151
|
Abstract
Neovascularization, the natural physiological process of formation of new blood vessels, is extremely important for ameliorating the function of the heart that undergoes ischemic stress. This process is potentially important for the treatment of ischemic heart and limb diseases, which includes formation of capillaries (angiogenesis) and collateral arteries. Ischemia or coronary artery occlusion induces vascular endothelial growth factor (VEGF) in the experimental rat myocardial infarction model, and this molecule encourages development of coronary collateral circulation and retention of the blood supply to the ischemic area. Restoration of the blood supply to the ischemic area prevents cardiomyocyte death and cardiac remodeling. Among the various triggers and enhancers of angiogenesis, hypoxic or ischemic preconditioning, as well as pharmacologic agents such as statin and resveratrol, have been identified as important stimuli for the induction of new vessel growth. It has already been demonstrated that the VEGF family and its receptor system is the fundamental regulator in the redox cell signaling of angiogenesis. This review article will focus on the role of reactive oxygen species in the process of myocardial angiogenesis.
Collapse
Affiliation(s)
- Nilanjana Maulik
- Molecular Cardiology and Angiogenesis Laboratory, Department of Surgery, University of Connecticut Medical Center, Farmington, Connecticut 06030-1110, USA.
| |
Collapse
|
152
|
Hickey M, Krikun G, Kodaman P, Schatz F, Carati C, Lockwood CJ. Long-term progestin-only contraceptives result in reduced endometrial blood flow and oxidative stress. J Clin Endocrinol Metab 2006; 91:3633-8. [PMID: 16757524 DOI: 10.1210/jc.2006-0724] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT Because of their safety and efficacy, long-term progestin-only contraceptives (LTPOCs) are well-suited for women with restricted access to health care. However, abnormal uterine bleeding (AUB) causes half of all users to discontinue therapy within 12 months. Endometria of LTPOC-treated patients display aberrant angiogenesis with abnormally enlarged, thin-walled, fragile blood vessels, inflammation, and focal hemorrhage. In this study, similar effects were observed with a new third-generation implantable LTPOC. OBJECTIVE We hypothesized that LTPOC reduces uterine and endometrial blood flow, leading to hypoxia/reperfusion, which triggers the generation of reactive oxygen species. The latter induce aberrant angiogenesis, causing AUB. DESIGN Endometrial perfusion was measured by laser-Doppler fluxmetry in women requesting LTPOCs. Endometrial biopsies were obtained for in vivo and in vitro experiments. SETTING The study was conducted in the Yale University School of Medicine and Family-Planning Center in Western Australia. PATIENTS Seven women 18 yr or older requesting implantable LTPOCs were recruited in Western Australia. INTERVENTION Women received etonorgestrel implants. MAIN OUTCOME LTPOC treatment resulted in reduced endometrial perfusion and increased endometrial oxidative damage. CONCLUSIONS We propose that LTPOCs result in hypoxia reperfusion, which leads to aberrant angiogenesis resulting in AUB.
Collapse
Affiliation(s)
- M Hickey
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University, School of Medicine, 333 Cedar Street, New Haven, Connecticut, 06520-8063, USA
| | | | | | | | | | | |
Collapse
|
153
|
Igarashi J, Miyoshi M, Hashimoto T, Kubota Y, Kosaka H. Hydrogen peroxide induces S1P1 receptors and sensitizes vascular endothelial cells to sphingosine 1-phosphate, a platelet-derived lipid mediator. Am J Physiol Cell Physiol 2006; 292:C740-8. [PMID: 16943246 DOI: 10.1152/ajpcell.00117.2006] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sphingosine 1-phosphate (S1P) is a platelet-derived angiogenic lipid growth factor, modulating G-protein-coupled S1P(1) receptors (S1P(1)-R) to activate endothelial nitric oxide synthase (eNOS), as well as MAPK pathways in endothelial cells. We explored whether and how hydrogen peroxide (H(2)O(2)), a representative reactive oxygen species, alters S1P(1)-R expression and influences S1P signaling in cultured bovine aortic endothelial cells (BAECs). When BAECs are treated with pathophysiologically relevant concentrations of H(2)O(2) (150 microM for 30 min), S1P(1)-R protein expression levels are acutely augmented by approximately 30-fold in a dose-dependent fashion. When BAECs have been pretreated with H(2)O(2), subsequent S1P stimulation (100 nM) leads to a higher degree of eNOS enzyme activation (assessed as intracellular cGMP content, 1.7 +/- 0.2-fold vs. no H(2)O(2) pretreatment groups, P < 0.05), associated with a higher magnitude of phosphorylation responses of eNOS and MAPK ERK1/2. PP2, an inhibitor of Src-family tyrosine kinase, abolished the effects of H(2)O(2) on both S1P(1)-R protein upregulation and enhanced BAEC responses to S1P. H(2)O(2) does not augment S1P(1) mRNA expression, whereas VEGF under identical cultures leads to increases in S1P(1) mRNA signals. Whereas H(2)O(2) attenuates proliferation of BAECs, addition of S1P restores growth responses of these cells. These results demonstrate that extracellularly administered H(2)O(2) increases S1P(1)-R expression and promotes endothelial responses for subsequent S1P treatment. These results may identify potentially important points of cross-talk between reactive oxygen species and sphingolipid pathways in vascular responses.
Collapse
Affiliation(s)
- Junsuke Igarashi
- Dept. of Cardiovascular Physiology, Kagawa Univ. Faculty of Medicine, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa, 761-0793 Japan.
| | | | | | | | | |
Collapse
|
154
|
Boodhwani M, Nakai Y, Mieno S, Voisine P, Bianchi C, Araujo EG, Feng J, Michael K, Li J, Sellke FW. Hypercholesterolemia impairs the myocardial angiogenic response in a swine model of chronic ischemia: role of endostatin and oxidative stress. Ann Thorac Surg 2006; 81:634-41. [PMID: 16427865 DOI: 10.1016/j.athoracsur.2005.07.090] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2005] [Revised: 07/26/2005] [Accepted: 07/26/2005] [Indexed: 11/28/2022]
Abstract
BACKGROUND Recent studies have shown that angiogenesis is regulated by a balance between activators and inhibitors. We investigated the effects of hypercholesterolemia on the functional angiogenic response and collateral formation induced by chronic myocardial ischemia and the expression of angiogenic mediators. METHODS Twelve Yucatan miniswine, fed either a normal (NORM, n = 6) or high cholesterol (HCHO, n = 6) diet for 13 weeks, underwent ameroid constrictor placement around the circumflex artery. Three weeks later, myocardial perfusion was quantified using isotope-labeled microspheres. Seven weeks after ameroid placement, coronary microvascular responses and myocardial perfusion were assessed. Vascular density was evaluated by PECAM-1 (CD-31) staining, and vascular endothelial growth factor, endothelial nitric oxide synthase, endostatin, and angiostatin protein levels were determined. Myocardial protein oxidation was quantified. RESULTS Coronary microvessels from HCHO pigs showed significant endothelial dysfunction. Baseline-adjusted myocardial flow at 7 weeks was significantly reduced in the HCHO animals (-0.002 +/- 0.06 versus +0.23 +/- 0.09 mL/min/g, HCHO versus NORM, p = 0.04). Endostatin expression was significantly increased in the HCHO pigs (2.2-fold, p = 0.001 versus NORM). There was a mild reduction in myocardial vascular endothelial growth factor expression (-29% +/- 14%, p = 0.09) in HCHO animals, but no difference in expression of endothelial nitric oxide synthase and angiostatin. The HCHO animals demonstrated increased myocardial protein oxidation compared with the NORM group (+155% +/- 21%, p = 0.03 versus NORM). CONCLUSIONS Ischemia-induced angiogenesis is inhibited in hypercholesterolemic pigs with a concomitant increase in endostatin expression and oxidative stress. These findings suggest that under conditions of hypercholesterolemia, coronary collateral development may be regulated by endogenous angiogenesis inhibitors such as endostatin as well as reactive oxygen species.
Collapse
Affiliation(s)
- Munir Boodhwani
- Division of Cardiothoracic Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
155
|
Kim YM, Kim KE, Koh GY, Ho YS, Lee KJ. Hydrogen peroxide produced by angiopoietin-1 mediates angiogenesis. Cancer Res 2006; 66:6167-74. [PMID: 16778190 DOI: 10.1158/0008-5472.can-05-3640] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Angiopoietin-1 (Ang1) mediates angiogenesis by enhancing endothelial cell survival and migration. It is also known that Ang1 activates Tie2, an endothelial-specific tyrosine kinase receptor, but the molecular mechanism of this process is not clear. In this study, we investigated whether reactive oxygen species (ROS) production plays a role in Ang1-mediated angiogenesis. We found that human umbilical vein endothelial cells treated with Ang1 produce ROS transiently, which was suppressed by NADPH oxidase inhibitor, diphenylene-iodonium chloride, and rotenone. The Ang1-induced ROS was identified as hydrogen peroxide (H2O2) using adenovirus-catalase infection. Removal of H2O2 by adenovirus-catalase significantly suppressed Ang1-induced in vitro endothelial cell migration, in vivo tubule formation and angiogenesis, and activation of p44/42 mitogen-activated protein kinase (MAPK), involved in cell migration, and delayed the deactivation of Akt phosphorylation involved in cell survival. Supporting to in vitro data, Ang1-induced vascular remodeling in catalase (-/-) mice was more prominent than in catalase (+/+) mice: Ang1-induced increases of the diameter of terminal arterioles and the postcapillary venules in catalase (-/-) mice were significant compared with catalase (+/+) mice. These results show that Ang1-induced H2O2 plays an important role in Ang1-mediated angiogenesis by modulating p44/42 MAPK activity.
