151
|
Asokan R, Hua J, Young KA, Gould HJ, Hannan JP, Kraus DM, Szakonyi G, Grundy GJ, Chen XS, Crow MK, Holers VM. Characterization of human complement receptor type 2 (CR2/CD21) as a receptor for IFN-alpha: a potential role in systemic lupus erythematosus. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2006; 177:383-94. [PMID: 16785534 DOI: 10.4049/jimmunol.177.1.383] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Human complement receptor type 2 (CR2/CD21) is a B lymphocyte membrane glycoprotein that plays a central role in the immune responses to foreign Ags as well as the development of autoimmunity to nuclear Ags in systemic lupus erythematosus. In addition to these three well-characterized ligands, C3d/iC3b, EBV-gp350, and CD23, a previous study has identified CR2 as a potential receptor for IFN-alpha. IFN-alpha, a multifunctional cytokine important in the innate immune system, has recently been proposed to play a major pathogenic role in the development of systemic lupus erythematosus in humans and mice. In this study, we have shown using surface plasmon resonance and ELISA approaches that CR2 will bind IFN-alpha in the same affinity range as the other three well-characterized ligands studied in parallel. In addition, we show that IFN-alpha interacts with short consensus repeat domains 1 and 2 in a region that serves as the ligand binding site for C3d/iC3b, EBV-gp350, and CD23. Finally, we show that treatment of purified human peripheral blood B cells with the inhibitory anti-CR2 mAb 171 diminishes the induction of IFN-alpha-responsive genes. Thus, IFN-alpha represents a fourth class of extracellular ligands for CR2 and interacts with the same domain as the other three ligands. Defining the role of CR2 as compared with the well-characterized type 1 IFN-alpha receptor 1 and 2 in mediating innate immune and autoimmune roles of this cytokine should provide additional insights into the biologic roles of this interaction.
Collapse
MESH Headings
- Antibodies, Monoclonal/metabolism
- Binding, Competitive
- Cells, Cultured
- Complement C3d/metabolism
- Dose-Response Relationship, Immunologic
- GTP-Binding Proteins/antagonists & inhibitors
- GTP-Binding Proteins/genetics
- GTP-Binding Proteins/metabolism
- HSP40 Heat-Shock Proteins/antagonists & inhibitors
- HSP40 Heat-Shock Proteins/genetics
- HSP40 Heat-Shock Proteins/metabolism
- Humans
- Hydrogen-Ion Concentration
- Interferon-alpha/metabolism
- Ligands
- Lupus Erythematosus, Systemic/immunology
- Lupus Erythematosus, Systemic/metabolism
- Membrane Glycoproteins/metabolism
- Myxovirus Resistance Proteins
- Protein Binding
- Protein Interaction Mapping
- Receptors, Complement 3d/chemistry
- Receptors, Complement 3d/genetics
- Receptors, Complement 3d/metabolism
- Receptors, Complement 3d/physiology
- Receptors, IgE/metabolism
- Recombinant Proteins/biosynthesis
- Recombinant Proteins/chemistry
- Recombinant Proteins/metabolism
- Sodium Chloride/metabolism
- Surface Plasmon Resonance
- Viral Matrix Proteins/metabolism
Collapse
Affiliation(s)
- Rengasamy Asokan
- Department of Medicine and Department of Immunology, University of Colorado Health Sciences Center, 4200 East Ninth Avenue, Denver, CO 80262, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
152
|
Aichem A, Masilamani M, Illges H. Redox regulation of CD21 shedding involves signaling via PKC and indicates the formation of a juxtamembrane stalk. J Cell Sci 2006; 119:2892-902. [PMID: 16803874 DOI: 10.1242/jcs.02984] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Soluble CD21 (sCD21), released from the plasma membrane by proteolytic cleavage (shedding) of its extracellular domain (ectodomain) blocks B cell/follicular dendritic cell interaction and activates monocytes. We show here that both serine- and metalloproteases are involved in CD21 shedding. Using the oxidant pervanadate to mimic B cell receptor activation and thiol antioxidants such as N-acetylcysteine (NAC) and glutathione (GSH) we show that CD21 shedding is a redox-regulated process inducible by oxidation presumably through activation of a tyrosine kinase-mediated signal pathway involving protein kinase C (PKC), and by reducing agents that either directly activate the metalloprotease and/or modify intramolecular disulfide bridges within CD21 and thereby facilitate access to the cleavage site. Lack of short consensus repeat 16 (SCR16) abolishes CD21 shedding, and opening of the disulfide bridge between cys-2 (Cys941) and cys-4 (Cys968) of SCR16 is a prerequisite for CD21 shedding. Replacing these cysteines with selenocysteines (thereby changing the redox potential from -180 to -381 mV) results in a loss of inducible CD21 shedding, and removing this bridge by exchanging these cysteines with methionines increases CD21 shedding.
Collapse
Affiliation(s)
- Annette Aichem
- Biotechnology Institute Thurgau at the University of Konstanz, Konstanzer Strasse 19, 8274 Tägerwilen, Switzerland
| | | | | |
Collapse
|
153
|
Silver K, Ferry H, Crockford T, Cornall RJ. TLR4, TLR9 and MyD88 are not requiredfor the positive selection of autoreactive B cells intothe primary repertoire. Eur J Immunol 2006; 36:1404-12. [PMID: 16703567 DOI: 10.1002/eji.200636019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Toll-like receptors (TLR) have been shown to play an essential role in the generation of autoantibodies in mouse models of autoimmunity, but the timing and context of these effects are poorly understood. One hypothesis is that TLR ligands assist in the positive selection of self-reactive B cells into the primary repertoire and, in this way, distinguish between immunogenic and tolerogenic forms of self-antigen. To explore this idea we generated hen egg lysozyme-specific immunoglobulin (Ig(HEL)) and isotype class-switching anti-HEL mice deficient in MyD88, TLR4 or TLR9 signalling and studied B cell development and autoantibody secretion in the presence or absence of an intracellular form of self-antigen HEL that positively selects B1 cells. Our findings show that TLR4, TLR9 and MyD88 are not required for the positive selection of autoreactive B cells in the primary B cell repertoire, nor is MyD88 required for the generation of isotype-switched antibodies in the absence of antigen. These results suggest that the significant effects of TLR on autoimmunity occur in the established repertoire and not during B cell development.
