151
|
Kulesza A, Frank C, Aebi M, Vasella A. Synthesis of Stable Dolichylphosphomannose Analogues. Helv Chim Acta 2004. [DOI: 10.1002/hlca.200490278] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
152
|
Akasaka-Manya K, Manya H, Endo T. Mutations of the POMT1 gene found in patients with Walker–Warburg syndrome lead to a defect of protein O-mannosylation. Biochem Biophys Res Commun 2004; 325:75-9. [PMID: 15522202 DOI: 10.1016/j.bbrc.2004.10.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2004] [Indexed: 11/30/2022]
Abstract
Walker-Warburg syndrome (WWS) is an autosomal recessive developmental disorder characterized by congenital muscular dystrophy, brain malformation, and structural eye abnormalities. WWS is due to defects in protein O-mannosyltransferase 1 (POMT1), which catalyzes the transfer of mannose to protein to form O-mannosyl glycans. POMT1 has been shown to require co-expression of another homologue, POMT2, to have activity. In the present study, mutations in POMT1 genes observed in patients with WWS were duplicated by site-directed mutagenesis. The mutant genes were co-expressed with POMT2 in Sf9 cells and assayed for protein O-mannosyltransferase activity. Expression of all mutant proteins was confirmed by Western blot, but the recombinant proteins did not show any protein O-mannosyltransferase activity. The results indicate that mutations in the POMT1 gene result in a defect of protein O-mannosylation in WWS patients. This may cause failure of binding between alpha-dystroglycan and laminin or other molecules in the extracellular matrix and interrupt normal muscular function and migration of neurons in developing brain.
Collapse
Affiliation(s)
- Keiko Akasaka-Manya
- Glycobiology Research Group, Tokyo Metropolitan Institute of Gerontology, Foundation for Research on Aging and Promotion of Human Welfare, 35-2 Sakaecho, Itabashi-ku, Tokyo 173-0015, Japan
| | | | | |
Collapse
|
153
|
Munro CA, Bates S, Buurman ET, Hughes HB, MacCallum DM, Bertram G, Atrih A, Ferguson MAJ, Bain JM, Brand A, Hamilton S, Westwater C, Thomson LM, Brown AJP, Odds FC, Gow NAR. Mnt1p and Mnt2p of Candida albicans are partially redundant alpha-1,2-mannosyltransferases that participate in O-linked mannosylation and are required for adhesion and virulence. J Biol Chem 2004; 280:1051-60. [PMID: 15519997 PMCID: PMC3749086 DOI: 10.1074/jbc.m411413200] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The MNT1 gene of the human fungal pathogen Candida albicans is involved in O-glycosylation of cell wall and secreted proteins and is important for adherence of C. albicans to host surfaces and for virulence. Here we describe the molecular analysis of CaMNT2, a second member of the MNT1-like gene family in C. albicans. Mnt2p also functions in O-glycosylation. Mnt1p and Mnt2p encode partially redundant alpha-1,2-mannosyltransferases that catalyze the addition of the second and third mannose residues in an O-linked mannose pentamer. Deletion of both copies of MNT1 and MNT2 resulted in reduction in the level of in vitro mannosyltransferase activity and truncation of O-mannan. Both the mnt2Delta and mnt1Delta single mutants were significantly reduced in adherence to human buccal epithelial cells and Matrigel-coated surfaces, indicating a role for O-glycosylated cell wall proteins or O-mannan itself in adhesion to host surfaces. The double mnt1Deltamnt2Delta mutant formed aggregates of cells that appeared to be the result of abnormal cell separation. The double mutant was attenuated in virulence, underlining the importance of O-glycosylation in pathogenesis of C. albicans infections.
Collapse
Affiliation(s)
- Carol A. Munro
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD United Kingdom
| | - Steven Bates
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD United Kingdom
| | - Ed T. Buurman
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD United Kingdom
| | - H. Bleddyn Hughes
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD United Kingdom
| | - Donna M. MacCallum
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD United Kingdom
| | - Gwyneth Bertram
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD United Kingdom
| | - Abdel Atrih
- School of Life Sciences, Wellcome Trust Building, University of Dundee, Dundee DD1 4NH, United Kingdom
| | - Michael A. J. Ferguson
- School of Life Sciences, Wellcome Trust Building, University of Dundee, Dundee DD1 4NH, United Kingdom
| | - Judith M. Bain
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD United Kingdom
| | - Alexandra Brand
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD United Kingdom
| | - Suzanne Hamilton
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD United Kingdom
| | - Caroline Westwater
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD United Kingdom
| | - Lynn M. Thomson
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD United Kingdom
| | - Alistair J. P. Brown
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD United Kingdom
| | - Frank C. Odds
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD United Kingdom
| | - Neil A. R. Gow
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD United Kingdom
- To whom correspondence should be addressed. Tel.: 44-1224-555879; Fax.: 44-1224-555844;
| |
Collapse
|
154
|
Nakatsukasa K, Okada S, Umebayashi K, Fukuda R, Nishikawa SI, Endo T. Roles of O-Mannosylation of Aberrant Proteins in Reduction of the Load for Endoplasmic Reticulum Chaperones in Yeast. J Biol Chem 2004; 279:49762-72. [PMID: 15377669 DOI: 10.1074/jbc.m403234200] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The protein quality control system in the endoplasmic reticulum (ER) ensures that only properly folded proteins are deployed throughout the cells. When nonnative proteins accumulate in the ER, the unfolded protein response is triggered to limit further accumulation of nonnative proteins and the ER is cleared of accumulated nonnative proteins by the ER-associated degradation (ERAD). In the yeast ER, aberrant nonnative proteins are mainly directed for the ERAD, but a distinct fraction of them instead receive O-mannosylation. In order to test whether O-mannosylation might also be a mechanism to process aberrant proteins in the ER, here we analyzed the effect of O-mannosylation on two kinds of model aberrant proteins, a series of N-glycosylation site mutants of prepro-alpha-factor and a pro-region-deleted derivative of Rhizopus niveus aspartic proteinase-I (Deltapro) both in vitro and in vivo. O-Mannosylation increases solubilities of the aberrant proteins and renders them less dependent on the ER chaperone, BiP, for being soluble. The release from ER chaperones allows the aberrant proteins to exit out of the ER for the normal secretory pathway transport. When the gene for Pmt2p, responsible for the O-mannosylation of these aberrant proteins, and that for the ERAD were simultaneously deleted, the cell exhibited enhanced unfolded protein response. O-Mannosylation may therefore function as a fail-safe mechanism for the ERAD by solubilizing the aberrant proteins that overflowed from the ERAD pathway and reducing the load for ER chaperones.
Collapse
Affiliation(s)
- Kunio Nakatsukasa
- Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| | | | | | | | | | | |
Collapse
|
155
|
Weissman Z, Kornitzer D. A family of Candida cell surface haem-binding proteins involved in haemin and haemoglobin-iron utilization. Mol Microbiol 2004; 53:1209-20. [PMID: 15306022 DOI: 10.1111/j.1365-2958.2004.04199.x] [Citation(s) in RCA: 172] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The ability to acquire iron from host tissues is a major virulence factor of pathogenic microorganisms. Candida albicans is an important fungal pathogen, responsible for an increasing proportion of systemic infections. C. albicans, like many pathogenic bacteria, is able to utilize haemin and haemoglobin as iron sources. However, the molecular basis of this pathway in pathogenic fungi is unknown. Here, we identify a conserved family of plasma membrane-anchored proteins as haem-binding proteins that are involved in haem-iron utilization. We isolated RBT51 as a gene that is sufficient by itself to confer to S. cerevisiae the ability to utilize haemoglobin iron. RBT51 is highly homologous to RBT5, which was previously identified as a gene negatively regulated by the transcriptional suppressor CaTup1. Rbt5 and Rbt51 are mannosylated proteins that carry the conserved CFEM domain. We find that RBT5 is strongly induced by starvation for iron, and that deletion of RBT5 is by itself sufficient to significantly reduce the ability of C. albicans to utilize haemin and haemoglobin as iron sources. Iron starvation-inducible, antigenically cross-reacting haem-binding proteins are also present in other Candida species that are able to utilize haem-iron, underscoring the conservation of this iron acquisition pathway among pathogenic fungi.
Collapse
Affiliation(s)
- Ziva Weissman
- Department of Molecular Microbiology, Technion - B. Rappaport Faculty of Medicine, and the Rappaport Institute for Research in the Medical Sciences, Haifa 31096, Israel
| | | |
Collapse
|
156
|
Abstract
Researchers have long predicted that complex carbohydrates on cell surfaces would play important roles in developmental processes because of the observation that specific carbohydrate structures appear in specific spatial and temporal patterns throughout development. The astounding number and complexity of carbohydrate structures on cell surfaces added support to the concept that glycoconjugates would function in cellular communication during development. Although the structural complexity inherent in glycoconjugates has slowed advances in our understanding of their functions, the complete sequencing of the genomes of organisms classically used in developmental studies (e.g., mice, Drosophila melanogaster, and Caenorhabditis elegans) has led to demonstration of essential functions for a number of glycoconjugates in developmental processes. Here we present a review of recent studies analyzing function of a variety of glycoconjugates (O-fucose, O-mannose, N-glycans, mucin-type O-glycans, proteoglycans, glycosphingolipids), focusing on lessons learned from human disease and genetic studies in mice, D. melanogaster, and C. elegans.
Collapse
Affiliation(s)
- Robert S Haltiwanger
- Department of Biochemistry and Cell Biology, Institute for Cell and Developmental Biology, State University of New York, Stony Brook, New York 11794-5215, USA.
| | | |
Collapse
|
157
|
Willer T, Prados B, Falcón-Pérez JM, Renner-Müller I, Przemeck GKH, Lommel M, Coloma A, Valero MC, de Angelis MH, Tanner W, Wolf E, Strahl S, Cruces J. Targeted disruption of the Walker-Warburg syndrome gene Pomt1 in mouse results in embryonic lethality. Proc Natl Acad Sci U S A 2004; 101:14126-31. [PMID: 15383666 PMCID: PMC521095 DOI: 10.1073/pnas.0405899101] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
O-mannosylation is an important protein modification in eukaryotes that is initiated by an evolutionarily conserved family of protein O-mannosyltransferases. The first mammalian protein O-mannosyltransferase gene described was the human POMT1. Mutations in the hPOMT1 gene are responsible for Walker-Warburg syndrome (WWS), a severe recessive congenital muscular dystrophy associated with defects in neuronal migration that produce complex brain and eye abnormalities. During embryogenesis, the murine Pomt1 gene is prominently expressed in the neural tube, the developing eye, and the mesenchyme. These sites of expression correlate with those in which the main tissue alterations are observed in WWS patients. We have inactivated a Pomt1 allele by gene targeting in embryonic stem cells and produced chimeras transmitting the defect allele to offspring. Although heterozygous mice were viable and fertile, the total absence of Pomt1(-/-) pups in the progeny of heterozygous intercrosses indicated that this genotype is embryonic lethal. An analysis of the mutant phenotype revealed that homozygous Pomt1(-/-) mice suffer developmental arrest around embryonic day (E) 7.5 and die between E7.5 and E9.5. The Pomt1(-/-) embryos present defects in the formation of Reichert's membrane, the first basement membrane to form in the embryo. The failure of this membrane to form appears to be the result of abnormal glycosylation and maturation of dystroglycan that may impair recruitment of laminin, a structural component required for the formation of Reichert's membrane in rodents. The targeted disruption of mPomt1 represents an example of an engineered deletion of a known glycosyltransferase involved in O-mannosyl glycan synthesis.
Collapse
Affiliation(s)
- Tobias Willer
- Lehrstuhl für Zellbiologie und Pflanzenphysiologie, Universität Regensburg, D-93040 Regensburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
158
|
Orchard MG, Neuss JC, Galley CMS, Carr A, Porter DW, Smith P, Scopes DIC, Haydon D, Vousden K, Stubberfield CR, Young K, Page M. Rhodanine-3-acetic acid derivatives as inhibitors of fungal protein mannosyl transferase 1 (PMT1). Bioorg Med Chem Lett 2004; 14:3975-8. [PMID: 15225710 DOI: 10.1016/j.bmcl.2004.05.050] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2004] [Revised: 05/17/2004] [Accepted: 05/21/2004] [Indexed: 11/24/2022]
Abstract
The first inhibitors of fungal protein: mannosyl transferase 1 (PMT1) are described. They are based upon rhodanine-3-acetic acid and several compounds have been identified, for example, 5-[[3-(1-phenylethoxy)-4-(2-phenylethoxy)phenyl]methylene]-4-oxo-2-thioxo-3-thiazolidineacetic acid (5a), which inhibit Candida albicans PMT1 with IC(50)s in the range 0.2-0.5 microM. Members of the series are effective in inducing changes in morphology of C. albicans in vitro that have previously been associated with loss of the transferase activity. These compounds could serve as useful tools for studying the effects of protein O-mannosylation and its relevance in the search for novel antifungal agents.
