151
|
Nilsson C, Edwards K, Eriksson J, Larsen SW, Østergaard J, Larsen C, Urtti A, Yaghmur A. Characterization of oil-free and oil-loaded liquid-crystalline particles stabilized by negatively charged stabilizer citrem. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:11755-11766. [PMID: 22831645 DOI: 10.1021/la3021244] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The present study was designed to evaluate the effect of the negatively charged food-grade emulsifier citrem on the internal nanostructures of oil-free and oil-loaded aqueous dispersions of phytantriol (PHYT) and glyceryl monooleate (GMO). To our knowledge, this is the first report in the literature on the utilization of this charged stabilizing agent in the formation of aqueous dispersions consisting of well-ordered interiors (either inverted-type hexagonal (H(2)) phases or inverted-type microemulsion systems). Synchrotron small-angle X-ray scattering (SAXS) and cryogenic transmission electron microscopy (cryo-TEM) were used to characterize the dispersed and the corresponding nondispersed phases of inverted-type nonlamellar liquid-crystalline phases and microemulsions. The results suggest a transition between different internal nanostructures of the aqueous dispersions after the addition of the stabilizer. In addition to the main function of citrem as a stabilizer that adheres to the surface of the dispersed particles, it has a significant impact on the internal nanostructures, which is governed by the following factors: (1) its penetration between the hydrophobic tails of the lipid molecules and (2) its degree of incorporation into the lipid-water interfacial area. In the presence of citrem, the formation of aqueous dispersions with functionalized hydrophilic domains by the enlargement of the hydrophilic nanochannels of the internal H(2) phase in hexosomes and the hydrophilic core of the L(2) phase in emulsified microemulsions (EMEs) could be particularly attractive for solubilizing and controlling the release of positively charged drugs.
Collapse
Affiliation(s)
- Christa Nilsson
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
152
|
Hunter AC, Elsom J, Wibroe PP, Moghimi SM. Polymeric particulate technologies for oral drug delivery and targeting: a pathophysiological perspective. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2012; 8 Suppl 1:S5-20. [PMID: 22846372 DOI: 10.1016/j.nano.2012.07.005] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 05/25/2012] [Indexed: 01/01/2023]
Abstract
The oral route for delivery of pharmaceuticals is the most widely used and accepted. Nanoparticles and microparticles are increasingly being applied within this arena to optimize drug targeting and bioavailability. Frequently the carrier systems used are either constructed from or contain polymeric materials. Examples of these nanocarriers include polymeric nanoparticles, solid lipid nanocarriers, self-nanoemulsifying drug delivery systems and nanocrystals. It is the purpose of this review to describe these cutting edge technologies and specifically focus on the interaction and fate of these polymers within the gastrointestinal system.
Collapse
Affiliation(s)
- A Christy Hunter
- University of Manchester, Department of Pharmacy and Pharmaceutical Sciences, Stopford Building, Oxford Road, Manchester, M13 9PT, United Kingdom.
| | | | | | | |
Collapse
|
153
|
Synthesis, characterization and applications of amphiphilic elastomeric polyurethane networks in drug delivery. Polym J 2012. [DOI: 10.1038/pj.2012.131] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
154
|
Saez V, Ramón J, Peniche C, Hardy E. Microencapsulation of Alpha Interferons in Biodegradable Microspheres. J Interferon Cytokine Res 2012; 32:299-311. [DOI: 10.1089/jir.2011.0034] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Vivian Saez
- Formulation Development Department, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - José Ramón
- Macromolecular Chemistry Department, Biomaterials Center (BIOMAT), Havana University. Havana, Cuba
| | - Carlos Peniche
- Macromolecular Chemistry Department, Biomaterials Center (BIOMAT), Havana University. Havana, Cuba
| | - Eugenio Hardy
- Institute for Science and Technology of Materials, Havana University, Havana, Cuba
| |
Collapse
|
155
|
Zhao M, Campolmi N, Thuret G, Piselli S, Acquart S, Peoc'h M, Gain P. Poloxamines for deswelling of organ-cultured corneas. Ophthalmic Res 2012; 48:124-33. [PMID: 22572891 DOI: 10.1159/000334981] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Accepted: 10/28/2011] [Indexed: 11/19/2022]
Abstract
BACKGROUND Poloxamines are amphiphilic tetrofunctional block copolymers composed of four polyoxyethylene-polyoxypropylene arms joined to a central ethylene diamine bridge. Their safe profile allows diverse pharmaceutical and biomedical applications. AIM To assess their use for corneal deswelling using a porcine model of organ culture (OC). METHODS Five poloxamines (T90R4, T904, T908, T1107 and T1307) were dissolved in a standard commercial OC medium (control) to reach 350 mosm kg(-1). In vitro cytotoxicity was tested using MTT assay on human corneal epithelial and endothelial cell (EC) lines and on primary human corneal fibroblasts. Paired porcine corneas stored in OC for 3 days were assigned for 48 h to a poloxamine medium or to a standard deswelling medium containing 5% dextran T500. Corneal EC density, morphometry, mortality, stromal thickness and transparency were evaluated before and after deswelling. Post-deswelling, EC viability/mortality was determined using a fluorescent live/dead assay. RESULTS Besides similar corneal thickness reduction and transparency improvement, T908, T1107 and T1307 decreased EC loss (5.4 ± 1.7% vs. 9.9 ± 2.6% in controls (p < 0.001)) and mortality, improved EC morphometry and reduced endothelial lesions compared to dextran. CONCLUSION On this porcine model, poloxamines T908, T1107 and T1307 appear as good candidates to replace dextran for the deswelling. Experiments on human corneas are now necessary to confirm their efficiency and safety profile in OC.
Collapse
Affiliation(s)
- M Zhao
- Laboratory 'Biology, Imaging and Engineering of Corneal Graft' EA2521, SFR143, Faculty of Medicine, University Jean Monnet, Saint Etienne, France
| | | | | | | | | | | | | |
Collapse
|
156
|
Sharma PK, Matthew JE, Bhatia SR. Structure and assembly of PEO-PPO-PEO co-polymers in mammalian cell-culture media. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2012; 16:1139-51. [PMID: 16231604 DOI: 10.1163/1568562054798545] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We investigate the structure of a poly(ethylene oxide)-poly(propylene oxide)-poly (ethylene oxide) co-polymer, Pluronic F127, in mammalian cell-culture media. It is well known that aqueous solutions of F127 gel at physiological temperatures with this transition, which corresponds to the formation of a close-packed cubic assembly of spherical micelles. Previous work has shown that in both mammalian cell minimum essential medium (MEM) and MEM with added fetal bovine serum, the gel phase boundary shifts to lower temperatures and concentrations as compared to pure water. Using DLS, we have found that at 25 degrees C the critical micelle concentration (CMC) decreases in the presence of MEM. Our SANS studies at 25 degrees C indicate that F127 in MEM-D2O also forms a close-packed cubic micellar gel, suggesting that the mechanism of gelation is the same in both pure water and MEM. Fits to the neutron spectra on 2 wt% F127 in D2O and MEM-D2O show a large difference in the micelle aggregation number (Nagg) and a small difference in the micelle size, with both Nagg and the micelle size larger in the presence of MEM. In addition, our SANS spectra in MEM-D2O indicate repulsive interactions between micelles at 2 wt% polymer, whereas no correlation peak is observed for this concentration in water. Finally, moderately concentrated samples (5-18 wt% polymer) in MEM exhibit slightly stronger ordering and sharper peaks, perhaps indicating stronger intermicellar interactions in the presence of MEM. This stronger repulsive interaction may be the cause of the shift in the liquid-gel phase boundary that is observed.