Collapse
Affiliation(s)
- Young Mee Kim
- Centre for Cell Signaling Research, Division of Molecular Life Sciences and College of Pharmacy, Ewha Womans University, Seoul, Korea
| | | | | | | | | |
Collapse
|
156
|
Albertsson P, Lennernäs B, Norrby K. On metronomic chemotherapy: modulation of angiogenesis mediated by VEGE-A. Acta Oncol 2006; 45:144-55. [PMID: 16546859 DOI: 10.1080/02841860500417486] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Tumors are angiogenesis dependent. Preclinical studies have shown that well-tolerated continuous low dose, i.e. metronomic, chemotherapy can exert significant antiangiogenic effects per se and thereby a greater antitumor influence than conventional chemotherapy with high, spaced-out bolus doses. There are however, no means of quantitatively assessing the antiangiogenic effect of chemotherapy in tumors. We therefore used a surrogate tumor-free, non-surgical rat mesentery model and quantitatively studied the dose effect of metronomic treatment with cisplatin, cyclophosphamide, doxorubicin, fluorouracil and paclitaxel on VEGF-A-mediated angiogenesis, a characteristic of tumors. Cyclophosphamide and paclitaxel treatment exerted significant dose-dependent antiangiogenic effects, whereas doxorubicin treatment produced insignificant effects. By contrast, metronomic cisplatin and fluorouracil treatment occasionally significantly stimulated angiogenesis in a dose-dependent, non-linear manner. To our knowledge, this is the first report of metronomic chemotherapy stimulating angiogenesis in vivo. The data suggest that the angiogenic response to cisplatin, cyclophosphamide, fluorouracil and paclitaxel was significantly influenced by the presence of antioxidants in the vehicles or when co-treated with N-acetylcystein, a widely used free-radical scavenger. The data relating to the metronomic scheduling were compared with bolus treatment data for the identical agent formulations in the same experimental model. Cisplatin, cyclophosphamide and paclitaxel caused approximately the same overall, agent-specific angiogenesis-modulating effects following metronomic and bolus treatments. Moreover, apparently secondary delayed effects of chemotherapy affected capillary sprouting.
Collapse
Affiliation(s)
- Per Albertsson
- Department of Oncology, Sahlgrenska Academy, Göteborg University, Gothenburg, Sweden
| | | | | |
Collapse
|
157
|
Navarra T, Del Turco S, Papa A, Battaglia D, Lazzerini G, Basta G. Lack of effect of α-tocopherol on in vitro angiogenesis. Microvasc Res 2006; 72:12-9. [PMID: 16750838 DOI: 10.1016/j.mvr.2006.04.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2005] [Revised: 04/07/2006] [Accepted: 04/11/2006] [Indexed: 02/07/2023]
Abstract
Oxidative stress and angiogenesis are important elements in the pathogenesis of atherosclerosis and cancer. Because of its antioxidant properties, alpha-tocopherol has long proposed as prevention of diseases associated with oxidative stress. We explore whether alpha-tocopherol modulates some cell responses induced by angiogenic and proliferative stimuli. For this purpose, we evaluate the effect in human vein endothelial cells (HUVECs), of alpha-tocopherol treatment (5-40 micromol/L) for 72 h on the production of reactive oxygen species (ROS), induction of matrix metalloproteinases (MMPs), expression of vascular endothelial-cadherin (VE-cadherin) and alpha(2)-integrin, cell migration, cell proliferation, and tube formation. alpha-Tocopherol significantly inhibits intracellular ROS production induced by TNF-alpha (P < 0.01) or PMA (P < 0.001). However, alpha-tocopherol does not interfere with mRNA expression of VE-cadherin, alpha(2)-integrin, MMP-1, MMP-2, and MMP-9. Similarly, alpha-tocopherol does not modulate cell migration and capillary-like tube formation although at the concentration of 20 and 40 micromol/L it potentiated PMA-induced DNA synthesis (P < 0.05). Our results suggest that although alpha-tocopherol supplementation reduces endothelial cell oxidative stress, it does not alter the cell response to angiogenic stimuli.
Collapse
Affiliation(s)
- Teresa Navarra
- CNR Institute of Clinical Physiology, San Cataldo Research Area, Via Moruzzi, 1, 56124 Pisa, Italy
| | | | | | | | | | | |
Collapse
|
158
|
Schriner SE, Linford NJ. Extension of mouse lifespan by overexpression of catalase. AGE (DORDRECHT, NETHERLANDS) 2006; 28:209-18. [PMID: 19943142 PMCID: PMC2464724 DOI: 10.1007/s11357-006-9010-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2005] [Accepted: 12/01/2005] [Indexed: 05/13/2023]
Abstract
The free radical theory of aging was originally proposed 50 years ago, and is arguably the most popular mechanism explaining the aging process. According to this theory, aging results from the progressive decline in organ function due to the damage generated by reactive oxygen species (ROS). These chemical species are a normal part of metabolism, and a group of enzymes exists to protect cells against their toxic effects. One of these species is hydrogen peroxide (H(2)O(2)), which can be degraded by catalase. To determine the role of hydrogen peroxide in aging and its importance in different subcellular compartments, transgenic mice were developed with increased catalase activities localized to the peroxisome (PCAT), nucleus (NCAT), or mitochondrion (MCAT). The largest effect on lifespan was found in MCAT animals, with a 20% increase in median lifespan and a 10% increase in the maximum lifespan. A more modest effect was seen in PCAT animals, and no significant change was found in NCAT animals. Upon further examination of the MCAT mice, it was found that H(2)O(2) production and H(2)O(2)-induced aconitase inactivation were attenuated, oxidative damage and the development of mitochondrial deletions were reduced, and cardiac pathology and cataract development were delayed. These results are consistent with a role of H(2)O(2) in the development of pathology and in the limitation of mouse lifespan. They also demonstrate the importance of mitochondria as a source, and possible target, of ROS.
Collapse
Affiliation(s)
- Samuel E Schriner
- Center for Molecular and Mitochondrial Medicine and Genetics, Department of Biological Chemistry, University of California, Irvine, 2101 Hewitt Hall, Irvine, CA 92697-3940, USA.
| | | |
Collapse
|
159
|
Zhu XY, Daghini E, Chade AR, Rodriguez-Porcel M, Napoli C, Lerman A, Lerman LO. Role of oxidative stress in remodeling of the myocardial microcirculation in hypertension. Arterioscler Thromb Vasc Biol 2006; 26:1746-52. [PMID: 16709946 DOI: 10.1161/01.atv.0000227469.40826.01] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE We tested the hypothesis that in early hypertension (HT), increased oxidative stress leads to myocardial microvascular remodeling. METHODS AND RESULTS Pigs were studied after a 12-week observation: normal (n=8), untreated renovascular HT (n=8), or HT+chronic antioxidant supplementation (HT+A, n=6). Left ventricular muscle mass (LVMM) and myocardial blood flow (MBF) reserve were determined using electron beam computer tomography (CT), and the spatial density and tortuousity of myocardial microvessels (<500 microm) was then measured in myocardial samples with micro-CT. Myocardial microvascular morphology, oxidative stress, inflammation, and growth factor expression were determined in vitro. HT and HT+A had similarly increased arterial pressure and LVMM, but only HT showed impaired MBF response to adenosine. Compared with normal, HT had increased spatial density of myocardial microvessels, which was preserved in HT+A (111.8+/-7.8, 166.3+/-15.7, and 106.4+/-6.1 vessels per cm2, respectively). HT also showed microvascular wall thickening, increased systemic and tissue oxidative stress, inflammation, and expression of vascular endothelial growth factor and its receptor Flk-1, most of which were attenuated by antioxidants. CONCLUSIONS Myocardial microvascular remodeling in early HT is accompanied by tissue oxidative stress, inflammation, and altered growth factor expression, and attenuated by antioxidant intervention. This study underscores a role of increased oxidative stress in modulating myocardial microvascular architecture in early HT.
Collapse
Affiliation(s)
- Xiang-Yang Zhu
- Department of Internal Medicine, Division of Nephrology and Hypertension, Mayo Clinic, 200 First Street SW, Rochester, Minnesota 55905, USA
| | | | | | | | | | | | | |
Collapse
|
160
|
White CW. Commentary on "Hypoxia, hypoxic signaling, tissue damage, and detection of reactive oxygen species (ROS)". Free Radic Biol Med 2006; 40:923-7. [PMID: 16540387 DOI: 10.1016/j.freeradbiomed.2005.12.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Carl W White
- Department of Pediatrics, National Jewish Medical and Research Center, 1400 Jackson Street, Room J-101, Denver, CO 80206-2761, USA.
| |
Collapse
|
161
|
Zhang J, Peng B, Chen X. Expressions of nuclear factor kappaB, inducible nitric oxide synthase, and vascular endothelial growth factor in adenoid cystic carcinoma of salivary glands: correlations with the angiogenesis and clinical outcome. Clin Cancer Res 2006; 11:7334-43. [PMID: 16243805 DOI: 10.1158/1078-0432.ccr-05-0241] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE To evaluate the expressions of nuclear factor kappaB (NF-kappaB p65), inducible nitric oxide synthase enzyme (iNOS), and vascular endothelial growth factor (VEGF) in relation to angiogenesis (microvessel density, MVD) and clinical outcomes in adenoid cystic carcinoma (ACC) of salivary glands. METHODS Immunohistochemical staining was used to quantify the protein expression levels of NF-kappaB p65, iNOS, and VEGF in 80 surgically resected ACCs and 20 normal salivary tissues. In all cases of ACCs, MVD was evaluated by counting CD34-reactive endothelial cells or endothelial cell clusters. RESULTS The nuclear localization of NF-kappaB p65 was only detected in ACC cells. Both iNOS and VEGF staining activities in ACCs were more significant than those in normal gland tissues (P < 0.01). MVD had significant correlations with NF-kappaB p65, iNOS, and VEGF expressions (P < 0.01). In three histologic types of ACCs, the NF-kappaB, iNOS, VEGF expressions, and MVD were significantly higher in solid type than in cribriform and tubular types (P < 0.01). The NF-kappaB, iNOS, VEGF expressions, and MVD were significantly correlated with clinical stage, tumor size, vascular invasion, recurrence, and metastasis (P < 0.05). Multivariate analysis showed NF-kappaB, iNOS and VEGF expression, MVD, solid histotype, and perineural invasion had an independent prognostic effect on overall survival. CONCLUSION The expressions of NF-kappaB p65, iNOS, and VEGF were related with MVD. Clinical outcomes raised the possibility that the overexpression of these cytokines might contribute to tumor angiogenesis and have prognostic value in ACCs.