Collapse
Affiliation(s)
- Michael G Orchard
- Department of Medicinal Chemistry, 4-10 The Quadrant, Abingdon Science Park, Abingdon, Oxfordshire OX14 4YS, UK.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
159
|
Huang G, Zhang M, Erdman SE. Posttranslational modifications required for cell surface localization and function of the fungal adhesin Aga1p. EUKARYOTIC CELL 2004; 2:1099-114. [PMID: 14555493 PMCID: PMC219368 DOI: 10.1128/ec.2.5.1099-1114.2003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Adherence of fungal cells to host substrates and each other affects their access to nutrients, sexual conjugation, and survival in hosts. Adhesins are cell surface proteins that mediate these different cell adhesion interactions. In this study, we examine the in vivo functional requirements for specific posttranslational modifications to these proteins, including glycophosphatidylinositol (GPI) anchor addition and O-linked glycosylation. The processing of some fungal GPI anchors, creating links to cell wall beta-1,6 glucans, is postulated to facilitate postsecretory traffic of proteins to cell wall domains conducive to their functions. By studying the yeast sexual adhesin subunit Aga1p, we found that deletion of its signal sequence for GPI addition eliminated its activity, while deletions of different internal domains had various effects on function. Substitution of the Aga1p GPI signal domain with those of other GPI-anchored proteins, a single transmembrane domain, or a cysteine capable of forming a disulfide all produced functional adhesins. A portion of the cellular pool of Aga1p was determined to be cell wall resident. Aga1p and the alpha-agglutinin Agalpha1p were shown to be under glycosylated in cells lacking the protein mannosyltransferase genes PMT1 and PMT2, with phenotypes manifested only in MATalpha cells for single mutants but in both cell types when both genes are absent. We conclude that posttranslational modifications to Aga1p are necessary for its biogenesis and activity. Our studies also suggest that in addition to GPI-glucan linkages, other cell surface anchorage mechanisms, such as transmembrane domains or disulfides, may be employed by fungal species to localize adhesins.
Collapse
Affiliation(s)
- Guohong Huang
- Department of Biology, Syracuse University, Syracuse, New York 13244, USA.
| | | | | |
Collapse
|
160
|
Oka T, Hamaguchi T, Sameshima Y, Goto M, Furukawa K. Molecular characterization of protein O-mannosyltransferase and its involvement in cell-wall synthesis in Aspergillus nidulans. Microbiology (Reading) 2004; 150:1973-1982. [PMID: 15184583 DOI: 10.1099/mic.0.27005-0] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
ProteinO-glycosylation is essential for protein modification and plays important roles in eukaryotic cells.O-Mannosylation of proteins occurs in the filamentous fungusAspergillus. The structure and function of thepmtAgene, encoding proteinO-d-mannosyltransferase, which is responsible for the initialO-mannosylation reaction inAspergillus nidulans, was characterized. Disruption of thepmtAgene resulted in the reduction ofin vitroproteinO-d-mannosyltransferase activity to 6 % of that of the wild-type strain and led to underglycosylation of an extracellular glucoamylase. ThepmtAdisruptant exhibited abnormal cell morphology and alteration in carbohydrate composition, particularly reduction in the skeletal polysaccharides in the cell wall. The results indicate that PmtA is required for the formation of a normal cell wall inA. nidulans.
Collapse
Affiliation(s)
- Takuji Oka
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan
| | - Tetsu Hamaguchi
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan
| | - Yuka Sameshima
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan
| | - Masatoshi Goto
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan
| | - Kensuke Furukawa
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan
| |
Collapse
|
161
|
Pu L, Scocca JR, Walker BK, Krag SS. The divergent 5' ends of DPM2 mRNAs originate from the alternative splicing of two adjacent introns: characterization of the hamster DPM2 gene. Biochem Biophys Res Commun 2004; 312:817-24. [PMID: 14680839 DOI: 10.1016/j.bbrc.2003.10.192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2003] [Indexed: 11/18/2022]
Abstract
Mammalian dolichol-phosphate-mannose (DPM) synthase has three subunits, DPM1, DPM2, and DPM3. In this report, an analysis of the gene and cDNAs of hamster DPM2 is presented. The CHO DPM2 gene has two special features. First, the initiation codon ATG is separated from the remainder of the coding region by intron sequences. Second, within these intron sequences the DPM2 gene contains an adjacent 3' splice site (acceptor) and a 5' splice site (donor), suggestive of a deleted exon between the first and second codons. In fact, these sites overlap by four nucleotides (nt) of AGGT. Splicing intermediates using both of these alternative splice sites were observed. This latter feature appears unique and is particularly unusual considering the relatively small size of the gene (2.7 kb) and of introns a (123 bp) and b (152 bp).
Collapse
Affiliation(s)
- Lixia Pu
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, MD 21205, USA.
| | | | | | | |
Collapse
|
162
|
Proszynski TJ, Simons K, Bagnat M. O-glycosylation as a sorting determinant for cell surface delivery in yeast. Mol Biol Cell 2004; 15:1533-43. [PMID: 14742720 PMCID: PMC379253 DOI: 10.1091/mbc.e03-07-0511] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Little is known about the mechanisms that determine localization of proteins to the plasma membrane in Saccharomyces cerevisiae. The length of the transmembrane domains and association of proteins with lipid rafts have been proposed to play a role in sorting to the cell surface. Here, we report that Fus1p, an O-glycosylated integral membrane protein involved in cell fusion during yeast mating, requires O-glycosylation for cell surface delivery. In cells lacking PMT4, encoding a mannosyltransferase involved in the initial step of O-glycosylation, Fus1p was not glycosylated and accumulated in late Golgi structures. A chimeric protein lacking O-glycosylation motif was missorted to the vacuole and accumulated in late Golgi in wild-type cells. Exocytosis of this protein could be restored by addition of a 33-amino acid portion of an O-glycosylated sequence from Fus1p. Our data suggest that O-glycosylation functions as a sorting determinant for cell surface delivery of Fus1p.
Collapse
Affiliation(s)
- Tomasz J Proszynski
- Max Planck Institute for Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | | | | |
Collapse
|
163
|
Lommel M, Bagnat M, Strahl S. Aberrant processing of the WSC family and Mid2p cell surface sensors results in cell death of Saccharomyces cerevisiae O-mannosylation mutants. Mol Cell Biol 2004; 24:46-57. [PMID: 14673142 PMCID: PMC303345 DOI: 10.1128/mcb.24.1.46-57.2004] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Protein O mannosylation is a crucial protein modification in uni- and multicellular eukaryotes. In humans, a lack of O-mannosyl glycans causes congenital muscular dystrophies that are associated with brain abnormalities. In yeast, protein O mannosylation is vital; however, it is not known why impaired O mannosylation results in cell death. To address this question, we analyzed the conditionally lethal Saccharomyces cerevisiae protein O-mannosyltransferase pmt2 pmt4Delta mutant. We found that pmt2 pmt4Delta cells lyse as small-budded cells in the absence of osmotic stabilization and that treatment with mating pheromone causes pheromone-induced cell death. These phenotypes are partially suppressed by overexpression of upstream elements of the protein kinase C (PKC1) cell integrity pathway, suggesting that the PKC1 pathway is defective in pmt2 pmt4Delta mutants. Congruently, induction of Mpk1p/Slt2p tyrosine phosphorylation does not occur in pmt2 pmt4Delta mutants during exposure to mating pheromone or elevated temperature. Detailed analyses of the plasma membrane sensors of the PKC1 pathway revealed that Wsc1p, Wsc2p, and Mid2p are aberrantly processed in pmt mutants. Our data suggest that in yeast, O mannosylation increases the activity of Wsc1p, Wsc2p, and Mid2p by enhancing their stability. Reduced O mannosylation leads to incorrect proteolytic processing of these proteins, which in turn results in impaired activation of the PKC1 pathway and finally causes cell death in the absence of osmotic stabilization.
Collapse
Affiliation(s)
- Mark Lommel
- Institute of Cell Biology and Plant Physiology, University of Regensburg, 93040 Regensburg. Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | | | | |
Collapse
|
164
|
Endo T. [Finding of O-mannosyl glycan in mammals and congenital muscular dystrophies due to glycosylation defects]. YAKUGAKU ZASSHI 2004; 123:825-35. [PMID: 14577328 DOI: 10.1248/yakushi.123.825] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Most proteins within living organisms contain glycans. Glycan structures can modulate the biological properties and function of glycoproteins. Developments in glycobiology have revealed a new type of glycosidic linkage to the peptide portion, the O-mannosyl linkage in mammals, although heretofore it had been thought to be specific to yeast. One of the best known O-mannosyl-modified glycoproteins is dystroglycan, which is a central component of dystrophinglycoprotein complex isolated from skeletal muscle membranes. We identify and characterize a glycosyltransferase, UDP-N-acetylglucosamine: protein O-mannose beta 1,2-N-acetylglucosaminyltransferase (POMGnT1), involved in the biosynthesis of mammalian type O-mannosyl glycans. Finally, we find that the POMGnT1 gene is responsible for muscle-eye-brain disease (MEB). MEB is an autosomal recessive disorder characterized by congenital muscular dystrophy, ocular abnormalities and brain malformation (type II lissencephaly). Like MEB, recent data suggest that the aberrant protein glycosylation of a specific glycoprotein, alpha-dystroglycan, is the primary cause of some forms of congenital muscular dystrophy. Here I review the new insight into glycobiology of muscular dystrophy and neuronal migration disorder.
Collapse
Affiliation(s)
- Tamao Endo
- Glycobiology Research Group, Tokyo Metropolitan Institute of Gerontology, Foundation for Research on Aging and Promotion of Human Welfare, 35-2 Sakae-cho, Itabashi-ku, Tokyo 173-0015, Japan.
| |
Collapse
|
165
|
Manya H, Chiba A, Yoshida A, Wang X, Chiba Y, Jigami Y, Margolis RU, Endo T. Demonstration of mammalian protein O-mannosyltransferase activity: coexpression of POMT1 and POMT2 required for enzymatic activity. Proc Natl Acad Sci U S A 2003; 101:500-5. [PMID: 14699049 PMCID: PMC327176 DOI: 10.1073/pnas.0307228101] [Citation(s) in RCA: 269] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Defects in O-mannosylation of alpha-dystroglycan are thought to cause certain types of congenital muscular dystrophies with neuronal migration disorders. Among these muscular dystrophies, Walker-Warburg syndrome is caused by mutations in the gene encoding putative protein O-mannosyltransferase 1 (POMT1), which is homologous to yeast protein O-mannosyltransferases. However, there is no evidence that POMT1 has enzymatic activity. In this study, we first developed a method to detect protein O-mannosyltransferase activity in mammalian cells. Then, using this method, we showed that coexpression of both POMT1 and POMT2 (another gene homologous to yeast protein O-mannosyltransferases) was necessary for the enzyme activity, but expression of either POMT1 or POMT2 alone was insufficient. The requirement of an active enzyme complex of POMT1 and POMT2 suggests that the regulation of protein O-mannosylation is complex. Further, protein O-mannosylation appears to be required for normal structure and function of alpha-dystroglycan in muscle and brain. In view of the potential importance of this form of glycosylation for a number of developmental and neurobiological processes, the ability to assay mammalian protein O-mannosyltransferase activity should greatly facilitate progress in the identification and localization of O-mannosylated proteins and the elucidation of their functional roles.
