151
|
Abstract
Primary cilia in neurons have often been regarded as rare, vestigial curiosities. However, neuronal cilia are now gaining recognition as ubiquitous organelles in the mammalian brain, raising speculation about what their functions may be. They might have some features tailored for the nervous system and others that serve needs shared by a spectrum of other cell types. Here we review clues from the literature and present new data supporting several possibilities for the significance of neuronal cilia. Our immunocytochemical results show regional heterogeneity in neuronal cilia. Brain regions nearer to the cerebral ventricles had longer cilia, suggesting that they might sense chemicals such as peptides, originating from cerebrospinal fluid. In mutant Tg737(orpk)mice, most brain regions appeared to be missing cilia. The importance of intraflagellar transport proteins establishes a functional link between neuronal cilia and other primary cilia.
Collapse
Affiliation(s)
- Jannon L Fuchs
- Biological Sciences, University of North Texas, Denton, TX 76203, USA.
| | | |
Collapse
|
152
|
Jang H, Kim K, Neal SJ, Macosko E, Kim D, Butcher RA, Zeiger DM, Bargmann CI, Sengupta P. Neuromodulatory state and sex specify alternative behaviors through antagonistic synaptic pathways in C. elegans. Neuron 2012; 75:585-92. [PMID: 22920251 DOI: 10.1016/j.neuron.2012.06.034] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2012] [Indexed: 12/14/2022]
Abstract
Pheromone responses are highly context dependent. For example, the C. elegans pheromone ascaroside C9 (ascr#3) is repulsive to wild-type hermaphrodites, attractive to wild-type males, and usually neutral to "social" hermaphrodites with reduced activity of the npr-1 neuropeptide receptor gene. We show here that these distinct behavioral responses arise from overlapping push-pull circuits driven by two classes of pheromone-sensing neurons. The ADL sensory neurons detect C9 and, in wild-type hermaphrodites, drive C9 repulsion through their chemical synapses. In npr-1 mutant hermaphrodites, C9 repulsion is reduced by the recruitment of a gap junction circuit that antagonizes ADL chemical synapses. In males, ADL sensory responses are diminished; in addition, a second pheromone-sensing neuron, ASK, antagonizes C9 repulsion. The additive effects of these antagonistic circuit elements generate attractive, repulsive, or neutral pheromone responses. Neuronal modulation by circuit state and sex, and flexibility in synaptic output pathways, may permit small circuits to maximize their adaptive behavioral outputs.
Collapse
Affiliation(s)
- Heeun Jang
- Howard Hughes Medical Institute and Laboratory of Neural Circuits and Behavior, The Rockefeller University, New York, NY 10065, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
153
|
Shapiro MG, Frazier SJ, Lester HA. Unparalleled control of neural activity using orthogonal pharmacogenetics. ACS Chem Neurosci 2012; 3:619-29. [PMID: 22896806 DOI: 10.1021/cn300053q] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Accepted: 06/01/2012] [Indexed: 11/28/2022] Open
Abstract
Studying the functional architecture of the brain requires technologies to precisely measure and perturb the activity of specific neural cells and circuits in live animals. Substantial progress has been made in recent years to develop and apply such tools. In particular, technologies that provide precise control of activity in genetically defined populations of neurons have enabled the study of causal relationships between and among neural circuit elements and behavioral outputs. Here, we review an important subset of such technologies, in which neurons are genetically engineered to respond to specific chemical ligands that have no interfering pharmacological effect in the central nervous system. A rapidly expanding set of these "orthogonal pharmacogenetic" tools provides a unique combination of genetic specificity, functional diversity, spatiotemporal precision, and potential for multiplexing. We review the main classes of orthogonal pharmacogenetic technologies, including neuroreceptors to control neuronal excitability, systems to control gene transcription and translation, and general constructs to control protein-protein interactions, enzymatic function, and protein stability. We describe the key performance characteristics informing the use of these technologies in the brain, and potential directions for improvement and expansion of the orthogonal pharmacogenetics toolkit to enable more sophisticated systems neuroscience.
Collapse
Affiliation(s)
- Mikhail G. Shapiro
- Miller Research Institute, Department
of Bioengineering, and Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California
94720, United States
| | | | | |
Collapse
|
154
|
Geffeney SL, Goodman MB. How we feel: ion channel partnerships that detect mechanical inputs and give rise to touch and pain perception. Neuron 2012; 74:609-19. [PMID: 22632719 DOI: 10.1016/j.neuron.2012.04.023] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2012] [Indexed: 10/28/2022]
Abstract
Every moment of every day, our skin and its embedded sensory neurons are bombarded with mechanical cues that we experience as pleasant or painful. Knowing the difference between innocuous and noxious mechanical stimuli is critical for survival and relies on the function of mechanoreceptor neurons that vary in their size, shape, and sensitivity. Their function is poorly understood at the molecular level. This review emphasizes the importance of integrating analysis at the molecular and cellular levels and focuses on the discovery of ion channel proteins coexpressed in the mechanoreceptors of worms, flies, and mice.
Collapse
Affiliation(s)
- Shana L Geffeney
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305, USA
| | | |
Collapse
|
155
|
Dyuizen IV, Kotsyuba EP, Lamash NE. Changes in the nitric oxide system in the shore crab Hemigrapsus sanguineus (Crustacea, decapoda) CNS induced by a nociceptive stimulus. J Exp Biol 2012; 215:2668-76. [DOI: 10.1242/jeb.066845] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
Using NADPH-diaphorase (NADPH-d) histochemistry, inducible nitric oxide synthase (iNOS)-immunohistochemistry and immunoblotting, we characterized the nitric oxide (NO)-producing neurons in the brain and thoracic ganglion of a shore crab subjected to a nociceptive chemical stimulus. Formalin injection into the cheliped evoked specific nociceptive behavior and neurochemical responses in the brain and thoracic ganglion of experimental animals. Within 5–10 min of injury, the NADPH-d activity increased mainly in the neuropils of the olfactory lobes and the lateral antenna I neuropil on the side of injury. Later, the noxious-induced expression of NADPH-d and iNOS was detected in neurons of the brain, as well as in segmental motoneurons and interneurons of the thoracic ganglion. Western blotting analysis showed that an iNOS antiserum recognized a band at 120 kDa, in agreement with the expected molecular mass of the protein. The increase in nitrergic activity induced by nociceptive stimulation suggests that the NO signaling system may modulate nociceptive behavior in crabs.
Collapse
Affiliation(s)
- Inessa V. Dyuizen
- A. V. Zhirmunsky Institute of Marine Biology, Far East Branch of Russian Academy of Sciences, 17 Palchevsky Street, Vladivostok 690041, Russia
- Far Eastern Federal University, Sukhanova Street, Vladivostok 690950, Russia
| | - Elena P. Kotsyuba
- A. V. Zhirmunsky Institute of Marine Biology, Far East Branch of Russian Academy of Sciences, 17 Palchevsky Street, Vladivostok 690041, Russia
| | - Nina E. Lamash
- A. V. Zhirmunsky Institute of Marine Biology, Far East Branch of Russian Academy of Sciences, 17 Palchevsky Street, Vladivostok 690041, Russia
- Far Eastern Federal University, Sukhanova Street, Vladivostok 690950, Russia
| |
Collapse
|
156
|
Cunningham KA, Hua Z, Srinivasan S, Liu J, Lee BH, Edwards RH, Ashrafi K. AMP-activated kinase links serotonergic signaling to glutamate release for regulation of feeding behavior in C. elegans. Cell Metab 2012; 16:113-21. [PMID: 22768843 PMCID: PMC3413480 DOI: 10.1016/j.cmet.2012.05.014] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Revised: 03/08/2012] [Accepted: 05/29/2012] [Indexed: 01/01/2023]
Abstract
Serotonergic regulation of feeding behavior has been studied intensively, both for an understanding of the basic neurocircuitry of energy balance in various organisms and as a therapeutic target for human obesity. However, its underlying molecular mechanisms remain poorly understood. Here, we show that neural serotonin signaling in C. elegans modulates feeding behavior through inhibition of AMP-activated kinase (AMPK) in interneurons expressing the C. elegans counterpart of human SIM1, a transcription factor associated with obesity. In turn, glutamatergic signaling links these interneurons to pharyngeal neurons implicated in feeding behavior. We show that AMPK-mediated regulation of glutamatergic release is conserved in rat hippocampal neurons. These findings reveal cellular and molecular mediators of serotonergic signaling.
Collapse
Affiliation(s)
- Katherine A. Cunningham
- Department of Physiology and Cardiovascular Research Institute and the UCSF Diabetes Center, University of California, San Francisco, San Francisco, California, USA
| | - Zhaolin Hua
- Departments of Physiology and Neurology, University of California, San Francisco, San Francisco, California, USA
| | - Supriya Srinivasan
- Department of Chemical Physiology and Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, California, USA
| | - Jason Liu
- Department of Physiology and Cardiovascular Research Institute and the UCSF Diabetes Center, University of California, San Francisco, San Francisco, California, USA
| | - Brian H. Lee
- Department of Physiology and Cardiovascular Research Institute and the UCSF Diabetes Center, University of California, San Francisco, San Francisco, California, USA
| | - Robert H. Edwards
- Departments of Physiology and Neurology, University of California, San Francisco, San Francisco, California, USA
| | - Kaveh Ashrafi
- Department of Physiology and Cardiovascular Research Institute and the UCSF Diabetes Center, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
157
|
Nilius B, Honoré E. Sensing pressure with ion channels. Trends Neurosci 2012; 35:477-86. [PMID: 22622029 DOI: 10.1016/j.tins.2012.04.002] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 04/05/2012] [Accepted: 04/10/2012] [Indexed: 12/23/2022]
Abstract
Opening of stretch-activated ion channels (SACs) is the earliest event occurring in mechanosensory transduction. The molecular identity of mammalian SACs has long remained a mystery. Only very recently, Piezo1 and Piezo2 have been shown to be essential components of distinct SACs and moreover, purified Piezo1 forms cationic channels when reconstituted into artificial bilayers. In line with these findings, dPiezo was demonstrated to act in the Drosophila mechanical nociception pathway. Finally, the 3D structure of the two-pore domain potassium channel (K(2P)), TRAAK [weakly inward rectifying K⁺ channel (TWIK)-related arachidonic acid stimulated K⁺ channel], has recently been solved, providing valuable information about pharmacology, selectivity and gating mechanisms of stretch-activated K⁺ channels (SAKs). These recent findings allow a better understanding of the molecular basis of molecular and cellular mechanotransduction.