Collapse
Affiliation(s)
- Karlee Silver
- Henry Wellcome Building of Molecular Physiology, University of Oxford, UK
| | | | | | | |
Collapse
|
154
|
Kerepesi LA, Hess JA, Nolan TJ, Schad GA, Abraham D. Complement component C3 is required for protective innate and adaptive immunity to larval strongyloides stercoralis in mice. THE JOURNAL OF IMMUNOLOGY 2006; 176:4315-22. [PMID: 16547268 DOI: 10.4049/jimmunol.176.7.4315] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
This study examines the role of complement components C3 and C5 in innate and adaptive protective immunity to larval Strongyloides stercoralis in mice. Larval survival in naive C3(-/-) mice was increased as compared with survival in wild-type mice, whereas C3aR(-/-) and wild-type mice had equivalent levels of larval killing. Larval killing in naive mice was shown to be a coordinated effort between effector cells and C3. There was no difference between survival in wild-type and naive C5(-/-) mice, indicating that C5 was not required during the innate immune response. Naive B cell-deficient and wild-type mice killed larvae at comparable levels, suggesting that activation of the classical complement pathway was not required for innate immunity. Adaptive immunity was equivalent in wild-type and C5(-/-) mice; thus, C5 was also not required during the adaptive immune response. Larval killing was completely ablated in immunized C3(-/-) mice, even though the protective parasite-specific IgM response developed and effector cells were recruited. Protective immunity was restored to immunized C3(-/-) mice by transferring untreated naive serum, but not C3-depleted heat-inactivated serum to the location of the parasites. Finally, immunized C3aR(-/-) mice killed larvae during the adaptive immune response as efficiently as wild-type mice. Therefore, C3 was not required for the development of adaptive immunity, but was required for the larval killing process during both protective innate and adaptive immune responses in mice against larval S. stercoralis.
Collapse
Affiliation(s)
- Laura A Kerepesi
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | | | |
Collapse
|
155
|
Fairweather D, Frisancho-Kiss S, Njoku DB, Nyland JF, Kaya Z, Yusung SA, Davis SE, Frisancho JA, Barrett MA, Rose NR. Complement receptor 1 and 2 deficiency increases coxsackievirus B3-induced myocarditis, dilated cardiomyopathy, and heart failure by increasing macrophages, IL-1beta, and immune complex deposition in the heart. THE JOURNAL OF IMMUNOLOGY 2006; 176:3516-24. [PMID: 16517720 DOI: 10.4049/jimmunol.176.6.3516] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Complement and complement receptors (CR) play a central role in immune defense by initiating the rapid destruction of invading microorganisms, amplifying the innate and adaptive immune responses, and mediating solubilization and clearance of immune complexes. Defects in the expression of C or CR have been associated with loss of tolerance to self proteins and the development of immune complex-mediated autoimmune diseases such as systemic lupus erythematosus. In this study, we examined the role of CR on coxsackievirus B3 (CVB3)-induced myocarditis using mice deficient in CR1/2. We found that CR1/2 deficiency significantly increased acute CVB3 myocarditis and pericardial fibrosis resulting in early progression to dilated cardiomyopathy and heart failure. The increase in inflammation was not due to increased viral replication, which was not significantly altered in the hearts of CR1/2-deficient mice, but was associated with increased numbers of macrophages, IL-1beta levels, and immune complex deposition in the heart. The complement regulatory protein, CR1-related gene/protein Y (Crry), was increased on cardiac macrophage populations, while immature B220(low) B cells were increased in the spleen of CR1/2-deficient mice during acute CVB3-induced myocarditis. These results show that expression of CR1/2 is not necessary for effective clearance of CVB3 infection, but prevents immune-mediated damage to the heart.
Collapse
Affiliation(s)
- DeLisa Fairweather
- Department of Environmental Health Sciences, Johns Hopkins University and Bloomberg School of Public Health, 615 North Wolfe Street, Rm. E7628, Baltimore, MD 21205, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
156
|
Abstract
Activation of the classical complement pathway represents an effector mechanism of intestinal ischemia/reperfusion injury. Mice deficient in complement receptors 1 and 2 fail to produce a component of the natural antibody repertoire that binds to ischemia-conditioned tissues and activate complement. In contrast, mice prone to autoimmunity display accelerated and enhanced tissue injury that results from the binding of autoantibodies to injured tissues. Our experiments demonstrate that naturally occurring antibodies and autoantibodies mediate tissue injury only after an organ has been subjected to a stressor such as ischemia.
Collapse
Affiliation(s)
- Sherry D Fleming
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | | |
Collapse
|
157
|
Abstract
Priming of naive lymphocytes is important for yielding efficient immune responses. Mechanisms controlling this process are also important for preventing immune cells from attacking self-antigens. It is well known that signals provided by innate immune receptors, such as Toll-like receptors (TLR), are essential to induce dendritic cell maturation that subsequently allows the priming of naive T cells. In this issue of the European Journal of Immunology, it is shown that TLR stimulation effectively potentiates naive human B cell activation and production of antibodies in T-dependent immune responses. TLR signals can be delivered to B cells directly, or indirectly via cytokines provided by TLR-activated dendritic cells.
Collapse
Affiliation(s)
- Simon Fillatreau
- Department for Humoral Immunology & Department for Immune Regulation, German Arthritis Research Centre, Berlin, Germany.
| | | |
Collapse
|
158
|
Del Nagro CJ, Kolla RV, Rickert RC. A critical role for complement C3d and the B cell coreceptor (CD19/CD21) complex in the initiation of inflammatory arthritis. THE JOURNAL OF IMMUNOLOGY 2005; 175:5379-89. [PMID: 16210644 DOI: 10.4049/jimmunol.175.8.5379] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Complement C3 cleavage products mediate the recognition and clearance of toxic or infectious agents. In addition, binding of the C3d fragment to Ag promotes B lymphocyte activation through coengagment of the BCR and complement receptor 2 (CD21). Signal augmentation is thought to be achieved through enhanced recruitment and activation of CD21-associated CD19. In this study we show, using the DBA/1 collagen-induced arthritis (CIA) model, that conjugation of C3d to heterologous type II collagen is sufficient to cause disease in the absence of the mycobacterial components of CFA. Transient depletion of C3 during the inductive phase of CIA delays and lessens the severity of disease, and DBA/1 mice deficient for coreceptor components CD19 or CD21 are not susceptible to CIA. Adoptive transfer experiments revealed that CD21 expression on either B cells or follicular dendritic cells is sufficient to acquire disease susceptibility. Although CD19(-/-) and CD21(-/-) mice produce primary Ab responses to heterologous and autologous type II collagen, they are impaired in the ability to activate T cells, form germinal centers, and produce secondary autoantibody responses. These findings indicate that binding of C3d to self-Ags can promote autoimmunity through enhanced Ag retention and presentation by follicular dendritic cells and B cells, respectively.