Collapse
Affiliation(s)
- Praveen K Sharma
- Department of Chemical Engineering, 159 Goessmann Laboratory, University of Massachusetts, Amherst, MA 01003, USA
| | | | | |
Collapse
|
157
|
Wang L, Hao Y, Liu N, Ma M, Yin Z, Zhang X. Enhance the dissolution rate and oral bioavailability of pranlukast by preparing nanosuspensions with high-pressure homogenizing method. Drug Dev Ind Pharm 2012; 38:1381-9. [PMID: 22300415 DOI: 10.3109/03639045.2011.652636] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE Pranlukast, one of the potential therapeutic tools in the treatment of asthma, has limited clinical applications due to its poor water solubility. The study is aimed to provide a platform for better utilizing pranlukast with enhancement of the dissolution rate and, thus, the oral bioavailability of pranluka'st by preparing nanosuspensions through high-pressure homogenization method. METHOD Poloxamer407 and PEG200 were chosen as stabilizer and surfactant. The formulation was investigated systematically with the dissolution tests as predominant method. Nanosuspensions were prepared by programmed high-pressure homogenization method. The product was characterized by particle size analysis, TEM and XRD are evaluated by in vitro dissolution tests and in vivo absorption examination. In addition, nanosuspensions with only pranlukast were prepared and compared with formulated nanosuspensions. RESULTS The optimal values of formulation were 0.5% (w/v) pranlukast with 0.375% (w/v) Poloxamer407, 0.375% (w/v) PEG200 and the screened programming homogenizing procedure parameters were 680 bar for the first 15 circles, 1048 bar for the next 9 circles and 1500 bar for the last 9 circles. Nanosuspensions of 318.2 ± 7.3 nm, -29.3 ± 0.8 mV were obtained. The XRD analysis indicated no change of crystalline occurred in the process of homogenization. The in vitro dissolution behavior of nanosuspensions exhibited complete release in 30 min with a remarkable fast dissolution rate. The in vivo bioavailability of formulated pranlukast nanosuspensions demonstrated its enhancement of fast onset of therapeutic drug effects with 4.38-fold improved compared to that of raw crystals. CONCLUSION The study provides a feasible, practical thinking of industry development in the clinical use of pranlukast.
Collapse
Affiliation(s)
- Lan Wang
- Laboratory of Pharmaceutics, School of Medicine, Tsinghua University, Beijing, China
| | | | | | | | | | | |
Collapse
|
158
|
Amado E, Kressler J. Interactions of amphiphilic block copolymers with lipid model membranes. Curr Opin Colloid Interface Sci 2011. [DOI: 10.1016/j.cocis.2011.07.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
159
|
Stoppel WL, White JC, Horava SD, Bhatia SR, Roberts SC. Transport of biological molecules in surfactant-alginate composite hydrogels. Acta Biomater 2011; 7:3988-98. [PMID: 21798381 DOI: 10.1016/j.actbio.2011.07.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Revised: 06/13/2011] [Accepted: 07/07/2011] [Indexed: 11/28/2022]
Abstract
Obstructed transport of biological molecules can result in improper release of pharmaceuticals or biologics from biomedical devices. Recent studies have shown that nonionic surfactants, such as Pluronic® F68 (F68), positively alter biomaterial properties such as mesh size and microcapsule diameter. To further understand the effect of F68 (incorporated at concentrations well above the critical micelle concentration (CMC)) in traditional biomaterials, the transport properties of BSA and riboflavin were investigated in F68-alginate composite hydrogels, formed by both internal and external cross-linking with divalent cations. Results indicate that small molecule transport (represented by riboflavin) was not significantly hindered by F68 in homogeneously (internally) cross-linked hydrogels (up to an 11% decrease in loading capacity and 14% increase in effective diffusion coefficient, D(eff)), while protein transport in homogeneously cross-linked hydrogels (represented by BSA) was significantly affected (up to a 43% decrease in loading capacity and 40% increase in D(eff)). For inhomogeneously cross-linked hydrogels (externally cross-linked by CaCl(2) or BaCl(2)), the D(eff) increased up to 50 and 83% for small molecules and proteins, respectively. Variation in the alginate gelation method was shown to affect transport through measurable changes in swelling ratio (30% decrease) and observable changes in cross-linking structure as well as up to a 3.6- and 11.8-fold difference in D(eff) for riboflavin and BSA, respectively. Aside from the expected significant changes due to the cross-linking method utilized, protein transport properties were altered due to mesh size restrictions (10-25 nm estimated by mechanical properties) and BSA-F68 interaction (DLS). Taken as a whole, these results show that incorporation of a nonionic surfactant at concentrations above the CMC can affect device functionality by impeding the transport of large biological molecules.
Collapse
Affiliation(s)
- Whitney L Stoppel
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA 01003-9303, USA
| | | | | | | | | |
Collapse
|
160
|
Jain R, Dandekar P, Loretz B, Melero A, Stauner T, Wenz G, Koch M, Lehr CM. Enhanced cellular delivery of idarubicin by surface modification of propyl starch nanoparticles employing pteroic acid conjugated polyvinyl alcohol. Int J Pharm 2011; 420:147-55. [DOI: 10.1016/j.ijpharm.2011.08.030] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Revised: 08/12/2011] [Accepted: 08/15/2011] [Indexed: 10/17/2022]
|
161
|
|
162
|
Plataki M, Lee YD, Rasmussen DL, Hubmayr RD. Poloxamer 188 facilitates the repair of alveolus resident cells in ventilator-injured lungs. Am J Respir Crit Care Med 2011; 184:939-47. [PMID: 21778295 DOI: 10.1164/rccm.201104-0647oc] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
RATIONALE Wounded alveolus resident cells are identified in human and experimental acute respiratory distress syndrome models. Poloxamer 188 (P188) is an amphiphilic macromolecule shown to have plasma membrane-sealing properties in various cell types. OBJECTIVES To investigate whether P188 (1) protects alveolus resident cells from necrosis and (2) is associated with reduced ventilator-induced lung injury in live rats, isolated perfused rat lungs, and scratch and stretch-wounded alveolar epithelial cells. METHODS Seventy-four live rats and 18 isolated perfused rat lungs were ventilated with injurious or protective strategies while infused with P188 or control solution. Alveolar epithelial cell monolayers were subjected to scratch or stretch wounding in the presence or absence of P188. MEASUREMENTS AND MAIN RESULTS P188 was associated with fewer mortally wounded alveolar cells in live rats and isolated perfused lungs. In vitro, P188 reduced the number of injured and necrotic cells, suggesting that P188 promotes cell repair and renders plasma membranes more resilient to deforming stress. The enhanced cell survival was accompanied by improvement in conventional measures of lung injury (peak airway pressure, wet-to-dry weight ratio) only in the ex vivo-perfused lung preparation and not in the live animal model. CONCLUSIONS P188 facilitates plasma membrane repair in alveolus resident cells, but has no salutary effects on lung mechanics or vascular barrier properties in live animals. This discordance may have pathophysiological significance for the interdependence of different injury mechanisms and therapeutic implications regarding the benefits of prolonging the life of stress-activated cells.
Collapse
Affiliation(s)
- Maria Plataki
- Thoracic Diseases Research Unit, Division of Pulmonary and Critical Care Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | | | | | | |
Collapse
|
163
|
Cuestas ML, Sosnik A, Mathet VL. Poloxamines display a multiple inhibitory activity of ATP-binding cassette (ABC) transporters in cancer cell lines. Mol Pharm 2011; 8:1152-64. [PMID: 21591727 DOI: 10.1021/mp2000132] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Primary hepatocellular carcinoma is the third most common fatal cancer worldwide with more than 500,000 annual deaths. Approximately 40% of the patients with HCC showed tumoral overexpression of transmembrane proteins belonging to the ATP-binding cassette protein superfamily (ABC) which pump drugs out of cells. The overexpression of these efflux transporters confers on the cells a multiple drug resistance phenotype, which is considered a crucial cause of treatment refractoriness in patients with cancer. The aim of this study was to investigate the inhibitory effect of different concentrations of pH- and temperature-responsive X-shaped poly(ethylene oxide)-poly(propylene oxide) block copolymers (poloxamines, Tetronic, PEO-PPO) showing a wide range of molecular weights and EO/PO ratios on the functional activity of three different ABC proteins, namely P-glycoprotein (P-gp or MDR1), breast cancer resistance protein (BCRP), and multidrug resistance-associated protein MRP1, in two human hepatocarcinoma cell lines, HepG2 and Huh7. First, the cytotoxicity of the different copolymers (at different concentrations) on both liver carcinoma cell lines was thoroughly evaluated by means of apoptosis analysis using annexin V and propidium iodide (PI). Thus, viable cells (AV-/PI-), early apoptotic cells (AV+/PI-) and late apoptotic cells (V-FITC+/PI+) were identified. Results pointed out copolymers of intermediate to high hydrophobicity and intermediate molecular weight (e.g., T904) as the most cytotoxic. Then, DiOC2, rhodamine 123 and vinblastine were used as differential substrates of these pumps. HeLa, an epithelial cell line of human cervical cancer that does not express P-gp, was used exclusively as a control and enabled the discerning between P-gp and MRP1 inhibition. Moderate to highly hydrophobic poloxamines T304, T904 and T1301 showed inhibitory activity against P-gp and BCRP but not against MRP1 in both hepatic cell lines. A remarkable dependence of this effect on the copolymer concentration and hydrophobicity was found. No inhibitory effect against these ABC pumps was observed with the hydrophilic T1107. These findings further evidence the potential usefulness of these Trojan horses as both drug nanocarriers and ABC inhibitors in hepatic MDR tumors and infections that involve the activity of these efflux transporters.