Collapse
Affiliation(s)
- Bernd Nilius
- Laboratory of Ion Channel Research, Department of Cell and Molecular Medicine, Katholieke Universiteit-KU Leuven, Campus Gasthuisberg, O&N 1, Herestraat 49-Bus 802, B-3000 Leuven, Belgium
| | | |
Collapse
|
158
|
Liu S, Schulze E, Baumeister R. Temperature- and touch-sensitive neurons couple CNG and TRPV channel activities to control heat avoidance in Caenorhabditis elegans. PLoS One 2012; 7:e32360. [PMID: 22448218 PMCID: PMC3308950 DOI: 10.1371/journal.pone.0032360] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Accepted: 01/27/2012] [Indexed: 01/08/2023] Open
Abstract
Background Any organism depends on its ability to sense temperature and avoid noxious heat. The nematode Caenorhabditis elegans responds to noxious temperatures exceeding ∼35°C and also senses changes in its environmental temperature in the range between 15 and 25°C. The neural circuits and molecular mechanisms involved in thermotaxis have been successfully studied, whereas details of the thermal avoidance behavior remain elusive. In this work, we investigate neurological and molecular aspects of thermonociception using genetic, cell biological and physiological approaches. Methodology/Principal Findings We show here that the thermosensory neurons AFD, in addition to sensing temperature within the range within which the animals can thrive, also contribute to the sensation of noxious temperatures resulting in a reflex-like escape reaction. Distinct sets of interneurons are involved in transmitting thermonociception and thermotaxis, respectively. Loss of AFD is partially compensated by the activity of a pair of multidendritic, polymodal neurons, FLP, whereas laser ablation of both types of neurons abrogated the heat response in the head of the animals almost completely. A third pair of heat sensory neurons, PHC, is situated in the tail. We find that the thermal avoidance response requires the cell autonomous function of cGMP dependent Cyclic Nucleotide-Gated (CNG) channels in AFD, and the heat- and capsaicin-sensitive Transient Receptor Potential Vanilloid (TRPV) channels in the FLP and PHC sensory neurons. Conclusions/Significance Our results identify distinct thermal responses mediated by a single neuron, but also show that parallel nociceptor circuits and molecules may be used as back-up strategies to guarantee fast and efficient responses to potentially detrimental stimuli.
Collapse
Affiliation(s)
- Shu Liu
- Laboratory for Bioinformatics and Molecular Genetics, Faculty of Biology, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Ekkehard Schulze
- Laboratory for Bioinformatics and Molecular Genetics, Faculty of Biology, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Ralf Baumeister
- Laboratory for Bioinformatics and Molecular Genetics, Faculty of Biology, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
- Center for Biochemistry and Molecular Cell Research, Faculty of Medicine, and Freiburg Institute for Advanced Studies, School of Life Sciences (FRIAS LIFENET), Albert-Ludwigs-University of Freiburg, Freiburg, Germany
- Centre for Biological Signalling Studies (BIOSS), Albert-Ludwigs-University of Freiburg, Freiburg, Germany
- * E-mail:
| |
Collapse
|
159
|
Güler AD, Rainwater A, Parker JG, Jones GL, Argilli E, Arenkiel BR, Ehlers MD, Bonci A, Zweifel LS, Palmiter RD. Transient activation of specific neurons in mice by selective expression of the capsaicin receptor. Nat Commun 2012; 3:746. [PMID: 22434189 DOI: 10.1038/ncomms1749] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Accepted: 02/13/2012] [Indexed: 01/30/2023] Open
Abstract
The ability to control the electrical activity of a neuronal subtype is a valuable tool in deciphering the role of discreet cell populations in complex neural circuits. Recent techniques that allow remote control of neurons are either labor intensive and invasive or indirectly coupled to neural electrical potential with low temporal resolution. Here we show the rapid, reversible and direct activation of genetically identified neuronal subpopulations by generating two inducible transgenic mouse models. Confined expression of the capsaicin receptor, TRPV1, allows cell-specific activation after peripheral or oral delivery of ligand in freely moving mice. Capsaicin-induced activation of dopaminergic or serotonergic neurons reversibly alters both physiological and behavioural responses within minutes, and lasts ~10 min. These models showcase a robust and remotely controllable genetic tool that modulates a distinct cell population without the need for invasive and labour-intensive approaches.
Collapse
Affiliation(s)
- Ali D Güler
- Howard Hughes Medical Institute and Department of Biochemistry, University of Washington, 1959 NE Pacific Street, Box 357370, Seattle, Washington 98195, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
160
|
Marshall KL, Lumpkin EA. The molecular basis of mechanosensory transduction. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 739:142-55. [PMID: 22399400 PMCID: PMC4060607 DOI: 10.1007/978-1-4614-1704-0_9] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Multiple senses, including hearing, touch and osmotic regulation, require the ability to convert force into an electrical signal: A process called mechanotransduction. Mechanotransduction occurs through specialized proteins that open an ion channel pore in response to a mechanical stimulus. Many of these proteins remain unidentified in vertebrates, but known mechanotransduction channels in lower organisms provide clues into their identity and mechanism. Bacteria, fruit flies and nematodes have all been used to elucidate the molecules necessary for force transduction. This chapter discusses many different mechanical senses and takes an evolutionary approach to review the proteins responsible for mechanotransduction in various biological kingdoms.
Collapse
Affiliation(s)
- Kara L. Marshall
- Integrated Graduate Program in Cellular, Molecular, Structural and Genetic Studies, Columbia University College of Physicians & Surgeons, New York, NY 10032
| | - Ellen A. Lumpkin
- Departments of Dermatology and Physiology and Cellular Biophysics, Columbia University College of Physicians & Surgeons, New York, NY 10032
| |
Collapse
|
161
|
Milward K, Busch KE, Murphy RJ, de Bono M, Olofsson B. Neuronal and molecular substrates for optimal foraging in Caenorhabditis elegans. Proc Natl Acad Sci U S A 2011; 108:20672-7. [PMID: 22135454 PMCID: PMC3251049 DOI: 10.1073/pnas.1106134109] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Variation in food quality and abundance requires animals to decide whether to stay on a poor food patch or leave in search of better food. An important question in behavioral ecology asks when is it optimal for an animal to leave a food patch it is depleting. Although optimal foraging is central to evolutionary success, the neural and molecular mechanisms underlying it are poorly understood. Here we investigate the neuronal basis for adaptive food-leaving behavior in response to resource depletion in Caenorhabditis elegans, and identify several of the signaling pathways involved. The ASE neurons, previously implicated in salt chemoattraction, promote food-leaving behavior via a cGMP pathway as food becomes limited. High ambient O(2) promotes food-leaving via the O(2)-sensing neurons AQR, PQR, and URX. Ectopic activation of these neurons using channelrhodopsin is sufficient to induce high food-leaving behavior. In contrast, the neuropeptide receptor NPR-1, which regulates social behavior on food, acts in the ASE neurons, the nociceptive ASH neurons, and in the RMG interneuron to repress food-leaving. Finally, we show that neuroendocrine signaling by TGF-β/DAF-7 and neuronal insulin signaling are necessary for adaptive food-leaving behavior. We suggest that animals integrate information about their nutritional state with ambient oxygen and gustatory stimuli to formulate optimal foraging strategies.
Collapse
Affiliation(s)
- Kate Milward
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, United Kingdom; and
| | - Karl Emanuel Busch
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Robin Joseph Murphy
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Mario de Bono
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Birgitta Olofsson
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, United Kingdom; and
| |
Collapse
|
162
|
Aoki R, Yagami T, Sasakura H, Ogura KI, Kajihara Y, Ibi M, Miyamae T, Nakamura F, Asakura T, Kanai Y, Misu Y, Iino Y, Ezcurra M, Schafer WR, Mori I, Goshima Y. A seven-transmembrane receptor that mediates avoidance response to dihydrocaffeic acid, a water-soluble repellent in Caenorhabditis elegans. J Neurosci 2011; 31:16603-10. [PMID: 22090488 PMCID: PMC6633322 DOI: 10.1523/jneurosci.4018-11.2011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Revised: 10/03/2011] [Accepted: 10/04/2011] [Indexed: 11/21/2022] Open
Abstract
The ability to detect harmful chemicals rapidly is essential for the survival of all animals. In Caenorhabditis elegans (C. elegans), repellents trigger an avoidance response, causing animals to move away from repellents. Dihydrocaffeic acid (DHCA) is a water-soluble repellent and nonflavonoid catecholic compound that can be found in plant products. Using a Xenopus laevis (X. laevis) oocyte expression system, we identified a candidate dihydrocaffeic acid receptor (DCAR), DCAR-1. DCAR-1 is a novel seven-transmembrane protein that is expressed in the ASH avoidance sensory neurons of C. elegans. dcar-1 mutant animals are defective in avoidance response to DHCA, and cell-specific expression of dcar-1 in the ASH neurons of dcar-1 mutant animals rescued the defect in avoidance response to DHCA. Our findings identify DCAR-1 as the first seven-transmembrane receptor required for avoidance of a water-soluble repellent, DHCA, in C. elegans.
