical Laboratory, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, China
| | - Keying Jing
- Department of Clinical Laboratory, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, China
| | - Yang Liu
- Department of Clinical Laboratory, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, China
| | - Huijuan Zhao
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, China
| | - Jun Cai
- Department of Clinical Laboratory, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, China
| |
Collapse
|
165
|
Yin J, Zhao Z, Huang J, Xiao Y, Rehmutulla M, Zhang B, Zhang Z, Xiang M, Tong Q, Zhang Y. Single-cell transcriptomics reveals intestinal cell heterogeneity and identifies Ep300 as a potential therapeutic target in mice with acute liver failure. Cell Discov 2023; 9:77. [PMID: 37488127 PMCID: PMC10366100 DOI: 10.1038/s41421-023-00578-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 06/15/2023] [Indexed: 07/26/2023] Open
Abstract
Acute liver failure (ALF) is a severe life-threatening disease associated with the disorder of the gut-liver axis. However, the cellular characteristics of ALF in the gut and related therapeutic targets remain unexplored. Here, we utilized the D-GALN/LPS (D/L)-induced ALF model to characterize 33,216 single-cell transcriptomes and define a mouse ALF intestinal cellular atlas. We found that unique, previously uncharacterized intestinal immune cells, including T cells, B cells, macrophages, and neutrophils, are responsive to ALF, and we identified the transcriptional profiles of these subsets during ALF. We also delineated the heterogeneity of intestinal epithelial cells (IECs) and found that ALF-induced cell cycle arrest in intestinal stem cells and activated specific enterocyte and goblet cell clusters. Notably, the most significantly altered IECs, including enterocytes, intestinal stem cells and goblet cells, had similar activation patterns closely associated with inflammation from intestinal immune activation. Furthermore, our results unveiled a common Ep300-dependent transcriptional program that coordinates IEC activation during ALF, which was confirmed to be universal in different ALF models. Pharmacological inhibition of Ep300 with an inhibitor (SGC-CBP30) inhibited this cell-specific program, confirming that Ep300 is an effective target for alleviating ALF. Mechanistically, Ep300 inhibition restrained inflammation and oxidative stress in the dysregulated cluster of IECs through the P38-JNK pathway and corrected intestinal ecology by regulating intestinal microbial composition and metabolism, thereby protecting IECs and attenuating ALF. These findings confirm that Ep300 is a novel therapeutic target in ALF and pave the way for future pathophysiological studies on ALF.
Collapse
Affiliation(s)
- Jie Yin
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ziming Zhao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jianzheng Huang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yang Xiao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Mewlude Rehmutulla
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Biqiong Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zijun Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ming Xiang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qingyi Tong
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
166
|
Zhong X, Fan XG, Chen R. Repurposing Niclosamide as a Therapeutic Drug against Acute Liver Failure by Suppressing Ferroptosis. Pharmaceutics 2023; 15:1950. [PMID: 37514136 PMCID: PMC10383467 DOI: 10.3390/pharmaceutics15071950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 06/26/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023] Open
Abstract
Acute liver failure (ALF) is a severe liver disease with a high mortality rate without effective therapeutic drugs. Ferroptosis is a form of programmed cell death that plays an important role in ALF. In this study, we aimed to identify ferroptosis-related genes in ALF, thereby predicting promising compounds to treat ALF. First, mRNA microarray data were utilized to identify the ferroptosis-related differentially expressed genes (DEGs). Hub genes were screened in the protein-protein interaction network and validated. Subsequently, potential drugs to treat ALF were predicted. One of the predicted drugs was tested in an ALF model of mice. Ferroptosis examination and molecular docking were analyzed to explore the mechanism. A total of 37 DEGs were identified, ten hub genes were extracted, and their expression in ALF was validated. The predicted drug niclosamide mitigated lipopolysaccharide/D-galactosamine-induced hepatotoxicity, and decreased mortality of mice in the ALF model. Mechanically, niclosamide may combine with signal transducer and activator of transcription 3 to inhibit ALF progression by suppressing ferroptosis. This study may help advance our understanding of the role of ferroptosis in ALF, and niclosamide may be promising for therapeutic efficacy in patients with ALF.
Collapse
Affiliation(s)
- Xiao Zhong
- Department of Infectious Diseases, Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Xue-Gong Fan
- Department of Infectious Diseases, Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Ruochan Chen
- Department of Infectious Diseases, Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| |
Collapse
|
167
|
Zhang D, Shi C, Zhang Q, Wang Y, Guo J, Gong Z. Inhibition of GSK3β activity alleviates acute liver failure via suppressing multiple programmed cell death. J Inflamm (Lond) 2023; 20:24. [PMID: 37443080 PMCID: PMC10347874 DOI: 10.1186/s12950-023-00350-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
BACKGROUND Acute liver failure (ALF) is one of the most common life-threatening diseases in adults without previous liver disease. Glycogen synthase kinase 3β (GSK3β) is a serine/threonine protein kinase that is widely distributed in the cells. Inhibition of its activity can inhibit cell death and promote autophagy through various pathways, thus providing a protective effect. In this study, we aimed to investigate the effect on ALF after inhibition of GSK3β and its potential mechanisms. METHODS D- galactosamine(D-Gal) in combination with lipopolysaccharide(LPS) was used to induce ALF in vitro and in vivo. And then GSK3β inhibitor TDZD-8 was used to explore the protective effect against ALF. After TDZD-8 treatment TUNEL staining and flow techniques were used to detect the proportion of apoptosis in liver tissues and cells respectively, while western blotting and immunofluorescence assays were performed to detect the expression levels of apoptosis, pyroptosis and necroptosis-related proteins in tissues and cells. In addition, western blotting was performed to explore the specific mechanism of hepatoprotective effect after GSK3β inhibition to detect the expression levels of TAK1, TRAF6 and HDAC3 after TRAF6 and HDAC3 inhibition alone. The co-localization of TRAF6 and HDAC3 in vitro was detected by immunofluorescence, while the interaction between TRAF6 and HDAC3 was detected by immunoprecipitation assay. RESULTS Both in vivo and in vitro experiments, GSK3β inhibitor TDZD-8 can significantly alleviate the progression of ALF. Inhibition of GSK3β activity could significantly reduce the level of hepatocyte apoptosis, pyroptosis, necroptosis and improve liver dysfunction and tissue damage. Furthermore, we found that hepatocyte TAK1 and TRAF6 levels decreased and HDAC3 levels increased in ALF, whereas inhibition of GSK3β upregulated TAK1 and TRAF6 levels and decreased HDAC3 expression. CONCLUSION GSK3β inhibitor TDZD-8 can prevent the progression of ALF, and its action may involve the TRAF6/HDAC3/TAK1 pathway.
Collapse
Affiliation(s)
- Danmei Zhang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuhan, Hubei province, 430060, China
| | - Chunxia Shi
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuhan, Hubei province, 430060, China
| | - Qingqi Zhang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuhan, Hubei province, 430060, China
| | - Yukun Wang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuhan, Hubei province, 430060, China
| | - Jin Guo
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuhan, Hubei province, 430060, China
| | - Zuojiong Gong
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuhan, Hubei province, 430060, China.
| |
Collapse
|
168
|
Sitbon A, Delmotte PR, Goumard C, Turco C, Gautheron J, Conti F, Aoudjehane L, Scatton O, Monsel A. Therapeutic potentials of mesenchymal stromal cells-derived extracellular vesicles in liver failure and marginal liver graft rehabilitation: a scoping review. Minerva Anestesiol 2023; 89:690-706. [PMID: 37079286 DOI: 10.23736/s0375-9393.23.17265-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023]
Abstract
Liver failure includes distinct subgroups of diseases: Acute liver failure (ALF) without preexisting cirrhosis, acute-on-chronic liver failure (ACLF) (severe form of cirrhosis associated with organ failures and excess mortality), and liver fibrosis (LF). Inflammation plays a key role in ALF, LF, and more specifically in ACLF for which we have currently no treatment other than liver transplantation (LT). The increasing incidence of marginal liver grafts and the shortage of liver grafts require us to consider strategies to increase the quantity and quality of available liver grafts. Mesenchymal stromal cells (MSCs) have shown beneficial pleiotropic properties with limited translational potential due to the pitfalls associated with their cellular nature. MSC-derived extracellular vesicles (MSC-EVs) are innovative cell-free therapeutics for immunomodulation and regenerative purposes. MSC-EVs encompass further advantages: pleiotropic effects, low immunogenicity, storage stability, good safety profile, and possibility of bioengineering. Currently, no human studies explored the impact of MSC-EVs on liver disease, but several preclinical studies highlighted their beneficial effects. In ALF and ACLF, data showed that MSC-EVs attenuate hepatic stellate cells activation, exert antioxidant, anti-inflammatory, anti-apoptosis, anti-ferroptosis properties, and promote regeneration of the liver, autophagy, and improve metabolism through mitochondrial function recovery. In LF, MSC-EVs demonstrated anti-fibrotic properties associated with liver tissue regeneration. Normothermic-machine perfusion (NMP) combined with MSC-EVs represents an attractive therapy to improve liver regeneration before LT. Our review suggests a growing interest in MSC-EVs in liver failure and gives an appealing insight into their development to rehabilitate marginal liver grafts through NMP.