Collapse
Affiliation(s)
- María L Cuestas
- The Group of Biomaterials and Nanotechnology for Improved Medicines (BIONIMED), Department of Pharmaceutical Technology, Faculty of Pharmacy and Biochemistry, University of Buenos Aires, 956 Junín St, Sixth Floor, Buenos Aires CP1113, Argentina
| | | | | |
Collapse
|
164
|
Sanna V, Roggio AM, Posadino AM, Cossu A, Marceddu S, Mariani A, Alzari V, Uzzau S, Pintus G, Sechi M. Novel docetaxel-loaded nanoparticles based on poly(lactide-co-caprolactone) and poly(lactide-co-glycolide-co-caprolactone) for prostate cancer treatment: formulation, characterization, and cytotoxicity studies. NANOSCALE RESEARCH LETTERS 2011; 6:260. [PMID: 21711774 PMCID: PMC3211323 DOI: 10.1186/1556-276x-6-260] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Accepted: 03/28/2011] [Indexed: 05/08/2023]
Abstract
Docetaxel (Dtx) chemotherapy is the optional treatment in patients with hormone-refractory metastatic prostate cancer, and Dtx-loaded polymeric nanoparticles (NPs) have the potential to induce durable clinical responses. However, alternative formulations are needed to overcome the serious side effects, also due to the adjuvant used, and to improve the clinical efficacy of the drug.In the present study, two novel biodegradable block-copolymers, poly(lactide-co-caprolactone) (PLA-PCL) and poly(lactide-co-caprolactone-co-glycolide) (PLGA-PCL), were explored for the formulation of Dtx-loaded NPs and compared with PLA- and PLGA-NPs. The nanosystems were prepared by an original nanoprecipitation method, using Pluronic F-127 as surfactant agent, and were characterized in terms of morphology, size distribution, encapsulation efficiency, crystalline structure, and in vitro release. To evaluate the potential anticancer efficacy of a nanoparticulate system, in vitro cytotoxicity studies on human prostate cancer cell line (PC3) were carried out. NPs were found to be of spherical shape with an average diameter in the range of 100 to 200 nm and a unimodal particle size distribution. Dtx was incorporated into the PLGA-PCL NPs with higher (p < 0.05) encapsulation efficiency than that of other polymers. Differential scanning calorimetry suggested that Dtx was molecularly dispersed in the polymeric matrices. In vitro drug release study showed that release profiles of Dtx varied on the bases of characteristics of polymers used for formulation. PLA-PCL and PLGA-PCL drug loaded NPs shared an overlapping release profiles, and are able to release about 90% of drug within 6 h, when compared with PLA- and PLGA-NPs. Moreover, cytotoxicity studies demonstrated advantages of the Dtx-loaded PLGA-PCL NPs over pure Dtx in both time- and concentration-dependent manner. In particular, an increase of 20% of PC3 growth inhibition was determined by PLGA-PCL NPs with respect to free drug after 72 h incubation and at all tested Dtx concentration. In summary, PLGA-PCL copolymer may be considered as an attractive and promising polymeric material for the formulation of Dtx NPs as delivery system for prostate cancer treatment, and can also be pursued as a validated system in a more large context.
Collapse
Affiliation(s)
- Vanna Sanna
- Porto Conte Ricerche, Località Tramariglio, Alghero, Sassari 07041, Italy
| | - Anna Maria Roggio
- Porto Conte Ricerche, Località Tramariglio, Alghero, Sassari 07041, Italy
| | - Anna Maria Posadino
- Department of Biomedical Sciences, Centre of Excellence for Biotechnology Development and Biodiversity Research, University of Sassari, Viale San Pietro 43/B, Sassari 07100, Italy
| | - Annalisa Cossu
- Department of Biomedical Sciences, Centre of Excellence for Biotechnology Development and Biodiversity Research, University of Sassari, Viale San Pietro 43/B, Sassari 07100, Italy
| | - Salvatore Marceddu
- Istituto di Scienze delle Produzioni Alimentari (ISPA), CNR, Via dei Mille 48, Sassari 07100, Italy
| | - Alberto Mariani
- Department of Chemistry and local INSTM unit, University of Sassari, Via Vienna 2, Sassari 07100, Italy
| | - Valeria Alzari
- Department of Chemistry and local INSTM unit, University of Sassari, Via Vienna 2, Sassari 07100, Italy
| | - Sergio Uzzau
- Porto Conte Ricerche, Località Tramariglio, Alghero, Sassari 07041, Italy
- Department of Biomedical Sciences, Centre of Excellence for Biotechnology Development and Biodiversity Research, University of Sassari, Viale San Pietro 43/B, Sassari 07100, Italy
| | - Gianfranco Pintus
- Department of Biomedical Sciences, Centre of Excellence for Biotechnology Development and Biodiversity Research, University of Sassari, Viale San Pietro 43/B, Sassari 07100, Italy
| | - Mario Sechi
- Dipartimento di Scienze del Farmaco, University of Sassari, Via Muroni 23/A, Sassari 07100, Italy
| |
Collapse
|
165
|
Fitzgerald KT, Holladay CA, McCarthy C, Power KA, Pandit A, Gallagher WM. Standardization of models and methods used to assess nanoparticles in cardiovascular applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2011; 7:705-717. [PMID: 21319299 DOI: 10.1002/smll.201001347] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Revised: 09/22/2010] [Indexed: 05/30/2023]
Abstract
Nanotechnology has the potential to revolutionize the management and treatment of cardiovascular disease. Controlled drug delivery and nanoparticle-based molecular imaging agents have advanced cardiovascular disease therapy and diagnosis. However, the delivery vehicles (dendrimers, nanocrystals, nanotubes, nanoparticles, nanoshells, etc.), as well as the model systems that are used to mimic human cardiac disease, should be questioned in relation to their suitability. This review focuses on the variations of the biological assays and preclinical models that are currently being used to study the biocompatibility and suitability of nanomaterials in cardiovascular applications. There is a need to standardize appropriate models and methods that will promote the development of novel nanomaterial-based cardiovascular therapies.
Collapse
Affiliation(s)
- Kathleen T Fitzgerald
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | | | | | | | | | | |
Collapse
|
166
|
Functionalized Nanomaterials. Regen Med 2011. [DOI: 10.1007/978-90-481-9075-1_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
167
|
Grinberg VY, Grinberg NV, Burova TV, Dubovik AS, Tur DR, Papkov VS. Phase separation in aqueous solutions of polyethylaminophosphazene hydrochloride during heating. POLYMER SCIENCE SERIES A 2010. [DOI: 10.1134/s0965545x10110167] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
168
|
Bhojani MS, Van Dort M, Rehemtulla A, Ross BD. Targeted imaging and therapy of brain cancer using theranostic nanoparticles. Mol Pharm 2010; 7:1921-9. [PMID: 20964352 PMCID: PMC3291122 DOI: 10.1021/mp100298r] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The past decade has seen momentous development in brain cancer research in terms of novel imaging-assisted surgeries, molecularly targeted drug-based treatment regimens or adjuvant therapies and in our understanding of molecular footprints of initiation and progression of malignancy. However, mortality due to brain cancer has essentially remained unchanged in the last three decades. Thus, paradigm-changing diagnostic and therapeutic reagents are urgently needed. Nanotheranostic platforms are powerful tools for imaging and treatment of cancer. Multifunctionality of these nanovehicles offers a number of advantages over conventional agents. These include targeting to a diseased site thereby minimizing systemic toxicity, the ability to solubilize hydrophobic or labile drugs leading to improved pharmacokinetics and their potential to image, treat and predict therapeutic response. In this article, we will discuss the application of newer theranostic nanoparticles in targeted brain cancer imaging and treatment.