Collapse
Affiliation(s)
- Reina Aoki
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University, Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Tatsurou Yagami
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University, Graduate School of Medicine, Yokohama 236-0004, Japan
- Department of Physiology, Himeji Dokkyo University, Himeji 670-8524, Japan
| | - Hiroyuki Sasakura
- Department of Molecular Biology, Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, 464-8602, Japan
| | - Ken-ichi Ogura
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University, Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Yasuhiro Kajihara
- Department of Chemistry Graduate School of Science, Osaka University, Osaka, 560-0043, Japan
| | - Masakazu Ibi
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University, Graduate School of Medicine, Yokohama 236-0004, Japan
- Department of Pharmacology, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Takeaki Miyamae
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University, Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Fumio Nakamura
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University, Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Taro Asakura
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University, Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Yoshikatsu Kanai
- Department of Pharmacology, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Yoshimi Misu
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University, Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Yuichi Iino
- Molecular Genetics Research Laboratory and Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Marina Ezcurra
- Medical Research Council, Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom, and
- Department of Biosciences and Nutrition, Karolinska Institute, S-14157 Huddinge, Sweden
| | - William R. Schafer
- Medical Research Council, Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom, and
| | - Ikue Mori
- Department of Molecular Biology, Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, 464-8602, Japan
| | - Yoshio Goshima
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University, Graduate School of Medicine, Yokohama 236-0004, Japan
| |
Collapse
|
163
|
Geffeney SL, Cueva JG, Glauser DA, Doll JC, Lee THC, Montoya M, Karania S, Garakani AM, Pruitt BL, Goodman MB. DEG/ENaC but not TRP channels are the major mechanoelectrical transduction channels in a C. elegans nociceptor. Neuron 2011; 71:845-57. [PMID: 21903078 DOI: 10.1016/j.neuron.2011.06.038] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2011] [Indexed: 01/01/2023]
Abstract
Many nociceptors detect mechanical cues, but the ion channels responsible for mechanotransduction in these sensory neurons remain obscure. Using in vivo recordings and genetic dissection, we identified the DEG/ENaC protein, DEG-1, as the major mechanotransduction channel in ASH, a polymodal nociceptor in Caenorhabditis elegans. But DEG-1 is not the only mechanotransduction channel in ASH: loss of deg-1 revealed a minor current whose properties differ from those expected of DEG/ENaC channels. This current was independent of two TRPV channels expressed in ASH. Although loss of these TRPV channels inhibits behavioral responses to noxious stimuli, we found that both mechanoreceptor currents and potentials were essentially wild-type in TRPV mutants. We propose that ASH nociceptors rely on two genetically distinct mechanotransduction channels and that TRPV channels contribute to encoding and transmitting information. Because mammalian and insect nociceptors also coexpress DEG/ENaCs and TRPVs, the cellular functions elaborated here for these ion channels may be conserved.
Collapse
Affiliation(s)
- Shana L Geffeney
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
164
|
Wang Y, D'Urso G, Bianchi L. Knockout of glial channel ACD-1 exacerbates sensory deficits in a C. elegans mutant by regulating calcium levels of sensory neurons. J Neurophysiol 2011; 107:148-58. [PMID: 21994266 DOI: 10.1152/jn.00299.2011] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Degenerin/epithelial Na(+) channels (DEG/ENaCs) are voltage-independent Na(+) or Na(+)/Ca(2+) channels expressed in many tissues and are needed for a wide range of physiological functions, including sensory perception and transepithelial Na(+) transport. In the nervous system, DEG/ENaCs are expressed in both neurons and glia. However, the role of glial vs. neuronal DEG/ENaCs remains unclear. We recently reported the characterization of a novel DEG/ENaC in Caenorhabditis elegans that we named ACD-1. ACD-1 is expressed in glial amphid sheath cells. The glial ACD-1, together with the neuronal DEG/ENaC DEG-1, is necessary for acid avoidance and attraction to lysine. We report presently that knockout of acd-1 in glia exacerbates sensory deficits caused by another mutant: the hypomorphic allele of the cGMP-gated channel subunit tax-2. Furthermore, sensory deficits caused by mutations in G(i) protein odr-3 and guanylate cyclase daf-11, which regulate the activity of TAX-2/TAX-4 channels, are worsened by knockout of acd-1. We also show that sensory neurons of acd-1 tax-2(p694) double mutants fail to undergo changes in intracellular Ca(2+) when animals are exposed to low concentrations of attractant. Finally, we show that exogenous expression of TRPV1 in sensory neurons and exposure to capsaicin rescue sensory deficits of acd-1 tax-2(p694) mutants, suggesting that sensory deficits of these mutants are bypassed by increasing neuronal excitability. Our data suggest a role of glial DEG/ENaC channel ACD-1 in supporting neuronal activity.
Collapse
Affiliation(s)
- Ying Wang
- Rm. 5133, Rosenstiel Bldg., Dept. of Physiology and Biophysics, Miller School of Medicine, Univ. of Miami, 1600 NW 10th Ave., Miami, FL 33136, USA
| | | | | |
Collapse
|
165
|
Ezak MJ, Ferkey DM. A functional nuclear localization sequence in the C. elegans TRPV channel OCR-2. PLoS One 2011; 6:e25047. [PMID: 21957475 PMCID: PMC3177883 DOI: 10.1371/journal.pone.0025047] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Accepted: 08/23/2011] [Indexed: 01/31/2023] Open
Abstract
The ability to modulate gene expression in response to sensory experience is critical to the normal development and function of the nervous system. Calcium is a key activator of the signal transduction cascades that mediate the process of translating a cellular stimulus into transcriptional changes. With the recent discovery that the mammalian Cav1.2 calcium channel can be cleaved, enter the nucleus and act as a transcription factor to control neuronal gene expression, a more direct role for the calcium channels themselves in regulating transcription has begun to be appreciated. Here we report the identification of a nuclear localization sequence (NLS) in the C. elegans transient receptor potential vanilloid (TRPV) cation channel OCR-2. TRPV channels have previously been implicated in transcriptional regulation of neuronal genes in the nematode, although the precise mechanism remains unclear. We show that the NLS in OCR-2 is functional, being able to direct nuclear accumulation of a synthetic cargo protein as well as the carboxy-terminal cytosolic tail of OCR-2 where it is endogenously found. Furthermore, we discovered that a carboxy-terminal portion of the full-length channel can localize to the nucleus of neuronal cells. These results suggest that the OCR-2 TRPV cation channel may have a direct nuclear function in neuronal cells that was not previously appreciated.
Collapse
Affiliation(s)
- Meredith J. Ezak
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Denise M. Ferkey
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York, United States of America
- * E-mail:
| |
Collapse
|
166
|
Li W, Kang L, Piggott BJ, Feng Z, Xu XZS. The neural circuits and sensory channels mediating harsh touch sensation in Caenorhabditis elegans. Nat Commun 2011; 2:315. [PMID: 21587232 DOI: 10.1038/ncomms1308] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Accepted: 04/13/2011] [Indexed: 11/09/2022] Open
Abstract
Most animals can distinguish two distinct types of touch stimuli: gentle (innocuous) and harsh (noxious/painful) touch, however, the underlying mechanisms are not well understood. Caenorhabditis elegans is a useful model for the study of gentle touch sensation. However, little is known about harsh touch sensation in this organism. Here we characterize harsh touch sensation in C. elegans. We show that C. elegans exhibits differential behavioural responses to harsh touch and gentle touch. Laser ablations identify distinct sets of sensory neurons and interneurons required for harsh touch sensation at different body segments. Optogenetic stimulation of the circuitry can drive behaviour. Patch-clamp recordings reveal that TRP family and amiloride-sensitive Na(+) channels mediate touch-evoked currents in different sensory neurons. Our work identifies the neural circuits and characterizes the sensory channels mediating harsh touch sensation in C. elegans, establishing it as a genetic model for studying this sensory modality.
Collapse
Affiliation(s)
- Wei Li
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | | | | | |
Collapse
|
167
|
Hall DH, Treinin M. How does morphology relate to function in sensory arbors? Trends Neurosci 2011; 34:443-51. [PMID: 21840610 DOI: 10.1016/j.tins.2011.07.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2011] [Revised: 07/03/2011] [Accepted: 07/06/2011] [Indexed: 11/26/2022]
Abstract
Sensory dendrites fall into many different morphological and functional classes. Polymodal nociceptors are one subclass of sensory neurons, which are of particular note owing to their elaborate dendritic arbors. Complex developmental programs are required to form these arbors and there is striking conservation of morphology, function and molecular determinants between vertebrate and invertebrate polymodal nociceptors. Based on these studies, we argue that arbor morphology plays an important role in the function of polymodal nociceptors. Similar associations between form and function might explain the plethora of dendrite morphologies seen among all sensory neurons.