Collapse
MESH Headings
- Animals
- Antigens, CD19/genetics
- Antigens, CD19/metabolism
- Antigens, CD19/physiology
- Arthritis, Experimental/immunology
- Arthritis, Experimental/metabolism
- Cattle
- Cells, Cultured
- Collagen Type II/immunology
- Complement C3d/metabolism
- Complement C3d/physiology
- Germinal Center/immunology
- Germinal Center/metabolism
- Lymphocyte Activation/immunology
- Mice
- Mice, Inbred DBA
- Mice, Knockout
- Receptors, Complement 3d/genetics
- Receptors, Complement 3d/metabolism
- Receptors, Complement 3d/physiology
- T-Lymphocytes/immunology
Collapse
Affiliation(s)
- Christopher J Del Nagro
- Program of Inflammatory Disease Research, Infectious and Inflammatory Disease Center, The Burnham Institute, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
159
|
Lee Y, Haas KM, Gor DO, Ding X, Karp DR, Greenspan NS, Poe JC, Tedder TF. Complement Component C3d-Antigen Complexes Can Either Augment or Inhibit B Lymphocyte Activation and Humoral Immunity in Mice Depending on the Degree of CD21/CD19 Complex Engagement. THE JOURNAL OF IMMUNOLOGY 2005; 175:8011-23. [PMID: 16339538 DOI: 10.4049/jimmunol.175.12.8011] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
C3d can function as a molecular adjuvant by binding CD21 and thereby enhancing B cell activation and humoral immune responses. However, recent studies suggest both positive and negative roles for C3d and the CD19/CD21 signaling complex in regulating humoral immunity. To address whether signaling through the CD19/CD21 complex can negatively regulate B cell function when engaged by physiological ligands, diphtheria toxin (DT)-C3d fusion protein and C3dg-streptavidin (SA) complexes were used to assess the role of CD21 during BCR-induced activation and in vivo immune responses. Immunization of mice with DT-C3d3 significantly reduced DT-specific Ab responses independently of CD21 expression or signaling. By contrast, SA-C3dg tetramers dramatically enhanced anti-SA responses when used at low doses, whereas 10-fold higher doses did not augment immune responses, except in CD21/35-deficient mice. Likewise, SA-C3dg (1 microg/ml) dramatically enhanced BCR-induced intracellular calcium concentration ([Ca2+]i) responses in vitro, but had no effect or inhibited [Ca2+]i responses when used at 10- to 50-fold higher concentrations. SA-C3dg enhancement of BCR-induced [Ca2+]i responses required CD21 and CD19 expression and resulted in significantly enhanced CD19 and Lyn phosphorylation, with enhanced Lyn/CD19 associations. BCR-induced CD22 phosphorylation and Src homology 2 domain-containing protein tyrosine phosphatase-1/CD22 associations were also reduced, suggesting abrogation of negative regulatory signaling. By contrast, CD19/CD21 ligation using higher concentrations of SA-C3dg significantly inhibited BCR-induced [Ca2+]i responses and inhibited CD19, Lyn, CD22, and Syk phosphorylation. Therefore, C3d may enhance or inhibit Ag-specific humoral immune responses through both CD21-dependent and -independent mechanisms depending on the concentration and nature of the Ag-C3d complexes.
Collapse
Affiliation(s)
- Youngkyun Lee
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | | | | | |
Collapse
|
160
|
Getahun A, Heyman B. How antibodies act as natural adjuvants. Immunol Lett 2005; 104:38-45. [PMID: 16364455 DOI: 10.1016/j.imlet.2005.11.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2005] [Revised: 11/05/2005] [Accepted: 11/08/2005] [Indexed: 10/25/2022]
Abstract
Antibodies can act like adjuvants. They can potently enhance the antibody response, and in the case of IgG and IgE also the T cell response, to the very antigen they are specific for. In this review we will discuss the recent advances made in our understanding of the underlying mechanisms of antibody-mediated feedback enhancement. The immuno-stimulatory properties of IgM, IgG1, IgG2a, IgG2b, IgG3 and IgE will be reviewed in relationship to the complement system and Fc receptors and the physiological relevance will be discussed.
Collapse
Affiliation(s)
- Andrew Getahun
- Department of Genetics and Pathology, Uppsala University, SE-751 85 Uppsala, Sweden.
| | | |
Collapse
|
161
|
Barrault DV, Steward M, Cox VF, Smith RAG, Knight AM. Efficient production of complement (C3d)3 fusion proteins using the baculovirus expression vector system. J Immunol Methods 2005; 304:158-73. [PMID: 16109422 DOI: 10.1016/j.jim.2005.07.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2005] [Revised: 07/06/2005] [Accepted: 07/19/2005] [Indexed: 11/26/2022]
Abstract
Proteins fused to activated complement (C) fragments elicit enhanced immunogenicity. This "natural adjuvant" effect may have important implications when considering novel vaccination approaches. Here we describe both the construction of a novel fusion protein, consisting of a well characterized test antigen fused to multiple copies of the activated complement component (C3d)3, as well as an efficient method for its expression and production in insect cells. Using the inherent biological advantages of the baculovirus expression system, as well as applying specific infection and harvesting modifications, we have optimized the efficiency of protein production. Our modifications allow purification of fusion proteins directly from cell supernatant in a single anion exchange chromatographic step. This alleviates the requirement for the inclusion of protein affinity tags. The integrity of the purified recombinant protein was evaluated by SDS PAGE analysis, reactivity with antibodies, as well as in vivo by administration as an immunogen.
Collapse
Affiliation(s)
- Denise V Barrault
- Institute for Immunology and Infection Research, The School of Biological Sciences, University of Edinburgh, Ashworth Laboratories, West Mains Road, Edinburgh EH9 3JT, UK
| | | | | | | | | |
Collapse
|
162
|
Nielsen CH, Leslie RGQ. Regulation of B-Cell Activation by Complement Receptors and Fc Receptors. Transfus Med Hemother 2005. [DOI: 10.1159/000089121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
163
|
Sacks SH, Zhou W. Allograft rejection: effect of local synthesis of complement. SPRINGER SEMINARS IN IMMUNOPATHOLOGY 2005; 27:332-44. [PMID: 16189650 DOI: 10.1007/s00281-005-0005-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2005] [Accepted: 03/18/2005] [Indexed: 12/12/2022]
Abstract
The complement system is known for its ability to participate in non-specific inflammation and membrane injury as well as contributing to antigen-specific immune stimulation. In renal transplantation, the complement cascade behaves true to form in that both non-immune- and immune-mediated destruction of the renal tubules are complement dependent. What is remarkable, however, is the extent of involvement of local synthesis of complement in both of these injuries, suggesting that the extravascular tissue compartment is the domain of local synthesis, whereas the effect of circulating complement is much less. This creates a new paradigm for studying the influence of local synthesis of complement in other organ-based diseases and underlines the need for tissue-targeting strategies in successful therapeutic development.