Collapse
Affiliation(s)
- Hiroshi Manya
- Glycobiology Research Group, Tokyo Metropolitan Institute of Gerontology, Foundation for Research on Aging and Promotion of Human Welfare, Itabashi-ku, Tokyo 173-0015, Japan
| | | | | | | | | | | | | | | |
Collapse
|
166
|
Abstract
The four essential building blocks of cells are proteins, nucleic acids, lipids, and glycans. Also referred to as carbohydrates, glycans are composed of saccharides that are typically linked to lipids and proteins in the secretory pathway. Glycans are highly abundant and diverse biopolymers, yet their functions have remained relatively obscure. This is changing with the advent of genetic reagents and techniques that in the past decade have uncovered many essential roles of specific glycan linkages in living organisms. Glycans appear to modulate biological processes in the development and function of multiple physiologic systems, in part by regulating protein-protein and cell-cell interactions. Moreover, dysregulation of glycan synthesis represents the etiology for a growing number of human genetic diseases. The study of glycans, known as glycobiology, has entered an era of renaissance that coincides with the acquisition of complete genome sequences for multiple organisms and an increased focus upon how posttranslational modifications to protein contribute to the complexity of events mediating normal and disease physiology. Glycan production and modification comprise an estimated 1% of genes in the mammalian genome. Many of these genes encode enzymes termed glycosyltransferases and glycosidases that reside in the Golgi apparatus where they play the major role in constructing the glycan repertoire that is found at the cell surface and among extracellular compartments. We present a review of the recently established functions of glycan structures in the context of mammalian genetic studies focused upon the mouse and human species. Nothing tends so much to the advancement of knowledge as the application of a new instrument. The native intellectual powers of men in different times are not so much the causes of the different success of their labours, as the peculiar nature of the means and artificial resources in their possession. T. Hager: Force of Nature (1)
Collapse
Affiliation(s)
- John B Lowe
- Department of Pathology and Howard Hughes Medical Institute, University of Michigan, Ann Arbor, Michigan 48109, USA.
| | | |
Collapse
|
167
|
Pu L, Scocca JR, Walker BK, Krag SS. A single point mutation resulting in an adversely reduced expression of DPM2 in the Lec15.1 cells. Biochem Biophys Res Commun 2003; 312:555-61. [PMID: 14680801 DOI: 10.1016/j.bbrc.2003.10.152] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2003] [Indexed: 12/01/2022]
Abstract
Mammalian dolichol-phosphate-mannose (DPM) synthase consists of three subunits, DPM1, DPM2, and DPM3. Lec15.1 Chinese hamster ovary cells are deficient in DPM synthase activity. The present paper reports that DPM1 cDNA from wild type and Lec15.1 CHO cells were found to be identical, and transfection with CHO DPM1 cDNA did not reverse the Lec15.1 phenotype. Neither did a chimeric cDNA containing the complete hamster DPM1 open reading frame fused to the Saccharomyces cerevisiae DPM1 C-terminal transmembrane domain. In contrast, Lec15.1 cells were found to have a single point mutation G29A within the coding region of the DPM2 gene, resulting in a glycine to glutamic acid change in amino acid residue 10 of the peptide. Moreover, mutant DPM2 cDNA expressed a drastically reduced amount of DPM2 protein and poorly corrects the Lec15.1 cell phenotype when compared with wild type CHO DPM2 cDNA (G(29) form).
Collapse
Affiliation(s)
- Lixia Pu
- Department of Biochemistry and Molecular Biology, The Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, MD 21205, USA.
| | | | | | | |
Collapse
|
168
|
Abstract
Cryptococcus neoformans is a pathogenic fungus, distinguished by an elaborate polysaccharide capsule that is essential for its virulence. As part of an effort to understand the biosynthesis of this important structure, we initiated purification of an alpha-1,3-mannosyltransferase with appropriate specificity for a role in building the main capsule polysaccharide, glucuronoxylomannan. A pool of proteins that was 5,000-fold enriched in this activity included several polypeptides, which acted potentially as the catalytic protein. These were analyzed using sequence information and double-stranded RNA interference. Interference that targeted a sequence corresponding to part of a 46 kDa protein in the enriched fraction abolished the activity of interest and reduced the capsule on the affected cells. This gene was cloned and expressed in active form in Saccharomyces cerevisiae to confirm function, and was termed CMT1, for cryptococcal mannosyltransferase 1. CMT1 has no confirmed homologs in GenBank other than CAP59, a cryptococcal gene encoding a protein of unknown function that is required for capsule synthesis and virulence. The Cmt1p protein also co-purifies with a homolog of CAP64, a gene whose product has similarly been implicated in capsule synthesis and virulence. A strain disrupted in CMT1 was generated in C. neoformans; this had no effect on virulence in an animal model of cryptococcosis.
Collapse
Affiliation(s)
- Ulf Sommer
- Department of Molecular Microbiology, Washington University Medical School, St. Louis, Missouri 63110, USA
| | | | | |
Collapse
|
169
|
Zakrzewska A, Palamarczyk G, Krotkiewski H, Zdebska E, Saloheimo M, Penttilä M, Kruszewska JS. Overexpression of the gene encoding GTP:mannose-1-phosphate guanyltransferase, mpg1, increases cellular GDP-mannose levels and protein mannosylation in Trichoderma reesei. Appl Environ Microbiol 2003; 69:4383-9. [PMID: 12902219 PMCID: PMC169120 DOI: 10.1128/aem.69.8.4383-4389.2003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To elucidate the regulation and limiting factors in the glycosylation of secreted proteins, the mpg1 and dpm1 genes from Trichoderma reesei (Hypocrea jecorina) encoding GTP:alpha-D-mannose-1-phosphate guanyltransferase and dolichyl phosphate mannose synthase (DPMS), respectively, were overexpressed in T. reesei. No significant increases were observed in DPMS activity or protein secretion in dpm1-overexpressing transformants, whereas overexpression of mpg1 led to a twofold increase in GDP-mannose (GDPMan) levels. GDPMan was effectively utilized by mannnosyltransferases and resulted in hypermannosylation of secreted proteins in both N and O glycosylation. Overexpression of the mpg1 gene also increased the transcription of the dpm1 gene and DPMS activity. Our data indicate that the level of cellular GDPMan can play a major regulatory role in protein glycosylation in T. reesei.
Collapse
Affiliation(s)
- Anna Zakrzewska
- Laboratory of Fungal Glycobiology, Institute of Biochemistry and Biophysics. Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Warsaw, Poland
| | | | | | | | | | | | | |
Collapse
|
170
|
Ecker M, Mrsa V, Hagen I, Deutzmann R, Strahl S, Tanner W. O-mannosylation precedes and potentially controls the N-glycosylation of a yeast cell wall glycoprotein. EMBO Rep 2003; 4:628-32. [PMID: 12776183 PMCID: PMC1319204 DOI: 10.1038/sj.embor.embor864] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2003] [Revised: 04/14/2003] [Accepted: 04/16/2003] [Indexed: 11/09/2022] Open
Abstract
Secretory proteins in yeast are N- and O-glycosylated while they enter the endoplasmic reticulum. N-glycosylation is initiated by the oligosaccharyl transferase complex and O-mannosylation is initiated by distinct O-mannosyltransferase complexes of the protein mannosyl transferase Pmt1/Pmt2 and Pmt4 families. Using covalently linked cell-wall protein 5 (Ccw5) as a model, we show that the Pmt4 and Pmt1/Pmt2 mannosyltransferases glycosylate different domains of the Ccw5 protein, thereby mannosylating several consecutive serine and threonine residues. In addition, it is shown that O-mannosylation by Pmt4 prevents N-glycosylation by blocking the hydroxy amino acid of the single N-glycosylation site present in Ccw5. These data prove that the O- and N-glycosylation machineries compete for Ccw5; therefore O-mannosylation by Pmt4 precedes N-glycosylation.
Collapse
Affiliation(s)
- Margit Ecker
- Lehrstuhl für Zellbiologie und Pflanzenphysiologie, Universität Regensburg, 93040 Regensburg, Germany
| | - Vladimir Mrsa
- Laboratory of Biochemistry, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Ilja Hagen
- Lehrstuhl für Zellbiologie und Pflanzenphysiologie, Universität Regensburg, 93040 Regensburg, Germany
| | - Rainer Deutzmann
- Institut für Biochemie I, Universität Regensburg, Universitätstrasse 31, 93040 Regensburg, Germany
| | - Sabine Strahl
- Lehrstuhl für Zellbiologie und Pflanzenphysiologie, Universität Regensburg, 93040 Regensburg, Germany
| | - Widmar Tanner
- Lehrstuhl für Zellbiologie und Pflanzenphysiologie, Universität Regensburg, 93040 Regensburg, Germany
- Tel: +49 941 943 3018; Fax: +49 941 943 3352;
| |
Collapse
|
171
|
Janik A, Sosnowska M, Kruszewska J, Krotkiewski H, Lehle L, Palamarczyk G. Overexpression of GDP-mannose pyrophosphorylase in Saccharomyces cerevisiae corrects defects in dolichol-linked saccharide formation and protein glycosylation. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1621:22-30. [PMID: 12667607 DOI: 10.1016/s0304-4165(03)00026-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Thermosensitive mutants of Saccharomyces cerevisiae, affected in the endoplasmic reticulum (ER) located glycosylation, i.e. in Dol-P-Man synthase (dpm1), in beta-1,4 mannosyl transferase (alg1) and in alpha-1,3 mannosyltransferase (alg2), were used to assess the role of GDP-Man availability for the synthesis of dolichol-linked saccharides. The mutants were transformed with the yeast gene MPG1 (PSA1/VIG9) encoding GDP-Man pyrophosphorylase catalyzing the final step of GDP-Man formation. We found that overexpression of MPG1 allows growth at non-permissive temperature and leads to an increase in the cellular content of GDP-Man. In the alg1 and alg2 mutants, complemented with MPG1 gene, N-glycosylation of invertase was in part restored, to a degree comparable to that of the wild-type control. In the dpm1 mutant, the glycosylation reactions that depend on the formation of Dol-P-Man, i.e. elongation of Man(5)GlcNAc(2)-PP-Dol, O-mannosylation of chitinase and synthesis of GPI anchor were normal when MPG1 was overexpressed. Our data indicate that an increased level of GDP-Man is able to correct defects in mannosylation reactions ascribed to the ER and to the Golgi.
Collapse
Affiliation(s)
- Anna Janik
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02 106, Warsaw, Poland
| | | | | | | | | | | |
Collapse
|
172
|
Girrbach V, Strahl S. Members of the evolutionarily conserved PMT family of protein O-mannosyltransferases form distinct protein complexes among themselves. J Biol Chem 2003; 278:12554-62. [PMID: 12551906 DOI: 10.1074/jbc.m212582200] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein O-mannosyltransferases (PMTs) initiate the assembly of O-mannosyl glycans, an essential protein modification. Since PMTs are evolutionarily conserved in fungi but are absent in green plants, the PMT family is a putative target for new antifungal drugs, particularly in fighting the threat of phytopathogenic fungi. The PMT family is phylogenetically classified into PMT1, PMT2, and PMT4 subfamilies, which differ in protein substrate specificity. In the model organism Saccharomyces cerevisiae as well as in many other fungi the PMT family is highly redundant, and only the simultaneous deletion of PMT1/PMT2 and PMT4 subfamily members is lethal. In this study we analyzed the molecular organization of PMT family members in S. cerevisiae. We show that members of the PMT1 subfamily (Pmt1p and Pmt5p) interact in pairs with members of the PMT2 subfamily (Pmt2p and Pmt3p) and that Pmt1p-Pmt2p and Pmt5p-Pmt3p complexes represent the predominant forms. Under certain physiological conditions, however, Pmt1p interacts also with Pmt3p, and Pmt5p with Pmt2p, suggesting a compensatory cooperation that guarantees the maintenance of O-mannosylation. Unlike the PMT1/PMT2 subfamily members, the single member of the PMT4 subfamily (Pmt4p) acts as a homomeric complex. Using mutational analyses we demonstrate that the same conserved protein domains underlie both heteromeric and homomeric interactions, and we identify an invariant arginine residue of transmembrane domain two as essential for the formation and/or stability of PMT complexes in general. Our data suggest that protein-protein interactions between the PMT family members offer a point of attack to shut down overall protein O-mannosylation in fungi.
Collapse
Affiliation(s)
- Verena Girrbach
- Lehrstuhl für Zellbiologie und Pflanzenphysiologie, Universität Regensburg, 93040 Regensburg, Germany
| | | |
Collapse
|
173
|
Zakrzewska A, Migdalski A, Saloheimo M, Penttila ME, Palamarczyk G, Kruszewska JS. cDNA encoding protein O-mannosyltransferase from the filamentous fungus Trichoderma reesei; functional equivalence to Saccharomyces cerevisiae PMT2. Curr Genet 2003; 43:11-6. [PMID: 12684840 DOI: 10.1007/s00294-003-0368-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2002] [Revised: 12/09/2002] [Accepted: 12/18/2002] [Indexed: 10/25/2022]
Abstract
O-Mannosylation is suggested to be essential for protein secretion in Trichoderma reesei. In protein O-glycosylation, the first mannosyl residue is transferred to a serine or threonine hydroxyl group of the protein from dolichyl phosphate mannose by protein O-mannosyltransferase. In Saccharomyces cerevisiae, seven PMT genes have been cloned coding for these enzymes. In the present work, the characterisation of the pmt1 cDNA from T. reesei is reported. Sequence analysis of the predicted protein revealed the highest similarity to Schizosaccharomyces pombe Pmt and to Pmt4p of Saccharomyces cerevisiae. In contrast, expression of the T. reesei cDNA in various S. cerevisiae pmt mutants showed functional similarity to the yeast Pmt2 protein.