Collapse
Affiliation(s)
- David H Hall
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | |
Collapse
|
168
|
Primary cilia and organogenesis: is Hedgehog the only sculptor? Cell Tissue Res 2011; 345:21-40. [PMID: 21638207 DOI: 10.1007/s00441-011-1192-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2011] [Accepted: 05/12/2011] [Indexed: 12/23/2022]
Abstract
The primary cilium is a small microtubule-based organelle projecting from the plasma membrane of practically all cells in the mammalian body. In the past 8 years, a flurry of papers has indicated a crucial role of this long-neglected organelle in the development of a wide variety of organs, including derivatives of all three germ layers. A common theme of these studies is the critical dependency of signal transduction of the Hedgehog pathway upon functionally intact cilia to regulate organogenesis. Another common theme is the role that the cilium plays, not necessarily in the determination of the embryonic anlagen of these organs, although this too occurs but rather in the proliferation and morphogenesis of the previously determined organ. We outline the various organ systems that are dependent upon primary cilia for their proper development and we discuss the cilia-dependent roles that Sonic and Indian Hedgehog play in these processes. In addition and most importantly for the field, we discuss the controversial involvement of another major developmental pathway, Wnt signaling, in cilia-dependent organogenesis.
Collapse
|
169
|
Chatzigeorgiou M, Schafer W. Lateral facilitation between primary mechanosensory neurons controls nose touch perception in C. elegans. Neuron 2011; 70:299-309. [PMID: 21521615 PMCID: PMC3145979 DOI: 10.1016/j.neuron.2011.02.046] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2011] [Indexed: 11/25/2022]
Abstract
The nematode C. elegans senses head and nose touch using multiple classes of mechanoreceptor neurons that are electrically coupled through a network of gap junctions. Using in vivo neuroimaging, we have found that multidendritic nociceptors in the head respond to harsh touch throughout their receptive field but respond to gentle touch only at the tip of the nose. Whereas the harsh touch response depends solely on cell-autonomous mechanosensory channels, gentle nose touch responses require facilitation by additional nose touch mechanoreceptors, which couple electrically to the nociceptors in a hub-and-spoke gap junction network. Conversely, nociceptor activity indirectly facilitates activation of the nose touch neurons, demonstrating that information flow across the network is bidirectional. Thus, a simple gap-junction circuit acts as a coincidence detector that allows primary sensory neurons to integrate information from neighboring mechanoreceptors and generate somatosensory perception.
Collapse
Affiliation(s)
- Marios Chatzigeorgiou
- Cell Biology Division, MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK
| | - William R. Schafer
- Cell Biology Division, MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK
| |
Collapse
|
170
|
Oda S, Tomioka M, Iino Y. Neuronal plasticity regulated by the insulin-like signaling pathway underlies salt chemotaxis learning in Caenorhabditis elegans. J Neurophysiol 2011; 106:301-8. [PMID: 21525368 DOI: 10.1152/jn.01029.2010] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Quantification of neuronal plasticity in a living animal is essential for understanding learning and memory. Caenorhabditis elegans shows a chemotactic behavior toward NaCl. However, it learns to avoid NaCl after prolonged exposure to NaCl under starvation conditions, which is called salt chemotaxis learning. Insulin-like signaling is important for this behavioral plasticity and functions in one of the salt-sensing sensory neurons, ASE right (ASER). However, how neurons including ASER show neuronal plasticity is unknown. To determine the neuronal plasticity related to salt chemotaxis learning, we measured Ca(2+) response and synaptic release of individual neurons by using in vivo imaging techniques. We found that response of ASER increased whereas its synaptic release decreased after prolonged exposure to NaCl without food. These changes in the opposite directions were abolished in insulin-like signaling mutants, suggesting that insulin-like signaling regulates these plasticities in ASER. The response of one of the downstream interneurons, AIB, decreased profoundly after NaCl conditioning. This alteration in AIB response was independent of the insulin-like signaling pathway. Our results suggest that information on NaCl is modulated at the level of both sensory neurons and interneurons in salt chemotaxis learning.
Collapse
Affiliation(s)
- Shigekazu Oda
- Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | | | | |
Collapse
|
171
|
Mechanoreception in motile flagella of Chlamydomonas. Nat Cell Biol 2011; 13:630-2. [PMID: 21478860 DOI: 10.1038/ncb2214] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Accepted: 01/20/2011] [Indexed: 01/23/2023]
Abstract
Ciliates and flagellates temporarily swim backwards on collision by generating a mechanoreceptor potential. Although this potential has been shown to be associated with cilia in Paramecium, the molecular entity of the mechanoreceptor has remained unknown. Here we show that Chlamydomonas cells express TRP11, a member of the TRP (transient receptor potential) subfamily V, in the proximal region of the flagella, and that suppression of TRP11 expression results in loss of the avoiding reaction. The results indicate that Chlamydomonas flagella exhibit mechanosensitivity, despite constant motility, by localizing the mechanoreceptor in the proximal region, where active bending is restricted.
Collapse
|
172
|
Abstract
The primary cilium is a cellular organelle that is almost ubiquitous in eukaryotes, yet its functions in vertebrates have been slow to emerge. The last fifteen years have been marked by accelerating insight into the biology of primary cilia, arising from the synergy of three major lines of research. These research programs describe a specialized mode of protein trafficking in cilia, reveal that genetic disruptions of primary cilia cause complex human disease syndromes, and establish that Sonic hedgehog (Shh) signal transduction requires the primary cilium. New lines of research have branched off to investigate the role of primary cilia in neuronal signaling, adult neurogenesis, and brain tumor formation. We review a fast expanding literature to determine what we now know about the primary cilium in the developing and adult CNS and what new directions should lead to further clarity.
Collapse
Affiliation(s)
- Angeliki Louvi
- Departments of Neurosurgery and Neurobiology, Yale School of Medicine, New Haven, CT 06520
| | | |
Collapse
|
173
|
Heat avoidance is regulated by transient receptor potential (TRP) channels and a neuropeptide signaling pathway in Caenorhabditis elegans. Genetics 2011; 188:91-103. [PMID: 21368276 DOI: 10.1534/genetics.111.127100] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The ability to avoid noxious extremes of hot and cold is critical for survival and depends on thermal nociception. The TRPV subset of transient receptor potential (TRP) channels is heat activated and proposed to be responsible for heat detection in vertebrates and fruit flies. To gain insight into the genetic and neural basis of thermal nociception, we developed assays that quantify noxious heat avoidance in the nematode Caenorhabditis elegans and used them to investigate the genetic basis of this behavior. First, we screened mutants for 18 TRP channel genes (including all TRPV orthologs) and found only minor defects in heat avoidance in single and selected double and triple mutants, indicating that other genes are involved. Next, we compared two wild isolates of C. elegans that diverge in their threshold for heat avoidance and linked this phenotypic variation to a polymorphism in the neuropeptide receptor gene npr-1. Further analysis revealed that loss of either the NPR-1 receptor or its ligand, FLP-21, increases the threshold for heat avoidance. Cell-specific rescue of npr-1 implicates the interneuron RMG in the circuit regulating heat avoidance. This neuropeptide signaling pathway operates independently of the TRPV genes, osm-9 and ocr-2, since mutants lacking npr-1 and both TRPV channels had more severe defects in heat avoidance than mutants lacking only npr-1 or both osm-9 and ocr-2. Our results show that TRPV channels and the FLP-21/NPR-1 neuropeptide signaling pathway determine the threshold for heat avoidance in C. elegans.
Collapse
|
174
|
Keitel V, Ullmer C, Häussinger D. The membrane-bound bile acid receptor TGR5 (Gpbar-1) is localized in the primary cilium of cholangiocytes. Biol Chem 2011; 391:785-9. [PMID: 20623999 DOI: 10.1515/bc.2010.077] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Cholangiocyte cilia are sensory organelles that extend from the apical membrane into the bile duct lumen and detect changes in bile flow and osmolarity. Whether or not cholangiocyte cilia are responsive to bile acids is unknown. TGR5 (Gpbar-1) is a membrane-bound bile acid receptor which is expressed in biliary epithelial cells and promotes chloride secretion in gallbladder epithelial cells. As shown in the present study, TGR5 is localized in the primary cilium of mouse and human cholangiocytes. Here the receptor could play an important role in coupling biliary bile acid concentration and composition to ductular bile formation.
Collapse
Affiliation(s)
- Verena Keitel
- Clinic for Gastroenterology, Hepatology and Infectiology, Heinrich Heine University, Moorenstrasse 5, D-40225 Düsseldorf, Germany
| | | | | |
Collapse
|
175
|
Investigations of the in vivo requirements of transient receptor potential ion channels using frog and zebrafish model systems. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 704:341-57. [PMID: 21290305 DOI: 10.1007/978-94-007-0265-3_19] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Transient Receptor Potential (TRP) channels are cation channels that serve as cellular sensors on the plasma membrane, and have other less-well defined roles in intracellular compartments. The first TRP channel was identified upon molecular characterization of a fly mutant with abnormal photoreceptor function. More than 20 TRP channels have since been identified in vertebrates and invertebrate model systems, and these are divided into subfamilies based on structural similarities. The biophysical properties of TRP channels have primarily been explored in tissue culture models. The in vivo requirements for TRPs have been studied in invertebrate models like worm and flies, and also in vertebrate models, primarily mice and rats. Frog and zebrafish model systems offer certain experimental advantages relative to mammalian systems, and here a selection of papers which capitalize on these advantages to explore vertebrate TRP channel biology are reviewed. For instance, frog oocytes are useful for biochemistry and for electrophysiology, and these features were exploited in the identifcation TRPC1 as a candidate vertebrate mechanoreceptor. Also, the spinal neurons from frog embryos can be readily grown in culture. This feature was used to establish a role for TRPC1 in axon pathfinding in these neurons, and to explore how TRPC1 activity is regulated in this context. Zebrafish embryos are transparent making them well suited for in vivo imaging studies. This quality was exploited in a study in which the trpc2 gene promoter was used to label and trace the axon pathway of a subset of olfactory sensory neurons. Another experimental advantage of zebrafish is the speed and low cost of manipulating gene expression in embryos. Using these methods, it has been shown that TRPN1 is necessary for mechanosensation in zebrafish hair cells. Frogs and fish genomes have been mined to make inferences regarding evolutionary diversification of the thermosensitive TRP channels. Finally, TRPM7 is required for early morphogenesis in mice but not in fish; the reason for this difference is unclear, but it has caused zebrafish to be favored for exploration of TRPM7's role in later events in embryogenesis. The special experimental attributes of frogs and zebrafish suggest that these animals will continue to play an important role as models in future explorations of TRP channel biology.