Collapse
Affiliation(s)
- Alexandre Sitbon
- Multidisciplinary Intensive Care Unit, Department of Anesthesiology and Critical Care, La Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris (APHP), Sorbonne University, Paris, France -
- UMRS-938, Research Center of Saint-Antoine (CRSA), Sorbonne University, Paris, France -
| | - Pierre-Romain Delmotte
- Multidisciplinary Intensive Care Unit, Department of Anesthesiology and Critical Care, La Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris (APHP), Sorbonne University, Paris, France
| | - Claire Goumard
- UMRS-938, Research Center of Saint-Antoine (CRSA), Sorbonne University, Paris, France
- Department of Digestive, Hepatobiliary Surgery and Liver Transplantation, Assistance Publique-Hôpitaux de Paris (APHP), Sorbonne University, Paris, France
| | - Célia Turco
- UMRS-938, Research Center of Saint-Antoine (CRSA), Sorbonne University, Paris, France
- Liver Transplantation Unit, Department of Digestive and Oncologic Surgery, University Hospital of Besançon, Besançon, France
| | - Jérémie Gautheron
- UMRS-938, Research Center of Saint-Antoine (CRSA), Sorbonne University, Paris, France
| | - Filomena Conti
- UMRS-938, Research Center of Saint-Antoine (CRSA), Sorbonne University, Paris, France
- Department of Digestive, Hepatobiliary Surgery and Liver Transplantation, Assistance Publique-Hôpitaux de Paris (APHP), Sorbonne University, Paris, France
- IHU-Innovation of Cardiometabolism and Nutrition (ICAN), INSERM, Sorbonne University, Paris, France
| | - Lynda Aoudjehane
- UMRS-938, Research Center of Saint-Antoine (CRSA), Sorbonne University, Paris, France
- IHU-Innovation of Cardiometabolism and Nutrition (ICAN), INSERM, Sorbonne University, Paris, France
| | - Olivier Scatton
- UMRS-938, Research Center of Saint-Antoine (CRSA), Sorbonne University, Paris, France
- Department of Digestive, Hepatobiliary Surgery and Liver Transplantation, Assistance Publique-Hôpitaux de Paris (APHP), Sorbonne University, Paris, France
| | - Antoine Monsel
- Multidisciplinary Intensive Care Unit, Department of Anesthesiology and Critical Care, La Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris (APHP), Sorbonne University, Paris, France
- INSERM UMRS-959 Immunology-Immunopathology-Immunotherapy (I3), Sorbonne University, Paris, France
| |
Collapse
|
169
|
Du YN, Teng JM, Zhou TH, Du BY, Cai W. Meteorin-like protein overexpression ameliorates fulminant hepatitis in mice by inhibiting chemokine-dependent immune cell infiltration. Acta Pharmacol Sin 2023; 44:1404-1415. [PMID: 36721008 PMCID: PMC10310738 DOI: 10.1038/s41401-022-01049-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 12/29/2022] [Indexed: 02/02/2023] Open
Abstract
Myokines, which are recently identified cytokines secreted by skeletal muscle in response to stimulation, are crucial for the maintenance of liver function. Fulminant hepatitis (FH) is a life-threatening pathological condition with severe hepatic dysfunction. In this study, we investigated the role of meteorin-like (METRNL), a new myokine, in the pathogenesis of FH. We compared serum samples and liver tissues from FH patients and healthy controls and found that hepatic and serum METRNL levels were significantly increased in FH patients, and serum METRNL levels were related to disease severity in FH patients. We then established a concanavalin A-induced FH model in METRNL-overexpressing and control mice. We found that hepatic METRNL levels in FH mice were significantly increased, and METRNL in the liver was mainly derived from macrophages. In the cultured mouse macrophage line (RAW264.7 cells) and mouse primary peritoneal macrophages (PMs), METRNL overexpression significantly inhibited the release of the proinflammatory cytokines TNF and IL-1β. In METRNL-overexpressing mice, concanavalin A-induced liver injury was significantly ameliorated. Moreover, METRNL overexpression significantly reduced chemokine-dependent inflammatory cell infiltration into the liver. METRNL overexpression also suppressed liver CD4+ T cell differentiation into Th 1 cells and inhibited the secretion of Th 1 cytokines. Taken together, these data suggest that METRNL overexpression effectively ameliorates FH. Therefore, METRNL may serve as a potential biomarker and therapeutic target for FH.
Collapse
Affiliation(s)
- Ya-Nan Du
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jia-Ming Teng
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Tian-Hui Zhou
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Bing-Ying Du
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Wei Cai
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
170
|
Shingina A, Mukhtar N, Wakim-Fleming J, Alqahtani S, Wong RJ, Limketkai BN, Larson AM, Grant L. Acute Liver Failure Guidelines. Am J Gastroenterol 2023; 118:1128-1153. [PMID: 37377263 DOI: 10.14309/ajg.0000000000002340] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 04/04/2023] [Indexed: 06/29/2023]
Abstract
Acute liver failure (ALF) is a rare, acute, potentially reversible condition resulting in severe liver impairment and rapid clinical deterioration in patients without preexisting liver disease. Due to the rarity of this condition, published studies are limited by the use of retrospective or prospective cohorts and lack of randomized controlled trials. Current guidelines represent the suggested approach to the identification, treatment, and management of ALF and represent the official practice recommendations of the American College of Gastroenterology. The scientific evidence was reviewed using the Grading of Recommendations, Assessment, Development and Evaluation process to develop recommendations. When no robust evidence was available, expert opinions were summarized using Key Concepts. Considering the variety of clinical presentations of ALF, individualization of care should be applied in specific clinical scenarios.
Collapse
Affiliation(s)
- Alexandra Shingina
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Nizar Mukhtar
- Department of Gastroenterology, Kaiser Permanente, San Francisco, California, USA
| | - Jamilé Wakim-Fleming
- Department of Gastroenterology, Hepatology & Nutrition, Digestive Disease and Surgery Institute, Cleveland Clinic Foundation, Cleveland Ohio, USA
| | - Saleh Alqahtani
- Division of Gastroenterology and Hepatology, Johns Hopkins University, Baltimore, Maryland, USA
- Liver Transplantation Unit, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Robert J Wong
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Palo Alto, California, Gastroenterology Section, Veterans Affairs Palo Alto Healthcare System, Palo Alto, California, USA
| | | | - Anne M Larson
- Division of Gastroenterology and Hepatology, University of Washington, Seattle, Washington, USA
| | - Lafaine Grant
- Division of Digestive and Liver Diseases, UT Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
171
|
Duan M, Liu X, Yang Y, Zhang Y, Wu R, Lv Y, Lei H. Orchestrated regulation of immune inflammation with cell therapy in pediatric acute liver injury. Front Immunol 2023; 14:1194588. [PMID: 37426664 PMCID: PMC10323196 DOI: 10.3389/fimmu.2023.1194588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/26/2023] [Indexed: 07/11/2023] Open
Abstract
Acute liver injury (ALI) in children, which commonly leads to acute liver failure (ALF) with the need for liver transplantation, is a devastating life-threatening condition. As the orchestrated regulation of immune hemostasis in the liver is essential for resolving excess inflammation and promoting liver repair in a timely manner, in this study we focused on the immune inflammation and regulation with the functional involvement of both innate and adaptive immune cells in acute liver injury progression. In the context of the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) pandemic, it was also important to incorporate insights from the immunological perspective for the hepatic involvement with SARS-CoV-2 infection, as well as the acute severe hepatitis of unknown origin in children since it was first reported in March 2022. Furthermore, molecular crosstalk between immune cells concerning the roles of damage-associated molecular patterns (DAMPs) in triggering immune responses through different signaling pathways plays an essential role in the process of liver injury. In addition, we also focused on DAMPs such as high mobility group box 1 (HMGB1) and cold-inducible RNA-binding protein (CIRP), as well as on macrophage mitochondrial DNA-cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signaling pathway in liver injury. Our review also highlighted novel therapeutic approaches targeting molecular and cellular crosstalk and cell-based therapy, providing a future outlook for the treatment of acute liver injury.
Collapse
Affiliation(s)
- Mingyue Duan
- Department of Clinical Laboratory, The Affiliated Children’s Hospital of Xi’an Jiaotong University, Xi’an, China
- Key Laboratory of Precision Medicine to Pediatric Diseases of Shaanxi Province, Shaanxi Institute for Pediatric Diseases, The Affiliated Children’s Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Xiaoguai Liu
- Department of Infectious Diseases, The Affiliated Children’s Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Ying Yang
- Key Laboratory of Precision Medicine to Pediatric Diseases of Shaanxi Province, Shaanxi Institute for Pediatric Diseases, The Affiliated Children’s Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yanmin Zhang
- Key Laboratory of Precision Medicine to Pediatric Diseases of Shaanxi Province, Shaanxi Institute for Pediatric Diseases, The Affiliated Children’s Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Rongqian Wu
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yi Lv
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Hong Lei
- Key Laboratory of Precision Medicine to Pediatric Diseases of Shaanxi Province, Shaanxi Institute for Pediatric Diseases, The Affiliated Children’s Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
172
|
McClure EW, Daniels RN. Classics in Chemical Neuroscience: Dextromethorphan (DXM). ACS Chem Neurosci 2023. [PMID: 37290117 DOI: 10.1021/acschemneuro.3c00088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023] Open
Abstract
Dextromethorphan (DXM) was introduced in 1958 as the first non-opioid cough suppressant and is indicated for multiple psychiatric disorders. It has been the most used over-the-counter cough suppressant since its emergence. However, individuals quickly noticed an intoxicating and psychedelic effect if they ingested large doses. DXM's antagonism at N-methyl-d-aspartate receptors (NMDAr) is thought to underly its efficacy in treating acute cough, but supratherapeutic doses mimic the activity of dissociative hallucinogens, such as phencyclidine and ketamine. In this Review we will discuss DXM's synthesis, manufacturing information, drug metabolism, pharmacology, adverse effects, recreational use, abuse potential, and its history and importance in therapy to present DXM as a true classic in chemical neuroscience.
Collapse
Affiliation(s)
- Elliot W McClure
- Department of Pharmaceutical Sciences, Lipscomb University College of Pharmacy, Nashville, Tennessee 37204, United States
| | - R Nathan Daniels
- Department of Pharmaceutical Sciences, Union University College of Pharmacy, Jackson, Tennessee 38305, United States
| |
Collapse
|
173
|
Abstract
Liver regeneration is a compensatory response to tissue injury and loss. It is known that liver regeneration plays a crucial role in recovery following acetaminophen (APAP)-induced hepatotoxicity, which is the major cause of acute liver failure (ALF) in the US. Regeneration increases proportional to the extent of liver injury upon APAP overdose, ultimately leading to regression of injury and spontaneous recovery in most cases. However, severe APAP overdose results in impaired liver regeneration and unchecked progression of liver injury, leading to failed recovery and mortality. Inter-communication between various cell types in the liver is important for effective regenerative response following APAP hepatotoxicity. Various non-parenchymal cells such macrophages, stellate cells, and endothelial cells produce mediators crucial for proliferation of hepatocytes. Liver regeneration is orchestrated by synchronized actions of several proliferative signaling pathways involving numerous kinases, nuclear receptors, transcription factors, transcriptional co-activators, which are activated by cytokines, growth factors, and endobiotics. Overt activation of anti-proliferative signaling pathways causes cell-cycle arrest and impaired liver regeneration after severe APAP overdose. Stimulating liver regeneration by activating proliferating signaling and suppressing anti-proliferative signaling in liver can prove to be important in developing novel therapeutics for APAP-induced ALF.