Collapse
Affiliation(s)
- Anna Zakrzewska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| | | | | | | | | | | |
Collapse
|
174
|
Conde R, Pablo G, Cueva R, Larriba G. Screening for new yeast mutants affected in mannosylphosphorylation of cell wall mannoproteins. Yeast 2003; 20:1189-211. [PMID: 14587103 DOI: 10.1002/yea.1032] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
We have carried out a screen of 622 deletion strains generated during the EUROFAN B0 project to identify non-essential genes related to the mannosylphosphate content of the cell wall. By examining the affinity of the deletants for the cationic dye alcian blue and the ion exchanger QAE-Sephadex, we have selected 50 strains. On the basis on their reactivity (blue colour intensity) in the alcian blue assay, mutants with a lower phosphate content than wild-type cells were then arranged in groups defined by previously characterized mutants, as follows: group I (mnn6), group II (between mnn6 and mnn9) and group III (mnn9). Similarly, strains that behaved like mnn1 (i.e. a blue colour deeper than wild-type) were included in group VI. To confirm the association between the phenotype and a specific mutation, strains were complemented with clones or subjected to tetrad analysis. Selected strains were further tested for extracellular invertase and exoglucanase. Within groups I, II and III, we found some genes known to be involved in oligosaccharide biosynthesis (ALG9, ALG12, HOC1), secretion (BRE5, COD4/COG5, VPS53), transcription (YOL072w/THP1, ELP2, STB1, SNF11), cell polarity (SEP7, RDG1), mitochondrial function (YFH1), cell metabolism, as well as orphan genes. Within group VI, we found genes involved in environmentally regulated transduction pathways (PAL2 and RIM20) as well as others with miscellaneous or unknown functions. We conclude that mannosylphosphorylation is severely impaired in some deletants deficient in specific glycosylation/secretion processes, but many other different pathways may also modulate the amount of mannosylphosphate in the cell wall.
Collapse
Affiliation(s)
- Raúl Conde
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Extremadura, 06071 Badajoz, Spain
| | | | | | | |
Collapse
|
175
|
Abstract
Mammalian cells produce many glycoproteins, i.e., proteins with covalently attached sugar chains. Recent advances in glycobiology have revealed the importance of sugar chains as biosignals for multi-cellular organisms including cell-cell communication, intracellular signaling, protein folding, and targeting of proteins within cells. The O-mannosyl linkage, which used to be considered specific to yeast, has recently been found in mammals. One of the best known O-mannosyl-modified glycoproteins is alpha-dystroglycan, which is a central component of the dystrophin-glycoprotein complex isolated from skeletal muscle membranes. We have identified and characterized a glycosyltransferase, UDP-N-acetylglucosamine: protein O-mannose beta1,2-N-acetylglucosaminyltransferase (POMGnT1), involved in the biosynthesis of O-mannosyl glycans. We subsequently found that loss of function of the POMGnT1 gene is responsible for muscle-eye-brain disease (MEB). MEB is an autosomal recessive disorder characterized by congenital muscular dystrophy, ocular abnormalities and brain malformation (type II lissencephaly). Moreover, recent data suggest that aberrant protein glycosylation of alpha-dystroglycan is the primary cause of some forms of congenital muscular dystrophy. Here we review new insights into the glycobiology of muscular dystrophy and neuronal migration disorder.
Collapse
Affiliation(s)
- Tamao Endo
- Glycobiology Research Group, Tokyo Metropolitan Institute of Gerontology, Foundation for Research on Aging and Promotion of Human Welfare, Tokyo, Japan.
| | | |
Collapse
|
176
|
Hashimoto H, Abe M, Hirata A, Noda Y, Adachi H, Yoda K. Progression of the stacked Golgi compartments in the yeast Saccharomyces cerevisiae by overproduction of GDP-mannose transporter. Yeast 2002; 19:1413-24. [PMID: 12478588 DOI: 10.1002/yea.925] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Golgi compartments of the yeast Saccharomyces cerevisiaeare dispersed within the cytoplasm, in contrast to the stacked cisternae in the mammalian cell, and consequently are observed as a punctate pattern by immunofluorescent staining of Golgi-marker proteins. The VIG4/VRG4 gene encodes the essential yeast GDP-mannose transporter, which is a polytopic membrane protein in the early and medial Golgi compartments. Upon overexpression of this gene by the aid of a strong promoter and multicopy vector, we found that stacked multivesicular structures, which resembled the cisternae of mammalian Golgi apparatus, had developed in S. cerevisiae. Immuno-electron microscopy showed that the GDP-mannose transporter was located on the stacked cisternae. Immuno-isolation and immunoblotting analyses of the vesicles showed that the overproduced GDP-mannose transporter also co-localized with the Golgi glycosyltransferases, but not with the ER- or late Golgi-marker proteins as in the control cell. We propose that the localization mechanism of the GDP-mannose transporter in the Golgi compartment would be efficient and hardly saturable, and therefore the overproduced protein induced a progression of Golgi-like compartments rather than being mislocalized in other compartments, such as the ER or a vacuole.
Collapse
Affiliation(s)
- Hitoshi Hashimoto
- Department of Biotechnology, University of Tokyo, Yayoi, Bunkyo-Ku, Tokyo 113-8657, Japan
| | | | | | | | | | | |
Collapse
|
177
|
Shaw BD, Momany M. Aspergillus nidulans polarity mutant swoA is complemented by protein O-mannosyltransferase pmtA. Fungal Genet Biol 2002; 37:263-70. [PMID: 12431460 DOI: 10.1016/s1087-1845(02)00531-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Previously swoA was identified in Aspergillus nidulans as a single locus, temperature-sensitive (ts) mutant aberrant in polarity maintenance. swoA was complemented by transformation with a plasmid genomic library. The sequence of the complementing gene was identical to a previously submitted GenBank sequence for pmtA, a protein O-mannosyltransferase. The pmtA/swoA-2 gene hybridized to three cosmids that are located on chromosome V and the swoA mutation was mitotically mapped to chromosome V. PMTs are endoplasmic reticulum-resident proteins responsible for the first step of O-glycosylation. Structural predictions suggest that PmtA contains seven membrane spans similar to PMTs from Saccharomyces cerevisiae and other organisms. Phylogenetic analysis indicates that PmtA is most closely related to the S. cerevisiae sub-family of PMTs containing Pmt2, Pmt3 and Pmt6. The mutant pmtA/swoA-2 locus contained a lesion that changed Y662 to a stop codon, eliminating the final membrane spanning domain and interrupting a domain essential for function in other PMTs.
Collapse
Affiliation(s)
- Brian D Shaw
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| | | |
Collapse
|
178
|
Willer T, Amselgruber W, Deutzmann R, Strahl S. Characterization of POMT2, a novel member of the PMT protein O-mannosyltransferase family specifically localized to the acrosome of mammalian spermatids. Glycobiology 2002; 12:771-83. [PMID: 12460945 DOI: 10.1093/glycob/cwf086] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Over the past few years it has emerged that O-mannosyl glycans are not restricted to yeasts and fungi but are also present in higher eukaryotes, including humans. They play a substantial role in the onset of muscular dystrophy and neuronal migration disorders, like muscle-eye-brain disease. Protein O-mannosyltransferase genes (PMTs) are evolutionarily conserved from yeast to human; however, little is known about these enzymes in higher eukaryotes. In this study, we cloned the first PMT2 subfamily members from human (hPOMT2), mouse (mPomt2), and Drosophila (DmPOMT2). A detailed characterization of the mammalian POMT2, with emphasis on mouse Pomt2, shows that mammalian POMT2 is predominantly expressed in testis tissue. Due to differential transcription initiation of the mPomt2 gene, two distinct mRNA species that vary in length are formed. The shorter transcript is present in all somatic tissues examined. Expression of the corresponding hPOMT2 cDNA in mammalian cells identified POMT2 as an integral membrane protein of the endoplasmic reticulum with an apparent molecular weight of 83 kDa. The longer mPomt2 transcript is restricted to testis and encodes a testis-specific mPOMT2 protein isoform. Using in situ hybridization and immunolocalization, we demonstrate that in testis tissue mPOMT2 localizes to maturing spermatids and is abundant within the acrosome, a sperm-specific organelle essential for fertilization. Our data suggest a novel and specific role for the putative protein O-mannosyltransferase POMT2 in the maturation and/or function of sperm in mammals.
Collapse
Affiliation(s)
- Tobias Willer
- Lehrstuhl für Zellbiologie und Pflanzenphysiologie, Universität Regensburg, 93040 Regensburg, Germany
| | | | | | | |
Collapse
|
179
|
Cowlishaw DA, Smith MCM. A gene encoding a homologue of dolichol phosphate-beta-D-mannose synthase is required for infection of Streptomyces coelicolor A3(2) by phage (phi)C31. J Bacteriol 2002; 184:6081-3. [PMID: 12374845 PMCID: PMC135388 DOI: 10.1128/jb.184.21.6081-6083.2002] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have shown previously that a gene encoding a homologue to the eukaryotic dolichol-phosphate-D-mannose, protein O-D-mannosyltransferase, was required for (phi)C31 infection of Streptomyces coelicolor. Here we show that a gene encoding the homologue to dolichol-phosphate-mannose synthase is also essential for phage sensitivity. These data confirm the role of glycosylation in the phage receptor for (phi)C31 in S. coelicolor.
Collapse
Affiliation(s)
- Deborah A Cowlishaw
- Institute of Genetics, University of Nottingham, Queens Medical Centre, Nottingham NG7 2UH, United Kingdom
| | | |
Collapse
|
180
|
Beltrán-Valero de Bernabé D, Currier S, Steinbrecher A, Celli J, van Beusekom E, van der Zwaag B, Kayserili H, Merlini L, Chitayat D, Dobyns WB, Cormand B, Lehesjoki AE, Cruces J, Voit T, Walsh CA, van Bokhoven H, Brunner HG. Mutations in the O-mannosyltransferase gene POMT1 give rise to the severe neuronal migration disorder Walker-Warburg syndrome. Am J Hum Genet 2002; 71:1033-43. [PMID: 12369018 PMCID: PMC419999 DOI: 10.1086/342975] [Citation(s) in RCA: 474] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2002] [Accepted: 07/16/2002] [Indexed: 11/03/2022] Open
Abstract
Walker-Warburg syndrome (WWS) is an autosomal recessive developmental disorder characterized by congenital muscular dystrophy and complex brain and eye abnormalities. A similar combination of symptoms is presented by two other human diseases, muscle-eye-brain disease (MEB) and Fukuyama congenital muscular dystrophy (FCMD). Although the genes underlying FCMD (Fukutin) and MEB (POMGnT1) have been cloned, loci for WWS have remained elusive. The protein products of POMGnT1 and Fukutin have both been implicated in protein glycosylation. To unravel the genetic basis of WWS, we first performed a genomewide linkage analysis in 10 consanguineous families with WWS. The results indicated the existence of at least three WWS loci. Subsequently, we adopted a candidate-gene approach in combination with homozygosity mapping in 15 consanguineous families with WWS. Candidate genes were selected on the basis of the role of the FCMD and MEB genes. Since POMGnT1 encodes an O-mannoside N-acetylglucosaminyltransferase, we analyzed the possible implication of O-mannosyl glycan synthesis in WWS. Analysis of the locus for O-mannosyltransferase 1 (POMT1) revealed homozygosity in 5 of 15 families. Sequencing of the POMT1 gene revealed mutations in 6 of the 30 unrelated patients with WWS. Of the five mutations identified, two are nonsense mutations, two are frameshift mutations, and one is a missense mutation. Immunohistochemical analysis of muscle from patients with POMT1 mutations corroborated the O-mannosylation defect, as judged by the absence of glycosylation of alpha-dystroglycan. The implication of O-mannosylation in MEB and WWS suggests new lines of study in understanding the molecular basis of neuronal migration.