Collapse
|
176
|
|
177
|
Abstract
Transient receptor potential (TRP) channels represent a superfamily of cation channels found in all eukaryotes. The C. elegans genome encodes seventeen TRP channels covering all of the seven TRP subfamilies. Genetic analyses in C. elegans have implicated TRP channels in a wide spectrum of behavioral and physiological processes, ranging from sensory transduction (e.g. chemosensation, touch sensation, proprioception and osmosensation) to fertilization, drug dependence, organelle biogenesis, apoptosis, gene expression, and neurotransmitter/hormone release. Many C. elegans TRP channels share similar activation and regulatory mechanisms with their vertebrate counterparts. Studies in C. elegans have also revealed some previously unrecognized functions and regulatory mechanisms of TRP channels. C. elegans represents an excellent genetic model organism for the study of function and regulation of TRP channels in vivo.
Collapse
Affiliation(s)
- Rui Xiao
- Department of Molecular and Integrative Physiology, Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA.
| | | |
Collapse
|
178
|
Esposito G, Amoroso MR, Bergamasco C, Di Schiavi E, Bazzicalupo P. The G protein regulators EGL-10 and EAT-16, the Giα GOA-1 and the G(q)α EGL-30 modulate the response of the C. elegans ASH polymodal nociceptive sensory neurons to repellents. BMC Biol 2010; 8:138. [PMID: 21070627 PMCID: PMC2996360 DOI: 10.1186/1741-7007-8-138] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Accepted: 11/11/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Polymodal, nociceptive sensory neurons are key cellular elements of the way animals sense aversive and painful stimuli. In Caenorhabditis elegans, the polymodal nociceptive ASH sensory neurons detect aversive stimuli and release glutamate to generate avoidance responses. They are thus useful models for the nociceptive neurons of mammals. While several molecules affecting signal generation and transduction in ASH have been identified, less is known about transmission of the signal from ASH to downstream neurons and about the molecules involved in its modulation. RESULTS We discovered that the regulator of G protein signalling (RGS) protein, EGL-10, is required for appropriate avoidance responses to noxious stimuli sensed by ASH. As it does for other behaviours in which it is also involved, egl-10 interacts genetically with the G(o)/(i)α protein GOA-1, the G(q)α protein EGL-30 and the RGS EAT-16. Genetic, behavioural and Ca²(+) imaging analyses of ASH neurons in live animals demonstrate that, within ASH, EGL-10 and GOA-1 act downstream of stimulus-evoked signal transduction and of the main transduction channel OSM-9. EGL-30 instead appears to act upstream by regulating Ca²(+) transients in response to aversive stimuli. Analysis of the delay in the avoidance response, of the frequency of spontaneous inversions and of the genetic interaction with the diacylglycerol kinase gene, dgk-1, indicate that EGL-10 and GOA-1 do not affect signal transduction and neuronal depolarization in response to aversive stimuli but act in ASH to modulate downstream transmission of the signal. CONCLUSIONS The ASH polymodal nociceptive sensory neurons can be modulated not only in their capacity to detect stimuli but also in the efficiency with which they respond to them. The Gα and RGS molecules studied in this work are conserved in evolution and, for each of them, mammalian orthologs can be identified. The discovery of their role in the modulation of signal transduction and signal transmission of nociceptors may help us to understand how pain is generated and how its control can go astray (such as chronic pain) and may suggest new pain control therapies.
Collapse
Affiliation(s)
- Giovanni Esposito
- Istituto di Genetica e Biofisica A, IGB, CNR, Consiglio Nazionale delle Ricerche, Napoli, Italy
| | | | | | | | | |
Collapse
|
179
|
Lumpkin EA, Marshall KL, Nelson AM. The cell biology of touch. J Cell Biol 2010; 191:237-48. [PMID: 20956378 PMCID: PMC2958478 DOI: 10.1083/jcb.201006074] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Accepted: 09/21/2010] [Indexed: 11/22/2022] Open
Abstract
The sense of touch detects forces that bombard the body's surface. In metazoans, an assortment of morphologically and functionally distinct mechanosensory cell types are tuned to selectively respond to diverse mechanical stimuli, such as vibration, stretch, and pressure. A comparative evolutionary approach across mechanosensory cell types and genetically tractable species is beginning to uncover the cellular logic of touch reception.
Collapse
Affiliation(s)
- Ellen A Lumpkin
- Department of Dermatology, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA.
| | | | | |
Collapse
|
180
|
Bridging the gaps between synapses, circuits, and behavior. ACTA ACUST UNITED AC 2010; 17:607-15. [PMID: 20609410 DOI: 10.1016/j.chembiol.2010.06.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Revised: 06/04/2010] [Accepted: 06/04/2010] [Indexed: 01/28/2023]
Abstract
The decade of the brain may have come and gone, but the final frontier, cracking the neuronal code, still lies ahead. Today, new technologies that allow precise spatiotemporal remote control over the activity of genetically defined populations of neurons within intact neural circuits are providing a means of obtaining a functional wiring diagram of the mammalian brain, bringing us one step closer to understanding precisely how neuronal activity codes for perception, thought, emotion, and action. These technologies and the design principles underlying them are reviewed herein.
Collapse
|
181
|
Smith CJ, Watson JD, Spencer WC, O’Brien T, Cha B, Albeg A, Treinin M, Miller DM. Time-lapse imaging and cell-specific expression profiling reveal dynamic branching and molecular determinants of a multi-dendritic nociceptor in C. elegans. Dev Biol 2010; 345:18-33. [PMID: 20537990 PMCID: PMC2919608 DOI: 10.1016/j.ydbio.2010.05.502] [Citation(s) in RCA: 157] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 05/19/2010] [Accepted: 05/19/2010] [Indexed: 10/19/2022]
Abstract
Nociceptive neurons innervate the skin with complex dendritic arbors that respond to pain-evoking stimuli such as harsh mechanical force or extreme temperatures. Here we describe the structure and development of a model nociceptor, the PVD neuron of C. elegans, and identify transcription factors that control morphogenesis of the PVD dendritic arbor. The two PVD neuron cell bodies occupy positions on either the right (PVDR) or left (PVDL) sides of the animal in posterior-lateral locations. Imaging with a GFP reporter revealed a single axon projecting from the PVD soma to the ventral cord and an elaborate, highly branched arbor of dendritic processes that envelop the animal with a web-like array directly beneath the skin. Dendritic branches emerge in a step-wise fashion during larval development and may use an existing network of peripheral nerve cords as guideposts for key branching decisions. Time-lapse imaging revealed that branching is highly dynamic with active extension and withdrawal and that PVD branch overlap is prevented by a contact-dependent self-avoidance, a mechanism that is also employed by sensory neurons in other organisms. With the goal of identifying genes that regulate dendritic morphogenesis, we used the mRNA-tagging method to produce a gene expression profile of PVD during late larval development. This microarray experiment identified>2,000 genes that are 1.5X elevated relative to all larval cells. The enriched transcripts encode a wide range of proteins with potential roles in PVD function (e.g., DEG/ENaC and Trp channels) or development (e.g., UNC-5 and LIN-17/frizzled receptors). We used RNAi and genetic tests to screen 86 transcription factors from this list and identified eleven genes that specify PVD dendritic structure. These transcription factors appear to control discrete steps in PVD morphogenesis and may either promote or limit PVD branching at specific developmental stages. For example, time-lapse imaging revealed that MEC-3 (LIM homeodomain) is required for branch initiation in early larval development whereas EGL-44 (TEAD domain) prevents ectopic PVD branching in the adult. A comparison of PVD-enriched transcripts to a microarray profile of mammalian nociceptors revealed homologous genes with potentially shared nociceptive functions. We conclude that PVD neurons display striking structural, functional and molecular similarities to nociceptive neurons from more complex organisms and can thus provide a useful model system in which to identify evolutionarily conserved determinants of nociceptor fate.