Collapse
Affiliation(s)
- Jiali Zhang
- Key Lab for Oral Biomedical Engineering, Ministry of Education, School of Stomatology, Wuhan University, Wuhan, PR China
| | | | | |
Collapse
|
162
|
Abstract
The involvement of the vascular system in malignancy encompasses not only angiogenesis, but also systemic hypercoagulability and a pro-thrombotic state, and there is increasing evidence that pathways of blood coagulation and angiogenesis are reciprocally linked. In fact, cancer atients often display hypercoagulability resulting in markedly increased thromboembolism, which requires anti-coagulant treatment using heparins, for example. Clinical trials reveal that treatment with various low-molecular-weight heparins (LMWHs) improves the survival time in cancer patients receiving chemotherapy compared with those receiving unfractionated standard heparin (UFH) or no heparin treatment, as well as in cancer patients receiving LMWH as thrombosis prophylaxis during primary surgery. This anti-tumor effect of the heparins appears to be unrelated to their anti-coagulant activity, but the mechanisms involved are not fully understood. Tumor growth and spread are dependent on angiogenesis and it is noteworthy that the most potent endogenous pro- and anti-angiogenic factors are heparin-binding proteins that may be affected by systemic treatment with heparins. Heparin and other glycosaminoglycans play a role in vascular endothelial cell function, as they are able to modulate the activities of angiogenic growth factors by facilitating the interaction with their receptor and promoting receptor activation. To date, preclinical studies have demonstrated that only LMWH fragments produced by the heparinase digestion of UFH, i.e. tinzaparin, exert anti-angiogenic effects in any type of tissue in vivo. These effects are fragment-mass-specific and angiogenesis-type-specific. Data on the effect of various LMWHs and UFH on endothelial cell capillary tube formation and proliferation in vitro are also presented. We hope that this paper will stimulate and facilitate future research designed to elucidate whether the anti-angiogenic or anti-tumor effects of commercial LMWHs in their own right are agent specific and whether anti-angiogenic properties increase the anti-tumor properties of the LMWHs in the clinic.
Collapse
Affiliation(s)
- Klas Norrby
- Department of Pathology, Sahlgrenska Academy, Göteborg University, Sweden.
| |
Collapse
|
163
|
Wu L. Is methylglyoxal a causative factor for hypertension development?This paper is one of a selection of papers published in this Special Issue, entitled Young Investigator's Forum. Can J Physiol Pharmacol 2006; 84:129-39. [PMID: 16845897 DOI: 10.1139/y05-137] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Hypertension is a life-threatening disease that is associated with increased cardiovascular risks. Causes and mechanisms for hypertension development remain poorly understood. Methylglyoxal (MG), a highly reactive molecule, is a metabolite of sugar. Increased circulation and tissue levels of MG have been documented not only in diabetes but also in hypertension. Many recent studies also link MG-induced vascular damage to the pathogenic process of hypertension. As such, an etiological role of MG in hypertension development is proposed.
Collapse
Affiliation(s)
- Lingyun Wu
- Department of Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, Canada.
| |
Collapse
|
164
|
Wong JL, Wessel GM. Reactive oxygen species and Udx1 during early sea urchin development. Dev Biol 2005; 288:317-33. [PMID: 16336958 DOI: 10.1016/j.ydbio.2005.07.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2005] [Revised: 07/08/2005] [Accepted: 07/08/2005] [Indexed: 11/20/2022]
Abstract
Sea urchin fertilization is marked by a massive conversion of molecular oxygen to hydrogen peroxide by a sea urchin dual oxidase, Udx1. This enzyme is essential for completing the physical block to polyspermy. Yet, its expression is maintained during development, as indicated by the presence of both Udx1 mRNA and Udx1 protein enriched at the surface of all non-mesenchymal blastomeres. When hydrogen peroxide synthesis by Udx1 is inhibited, either pharmacologically or by specific antibody injection, cleavage is delayed. Application of exogenous hydrogen peroxide, however, partially rescues a fraction of these defective embryos. We also report an unequal distribution of reactive oxygen species between sister blastomeres during early cleavage stages, suggesting a functional role for Udx1 in intracellular signaling.
Collapse
Affiliation(s)
- Julian L Wong
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Box G-J4, Brown University, Providence, RI 02912, USA
| | | |
Collapse
|
165
|
Moeller BJ, Batinic-Haberle I, Spasojevic I, Rabbani ZN, Anscher MS, Vujaskovic Z, Dewhirst MW. A manganese porphyrin superoxide dismutase mimetic enhances tumor radioresponsiveness. Int J Radiat Oncol Biol Phys 2005; 63:545-52. [PMID: 16168847 DOI: 10.1016/j.ijrobp.2005.05.026] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2004] [Revised: 05/03/2005] [Accepted: 05/04/2005] [Indexed: 01/06/2023]
Abstract
PURPOSE To determine the effect of the superoxide dismutase mimetic Mn(III) tetrakis(N-ethylpyridinium-2-yl)porphyrin (MnTE-2-PyP(5+)) on tumor radioresponsiveness. METHODS AND MATERIALS Various rodent tumor (4T1, R3230, B16) and endothelial (SVEC) cell lines were exposed to MnTE-2-PyP(5+) and assayed for viability and radiosensitivity in vitro. Next, tumors were treated with radiation and MnTE-2-PyP(5+)in vivo, and the effects on tumor growth and vascularity were monitored. RESULTS In vitro, MnTE-2-PyP(5+) was not significantly cytotoxic. However, at concentrations as low as 2 mumol/L it caused 100% inhibition of secretion by tumor cells of cytokines protective of irradiated endothelial cells. In vivo, combined treatment with radiation and MnTE-2-PyP(5+) achieved synergistic tumor devascularization, reducing vascular density by 78.7% within 72 h of radiotherapy (p < 0.05 vs. radiation or drug alone). Co-treatment of tumors also resulted in synergistic antitumor effects, extending tumor growth delay by 9 days (p < 0.01). CONCLUSIONS These studies support the conclusion that MnTE-2-PyP(5+), which has been shown to protect normal tissues from radiation injury, can also improve tumor control through augmenting radiation-induced damage to the tumor vasculature.
Collapse
Affiliation(s)
- Benjamin J Moeller
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | | | |
Collapse
|
166
|
Tousoulis D, Antoniades C, Stefanadis C. Nitric oxide in coronary artery disease: effects of antioxidants. Eur J Clin Pharmacol 2005. [DOI: 10.1007/s00228-005-0019-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
167
|
Abstract
Excessive production of reactive oxygen species in the vasculature contributes to cardiovascular pathogenesis. Among biologically relevant and abundant reactive oxygen species, superoxide (O2*-) and hydrogen peroxide (H2O2) appear most important in redox signaling. Whereas O2*- predominantly induces endothelial dysfunction by rapidly inactivating nitric oxide (NO*), H2O2 influences different aspects of endothelial cell function via complex mechanisms. This review discusses recent advances establishing a critical role of H2O2 in the development of vascular disease, in particular, atherosclerosis, and mechanisms whereby vascular NAD(P)H oxidase-derived H2O2 amplifies its own production. Recent studies have shown that H2O2 stimulates reactive oxygen species production via enhanced intracellular iron uptake, mitochondrial damage, and sources of vascular NAD(P)H oxidases, xanthine oxidase, and uncoupled endothelial nitric oxide synthase (eNOS). This self-propagating phenomenon likely prolongs H2O2-dependent pathological signaling in vascular cells, thus contributing to vascular disease development. The latest progress on Nox functions in vascular cells is also discussed [Nox for NAD(P)H oxidases, representing a family of novel NAD(P)H oxidases].
Collapse
Affiliation(s)
- Hua Cai
- Section of Cardiology, Department of Medicine, The Division of Biological Sciences and Pritzker School of Medicine, The University of Chicago, Ill 60637, USA.
| |
Collapse
|
168
|
Yin S, Li X, Meng Y, Finley RL, Sakr W, Yang H, Reddy N, Sheng S. Tumor-suppressive Maspin Regulates Cell Response to Oxidative Stress by Direct Interaction with Glutathione S-Transferase. J Biol Chem 2005; 280:34985-96. [PMID: 16049007 DOI: 10.1074/jbc.m503522200] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Maspin, a novel serine protease inhibitor, suppresses tumor progression in several cancer models, including an in vivo model for prostate cancer bone metastasis. However, the molecular mechanism of maspin remains illusive, primarily because its molecular targets are unknown. To this end, we used a full-length maspin cDNA bait to screen against both a primary prostate tumor cDNA prey library and a HeLa cDNA prey library by the yeast two-hybrid method. We found that heat shock protein 90, glutathione S-transferase (GST), and heat shock protein 70 interacted with maspin with the highest frequencies. We confirmed the maspin/GST interaction using purified proteins, human epithelial cell lines, and human prostate tissues. A maspin variant that has a point mutation of Arg(340) to Ala (Mas(R340A)) showed a significantly decreased affinity for GST. Although purified maspin had no effect on the activity of purified GST in vitro, intracellular interaction between endogenous maspin and GST correlated with an elevated total GST activity in both MDA-MB-435- and DU145-derived stably transfected cells. Consistently, tumor cells treated with purified wild type maspin, but not Mas(R340A), enhanced cellular GST activity. Maspin expression in cancer cell lines also correlated with decreased basal levels of reactive oxygen species (ROS). Furthermore, H(2)O(2) treatment not only induced GST expression but also increased intracellular maspin/GST interaction, which was inversely correlated with the level of ROS generation. Conversely, maspin knockdown by small interfering RNA increased the basal, as well as H(2)O(2)-induced, ROS generation. Furthermore, the maspin effect on ROS generation was completely abolished by a GST inhibitor, indicating an essential role of GST in maspin-mediated cellular response to oxidative stress. Consistently, oxidative stress-induced vascular endothelial growth factor A expression was significantly inhibited in maspin-expressing cells. Together, our data suggest a new mechanism by which maspin, through its direct interaction with GST, may inhibit oxidative stress-induced ROS generation and vascular endothelial growth factor A induction, thus preventing further adverse effects on tumor genetics and stromal reactivity.