Collapse
Affiliation(s)
- Steven H Sacks
- Department of Nephrology and Transplantation, King's College London School of Medicine at Guy's, St Thomas Hospitals, 5th Floor Thomas Guy House, Guy's Hospital, London SE1 9RT, UK.
| | | |
Collapse
|
164
|
Kim DY, Martin CB, Lee SN, Martin BK. Expression of complement protein C5a in a murine mammary cancer model: tumor regression by interference with the cell cycle. Cancer Immunol Immunother 2005; 54:1026-37. [PMID: 15868168 PMCID: PMC11032762 DOI: 10.1007/s00262-005-0672-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2004] [Accepted: 01/11/2005] [Indexed: 11/27/2022]
Abstract
The C5a anaphylatoxin protein plays a central role in inflammation associated with complement activation. This protein is commonly regarded as one of the most potent inducers of the inflammatory response and a C5a peptide agonist was used as a molecular adjuvant. However, the full length C5a protein has not been tested as a potential tumor therapy. In this report, we describe the creation of a mini-gene construct that directs C5a expression to any cell of interest. Functional expression could be demonstrated in the murine mammary sarcoma, EMT6. When C5a expressing cells were injected into syngeneic mice, most C5a-expressing clones had significantly reduced tumor growth. Further characterization of a clone expressing low levels of C5a demonstrated that one-third of mice injected with this line had complete tumor regression. The mice whose tumors regressed were immune to subsequent challenge with unmodified EMT6 cells, suggesting that a component of the innate immune response can be used to augment adaptive immunity. Cellular analyses demonstrated that a significant difference in actual tumor cell number could be detected as early as day 10. A block in cell cycle progression was evident at all time points and high levels of apoptosis were observed early in the regression event. These data demonstrate that the complement protein C5a can play a significant protective role in tumor immunity.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Apoptosis
- Base Sequence
- Cell Cycle/immunology
- Complement C5a/metabolism
- Female
- Mammary Neoplasms, Experimental/immunology
- Mammary Neoplasms, Experimental/metabolism
- Mammary Neoplasms, Experimental/prevention & control
- Mice
- Mice, Inbred BALB C
- Models, Animal
- Molecular Sequence Data
- Neoplasm Regression, Spontaneous/pathology
- Receptor, Anaphylatoxin C5a/metabolism
- Sarcoma, Experimental/immunology
- Sarcoma, Experimental/metabolism
- Sarcoma, Experimental/prevention & control
- Transfection
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Do-Yeun Kim
- Department of Microbiology, The University of Iowa, Iowa City, IA 52242 USA
- Department of Medicine, College of Medicine & Ewha Medical Research Center, Ewha Womans University, Seoul, Korea
| | - Carol B. Martin
- Department of Microbiology, The University of Iowa, Iowa City, IA 52242 USA
| | - Soon Nam Lee
- Department of Medicine, College of Medicine & Ewha Medical Research Center, Ewha Womans University, Seoul, Korea
| | - Brian K. Martin
- Department of Microbiology, The University of Iowa, Iowa City, IA 52242 USA
- Holden Comprehensive Cancer Center and Interdisciplinary Graduate Immunology Program, The University of Iowa, Iowa City, IA 52242 USA
| |
Collapse
|
165
|
Barrington RA, Zhang M, Zhong X, Jonsson H, Holodick N, Cherukuri A, Pierce SK, Rothstein TL, Carroll MC. CD21/CD19 Coreceptor Signaling Promotes B Cell Survival during Primary Immune Responses. THE JOURNAL OF IMMUNOLOGY 2005; 175:2859-67. [PMID: 16116172 DOI: 10.4049/jimmunol.175.5.2859] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The adaptive immune response is tightly regulated to limit responding cells in an Ag-specific manner. On B cells, coreceptors CD21/CD19 modulate the strength of BCR signals, potentially influencing cell fate. The importance of the CD95 pathway was examined in response of B cells to moderate affinity Ag using an adoptive transfer model of lysozyme-specific Ig transgenic (HEL immunoglobulin transgene (MD4) strain) B cells. Although adoptively transferred Cr2+/+ MD4 B cells are activated and persist within splenic follicles of duck egg lysozyme-immunized mice, Cr2-/- MD4 B cells do not. In contrast, Cr2-/- MD4 lpr B cells persist after transfer, suggesting that lack of CD21/CD35 signaling results in CD95-mediated elimination. Cr2 deficiency did not affect CD95 levels, but cellular FLIP (c-FLIP) protein and mRNA levels were reduced 2-fold compared with levels in Cr2+/+ MD4 B cells. In vitro culture with Cr2+/+ MD4 B cells demonstrated that equimolar amounts of rHEL-C3d3 were more effective than hen egg lysozyme alone in up-regulating c-FLIP levels and for protection against CD95-mediated apoptosis. Collectively, this study implies a mechanism for regulating B cell survival in vivo whereby the strength of BCR signaling (including coreceptor) determines c-FLIP levels and protection from CD95-induced death.
Collapse
Affiliation(s)
- Robert A Barrington
- CBR Institute for Biomedical Research and Department of Pathology, Harvard University, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
166
|
Rickert RC. Regulation of B lymphocyte activation by complement C3 and the B cell coreceptor complex. Curr Opin Immunol 2005; 17:237-43. [PMID: 15886112 DOI: 10.1016/j.coi.2005.03.001] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Complement is an essential innate immune mechanism that recognizes and eradicates microbes and associated toxins. In addition, complement receptors (CD21 and CD35) on B cells cooperate with the B-cell antigen receptor (BCR) to efficiently recognize and respond to antigens bearing complement C3d(g). Fixation of C3d(g) to antigen confers adjuvant properties and therefore its deposition may need to be carefully regulated to avoid autoreactivity. CD21 and/or CD35 engagement is nonmitogenic, and B-cell activation via BCR-CD21 coligation is enhanced through the recruitment of CD19. Recent efforts have sought a better understanding of the topological and biochemical properties of BCR and coreceptor (CD19-CD21-CD81) signaling, as well as the context for complement activation in the response to foreign and self antigens.
Collapse
Affiliation(s)
- Robert C Rickert
- Program of Inflammatory Disease Research, Infectious and Inflammatory Disease Center, The Burnham Institute, La Jolla, California 92037, USA.
| |
Collapse
|
167
|
Chen Y, Perry D, Boackle SA, Sobel ES, Molina H, Croker BP, Morel L. Several Genes Contribute to the Production of Autoreactive B and T Cells in the Murine Lupus Susceptibility Locus Sle1c. THE JOURNAL OF IMMUNOLOGY 2005; 175:1080-9. [PMID: 16002709 DOI: 10.4049/jimmunol.175.2.1080] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The systemic lupus erythematosus 1 (Sle1) locus mediates the loss of tolerance to nuclear Ags in the NZM2410 mouse model of lupus through intrinsic defects in both B and T cells. Congenic analysis has shown that Sle1 corresponds to at least three genetic loci, Sle1a, Sle1b, and Sle1c. Telomeric Sle1c is associated with abnormal B cell responses to subthreshold stimulation with anti-IgM and C3d and with decreased T-dependent humoral immune responses. We have proposed that these phenotypes resulted from polymorphisms in the C3 complement receptor Cr2 gene. We have also found that Sle1c was associated with the production of histone-specific autoreactive CD4(+) T cells, which correlated with higher activation and proliferative responses, and a reduction in the CD4(+)CD25(+)CD62L(+)forkhead/winged helix transcription factor gene (Foxp3(+)) compartment. In this study we showed, using congenic recombinants, that the decreased humoral immune response and impaired GC formation map to the NZM2410 Cr2 allele. A chronic graft-vs-host disease model also showed that Sle1c produces significantly more autoreactive B cells than B6 controls, and that this phenotype maps to two regions excluding the Cr2 gene. Mixed bone marrow chimera demonstrated that the increased activation, proliferative response, and reduced regulatory T cell compartment were intrinsic to Sle1c-expressing CD4(+) T cells. These phenotypes mapped to the same two loci identified with the chronic graft-vs-host disease model, excluding the Cr2 region. Overall, these results show that Sle1c results in the production of autoreactive B and T cells through the expression of three different genes, one of which is consistent with Cr2, based on the phenotypes of the Cr2-deficient mice, and the other two corresponding to as yet unidentified genes.