Collapse
Affiliation(s)
- Daniel Beltrán-Valero de Bernabé
- Departments of Human Genetics and Pathology, University Medical Centre Nijmegen, Nijmegen, The Netherlands; Division of Neurogenetics, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston; Institute of Neuropathology, Free University Berlin, Berlin; Department of Pediatrics and Pediatric Neurology, University Hospital Essen, Essen; Department of Neurology, Division of Medical Genetics, Istanbul Medical Faculty, Istanbul University, Istanbul; Laboratory of Neuromuscular Pathology, Istituto Ortopedico Rizzoli, Bologna; Department of Obstetrics and Gynecology, Mount Sinai Hospital, The University of Toronto, Toronto; Departments of Human Genetics, Neurology, and Pediatrics, The University of Chicago, Chicago; Department of Genetics, University of Barcelona, Barcelona; Folkhalsan Institute of Genetics and Department of Medical Genetics, University of Helsinki, Helsinki; and Department of Biochemistry, Faculty of Medicine, University Autónoma of Madrid, Madrid
| | - Sophie Currier
- Departments of Human Genetics and Pathology, University Medical Centre Nijmegen, Nijmegen, The Netherlands; Division of Neurogenetics, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston; Institute of Neuropathology, Free University Berlin, Berlin; Department of Pediatrics and Pediatric Neurology, University Hospital Essen, Essen; Department of Neurology, Division of Medical Genetics, Istanbul Medical Faculty, Istanbul University, Istanbul; Laboratory of Neuromuscular Pathology, Istituto Ortopedico Rizzoli, Bologna; Department of Obstetrics and Gynecology, Mount Sinai Hospital, The University of Toronto, Toronto; Departments of Human Genetics, Neurology, and Pediatrics, The University of Chicago, Chicago; Department of Genetics, University of Barcelona, Barcelona; Folkhalsan Institute of Genetics and Department of Medical Genetics, University of Helsinki, Helsinki; and Department of Biochemistry, Faculty of Medicine, University Autónoma of Madrid, Madrid
| | - Alice Steinbrecher
- Departments of Human Genetics and Pathology, University Medical Centre Nijmegen, Nijmegen, The Netherlands; Division of Neurogenetics, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston; Institute of Neuropathology, Free University Berlin, Berlin; Department of Pediatrics and Pediatric Neurology, University Hospital Essen, Essen; Department of Neurology, Division of Medical Genetics, Istanbul Medical Faculty, Istanbul University, Istanbul; Laboratory of Neuromuscular Pathology, Istituto Ortopedico Rizzoli, Bologna; Department of Obstetrics and Gynecology, Mount Sinai Hospital, The University of Toronto, Toronto; Departments of Human Genetics, Neurology, and Pediatrics, The University of Chicago, Chicago; Department of Genetics, University of Barcelona, Barcelona; Folkhalsan Institute of Genetics and Department of Medical Genetics, University of Helsinki, Helsinki; and Department of Biochemistry, Faculty of Medicine, University Autónoma of Madrid, Madrid
| | - Jacopo Celli
- Departments of Human Genetics and Pathology, University Medical Centre Nijmegen, Nijmegen, The Netherlands; Division of Neurogenetics, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston; Institute of Neuropathology, Free University Berlin, Berlin; Department of Pediatrics and Pediatric Neurology, University Hospital Essen, Essen; Department of Neurology, Division of Medical Genetics, Istanbul Medical Faculty, Istanbul University, Istanbul; Laboratory of Neuromuscular Pathology, Istituto Ortopedico Rizzoli, Bologna; Department of Obstetrics and Gynecology, Mount Sinai Hospital, The University of Toronto, Toronto; Departments of Human Genetics, Neurology, and Pediatrics, The University of Chicago, Chicago; Department of Genetics, University of Barcelona, Barcelona; Folkhalsan Institute of Genetics and Department of Medical Genetics, University of Helsinki, Helsinki; and Department of Biochemistry, Faculty of Medicine, University Autónoma of Madrid, Madrid
| | - Ellen van Beusekom
- Departments of Human Genetics and Pathology, University Medical Centre Nijmegen, Nijmegen, The Netherlands; Division of Neurogenetics, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston; Institute of Neuropathology, Free University Berlin, Berlin; Department of Pediatrics and Pediatric Neurology, University Hospital Essen, Essen; Department of Neurology, Division of Medical Genetics, Istanbul Medical Faculty, Istanbul University, Istanbul; Laboratory of Neuromuscular Pathology, Istituto Ortopedico Rizzoli, Bologna; Department of Obstetrics and Gynecology, Mount Sinai Hospital, The University of Toronto, Toronto; Departments of Human Genetics, Neurology, and Pediatrics, The University of Chicago, Chicago; Department of Genetics, University of Barcelona, Barcelona; Folkhalsan Institute of Genetics and Department of Medical Genetics, University of Helsinki, Helsinki; and Department of Biochemistry, Faculty of Medicine, University Autónoma of Madrid, Madrid
| | - Bert van der Zwaag
- Departments of Human Genetics and Pathology, University Medical Centre Nijmegen, Nijmegen, The Netherlands; Division of Neurogenetics, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston; Institute of Neuropathology, Free University Berlin, Berlin; Department of Pediatrics and Pediatric Neurology, University Hospital Essen, Essen; Department of Neurology, Division of Medical Genetics, Istanbul Medical Faculty, Istanbul University, Istanbul; Laboratory of Neuromuscular Pathology, Istituto Ortopedico Rizzoli, Bologna; Department of Obstetrics and Gynecology, Mount Sinai Hospital, The University of Toronto, Toronto; Departments of Human Genetics, Neurology, and Pediatrics, The University of Chicago, Chicago; Department of Genetics, University of Barcelona, Barcelona; Folkhalsan Institute of Genetics and Department of Medical Genetics, University of Helsinki, Helsinki; and Department of Biochemistry, Faculty of Medicine, University Autónoma of Madrid, Madrid
| | - Hülya Kayserili
- Departments of Human Genetics and Pathology, University Medical Centre Nijmegen, Nijmegen, The Netherlands; Division of Neurogenetics, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston; Institute of Neuropathology, Free University Berlin, Berlin; Department of Pediatrics and Pediatric Neurology, University Hospital Essen, Essen; Department of Neurology, Division of Medical Genetics, Istanbul Medical Faculty, Istanbul University, Istanbul; Laboratory of Neuromuscular Pathology, Istituto Ortopedico Rizzoli, Bologna; Department of Obstetrics and Gynecology, Mount Sinai Hospital, The University of Toronto, Toronto; Departments of Human Genetics, Neurology, and Pediatrics, The University of Chicago, Chicago; Department of Genetics, University of Barcelona, Barcelona; Folkhalsan Institute of Genetics and Department of Medical Genetics, University of Helsinki, Helsinki; and Department of Biochemistry, Faculty of Medicine, University Autónoma of Madrid, Madrid
| | - Luciano Merlini
- Departments of Human Genetics and Pathology, University Medical Centre Nijmegen, Nijmegen, The Netherlands; Division of Neurogenetics, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston; Institute of Neuropathology, Free University Berlin, Berlin; Department of Pediatrics and Pediatric Neurology, University Hospital Essen, Essen; Department of Neurology, Division of Medical Genetics, Istanbul Medical Faculty, Istanbul University, Istanbul; Laboratory of Neuromuscular Pathology, Istituto Ortopedico Rizzoli, Bologna; Department of Obstetrics and Gynecology, Mount Sinai Hospital, The University of Toronto, Toronto; Departments of Human Genetics, Neurology, and Pediatrics, The University of Chicago, Chicago; Department of Genetics, University of Barcelona, Barcelona; Folkhalsan Institute of Genetics and Department of Medical Genetics, University of Helsinki, Helsinki; and Department of Biochemistry, Faculty of Medicine, University Autónoma of Madrid, Madrid
| | - David Chitayat
- Departments of Human Genetics and Pathology, University Medical Centre Nijmegen, Nijmegen, The Netherlands; Division of Neurogenetics, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston; Institute of Neuropathology, Free University Berlin, Berlin; Department of Pediatrics and Pediatric Neurology, University Hospital Essen, Essen; Department of Neurology, Division of Medical Genetics, Istanbul Medical Faculty, Istanbul University, Istanbul; Laboratory of Neuromuscular Pathology, Istituto Ortopedico Rizzoli, Bologna; Department of Obstetrics and Gynecology, Mount Sinai Hospital, The University of Toronto, Toronto; Departments of Human Genetics, Neurology, and Pediatrics, The University of Chicago, Chicago; Department of Genetics, University of Barcelona, Barcelona; Folkhalsan Institute of Genetics and Department of Medical Genetics, University of Helsinki, Helsinki; and Department of Biochemistry, Faculty of Medicine, University Autónoma of Madrid, Madrid
| | - William B. Dobyns
- Departments of Human Genetics and Pathology, University Medical Centre Nijmegen, Nijmegen, The Netherlands; Division of Neurogenetics, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston; Institute of Neuropathology, Free University Berlin, Berlin; Department of Pediatrics and Pediatric Neurology, University Hospital Essen, Essen; Department of Neurology, Division of Medical Genetics, Istanbul Medical Faculty, Istanbul University, Istanbul; Laboratory of Neuromuscular Pathology, Istituto Ortopedico Rizzoli, Bologna; Department of Obstetrics and Gynecology, Mount Sinai Hospital, The University of Toronto, Toronto; Departments of Human Genetics, Neurology, and Pediatrics, The University of Chicago, Chicago; Department of Genetics, University of Barcelona, Barcelona; Folkhalsan Institute of Genetics and Department of Medical Genetics, University of Helsinki, Helsinki; and Department of Biochemistry, Faculty of Medicine, University Autónoma of Madrid, Madrid
| | - Bru Cormand
- Departments of Human Genetics and Pathology, University Medical Centre Nijmegen, Nijmegen, The Netherlands; Division of Neurogenetics, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston; Institute of Neuropathology, Free University Berlin, Berlin; Department of Pediatrics and Pediatric Neurology, University Hospital Essen, Essen; Department of Neurology, Division of Medical Genetics, Istanbul Medical Faculty, Istanbul University, Istanbul; Laboratory of Neuromuscular Pathology, Istituto Ortopedico Rizzoli, Bologna; Department of Obstetrics and Gynecology, Mount Sinai Hospital, The University of Toronto, Toronto; Departments of Human Genetics, Neurology, and Pediatrics, The University of Chicago, Chicago; Department of Genetics, University of Barcelona, Barcelona; Folkhalsan Institute of Genetics and Department of Medical Genetics, University of Helsinki, Helsinki; and Department of Biochemistry, Faculty of Medicine, University Autónoma of Madrid, Madrid
| | - Ana-Elina Lehesjoki
- Departments of Human Genetics and Pathology, University Medical Centre Nijmegen, Nijmegen, The Netherlands; Division of Neurogenetics, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston; Institute of Neuropathology, Free University Berlin, Berlin; Department of Pediatrics and Pediatric Neurology, University Hospital Essen, Essen; Department of Neurology, Division of Medical Genetics, Istanbul Medical Faculty, Istanbul University, Istanbul; Laboratory of Neuromuscular Pathology, Istituto Ortopedico Rizzoli, Bologna; Department of Obstetrics and Gynecology, Mount Sinai Hospital, The University of Toronto, Toronto; Departments of Human Genetics, Neurology, and Pediatrics, The University of Chicago, Chicago; Department of Genetics, University of Barcelona, Barcelona; Folkhalsan Institute of Genetics and Department of Medical Genetics, University of Helsinki, Helsinki; and Department of Biochemistry, Faculty of Medicine, University Autónoma of Madrid, Madrid
| | - Jesús Cruces
- Departments of Human Genetics and Pathology, University Medical Centre Nijmegen, Nijmegen, The Netherlands; Division of Neurogenetics, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston; Institute of Neuropathology, Free University Berlin, Berlin; Department of Pediatrics and Pediatric Neurology, University Hospital Essen, Essen; Department of Neurology, Division of Medical Genetics, Istanbul Medical Faculty, Istanbul University, Istanbul; Laboratory of Neuromuscular Pathology, Istituto Ortopedico Rizzoli, Bologna; Department of Obstetrics and Gynecology, Mount Sinai Hospital, The University of Toronto, Toronto; Departments of Human Genetics, Neurology, and Pediatrics, The University of Chicago, Chicago; Department of Genetics, University of Barcelona, Barcelona; Folkhalsan Institute of Genetics and Department of Medical Genetics, University of Helsinki, Helsinki; and Department of Biochemistry, Faculty of Medicine, University Autónoma of Madrid, Madrid
| | - Thomas Voit