Collapse
Affiliation(s)
- Bharat Bhushan
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
- Pittsburgh Liver Research Center, University of Pittsburgh Medical Center, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Udayan Apte
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
174
|
Win S, Than TA, Kaplowitz N. c- Jun-N Terminal Kinase-Mediated Degradation of γ-Glutamylcysteine Ligase Catalytic Subunit Inhibits GSH Recovery After Acetaminophen Treatment: Role in Sustaining JNK Activation and Liver Injury. Antioxid Redox Signal 2023; 38:1071-1081. [PMID: 36333933 PMCID: PMC10425160 DOI: 10.1089/ars.2022.0119] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/01/2022] [Accepted: 10/22/2022] [Indexed: 11/08/2022]
Abstract
Aims: Acetaminophen (APAP) overdose is the most common cause of acute liver failure in the United States. Liver glutathione (GSH) depletion and sustained P-JNK (c-Jun-N-terminal kinase) activation are key modulators in the mechanism leading to hepatic necrosis. GSH depletion is directly related to the consumption of GSH by APAP metabolites N-acetyl-p-benzoquinone imine (NAPQI). We previously noticed that the glutamate-cysteine ligase catalytic subunit (GCLC), the rate-limiting enzyme in GSH synthesis, rapidly decreased at the same time P-JNK increased. Our aims were to determine if JNK was directly responsible for decreased GCLC causing impaired recovery of GSH and if this was an important factor in determining APAP hepatotoxicity. Results: Immunoprecipitation of JNK after APAP identified binding to GCLC. Expression of a site-directed mutated canonical JNK docking site in GCLC was resistant to degradation and led to rapid restoration of GSH and inhibited sustained JNK activation. The JNK-resistant GCLC markedly protected against necrosis and alanine aminotransferase (ALT) elevation. The proteolytic loss of GCLC was abrogated by inhibition of the proteasome, ubiquitination, or calpain. Innovation: Using mutated-GCLC resistant to JNK-induced degradation, the results allowed us to identify impaired GSH recovery as an important contributor to early progression of APAP toxicity after the metabolism of APAP and initial GSH depletion had occurred. Conclusion: Activated JNK interacts directly with GCLC and leads to proteolytic degradation of GCLC. Degradation of GCLC impairs GSH recovery after APAP allowing the continued activation of JNK. Conversely, rapid recovery of GSH inhibits the sustained activation of the mitogen-activated protein (MAP) kinase cascade and dampens APAP toxicity by suppressing the continued activation of JNK. Antioxid. Redox Signal. 38, 1071-1081.
Collapse
Affiliation(s)
- Sanda Win
- Division of Gastrointestinal and Liver Disease, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Tin Aung Than
- Division of Gastrointestinal and Liver Disease, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Neil Kaplowitz
- Division of Gastrointestinal and Liver Disease, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
175
|
Enke T, Livingston S, Rule J, Stravitz T, Rakela J, Bass N, Reuben A, Tujios S, Larson A, Sussman N, Durkalski V, Lee W, Ganger D. Autoimmune hepatitis presenting as acute liver failure: A 20-year retrospective review of North America. Liver Transpl 2023; 29:570-580. [PMID: 36825579 PMCID: PMC10192052 DOI: 10.1097/lvt.0000000000000105] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 01/12/2023] [Indexed: 02/25/2023]
Abstract
Autoimmune hepatitis is a common cause of acute liver failure. Treatment includes steroids for acute liver injury and liver transplantation in those who fail to respond or develop acute liver failure. The aim of this study is to further characterize acute liver failure secondary to autoimmune hepatitis and identify variables that predict 21-day transplant-free survival. This study included adults hospitalized with acute liver failure enrolled in the Acute Liver Failure Study Group Registry between 1998 and 2019 from 32 centers within the US. The etiology of all cases was reviewed by the Adjudication Committee, and all cases identified as autoimmune hepatitis were included. Acute liver injury was defined as an INR ≥2.0 without encephalopathy and acute liver failure as INR ≥ 1.5 with encephalopathy. Laboratory and clinical data were reviewed. Variables significantly associated with 21-day transplant-free survival were used to develop a multivariable logistic regression model. A total of 193 cases of acute liver failure secondary to autoimmune hepatitis were identified and reviewed. There were 161 patients (83.4%) diagnosed with acute liver failure on enrollment, and 32 (16.6%) developed acute liver failure during hospitalization. At 21 days, 115 (59.6%) underwent liver transplantation, 28 (14.5%) had transplant-free survival, and 46 (23.8%) died before liver transplantation. Higher admission values of bilirubin, INR, and coma grade were associated with worse outcomes. A prognostic index incorporating bilirubin, INR, coma grade, and platelet count had a concordance statistic of 0.84. Acute liver failure secondary to autoimmune hepatitis is associated with a high short-term mortality. We developed a model specifically for autoimmune hepatitis that may be helpful in predicting 21-day transplant-free survival and early identification of patients in need of expedited liver transplant evaluation.
Collapse
Affiliation(s)
| | | | - Jody Rule
- University of Texas Southwestern Medical Center
| | | | | | - Nathan Bass
- University of California San Francisco Medical Center
| | | | | | | | | | | | - William Lee
- University of Texas Southwestern Medical Center
| | | |
Collapse
|
176
|
Abstract
Mitochondria are critical organelles responsible for the maintenance of cellular energy homeostasis. Thus, their dysfunction can have severe consequences in cells responsible for energy-intensive metabolic function, such as hepatocytes. Extensive research over the last decades have identified compromised mitochondrial function as a central feature in the pathophysiology of liver injury induced by an acetaminophen (APAP) overdose, the most common cause of acute liver failure in the United States. While hepatocyte mitochondrial oxidative and nitrosative stress coupled with induction of the mitochondrial permeability transition are well recognized after an APAP overdose, recent studies have revealed additional details about the organelle's role in APAP pathophysiology. This concise review highlights these new advances, which establish the central role of the mitochondria in APAP pathophysiology, and places them in the context of earlier information in the literature. Adaptive alterations in mitochondrial morphology as well as the role of cellular iron in mitochondrial dysfunction and the organelle's importance in liver recovery after APAP-induced injury will be discussed.
Collapse
|
177
|
Rani R, Gandhi CR. Stellate cell in hepatic inflammation and acute injury. J Cell Physiol 2023; 238:1226-1236. [PMID: 37120832 DOI: 10.1002/jcp.31029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/05/2023] [Accepted: 04/07/2023] [Indexed: 05/02/2023]
Abstract
The perisinusoidal hepatic stellate cells (HSCs) have been investigated extensively for their role as the major fibrogenic cells during chronic liver injury. HSCs also produce numerous cytokines, chemokines, and growth mediators, and express cell adhesion molecules constitutively and in response to stimulants such as endotoxin (lipopolysaccharide). With this property and by interacting with resident and recruited immune and inflammatory cells, HSCs regulate hepatic immune homeostasis, inflammation, and acute injury. Indeed, experiments with HSC-depleted animal models and cocultures have provided evidence for the prominent role of HSCs in the initiation and progression of inflammation and acute liver damage due to various toxic agents. Thus HSCs and/or mediators derived thereof during acute liver damage may be considered as potential therapeutic targets.
Collapse
Affiliation(s)
- Richa Rani
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Research & Development, Cincinnati Veterans Administration Medical Center, Cincinnati, Ohio, USA
| | - Chandrashekhar R Gandhi
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Research & Development, Cincinnati Veterans Administration Medical Center, Cincinnati, Ohio, USA
- Department of Surgery, University of Cincinnati, Cincinnati, Ohio, USA
| |
Collapse
|
178
|
Zhang J, Gao J, Li X, Lin D, Li Z, Wang J, Chen J, Gao Z, Lin B. Bone marrow mesenchymal stem cell-derived small extracellular vesicles promote liver regeneration via miR-20a-5p/PTEN. Front Pharmacol 2023; 14:1168545. [PMID: 37305542 PMCID: PMC10248071 DOI: 10.3389/fphar.2023.1168545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/15/2023] [Indexed: 06/13/2023] Open
Abstract
Balancing hepatocyte death and proliferation is key to non-transplantation treatments for acute liver failure (ALF), which has a high short-term mortality rate. Small extracellular vesicles (sEVs) may act as mediators in the repair of damaged liver tissue by mesenchymal stem cells (MSCs). We aimed to investigate the efficacy of human bone marrow MSC-derived sEVs (BMSC-sEVs) in treating mice with ALF and the molecular mechanisms involved in regulating hepatocyte proliferation and apoptosis. Small EVs and sEV-free BMSC concentrated medium were injected into mice with LPS/D-GalN-induced ALF to assess survival, changes in serology, liver pathology, and apoptosis and proliferation in different phases. The results were further verified in vitro in L-02 cells with hydrogen peroxide injury. BMSC-sEV-treated mice with ALF had higher 24 h survival rates and more significant reductions in liver injury than mice treated with sEV-free concentrated medium. BMSC-sEVs reduced hepatocyte apoptosis and promoted cell proliferation by upregulating miR-20a-5p, which targeted the PTEN/AKT signaling pathway. Additionally, BMSC-sEVs upregulated the mir-20a precursor in hepatocytes. The application of BMSC-sEVs showed a positive impact by preventing the development of ALF, and may serve as a promising strategy for promoting ALF liver regeneration. miR-20a-5p plays an important role in liver protection from ALF by BMSC-sEVs.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Juan Gao
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xianlong Li
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Dengna Lin
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhihui Li
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jialei Wang
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Junfeng Chen
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhiliang Gao
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Bingliang Lin
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong, China
| |
Collapse
|
179
|
Gu L, He X, Zhang Y, Li S, Tang J, Ma R, Yang X, Huang H, Peng Y, Xie Y, Peng Z, Meng J, Hu G, Tao L, Liu X, Yang H. Fluorofenidone protects against acute liver failure in mice by regulating MKK4/JNK pathway. Biomed Pharmacother 2023; 164:114844. [PMID: 37224750 DOI: 10.1016/j.biopha.2023.114844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 04/20/2023] [Accepted: 05/04/2023] [Indexed: 05/26/2023] Open
Abstract
AIMS Acute liver failure (ALF) is a life-threatening disease characterized by abrupt and extensive hepatic necrosis and apoptosis, resulting in high mortality. The approved drug, N-acetylcysteine (NAC), is only effective for acetaminophen (APAP)-associated ALF at the early stage. Thus, we investigate whether fluorofenidone (AKF-PD), a novel antifibrosis pyridone agent, protects against ALF in mice and explore its underlying mechanisms. METHODS ALF mouse models were established using APAP or lipopolysaccharide/D-galactosamine (LPS/D-Gal). Anisomycin and SP600125 were used as JNK activator and inhibitor, respectively, and NAC served as a positive control. Mouse hepatic cell line AML12 and primary mouse hepatocytes were used for in vitro studies. RESULTS AKF-PD pretreatment alleviated APAP-induced ALF with decreased necrosis, apoptosis, reactive oxygen species (ROS) markers, and mitochondrial permeability transition in liver. Additionally, AKF-PD alleviated mitochondrial ROS stimulated by APAP in AML12 cells. RNA-sequencing in the liver and subsequent gene set enrichment analysis showed that AKF-PD significantly impacted MAPK and IL-17 pathway. In vitro and in vivo studies demonstrated that AKF-PD inhibited APAP-induced phosphorylation of MKK4/JNK, while SP600125 only inhibited JNK phosphorylation. The protective effect of AKF-PD was abolished by anisomycin. Similarly, AKF-PD pretreatment abolished hepatotoxicity caused by LPS/D-Gal, decreased ROS levels, and diminished inflammation. Furthermore, unlike NAC, AKF-PD, inhibited the phosphorylation of MKK4 and JNK upon pretreatment, and improved survival in cases of LPS/D-Gal-induced mortality with delayed dosing. CONCLUSIONS In summary, AKF-PD can protect against ALF caused by APAP or LPS/D-Gal, in part, via regulating MKK4/JNK pathway. AKF-PD might be a novel candidate drug for ALF.