Collapse
MESH Headings
- Animals
- B-Lymphocyte Subsets/immunology
- B-Lymphocyte Subsets/pathology
- B-Lymphocyte Subsets/radiation effects
- Cell Differentiation/genetics
- Cell Differentiation/immunology
- Chromosome Mapping
- Female
- Genetic Markers/immunology
- Genetic Predisposition to Disease
- Germinal Center/immunology
- Germinal Center/pathology
- Graft vs Host Disease/genetics
- Graft vs Host Disease/immunology
- Immunoglobulin G/biosynthesis
- Immunoglobulin M/biosynthesis
- Immunophenotyping
- Lupus Erythematosus, Systemic/genetics
- Lupus Erythematosus, Systemic/immunology
- Lupus Erythematosus, Systemic/pathology
- Male
- Mice
- Mice, Congenic
- Mice, Inbred C57BL
- Mice, Inbred NZB
- Radiation Chimera
- Receptors, Complement 3d/biosynthesis
- Receptors, Complement 3d/deficiency
- Receptors, Complement 3d/genetics
- Recombination, Genetic/immunology
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/pathology
- T-Lymphocyte Subsets/radiation effects
Collapse
Affiliation(s)
- Yifang Chen
- Department of Pathology, Immunology, and Laboratory Medicine, Department of Medicine, University of Florida, Gainesville, FL 32610, USA
| | | | | | | | | | | | | |
Collapse
|
168
|
Stanilova SA, Miteva LD, Tanchev SG. Immunomodulatory effects of C3bgp on the antibody response to hemocyanin in outbred rabbits and the F1 generation of breeding with siblings. Vet Immunol Immunopathol 2005; 106:15-21. [PMID: 15910989 DOI: 10.1016/j.vetimm.2004.12.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2004] [Revised: 12/23/2004] [Accepted: 12/23/2004] [Indexed: 10/25/2022]
Abstract
Dynamics and quantitative analyses of monospecific antibody during the primary and secondary humoral responses were determined in outbred rabbits and in the F1 generation of breeding with siblings. The antibody response in rabbits immunized with Keyhole Limpet Hemocyanin (KLH) was studied during a 4-month immunization period. ELISA determination of anti-KLH Ig and anti-KLH IgG alone, in preimmune and immune rabbit sera, was performed. Antibody response in both groups of rabbits was similar when assessed by anti-rabbit Ig but displayed differences when assessed by anti-rabbit IgG. A statistically significant increase in anti-KLH IgG was observed in the F1 inbred rabbits compared to the control group after primary immunization from days 14 to 35. Immunomodulation also elicited differences in the antibody response in the two groups of animals. C3-binding glycoprotein isolated from Cuscuta europea (C3bgp), applied simultaneously with antigen (KLH), produced a much stronger secondary immune response than the antigen alone, in both experimental groups. The enhancement of anti-KLH Ig in C3bgp-treated inbred rabbits was statistically significant in comparison with nontreated inbred rabbits. A significant increase in anti-KLH IgG was observed only for the inbred group after treatment with C3bgp. The results demonstrate that the F1 generation of breeding with sibling leads to significant differences in antibody responses to immunization compared with outbred rabbits, as well as to immunomodulation with C3bgp.
Collapse
Affiliation(s)
- Spaska A Stanilova
- Department of Molecular Biology, Immunology and Genetics, Faculty of Medicine, Thracian University, Armeiska 11 St., 6000 Stara Zagora, Bulgaria.
| | | | | |
Collapse
|
169
|
Mehlhop E, Whitby K, Oliphant T, Marri A, Engle M, Diamond MS. Complement activation is required for induction of a protective antibody response against West Nile virus infection. J Virol 2005; 79:7466-77. [PMID: 15919902 PMCID: PMC1143684 DOI: 10.1128/jvi.79.12.7466-7477.2005] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2004] [Accepted: 02/15/2005] [Indexed: 01/21/2023] Open
Abstract
Infection with West Nile virus (WNV) causes a severe infection of the central nervous system (CNS) with higher levels of morbidity and mortality in the elderly and the immunocompromised. Experiments with mice have begun to define how the innate and adaptive immune responses function to limit infection. Here, we demonstrate that the complement system, a major component of innate immunity, controls WNV infection in vitro primarily in an antibody-dependent manner by neutralizing virus particles in solution and lysing WNV-infected cells. More decisively, mice that genetically lack the third component of complement or complement receptor 1 (CR1) and CR2 developed increased CNS virus burdens and were vulnerable to lethal infection at a low dose of WNV. Both C3-deficient and CR1- and CR2-deficient mice also had significant deficits in their humoral responses after infection with markedly reduced levels of specific anti-WNV immunoglobulin M (IgM) and IgG. Overall, these results suggest that complement controls WNV infection, in part through its ability to induce a protective antibody response.
Collapse
Affiliation(s)
- Erin Mehlhop
- Department of Medicine, Molecular Microbiology, and Pathology & Immunology, Washington University School of Medicine, 660 South Euclid Ave., Box 8051, St. Louis, MO 63110, USA
| | | | | | | | | | | |
Collapse
|
170
|
Borsutzky S, Kretschmer K, Becker PD, Mühlradt PF, Kirschning CJ, Weiss S, Guzmán CA. The Mucosal Adjuvant Macrophage-Activating Lipopeptide-2 Directly Stimulates B Lymphocytes via the TLR2 without the Need of Accessory Cells. THE JOURNAL OF IMMUNOLOGY 2005; 174:6308-13. [PMID: 15879130 DOI: 10.4049/jimmunol.174.10.6308] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The macrophage-activating lipopeptide-2 (MALP-2) is an agonist of the TLR heterodimer 2/6, which exhibits potent activity as mucosal adjuvant, promoting strong humoral and cellular responses. Although B cells expressing TLR2/6 are potential targets, very little is known about the effect of MALP-2 on B cells. Studies were performed using total spleen cells or purified B cells from WT mice or animals deficient in TLR2, T cells, B cells, or specific subpopulations of B cells. They demonstrated that MALP-2 promotes a T cell-independent activation and maturation of B cells (mainly follicular but also B-1a and marginal zone B cells) via TLR2. MALP-2 also increased the frequency of IgM- and IgG-secreting cells, but bystander cells were required for IgA secretion. Activated B cells exhibited increased expression of activation markers and ligands that are critical for cross-talk with T cells (CD19, CD25, CD80, CD86, MHC I, MHC II, and CD40). Immunization of mice lacking T cells showed that MALP-2-mediated stimulation of TLR2/6 was unable to circumvent the need of T cell help for efficient Ag-specific B cell activation. Immunization of mice lacking B cells demonstrated that B cells are critical for MALP-2-dependent improvement of T cell responses. The knowledge emerging from this work suggests that MALP-2-mediated activation of B cells through TLR2/6 is critical for adjuvanticity. B cell stimulation by pattern recognition receptors seems to be a basic mechanism that can be exploited to improve the immunogenicity of vaccine formulations.