- Departments of Human Genetics and Pathology, University Medical Centre Nijmegen, Nijmegen, The Netherlands; Division of Neurogenetics, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston; Institute of Neuropathology, Free University Berlin, Berlin; Department of Pediatrics and Pediatric Neurology, University Hospital Essen, Essen; Department of Neurology, Division of Medical Genetics, Istanbul Medical Faculty, Istanbul University, Istanbul; Laboratory of Neuromuscular Pathology, Istituto Ortopedico Rizzoli, Bologna; Department of Obstetrics and Gynecology, Mount Sinai Hospital, The University of Toronto, Toronto; Departments of Human Genetics, Neurology, and Pediatrics, The University of Chicago, Chicago; Department of Genetics, University of Barcelona, Barcelona; Folkhalsan Institute of Genetics and Department of Medical Genetics, University of Helsinki, Helsinki; and Department of Biochemistry, Faculty of Medicine, University Autónoma of Madrid, Madrid
| | - Christopher A. Walsh
- Departments of Human Genetics and Pathology, University Medical Centre Nijmegen, Nijmegen, The Netherlands; Division of Neurogenetics, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston; Institute of Neuropathology, Free University Berlin, Berlin; Department of Pediatrics and Pediatric Neurology, University Hospital Essen, Essen; Department of Neurology, Division of Medical Genetics, Istanbul Medical Faculty, Istanbul University, Istanbul; Laboratory of Neuromuscular Pathology, Istituto Ortopedico Rizzoli, Bologna; Department of Obstetrics and Gynecology, Mount Sinai Hospital, The University of Toronto, Toronto; Departments of Human Genetics, Neurology, and Pediatrics, The University of Chicago, Chicago; Department of Genetics, University of Barcelona, Barcelona; Folkhalsan Institute of Genetics and Department of Medical Genetics, University of Helsinki, Helsinki; and Department of Biochemistry, Faculty of Medicine, University Autónoma of Madrid, Madrid
| | - Hans van Bokhoven
- Departments of Human Genetics and Pathology, University Medical Centre Nijmegen, Nijmegen, The Netherlands; Division of Neurogenetics, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston; Institute of Neuropathology, Free University Berlin, Berlin; Department of Pediatrics and Pediatric Neurology, University Hospital Essen, Essen; Department of Neurology, Division of Medical Genetics, Istanbul Medical Faculty, Istanbul University, Istanbul; Laboratory of Neuromuscular Pathology, Istituto Ortopedico Rizzoli, Bologna; Department of Obstetrics and Gynecology, Mount Sinai Hospital, The University of Toronto, Toronto; Departments of Human Genetics, Neurology, and Pediatrics, The University of Chicago, Chicago; Department of Genetics, University of Barcelona, Barcelona; Folkhalsan Institute of Genetics and Department of Medical Genetics, University of Helsinki, Helsinki; and Department of Biochemistry, Faculty of Medicine, University Autónoma of Madrid, Madrid
| | - Han G. Brunner
- Departments of Human Genetics and Pathology, University Medical Centre Nijmegen, Nijmegen, The Netherlands; Division of Neurogenetics, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston; Institute of Neuropathology, Free University Berlin, Berlin; Department of Pediatrics and Pediatric Neurology, University Hospital Essen, Essen; Department of Neurology, Division of Medical Genetics, Istanbul Medical Faculty, Istanbul University, Istanbul; Laboratory of Neuromuscular Pathology, Istituto Ortopedico Rizzoli, Bologna; Department of Obstetrics and Gynecology, Mount Sinai Hospital, The University of Toronto, Toronto; Departments of Human Genetics, Neurology, and Pediatrics, The University of Chicago, Chicago; Department of Genetics, University of Barcelona, Barcelona; Folkhalsan Institute of Genetics and Department of Medical Genetics, University of Helsinki, Helsinki; and Department of Biochemistry, Faculty of Medicine, University Autónoma of Madrid, Madrid
| |
Collapse
|
181
|
Zhao ZD, Tan L, Showalter AM, Lamport DTA, Kieliszewski MJ. Tomato LeAGP-1 arabinogalactan-protein purified from transgenic tobacco corroborates the Hyp contiguity hypothesis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2002; 31:431-44. [PMID: 12182702 DOI: 10.1046/j.1365-313x.2002.01365.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Functional analysis of the hyperglycosylated arabinogalactan-proteins (AGPs) attempts to relate biological roles to the molecular properties that result largely from O-Hyp glycosylation putatively coded by the primary sequence. The Hyp contiguity hypothesis predicts contiguous Hyp residues as attachment sites for arabino-oligosaccharides (arabinosides) and clustered, non-contiguous Hyp residues as arabinogalactan polysaccharide sites. Although earlier tests of naturally occurring hydroxyproline-rich glycoproteins (HRGPs) and HRGPs designed by synthetic genes were consistent with a sequence-driven code, the predictive value of the hypothesis starting from the DNA sequences of known AGPs remained untested due to difficulties in purifying a single AGP for analysis. However, expression in tobacco (Nicotiana tabacum) of the major tomato (Lycopersicon esculentum) AGP, LeAGP-1, as an enhanced green fluorescent protein fusion glycoprotein (EGFP)-LeAGP-1, increased its hydrophobicity sufficiently for chromatographic purification from other closely related endogenous AGPs. We also designed and purified two variants of LeAGP-1 for future functional analysis: one lacking the putative glycosylphosphatidylinositol (GPI)-anchor signal sequence; the other lacking a 12-residue internal lysine-rich region. Fluorescence microscopy of plasmolysed cells confirmed the location of LeAGP-1 at the plasma membrane outer surface and in Hechtian threads. Hyp glycoside profiles of the fusion glycoproteins gave ratios of Hyp-polysaccharides to Hyp-arabinosides plus non-glycosylated Hyp consistent with those predicted from DNA sequences by the Hyp contiguity hypothesis. These results demonstrate a route to the purification of AGPs and the use of the Hyp contiguity hypothesis for predicting the Hyp O-glycosylation profile of an HRGP from its DNA sequence.
Collapse
Affiliation(s)
- Zhan Dong Zhao
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH 45710, USA
| | | | | | | | | |
Collapse
|
182
|
Costa AA, Gómez FJ, Pereira M, Felipe MSS, Jesuino RSA, Deepe GS, de Almeida Soares CM. Characterization of a gene which encodes a mannosyltransferase homolog of Paracoccidioides brasiliensis. Microbes Infect 2002; 4:1027-34. [PMID: 12191652 DOI: 10.1016/s1286-4579(02)01626-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We screened an expression library of the yeast form of Paracoccidioides brasiliensis with a pool of human sera that was pre-adsorbed with mycelium, from patients with paracoccidioidomycosis (PCM). A sequence (PbYmnt) was obtained and characterized. A genomic clone was obtained by PCR of P. brasiliensis total DNA. The sequence contained a single open reading frame (ORF) encoding a protein of 357 amino acid residues, with a molecular mass of 39.78 kDa. The deduced amino acid sequence exhibited identity to mannosyl- and glycosyltransferases from several sources. A DXD motif was present in the translated gene and this sequence is characteristic of the glycosyltransferases. Hydropathy analysis revealed a single transmembrane region near the amino terminus of the molecule that suggested a type II membrane protein. The PbYmnt was expressed preferentially in the yeast parasitic phase. The accession number of the nucleotide sequence of PbYmnt and its flanking regions is AF374353. A recombinant protein was generated in Escherichia coli. Our data suggest that PbYmnt encodes one member of a glycosyltransferase family of proteins and that our strategy was useful in the isolation of differentially expressed genes.
Collapse
Affiliation(s)
- Alessandra A Costa
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, 74001-970, Goiânia, Goiás, Brazil
| | | | | | | | | | | | | |
Collapse
|
183
|
Cooper HN, Gurcha SS, Nigou J, Brennan PJ, Belisle JT, Besra GS, Young D. Characterization of mycobacterial protein glycosyltransferase activity using synthetic peptide acceptors in a cell-free assay. Glycobiology 2002; 12:427-34. [PMID: 12122024 DOI: 10.1093/glycob/cwf051] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Synthetic peptides derived from a 45-kDa glycoprotein antigen of Mycobacterium tuberculosis were shown to function as glycosyltransferase acceptors for mannose residues in a mannosyltransferase cell-free assay. The mannosyltransferase activity was localized within both isolated membranes and a P60 cell wall fraction prepared from the rapidly growing mycobacterial strain, Mycobacterium smegmatis. Incorporation of radiolabel from GDP-[(14)C]mannose was inhibited by the addition of amphomycin, indicating that the glycosyl donor for the peptide acceptors was a member of the mycobacterial polyprenol-P-mannose (PPM) family of activated glycosyl donors. Furthermore, a direct demonstration of transfer from the in situ generated PP[(14)C]Ms was also demonstrated. It was also found that the enzyme activity was sensitive to changes in overall peptide length and amino acid composition. Because glycoproteins are present on the mycobacterial cell surface and are available for interaction with host cells during infection, protein glycosyltransferases may provide novel drug targets. The development of a cell-free mannosyltransferase assay will now facilitate the cloning and biochemical characterisation of the relevant enzymes from M. tuberculosis.
Collapse
Affiliation(s)
- Howard N Cooper
- Centre for Molecular Microbiology and Infection, Imperial College of Science, Technology and Medicine, South Kensington, London, SW7 2AZ, England
| | | | | | | | | | | | | |
Collapse
|
184
|
Herrero AB, Uccelletti D, Hirschberg CB, Dominguez A, Abeijon C. The Golgi GDPase of the fungal pathogen Candida albicans affects morphogenesis, glycosylation, and cell wall properties. EUKARYOTIC CELL 2002; 1:420-31. [PMID: 12455990 PMCID: PMC118022 DOI: 10.1128/ec.1.3.420-431.2002] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cell wall mannoproteins are largely responsible for the adhesive properties and immunomodulation ability of the fungal pathogen Candida albicans. The outer chain extension of yeast mannoproteins occurs in the lumen of the Golgi apparatus. GDP-mannose must first be transported from the cytosol into the Golgi lumen, where mannose is transferred to mannans. GDP is hydrolyzed by a GDPase, encoded by GDA1, to GMP, which then exits the Golgi lumen in a coupled, equimolar exchange with cytosolic GDP-mannose. We isolated and disrupted the C. albicans homologue of the Saccharomyces cerevisiae GDA1 gene in order to investigate its role in protein mannosylation and pathogenesis. CaGda1p shares four apyrase conserved regions with other nucleoside diphosphatases. Membranes prepared from the C. albicans disrupted gda1/gda1 strain had a 90% decrease in the ability to hydrolyze GDP compared to wild type. The gda1/gda1 mutants showed a severe defect in O-mannosylation and reduced cell wall phosphate content. Other cell wall-related phenotypes are present, such as elevated chitin levels and increased susceptibility to attack by beta-1,3-glucanases. Our results show that the C. albicans organism contains beta-mannose at their nonreducing end, differing from S. cerevisiae, which has only alpha-linked mannose residues in its O-glycans. Mutants lacking both alleles of GDA1 grow at the same rate as the wild type but are partially blocked in hyphal formation in Lee solid medium and during induction in liquid by changes in temperature and pH. However, the mutants still form normal hyphae in the presence of serum and N-acetylglucosamine and do not change their adherence to HeLa cells. Taken together, our data are in agreement with the hypothesis that several pathways regulate the yeast-hypha transition. Gda1/gda1 cells offer a model for discriminating among them.
Collapse
Affiliation(s)
- Ana B Herrero
- Department of Molecular and Cell Biology, Boston University Goldman School of Dental Medicine, Boston, Massachusetts 02118, USA
| | | | | | | | | |
Collapse
|
185
|
Helenius J, Aebi M. Transmembrane movement of dolichol linked carbohydrates during N-glycoprotein biosynthesis in the endoplasmic reticulum. Semin Cell Dev Biol 2002; 13:171-8. [PMID: 12137737 DOI: 10.1016/s1084-9521(02)00045-9] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The process of N-linked glycosylation of secretory proteins is characterized by enzymatic reactions occurring on both sides of the endoplasmic reticulum (ER) membrane. On either side multiple glycosyltransferases participate in the stepwise addition of monosaccharides to core oligosaccharide unit that is attached to the lipid carrier dolichyl pyrophosphate. Cytoplasm-oriented glycosyltransferases use nucleotide-activated sugars as substrates, whereas lumen-oriented transferases that act later in the pathway make use of dolichyl phosphate-linked monosaccharides. The completely assembled core oligosaccharide is transferred to proteins on the lumenal side of the ER. The topological organization of this biosynthetic pathway requires the translocation of lipid-linked mono- and oligo-saccharides across the ER membrane. The transfer of the substrates and intermediates depend on specific translocators, i.e. so called flippases.