Collapse
Affiliation(s)
- Lei Gu
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha 410008, China; Hunan Key Lab of Organ Fibrosis, Changsha 410008, China; National International Collaborative Research Center for Medical Metabolomics, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Xin He
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha 410008, China; Hunan Key Lab of Organ Fibrosis, Changsha 410008, China
| | - Yanqiu Zhang
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha 410008, China; Hunan Key Lab of Organ Fibrosis, Changsha 410008, China
| | - Shenglan Li
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha 410008, China; Hunan Key Lab of Organ Fibrosis, Changsha 410008, China
| | - Jie Tang
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Ruixue Ma
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Xinyi Yang
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Hao Huang
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha 410008, China; Hunan Key Lab of Organ Fibrosis, Changsha 410008, China; Department of Cell Biology, School of Life Sciences, Central South University, Changsha 410013, China
| | - Yu Peng
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yanyun Xie
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha 410008, China; Hunan Key Lab of Organ Fibrosis, Changsha 410008, China; National International Collaborative Research Center for Medical Metabolomics, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Zhangzhe Peng
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha 410008, China; Hunan Key Lab of Organ Fibrosis, Changsha 410008, China; National International Collaborative Research Center for Medical Metabolomics, Xiangya Hospital, Central South University, Changsha 410008, China.
| | - Jie Meng
- Hunan Key Lab of Organ Fibrosis, Changsha 410008, China; National International Collaborative Research Center for Medical Metabolomics, Xiangya Hospital, Central South University, Changsha 410008, China; Department of Respirology, Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Gaoyun Hu
- Hunan Key Lab of Organ Fibrosis, Changsha 410008, China; Faculty of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Lijian Tao
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha 410008, China; Hunan Key Lab of Organ Fibrosis, Changsha 410008, China; National International Collaborative Research Center for Medical Metabolomics, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Xiaowei Liu
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Huixiang Yang
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha 410008, China; Hunan Key Lab of Organ Fibrosis, Changsha 410008, China; National International Collaborative Research Center for Medical Metabolomics, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.
| |
Collapse
|
180
|
Belicard F, Pinceaux K, Le Pabic E, Coirier V, Delamaire F, Painvin B, Lesouhaitier M, Maamar A, Guillot P, Quelven Q, Houssel P, Boudjema K, Reizine F, Camus C. Bacterial and fungal infections: a frequent and deadly complication among critically ill acute liver failure patients. Infect Dis (Lond) 2023:1-10. [PMID: 37211670 DOI: 10.1080/23744235.2023.2213326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/03/2023] [Accepted: 05/07/2023] [Indexed: 05/23/2023] Open
Abstract
BACKGROUND Acute liver failure (ALF) is a rare but life-threatening condition mostly requiring intensive care unit (ICU) admission. ALF induces immune disorders and may promote infection acquisition. However, the clinical spectrum and impact on patients' prognosis remain poorly explored. METHODS We conducted a retrospective single-centre study on patients admitted for ALF to the ICU of a referral University Hospital from 2000 to 2021. Baseline characteristics and outcomes according to the presence of infection until day 28 were analysed. Risk factors for infection were determined using logistic regression. The impact of infection on 28-day survival was assessed using the proportional hazard Cox model. RESULTS Of the 194 patients enrolled, 79 (40.7%) underwent infection: community-acquired, hospital-acquired before ICU and ICU-acquired before/without and after transplant in 26, 23, 23 and 14 patients, respectively. Most infections were pneumonia (41.4%) and bloodstream infection (38.8%). Of a total of 130 microorganisms identified, 55 were Gram-negative bacilli (42.3%), 48 Gram-positive cocci (36.9%) and 21 were fungi (16.2%). Obesity (OR 3.77 [95% CI 1.18-14.40]; p = .03) and initial mechanical ventilation (OR 2.26 [95% CI 1.25-4.12]; p = .007) were independent factors associated with overall infection. SAPSII > 37 (OR 3.67 [95% CI 1.82-7.76], p < .001) and paracetamol aetiology (OR 2.10 [95% CI 1.06-4.22], p = .03) were independently associated with infection at admission to ICU. On the opposite, paracetamol aetiology was associated with lower risk of ICU-acquired infection (OR 0.37 [95% CI 0.16-0.81], p = .02). Patients with any type of infection had lower day 28 survival rates (57% versus 73%; HR 1.65 [1.01-2.68], p = .04). The presence of infection at ICU admission (p = .04), but not ICU-acquired infection, was associated with decreased survival. CONCLUSIONS The prevalence of infection is high in ALF patients which is associated with a higher risk of death. Further studies assessing the use of early antimicrobial therapy are needed.
Collapse
Affiliation(s)
- Félicie Belicard
- CHU Rennes, Maladies Infectieuses et Réanimation Médicale, Rennes, France
| | - Kieran Pinceaux
- CHU Rennes, Maladies Infectieuses et Réanimation Médicale, Rennes, France
| | | | - Valentin Coirier
- CHU Rennes, Maladies Infectieuses et Réanimation Médicale, Rennes, France
| | - Flora Delamaire
- CHU Rennes, Maladies Infectieuses et Réanimation Médicale, Rennes, France
| | - Benoît Painvin
- CHU Rennes, Maladies Infectieuses et Réanimation Médicale, Rennes, France
| | | | - Adel Maamar
- CHU Rennes, Maladies Infectieuses et Réanimation Médicale, Rennes, France
| | - Pauline Guillot
- CHU Rennes, Maladies Infectieuses et Réanimation Médicale, Rennes, France
| | - Quentin Quelven
- CHU Rennes, Maladies Infectieuses et Réanimation Médicale, Rennes, France
| | | | - Karim Boudjema
- CHU Rennes, Service de Chirurgie Hépatobiliaire et Digestive, Rennes, France
| | - Florian Reizine
- CHU Rennes, Maladies Infectieuses et Réanimation Médicale, Rennes, France
- CH Vannes, Service de Réanimation Polyvalente, Vannes, France
| | - Christophe Camus
- CHU Rennes, Maladies Infectieuses et Réanimation Médicale, Rennes, France
| |
Collapse
|
181
|
Hwang S, Hicks A, Hoo CZ, Kwon YS, Cho YE, Moore J, Gao B. Novel treatment of acute and acute-on-chronic liver failure: Interleukin-22. Liver Int 2023:10.1111/liv.15619. [PMID: 37208937 PMCID: PMC10657333 DOI: 10.1111/liv.15619] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/15/2023] [Accepted: 05/09/2023] [Indexed: 05/21/2023]
Abstract
Acute liver failure (ALF) is a life-threatening medical condition, characterized by rapidly progressive hepatic dysfunction, coagulopathy and hepatic encephalopathy in patients without chronic liver disease, while acute-on-chronic liver failure (ACLF) occurs in patients with existing chronic liver disease. ALF and ACLF are often associated with multiple organ failure and a high short-term mortality. In this review, we briefly discuss the causes and pathogenesis of ALF and ACLF, the current options available for the treatment of both deadly maladies and interleukin-22 (IL-22), a novel promising drug that may have great therapeutic potential for ALF and ACLF treatment. IL-22 is a cytokine produced by immune cells but mainly targets epithelial cells including hepatocytes. IL-22 has been shown to protect against organ damage and reduce bacterial infection in many preclinical models and several clinical trials including alcohol-associated hepatitis. The potential application of IL-22 for the treatment of ALF and ACLF is also elaborated.
Collapse
Affiliation(s)
- Seonghwan Hwang
- College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, Republic of Korea
| | - Amy Hicks
- Leeds Liver Unit, St James’s University Hospital, UK
| | - Chai Zhen Hoo
- Leeds Liver Unit, St James’s University Hospital, UK
| | - Yong Seong Kwon
- College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, Republic of Korea
| | - Ye Eun Cho
- College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, Republic of Korea
| | - Joanna Moore
- Leeds Liver Unit, St James’s University Hospital, UK
| | - Bin Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
182
|
Guo X, Zhang C, Bai Y, Che Q, Cao H, Guo J, Su Z. Synthesis of Chitosan Oligosaccharide-Loaded Glycyrrhetinic Acid Functionalized Mesoporous Silica Nanoparticles and In Vitro Verification of the Treatment of APAP-Induced Liver Injury. Molecules 2023; 28:molecules28104147. [PMID: 37241887 DOI: 10.3390/molecules28104147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/13/2023] [Accepted: 05/14/2023] [Indexed: 05/28/2023] Open
Abstract
OBJECTIVE the study was to find a suitable treatment for acute drug-induced liver injury. The use of nanocarriers can improve the therapeutic effect of natural drugs by targeting hepatocytes and higher loads. METHODS firstly, uniformly dispersed three-dimensional dendritic mesoporous silica nanospheres (MSNs) were synthesized. Glycyrrhetinic acid (GA) was covalently modified on MSN surfaces through amide bond and then loaded with COSM to form drug-loaded nanoparticles (COSM@MSN-NH2-GA). The constructed drug-loaded nano-delivery system was determined by characterization analysis. Finally, the effect of nano-drug particles on cell viability was evaluated and the cell uptake in vitro was observed. RESULTS GA was successfully modified to obtain the spherical nano-carrier MSN-NH2-GA (≤200 nm). The neutral surface charge improves its biocompatibility. MSN-NH2-GA has high drug loading (28.36% ± 1.00) because of its suitable specific surface area and pore volume. In vitro cell experiments showed that COSM@MSN-NH2-GA significantly enhanced the uptake of liver cells (LO2) and decreased the AST and ALT indexes. CONCLUSION this study demonstrated for the first time that formulation and delivery schemes using natural drug COSM and nanocarrier MSN have a protective effect on APAP-induced hepatocyte injury. This result provides a potential nano-delivery scheme for the targeted therapy of acute drug-induced liver injury.