Collapse
Affiliation(s)
- Mahaveer Swaroop Bhojani
- Center for Molecular Imaging, Departments of Radiation Oncology and, and Radiology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | | | | | | |
Collapse
|
169
|
Fabiilli ML, Lee JA, Kripfgans OD, Carson PL, Fowlkes JB. Delivery of water-soluble drugs using acoustically triggered perfluorocarbon double emulsions. Pharm Res 2010; 27:2753-65. [PMID: 20872050 PMCID: PMC3085450 DOI: 10.1007/s11095-010-0277-5] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Accepted: 09/13/2010] [Indexed: 12/17/2022]
Abstract
PURPOSE Ultrasound can be used to release a therapeutic payload encapsulated within a perfluorocarbon (PFC) emulsion via acoustic droplet vaporization (ADV), a process whereby the PFC phase is vaporized and the agent is released. ADV-generated microbubbles have been previously used to selectively occlude blood vessels in vivo. The coupling of ADV-generated drug delivery and occlusion has therapeutically synergistic potentials. METHODS Micron-sized, water-in-PFC-in-water (W(1)/PFC/W(2)) emulsions were prepared in a two-step process using perfluoropentane (PFP) or perfluorohexane (PFH) as the PFC phase. Fluorescein or thrombin was contained in the W(1) phase. RESULTS Double emulsions containing fluorescein in the W(1) phase displayed a 5.7±1.4-fold and 8.2±1.3-fold increase in fluorescein mass flux, as measured using a Franz diffusion cell, after ADV for the PFP and PFH emulsions, respectively. Thrombin was stably retained in four out of five double emulsions. For three out of five formulations tested, the clotting time of whole blood decreased, in a statistically significant manner (p < 0.01), when incubated with thrombin-loaded emulsions exposed to ultrasound compared to emulsions not exposed to ultrasound. CONCLUSIONS ADV can be used to spatially and temporally control the delivery of water-soluble compounds formulated in PFC double emulsions. Thrombin release could extend the duration of ADV-generated, microbubble occlusions.
Collapse
Affiliation(s)
- Mario L Fabiilli
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA.
| | | | | | | | | |
Collapse
|
170
|
Manju S, Sreenivasan K. Synthesis and characterization of a cytotoxic cationic polyvinylpyrrolidone-curcumin conjugate. J Pharm Sci 2010; 100:504-11. [PMID: 20848656 DOI: 10.1002/jps.22278] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2010] [Revised: 05/10/2010] [Accepted: 05/24/2010] [Indexed: 01/08/2023]
Abstract
Curcumin has been studied as a potential drug for many diseases including cancer. One of the serious limitations projected on curcumin is its poor water solubility and the substantially low bioavailability. With a view to enhance the aqueous solubility of curcumin, we synthesized polyvinylpyrrolidone-curcumin conjugates. Polyvinylpyrrolidone was used for the conjugation considering its long history of safe usage as a biomaterial for various medical applications. The drug conjugates self-assembled in aqueous solution to form nanosized micellar aggregates. The formation of micellae stabilized curcumin against hydrolytic degradation. Another interesting feature of the conjugate was its cationic nature. The net zeta potential in the pH range from 3 to 7.4 was +25 to +20 mV, reflecting the potential stability of the conjugate micellae at physiological pH. We quantified cytotoxic potential of the conjugate by the MTT assay, using L929 fibroblast cells. The results showed that the conjugate had higher cytotoxicity than that of the free curcumin. It is expected that the relative enhanced cytotoxicities are the result of enhanced aqueous solubility and polymer-mediated drug internalization. The conjugate has the potential to circumvent limitations of curcumin and thereby to extrapolate further its applications as an effective anticancer drug.
Collapse
Affiliation(s)
- S Manju
- Laboratory for Polymer Analysis, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences & Technology, Trivandrum, Kerala, India
| | | |
Collapse
|
171
|
Antaris AL, Seo JWT, Green AA, Hersam MC. Sorting single-walled carbon nanotubes by electronic type using nonionic, biocompatible block copolymers. ACS NANO 2010; 4:4725-32. [PMID: 20669897 DOI: 10.1021/nn101363m] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
As-synthesized single-walled carbon nanotubes (SWNTs) typically possess a range of diameters and electronic properties. This polydispersity has hindered the development of many SWNT-based technologies and encouraged the development of postsynthetic methods for sorting SWNTs by their physical and electronic structure. Herein, we demonstrate that nonionic, biocompatible block copolymers can be used to isolate semiconducting and metallic SWNTs using density gradient ultracentrifugation. Separations conducted with different Pluronic block copolymers reveal that Pluronics with shorter hydrophobic chain lengths lead to higher purity semiconducting SWNTs, resulting in semiconducting purity levels in excess of 99% obtained for Pluronic F68. In contrast, X-shaped Tetronic block copolymers display an affinity for metallic SWNTs, yielding metallic purity levels of 74% for Tetronic 1107. These results suggest that high fidelity and high yield density gradient separations can be achieved using nonionic block copolymers with rationally designed homopolymer segments, thus generating biocompatible monodisperse SWNTs for a range of applications.
Collapse
Affiliation(s)
- Alexander L Antaris
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208-3108, USA
| | | | | | | |
Collapse
|
172
|
Na L, Mao S, Wang J, Sun W. Comparison of different absorption enhancers on the intranasal absorption of isosorbide dinitrate in rats. Int J Pharm 2010; 397:59-66. [PMID: 20599486 DOI: 10.1016/j.ijpharm.2010.06.048] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Revised: 06/08/2010] [Accepted: 06/28/2010] [Indexed: 10/19/2022]
Abstract
The objective of this work was to study the influence of different absorption enhancers on the intranasal absorption of isosorbide dinitrate (ISDN). First of all, an in situ nasal perfusion technique in rats was used to investigate the effect of pH, concentration of drug solution and different absorption enhancers on the intranasal absorption of ISDN. The absorption enhancers investigated include hydroxypropyl-beta-cyclodextrin (HP-beta-CD), chitosans (CS) of different molecular weight, and poloxamer 188. All of them enhanced the intranasal absorption of ISDN remarkably. It was found that poloxamer 188 had better permeation enhancing effect than that of HP-beta-CD and CS of the same concentration. Thereafter, in vivo behaviors of the selected formulations were studied in rats and the pharmacokinetic parameters were calculated and compared with that of intravenous injection. Both in situ and in vivo studies demonstrated that poloxamer 188 played a key role in promoting intranasal absorption of ISDN. In nasal ciliotoxicity test, all the absorption enhancers investigated showed good safety profiles. Taking both enhancing effect and safety into account, we suggest poloxamer 188 is the most promising as an intranasal absorption enhancer.