Collapse
Affiliation(s)
- Jonne Helenius
- Institute of Microbiology, Swiss Federal Institute of Technology, Schmelzbergstr. 7, CH-8092 Zürich, Switzerland.
| | | |
Collapse
|
186
|
Spiro RG. Protein glycosylation: nature, distribution, enzymatic formation, and disease implications of glycopeptide bonds. Glycobiology 2002; 12:43R-56R. [PMID: 12042244 DOI: 10.1093/glycob/12.4.43r] [Citation(s) in RCA: 977] [Impact Index Per Article: 44.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Formation of the sugar-amino acid linkage is a crucial event in the biosynthesis of the carbohydrate units of glycoproteins. It sets into motion a complex series of posttranslational enzymatic steps that lead to the formation of a host of protein-bound oligosaccharides with diverse biological functions. These reactions occur throughout the entire phylogenetic spectrum, ranging from archaea and eubacteria to eukaryotes. It is the aim of this review to describe the glycopeptide linkages that have been found to date and specify their presence on well-characterized glycoproteins. A survey is also made of the enzymes involved in the formation of the various glycopeptide bonds as well as the site of their intracellular action and their affinity for particular peptide domains is evaluated. This examination indicates that 13 different monosaccharides and 8 amino acids are involved in glycoprotein linkages leading to a total of at least 41 bonds, if the anomeric configurations, the phosphoglycosyl linkages, as well as the GPI (glycophosphatidylinositol) phosphoethanolamine bridge are also considered. These bonds represent the products of N- and O-glycosylation, C-mannosylation, phosphoglycation, and glypiation. Currently at least 16 enzymes involved in their formation have been identified and in many cases cloned. Their intracellular site of action varies and includes the endoplasmic reticulum, Golgi apparatus, cytosol, and nucleus. With the exception of the Asn-linked carbohydrate and the GPI anchor, which are transferred to the polypeptide en bloc, the sugar-amino acid linkages are formed by the enzymatic transfer of an activated monosaccharide directly to the protein. This review also deals briefly with glycosidases, which are involved in physiologically important cleavages of glycopeptide bonds in higher organisms, and with a number of human disease states in which defects in enzymatic transfer of saccharides to protein have been implicated.
Collapse
Affiliation(s)
- Robert G Spiro
- Department of Biological Chemistry, Harvard Medical School and the Joslin Diabetes Center, One Joslin Place, Boston, MA 02215, USA
| |
Collapse
|
187
|
Vashist S, Kim W, Belden WJ, Spear ED, Barlowe C, Ng DT. Distinct retrieval and retention mechanisms are required for the quality control of endoplasmic reticulum protein folding. J Cell Biol 2001; 155:355-68. [PMID: 11673477 PMCID: PMC2150856 DOI: 10.1083/jcb.200106123] [Citation(s) in RCA: 191] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Proteins destined for the secretory pathway must first fold and assemble in the lumen of endoplasmic reticulum (ER). The pathway maintains a quality control mechanism to assure that aberrantly processed proteins are not delivered to their sites of function. As part of this mechanism, misfolded proteins are returned to the cytosol via the ER protein translocation pore where they are ubiquitinated and degraded by the 26S proteasome. Previously, little was known regarding the recognition and targeting of proteins before degradation. By tracking the fate of several mutant proteins subject to quality control, we demonstrate the existence of two distinct sorting mechanisms. In the ER, substrates are either sorted for retention in the ER or are transported to the Golgi apparatus via COPII-coated vesicles. Proteins transported to the Golgi are retrieved to the ER via the retrograde transport system. Ultimately, both retained and retrieved proteins converge at a common machinery at the ER for degradation. Furthermore, we report the identification of a gene playing a novel role specific to the retrieval pathway. The gene, BST1, is required for the transport of misfolded proteins to the Golgi, although dispensable for the transport of many normal cargo proteins.
Collapse
Affiliation(s)
- S Vashist
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | | | | | |
Collapse
|
188
|
Janbon G, Himmelreich U, Moyrand F, Improvisi L, Dromer F. Cas1p is a membrane protein necessary for the O-acetylation of the Cryptococcus neoformans capsular polysaccharide. Mol Microbiol 2001; 42:453-67. [PMID: 11703667 DOI: 10.1046/j.1365-2958.2001.02651.x] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The capsule is certainly the most obvious virulence factor for Cryptococcus neoformans. The main capsule constituents are glucuronoxylomannans (GXM). Several studies have focused on the structure and chemistry of the GXM component of the capsule, yet little is known about the genetic basis of the capsule construction. Using a monoclonal antibody specific to a sugar epitope, we isolated a capsule-structure mutant strain and cloned by complementation a gene named CAS1 that codes for a putative membrane protein. Although no sequence homology was found with any known protein in the different databases, protein analysis using the PROPSEARCH software classified Cas1p as a putative glycosyltransferase. Cas1p is a well-conserved evolutionary protein, as we identified one orthologue in the human genome, one in the drosophila genome and four in the plant Arabidopsis thaliana genome. Analysis of the capsule structure after CAS1 deletion showed that it is required for GXM O-acetylation.
Collapse
Affiliation(s)
- G Janbon
- Unité de Mycologie Moléculaire, Institut Pasteur, 25 rue du Dr Roux, 75724 Paris Cedex, France.
| | | | | | | | | |
Collapse
|
189
|
Wallis GL, Swift RJ, Atterbury R, Trappe S, Rinas U, Hemming FW, Wiebe MG, Trinci AP, Peberdy JF. The effect of pH on glucoamylase production, glycosylation and chemostat evolution of Aspergillus niger. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1527:112-22. [PMID: 11479027 DOI: 10.1016/s0304-4165(01)00145-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The effect of ambient pH on production and glycosylation of glucoamylase (GAM) and on the generation of a morphological mutant produced by Aspergillus niger strain B1 (a transformant containing an additional 20 copies of the homologous GAM glaA gene) was studied. We have shown that a change in the pH from 4 to 5.4 during continuous cultivation of the A. niger B1 strain instigates or accelerates the spontaneous generation of a morphological mutant (LB). This mutant strain produced approx. 50% less extracellular protein and GAM during both chemostat and batch cultivation compared to another strain with parental-type morphology (PS). The intracellular levels of GAM were also lower in the LB strain. In addition, cultivation of the original parent B1 strain in a batch-pulse bioreactor at pH 5.5 resulted in a 9-fold drop in GAM production and a 5-fold drop in extracellular protein compared to that obtained at pH 4. Glycosylation analysis of the glucoamylases purified from shake-flask cultivation showed that both principal forms of GAM secreted by the LB strain possessed enhanced galactosylation (2-fold), compared to those of the PS. Four diagnostic methods (immunostaining, mild methanolysis, mild acid hydrolysis and beta-galactofuranosidase digestion) provided evidence that the majority of this galactose was of the furanoic conformation. The GAMs produced during batch-pulse cultivation at pH 5.5 similarly showed an approx. 2-fold increase in galactofuranosylation compared to pH 4. Interestingly, in both cases the increased galactofuranosylation appears primarily restricted to the O-linked glycan component. Ambient pH therefore regulates both GAM production and influences its glycosylation.
Collapse
Affiliation(s)
- G L Wallis
- School of Biological, University of Nottingham, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
190
|
Schleip I, Heiss E, Lehle L. The yeast SEC20 gene is required for N- and O-glycosylation in the Golgi. Evidence that impaired glycosylation does not correlate with the secretory defect. J Biol Chem 2001; 276:28751-8. [PMID: 11477110 DOI: 10.1074/jbc.m103753200] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Golgi plays a fundamental role in posttranslational glycosylation, transport, and sorting of proteins. The mechanism of protein transport through the Golgi has been seen as controversial in recent years. During the characterization of N-glycosylation-defective mutants (ngd) previously isolated by this laboratory, it was found that ngd20 is allelic to sec20. SEC20 was reported to be required for transport from endoplasmic reticulum to Golgi, but its precise function remains to be determined. We show now that SEC20 is also required for N- and O-glycosylation in the Golgi but not in the ER, in a cargo-specific manner, and that the glycosylation defect does not correlate with the secretory defect. By pulse-chase labeling experiments in combination with mannose linkage-specific antibodies, invertase and carboxypeptidase were found to be efficiently secreted to their final compartment, even upon shift to the nonpermissive temperature, while glycosylation in the Golgi was severely impaired. Using microsomal membranes isolated from ngd20, we found that mannosyl transfer from GDP-Man to various mannose-oligosaccharides, indicative for Golgi mannosylation, was strongly diminished. Analysis of the carbohydrate component of chitinase, an exclusively O-mannosylated protein, or of the bulk mannoprotein indicates that O-mannosylation is also reduced. The results demonstrate that in addition to secretion SEC20 also affects glycosylation in the Golgi, presumably because it exerts a more general role in maintenance and function of the Golgi compartments.
Collapse
Affiliation(s)
- I Schleip
- Lehrstuhl für Zellbiologie und Pflanzenphysiologie, Universität Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
| | | | | |
Collapse
|
191
|
Cowlishaw DA, Smith MC. Glycosylation of a Streptomyces coelicolor A3(2) cell envelope protein is required for infection by bacteriophage phi C31. Mol Microbiol 2001; 41:601-10. [PMID: 11532128 DOI: 10.1046/j.1365-2958.2001.02510.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mutants of Streptomyces coelicolor A3(2) J1929 (Delta pglY) were isolated that were resistant to the Streptomyces temperate phage phi C31. These strains could be transfected with phi C31 DNA, but could not act as infective centres after exposure to phage. Thus, it was concluded that infection was blocked at the adsorption/DNA injection step. The mutants fell into three classes. Class I mutants were complemented by a gene, SCE87.05, isolated from the cosmid library of S. coelicolor A3(2). The product of SCE87.05 had good overall homology to a Mycobacterium tuberculosis hypothetical protein and regions with similarity to dolichol phosphate-D-mannose:protein O-D-mannosyltransferases. Concanavalin A (ConA) inhibited phi C31 infection of S. coelicolor J1929, and this could be partially reversed by the addition of the sugar, alpha-D-methyl-pyranoside. Moreover, glycosylated proteins from J1929, but not from the class I mutant DT1017, were detected using ConA as a probe in Western blots. Class I and II mutants were sensitive to phi C31hc, a previously isolated phage exhibiting an extended host range phenotype, conferred by h. A phage with the same phenotype, phi DT4002, was isolated independently, and a missense mutation was found in a putative tail gene. It is proposed that the phi C31 receptor is a cell wall glycoprotein, and that the phi C31h mutation compensates for the lack of glycosylation of the receptor.
Collapse
Affiliation(s)
- D A Cowlishaw
- Institute of Genetics, University of Nottingham, Queens Medical Centre, Nottingham NG7 2UH, UK
| | | |
Collapse
|
192
|
Garami A, Ilg T. Disruption of mannose activation in Leishmania mexicana: GDP-mannose pyrophosphorylase is required for virulence, but not for viability. EMBO J 2001; 20:3657-66. [PMID: 11447107 PMCID: PMC125538 DOI: 10.1093/emboj/20.14.3657] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In eukaryotes, the enzyme GDP-mannose pyrophosphorylase (GDPMP) is essential for the formation of GDP-mannose, the central activated mannose donor in glycosylation reactions. Deletion of its gene is lethal in fungi, most likely as a consequence of disrupted glycoconjugate biosynthesis. Furthermore, absence of GDPMP enzyme activity and the expected loss of all mannose-containing glycoconjugates have so far not been observed in any eukaryotic organism. In this study we have cloned and characterized the gene encoding GDPMP from the eukaryotic protozoan parasite Leishmania mexicana. We report the generation of GDPMP gene deletion mutants of this human pathogen that are devoid of detectable GDPMP activity and completely lack mannose-containing glycoproteins and glycolipids, such as lipophosphoglycan, proteophosphoglycans, glycosylphosphatidylinositol protein membrane anchors, glycoinositolphospholipids and N-glycans. The loss of GDPMP renders the parasites unable to infect macrophages or mice, while gene addback restores virulence. Our study demonstrates that GDP-mannose biosynthesis is not essential for Leishmania viability in culture, but constitutes a virulence pathway in these human pathogens.