Collapse
Affiliation(s)
- Stefan Borsutzky
- Vaccine Research Group, Division of Microbiology and Molecular Immunology Group, Division of Molecular Biotechnology, GBF-German Research Centre for Biotechnology, Braunschweig, Germany
| | | | | | | | | | | | | |
Collapse
|
171
|
Leslie RGQ, Marquart HV, Nielsen CH. The Role of Complement in Immune and Autoimmune Responses. Transfus Med Hemother 2005. [DOI: 10.1159/000083356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
172
|
Gatto D, Pfister T, Jegerlehner A, Martin SW, Kopf M, Bachmann MF. Complement receptors regulate differentiation of bone marrow plasma cell precursors expressing transcription factors Blimp-1 and XBP-1. ACTA ACUST UNITED AC 2005; 201:993-1005. [PMID: 15767369 PMCID: PMC2213108 DOI: 10.1084/jem.20042239] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Humoral immune responses are thought to be enhanced by complement-mediated recruitment of the CD21-CD19-CD81 coreceptor complex into the B cell antigen receptor (BCR) complex, which lowers the threshold of B cell activation and increases the survival and proliferative capacity of responding B cells. To investigate the role of the CD21-CD35 complement receptors in the generation of B cell memory, we analyzed the response against viral particles derived from the bacteriophage Qbeta in mice deficient in CD21-CD35 (Cr2(-/-)). Despite highly efficient induction of early antibody responses and germinal center (GC) reactions to immunization with Qbeta, Cr2(-/-) mice exhibited impaired antibody persistence paralleled by a strongly reduced development of bone marrow plasma cells. Surprisingly, antigen-specific memory B cells were essentially normal in these mice. In the absence of CD21-mediated costimulation, Qbeta-specific post-GC B cells failed to induce the transcriptional regulators Blimp-1 and XBP-1 driving plasma cell differentiation, and the antiapoptotic protein Bcl-2, which resulted in failure to generate the precursor population of long-lived plasma cells residing in the bone marrow. These results suggest that complement receptors maintain antibody responses by delivery of differentiation and survival signals to precursors of bone marrow plasma cells.
Collapse
MESH Headings
- Allolevivirus/immunology
- Animals
- Antibodies, Viral/immunology
- Antibody Formation/genetics
- Antibody Formation/immunology
- Antigens, CD
- Antigens, Viral/immunology
- Apoptosis/genetics
- Apoptosis/immunology
- Bone Marrow Cells/cytology
- Bone Marrow Cells/immunology
- Cell Differentiation/genetics
- Cell Differentiation/immunology
- Cell Survival/genetics
- Cell Survival/immunology
- DNA-Binding Proteins/biosynthesis
- DNA-Binding Proteins/immunology
- Gene Expression Regulation/genetics
- Gene Expression Regulation/immunology
- Mice
- Mice, Knockout
- Nuclear Proteins/biosynthesis
- Nuclear Proteins/immunology
- Plasma Cells/immunology
- Positive Regulatory Domain I-Binding Factor 1
- Proto-Oncogene Proteins c-bcl-2/genetics
- Proto-Oncogene Proteins c-bcl-2/immunology
- Receptors, Antigen, B-Cell/genetics
- Receptors, Antigen, B-Cell/immunology
- Receptors, Complement 3d/genetics
- Receptors, Complement 3d/immunology
- Regulatory Factor X Transcription Factors
- Repressor Proteins/biosynthesis
- Repressor Proteins/immunology
- Signal Transduction/genetics
- Signal Transduction/immunology
- Transcription Factors/biosynthesis
- Transcription Factors/immunology
- X-Box Binding Protein 1
Collapse
Affiliation(s)
- Dominique Gatto
- Cytos Biotechnology, Swiss Federal Institute of Technology, Zurich-Schlieren 8952, Switzerland
| | | | | | | | | | | |
Collapse
|
173
|
Park JY, Shcherbina A, Rosen FS, Prodeus AP, Remold-O'Donnell E. Phenotypic perturbation of B cells in the Wiskott-Aldrich syndrome. Clin Exp Immunol 2005; 139:297-305. [PMID: 15654828 PMCID: PMC1809280 DOI: 10.1111/j.1365-2249.2005.02693.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Wiskott-Aldrich syndrome (WAS) is an X-linked immunodeficiency/platelet disease due to mutations of WASP, a cytoskeletal regulatory protein of blood cells. Patients exhibit a range of immune defects generally attributed to defective T-cell function, including poor response to immunization, skewed immunoglobulin isotypes, eczema, recurrent infections, autoimmune disease and increased frequency of malignancies. Here we show a deficit of total B-cells in WAS patients of various ages and identify phenotypic perturbations involving complement receptors and CD27. Whereas B-cells of normal healthy donors are overwhelmingly CD21/CD35-positive, B-cells expressing these receptors are significantly reduced in number in WAS patients, and their paucity may cause suboptimal antigen capture and presentation. The frequencies of IgD(-) and IgG(+) patient B-cells were not different from healthy donors (although absolute numbers were decreased), indicating that isotype switching is occurring. In contrast, the frequency of cells positive for CD27, the marker of post germinal centre B-cells, was significantly decreased even among isotype-switched cells, and B-cells resembling germinal centre progenitors (CD10(+)CD27(-)CD38(bright)) were more frequent in adult patients, suggesting impaired germinal centre maturation/differentiation. The documentation of these phenotypic perturbations and deficit of total cells suggest that defects intrinsic to B-cells contribute to the impaired humoral immunity that characterizes this disease.
Collapse
Affiliation(s)
- J Y Park
- The CBR Institute for Biomedical Research, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
174
|
Hannan JP, Young KA, Guthridge JM, Asokan R, Szakonyi G, Chen XS, Holers VM. Mutational analysis of the complement receptor type 2 (CR2/CD21)-C3d interaction reveals a putative charged SCR1 binding site for C3d. J Mol Biol 2005; 346:845-58. [PMID: 15713467 DOI: 10.1016/j.jmb.2004.12.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2004] [Revised: 12/02/2004] [Accepted: 12/03/2004] [Indexed: 11/23/2022]
Abstract
We have characterized the interaction between the first two short consensus repeats (SCR1-2) of complement receptor type 2 (CR2, CD21) and C3d in solution, by utilising the available crystal structures of free and C3d-bound forms of CR2 to create a series of informative mutations targeting specific areas of the CR2-C3d complex. Wild-type and mutant forms of CR2 were expressed on the surface of K562 erythroleukemia cells and their binding ability assessed using C3dg-biotin tetramers complexed to fluorochrome conjugated streptavidin and measured by flow cytometry. Mutations directed at the SCR2-C3d interface (R83A, R83E, G84Y) were found to strongly disrupt C3dg binding, supporting the conclusion that the SCR2 interface reflected in the crystal structure is correct. Previous epitope and peptide mapping studies have also indicated that the PILN11GR13IS sequence of the first inter-cysteine region of SCR1 is essential for the binding of iC3b. Mutations targeting residues within or in close spatial proximity to this area (N11A, N11E, R13A, R13E, Y16A, S32A, S32E), and a number of other positively charged residues located primarily on a contiguous face of SCR1 (R28A, R28E, R36A, R36E, K41A, K41E, K50A, K50E, K57A, K57E, K67A, K67E), have allowed us to reassess those regions on SCR1 that are essential for CR2-C3d binding. The nature of this interaction and the possibility of a direct SCR1-C3d association are discussed extensively. Finally, a D52N mutant was constructed introducing an N-glycosylation sequence at an area central to the CR2 dimer interface. This mutation was designed to disrupt the CR2-C3d interaction, either directly through steric inhibition, or indirectly through disruption of a physiological dimer. However, no difference in C3dg binding relative to wild-type CR2 could be observed for this mutant, suggesting that the dimer may only be found in the crystal form of CR2.