Collapse
Affiliation(s)
- Xinghua Guo
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Chengcheng Zhang
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yan Bai
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China
| | - Qishi Che
- Guangzhou Rainhome Pharm & Tech Co., Ltd., Science City, Guangzhou 510663, China
| | - Hua Cao
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Jiao Guo
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zhengquan Su
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China
| |
Collapse
|
183
|
Ding M, Huang W, Liu G, Zhai B, Yan H, Zhang Y. Integration of ATAC-Seq and RNA-Seq reveals FOSL2 drives human liver progenitor-like cell aging by regulating inflammatory factors. BMC Genomics 2023; 24:260. [PMID: 37173651 PMCID: PMC10182660 DOI: 10.1186/s12864-023-09349-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
BACKGROUND Human primary hepatocytes (PHCs) are considered to be the best cell source for cell-based therapies for the treatment of end-stage liver disease and acute liver failure. To obtain sufficient and high-quality functional human hepatocytes, we have established a strategy to dedifferentiate human PHCs into expandable hepatocyte-derived liver progenitor-like cells (HepLPCs) through in vitro chemical reprogramming. However, the reduced proliferative capacity of HepLPCs after long-term culture still limits their utility. Therefore, in this study, we attempted to explore the potential mechanism related to the proliferative ability of HepLPCs in vitro culture. RESULTS In this study, analysis of assay for transposase accessible chromatin using sequencing (ATAC-seq) and RNA sequencing (RNA-seq) were performed for PHCs, proliferative HepLPCs (pro-HepLPCs) and late-passage HepLPCs (lp-HepLPCs). Genome-wide transcriptional and chromatin accessibility changes during the conversion and long-term culture of HepLPCs were studied. We found that lp-HepLPCs exhibited an aged phenotype characterized by the activation of inflammatory factors. Epigenetic changes were found to be consistent with our gene expression findings, with promoter and distal regions of many inflammatory-related genes showing increased accessibility in the lp-HepLPCs. FOSL2, a member of the AP-1 family, was found to be highly enriched in the distal regions with increased accessibility in lp-HepLPCs. Its depletion attenuated the expression of aging- and senescence-associated secretory phenotype (SASP)-related genes and resulted in a partial improvement of the aging phenotype in lp-HepLPCs. CONCLUSIONS FOSL2 may drive the aging of HepLPCs by regulating inflammatory factors and its depletion may attenuate this phenotypic shift. This study provides a novel and promising approach for the long-term in vitro culture of HepLPCs.
Collapse
Affiliation(s)
- Min Ding
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
- Department of Interventional Oncology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, China
| | - Weijian Huang
- Department of Anesthesiology and Critical Care Medicine, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, China
| | - Guifen Liu
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Bo Zhai
- Department of Interventional Oncology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, China.
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Hexin Yan
- Department of Interventional Oncology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, China.
- Department of Anesthesiology and Critical Care Medicine, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, China.
- Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, China.
| | - Yong Zhang
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
184
|
Nguyen NT, Umbaugh DS, Smith S, Adelusi OB, Sanchez-Guerrero G, Ramachandran A, Jaeschke H. Dose-dependent pleiotropic role of neutrophils during acetaminophen-induced liver injury in male and female mice. Arch Toxicol 2023; 97:1397-1412. [PMID: 36928416 PMCID: PMC10680445 DOI: 10.1007/s00204-023-03478-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/02/2023] [Indexed: 03/18/2023]
Abstract
Acetaminophen (APAP) overdose is the leading cause of acute liver failure in western countries. APAP can cause extensive hepatocellular necrosis, which triggers an inflammatory response involving neutrophil and monocyte recruitment. Particularly the role of neutrophils in the injury mechanism of APAP hepatotoxicity has been highly controversial. Thus, the objective of the current study was to assess whether a potential contribution of neutrophils was dependent on the APAP dose and the sex of the animals. Male and female C57BL/6 J mice were treated with 300 or 600 mg/kg APAP and the injury and inflammatory cell recruitment was evaluated between 6 and 48 h. In both male and female mice, ALT plasma levels and the areas of necrosis peaked at 12-24 h after both doses with more severe injury at the higher dose. In addition, Ly6g-positive neutrophils started to accumulate in the liver at 6 h and peaked at 6-12 h after 300 mg/kg and 12-24 h after 600 mg/kg for both sexes; however, the absolute numbers of hepatic neutrophils in the liver were significantly higher after the 600 mg/kg dose. Neutrophil infiltration correlated with mRNA levels of the neutrophil chemoattractant Cxcl2 in the liver. Treating mice with an anti-Cxcl2 antibody at 2 h after APAP significantly reduced neutrophil accumulation at 24 h after both doses and in both sexes. However, the injury was significantly reduced only after the high overdose. Thus, neutrophils, recruited through Cxcl2, have no effect on APAP-induced liver injury after 300 mg/kg but aggravate the injury only after severe overdoses.
Collapse
Affiliation(s)
- Nga T Nguyen
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd, MS 1018, Kansas City, Kansas, 66160, USA
| | - David S Umbaugh
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd, MS 1018, Kansas City, Kansas, 66160, USA
| | - Sawyer Smith
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd, MS 1018, Kansas City, Kansas, 66160, USA
| | - Olamide B Adelusi
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd, MS 1018, Kansas City, Kansas, 66160, USA
| | - Giselle Sanchez-Guerrero
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd, MS 1018, Kansas City, Kansas, 66160, USA
| | - Anup Ramachandran
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd, MS 1018, Kansas City, Kansas, 66160, USA
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd, MS 1018, Kansas City, Kansas, 66160, USA.
| |
Collapse
|
185
|
Zhao J, Jeong H, Yang D, Tian W, Kim JW, Woong Lim C, Kim B. Toll-like receptor-7 signaling in Kupffer cells exacerbates concanavalin A-induced liver injury in mice. Int Immunopharmacol 2023; 119:110238. [PMID: 37126986 DOI: 10.1016/j.intimp.2023.110238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 04/19/2023] [Accepted: 04/21/2023] [Indexed: 05/03/2023]
Abstract
Concanavalin A (ConA) is a plant lectin that can induce immune-mediated liver damage. ConA induced liver damage animal model is a widely accepted model that can mimic clinical acute hepatitis and immune-mediated liver injury in humans. Toll-like receptor-7 (TLR7), a member of the TLR family, plays a key role in pathogen recognition and innate immune activation. The aim of this study was to examine the role of TLR7 in the pathogenesis of ConA-induced liver injury. Acute liver injury was induced by intravenous injection with ConA in WT (wild-type) and TLR7 knockout (KO) mice. Results showed that attenuated liver injury in TLR7-deficient mice, as indicated by increased survival rate, decreased aminotransferase levels, and reduced pathological lesions, was associated with decreased release of pro-inflammatory cytokines in livers. Consistently, significantly decreased proliferation of CD4+ T cell was detected in ConA-stimulated TLR7-deficient splenocytes, but not in CD3/CD28 stimulated TLR7-deficient CD4+ T cells. Moreover, TLR7 deficiency in KCs specifically suppressed the expression of TNF-α (tumor necrosis factor-α). Depletion of KCs abolished the detrimental role of TLR7 in ConA-induced liver injury. Taken together, these results demonstrate that TLR7 can regulate the expression of TNF-α in KCs, which is necessary for the full progression of ConA-induced liver injury.
Collapse
Affiliation(s)
- Jing Zhao
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, People's Republic of China; Biosafety Research Institute and College of Veterinary Medicine, Jeonbuk National University, Iksan, Jeonbuk, Republic of Korea.
| | - Hyuneui Jeong
- Biosafety Research Institute and College of Veterinary Medicine, Jeonbuk National University, Iksan, Jeonbuk, Republic of Korea.
| | - Daram Yang
- Biosafety Research Institute and College of Veterinary Medicine, Jeonbuk National University, Iksan, Jeonbuk, Republic of Korea.
| | - Weishun Tian
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, People's Republic of China.
| | - Jong-Won Kim
- Biosafety Research Institute and College of Veterinary Medicine, Jeonbuk National University, Iksan, Jeonbuk, Republic of Korea.
| | - Chae Woong Lim
- Biosafety Research Institute and College of Veterinary Medicine, Jeonbuk National University, Iksan, Jeonbuk, Republic of Korea.
| | - Bumseok Kim
- Biosafety Research Institute and College of Veterinary Medicine, Jeonbuk National University, Iksan, Jeonbuk, Republic of Korea.
| |
Collapse
|
186
|
Xiang DD, Liu JT, Zhong ZB, Xiong Y, Kong HY, Yu HJ, Peng T, Huang JQ. MicroRNA-29a-3p Prevents Drug-Induced Acute Liver Failure through Inflammation-Related Pyroptosis Inhibition. Curr Med Sci 2023:10.1007/s11596-023-2734-5. [PMID: 37115401 DOI: 10.1007/s11596-023-2734-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/24/2023] [Indexed: 04/29/2023]
Abstract
OBJECTIVE Little is known about the role of microRNA-29a-3p (miR-29a-3p) in inflammation-related pyroptosis, especially in drug-induced acute liver failure (DIALF). This study aimed to identify the relationship between miR-29a-3p and inflammation-related pyroptosis in DIALF and confirm its underlying mechanisms. METHODS Thioacetamide (TAA)- and acetaminophen (APAP)-induced ALF mouse models were established, and human samples were collected. The expression levels of miR-29a-3p and inflammation and pyroptosis markers were measured by quantitative real-time polymerase chain reaction (qRT-PCR), Western blotting, or immunochemical staining in miR-29a-3p knock-in transgenic mouse (MIR29A(KI/KI)) DIALF models. In addition, RNA sequencing was conducted to explore the mechanisms. RESULTS MiR-29a-3p levels were decreased in TAA- and APAP-induced DIALF models. MiR-29a-3p prevented DIALF caused by TAA and APAP. RNA sequencing and further experiments showed that the protective effect of miR-29a-3p on DIALF was mainly achieved through inhibition of inflammation-related pyroptosis, and the inhibition was dependent on activation of the PI3K/AKT pathway. In addition, miR-29a-3p levels were reduced, and pyroptosis was activated in both peripheral blood mononuclear cells and liver tissues of DIALF patients. CONCLUSION The study supports the idea that miR-29a-3p inhibits pyroptosis by activating the PI3K/AKT pathway to prevent DIALF. MiR-29a-3p may be a promising therapeutic target for DIALF.