Collapse
Affiliation(s)
- Shuping Yin
- Department of Pathology, Center of Molecular Medicine and Genetics, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | | | | | | | | | | | | | |
Collapse
|
169
|
|
170
|
Mata-Greenwood E, Grobe A, Kumar S, Noskina Y, Black SM. Cyclic stretch increases VEGF expression in pulmonary arterial smooth muscle cells via TGF-β1 and reactive oxygen species: a requirement for NAD(P)H oxidase. Am J Physiol Lung Cell Mol Physiol 2005; 289:L288-9. [PMID: 15821013 DOI: 10.1152/ajplung.00417.2004] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Our previous studies have indicated that transforming growth factor (TGF)-β1 and VEGF expression are increased in the smooth muscle cell (SMC) layer of the pulmonary vessels of lambs with pulmonary hypertension secondary to increased pulmonary blood flow. Furthermore, we found that TGF-β1 expression increased before VEGF. Because of the increased blood flow in the shunt lambs, the SMC in the pulmonary vessels are exposed to increased levels of the mechanical force, cyclic stretch. Thus, in this study, using primary cultures of pulmonary arterial SMC isolated from pulmonary arteries of 4-wk-old lambs, we investigated the role of cyclic stretch in the apparent coordinated regulation of TGF-β1 and VEGF. Our results demonstrated that cyclic stretch induced a significant increase in VEGF expression both at the mRNA and protein levels ( P < 0.05). The increased VEGF mRNA was preceded by both an increased expression and secretion of TGF-β1 and an increase in reactive oxygen species (ROS) generation. In addition, a neutralizing antibody against TGF-β1 abolished the cyclic stretch-dependent increases in both superoxide generation and VEGF expression. Our data also demonstrated that cyclic stretch activated an NAD(P)H oxidase that was TGF-β1 dependent and that NAD(P)H oxidase inhibitors abolished the cyclic stretch-dependent increase in VEGF expression. Therefore, our results indicate that cyclic stretch upregulates VEGF expression via the TGF-β1-dependent activation of NAD(P)H oxidase and increased generation of ROS.
Collapse
Affiliation(s)
- Eugenia Mata-Greenwood
- International Heart Institute of Montana, 3rd Floor, St. Patrick Hospital, 554 West Broadway, Missoula, MT 59802, USA
| | | | | | | | | |
Collapse
|
171
|
Rodrigo R, Parra M, Bosco C, Fernández V, Barja P, Guajardo J, Messina R. Pathophysiological basis for the prophylaxis of preeclampsia through early supplementation with antioxidant vitamins. Pharmacol Ther 2005; 107:177-97. [PMID: 15896847 DOI: 10.1016/j.pharmthera.2005.03.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2005] [Indexed: 11/27/2022]
Abstract
Preeclampsia (PE) is a multisystem disorder that remains a major cause of maternal and foetal morbidity and death. To date, no treatment has been found that prevents the development of the disease. Endothelial dysfunction is considered to underlie its clinical manifestations, such as maternal hypertension, proteinuria, and edema; however, the precise biochemical pathways involved remain unclear. A current hypothesis invokes the occurrence of oxidative stress as pathogenically important, as suggested by the fact that in PE, the placental and circulating levels of lipid peroxidation products (F2-isoprostanes and malondialdehyde [MDA]) are increased and endothelial cells are activated. A potential mechanism for endothelial dysfunction may occur via nuclear transcription factor kappa B (NF-kappaB) activation by oxidative stress. Alternatively, the idea that the antiangiogenic placental soluble fms-like tyrosine kinase 1 factor (sFlt1) is involved in the pathogenesis of this disease is just emerging; however, other pathophysiological events seem to precede its increased production. This review is focused on evidence providing a pathophysiological basis for the beneficial effect of early antioxidant therapy in the prevention of PE, mainly supported by the biological effects of vitamins C and E.
Collapse
Affiliation(s)
- Ramón Rodrigo
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Independencia 1027, Casilla 70058, Santiago 7, Chile.
| | | | | | | | | | | | | |
Collapse
|
172
|
Polytarchou C, Papadimitriou E. Antioxidants inhibit human endothelial cell functions through down-regulation of endothelial nitric oxide synthase activity. Eur J Pharmacol 2005; 510:31-8. [PMID: 15740722 DOI: 10.1016/j.ejphar.2005.01.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2004] [Revised: 01/03/2005] [Accepted: 01/07/2005] [Indexed: 11/17/2022]
Abstract
We have recently shown that superoxide and hydrogen peroxide are putative inducers of angiogenesis in vivo, possibly through up regulation of inducible nitric oxide synthase (NOS) and increased production of endogenous nitric oxide (NO). The aim of the present work was to elucidate the implication of reactive oxygen species in endothelial cell functions, using cultures of human umbilical vein endothelial cells (HUVEC). Superoxide dismutase (SOD), tempol (membrane permeable SOD mimetic) and the NADPH oxidase inhibitors, 4-(2-aminoethyl)-benzenesulfonyl fluoride and apocynin, but not allopurinol, inhibited HUVEC proliferation and migration, as well as activity of endothelial NOS (eNOS). Catalase and the intracellular hydrogen peroxide scavenger sodium pyruvate decreased, while hydrogen peroxide increased HUVEC proliferation, migration and activity of eNOS. Dexamethasone induced the proliferation and migration of HUVEC and activated eNOS. Nomega-nitro-L-arginine methyl ester (L-NAME), but not Nomega-nitro-D-arginine methyl ester, decreased endothelial cell functions and reversed the effects of dexamethasone and hydrogen peroxide. N5-(1-iminoethyl)-L-ornithine dihydrochloride, but not the inducible NOS specific inhibitor N-[[3-(aminomethyl)phenyl]methyl]-ethanimidamide dihydrochloride also decreased endothelial cell functions, similarly to L-NAME. The guanylate cyclase inhibitor 1H-[1,2,4]Oxadiazole[4,3-a]quinoxalin-1-one inhibited HUVEC proliferation in a concentration-dependent manner and completely reversed hydrogen peroxide-induced proliferation, migration and cGMP accumulation. In conclusion, superoxide and hydrogen peroxide seem to play a significant role in promoting endothelial cell proliferation and migration, possibly through regulation of eNOS activity.
Collapse
Affiliation(s)
- Christos Polytarchou
- Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, GR 26504, Greece
| | | |
Collapse
|
173
|
Moldobaeva A, Wagner EM. Difference in proangiogenic potential of systemic and pulmonary endothelium: role of CXCR2. Am J Physiol Lung Cell Mol Physiol 2005; 288:L1117-23. [PMID: 15722378 DOI: 10.1152/ajplung.00370.2004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The systemic vasculature in and surrounding the lung is proangiogenic, whereas the pulmonary vasculature rarely participates in neovascularization. We studied the effects of the proangiogenic ELR+ CXC chemokine MIP-2 (macrophage inflammatory protein-2) on endothelial cell proliferation and chemotaxis. Mouse aortic, pulmonary arterial, and lung microvascular endothelial cells were isolated and subcultured. Proliferation ([3H]thymidine uptake) and migration (Transwell chemotaxis) were evaluated in each cell type at baseline and upon exposure to MIP-2 (1–100 ng/ml) without and with exposure to hypoxia (24 h)-reoxygenation. Baseline proliferation did not vary among cell types, and all cells showed increased proliferation after MIP-2. Aortic cell chemotaxis increased markedly upon exposure to MIP-2; however, neither pulmonary artery nor lung microvascular endothelial cells responded to this chemokine. Assessment of CXCR2, the G protein-coupled receptor through which MIP-2 signals, displayed no baseline difference in mRNA, protein, or cell surface expression among cell types. Exposure to hypoxia increased expression of CXCR2 of aortic endothelial cells only. Additionally, aortic cells, compared with pulmonary cells, showed significantly greater protein and activity of cathepsin S, a proteolytic enzyme important for cell motility. Thus the combined effects of increased cathepsin S activity, providing increased motility and enhanced CXCR2 expression after hypoxia, both contribute to the proangiogenic phenotype of systemic arterial endothelial cells.
Collapse
Affiliation(s)
- Aigul Moldobaeva
- Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | | |
Collapse
|
174
|
Balcerczyk A, Soszynski M, Rybaczek D, Przygodzki T, Karowicz-Bilinska A, Maszewski J, Bartosz G. Induction of apoptosis and modulation of production of reactive oxygen species in human endothelial cells by diphenyleneiodonium. Biochem Pharmacol 2005; 69:1263-73. [PMID: 15794948 DOI: 10.1016/j.bcp.2005.01.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2004] [Accepted: 01/03/2005] [Indexed: 10/25/2022]
Abstract
Diphenyleneiodonium (DPI) inhibits activity of flavoenzymes like NADPH oxidase, the major source of superoxide anion in cardiovascular system, but affects also other oxidoreductases. Contradictory data have been published concerning the effect of diphenyleneiodonium on the production of reactive oxygen species in cells, both inhibitory and stimulatory action of DPI being reported. We have examined the effect of DPI on the cellular production of reactive oxygen and nitrogen species (ROS/RNS) and on the proliferation and apoptosis of human vascular endothelial cells. We found increased oxidation of ROS-sensitive probes (dihydrorhodamine 123 and 2',7'-dichlorodihydrofluorescein diacetate) when DPI (20 microM-100 microM) was present in the treated cells. However, oxidation of the fluorogenic probes was inhibited if DPI (20 microM-100 microM) was removed from the reaction medium after cell preincubation. These results suggest an artifactual oxidation of the fluorogenic probes by DPI or its metabolites. A similar pattern of influence of DPI on the production of NO (measured with 4-amino-5-methylamino-2',7'-difluorofluorescein diacetate) was observed. Modulation of generation of reactive oxygen and nitrogen species in DPI-treated cells influenced the nitration of tyrosine residues of cellular proteins, estimated by Western blotting. Decreased level of nitration generally paralleled the lowered production of ROS. A decreased 3-(4,5-dimethylthiazolyl)-3-3(4-sulphophenyl) tetrazolium (MTT) reducing activity of cells for was observed immediately after 1h treatment of human endothelial cells with DPI (1 microM-100 microM), in spite of lack of changes in cell viability estimated by other methods. These results point to a next limitation of MTT in estimation of viability of cells treated with oxidoreductase inhibitors. DPI inhibited the proliferation of HUVECs as well as immortalized cell line HUVEC-ST, as assessed by acid phosphatase activity test and measurement of total nucleic acid content. Proapoptotic action of DPI was observed 12 h after incubation with this compound.