Collapse
Affiliation(s)
- Jonathan P Hannan
- Department of Medicine and Immunology, University of Colorado Health Sciences Center, 4200 East Ninth Ave., Denver, CO 80262, USA
| | | | | | | | | | | | | |
Collapse
|
175
|
Ren B, McCrory MA, Pass C, Bullard DC, Ballantyne CM, Xu Y, Briles DE, Szalai AJ. The virulence function of Streptococcus pneumoniae surface protein A involves inhibition of complement activation and impairment of complement receptor-mediated protection. THE JOURNAL OF IMMUNOLOGY 2005; 173:7506-12. [PMID: 15585877 DOI: 10.4049/jimmunol.173.12.7506] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Complement is important for elimination of invasive microbes from the host, an action achieved largely through interaction of complement-decorated pathogens with various complement receptors (CR) on phagocytes. Pneumococcal surface protein A (PspA) has been shown to interfere with complement deposition onto pneumococci, but to date the impact of PspA on CR-mediated host defense is unknown. To gauge the contribution of CRs to host defense against pneumococci and to decipher the impact of PspA on CR-dependent host defense, wild-type C57BL/6J mice and mutant mice lacking CR types 1 and 2 (CR1/2(-/-)), CR3 (CR3(-/-)), or CR4 (CR4(-/-)) were challenged with WU2, a PspA(+) capsular serotype 3 pneumococcus, and its PspA(-) mutant JY1119. Pneumococci also were used to challenge factor D-deficient (FD(-/-)), LFA-1-deficient (LFA-1(-/-)), and CD18-deficient (CD18(-/-)) mice. We found that FD(-/-), CR3(-/-), and CR4(-/-) mice had significantly decreased longevity and survival rate upon infection with WU2. In comparison, PspA(-) pneumococci were virulent only in FD(-/-) and CR1/2(-/-) mice. Normal mouse serum supported more C3 deposition on pneumococci than FD(-/-) serum, and more iC3b was deposited onto the PspA(-) than the PspA(+) strain. The combined results confirm earlier conclusions that the alternative pathway of complement activation is indispensable for innate immunity against pneumococcal infection and that PspA interferes with the protective role of the alternative pathway. Our new results suggest that complement receptors CR1/2, CR3, and CR4 all play important roles in host defense against pneumococcal infection.
Collapse
MESH Headings
- Animals
- Antibodies, Bacterial/biosynthesis
- Antibodies, Bacterial/blood
- Bacteremia/genetics
- Bacteremia/immunology
- Bacteremia/microbiology
- Bacteremia/mortality
- Bacterial Proteins/blood
- Bacterial Proteins/physiology
- CD18 Antigens/genetics
- Complement C3b/metabolism
- Complement Factor D/deficiency
- Complement Factor D/genetics
- Complement Inactivator Proteins/physiology
- Complement Pathway, Alternative/immunology
- Lymphocyte Function-Associated Antigen-1/genetics
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Pneumococcal Infections/genetics
- Pneumococcal Infections/immunology
- Pneumococcal Infections/microbiology
- Pneumococcal Infections/mortality
- Receptors, Complement/antagonists & inhibitors
- Receptors, Complement/blood
- Receptors, Complement/physiology
- Receptors, Complement 3b/biosynthesis
- Receptors, Complement 3b/deficiency
- Receptors, Complement 3b/genetics
- Receptors, Complement 3d/biosynthesis
- Receptors, Complement 3d/deficiency
- Receptors, Complement 3d/genetics
- Streptococcus pneumoniae/genetics
- Streptococcus pneumoniae/immunology
- Streptococcus pneumoniae/pathogenicity
- Virulence Factors/blood
- Virulence Factors/physiology
Collapse
Affiliation(s)
- Bing Ren
- Department of Microbiology, University of Alabama, Birmingham, AL 35294, USA
| | | | | | | | | | | | | | | |
Collapse
|
176
|
Test ST, Mitsuyoshi JK, Hu Y. Depletion of complement has distinct effects on the primary and secondary antibody responses to a conjugate of pneumococcal serotype 14 capsular polysaccharide and a T-cell-dependent protein carrier. Infect Immun 2005; 73:277-86. [PMID: 15618164 PMCID: PMC538989 DOI: 10.1128/iai.73.1.277-286.2005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Complement activation plays a critical role in the immune response to T-cell-dependent and T-cell-independent antigens. However, the effect of conjugation of T-cell-dependent protein carriers to T-cell-independent type 2 antigens on the requirement for complement in the humoral immune response to such antigens remains unknown. We studied the role of complement activation on the antibody response of BALB/c mice immunized with the T-cell-independent type 2 antigen serotype 14 pneumococcal capsular polysaccharide (PPS14), either in unmodified form or conjugated to ovalbumin (OVA). In mice immunized with either PPS14 or PPS14-OVA, depletion of endogenous complement at the time of primary immunization by treatment with cobra venom factor (CVF) diminished serum anti-PPS14 concentrations after primary immunization but enhanced antibody responses after secondary immunization. The secondary immunoglobulin G (IgG) anti-PPS14 antibody response after immunization with PPS14-OVA was especially enhanced by complement depletion, was observed at doses as low as 0.2 mug of antigen, and was maximal when CVF was administered within 2 days of immunization. The avidity and opsonophagocytic functions of IgG anti-PPS14 antibodies were comparable in mice immunized with PPS14-OVA with or without complement depletion. Serum anti-PPS14 antibody concentrations were near normal, and the enhancing effects of CVF treatment on the secondary anti-PPS14 antibody response were also apparent in splenectomized mice immunized with PPS14-OVA. These results demonstrate that complement activation can have distinct effects on the primary and secondary antibody responses to a T-cell-independent type 2 antigen, either unmodified or conjugated to a T-cell-dependent protein carrier. These differences should be taken into consideration when using complement to modulate the immune response to vaccines.