Collapse
Affiliation(s)
- Lidong Na
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | | | | | | |
Collapse
|
173
|
A novel paclitaxel-loaded poly(epsilon-caprolactone)/Poloxamer 188 blend nanoparticle overcoming multidrug resistance for cancer treatment. Acta Biomater 2010; 6:2045-52. [PMID: 19969111 DOI: 10.1016/j.actbio.2009.11.035] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Revised: 11/20/2009] [Accepted: 11/30/2009] [Indexed: 11/21/2022]
Abstract
Multidrug resistance (MDR) of tumor cells is a major obstacle to the success of cancer chemotherapy. Poloxamers have been used in cancer therapy to overcome MDR. The objective of this research is to test the feasibility of paclitaxel-loaded poly(epsilon-caprolactone)/Poloxamer 188 (PCL/Poloxamer 188) nanoparticles to overcome MDR in a paclitaxel-resistant human breast cancer cell line. Paclitaxel-loaded nanoparticles were prepared by a water-acetone solvent displacement method using commercial PCL and self-synthesized PCL/Poloxamer 188 compound, respectively. PCL/Poloxamer 188 nanoparticles were found to be of spherical shape and tended to have a rough and porous surface. The nanoparticles had an average size of around 220nm, with a narrow size distribution. The in vitro drug release profile of both nanoparticle formulations showed a clear biphasic release pattern. There was an increased level of uptake of PCL/Poloxamer 188 nanoparticles (PPNP) in the paclitaxel-resistant human breast cancer cell line MCF-7/TAX, in comparison with PCL nanoparticles. The cytotoxicity of PCL nanoparticles was higher than commercial Taxol in the MCF-7/TAX cell culture, but the differences were not significant. However, the PCL/Poloxamer 188 nanoparticles achieved a significantly higher level of cytotoxicity than both of PCL nanoparticle formulation and Taxol(R), indicating that paclitaxel-loaded PCL/Poloxamer 188 nanoparticles could overcome MDR in human breast cancer cells and therefore could have considerable therapeutic potential for breast cancer.
Collapse
|
174
|
Rajapaksa TE, Bennett KM, Hamer M, Lytle C, Rodgers VGJ, Lo DD. Intranasal M cell uptake of nanoparticles is independently influenced by targeting ligands and buffer ionic strength. J Biol Chem 2010; 285:23739-46. [PMID: 20511224 PMCID: PMC2911333 DOI: 10.1074/jbc.m110.126359] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
In mucosal tissues, epithelial M cells capture and transport microbes across the barrier to underlying immune cells. Previous studies suggested that high affinity ligands targeting M cells may be used to deliver mucosal vaccines; here, we show that particle composition and dispersion buffer ionic strength can independently influence their uptake in vivo. First, addition of a poloxamer 188 to nanoparticle formulations increased uptake of intranasally administered nanoparticles in vivo, but the effect was dependent on the presence of the M cell-targeting ligand. Second, solvent ionic strength is known to effect electrostatic interactions; accordingly, reduced ionic strength increased the electrostatic potential between the epithelium and the particles. Interestingly, below a critical ionic strength, intranasal particle uptake in vivo significantly was increased even when controlled for osmolarity. Similar results were obtained for uptake of bacterial particles. Surprisingly, at low ionic strength, the specific enhancement effect by the targeting peptide was negligible. Modeling of the electrostatic forces predicted that the enhancing effects of the M cell-targeting ligand only are enabled at high ionic strength, as particle electrostatic forces are reduced through Debye screening. Thus, electrostatic forces can have a dramatic effect on the in vivo M cell particle uptake independent of the action of targeting ligands. Examination of these forces will be helpful to optimizing mucosal vaccine and drug delivery.
Collapse
Affiliation(s)
- Thejani E Rajapaksa
- Division of Biomedical Sciences, University of California, Riverside, CA 92521, USA
| | | | | | | | | | | |
Collapse
|
175
|
Yang XD, Li HM, Chen M, Zou XH, Zhu LY, Wei CJ, Chen GQ. Enhanced insulin production from murine islet beta cells incubated on poly(3-hydroxybutyrate-co-3-hydroxyhexanoate). J Biomed Mater Res A 2010; 92:548-55. [PMID: 19235213 DOI: 10.1002/jbm.a.32379] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Islet transplantation represents an important alternative for the treatment of diabetes. However, the selection of suitable materials is critical for the success of such an implantation application. In this study, cellular migration, aggregation, and insulin production of a murine islet beta-cell line, NIT-1 cells on microbially produced polyesters poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx), poly(3-hydroxybutyrate-co-4-hydroxybutyrate) (P3HB4HB) or polylactic acid (PLA) films were investigated. Spherical islet-like structures were only detected on PHBHHx films after 48 h cultivation. To understand the mechanism underlying the formation of cell aggregates, NIT-1-GFP, a stable transfectant of the green fluorescent protein was used in a time-lapse imaging study. Cell aggregation began on PHBHHx at 2 h, and became obvious at 4 h. Furthermore, cells on PHBHHx displayed higher metabolic activities measured by MTT assay than that on tissue culture plate. More importantly, insulin gene expression as well as extracellular secretion was upregulated after growth on PHBHHx for 72 h. Thus, PHBHHx can be a strong candidate for islet transplantation.
Collapse
Affiliation(s)
- Xiao-Di Yang
- Multidisciplinary Research Center, Shantou University, Shantou, Guangdong 515063, China
| | | | | | | | | | | | | |
Collapse
|
176
|
Zheng X, Wang X, Gou M, Zhang J, Men K, Chen L, Luo F, Zhao X, Wei Y, Qian Z. A novel transdermal honokiol formulation based on Pluronic F127 copolymer. Drug Deliv 2010; 17:138-44. [DOI: 10.3109/10717541003604874] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
177
|
He E, Yue C, Tam K. Binding and release studies of a cationic drug from a star-shaped four-arm poly(ethylene oxide)-b-poly(methacrylic acid). J Pharm Sci 2010; 99:782-93. [DOI: 10.1002/jps.21871] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
178
|
The effect of poloxamer 188 on nanoparticle morphology, size, cancer cell uptake, and cytotoxicity. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2010; 6:170-8. [DOI: 10.1016/j.nano.2009.05.004] [Citation(s) in RCA: 168] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2008] [Revised: 04/13/2009] [Accepted: 05/04/2009] [Indexed: 11/30/2022]
|
179
|
Mozafari MR, Pardakhty A, Azarmi S, Jazayeri JA, Nokhodchi A, Omri A. Role of nanocarrier systems in cancer nanotherapy. J Liposome Res 2010; 19:310-21. [PMID: 19863166 DOI: 10.3109/08982100902913204] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Cancer continues to be a major cause of morbidity and mortality worldwide. While discovery of new drugs and cancer chemotherapy opened a new era for the treatment of tumors, optimized concentration of drug at the target site is only possible at the expense of severe side effects. Nanoscale carrier systems have the potential to limit drug toxicity and achieve tumor localization. When linked with tumor-targeting moieties, such as tumor-specific ligands or monoclonal antibodies, the nanocarriers can be used to target cancer-specific receptors, tumor antigens, and tumor vasculatures with high affinity and precision. This article is an overview of advances and prospects in the applications of nanocarrier technology in cancer therapy. Applications of nanoliposomes, dendrimers, and nanoparticles in cancer therapy are explained, along with their preparation methods and targeting strategies.
Collapse
Affiliation(s)
- M R Mozafari
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia.
| | | | | | | | | | | |
Collapse
|
180
|
Alvarez-Lorenzo C, Concheiro A. Polymeric micelles as drug stabilizers: the camptothecin and simvastatin cases. J Drug Deliv Sci Technol 2010. [DOI: 10.1016/s1773-2247(10)50042-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
181
|
Abstract
Nanoparticulate medicines offer the advantage of allowing delivery of large quantities of unmodified drug within the same particle. Nanoparticle uptake by cancer cells can, however, be compromised due to the large size and hydrophilicity of the particle. To circumvent cell penetration problems and simultaneously improve tumor specificity, nanoparticulate medicines have been linked to targeting ligands that bind to malignant cell surfaces and enter cells by receptor-mediated endocytosis. In this chapter, we summarize multiple methods for delivering nanoparticles into cancer cells by folate receptor-mediated endocytosis, devoting special emphasis to folate-targeted liposomes. Folate receptor-mediated endocytosis has emerged as an attractive strategy for nanoparticle delivery due to both overexpression of the folate receptor on cancer cells and the rapid internalization of the receptor by receptor-mediated endocytosis.