Collapse
Affiliation(s)
- Aneta Balcerczyk
- Department of Molecular Biophysics, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland.
| | | | | | | | | | | | | |
Collapse
|
175
|
Sauer H, Bekhite MM, Hescheler J, Wartenberg M. Redox control of angiogenic factors and CD31-positive vessel-like structures in mouse embryonic stem cells after direct current electrical field stimulation. Exp Cell Res 2005; 304:380-90. [PMID: 15748885 DOI: 10.1016/j.yexcr.2004.11.026] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2004] [Revised: 11/11/2004] [Accepted: 11/13/2004] [Indexed: 10/25/2022]
Abstract
The molecular mechanisms driving angiogenesis in tissues derived from embryonic stem (ES) cells are currently unknown. Herein we investigated the effects of direct current (DC) electrical field treatment on endothelial cell differentiation and angiogenesis of mouse ES cells. Treatment of ES cell-derived embryoid bodies with field strengths ranging from 250 V/m to 750 V/m, applied for 60 s, dose-dependently increased the capillary area staining positive for the endothelial-specific marker platelet endothelial cell adhesion molecule-1 (PECAM-1), indicating stimulation of endothelial cell differentiation and angiogenesis. Consequently, increased expression of hypoxia-inducible factor-1alpha (HIF-1alpha) and vascular endothelial growth factor (VEGF) within 24 h was observed. Electric field treatment raised reactive oxygen species (ROS) generation for at least 48 h, which was blunted by NADPH-oxidase inhibitors diphenylen iodonium chloride (DPI) as well as 4-(2-aminoethyl)benzenesulfonyl fluoride (AEBSF), and increased the expression of NADPH-oxidase subunits p22-phox, p47-phox, p67-phox, and gp91-phox within 24 h. Electrical field treatment resulted in activation of extracellular regulated kinase 1,2 (ERK1,2), p38, as well as c-Jun NH2-terminal kinase (JNK). Pretreatment with the JNK inhibitor SP600125 resulted in a significant decrease in capillary areas under control conditions as well as under conditions of electrical field treatment, whereas the p38 inhibitor SB203580 was without effects. By contrast, the ERK1,2 antagonist UO126 inhibited electrical field-induced angiogenesis, whereas angiogenesis under control conditions was unimpaired. The increase in capillary areas and VEGF expression as well as activation of JNK and ERK1,2 was significantly inhibited in the presence of the free radical scavenger vitamin E underscoring the role of ROS in electrical field-induced angiogenesis of ES cells.
Collapse
Affiliation(s)
- Heinrich Sauer
- Department of Physiology, Justus-Liebig-University Giessen, D-35392 Giessen, Germany
| | | | | | | |
Collapse
|
176
|
Lee HS, Namkoong K, Kim DH, Kim KJ, Cheong YH, Kim SS, Lee WB, Kim KY. Hydrogen peroxide-induced alterations of tight junction proteins in bovine brain microvascular endothelial cells. Microvasc Res 2005; 68:231-8. [PMID: 15501242 DOI: 10.1016/j.mvr.2004.07.005] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2004] [Indexed: 12/17/2022]
Abstract
Occludin and zonular occludens (ZO)-1 in tight junctions (TJs) and actin play an important role in maintaining blood-brain barrier (BBB) endothelial ion and solute barriers. Malfunction of BBB by reactive oxygen species (ROS) has been attributed to the disruption of TJs. This study examined H2O2 effects on changes of paracellular permeability, actin, and TJ proteins (occludin and ZO-1) using primary culture of bovine brain microvessel endothelial cells. The BBB permeability, measured as transendothelial electrical resistance (TER), decreased in a dose- and time-dependent manner when treated with H2O2. Cytotoxicity test revealed that H2O2 did not cause cell death at 0.01, 0.1, and 1.0 mM H2O2. H2O2 caused increased protein expression of occludin (1.17- to 1.29-fold) and actin (1.2- to 1.3-fold). ZO-1 maintained steady state levels of expression. H2O2 caused rearrangement of occludin and ZO-1 at tight junctions and formation of actin stress fiber. Although ZO-1 did not show significant change in protein expression, permeability changes shown in the current study correlate with alterations in expression and localization of occludin, actin, and ZO-1. These data suggest that H2O2 induces increased paracellular permeability of BBB that is accompanied with redistribution of occludin and ZO-1 and increased protein expression of occludin and actin.
Collapse
Affiliation(s)
- Hee-Sang Lee
- Department of Anatomy, College of Medicine, Chung-Ang University, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
177
|
Xie K, Wei D, Shi Q, Huang S. Constitutive and inducible expression and regulation of vascular endothelial growth factor. Cytokine Growth Factor Rev 2005; 15:297-324. [PMID: 15450248 DOI: 10.1016/j.cytogfr.2004.04.003] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Vascular endothelial growth factor (VEGF), which was originally discovered as vascular permeability factor, is critical to human cancer angiogenesis through its potent functions as a stimulator of endothelial cell survival, mitogenesis, migration, differentiation and self-assembly, as well as vascular permeability, immunosuppression and mobilization of endothelial progenitor cells from the bone marrow into the peripheral circulation. Genetic alterations and a chaotic tumor microenvironment, such as hypoxia, acidosis, free radicals, and cytokines, are clearly attributed to numerous abnormalities in the expression and signaling of VEGF and its receptors. These perturbations confer a tremendous survival and growth advantage to vascular endothelial cells as manifested by exuberant tumor angiogenesis and a consequent malignant phenotype. Understanding the regulatory mechanisms of both inducible and constitutive VEGF expression will be crucial in designing effective therapeutic strategies targeting VEGF to control tumor growth and metastasis. In this review, molecular regulation of VEGF expression in tumor cells is discussed.
Collapse
Affiliation(s)
- Keping Xie
- Department of Gastrointestinal Medical Oncology, Unit 426, MD Anderson Cancer Center, The University of Texas, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
178
|
Ushio-Fukai M, Alexander RW. Reactive oxygen species as mediators of angiogenesis signaling: role of NAD(P)H oxidase. Mol Cell Biochem 2005; 264:85-97. [PMID: 15544038 DOI: 10.1023/b:mcbi.0000044378.09409.b5] [Citation(s) in RCA: 353] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Angiogenesis, a process of new blood vessel growth, contributes to various pathophysiologies such as cancer, diabetic retinopathy and atherosclerosis. Accumulating evidence suggests that cardiovascular diseases are associated with increased oxidative stress in blood vessels. Reactive oxygen species (ROS) such as superoxide and H2O2 cause blood vessels to thicken, produce inflammation in the vessel wall, and thus are regarded as "risk factors" for vascular disease, whereas ROS also act as signaling molecules in many aspects of growth factor-mediated physiological responses. Recent reports suggest that ROS play an important role in angiogenesis; however, its underlying molecular mechanisms remain unknown. Vascular endothelial growth factor (VEGF) induces angiogenesis by stimulating endothelial cell (EC) proliferation and migration primarily through the receptor tyrosine kinase VEGF receptor2 (Flk1/KDR). VEGF binding initiates tyrosine phosphorylation of KDR, which results in activation of downstream signaling enzymes including ERK1/2, Akt and eNOS, which contribute to angiogenic-related responses in EC. Importantly, the major source of ROS in EC is a NAD(P)H oxidase and EC express all the components of phagocytic NAD(P)H oxidase including gp91phox, p22phox, p47phox, p67phox and the small G protein Rac1. We have recently demonstrated that ROS derived from NAD(P)H oxidase are critically important for VEGF signaling in vitro and angiogenesis in vivo. Furthermore, a peptide hormone, angiotensin II, a major stimulus for vascular NAD(P)H oxidase, also plays an important role in angiogenesis. Because EC migration and proliferation are primary features of the process of myocardial angiogenesis, we would like to focus on the recent progress that has been made in the emerging area of NAD(P)H oxidase-derived ROS-dependent signaling in ECs, and discuss the possible roles in angiogenesis. Understanding these mechanisms may provide insight into the components of NAD(P)H oxidase as potential therapeutic targets for treatment of angiogenesis-dependent diseases such as cancer and atherosclerosis and for promoting myocardial angiogenesis in ischemic heart diseases.
Collapse
Affiliation(s)
- Masuko Ushio-Fukai
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | | |
Collapse
|
179
|
Lameynardie S, Chiavaroli C, Travo P, Garay RP, Parés-Herbuté N. Inhibition of choroidal angiogenesis by calcium dobesilate in normal Wistar and diabetic GK rats. Eur J Pharmacol 2005; 510:149-56. [PMID: 15740736 DOI: 10.1016/j.ejphar.2005.01.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2004] [Revised: 01/10/2005] [Accepted: 01/13/2005] [Indexed: 11/21/2022]
Abstract
Calcium dobesilate reduces vascular endothelial growth factor (VEGF) over-expression in diabetic rat retina, but its effect on intraocular angiogenesis is unknown. Therefore, we tested calcium dobesilate for its in vitro and ex vivo effects on choroidal explant angiogenesis in spontaneously diabetic Goto-Kakizaki (GK) rats. Choroidal explants were cultured in gels of collagen. Budded microvessels numbers and VEGF formation were taken as markers of angiogenesis. Ex vivo studies were performed in GK rats orally given 100 mg/kg/day calcium dobesilate for 10 days. In vitro, calcium dobesilate dose- and time-dependently inhibited both microvessel formation and VEGF production, at concentrations >or=25 mug/ml (i.e. >or=60 microM), with complete inhibition at 100 microg/ml. Oral treatment of diabetic GK rats with calcium dobesilate induced a significant reduction of choroidal angiogenesis ex vivo (38.8% after 3 days of culture). In conclusion, calcium dobesilate inhibited choroidal explant angiogenesis both in vitro and ex vivo. This effect may be due, at least in part, to inhibition of VEGF production. Antiangiogenesis by calcium dobesilate can be involved in its therapeutic benefit in diabetic retinopathy.
Collapse
Affiliation(s)
- Stéphane Lameynardie
- Laboratoire de Nutrition Humaine et Athérogenèse, Institut Universitaire de Recherche Clinique, Montpellier, France
| | | | | | | | | |
Collapse
|
180
|
Wong JL, Créton R, Wessel GM. The oxidative burst at fertilization is dependent upon activation of the dual oxidase Udx1. Dev Cell 2005; 7:801-14. [PMID: 15572124 DOI: 10.1016/j.devcel.2004.10.014] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2004] [Revised: 09/19/2004] [Accepted: 09/29/2004] [Indexed: 11/18/2022]
Abstract
The sea urchin egg is a quiescent cell...until fertilization, when the egg is activated. The classic respiratory burst at fertilization is the result of prodigious hydrogen peroxide production, but the mechanism for this synthesis is not known. Here we quantitate the kinetics of hydrogen peroxide synthesis at a single-cell level using an imaging photon detector, showing that 60 nM hydrogen peroxide accumulates within the perivitelline space of each zygote. We find that the NADPH oxidation activity is enriched at the cell surface and is sensitive to a pharmacological inhibitor of NADPH oxidase enzymes. Finally, we show that a sea urchin dual oxidase homolog, Udx1, is responsible for generating the hydrogen peroxide necessary for the physical block to polyspermy. Phylogenetic analysis of the enzymatic modules in Udx1 suggests a potentially conserved role for the dual oxidase family in hydrogen peroxide production and regulation during fertilization.