Collapse
Affiliation(s)
- Dan-Dan Xiang
- Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jing-Tao Liu
- Department of Histology and Embryology, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zi-Biao Zhong
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan, 430071, China
| | - Yan Xiong
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan, 430071, China
| | - Hong-Yan Kong
- Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hai-Jing Yu
- Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ting Peng
- Department of Histology and Embryology, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Jia-Quan Huang
- Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
187
|
Kasper P, Demir M, Chon SH, Bruns CJ, Goeser T, Michels G. [Gastrointestinal and hepatic emergencies in acute and emergency care]. Med Klin Intensivmed Notfmed 2023; 118:319-328. [PMID: 37099149 DOI: 10.1007/s00063-023-01006-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 04/27/2023]
Abstract
Acute gastrointestinal emergencies are one of the most common presentations to the emergency department. If the main symptom is acute abdominal pain, this is referred to as "acute abdomen". An acute abdomen demands urgent attention and treatment and can be caused by different pathologies (e.g., peptic ulcer disease, acute pancreatitis, diverticulitis). Hepatic emergencies include acute liver failure and acute-on-chronic liver failure. Due to the large number of possible differential diagnoses with variable clinical symptoms, rapid diagnosis of the underlying etiology of gastrointestinal and liver emergencies is a major challenge in daily clinical practice. A structured approach and prompt initiation of adequate diagnostic and treatment measures are essential in order to reduce mortality.
Collapse
Affiliation(s)
- Philipp Kasper
- Klinik für Gastroenterologie und Hepatologie, Universitätsklinikum Köln, Köln, Deutschland
| | - Münevver Demir
- Medizinische Klinik mit Schwerpunkt Hepatologie und Gastroenterologie, Charité Campus Mitte und Campus Virchow-Klinikum, Charité Universitätsmedizin Berlin, Berlin, Deutschland
| | - Seung-Hun Chon
- Klinik für Gastroenterologie und Hepatologie, Universitätsklinikum Köln, Köln, Deutschland
- Klinik für Allgemein‑, Viszeral‑, Tumor- und Transplantationschirurgie, Universitätsklinikum Köln, Köln, Deutschland
| | - Christiane J Bruns
- Klinik für Allgemein‑, Viszeral‑, Tumor- und Transplantationschirurgie, Universitätsklinikum Köln, Köln, Deutschland
| | - Tobias Goeser
- Klinik für Gastroenterologie und Hepatologie, Universitätsklinikum Köln, Köln, Deutschland
| | - Guido Michels
- Klinik für Akut- und Notfallmedizin, St.-Antonius-Hospital gGmbH, Dechant-Deckers-Str. 8, 52249, Eschweiler, Deutschland.
| |
Collapse
|
188
|
Hrynkiewicz R, Niedźwiedzka-Rystwej P. Etiology of viral induced acute liver failure and defensins as potential therapeutic agents in ALF treatment. Front Immunol 2023; 14:1153528. [PMID: 37153560 PMCID: PMC10160486 DOI: 10.3389/fimmu.2023.1153528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 04/12/2023] [Indexed: 05/09/2023] Open
Abstract
Acute liver failure (ALF) is a rare and severe disease, which, despite continuous advances in medicine, is still characterized by high mortality (65-85%). Very often, a liver transplant is the only effective treatment for ALF. Despite the implementation of prophylactic vaccinations in the world, the viral background of ALF is still a problem and leads to many deaths. Depending on the cause of ALF, it is sometimes possible to reverse this condition with appropriate therapies, which is why the search for effective antiviral agents seems to be a very desirable direction of research. Defensins, which are our natural antimicrobial peptides, have a very high potential to be used as therapeutic agents for infectious liver diseases. Previous studies on the expression of human defensins have shown that increased expression of human α and β-defensins in HCV and HBV infections is associated with a better response to treatment. Unfortunately, conducting clinical trials for ALF is very difficult due to the severity of the disease and the low incidence, therefore animal models are important for the development of new therapeutic strategies. One of the best animal models that has real reference to research on acute liver failure (ALF) is rabbit hemorrhagic disease in rabbits caused by the Lagovirus europaeus virus. So far, there have been no studies on the potential of defensins in rabbits infected with Lagovirus europaeus virus.
Collapse
|
189
|
Zeng Y, Wu R, Wang F, Li S, Li L, Li Y, Qin P, Wei M, Yang J, Wu J, Chen A, Ke G, Yan Z, Yang H, Chen Z, Wang Z, Xiao W, Jiang Y, Chen X, Zeng Z, Zhao X, Chen P, Gong S. Liberation of daidzein by gut microbial β-galactosidase suppresses acetaminophen-induced hepatotoxicity in mice. Cell Host Microbe 2023; 31:766-780.e7. [PMID: 37100057 DOI: 10.1016/j.chom.2023.04.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 02/11/2023] [Accepted: 04/03/2023] [Indexed: 04/28/2023]
Abstract
Acetaminophen (APAP) overdose is a leading cause of drug-induced liver injury (DILI). The impact of the gut microbiota and associated metabolites on APAP and liver function remains unclear. We show that APAP disturbance is associated with a distinct gut microbial community, with notable decreases in Lactobacillus vaginalis. Mice receiving L. vaginalis showed resistance to APAP hepatotoxicity due to the liberation of the isoflavone daidzein from the diet by bacterial β-galactosidase. The hepatoprotective effects of L. vaginalis in APAP-exposed germ-free mice were abolished with a β-galactosidase inhibitor. Similarly, β-galactosidase-deficient L. vaginalis produced poorer outcomes in APAP-treated mice than the wild-type strain, but these differences were overcome with daidzein administration. Mechanistically, daidzein prevented ferroptotic death, which was linked to decreased expression of farnesyl diphosphate synthase (Fdps) that activated a key ferroptosis pathway involving AKT-GSK3β-Nrf2. Thus, liberation of daidzein by L. vaginalis β-galactosidase inhibits Fdps-mediated hepatocyte ferroptosis, providing promising therapeutic approaches for DILI.
Collapse
Affiliation(s)
- Yunong Zeng
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Rong Wu
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Fangzhao Wang
- Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Shan Li
- Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Lei Li
- Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yanru Li
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Ping Qin
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Mingyuan Wei
- Institute of Ecological Science, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Junhao Yang
- Institute of Ecological Science, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Jie Wu
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Ali Chen
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Guibao Ke
- Department of Nephrology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510120, China
| | - Zhengzheng Yan
- Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Hong Yang
- Department of Critical Care Medicine, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510665, China
| | - Zhongqing Chen
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Zhang Wang
- Institute of Ecological Science, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Wei Xiao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yong Jiang
- Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xia Chen
- Department of Obstetrics and Gynecology, First People's Hospital of Foshan, Foshan 528000, China
| | - Zhenhua Zeng
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| | - Xiaoshan Zhao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China.
| | - Peng Chen
- Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Shenhai Gong
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
190
|
Zhou Z, Qi J, Wu Y, Li C, Bao W, Lin X, Zhu A. Nuciferine Effectively Protects Mice against Acetaminophen-Induced Liver Injury. Antioxidants (Basel) 2023; 12:antiox12040949. [PMID: 37107324 PMCID: PMC10136285 DOI: 10.3390/antiox12040949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/13/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Acetaminophen (APAP) overdose still poses a major clinical challenge and is a leading cause of acute liver injury (ALI). N-acetylcysteine (NAC) is the only approved antidote to treat APAP toxicity while NAC therapy can trigger side effects including severe vomiting and even shock. Thus, new insights in developing novel therapeutic drugs may pave the way for better treatment of APAP poisoning. Previous research has reported that nuciferine (Nuci) possesses anti-inflammatory and antioxidant properties. Therefore, the objective of this study was proposed to investigate the hepatoprotective effects of Nuci and explore its underlying mechanisms. Mice were intraperitoneally (i.p.) administered with APAP (300 mg/kg) and subsequently injected with Nuci (25, 50, and 100 mg/kg, i.p.) at 30 min after APAP overdose. Then, all mice were sacrificed at 12 h after APAP challenge for further analysis. Nuci-treated mice did not show any side effects and our results revealed that treating Nuci significantly attenuated APAP-induced ALI, as confirmed by histopathological examinations, biochemical analysis, and diminished hepatic oxidative stress and inflammation. The in silico prediction and mRNA-sequencing analysis were performed to explore the underlying mechanisms of Nuci. GO and KEGG enrichment of the predicted target proteins of Nuci includes reactive oxygen species, drug metabolism of cytochrome P450 (CYP450) enzymes, and autophagy. Furthermore, the mRNA-sequencing analyses indicated that Nuci can regulate glutathione metabolic processes and anti-inflammatory responses. Consistently, we found that Nuci increased the hepatic glutathione restoration but decreased APAP protein adducts in damaged livers. Western blot analysis further confirmed that Nuci effectively promoted hepatic autophagy in APAP-treated mice. However, Nuci could not affect the expression levels of the main CYP450 enzymes (CYP1A2, CYP2E1, and CYP3A11). These results demonstrated that Nuci may be a potential therapeutic drug for APAP-induced ALI via amelioration of the inflammatory response and oxidative stress, regulation of APAP metabolism, and activation of autophagy.