Collapse
Affiliation(s)
- Sumith A Kularatne
- Department of Chemistry and Purdue Cancer Center, Purdue University, West Lafayette, IN, USA
| | | |
Collapse
|
182
|
Huang X, Neretina S, El-Sayed MA. Gold nanorods: from synthesis and properties to biological and biomedical applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2009; 21:4880-4910. [PMID: 25378252 DOI: 10.1002/adma.200802789] [Citation(s) in RCA: 1070] [Impact Index Per Article: 71.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Indexed: 05/18/2023]
Abstract
Noble metal nanoparticles are capable of confining resonant photons in such a manner as to induce coherent surface plasmon oscillation of their conduction band electrons, a phenomenon leading to two important properties. Firstly, the confinement of the photon to the nanoparticle's dimensions leads to a large increase in its electromagnetic field and consequently great enhancement of all the nanoparticle's radiative properties, such as absorption and scattering. Moreover, by confining the photon's wavelength to the nanoparticle's small dimensions, there exists enhanced imaging resolving powers, which extend well below the diffraction limit, a property of considerable importance in potential device applications. Secondly, the strongly absorbed light by the nanoparticles is followed by a rapid dephasing of the coherent electron motion in tandem with an equally rapid energy transfer to the lattice, a process integral to the technologically relevant photothermal properties of plasmonic nanoparticles. Of all the possible nanoparticle shapes, gold nanorods are especially intriguing as they offer strong plasmonic fields while exhibiting excellent tunability and biocompatibility. We begin this review of gold nanorods by summarizing their radiative and nonradiative properties. Their various synthetic methods are then outlined with an emphasis on the seed-mediated chemical growth. In particular, we describe nanorod spontaneous self-assembly, chemically driven assembly, and polymer-based alignment. The final section details current studies aimed at applications in the biological and biomedical fields.
Collapse
Affiliation(s)
- Xiaohua Huang
- Laser Dynamics Laboratory School of Chemistry and Biochemistry Georgia Institute of Technology, Atlanta, GA 30332 (USA)
- Emory-Georgia Tech Cancer Center for Nanotechnology Excellence Department of Biomedical Engineering Emory University and Georgia Institute of Technology Atlanta, GA 30332 (USA)
| | - Svetlana Neretina
- Laser Dynamics Laboratory School of Chemistry and Biochemistry Georgia Institute of Technology Atlanta, GA 30332 (USA)
- Department of Mechanical Engineering Temple University 1947 N. 12th St., Philadelphia, PA 19122 (USA)
| | - Mostafa A El-Sayed
- Laser Dynamics Laboratory, School of Chemistry and Biochemistry Georgia Institute of Technology Atlanta, GA 30332 (USA)
| |
Collapse
|
183
|
Wong LS, Okrasa K, Micklefield J. Site-selective immobilisation of functional enzymes on to polystyrene nanoparticles. Org Biomol Chem 2009; 8:782-7. [PMID: 20135034 DOI: 10.1039/b916773k] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The immobilisation of proteins on to nanoparticles has a number of applications ranging from biocatalysis through to cellular delivery of biopharmaceuticals. Here we describe a phosphopantetheinyl transferase (Sfp)-catalysed method for immobilising proteins bearing a small 12-mer "ybbR" tag on to nanoparticles functionalised with coenzyme A. The Sfp-catalysed immobilisation of proteins on to nanoparticles is a highly efficient, single step reaction that proceeds under mild conditions and results in a homogeneous population of proteins that are covalently and site-specifically attached to the surface of the nanoparticles. Several enzymes of interest for biocatalysis, including an arylmalonate decarboxylase (AMDase) and a glutamate racemase (GluR), were immobilised on to nanoparticles using this approach. These enzymes retained their activity and showed high operational stability upon immobilisation.
Collapse
Affiliation(s)
- Lu Shin Wong
- School of Chemistry and Manchester Interdisciplinary Biocentre, The University of Manchester, 131 Princess Street, Manchester, UKM1 7DN
| | | | | |
Collapse
|
184
|
Gong CY, Shi S, Dong PW, Yang B, Qi XR, Guo G, Gu YC, Zhao X, Wei YQ, Qian ZY. Biodegradable in situ gel-forming controlled drug delivery system based on thermosensitive PCL–PEG–PCL hydrogel: Part 1—synthesis, characterization, and acute toxicity evaluation. J Pharm Sci 2009; 98:4684-94. [DOI: 10.1002/jps.21780] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
185
|
Baek EJ, Kim HS, Kim JH, Kim NJ, Kim HO. Stroma-free mass production of clinical-grade red blood cells (RBCs) by using poloxamer 188 as an RBC survival enhancer. Transfusion 2009; 49:2285-95. [DOI: 10.1111/j.1537-2995.2009.02303.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
186
|
Xie S, Wang S, Zhu L, Wang F, Zhou W. The effect of glycolic acid monomer ratio on the emulsifying activity of PLGA in preparation of protein-loaded SLN. Colloids Surf B Biointerfaces 2009; 74:358-61. [DOI: 10.1016/j.colsurfb.2009.08.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2008] [Revised: 05/18/2009] [Accepted: 08/05/2009] [Indexed: 11/17/2022]
|
187
|
Wang YC, Xia H, Yang XZ, Wang J. Synthesis and thermoresponsive behaviors of biodegradable Pluronic analogs. ACTA ACUST UNITED AC 2009. [DOI: 10.1002/pola.23660] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
188
|
Betancourt T, Byrne JD, Sunaryo N, Crowder SW, Kadapakkam M, Patel S, Casciato S, Brannon-Peppas L. PEGylation strategies for active targeting of PLA/PLGA nanoparticles. J Biomed Mater Res A 2009; 91:263-76. [DOI: 10.1002/jbm.a.32247] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
189
|
Mei L, Zhang Y, Zheng Y, Tian G, Song C, Yang D, Chen H, Sun H, Tian Y, Liu K, Li Z, Huang L. A Novel Docetaxel-Loaded Poly (ε-Caprolactone)/Pluronic F68 Nanoparticle Overcoming Multidrug Resistance for Breast Cancer Treatment. NANOSCALE RESEARCH LETTERS 2009; 4:1530-9. [PMID: 20652101 PMCID: PMC2894322 DOI: 10.1007/s11671-009-9431-6] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2009] [Accepted: 09/01/2009] [Indexed: 05/22/2023]
Abstract
Multidrug resistance (MDR) in tumor cells is a significant obstacle to the success of chemotherapy in many cancers. The purpose of this research is to test the possibility of docetaxel-loaded poly (ε-caprolactone)/Pluronic F68 (PCL/Pluronic F68) nanoparticles to overcome MDR in docetaxel-resistance human breast cancer cell line. Docetaxel-loaded nanoparticles were prepared by modified solvent displacement method using commercial PCL and self-synthesized PCL/Pluronic F68, respectively. PCL/Pluronic F68 nanoparticles were found to be of spherical shape with a rough and porous surface. The nanoparticles had an average size of around 200 nm with a narrow size distribution. The in vitro drug release profile of both nanoparticle formulations showed a biphasic release pattern. There was an increased level of uptake of PCL/Pluronic F68 nanoparticles in docetaxel-resistance human breast cancer cell line, MCF-7 TAX30, when compared with PCL nanoparticles. The cytotoxicity of PCL nanoparticles was higher than commercial Taxotere®in the MCF-7 TAX30 cell culture, but the differences were not significant (p > 0.05). However, the PCL/Pluronic F68 nanoparticles achieved significantly higher level of cytotoxicity than both of PCL nanoparticles and Taxotere®(p < 0.05), indicating docetaxel-loaded PCL/Pluronic F68 nanoparticles could overcome multidrug resistance in human breast cancer cells and therefore have considerable potential for treatment of breast cancer.