Collapse
Affiliation(s)
- Julian L Wong
- Department of Molecular Biology, Cell Biology, and Biochemistry, Box G, Brown University, Providence, RI 02912 USA
| | | | | |
Collapse
|
181
|
Basini G, Bianco F, Grasselli F, Tirelli M, Bussolati S, Tamanini C. The effects of reduced oxygen tension on swine granulosa cell. ACTA ACUST UNITED AC 2005; 120:69-75. [PMID: 15177922 DOI: 10.1016/j.regpep.2004.02.013] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2003] [Revised: 02/10/2004] [Accepted: 02/23/2004] [Indexed: 11/17/2022]
Abstract
Follicular growth is characterized by an augmented vascularization, possibly driven by a fall in the oxygen supply. The present study was undertaken to investigate the effects of hypoxia on swine granulosa cells. At first, we quantified oxygen partial pressure (pO2) in follicular fluid from different size follicles; the granulosa cells collected from large follicles (>5 mm) were subjected for 18 h to normoxia (19% O2), partial (5% O2) or total hypoxia (1% O2). The effects of these conditions were tested on the main parameters of granulosa cell function, steroidogenesis and cell proliferation, and on vascular endothelial growth factor (VEGF), nitric oxide (NO) and superoxide anion (O2-) production. Oxygen tension in follicular fluid was negatively related to follicular size, pointing out a gradual reduction during follicular growth. Severe hypoxic conditions determined a reduction of both 17beta estradiol and progesterone production, while partial hypoxia did not seem to affect them. Hypoxia increased VEGF as well as O2- production in swine granulosa cells without impairing cell growth; in addition, it decreased NO output. We may conclude that physiological hypoxia could play a pivotal role in the follicular angiogenic process stimulating VEGF synthesis by granulosa cells. ROS are possibly involved in hypoxic signalling.
Collapse
Affiliation(s)
- Giuseppina Basini
- Dipartimento di Produzioni Animali, Biotecnologie Veterinarie, Qualità e Sicurezza degli Alimenti-Sezione di Fisiologia Veterinaria, Università di Parma, Via del Taglio 8, 43100, Italy.
| | | | | | | | | | | |
Collapse
|
182
|
Abstract
Fertilization is the union of a single sperm and an egg, an event that results in a diploid embryo. Animals use many mechanisms to achieve this ratio; the most prevalent involves physically blocking the fusion of subsequent sperm. Selective pressures to maintain monospermy have resulted in an elaboration of diverse egg and sperm structures. The processes employed for monospermy are as diverse as the animals that result from this process. Yet, the fundamental molecular requirements for successful monospermic fertilization are similar, implying that animals may have a common ancestral block to polyspermy. Here, we explore this hypothesis, reviewing biochemical, molecular, and genetic discoveries that lend support to a common ancestral mechanism. We also consider the evolution of alternative or radical techniques, including physiological polyspermy, with respect to our ability to describe a parsimonious guide to fertilization.
Collapse
Affiliation(s)
- Julian L Wong
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island 02912, USA
| | | |
Collapse
|
183
|
Yeh LH, Alayash AI. Effects of cell-free hemoglobin on hypoxia-inducible factor (HIF-1alpha) and heme oxygenase (HO-1) expressions in endothelial cells subjected to hypoxia. Antioxid Redox Signal 2004; 6:944-53. [PMID: 15548892 DOI: 10.1089/ars.2004.6.944] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
We have investigated the impact of diaspirin cross-linked hemoglobin (DBBF-Hb), a blood substitute, on cell signaling pathways that are modulated in part by biological peroxides (i.e., hydrogen peroxide, lipid peroxide, and peroxynitrite). Bovine aortic endothelial cells (BAECs) subjected to hypoxia expressed hypoxia-inducible factor (HIF-1alpha) in a time course that paralleled the expressions of heme oxygenase (HO-1). Co-incubation of the oxy form (HbFe(2+)) with hypoxic BAECs resulted in an increase in the expression of HIF-1alpha in a manner that corresponded linearly with the decay of HbFe(2+) and accumulation of the ferric form (HbFe(3+)). Inclusion of HbFe(3+) with hypoxic BAECs produced twice as much expression in the HIF-1alpha and HO-1 proteins as opposed to HbFe(2+) alone, or HbFe(2+) plus hypoxia. In addition, higher and more persistent levels of the ferryl form (HbFe(4+)), due to the consumption of endogenous peroxides, were found in the hypoxic media containing hemoglobin. Nitric oxide (NO) released from an NO donor reduced the levels of HIF-1alpha in the hypoxic cells treated with either HbFe(2+) or HbFe(3+), but had little or no effect on the levels of HO-1. DBBF-Hb modulates key cell-signaling pathways by competing with peroxides required for the deactivation of HIF-1alpha, which may modulate important physiological mediators.
Collapse
Affiliation(s)
- Li-Hong Yeh
- Laboratory of Biochemistry and Vascular Biology, Division of Hematology, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD 20892, USA
| | | |
Collapse
|
184
|
Polytarchou C, Papadimitriou E. Antioxidants inhibit angiogenesis in vivo through down-regulation of nitric oxide synthase expression and activity. Free Radic Res 2004; 38:501-8. [PMID: 15293558 DOI: 10.1080/10715760410001684621] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Although reactive oxygen species (ROS) participate in many cellular mechanisms, only few data exist concerning their involvement in physiological angiogenesis. The aim of the present work was to elucidate possible mechanisms through which ROS affect angiogenesis in vivo, using the model of the chicken embryo chorioallantoic membrane (CAM). Superoxide dismutase (SOD) and its membrane permeable mimetic tempol, dose dependently decreased angiogenesis and down-regulated inducible nitric oxide synthase (iNOS) expression and nitric oxide (NO) production. The NADPH oxidase inhibitors, 4-(2-aminoethyl)-benzenesulfonyl fluoride (AEBSF) and apocynin, but not allopurinol, also had a dose dependent inhibitory effect on angiogenesis and NO production in vivo. Catalase and the intracellular hydrogen peroxide (H2O2) scavenger sodium pyruvate decreased, while H2O2 increased in a dose-dependent manner the number of CAM blood vessels, as well as the expression and activity of iNOS. Dexamethasone, which down-regulated NO production by iNOS and L-NAME, but not D-NAME, dose dependently decreased angiogenesis in vivo. These data suggest that antioxidants affect physiological angiogenesis in vivo, through regulation of NOS expression and activity.
Collapse
Affiliation(s)
- Christos Polytarchou
- Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, Patras, GR 26504, Greece
| | | |
Collapse
|
185
|
Chen YC, Shen SC, Tsai SH. Prostaglandin D(2) and J(2) induce apoptosis in human leukemia cells via activation of the caspase 3 cascade and production of reactive oxygen species. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2004; 1743:291-304. [PMID: 15843042 DOI: 10.1016/j.bbamcr.2004.10.016] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2004] [Revised: 10/05/2004] [Accepted: 10/06/2004] [Indexed: 10/26/2022]
Abstract
The presence of prostaglandins (PGs) has been demonstrated in the processes of carcinogenesis and inflammation. In the present study, we found that 12-o-tetradecanoylphorbol 13-acetate (TPA) induced cyclooxygenase 2 (COX-2), but not COX-1, protein expression in HL-60 cells, and the addition of arachidonic acid (AA) in the presence or absence of TPA significantly reduced the viability of HL-60 cells, an effect that was blocked by adding the COX inhibitors, NS398 and aspirin. The AA metabolites, PGD(2) and PGJ(2), but not PGE(2) or PGF(2alpha), reduced the viability of the human HL60 and Jurkat leukemia cells according to the MTT assay and LDH release assay. Apoptotic characteristics including DNA fragmentation, apoptotic bodies, and hypodiploid cells were observed in PGD(2)- and PGJ(2)-treated leukemia cells. A dose- and time-dependent induction of caspase 3 protein procession, and PARP and D4-GDI protein cleavage with activation of caspase 3, but not caspase 1, enzyme activity was detected in HL-60 cells treated with PGD(2) or PGJ(2). Additionally, DNA ladders induced by PGD(2) and PGJ(2) were significantly inhibited by the caspase 3 peptidyl inhibitor, Ac-DEVD-FMK, but not by the caspase 1 peptidyl inhibitor, Ac-YVAD-FMK, in accordance with the blocking of caspase 3, PARP, and D4-GDI protein procession. An increase in intracellular peroxide levels by PGD(2) and PGJ(2) was identified by the DCHF-DA assay, and anti-oxidant N-acetyl cysteine (NAC), mannitol (MAN), and tiron significantly inhibited cell death induced by PGD(2) and PGJ(2) by reducing reactive oxygen species (ROS) production. The PGJ(2) metabolites, 15-deoxy-Delta(12,14)-PGJ(2) and Delta(12)-PGJ(2), exhibited effective apoptosis-inducing activity in HL-60 cells through ROS production via activation of the caspase 3 cascade. The proliferator-activated receptor-gamma (PPAR-gamma) agonists, rosiglitazone (RO), troglitazone (TR), and ciglitazone (CI), induced apoptosis in cells which was blocked by the addition of the PPAR-gamma antagonists, GW9662 and BADGE, via blocking of caspase 3 and PARP cleavage. However, neither GW9662 nor BADGE showed any protective effect on PGD(2)- and PGJ(2)-induced apoptosis. A differential apoptotic effect of PGs through ROS production, followed by activation of the caspase 3 cascade, was demonstrated.