Collapse
Affiliation(s)
- Zixiong Zhou
- Department of Pathology and Institute of Oncology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China
| | - Jing Qi
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China
| | - Yajiao Wu
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China
| | - Chutao Li
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China
| | - Wenqiang Bao
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China
| | - Xiaohuang Lin
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China
| | - An Zhu
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China
| |
Collapse
|
191
|
Wang Q, Peng X, Chen Y, Tang X, Qin Y, He M, Chen W, Chen H. Piezo1 alleviates acetaminophen-induced acute liver injury by activating Nrf2 and reducing mitochondrial reactive oxygen species. Biochem Biophys Res Commun 2023; 652:88-94. [PMID: 36841099 DOI: 10.1016/j.bbrc.2023.02.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 02/20/2023]
Abstract
Acetaminophen (APAP) overdose is the most common cause for acute liver failure (ALF) in the developed countries, with limited treatment options. Piezo1 is a mechanosensitive cation channel. We found that APAP caused upregulation of Piezo1 in both an APAP-induced acute liver injury (ALI) animal model and a mouse hepatocyte cell line AML12. Activation of Piezo1 by its activator Yoda1 reduced APAP-induced hepatotoxicity and ROS level. Mechanistically, activation of Piezo1 led to accumulation of the antioxidant regulator Nrf2 and upregulation of its target genes Nqo1 and Gsta1, while knockdown of Piezo1 downregulated this pathway. Finally, injection of Yoda1 decreased serum AST and ALT levels, reduced cell death and rescued liver injury in the APAP-induced ALI mouse model. Our findings suggested a previously undiscovered protective role of Piezo1 in APAP-induced ALI, which might shed light on a new therapeutic target for this disease.
Collapse
Affiliation(s)
- Qimeng Wang
- Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China; Cell-gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Xuyun Peng
- Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China; Cell-gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Yifan Chen
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Xiaoyan Tang
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Yunfei Qin
- Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China; Cell-gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Mian He
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China.
| | - Wenjie Chen
- Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China; Cell-gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China; Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China.
| | - Hui Chen
- Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China; Cell-gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China; Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China.
| |
Collapse
|
192
|
Ji J, Yang M, Jia J, Wu Q, Cong R, Cui H, Zhu B, Chu X. A novel variant in NBAS identified from an infant with fever-triggered recurrent acute liver failure disrupts the function of the gene. Hum Genome Var 2023; 10:13. [PMID: 37055399 PMCID: PMC10102179 DOI: 10.1038/s41439-023-00241-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 04/15/2023] Open
Abstract
Mutations in the neuroblastoma amplified sequence (NBAS) gene correlate with infantile acute liver failure (ALF). Herein, we identified a novel NBAS mutation in a female infant diagnosed with recurrent ALF. Whole-exome and Sanger sequencing revealed that the proband carried a compound heterozygous mutation (c.938_939delGC and c.1342 T > C in NBAS). NBAS c.938_939delGC was presumed to encode a truncated protein without normal function, whereas NBAS c.1342 T > C encoded NBAS harboring the conserved Cys448 residue mutated to Arg448 (p.C448R). The proportion of CD4 + T cells decreased in the patient's peripheral CD45 + cells, whereas that of CD8 + T cells increased. Moreover, upon transfecting the same amount of DNA expression vector (ectopic expression) encoding wild-type NBAS and p.C448R NBAS, the group transfected with the p.C448R NBAS-expressing vector expressed less NBAS mRNA and protein. Furthermore, ectopic expression of the same amount of p.C448R NBAS protein as the wild-type resulted in more intracellular reactive oxygen species and the induction of apoptosis and expression of marker proteins correlating with endoplasmic reticulum stress in more cultured cells. This study indicated that p.C448R NBAS has a function different from that of wild-type NBAS and that the p.C448R NBAS mutation potentially affects T-cell function and correlates with ALF.
Collapse
Affiliation(s)
- Juhua Ji
- Department of Pediatrics, The Second Affiliated Hospital of Nantong University, 226001, Nantong, Jiangsu, China
| | - Mingming Yang
- Department of Biochemistry and Molecular Biology, School of Medicine, Nantong University, 226001, Nantong, Jiangsu, China
| | - JunJun Jia
- Qinshen Traditional Chinese Medicine (TCM) Outpatient Department, 20052, Shanghai, China
| | - Qi Wu
- Department of Emergency, The Second Affiliated Hospital of Nantong University, 226001, Nantong, Jiangsu, China
| | - Ruochen Cong
- Department of Radiology, The Second Affiliated Hospital of Nantong University, 226001, Nantong, Jiangsu, China
| | - Hengxiang Cui
- Medical Research Center, The Second Affiliated Hospital of Nantong University, 226001, Nantong, Jiangsu, China.
| | - Baofeng Zhu
- Department of Emergency, The Second Affiliated Hospital of Nantong University, 226001, Nantong, Jiangsu, China.
| | - Xin Chu
- Department of Emergency, The Second Affiliated Hospital of Nantong University, 226001, Nantong, Jiangsu, China.
| |
Collapse
|
193
|
Guo G, Yang W, Sun C, Wang X. Dissecting the potential role of ferroptosis in liver diseases: an updated review. Free Radic Res 2023; 57:282-293. [PMID: 37401821 DOI: 10.1080/10715762.2023.2232941] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/21/2023] [Accepted: 06/29/2023] [Indexed: 07/05/2023]
Abstract
Ferroptosis is a novel form of cell death, manifested by iron-dependent, non-apoptotic manner resulting from the intracellular accumulation of large clusters of reactive oxygen species (ROS) and lipid peroxides due to abnormal iron metabolism. Since the liver is the main organ of human body for storing iron, it is essential to perform in-depth investigation on the role and mechanistic basis of ferroptosis in the context of divergent liver diseases. We previously summarized the emerging role of ferroptosis among various liver diseases, however, the past few years have been a surge in research establishing ferroptosis as the molecular basis or treatment option. This review article concentrated on the accumulating research progress of ferroptosis in a range of liver diseases such as acute liver injury/failure (ALI/ALF), immune-mediated hepatitis, alcoholic liver disease (ALD), nonalcoholic fatty liver disease and liver fibrosis. Ferroptosis may be a promising target for the prevention and treatment of various liver diseases, providing a strategy for exploring new therapeutic avenues for these entities.
Collapse
Affiliation(s)
- Gaoyue Guo
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
| | - Wanting Yang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
| | - Chao Sun
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
- Department of Gastroenterology, Tianjin Medical University General Hospital Airport Hospital, Tianjin, China
| | - Xiaoyu Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
194
|
Bak SB, Song YR, Bae SJ, Lee WY, Kim YW. Integrative approach to uncover antioxidant properties of Bupleuri Radix and its active compounds: Multiscale interactome-level analysis with experimental validation. Free Radic Biol Med 2023; 199:141-153. [PMID: 36841364 DOI: 10.1016/j.freeradbiomed.2023.02.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/03/2023] [Accepted: 02/19/2023] [Indexed: 02/27/2023]
Abstract
Acute and chronic liver disease are global problems with high morbidity and mortality. Bupleuri Radix (BR) is an herbal medicine that has been prescribed empirically in traditional Asian medicine to modulate liver metabolism. However, its active compounds and therapeutic mechanisms remain unclear. Here, we integrated a network-based approach and experimental validation to elucidate BR's therapeutic potential in treating oxidative liver injury. Our approach incorporated data collection and network construction utilizing bioinformatics tools, and identified active compounds and key mechanisms based on the multiscale interactome. The proposed mechanisms were validated using an in vitro oxidative stress model and an in vivo carbon tetrachloride-induced model. We found that BR ameliorated the oxidative hepatic damage by acting on multiple proteins (STAT3, TNF, and BCL2) and signaling pathways (AMPK and Hippo signaling pathways). Subsequent in vitro experiments confirmed that BR significantly inhibited oxidative stress and mitochondrial damage. We further validated the effect of BR on the AMPK and Hippo-YAP pathways; a key mechanism for the antioxidant properties of BR. We prioritized the active compounds in BR based on a multiscale interactome-based approach, and further experiments revealed that saikosaponin A was a key active compound involved in hepatocyte protection (EC50 = 50 μM), similar to the result using metformin and 5-aminoimidazole-4-carboxamide ribonucleotide. Histochemistry and blood biochemistry established that BR significantly inhibited carbon tetrachloride-induced oxidative tissue damage in mice. Thus, BR can be used to develop novel therapeutics for oxidative liver injury. Moreover, we suggest a novel strategy to prioritize and validate the active compounds and key mechanisms of herbal medicine based on the multiscale interactome.
Collapse
Affiliation(s)
- Seon Been Bak
- School of Korean Medicine, Dongguk University, Gyeonju, 38066, South Korea
| | - Yu Rim Song
- School of Korean Medicine, Dongguk University, Gyeonju, 38066, South Korea
| | - Su-Jin Bae
- School of Korean Medicine, Dongguk University, Gyeonju, 38066, South Korea
| | - Won-Yung Lee
- School of Korean Medicine, Dongguk University, Gyeonju, 38066, South Korea.
| | - Young Woo Kim
- School of Korean Medicine, Dongguk University, Gyeonju, 38066, South Korea; Department of Computer Science and Engineering, Kyungpook National University, Daegu, 41566, South Korea.
| |
Collapse
|
195
|
Rakela JL, Karvellas CJ, Koch DG, Vegunta S, Lee WM. Acute Liver Failure: Biomarkers Evaluated by the Acute Liver Failure Study Group. Clin Transl Gastroenterol 2023; 14:e00565. [PMID: 36716224 PMCID: PMC10132708 DOI: 10.14309/ctg.0000000000000565] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 01/20/2023] [Indexed: 01/31/2023] Open
Abstract
There has been a growing interest in identifying prognostic biomarkers that alone or with available prognostic models (King's College Criteria, KCC; MELD and ALFSG Prognostic Index) would improve prognosis in acute liver failure (ALF) patients being assessed for liver transplantation. The Acute Liver Failure Study Group (ALFSG) has evaluated 15 potential prognostic biomarkers: serum AFP; apoptosis-associated proteins; serum actin-free Gc-globulin; serum glycodeoxycholic acid; sRAGE/RAGE ligands; plasma osteopontin; circulating MBL, M-, L-, H-ficolin and CL-1; plasma galectin-9; serum FABP1; serum Lct2; miRNAs; factor V; thrombocytopenia, and sCD163. The ALFSG also has reported on 4 susceptibility biomarkers: keratins 8 and 18 (K8/K18) gene variants; polymorphisms of genes encoding putative APAP-metabolizing enzymes ( UGT1A1 , UGT 1A0 , UGT 2B15 , SULT1A1 , CYP2E1 , and CYP3A5 ) as well as CD44 and BHMT1 ; single nucleotide polymorphisms (SNPs) of genes associated with human behavior, rs2282018 in the arginine vasopressin ( AVP ) gene and rs11174811 in the AVP receptor 1A gene. Finally, rs2277680 of the CSCL16 gene in HBV-ALF patients. In conclusion, we have reviewed the prognostic and susceptibility biomarkers studied by the ALFSG. We suggest that a better approach to predicting the clinical outcome of an ALF patient will require a combination of biomarkers of pathogenic processes such as cell death, hepatic regeneration, and degree of inflammation that could be incorporated into prognostic models such as KCC, MELD or ALFSG PI.