Collapse
Affiliation(s)
| | - Thomas Ilg
- Max-Planck-Institut für Biologie, Abteilung Membranbiochemie, Corrensstrasse 38, 72076 Tübingen, Germany
Corresponding author e-mail:
| |
Collapse
|
193
|
Cabib E, Roh DH, Schmidt M, Crotti LB, Varma A. The yeast cell wall and septum as paradigms of cell growth and morphogenesis. J Biol Chem 2001; 276:19679-82. [PMID: 11309404 DOI: 10.1074/jbc.r000031200] [Citation(s) in RCA: 225] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- E Cabib
- Laboratory of Biochemistry and Genetics, NIDDK, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | | | |
Collapse
|
194
|
Tanaka N, Takegawa K. Functional characterization of Gms1p/UDP-galactose transporter in Schizosaccharomyces pombe. Yeast 2001; 18:745-57. [PMID: 11378902 DOI: 10.1002/yea.725] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Galactosylation of glycoproteins in the fission yeast Schizosaccharomyces pombe requires the transport of UDP-galactose as substrate for the galactosyltransferase into the lumen of the Golgi apparatus, which is achieved by the UDP-galactose transporter. We isolated a mutant (gms1) that is deficient in galactosylation of cell surface glycoproteins in Sz.pombe, and found that the gms1(+) gene encodes a UDP-galactose transporter. In the prediction of secondary structure of the Gms1 protein, an eight-membrane-spanning structure was obtained. Fluorescent microscopy revealed the functional Gms1-GFP fusion protein to be stably localized at the Golgi membrane. Sequencing analysis of the coding region of Gms1p derived from galactosylation-defective mutants identified a single amino acid mutation (A102T or A258E) located within the putative transmembrane region, helix 2 or helix 7, respectively. The mutagenized Gms1(A102T or A258E)p exhibited loss of UDP-galactose transport activity but no change in the localization to the Golgi membrane. The C-terminal truncated Gms1p mutants demonstrated that the C-terminal hydrophilic region was dispensable for targeting and function as UDP-galactose transporter at the Golgi membrane. We suggest that the putative eighth (the most C-terminus-proximal) transmembrane helix of Gms1p is critical to targeting from ER to the Golgi membrane.
Collapse
Affiliation(s)
- N Tanaka
- Department of Life Sciences, Faculty of Agriculture, Kagawa University, Miki-cho, Kagawa 761-0795, Japan
| | | |
Collapse
|
195
|
Abstract
Contemporary glycobiology reflects the intense interest in glycoproteins and their biological roles. Addition of saccharides by N- or O-glycosylation is precise rather than random and forms a uniquely interactive molecular surface. We designate these well conserved glycomotifs as glycomodules to emphasize their functional significance. Thus, elucidation of the glycosylation codes that determine saccharide addition is a significant goal. The focus here is on the Hyp O-glycosylation of cell wall proteins. This involves two consecutive posttranslational modifications, proline hydroxylation and glycosylation. Peptide sequence rather than conformation seems to determine these modifications. Hyp glycosylation occurs in two distinct modes: Hyp arabinosylation and Hyp galactosylation. The Hyp contiguity hypothesis predicts arabinosylation of contiguous Hyp residues and galactosylation of clustered non-contiguous Hyp. Elucidation of Hyp glycosylation codes involves the design and expression of putative glycomotifs as simple repetitive peptides. Thus, repetitive (Ser-Hyp), directed Hyp galactosylation resulting in the exclusive addition of arabinogalactan polysaccharide to all the non-contiguous Hyp residues. and a new AGP. Another repetitive peptide from gum arabic glycoprotein, containing both contiguous and non-contiguous Hyp, directed both modes of Hyp glycosylation. Furthermore, expression of the (Ser-Hypx)n series confirmed the arabinosylation of contiguous Hyp. Thus, the Hyp contiguity hypothesis is a useful predictive tool in the functional genomics toolbox.
Collapse
Affiliation(s)
- M J Kieliszewski
- Department of Chemistry and Biochemistry, Ohio University, Athens 45701, USA.
| |
Collapse
|
196
|
Harty C, Strahl S, Römisch K. O-mannosylation protects mutant alpha-factor precursor from endoplasmic reticulum-associated degradation. Mol Biol Cell 2001; 12:1093-101. [PMID: 11294909 PMCID: PMC32289 DOI: 10.1091/mbc.12.4.1093] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Secretory proteins that fail to fold in the endoplasmic reticulum (ER) are transported back to the cytosol and degraded by proteasomes. It remains unclear how the cell distinguishes between folding intermediates and misfolded proteins. We asked whether misfolded secretory proteins are covalently modified in the ER before export. We found that a fraction of mutant alpha-factor precursor, but not the wild type, was progressively O-mannosylated in microsomes and in intact yeast cells by protein O-mannosyl transferase 2 (Pmt2p). O-Mannosylation increased significantly in vitro under ER export conditions, i.e., in the presence of ATP and cytosol, and this required export-proficient Sec61p in the ER membrane. Deletion of PMT2, however, did not abrogate mutant alpha-factor precursor degradation but, rather, enhanced its turnover in intact yeast cells. In vitro, O-mannosylated mutant alpha-factor precursor was stable and protease protected, and a fraction was associated with Sec61p in the ER lumen. Thus, prolonged ER residence allows modification of exposed O-mannosyl acceptor sites in misfolded proteins, which abrogates misfolded protein export from the ER at a posttargeting stage. We conclude that there is a limited window of time during which misfolded proteins can be removed from the ER before they acquire inappropriate modifications that can interfere with disposal through the Sec61 channel.
Collapse
Affiliation(s)
- C Harty
- University of Cambridge, Wellcome Trust Center for Molecular Mechanisms in Disease, Cambridge Institute for Medical Research, and Department of Clinical Biochemistry, Cambridge CB2 2XY, United Kingdom
| | | | | |
Collapse
|
197
|
Agaphonov MO, Packeiser AN, Chechenova MB, Choi ES, Ter-Avanesyan MD. Mutation of the homologue of GDP-mannose pyrophosphorylase alters cell wall structure, protein glycosylation and secretion in Hansenula polymorpha. Yeast 2001; 18:391-402. [PMID: 11255248 DOI: 10.1002/yea.678] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
A Hansenula polymorpha mutant with enhanced ability to secrete a heterologous protein has been isolated. The mutation defines a gene, designated OPU24, which encodes a protein highly homologous to GDP-mannose pyrophosphorylase Psa1p/Srb1p/Vig9p of Saccharomyces cerevisiae and CaSrb1p of Candida albicans. The opu24 mutant manifests phenotypes similar to those of S. cerevisiae mutants depleted for GDP-mannose, such as cell wall fragility and defects in N- and O-glycosylation of secreted proteins. The influence of the opu24 mutation on endoplasmic reticulum-associated protein degradation is discussed. The GenBank Accession No. for the OPU24 sequence is AF234177.
Collapse
Affiliation(s)
- M O Agaphonov
- Institute of Experimental Cardiology, Cardiology Research Centre, 3rd Cherepkovskaya Street 15A, Moscow 121552, Russia.
| | | | | | | | | |
Collapse
|
198
|
Fukuda S, Sumii M, Masuda Y, Takahashi M, Koike N, Teishima J, Yasumoto H, Itamoto T, Asahara T, Dohi K, Kamiya K. Murine and human SDF2L1 is an endoplasmic reticulum stress-inducible gene and encodes a new member of the Pmt/rt protein family. Biochem Biophys Res Commun 2001; 280:407-14. [PMID: 11162531 DOI: 10.1006/bbrc.2000.4111] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We isolated murine and human cDNAs for SDF2L1 (stromal cell-derived factor 2-like1) and characterized the genomic structures. Northern blot analysis of the gene expression in various tissues revealed that both murine Sdf2l1 and human SDF2L1 genes are expressed ubiquitously, with particularly high expression in the testis. The SDF2L1 protein has an endoplasmic reticulum (ER)-retention-like motif, HDEL, at the carboxy (C)-terminus. Interestingly, SDF2L1 protein also shows significant similarity to the central hydrophilic part of protein O-mannosyltransferase (Pmt) proteins of Saccharomyces cerevisiae, the human homologues of Pmt (POMT1 and POMT2) and Drosophila melanogaster rotated abdomen (rt) protein. In a murine hepatocellular carcinoma cell line, Sdf2l1 was strongly induced by tunicamycin and a calcium ionophore, A23187, and weakly induced by heat stress but was not induced by cycloheximide. In conclusion, SDF2L1 protein is a new member of Pmt/rt protein family and Sdf2l1 is a new ER stress-inducible gene.
Collapse
Affiliation(s)
- S Fukuda
- Second Department of Surgery, Department of Urology, Hiroshima University School of Medicine, 1-2-3, Kasumi, Minami-ku, Hiroshima 734-0037, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
199
|
Schenk B, Rush JS, Waechter CJ, Aebi M. An alternative cis-isoprenyltransferase activity in yeast that produces polyisoprenols with chain lengths similar to mammalian dolichols. Glycobiology 2001; 11:89-98. [PMID: 11181565 DOI: 10.1093/glycob/11.1.89] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Dolichyl monophosphate (Dol-P) is a polyisoprenoid glycosyl carrier lipid essential for the assembly of a variety of glycoconjugates in the endoplasmic reticulum of eukaryotic cells. In yeast, dolichols with chain lengths of 14--17 isoprene units are predominant, whereas in mammalian cells they contain 19--22 isoprene units. In this biosynthetic pathway, t,t-farnesyl pyrophosphate is elongated to the appropriate long chain polyprenyl pyrophosphate by the sequential addition of cis-isoprene units donated by isopentenyl pyrophosphate with t,t,c-geranylgeranyl pyrophosphate being the initial intermediate formed. The condensation steps are catalyzed by cis-isoprenyltransferase (cis-IPTase). Genes encoding cis-IPTase activity have been identified in Micrococcus luteus, Escherichia coli, Arabidopsis thaliana, and Saccharomyces cerevisiae (RER2). Yeast cells deleted for the RER2 locus display a severe growth defect, but are still viable, possibly due to the activity of an homologous locus, SRT1. The dolichol and Dol-P content of exponentially growing revertants of RER2 deleted cells (Delta rer2) and of cells overexpressing SRT1 have been determined by HPLC analysis. Dolichols and Dol-Ps with 19--22 isoprene units, unusually long for yeast, were found, and shown to be utilized for the biosynthesis of lipid intermediates involved in protein N-glycosylation. In addition, cis-IPTase activity in microsomes from Delta rer2 cells overexpressing SRT1 was 7- to 17-fold higher than in microsomes from Delta rer2 cells. These results establish that yeast contains at least two cis-IPTases, and indicate that the chain length of dolichols is determined primarily by the enzyme catalyzing the chain elongation stage of the biosynthetic process.
Collapse
Affiliation(s)
- B Schenk
- Institute for Microbiology, ETH Zurich, CH-8092 Zurich, Switzerland
| | | | | | | |
Collapse
|
200
|
Takahashi S, Sasaki T, Manya H, Chiba Y, Yoshida A, Mizuno M, Ishida H, Ito F, Inazu T, Kotani N, Takasaki S, Takeuchi M, Endo T. A new beta-1,2-N-acetylglucosaminyltransferase that may play a role in the biosynthesis of mammalian O-mannosyl glycans. Glycobiology 2001; 11:37-45. [PMID: 11181560 DOI: 10.1093/glycob/11.1.37] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Recent studies have shown that O-mannosyl glycans are present in several mammalian glycoproteins. Although knowledge on the functional roles of these glycans is accumulating, their biosynthetic pathways are poorly understood. Here we report the identification and initial characterization of a novel enzyme capable of forming GlcNAc beta 1-2Man linkage, namely UDP-N-acetylglucosamine: O-linked mannose beta-1,2-N-acetylglucosaminyltransferase in the microsome fraction of newborn rat brains. The enzyme transfers GlcNAc to beta-linked mannose residues, and the formed linkage was confirmed to be beta 1-2 on the basis of diplococcal beta-N-acetylhexosaminidase susceptibility and by high-pH anion-exchange chromatography. Its activity is linearly dependent on time, protein concentration, and substrate concentration and is enhanced in the presence of manganese ion. Its activity is not due to UDP-N-acetylglucosamine: alpha-3-D-mannoside beta-1,2-N-acetylglucosaminyltransferase I (GnT-I) or UDP-N-acetylglucosamine: alpha-6-D-mannoside beta-1,2-D-acetylglucosaminyltransferase II (GnT-II), which acts on the early steps of N-glycan biosynthesis, because GnT-I or GnT-II expressed in yeast cells did not show any GlcNAc transfer activity against a synthetic mannosyl peptide. Taken together, the results suggest that the GlcNAc transferase activity described here is relevant to the O-mannosyl glycan pathway in mammals.
Collapse
Affiliation(s)
- S Takahashi
- Department of Glycobiology, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakaecho, Itabashi-ku, Tokyo 173-0015, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|