Collapse
Affiliation(s)
- Cody J. Smith
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232-8240 Phone: (615) 343-3447
| | - Joseph D. Watson
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232-8240 Phone: (615) 343-3447
| | - W. Clay Spencer
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232-8240 Phone: (615) 343-3447
| | - Tim O’Brien
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232-8240 Phone: (615) 343-3447
| | - Byeong Cha
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232-8240 Phone: (615) 343-3447
| | - Adi Albeg
- Department of Medical Neurobiology, IMRIC, Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Millet Treinin
- Department of Medical Neurobiology, IMRIC, Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - David M. Miller
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232-8240 Phone: (615) 343-3447
- Vanderbilt Kennedy Center
- Program in Neuroscience, Vanderbilt University
| |
Collapse
|
182
|
Kang L, Gao J, Schafer WR, Xie Z, Xu XZS. C. elegans TRP family protein TRP-4 is a pore-forming subunit of a native mechanotransduction channel. Neuron 2010; 67:381-91. [PMID: 20696377 PMCID: PMC2928144 DOI: 10.1016/j.neuron.2010.06.032] [Citation(s) in RCA: 185] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2010] [Indexed: 11/30/2022]
Abstract
Mechanotransduction channels mediate several common sensory modalities such as hearing, touch, and proprioception; however, very little is known about the molecular identities of these channels. Many TRP family channels have been implicated in mechanosensation, but none have been demonstrated to form a mechanotransduction channel, raising the question of whether TRP proteins simply play indirect roles in mechanosensation. Using Caenorhabditis elegans as a model, here we have recorded a mechanosensitive conductance in a ciliated mechanosensory neuron in vivo. This conductance develops very rapidly upon mechanical stimulation with its latency and activation time constant reaching the range of microseconds, consistent with mechanical gating of the conductance. TRP-4, a TRPN (NOMPC) subfamily channel, is required for this conductance. Importantly, point mutations in the predicted pore region of TRP-4 alter the ion selectivity of the conductance. These results indicate that TRP-4 functions as an essential pore-forming subunit of a native mechanotransduction channel.
Collapse
Affiliation(s)
- Lijun Kang
- Life Sciences Institute and Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | | | |
Collapse
|
183
|
Abstract
Mechanosensitive ion channels are gated directly by physical stimuli and transduce these stimuli into electrical signals. Several criteria must apply for a channel to be considered mechanically gated. Mechanosensitive channels from bacterial systems have met these criteria, but few eukaryotic channels have been confirmed by the same standards. Recent work has suggested or confirmed that diverse types of channels, including TRP channels, K(2P) channels, MscS-like proteins, and DEG/ENaC channels, are mechanically gated. Several studies point to the importance of the plasma membrane for channel gating, but intracellular and/or extracellular structures may also be required.
Collapse
Affiliation(s)
- Jóhanna Arnadóttir
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA.
| | | |
Collapse
|
184
|
Chatzigeorgiou M, Yoo S, Watson JD, Lee WH, Spencer WC, Kindt KS, Hwang SW, Miller DM, Treinin M, Driscoll M, Schafer WR. Specific roles for DEG/ENaC and TRP channels in touch and thermosensation in C. elegans nociceptors. Nat Neurosci 2010; 13:861-8. [PMID: 20512132 PMCID: PMC2975101 DOI: 10.1038/nn.2581] [Citation(s) in RCA: 192] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Accepted: 05/17/2010] [Indexed: 11/09/2022]
Abstract
Polymodal nociceptors detect noxious stimuli, including harsh touch, toxic chemicals and extremes of heat and cold. The molecular mechanisms by which nociceptors are able to sense multiple qualitatively distinct stimuli are not well understood. We found that the C. elegans PVD neurons are mulitidendritic nociceptors that respond to harsh touch and cold temperatures. The harsh touch modality specifically required the DEG/ENaC proteins MEC-10 and DEGT-1, which represent putative components of a harsh touch mechanotransduction complex. In contrast, responses to cold required the TRPA-1 channel and were MEC-10 and DEGT-1 independent. Heterologous expression of C. elegans TRPA-1 conferred cold responsiveness to other C. elegans neurons and to mammalian cells, indicating that TRPA-1 is a cold sensor. Our results suggest that C. elegans nociceptors respond to thermal and mechanical stimuli using distinct sets of molecules and identify DEG/ENaC channels as potential receptors for mechanical pain.
Collapse
|
185
|
Harris G, Mills H, Wragg R, Hapiak V, Castelletto M, Korchnak A, Komuniecki RW. The monoaminergic modulation of sensory-mediated aversive responses in Caenorhabditis elegans requires glutamatergic/peptidergic cotransmission. J Neurosci 2010; 30:7889-99. [PMID: 20534837 PMCID: PMC3005568 DOI: 10.1523/jneurosci.0497-10.2010] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Revised: 04/16/2010] [Accepted: 04/20/2010] [Indexed: 12/26/2022] Open
Abstract
Monoamines and neuropeptides interact to modulate behavioral plasticity in both vertebrates and invertebrates. In Caenorhabditis elegans behavioral state or "mood" is dependent on food availability and is translated by both monoaminergic and peptidergic signaling in the fine-tuning of most behaviors. In the present study, we have examined the interaction of monoamines and peptides on C. elegans aversive behavior mediated by a pair of polymodal, nociceptive, ASH sensory neurons. Food or serotonin sensitize the ASHs and stimulate aversive responses through a pathway requiring the release of nlp-3-encoded neuropeptides from the ASHs. Peptides encoded by nlp-3 appear to stimulate ASH-mediated aversive behavior through the neuropeptide receptor-17 (NPR-17) receptor. nlp-3- and npr-17-null animals exhibit identical phenotypes and animals overexpressing either nlp-3 or npr-17 exhibit elevated aversive responses off food that are absent when nlp-3 or npr-17 are overexpressed in npr-17- or nlp-3-null animals, respectively. ASH-mediated aversive responses are increased by activating either Galpha(q) or Galpha(s) in the ASHs, with Galpha(s) signaling specifically stimulating the release of nlp-3-encoded peptides. In contrast, octopamine appears to inhibit 5-HT stimulation by activating Galpha(o) signaling in the ASHs that, in turn, inhibits both Galpha(s) and Galpha(q) signaling and the release of nlp-3-encoded peptides. These results demonstrate that serotonin and octopamine reversibly modulate the activity of the ASHs, and highlight the utility of the C. elegans model for defining interactions between monoamines and peptides in individual neurons of complex sensory-mediated circuits.
Collapse
Affiliation(s)
- Gareth Harris
- Department of Biological Sciences, University of Toledo, Toledo, Ohio 43606-3390
| | - Holly Mills
- Department of Biological Sciences, University of Toledo, Toledo, Ohio 43606-3390
| | - Rachel Wragg
- Department of Biological Sciences, University of Toledo, Toledo, Ohio 43606-3390
| | - Vera Hapiak
- Department of Biological Sciences, University of Toledo, Toledo, Ohio 43606-3390
| | - Michelle Castelletto
- Department of Biological Sciences, University of Toledo, Toledo, Ohio 43606-3390
| | - Amanda Korchnak
- Department of Biological Sciences, University of Toledo, Toledo, Ohio 43606-3390
| | | |
Collapse
|
186
|
Caenorhabditis elegans TRPV channels function in a modality-specific pathway to regulate response to aberrant sensory signaling. Genetics 2010; 185:233-44. [PMID: 20176974 DOI: 10.1534/genetics.110.115188] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Olfaction and some forms of taste (including bitter) are mediated by G protein-coupled signal transduction pathways. Olfactory and gustatory ligands bind to chemosensory G protein-coupled receptors (GPCRs) in specialized sensory cells to activate intracellular signal transduction cascades. G protein-coupled receptor kinases (GRKs) are negative regulators of signaling that specifically phosphorylate activated GPCRs to terminate signaling. Although loss of GRK function usually results in enhanced cellular signaling, Caenorhabditis elegans lacking GRK-2 function are not hypersensitive to chemosensory stimuli. Instead, grk-2 mutant animals do not chemotax toward attractive olfactory stimuli or avoid aversive tastes and smells. We show here that loss-of-function mutations in the transient receptor potential vanilloid (TRPV) channels OSM-9 and OCR-2 selectively restore grk-2 behavioral avoidance of bitter tastants, revealing modality-specific mechanisms for TRPV channel function in the regulation of C. elegans chemosensation. Additionally, a single amino acid point mutation in OCR-2 that disrupts TRPV channel-mediated gene expression, but does not decrease channel function in chemosensory primary signal transduction, also restores grk-2 bitter taste avoidance. Thus, loss of GRK-2 function may lead to changes in gene expression, via OSM-9/OCR-2, to selectively alter the levels of signaling components that transduce or regulate bitter taste responses. Our results suggest a novel mechanism and multiple modality-specific pathways that sensory cells employ in response to aberrant signal transduction.