Collapse
Affiliation(s)
- Lin Mei
- The Shenzhen Key Lab of Gene and Antibody Therapy, Center for Biotech and Bio-Medicine and Division of Life Sciences, Graduate School at Shenzhen, Tsinghua University, L308, Tsinghua Campus, Xili University Town, 518055, Shenzhen, Guangdong, China
- College of Pharmacy, Dalian Medical University, 116027, Dalian Liaoning, China
| | - Yangqing Zhang
- The Shenzhen Key Lab of Gene and Antibody Therapy, Center for Biotech and Bio-Medicine and Division of Life Sciences, Graduate School at Shenzhen, Tsinghua University, L308, Tsinghua Campus, Xili University Town, 518055, Shenzhen, Guangdong, China
| | - Yi Zheng
- The Shenzhen Key Lab of Gene and Antibody Therapy, Center for Biotech and Bio-Medicine and Division of Life Sciences, Graduate School at Shenzhen, Tsinghua University, L308, Tsinghua Campus, Xili University Town, 518055, Shenzhen, Guangdong, China
| | - Ge Tian
- College of Pharmacy, Dalian Medical University, 116027, Dalian Liaoning, China
| | - Cunxian Song
- Institute of Biomedical Engineering, Peking Union Medical College & Chinese Academy of Medical Sciences, The Tianjin Key Laboratory of Biomaterial Research, 300192, Tianjin, China
| | - Dongye Yang
- The Shenzhen Key Lab of Gene and Antibody Therapy, Center for Biotech and Bio-Medicine and Division of Life Sciences, Graduate School at Shenzhen, Tsinghua University, L308, Tsinghua Campus, Xili University Town, 518055, Shenzhen, Guangdong, China
- Department of Gastroenterology, Xiangya Second Hospital, Central South University, 410011, Changsha, China
| | - Hongli Chen
- Department of Life Science and Technology, Xinxiang Medical University, 453003, Xinxiang, China
| | - Hongfan Sun
- Institute of Biomedical Engineering, Peking Union Medical College & Chinese Academy of Medical Sciences, The Tianjin Key Laboratory of Biomaterial Research, 300192, Tianjin, China
| | - Yan Tian
- College of Pharmacy, Dalian Medical University, 116027, Dalian Liaoning, China
| | - Kexin Liu
- College of Pharmacy, Dalian Medical University, 116027, Dalian Liaoning, China
| | - Zhen Li
- College of Pharmacy, Dalian Medical University, 116027, Dalian Liaoning, China
| | - Laiqiang Huang
- The Shenzhen Key Lab of Gene and Antibody Therapy, Center for Biotech and Bio-Medicine and Division of Life Sciences, Graduate School at Shenzhen, Tsinghua University, L308, Tsinghua Campus, Xili University Town, 518055, Shenzhen, Guangdong, China
| |
Collapse
|
190
|
Mandal BB, Kundu SC. Self-assembled silk sericin/poloxamer nanoparticles as nanocarriers of hydrophobic and hydrophilic drugs for targeted delivery. NANOTECHNOLOGY 2009; 20:355101. [PMID: 19671963 DOI: 10.1088/0957-4484/20/35/355101] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
In recent times self-assembled micellar nanoparticles have been successfully employed in tissue engineering for targeted drug delivery applications. In this review, silk sericin protein from non-mulberry Antheraea mylitta tropical tasar silk cocoons was blended with pluronic F-127 and F-87 in the presence of solvents to achieve self-assembled micellar nanostructures capable of carrying both hydrophilic (FITC-inulin) and hydrophobic (anticancer drug paclitaxel) drugs. The fabricated nanoparticles were subsequently characterized for their size distribution, drug loading capability, cellular uptake and cytotoxicity. Nanoparticle sizes ranged between 100 and 110 nm in diameter as confirmed by dynamic light scattering. Rapid uptake of these particles into cells was observed in in vitro cellular uptake studies using breast cancer MCF-7 cells. In vitro cytotoxicity assay using paclitaxel-loaded nanoparticles against breast cancer cells showed promising results comparable to free paclitaxel drugs. Drug-encapsulated nanoparticle-induced apoptosis in MCF-7 cells was confirmed by FACS and confocal microscopic studies using Annexin V staining. Up-regulation of pro-apoptotic protein Bax, down-regulation of anti-apoptotic protein Bcl-2 and cleavage of regulatory protein PARP through Western blot analysis suggested further drug-induced apoptosis in cells. This study projects silk sericin protein as an alternative natural biomaterial for fabrication of self-assembled nanoparticles in the presence of poloxamer for successful delivery of both hydrophobic and hydrophilic drugs to target sites.
Collapse
Affiliation(s)
- Biman B Mandal
- Department of Biotechnology, Indian Institute of Technology, Kharagpur, India
| | | |
Collapse
|
191
|
Mei L, Sun H, Song C. Local delivery of modified paclitaxel-loaded poly(epsilon-caprolactone)/pluronic F68 nanoparticles for long-term inhibition of hyperplasia. J Pharm Sci 2009; 98:2040-50. [PMID: 18855915 DOI: 10.1002/jps.21581] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The purpose of this research is to test the possibility of localized intravascular infusion of didodecyldimethylammonium bromide (DMAB)-modified paclitaxel-loaded poly(epsilon-caprolactone)/Pluronic F68 (PCL/F68) nanoparticles to achieve long-term inhibition of hyperplasia in a balloon-injured rabbit carotid artery model. Paclitaxel-loaded nanoparticles were prepared by modified solvent displacement method using commercial poly(lactide-co-glycolide) (PLGA) and self-synthesized PCL/F68, respectively. DMAB was adsorbed on the nanoparticle surface by electrostatic attraction between positive and negative charges to enhance arterial retention. Nanoparticles were found to be of spherical shape with a mean size of around 300 nm and polydispersity of less than 0.150. The surface charge was changed to positive values after the DMAB modification. The in vitro drug release profile of all nanoparticle formulation showed a biphasic release pattern. Drug release from DMAB-modified PCL/F68 nanoparticles (DPNP) was significantly slower than DMAB-modified PLGA nanoparticles (PGNP). After 90 days, DPNP group showed very significant inhibition of neointimal proliferation (p < 0.01), and PGNP group yielded significant inhibition of neointimal proliferation (p < 0.05), when compared with drug-free nanoparticles group. In conclusion, local delivery of paclitaxel-loaded DMAB-modified PCL/F68 nanoparticles was proven an effective means of long-term inhibition of hyperplasia in the rabbits.
Collapse
Affiliation(s)
- Lin Mei
- The Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Peking Union Medical College & Chinese Academy of Medical Sciences, Tianjin 300192, China
| | | | | |
Collapse
|
192
|
Aggarwal P, Hall JB, McLeland CB, Dobrovolskaia MA, McNeil SE. Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy. Adv Drug Deliv Rev 2009; 61:428-37. [PMID: 19376175 PMCID: PMC3683962 DOI: 10.1016/j.addr.2009.03.009] [Citation(s) in RCA: 1227] [Impact Index Per Article: 81.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2008] [Accepted: 03/30/2009] [Indexed: 11/28/2022]
Abstract
Proteins bind the surfaces of nanoparticles, and biological materials in general, immediately upon introduction of the materials into a physiological environment. The further biological response of the body is influenced by the nanoparticle-protein complex. The nanoparticle's composition and surface chemistry dictate the extent and specificity of protein binding. Protein binding is one of the key elements that affects biodistribution of the nanoparticles throughout the body. Here we review recent research on nanoparticle physicochemical properties important for protein binding, techniques for isolation and identification of nanoparticle-bound proteins, and how these proteins can influence particle biodistribution and biocompatibility. Understanding the nanoparticle-protein complex is necessary for control and manipulation of protein binding, and allows for improved engineering of nanoparticles with favorable bioavailability and biodistribution.
Collapse
Affiliation(s)
- Parag Aggarwal
- Nanotechnology Characterization Laboratory, Advanced Technology Program, SAIC-Frederick Inc., NCI-Frederick, Frederick, MD 21702, USA
| | - Jennifer B. Hall
- Nanotechnology Characterization Laboratory, Advanced Technology Program, SAIC-Frederick Inc., NCI-Frederick, Frederick, MD 21702, USA
| | - Christopher B. McLeland
- Nanotechnology Characterization Laboratory, Advanced Technology Program, SAIC-Frederick Inc., NCI-Frederick, Frederick, MD 21702, USA
| | - Marina A. Dobrovolskaia
- Nanotechnology Characterization Laboratory, Advanced Technology Program, SAIC-Frederick Inc., NCI-Frederick, Frederick, MD 21702, USA
| | - Scott E. McNeil
- Nanotechnology Characterization Laboratory, Advanced Technology Program, SAIC-Frederick Inc., NCI-Frederick, Frederick, MD 21702, USA
| |
Collapse
|
193
|
Pavlov DN, Dorodnykh TY, Zaborova OV, Melik-Nubarov NS. Interaction of copolymers of dimethylsiloxane and ethylene oxide with model membranes and cancerous cells. POLYMER SCIENCE SERIES A 2009. [DOI: 10.1134/s0965545x09030080] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
194
|
Joung YK, Bae JW, Park KD. Controlled release of heparin-binding growth factors using heparin-containing particulate systems for tissue regeneration. Expert Opin Drug Deliv 2009; 5:1173-84. [PMID: 18976129 DOI: 10.1517/17425240802431811] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The strategy of growth factor delivery to specific sites for therapeutic applications has been considered an essential process in biomedical fields despite some obstacles, such as a non-controlled release with initial burst. This article focuses on particulate systems using heparin for the controlled delivery of heparin-binding growth factors (HBGFs), an emerging area in the tissue engineering field. Since heparin has been widely utilized for growth factor delivery due to its electrostatic nature and specific affinity with HBGFs, heparin-containing polymeric particulates can be utilized as functional carriers to deliver growth factors in a controlled manner. In particular, examples of the HBGF delivery systems containing heparin, perspectives and potential applications are described and discussed.