Collapse
Affiliation(s)
- Yen-Chou Chen
- Graduate Institute of Pharmacognosy, Taipei Medical University, 250 Wu-Hsing Street, Taipei 110, Taiwan.
| | | | | |
Collapse
|
186
|
Abstract
To understand complex signaling pathways and networks, it is necessary to develop a formal and structured representation of the available information in a format suitable for analysis by software tools. Due to the complexity and incompleteness of the current biological knowledge about cell signaling, such a device must be able to represent cellular pathways at differing levels of details, one level of information abstract enough to convey an essential signaling flow while hiding its details and another level of information detailed enough to explain the underlying mechanisms that account for the signaling flow described at a more abstract level. We have defined a formal ontology for cell-signaling events that allows us to describe these cellular pathways at various levels of abstraction. Using this formal representation, ROSPath (reactive oxygen species-mediated signaling pathway) database system has been implemented and made available on the web (rospath.ewha.ac.kr). ROSPath is a database system for reactive oxygen species (ROS)-mediated cell signaling pathways and signaling processes in molecular detail, which facilitates a comprehensive understanding of the regulatory mechanisms in signaling pathways. ROSPath includes growth factor-, stress-, and cytokine-induced signaling pathways containing about 500 unique proteins (mostly mammalian) and their related protein states, protein complexes, protein complex states, signaling interactions, signaling steps, and pathways. It is a web-based structured repository of information on the signaling pathways of interest and provides a means for managing data produced by large-scale and high-throughput techniques such as proteomics. Also, software tools are provided for querying, displaying, and analyzing pathways, thus furnishing an integrated web environment for visualizing and manipulating ROS-mediated cell-signaling events.
Collapse
Affiliation(s)
- Eunok Paek
- Department of Mechanical and Information Engineering, University of Seoul, Seoul 130-743, Republic of Korea.
| | | | | |
Collapse
|
187
|
Batinić-Haberle I, Spasojević I, Fridovich I. Tetrahydrobiopterin rapidly reduces the SOD mimic Mn(III) ortho-tetrakis(N-ethylpyridinium-2-yl)porphyrin. Free Radic Biol Med 2004; 37:367-74. [PMID: 15223070 DOI: 10.1016/j.freeradbiomed.2004.04.041] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2004] [Revised: 04/22/2004] [Accepted: 04/28/2004] [Indexed: 02/04/2023]
Abstract
Mn(III) ortho-tetrakis(N-ethylpyridinium-2-yl)porphyrin (Mn(III)TE-2-PyP(5+)) effectively scavenges reactive oxygen and nitrogen species in vitro, and protects in vivo, in different rodent models of oxidative stress injuries. Further, Mn(III)TE-2-PyP(5+) was shown to be readily reduced by cellular reductants such as ascorbic acid and glutathione. We now show that tetrahydrobiopterin (BH(4)) is also able to reduce the metal center. Under anaerobic conditions, in phosphate-buffered saline (pH 7.4) at 25 +/- 0.1 degrees C, reduction of Mn(III)TE-2-PyP(5+) occurs through two reaction steps with rate constants k(1) = 1.0 x 10(4) M(-1) s(-1) and k(2) = 1.5 x 10(3) M(-1) s(-1). We ascribe these steps to the formation of tetrahydrobiopterin radical (BH(4)(.+)) (k(1)) that then undergoes oxidation to 6,7-dihydro-8H-biopterin (k(2)), which upon rearrangement gives rise to 7,8-dihydrobiopterin (7,8-BH(2)). Under aerobic conditions, Mn(III)TE-2-PyP(5+) catalytically oxidizes BH(4). This is also true for its longer chain alkyl analog, Mn(III) ortho-tetrakis(N-n-octylpyridinium-2-yl)porphyrin. The reduced Mn(II) porphyrin cannot be oxidized by 7,8-BH(2) or by l-sepiapterin. The data are discussed with regard to the possible impact of the interaction of Mn(III)TE-2-PyP(5+) with BH(4) on endothelial cell proliferation and hence on tumor antiangiogenesis via inhibition of nitric oxide synthase.
Collapse
Affiliation(s)
- Ines Batinić-Haberle
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710, USA.
| | | | | |
Collapse
|
188
|
Allanore Y, Borderie D, Lemaréchal H, Ekindjian OG, Kahan A. Nifedipine decreases sVCAM-1 concentrations and oxidative stress in systemic sclerosis but does not affect the concentrations of vascular endothelial growth factor or its soluble receptor 1. Arthritis Res Ther 2004; 6:R309-14. [PMID: 15225366 PMCID: PMC464873 DOI: 10.1186/ar1183] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2004] [Revised: 03/22/2004] [Accepted: 04/02/2004] [Indexed: 12/03/2022] Open
Abstract
Microvascular injury, oxidative stress, and impaired angiogenesis are prominent features of systemic sclerosis (SSc). We compared serum markers of these phenomena at baseline and after treatment with nifedipine in SSc patients. Forty successive SSc patients were compared with 20 matched healthy subjects. All SSc patients stopped taking calcium-channel blockers 72 hours before measurements. Twenty SSc patients were also examined after 14 days of treatment with nifedipine (60 mg/day). Quantitative ELISA was used to measure the serum concentrations of vascular endothelial growth factor (VEGF), soluble VEGF receptor 1 (sVEGFR-1), soluble vascular cell adhesion molecule 1 (sVCAM-1), carbonyl residues, and advanced oxidation protein products (AOPP). The median concentrations of VEGF, sVEGFR-1, sVCAM-1, carbonyl residues, and AOPP were significantly higher in SSc patients than in healthy subjects at baseline. A correlation was found between VEGF concentration and carbonyl residue concentration (r = 0.43; P = 0.007). Nifedipine treatment led to a significant decrease in concentrations of sVCAM-1, carbonyl residues, and AOPP but did not affect concentrations of VEGF and sVEGFR-1. Nifedipine treatment ameliorated endothelium injury in patients with SSc, as shown by the concentrations of adhesion molecules and oxidative damage markers. The fact that VEGF and sVEGFR-1 concentrations were not changed whereas oxidative stress was ameliorated by nifedipine is consistent with the hypothesis that VEGF signalling is impaired in SSc. However, more experimental evidence is needed to determine whether the VEGF pathway is intrinsically defective in SSc.
Collapse
Affiliation(s)
- Yannick Allanore
- Paris V University, Department of Rheumatology A, Assistance Publique Hôpitaux de Paris, Cochin Hospital, Paris, France.
| | | | | | | | | |
Collapse
|
189
|
Abstract
Angiogenesis represents a major focus for novel therapeutic approaches to the prevention and treatment of multiple diseases, most notably ischemic cardiovascular disease and cancer. Therapeutic angiogenesis achieved either through the use of discreet angiogenic proteins or by gene therapy is fast emerging as a highly attractive treatment modality for ischemic heart disease. The purpose of this review is to address this important clinical issue through the identification of potential signaling mechanisms by which a short episode of sublethal ischemia known as ischemic preconditioning causes angiogenesis and subsequently improves myocardial salvage following coronary artery occlusion.
Collapse
Affiliation(s)
- Nilanjana Maulik
- Molecular Cardiology Laboratory, Department of Surgery, University of Connecticut Medical Center, Farmington, CT, USA.
| |
Collapse
|
190
|
Zhu XY, Rodriguez-Porcel M, Bentley MD, Chade AR, Sica V, Napoli C, Caplice N, Ritman EL, Lerman A, Lerman LO. Antioxidant intervention attenuates myocardial neovascularization in hypercholesterolemia. Circulation 2004; 109:2109-15. [PMID: 15051643 DOI: 10.1161/01.cir.0000125742.65841.8b] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Hypercholesterolemia (HC) and atherosclerosis can elicit oxidative stress, coronary endothelial dysfunction, and myocardial ischemia, which may induce growth-factor expression and lead to myocardial neovascularization. We tested the hypothesis that chronic antioxidant intervention in HC would attenuate neovascularization and preserve the expression of hypoxia-inducible factor (HIF)-1alpha and vascular endothelial growth factor (VEGF). METHODS AND RESULTS Three groups of pigs (n=6 each) were studied after 12 weeks of normal or 2% HC diet or HC+antioxidant supplementation (100 IU/kg vitamin E and 1 g vitamin C daily). Myocardial samples were scanned ex vivo with a novel 3D micro-CT scanner, and the spatial density and tortuosity of myocardial microvessels were determined in situ. VEGF mRNA, protein levels of VEGF and VEGF receptor-1, HIF-1alpha, nitrotyrosine, and superoxide dismutase (SOD) were determined in myocardial tissue. The HC and HC+antioxidant groups had similar increases in serum cholesterol levels. HC animals showed an increase in subendocardial spatial density of microvessels compared with normal (160.5+/-11.8 versus 95.3+/-8.2 vessels/cm2, P<0.05), which was normalized in HC+antioxidant (92.5+/-20.5 vessels/cm2, P<0.05 versus HC), as was arteriolar tortuosity. In addition, HC induced upregulation of VEGF, HIF-1alpha, and nitrotyrosine expression and decreased SOD expression and activity, all of which were preserved by antioxidant intervention. CONCLUSIONS Changes in myocardial microvascular architecture invoked by HC are accompanied by increases in HIF-1alpha and VEGF expression and attenuated by antioxidant intervention. This underscores a role of increased oxidative stress in modulating myocardial microvascular architecture in early atherogenesis.
Collapse
Affiliation(s)
- Xiang-Yang Zhu
- Department of Internal Medicine, Division of Hypertension, Mayo Clinic College of Medicine, Rochester, Minn 55905, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
191
|
Sihvo EIT, Ruohtula T, Auvinen MI, Koivistoinen A, Harjula AL, Salo JA. Simultaneous progression of oxidative stress and angiogenesis in malignant transformation of Barrett esophagus. J Thorac Cardiovasc Surg 2004; 126:1952-7. [PMID: 14688711 DOI: 10.1016/j.jtcvs.2003.08.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND Oxidative stress and angiogenesis are important elements in the pathogenesis of inflammatory diseases and cancer. Our aim was to evaluate the role of both and of antioxidant capacity in the metaplasia-dysplasia-adenocarcinoma sequence in Barrett epithelium. METHODS In mucosal specimens from 59 patients grouped as having symptomatic gastroesophageal reflux disease, Barrett epithelium, or adenocarcinoma in the esophagus, plus controls, we measured myeloperoxidase activity, superoxidase dismutase activity, glutathione content, and total aromatic DNA adducts. To evaluate blood vessel densities and angioarchitecture, we used immunohistochemistry and a modified whole-mount technique. Sections were stained with endothelium-specific markers and smooth muscle cell actin. RESULTS The reflux disease-metaplasia-carcinoma sequence revealed progressively increased oxidative stress (increased myeloperoxidase activity), decreased antioxidant capacity (glutathione content), and simultaneous formation of DNA adducts. Pooled data show a negative correlation between glutathione content and DNA adducts (-0.28; P =.05). This sequence was also characterized by increased intensity in microvessels and an increasing percentage of immature blood vessels. In addition, the whole-mount technique offered 3-dimensional evidence that the rich new vascular bed is highly abnormal, with repeated twists, bends, or turns, even in nonmalignant Barrett esophagus. CONCLUSIONS Increased oxidative stress, decreased antioxidant capacity, and a negative correlation between glutathione content and DNA adduct formation indicate a link between oxidative stress and malignant transformation of Barrett epithelium. Simultaneously, this transformation acquires angiogenic capacity, strong neovascularization, and abnormal angioarchitecture.