Collapse
|
187
|
|
188
|
O'Halloran DM, Altshuler-Keylin S, Lee JI, L'Etoile ND. Regulators of AWC-mediated olfactory plasticity in Caenorhabditis elegans. PLoS Genet 2009; 5:e1000761. [PMID: 20011101 PMCID: PMC2780698 DOI: 10.1371/journal.pgen.1000761] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2009] [Accepted: 11/09/2009] [Indexed: 01/29/2023] Open
Abstract
While most sensory neurons will adapt to prolonged stimulation by down-regulating their responsiveness to the signal, it is not clear which events initiate long-lasting sensory adaptation. Likewise, we are just beginning to understand how the physiology of the adapted cell is altered. Caenorhabditis elegans is inherently attracted to specific odors that are sensed by the paired AWC olfactory sensory neurons. The attraction diminishes if the animal experiences these odors for a prolonged period of time in the absence of food. The AWC neuron responds acutely to odor-exposure by closing calcium channels. While odortaxis requires a Gα subunit protein, cGMP-gated channels, and guanylyl cyclases, adaptation to prolonged odor exposure requires nuclear entry of the cGMP-dependent protein kinase, EGL-4. We asked which candidate members of the olfactory signal transduction pathway promote nuclear entry of EGL-4 and which molecules might induce long-term adaptation downstream of EGL-4 nuclear entry. We found that initiation of long-term adaptation, as assessed by nuclear entry of EGL-4, is dependent on G-protein mediated signaling but is independent of fluxes in calcium levels. We show that long-term adaptation requires polyunsaturated fatty acids (PUFAs) that may act on the transient receptor potential (TRP) channel type V OSM-9 downstream of EGL-4 nuclear entry. We also present evidence that high diacylglycerol (DAG) levels block long-term adaptation without affecting EGL-4 nuclear entry. Our analysis provides a model for the process of long-term adaptation that occurs within the AWC neuron of C. elegans: G-protein signaling initiates long-lasting olfactory adaptation by promoting the nuclear entry of EGL-4, and once EGL-4 has entered the nucleus, processes such as PUFA activation of the TRP channel OSM-9 may dampen the output of the AWC neuron. Caenorhabditis elegans is capable of sensing a variety of attractive volatile compounds. These odors are the worm's “best guesses” as to how to track down food. Employing calculated approximations underlies a foraging strategy that is open to failure. When C. elegans track an odor which proves unrewarding, they must modify their behavior based on this experience. They also need to prevent over-stimulating their neurons. To accomplish this, C. elegans olfactory sensory neurons adapt to odors after a sustained exposure to odor in the absence of food. Within the pair of primary odor-sensory neurons, termed the AWCs, adaptation requires the cGMP-dependent protein kinase G (PKG), EGL-4. Exposing animals to AWC–sensed odors for approximately 60 minutes results in a long-lasting (∼3 hour) adaptation that requires the nuclear translocation of EGL-4. To understand how sensory transduction and desensitization machinery converge to achieve olfactory adaptation, we asked whether odor-induced EGL-4 nuclear accumulation was affected by gene mutations that abrogate either odor sensation of or adaptation to AWC–sensed odors. We find that G-protein signaling represents the integration point where primary odor sensation and odor adaptation pathways diverge. PUFA signaling, calcium, and decreased diacylglycerol all dampen the response of the AWC neuron to odor downstream of this divergence.
Collapse
Affiliation(s)
- Damien M. O'Halloran
- Center for Neuroscience, University of California Davis, Davis, California, United States of America
| | - Svetlana Altshuler-Keylin
- Center for Neuroscience, University of California Davis, Davis, California, United States of America
| | - Jin I. Lee
- Center for Neuroscience, University of California Davis, Davis, California, United States of America
| | - Noelle D. L'Etoile
- Center for Neuroscience, University of California Davis, Davis, California, United States of America
- Department of Psychiatry and Behavioral Sciences University of California Davis, Davis, California, United States of America
- * E-mail:
| |
Collapse
|
189
|
Inglis PN, Blacque OE, Leroux MR. Functional genomics of intraflagellar transport-associated proteins in C. elegans. Methods Cell Biol 2009; 93:267-304. [PMID: 20409822 DOI: 10.1016/s0091-679x(08)93014-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The nematode Caenorhabditis elegans presents numerous advantages for the identification and molecular analysis of intraflagellar transport (IFT)-associated proteins, which play a critical role in the formation of cilia. Many proteins were first described as participating in IFT in this organism, including IFTA-1 (IFT121), DYF-1 (fleer/IFT70), DYF-2 (IFT144), DYF-3 (Qilin), DYF-11 (MIP-T3/IFT54), DYF-13, XBX-1 (dynein light intermediate chain), XBX-2 (dynein light chain), CHE-13 (IFT57/HIPPI), orthologs of Bardet-Biedl syndrome proteins, and potential regulatory protein, IFTA-2 (RABL5/IFT22). Transgenic animals bearing green fluorescent protein (GFP)-tagged proteins can be generated with ease, and in vivo imaging of IFT in both wild-type and cilia mutant strains can be performed quickly. The analyses permit detailed information on the localization and dynamic properties (velocities along the ciliary axoneme) of the relevant proteins, providing insights into their potential functions in processes such as anterograde and retrograde transport and cilium formation, as well as association with distinct modules of the IFT machinery (e.g., IFT subcomplexes A or B). Behavioral studies of the corresponding IFT-associated gene mutants further enable an understanding of the ciliary role of the proteins-e.g., in chemosensation, lipid homeostasis, lifespan control, and signaling-in a multicellular animal. In this chapter, we discuss how C. elegans can be used for the identification and characterization of IFT-associated proteins, focusing on methods for the generation of GFP-tagged IFT reporter strains, time-lapse microscopy, and IFT rate measurements.
Collapse
Affiliation(s)
- Peter N Inglis
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby BC V5A1S6, Canada
| | | | | |
Collapse
|
190
|
Optical interrogation of neural circuits in Caenorhabditis elegans. Nat Methods 2009; 6:891-6. [PMID: 19898486 DOI: 10.1038/nmeth.1397] [Citation(s) in RCA: 177] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Accepted: 10/08/2009] [Indexed: 11/08/2022]
Abstract
The nematode Caenorhabditis elegans has a compact nervous system with only 302 neurons. Whereas most of the synaptic connections between these neurons have been identified by electron microscopy serial reconstructions, functional connections have been inferred between only a few neurons through combinations of electrophysiology, cell ablation, in vivo calcium imaging and genetic analysis. To map functional connections between neurons, we combined in vivo optical stimulation with simultaneous calcium imaging. We analyzed the connections from the ASH sensory neurons and RIM interneurons to the command interneurons AVA and AVD. Stimulation of ASH or RIM neurons using channelrhodopsin-2 (ChR2) resulted in activation of AVA neurons, evoking an avoidance behavior. Our results demonstrate that we can excite specific neurons expressing ChR2 while simultaneously monitoring G-CaMP fluorescence in several other neurons, making it possible to rapidly decipher functional connections in C. elegans neural circuits.
Collapse
|
191
|
Mechanotransduction by TRP Channels: General Concepts and Specific Role in the Vasculature. Cell Biochem Biophys 2009; 56:1-18. [DOI: 10.1007/s12013-009-9067-2] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
192
|
Everaerts W, Nilius B, Owsianik G. The vanilloid transient receptor potential channel TRPV4: from structure to disease. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2009; 103:2-17. [PMID: 19835908 DOI: 10.1016/j.pbiomolbio.2009.10.002] [Citation(s) in RCA: 264] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Accepted: 10/07/2009] [Indexed: 12/19/2022]
Abstract
The Transient Receptor Potential Vanilloid 4 channel, TRPV4, is a Ca(2+) and Mg(2+) permeable non-selective cation channel involved in many different cellular functions. It is activated by a variety of physical and chemical stimuli, including heat, mechano-stimuli, endogenous substances such as arachidonic acid and its cytochrome P450-derived metabolites (epoxyeicosatrienoic acids), endocannabinoids (anandamide and 2-arachidonoylglycerol), as well as synthetic alpha-phorbol derivatives. Recently, TRPV4 has been characterized as an important player modulating osteoclast differentiation in bone remodelling and as a urothelial mechanosensor that controls normal voiding. Several TRPV4 gain-of-function mutations are shown to cause autosomal-dominant bone dysplasias such as brachyolmia and Koszlowski disease. In this review we comprehensively describe the structural, biophysical and (patho)physiological properties of the TRPV4 channel and we summarize the current knowledge about the role of TRPV4 in the pathogenesis of several diseases.
Collapse
Affiliation(s)
- Wouter Everaerts
- Department of Molecular Cell Biology, Laboratory Ion Channel Research, Campus Gasthuisberg, KULeuven, Herestraat 49, bus 802, B-3000 Leuven, Belgium
| | | | | |
Collapse
|
193
|
The neural network for chemotaxis to tastants in Caenorhabditis elegans is specialized for temporal differentiation. J Neurosci 2009; 29:11904-11. [PMID: 19776276 DOI: 10.1523/jneurosci.0594-09.2009] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Chemotaxis in Caenorhabditis elegans depends critically on the rate of change of attractant concentration computed as the worm moves through its environment. This computation depends, in turn, on the neuron class ASE, a left-right pair of pair of chemosensory neurons that is functionally asymmetric such that the left neuron is an on-cell, whereas the right neuron is an off-cell. To determine whether this coding strategy is a general feature of chemosensation in C. elegans, we imaged calcium responses in all chemosensory neurons known or in a position to contribute to chemotaxis to tastants in this organism. This survey revealed one new class of on-cells (ADF) and one new class of off-cells (ASH). Thus, the ASE class is unique in having both an on-cell and an off-cell. We also found that the newly characterized on-cells and off-cells promote runs and turns, respectively, mirroring the pattern reported previously for ASEL and ASER. Our results suggest that the C. elegans chemotaxis network is specialized for the temporal differentiation of chemosensory inputs, as required for chemotaxis.