Collapse
Affiliation(s)
- Jorge L. Rakela
- Division of Gastroenterology and Hepatology, Mayo Clinic in Arizona, Phoenix, Arizona, USA
| | - Constantine J. Karvellas
- Division of Gastroenterology (Liver Unit), Division of Critical Care Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - David G. Koch
- Division of Gastroenterology and Hepatology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Suneela Vegunta
- Department of Internal Medicine, Mayo Clinic in Arizona, Phoenix, Arizona, USA
| | - William M. Lee
- Division of Digestive and Liver Diseases, University of Texas Southwestern, Dallas, Texas, USA
| |
Collapse
|
196
|
Aobulikasimu N, Zheng D, Guan P, Xu L, Liu B, Li M, Huang X, Han L. The Anti-inflammatory Effects of Isoflavonoids from Radix Astragali in Hepatoprotective Potential against LPS/D-gal-induced Acute Liver Injury. PLANTA MEDICA 2023; 89:385-396. [PMID: 36509104 DOI: 10.1055/a-1953-0369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Radix Astragali (RA) is an important Traditional Chinese Medicine widely used in the treatment of various diseases, such as pneumonia, atherosclerosis, diabetes, kidney and liver fibrosis. The role of isoflavonoids from RA in the treatment of liver injury remains unclear. The study aimed to explore hepatoprotective and anti-inflammatory effects of isoflavonoids from Astragalus mongholicus. Network pharmacological analysis showed that RA had a multi-target regulating effect on alleviating liver injury and inhibiting inflammation through its active ingredients, among which isoflavones were closely related to its key molecular targets. The anti-inflammatory and liver protection effects of isoflavonoids of RA were investigated using lipopolysaccharide (LPS)-induced RAW 264.7 cells in vitro and LPS/D-galactosamine (D-gal)-induced acute liver injury mice in vivo. The experimental results showed that methylnissolin (ML) and methylnissolin-3-O-β-D-glucoside (MLG) presented more notable anti-inflammatory effects. Both of them suppressed the release of pro-inflammatory cytokines, such as iNOS, COX-2, IL-1β, IL-6, and TNF-α in LPS-stimulated RAW 264.7 cells. In vivo investigation demonstrated that ML markedly meliorated liver injury in LPS/D-gal-induced mice. Western blot results revealed that ML and MLG down-regulated the expression of proinflammatory cytokines via NF-κB signaling pathway. The isoflavonoids, methylnissolin (ML), and methylnissolin-3-O-β-D-glucoside (MLG), play a vital role in the hepatoprotective and anti-inflammatory effects of RA.
Collapse
Affiliation(s)
- Nuerbiye Aobulikasimu
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang, People's Republic of China
| | - Dan Zheng
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang, People's Republic of China
| | - Peipei Guan
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang, People's Republic of China
| | - Lixiao Xu
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang, People's Republic of China
| | - Bo Liu
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang, People's Republic of China
| | - Minglei Li
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang, People's Republic of China
| | - Xueshi Huang
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang, People's Republic of China
| | - Li Han
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang, People's Republic of China
| |
Collapse
|
197
|
Sharieff S, Idrees A, Rafai W, Bukhari SUS. Use of Oral N-Acetylcysteine (NAC) in Non-Acetaminophen-Induced Acute Hepatic Failure. Cureus 2023; 15:e35852. [PMID: 37033589 PMCID: PMC10077496 DOI: 10.7759/cureus.35852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2023] [Indexed: 03/09/2023] Open
Abstract
BACKGROUND Acute liver failure (ALF) is a syndrome rather than a specific disease with several possible causes, and viral hepatitis is a major cause. The objective of the study was to assess the benefit of N-acetylcysteine (NAC) in non-acetaminophen-induced acute liver failure (NAI-ALF). METHODS A total of six patients with a diagnosis of acute liver failure (ALF) were included in the study. All six patients received oral NAC for 72 hrs. The parameters evaluated were demographic, clinical, biochemical, outcome, and length of ICU and hospital stay. The primary outcome was a reduction in mortality with the use of NAC in NAI-ALF. The secondary outcomes were to evaluate the safety of NAC and assess factors predicting mortality. RESULTS All patients improved and returned to normal or near-normal liver function with the use of NAC. No side effects were noted, and the use of NAC was associated with a shorter hospital stay. CONCLUSION In patients with non-acetaminophen-related acute liver failure, N-acetyl-L-cysteine (NAC) significantly improves overall survival and also decreases the length of hospital stay.
Collapse
|
198
|
Tang S, Zhang X, Duan Z, Xu M, Kong M, Zheng S, Bai L, Chen Y. The novel hepatoprotective mechanisms of silibinin-phospholipid complex against d-GalN/LPS-induced acute liver injury. Int Immunopharmacol 2023; 116:109808. [PMID: 36764278 DOI: 10.1016/j.intimp.2023.109808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/18/2023] [Accepted: 01/27/2023] [Indexed: 02/11/2023]
Abstract
BACKGROUND & AIMS Silibinin-phospholipid complex (SPC) has been utilized to treat acute liver injury clinically. Nevertheless, the hepatoprotective mechanism of SPC remains to be further dissected in response to new insights into the pathogenesis of acute liver injury. Very recently, we have documented, for the first time, that M2-like macrophages exert the hepatoprotection against acute insult through inhibiting necroptosis-S100A9-necroinflammation. In the present work, we integrated this new finding into the mechanism of action of SPC, and attempted to dissect the hepatoprotective mechanism of SPC from this new perspective. METHODS SPC and corresponding controls were administered intragastrically into control mice subjected to d-GalN/LPS challenge. The hepatic damage was assessed, and the expression of necroptosis-S100A9-necroinflammation signaling molecules was detected. The correlation between SPC and macrophage activation was investigated. The expression of miR-223-3p and its regulation on macrophage activation were analyzed. The targeted inhibitory effects of miR-223-3p on necroptosis and necroinflammation signaling molecules were confirmed. RESULTS SPC alleviated remarkably the hepatic damage triggered by d-GalN/LPS. The administration of SPC inhibited the expression of necroptosis-S100A9-necroinflammation signaling molecules. The levels of M2-like macrophage markers were increased significantly in SPC-treated mice or macrophages. miR-223-3p expression was enhanced in SPC-treated mice. miR-223-3p transfer led to up-regulated expression of M2-like macrophage markers. miR-223-3p directly targeted 3' UTR of RIPK3 and NLRP3, and the expression of necroptosis and necroinflammation signaling molecules was inhibited in miR-223-3p-transferred hepatocytes and macrophages. CONCLUSIONS SPC alleviates acute liver injury through up-regulating the expression of miR-223-3p. MiR-223-3p further promotes M2-like macrophage activation and the targeted inhibition of necroptosis and necroinflammation. Our findings provide novel insight into the hepatoprotective mechanism of SPC against acute liver injury.
Collapse
Affiliation(s)
- Shan Tang
- Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment Research, Artificial Liver Center, Beijing YouAn Hospital, Capital Medical University, Beijing, 100069, China
| | - Xiaodan Zhang
- Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment Research, Artificial Liver Center, Beijing YouAn Hospital, Capital Medical University, Beijing, 100069, China
| | - Zhongping Duan
- Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment Research, Artificial Liver Center, Beijing YouAn Hospital, Capital Medical University, Beijing, 100069, China
| | - Manman Xu
- Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment Research, Artificial Liver Center, Beijing YouAn Hospital, Capital Medical University, Beijing, 100069, China
| | - Ming Kong
- Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment Research, Artificial Liver Center, Beijing YouAn Hospital, Capital Medical University, Beijing, 100069, China
| | - Sujun Zheng
- Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment Research, Artificial Liver Center, Beijing YouAn Hospital, Capital Medical University, Beijing, 100069, China
| | - Li Bai
- Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment Research, Artificial Liver Center, Beijing YouAn Hospital, Capital Medical University, Beijing, 100069, China.
| | - Yu Chen
- Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment Research, Artificial Liver Center, Beijing YouAn Hospital, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
199
|
Xu L, Wang H. A dual role of inflammation in acetaminophen-induced liver injury. LIVER RESEARCH 2023. [DOI: 10.1016/j.livres.2023.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
|
200
|
Highly efficient fabrication of functional hepatocyte spheroids by a magnetic system for the rescue of acute liver failure. Biomaterials 2023; 294:122014. [PMID: 36709644 DOI: 10.1016/j.biomaterials.2023.122014] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/12/2023] [Accepted: 01/14/2023] [Indexed: 01/21/2023]
Abstract
Engineering hepatocytes as multicellular cell spheroids can improve their viability after implantation in vivo for effective rescue of the devastating acute liver failure (ALF). However, there is still a lack of straightforward methods for efficient generation of functional hepatocyte spheroids. In this study, a magnetic system, consisting of magnetic microwell arrays and magnet blocks, is developed to realize magnetically controlled 3D cell capture and spatial confinement-mediated cell aggregation. The cell spheroids with smaller size show superior hepatic functions than the larger-sized counterparts. Notably, the intrinsic magnetism of magnetic microwell arrays can regulate superoxide anions in hepatocyte spheroids and herein promote various biological processes, including antioxidation, hepatocyte-related functions, and pro-angiogenic potential. Ectopic implantation of the functional cell spheroids in ALF-challenged mice significantly prolongs the animal survival, ameliorates inflammation, and promotes liver regeneration. Hence, application of the magnetic system for generation of functionally enhanced hepatocyte spheroids holds great potential for clinical translation in the future.
Collapse
|