Collapse
Affiliation(s)
- Eero I T Sihvo
- Department of Surgery, Helsinki University Central Hospital, Finland
| | | | | | | | | | | |
Collapse
|
192
|
Kind KL, Collett RA, Harvey AJ, Thompson JG. Oxygen-regulated expression ofGLUT-1,GLUT-3, andVEGF in the mouse blastocyst. Mol Reprod Dev 2004; 70:37-44. [PMID: 15515055 DOI: 10.1002/mrd.20183] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The oxygen concentration used in the incubation atmosphere during embryo culture influences embryo development rates and embryo quality. In somatic cells, oxygen levels can influence the expression of a range of genes, including glucose transporters, glycolytic enzymes, and angiogenic growth factors. Many of these oxygen-regulated genes have important roles in embryonic development and metabolism. The aim of this study was to determine whether oxygen regulates gene expression in the preimplantation mouse blastocyst. Mouse embryos were cultured from the 1-cell to morula stage under 7% oxygen, followed by culture under 20, 7, or 2% oxygen to the blastocyst stage. Expression of glucose transporter (GLUT)-1, GLUT-3, and vascular endothelial growth factor (VEGF) in blastocysts was measured by real-time reverse transcription PCR. Development from morula to blastocyst was not altered by culture under different oxygen conditions. Expression of GLUT-1, GLUT-3, and vascular endothelial growth (VEGF) was increased by 2- to 4-fold in embryos cultured under 2% oxygen, when compared to embryos cultured under 20 or 7% oxygen, and when compared to embryos developed in vivo (all P < 0.001). These results suggest that the preimplantation mouse embryo has the capacity to detect and respond to low oxygen availability with changes in expression of oxygen-regulated genes.
Collapse
Affiliation(s)
- Karen L Kind
- Research Centre for Reproductive Health, Department of Obstetrics and Gynaecology, University of Adelaide, The Queen Elizabeth Hospital, Woodville, South Australia, Australia.
| | | | | | | |
Collapse
|
193
|
Strowski MZ, Cramer T, Schäfer G, Jüttner S, Walduck A, Schipani E, Kemmner W, Wessler S, Wunder C, Weber M, Meyer TF, Wiedenmann B, Jöns T, Naumann M, Höcker M. Helicobacter pylori stimulates host vascular endothelial growth factor-A (vegf-A) gene expression via MEK/ERK-dependent activation of Sp1 and Sp3. FASEB J 2003; 18:218-20. [PMID: 14597566 DOI: 10.1096/fj.03-0055fje] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
VEGF-A is a key regulator of inflammatory and tumor-associated angiogenesis. H. pylori plays a critical role in the pathogenesis of benign and malignant gastric diseases. It has been suggested that H. pylori infection is associated with activation of host angiogenesis, however, underlying mechanisms as well as angiogenic growth factors activated by the bacterium have not yet been identified. Therefore, we investigated the influence of the bacterium on VEGF-A as a candidate host target gene in vivo and in vitro. We show that H. pylori potently up-regulates production and release of VEGF-A protein as well as vegf-A mRNA levels, and we provide strong evidence that enhanced recruitment of Sp1 and Sp3 transcription factors to two proximal GC-rich vegf-A promoter elements mediates H. pylori-triggered vegf-A gene expression. In addition, H. pylori infection increased the transactivating capacity of both Sp1 and Sp3, which suggests additional mechanism(s) of vegf-A gene regulation by the bacterium. Signaling studies identified the MEK>ERK1/-2 kinase cascade as principal host signaling pathway mediating H. pylori-stimulated vegf-A transcription. By identifying H. pylori as potent activator of vegf-A gene expression and characterization of underlying molecular mechanisms, our results provide novel insights into pathways linking the bacterium to host angiogenesis and may help to develop strategies to influence vegf-A gene expression in the setting of H. pylori infection.
Collapse
Affiliation(s)
- Mathias Z Strowski
- Medizinische Klinik, mit Schwerpunkt Hepatologie und Gastroenterologie, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
194
|
Abstract
Accumulating evidence indicates that reactive oxygen species (ROS) play major roles in the initiation and progression of cardiovascular dysfunction associated with diseases such as hyperlipidemia, diabetes mellitus, hypertension, ischemic heart disease, and chronic heart failure. ROS produced by migrating inflammatory cells as well as vascular cells (endothelial cells, vascular smooth muscle cells, and adventitial fibroblasts) have distinct functional effects on each cell type. These include cell growth, apoptosis, migration, inflammatory gene expression, and matrix regulation. ROS, by regulating vascular cell function, can play a central role in normal vascular physiology, and can contribute substantially to the development of vascular disease.
Collapse
Affiliation(s)
- Yoshihiro Taniyama
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, Ga 30322, USA
| | | |
Collapse
|
195
|
Gu W, Weihrauch D, Tanaka K, Tessmer JP, Pagel PS, Kersten JR, Chilian WM, Warltier DC. Reactive oxygen species are critical mediators of coronary collateral development in a canine model. Am J Physiol Heart Circ Physiol 2003; 285:H1582-9. [PMID: 12816750 DOI: 10.1152/ajpheart.00318.2003] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recent evidence suggests that reactive oxygen species (ROS) promote proliferation and migration of vascular smooth muscle (VSMC) and endothelial cells (EC). We tested the hypothesis that ROS serve as crucial messengers during coronary collateral development. Dogs were subjected to brief (2 min), repetitive coronary artery occlusions (1/h, 8/day, 21 day duration) in the absence (occlusion, n = 8) or presence of N-acetylcysteine (NAC) (occlusion + NAC, n = 8). A sham group (n = 8) was instrumented identically but received no occlusions. In separate experiments, ROS generation after a single 2-min coronary artery occlusion was assessed with dihydroethidium fluorescence. Coronary collateral blood flow (expressed as a percentage of normal zone flow) was significantly increased (71 +/- 7%) in occlusion dogs after 21 days but remained unchanged (13 +/- 3%) in sham dogs. Treatment with NAC attenuated increases in collateral blood flow (28 +/- 8%). Brief coronary artery occlusion and reperfusion caused ROS production (256 +/- 33% of baseline values), which was abolished with NAC (104 +/- 12%). Myocardial interstitial fluid produced tube formation and proliferation of VSMC and EC in occlusion but not in NAC-treated or sham dogs. The results indicate that ROS are critical for the development of the coronary collateral circulation.
Collapse
Affiliation(s)
- Weidong Gu
- Department of Anesthesiology, Medical College of Wisconsin, 8701 Water-town Plank Road, Milwaukee, WI 53226, USA
| | | | | | | | | | | | | | | |
Collapse
|
196
|
Klein JA, Ackerman SL. Oxidative stress, cell cycle, and neurodegeneration. J Clin Invest 2003; 111:785-93. [PMID: 12639981 PMCID: PMC153779 DOI: 10.1172/jci18182] [Citation(s) in RCA: 150] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
197
|
|
198
|
Schäfer G, Cramer T, Suske G, Kemmner W, Wiedenmann B, Höcker M. Oxidative stress regulates vascular endothelial growth factor-A gene transcription through Sp1- and Sp3-dependent activation of two proximal GC-rich promoter elements. J Biol Chem 2003; 278:8190-8. [PMID: 12509426 DOI: 10.1074/jbc.m211999200] [Citation(s) in RCA: 157] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Enhanced VEGF-A (vascular endothelial growth factor A) gene expression is associated with increased tumor growth and metastatic spread of solid malignancies including gastric cancer. Oxidative stress has been linked to tumor-associated neoangiogenesis; underlying mechanisms, however, remained poorly understood. Therefore, we studied the effect of oxidative stress on VEGF-A gene expression in gastric cancer cells. Oxidative stress generated by H(2)O(2) application potently stimulated VEGF-A protein and mRNA levels as determined by enzyme-linked immunosorbent assay and real-time PCR techniques, respectively, and elevated the activity of a transfected (-2018) VEGF-A promoter reporter gene construct in a time- and dose-dependent manner (4-8-fold). These effects were abolished by the antioxidant N-acetylcysteine, demonstrating specificity of oxidative stress responses. Functional 5' deletion analysis mapped the oxidative stress response element of the human VEGF-A promoter to the sequence -88/-50, and a single copy of this element was sufficient to confer basal promoter activity as well as oxidative stress responsiveness to a heterologous promoter system. Combination of EMSA studies, Sp1/Sp3 overexpression experiments in Drosophila SL-2 cells, and systematic promoter mutagenesis identified enhanced Sp1 and Sp3 binding to two GC-boxes at -73/-66 and -58/-52 as the core mechanism of oxidative stress-triggered VEGF-A transactivation. Additionally, in Gal4-Sp1/-Sp3-Gal4-luciferase assays, oxidative stress increased Sp1 but not Sp3 transactivating capacity, indicating additional mechanism(s) of VEGF-A gene regulation. Signaling studies identified a cascade comprising Ras --> Raf --> MEK1 --> ERK1/2 as the main pathway mediating oxidative stress-stimulated VEGF-A transcription. This study for the first time delineates the mechanisms underlying regulation of VEGF-A gene transcription by oxidative stress and thereby further elucidates potential pathways underlying redox control of neoangiogenesis.
Collapse
Affiliation(s)
- Georgia Schäfer
- Medizinische Klinik mit Schwerpunkt Hepatologie, Gastroenterologie, Endokrinologie und Stoffwechsel, Charité, Campus Virchow-Klinikum, 13353 Berlin, Germany
| | | | | | | | | | | |
Collapse
|