Collapse
|
194
|
Inositol 1,4,5-trisphosphate signalling regulates the avoidance response to nose touch in Caenorhabditis elegans. PLoS Genet 2009; 5:e1000636. [PMID: 19730689 PMCID: PMC2729924 DOI: 10.1371/journal.pgen.1000636] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2008] [Accepted: 08/07/2009] [Indexed: 11/19/2022] Open
Abstract
When Caenorhabditis elegans encounters an unfavourable stimulus at its anterior, it responds by initiating an avoidance response, namely reversal of locomotion. The amphid neurons, ASHL and ASHR, are polymodal in function, with roles in the avoidance responses to high osmolarity, nose touch, and both volatile and non-volatile repellents. The mechanisms that underlie the ability of the ASH neurons to respond to such a wide range of stimuli are still unclear. We demonstrate that the inositol 1,4,5-trisphosphate receptor (IP3R), encoded by itr-1, functions in the reversal responses to nose touch and benzaldehyde, but not in other known ASH-mediated responses. We show that phospholipase Cβ (EGL-8) and phospholipase Cγ (PLC-3), which catalyse the production of IP3, both function upstream of ITR-1 in the response to nose touch. We use neuron-specific gene rescue and neuron-specific disruption of protein function to show that the site of ITR-1 function is the ASH neurons. By rescuing plc-3 and egl-8 in a neuron-specific manner, we show that both are acting in ASH. Imaging of nose touch–induced Ca2+ transients in ASH confirms these conclusions. In contrast, the response to benzaldehyde is independent of PLC function. Thus, we have identified distinct roles for the IP3R in two specific responses mediated by ASH. In order to avoid potential hazards, animals detect and discriminate between a wide range of aversive stimuli. To detect some of these stimuli, animals use polymodal sensory neurons, that is neurons of a single type that can detect a range of different stimuli and transmit an appropriate signal to the downstream nervous system. Pain-sensing nociceptors in humans and the ASH neurons in C. elegans are both polymodal. The ASH neurons mediate responses to high osmotic strength, nose touch, high ambient oxygen, and volatile and non-volatile compounds. It remains unclear how these cells detect and discriminate between these different stimuli. We show that signalling through the second messenger inositol 1,4,5-trisphosphate (IP3) and its receptor (IP3R) is required in ASH for animals to respond to nose touch. We also show that IP3Rs are required for the response to the volatile compound benzaldehyde. However, these signalling components are not required for a range of other ASH-mediated responses. Thus, we have identified a signalling mechanism that is specific to a small subset of ASH-mediated responses. These results add to our understanding of how ASH discriminates between a variety of stimuli and thus to our understanding of polymodal neurons in general.
Collapse
|
195
|
Abou Alaiwi WA, Lo ST, Nauli SM. Primary cilia: highly sophisticated biological sensors. SENSORS 2009; 9:7003-20. [PMID: 22423203 PMCID: PMC3290460 DOI: 10.3390/s90907003] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2009] [Revised: 07/31/2009] [Accepted: 09/01/2009] [Indexed: 12/18/2022]
Abstract
Primary cilia, thin hair-like structures protruding from the apical surface of most mammalian cells, have gained the attention of many researchers over the past decade. Primary cilia are microtubule-filled sensory organelles that are enclosed within the ciliary membrane. They originate at the cell surface from the mother centriole that becomes the mature basal body. In this review, we will discuss recent literatures on the roles of cilia as sophisticated sensory organelles. With particular emphasis on vascular endothelia and renal epithelia, the mechanosensory role of cilia in sensing fluid shear stress will be discussed. Also highlighted is the ciliary involvement in cell cycle regulation, development, cell signaling and cancer. Finally, primary cilia-related disorders will be briefly described.
Collapse
Affiliation(s)
- Wissam A. Abou Alaiwi
- Author to whom correspondence may be addressed; E-Mails: (W.A.A.); (S.M.N.); Tel.: +1-419-530-1921 (W.A.A); +1-419-530-1910 (S.M.N.); Fax: +1-419-530-1909
| | | | - Surya M. Nauli
- Author to whom correspondence may be addressed; E-Mails: (W.A.A.); (S.M.N.); Tel.: +1-419-530-1921 (W.A.A); +1-419-530-1910 (S.M.N.); Fax: +1-419-530-1909
| |
Collapse
|
196
|
Xiao R, Xu XZS. Function and regulation of TRP family channels in C. elegans. Pflugers Arch 2009; 458:851-60. [PMID: 19421772 PMCID: PMC2857680 DOI: 10.1007/s00424-009-0678-7] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2009] [Revised: 04/25/2009] [Accepted: 04/28/2009] [Indexed: 12/26/2022]
Abstract
Seventeen transient receptor potential (TRP) family proteins are encoded by the C. elegans genome, and they cover all of the seven TRP subfamilies, including TRPC, TRPV, TRPM, TRPN, TRPA, TRPP, and TRPML. Classical forward and reverse genetic screens have isolated mutant alleles in every C. elegans trp gene, and their characterizations have revealed novel functions and regulatory mechanisms of TRP channels. For example, the TRPC channels TRP-1 and TRP-2 control nicotine-dependent behavior, while TRP-3, a sperm TRPC channel, is regulated by sperm activation and required for sperm-egg interactions during fertilization. Similar to their vertebrate counterparts, C. elegans TRPs function in sensory physiology. For instance, the TRPV channels OSM-9 and OCR-2 act in chemosensation, osmosensation, and touch sensation, the TRPA member TRPA-1 regulates touch sensation, while the TRPN channel TRP-4 mediates proprioception. Some C. elegans TRPM, TRPP, and TRPML members exhibit cellular functions similar to their vertebrate homologues and have provided insights into human diseases, including polycystic kidney disease, hypomagnesemia, and mucolipidosis type IV. The availability of a complete set of trp gene mutants in conjunction with its facile genetics makes C. elegans a powerful model for studying the function and regulation of TRP family channels in vivo.
Collapse
Affiliation(s)
- Rui Xiao
- Life Sciences Institute and Department of Molecular & Integrative Physiology, University of Michigan, 210 Washtenaw Avenue, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
197
|
Tsunozaki M, Bautista DM. Mammalian somatosensory mechanotransduction. Curr Opin Neurobiol 2009; 19:362-9. [PMID: 19683913 PMCID: PMC4044613 DOI: 10.1016/j.conb.2009.07.008] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2009] [Revised: 07/10/2009] [Accepted: 07/13/2009] [Indexed: 11/22/2022]
Abstract
In the mammalian somatosensory system, mechanosensitive neurons mediate the senses of touch and pain. Among sensory modalities, mechanosensation has been the most elusive with regard to the identification of transduction molecules. One factor that has hindered the identification of transduction molecules is the diversity of neurons; physiological studies have revealed many subtypes of neurons, specialized to detect a variety of mechanical stimuli. Do different subtypes use the same transduction molecules that are modified by cellular context? Or, are there multiple mechanotransducers that specialize in sensing different mechanical stimuli? This review highlights recent progress in identifying and characterizing candidate molecular force transducers, as well as the development of new tools to characterize touch transduction at the molecular, cellular, and behavioral levels.
Collapse
Affiliation(s)
- Makoto Tsunozaki
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | | |
Collapse
|
198
|
Manipulating the Caenorhabditis elegans genome using mariner transposons. Genetica 2009; 138:541-9. [PMID: 19347589 DOI: 10.1007/s10709-009-9362-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Accepted: 03/20/2009] [Indexed: 12/16/2022]
Abstract
Tc1, one of the founding members of the Tc1/mariner transposon superfamily, was identified in the nematode Caenorhabditis elegans more than 25 years ago. Over the years, Tc1 and other endogenous mariner transposons became valuable tools for mutagenesis and targeted gene inactivation in C. elegans. However, transposition is naturally repressed in the C. elegans germline by an RNAi-like mechanism, necessitating the use of mutant strains in which transposition was globally derepressed, which causes drawbacks such as uncontrolled proliferation of the transposons in the genome and accumulation of background mutations. The more recent mobilization of the Drosophila mariner transposon Mos1 in the C. elegans germline circumvented the problems inherent to endogenous transposons. Mos1 transposition strictly depends on the expression of the Mos transposase, which can be controlled in the germline using inducible promoters. First, Mos1 can be used for insertional mutagenesis. The mobilization of Mos1 copies present on an extrachromosomal array results in the generation of a small number of Mos1 genomic insertions that can be rapidly cloned by inverse PCR. Second, Mos1 insertions can be used for genome engineering. Triggering the excision of a genomic Mos1 insertion causes a chromosomal break, which can be repaired by transgene-instructed gene conversion. This process is used to introduce specific changes in a given gene, such as point mutations, deletions or insertions of a tag, and to create single-copy transgenes.
Collapse
|
199
|
Abstract
Neurons that sense touch, sound and acceleration respond rapidly to specific mechanical signals. The proteins that transduce these signals and underlie these senses, however, are mostly unknown. Research over the past decade has suggested that members of three families of channel proteins are candidate transduction molecules. Current studies are directed towards characterizing these candidates, determining how they are mechanically gated and discovering new molecules that are involved in mechanical sensing.
Collapse
Affiliation(s)
- Martin Chalfie
- Columbia University, Department of Biological Sciences, 1012 Fairchild Center, M.C. 2446, New York, New York 10027, USA.
| |
Collapse
|
200
|
Abstract
In signal transduction of metazoan cells, ion channels of the family of transient receptor potential (TRP) have been identified to respond to diverse external and internal stimuli, among them osmotic stimuli. This review highlights a specific member of the TRPV subfamily, the TRPV4 channel, initially named vanilloid-receptor related osmotically activated channel (VR-OAC) or OTRPC4. In a striking example of evolutionary conservation of function, mammalian TRPV4 has been found to rescue osmo- and mechanosensory deficits of the TRPV mutant strain osm-9 in Caenorhabditis elegans. This is an astounding finding given the <26% orthology between OSM-9 and TRPV4 proteins. Here, recent findings pertaining to TRPV4's mechano- and osmosensory function in endothelia, in the alveolar unit of the lung, and in intestinal sensory innervation are reviewed, namely, transduction of mechanical shear stress in endothelia, maintenance of alveolar integrity on the endothelial side, and intestinal mechanosensation of noxious stimuli by dorsal root ganglion sensory neurons, which can be potently sensitized to mechanical stimuli by activation of the proteinase-activated receptor 2 (PAR-2), in a strictly TRPV4-dependent manner.
Collapse
Affiliation(s)
- Wolfgang Liedtke
- Duke University, Center for Translational Neuroscience, Durham, NC 27710, USA.
| |
Collapse
|