Collapse
Affiliation(s)
- Yoon Ki Joung
- Ajou University, Department of Molecular Science and Technology, 5 Wonchon, Yeoungtong, Suwon 443-749, Republic of Korea
| | | | | |
Collapse
|
195
|
Besheer A, Vogel J, Glanz D, Kressler J, Groth T, Mäder K. Characterization of PLGA Nanospheres Stabilized with Amphiphilic Polymers: Hydrophobically Modified Hydroxyethyl Starch vs Pluronics. Mol Pharm 2009; 6:407-15. [DOI: 10.1021/mp800119h] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ahmed Besheer
- Department of Pharmaceutical Technology and Biopharmacy, Institute of Pharmacy, Martin Luther University, Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, 06120 Halle/Saale, Germany, Department of Physical Chemistry, Institute of Chemistry, Martin Luther University, Halle-Wittenberg, 06099 Halle/Saale, Germany, and Institute of Physiological Chemistry, Faculty of Medicine, Martin Luther University, Halle-Wittenberg, Hollystrasse 1, 06114 Halle/Saale, Germany
| | - Jürgen Vogel
- Department of Pharmaceutical Technology and Biopharmacy, Institute of Pharmacy, Martin Luther University, Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, 06120 Halle/Saale, Germany, Department of Physical Chemistry, Institute of Chemistry, Martin Luther University, Halle-Wittenberg, 06099 Halle/Saale, Germany, and Institute of Physiological Chemistry, Faculty of Medicine, Martin Luther University, Halle-Wittenberg, Hollystrasse 1, 06114 Halle/Saale, Germany
| | - Dagobert Glanz
- Department of Pharmaceutical Technology and Biopharmacy, Institute of Pharmacy, Martin Luther University, Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, 06120 Halle/Saale, Germany, Department of Physical Chemistry, Institute of Chemistry, Martin Luther University, Halle-Wittenberg, 06099 Halle/Saale, Germany, and Institute of Physiological Chemistry, Faculty of Medicine, Martin Luther University, Halle-Wittenberg, Hollystrasse 1, 06114 Halle/Saale, Germany
| | - Jörg Kressler
- Department of Pharmaceutical Technology and Biopharmacy, Institute of Pharmacy, Martin Luther University, Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, 06120 Halle/Saale, Germany, Department of Physical Chemistry, Institute of Chemistry, Martin Luther University, Halle-Wittenberg, 06099 Halle/Saale, Germany, and Institute of Physiological Chemistry, Faculty of Medicine, Martin Luther University, Halle-Wittenberg, Hollystrasse 1, 06114 Halle/Saale, Germany
| | - Thomas Groth
- Department of Pharmaceutical Technology and Biopharmacy, Institute of Pharmacy, Martin Luther University, Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, 06120 Halle/Saale, Germany, Department of Physical Chemistry, Institute of Chemistry, Martin Luther University, Halle-Wittenberg, 06099 Halle/Saale, Germany, and Institute of Physiological Chemistry, Faculty of Medicine, Martin Luther University, Halle-Wittenberg, Hollystrasse 1, 06114 Halle/Saale, Germany
| | - Karsten Mäder
- Department of Pharmaceutical Technology and Biopharmacy, Institute of Pharmacy, Martin Luther University, Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, 06120 Halle/Saale, Germany, Department of Physical Chemistry, Institute of Chemistry, Martin Luther University, Halle-Wittenberg, 06099 Halle/Saale, Germany, and Institute of Physiological Chemistry, Faculty of Medicine, Martin Luther University, Halle-Wittenberg, Hollystrasse 1, 06114 Halle/Saale, Germany
| |
Collapse
|
196
|
|
197
|
Synergistic solubility behaviour of a polyoxyalkylene block co-polymer and its precipitation from liquid CO2-expanded ethanol as solid microparticles. J Supercrit Fluids 2008. [DOI: 10.1016/j.supflu.2008.07.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
198
|
Lorenz MR, Kohnle MV, Dass M, Walther P, Höcherl A, Ziener U, Landfester K, Mailänder V. Synthesis of fluorescent polyisoprene nanoparticles and their uptake into various cells. Macromol Biosci 2008; 8:711-27. [PMID: 18504805 DOI: 10.1002/mabi.200700336] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Fluorescent polyisoprene nanoparticles were synthesized by the miniemulsion technique as marker particles for cells. The uptake of the non-functionalized polyisoprene nanoparticles, without any transfection agents, into different adherent (HeLa) and also suspension (Jurkat) cell lines is strikingly efficient and fast compared to other polymeric particles, and leads to high loading of the cells. The intracellular polyisoprene particles are localized as single particles in endosomes distributed throughout the entire cytoplasm. The uptake kinetics shows that particle internalization starts during the first minutes of incubation and is finished after 48 h of incubation. Since (unfunctionalized) polystyrene particles show a comparable, low uptake behavior in cells, the uptake rates can be tuned by the amount of polystyrene in polyisoprene/polystyrene copolymer particles. As polyisoprene nanoparticles are internalized by different cell lines that are relevant for biomedical applications, they can be used to label these cells efficiently if a marker is incorporated in the particles. As polyisoprene is not or is hardly biodegradable the particles should be suited for long-term applications.
Collapse
Affiliation(s)
- Myriam R Lorenz
- Institute of Organic Chemistry III - Macromolecular Chemistry and Organic Materials, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | | | | | | | | | | | | | | |
Collapse
|
199
|
Arahman N, Maruyama T, Sotani T, Matsuyama H. Effect of hypochlorite treatment on performance of hollow fiber membrane prepared from polyethersulfone/N-methyl-2-pyrrolidone/tetronic 1307 solution. J Appl Polym Sci 2008. [DOI: 10.1002/app.28719] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
200
|
Wang Y, Wu W. In Situ Evading of Phagocytic Uptake of Stealth Solid Lipid Nanoparticles by Mouse Peritoneal Macrophages. Drug Deliv 2008; 13:189-92. [PMID: 16556570 DOI: 10.1080/10717540500315930] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Stealth solid lipid nanoparticles (SSLN) were prepared and evaluated for the effect of evading phagocytic uptake by mouse peritoneal macrophages in situ. Fluorescent SSLNs were prepared by emulsion/evaporation with rhodamine B as the fluorescent marker and polyoxyethylene stearate as stealth agent in a stearic acid matrix. Macrophages were induced chemically through intraperitoneally injecting 1% sodium thioglycolate. After 4 days of cultivation, SSLNs suspension was injected intraperitoneally and phagocytosis taken out in situ. At definite time intervals, peritoneal fluid was drawn out and analyzed by flow cytometer. Maximum uptake by macrophages was observed at 2 hr after injection of nanoparticles. At all time intervals, phagocytic uptake of Solid lipid nanoparticles (SLNs) was better than SSLNs. Longer and dense polyethylene glycol chains led to reduced uptake by macrophages. Both SSLNs and SLN had uptake by macrophages to some extent, and the in situ model was suitable for evaluating interactions between cells and nanoparticles.
Collapse
Affiliation(s)
- Yang Wang
- School of Pharmacy, Fudan University, Shanghai, China
| | | |
Collapse
|