Collapse
Affiliation(s)
- Samuel T Test
- Children's Hospital Oakland Research Institute, 5700 Martin Luther King, Jr. Way, Oakland, CA 94609-1673, USA.
| | | | | |
Collapse
|
177
|
|
178
|
Boackle SA. Role of complement receptor 2 in the pathogenesis of systemic lupus erythematosus. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2005; 560:141-7. [PMID: 15932028 DOI: 10.1007/0-387-24180-9_17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Affiliation(s)
- Susan A Boackle
- University of Colorado Health Sciences Center, Denver, Colorado 80262, USA
| |
Collapse
|
179
|
Boackle SA, Culhane KK, Brown JM, Haas M, Bao L, Quigg RJ, Holers VM. CR1/CR2 deficiency alters IgG3 autoantibody production and IgA glomerular deposition in the MRL/lpr model of SLE. Autoimmunity 2004; 37:111-23. [PMID: 15293881 DOI: 10.1080/08916930410001685063] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
CR1 and CR2 expression is decreased by approximately 50% on B cells of patients with systemic lupus erythematosus (SLE). Expression is also decreased in the MRL/lpr murine model of SLE prior to the development of clinical disease, suggesting that this alteration may play a role in pathogenesis. To determine whether the decrease in receptor levels affects the development of SLE, we analyzed MRL/lpr mice in which CR1/CR2 expression was altered by gene targeting. Mice from each cohort (Cr2+/+, Cr2+/-, and Cr2-/-) were analyzed biweekly for the development of proteinuria and autoantibodies. Kidneys were examined at 12 and 16 weeks for evidence of immune complex deposition and renal disease. Deficiency of CR1/CR2 did not affect survival or development of renal disease as measured by proteinuria. Mice deficient in CR1/CR2 had significantly lower levels of IgG3 rheumatoid factor (RF) and total serum IgG3, suggesting a specific defect in production of IgG3 in response to endogenous autoantigens. Since IgG3 RF has been associated with the development of vasculitis in this model, we examined the mice for alterations in development of this clinical manifestation. Although there was no difference in the development of ear necrosis among the three groups, renal arteritis was not identified in any of the Cr2+/- mice, whereas it was present in 20% of the Cr2+/- and 40% of the Cr2+/+ mice. Finally, significantly higher levels of IgA were seen in the glomeruli of Cr2+/- mice compared to Cr2+/- or Cr2+/+ mice, suggesting that CR1/CR2 are involved in either the regulation of IgA production or the clearance of IgA immune complexes. Together these data support the concept that alterations in CR1/CR2 expression or function affect the regulation of autoantibody production and/or clearance and may have clinical consequences.
Collapse
Affiliation(s)
- Susan A Boackle
- Department of Medicine and Immunology, Division of Rheumatology, University of Colorado Health Sciences Center, Denver, CO 80262, USA.
| | | | | | | | | | | | | |
Collapse
|
180
|
Holers VM. Complement receptors and the shaping of the natural antibody repertoire. ACTA ACUST UNITED AC 2004; 26:405-23. [PMID: 15614507 DOI: 10.1007/s00281-004-0186-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2004] [Accepted: 10/12/2004] [Indexed: 10/26/2022]
Abstract
Complement and complement receptors have been known for several decades to play important roles in immune effector mechanisms related to pathogen elimination and tissue inflammation. In addition, studies over the last 10 years have clearly demonstrated a key role for the complement C3d activation fragment receptor designated CR2 (complement receptor type 2) in the switched-isotype, high-affinity and memory humoral immune responses to T-dependent foreign antigens. More recent studies have extended those observations to include a key role for CR2 and C3d in the humoral immune response to T-independent foreign antigens. Conversely, as these studies have proceeded, a parallel series of analyses have linked defects in expression or function of complement C4 and other classical pathway activation pathway proteins, as well as CR2 and the closely related CR1, to the loss of self tolerance to nuclear antigens such as double-stranded DNA and chromatin in systemic lupus erythematosus. With regard to the topic of this issue, it is now becoming increasingly clear that CR2 also plays a major role in the development of the natural antibody repertoire. Specifically, in the absence of this receptor natural IgM and IgG develop in the naïve animal that demonstrate clearly altered recognition patterns for specific natural antibody targets. This repertoire change is important physiologically in at least one setting because these CR2-dependent natural antibodies are necessary for the recognition of ischemic self tissues. In addition, it is possible that certain of the phenotypes manifest by CR2-deficient mice may be strongly influenced not only by effects on later stages of B cell activation and maturation, as commonly thought, but also by alterations in the pre-existing pool of natural antibodies that are influenced by this receptor. This review will examine the evidence that has accumulated over the last few years supporting these hypotheses.
Collapse
Affiliation(s)
- V Michael Holers
- Division of Rheumatology, Department of Medicine, B-115, University of Colorado Health Sciences Center, 4200 E. 9th Avenue, Denver, CO 80262, USA.
| |
Collapse
|
181
|
Pihlgren M, Fulurija A, Villiers MB, Tougne C, Lambert PH, Villiers CL, Siegrist CA. Influence of complement C3 amount on IgG responses in early life: immunization with C3b-conjugated antigen increases murine neonatal antibody responses. Vaccine 2004; 23:329-35. [PMID: 15530677 DOI: 10.1016/j.vaccine.2004.06.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2003] [Revised: 05/24/2004] [Accepted: 06/15/2004] [Indexed: 10/26/2022]
Abstract
Complement component C3, which plays an important role in both the innate and adaptative immune response, is present at low level in human infants. We show here that: (i) serum C3 amount is weak also in infant mice, (ii) these young animals fail to upregulate C3 to adult levels following tetanus toxoid immunization, (iii) neonatal macrophages have a limited capacity to synthesize C3 upon LPS exposure, (iv) conjugation of antigen to C3b significantly enhances antibody response elicited in 1-week-old mice--although it does not increase primary IgG response in adult mice. Altogether, this identifies C3 as one of the factors limiting early life antibody response and emphasizes the potential interest of immunization strategies overcoming this limitation.
Collapse
Affiliation(s)
- Maria Pihlgren
- World Health Organization Collaborating Center for Vaccinology and Neonatal Immunology, University of Geneva, CMU, Rue Michel Servet 1, 1211 Geneva 4, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
182
|
Abstract
The serum complement system, which represents a chief component of innate immunity, not only participates in inflammation but also acts to enhance the adaptive immune response. Specific activation of complement via innate recognition proteins or secreted antibody releases cleavage products that interact with a wide range of cell surface receptors found on myeloid, lymphoid and stromal cells. This intricate interaction among complement activation products and cell surface receptors provides a basis for the regulation of both B and T cell responses. This review highlights fundamental events, explaining how complement links innate and adaptive immunity as well as describing more recent studies on how this large family of proteins functions locally in peripheral lymph nodes to enhance B and T cell responses.
Collapse
|
183
|
Abstract
Clinical and genetic studies in humans and animal models indicate a crucial protective role for the complement system in systemic lupus erythematosus (SLE). This presents a paradox because the complement system is considered to be an important mediator of the inflammation that is observed in patients with SLE. One current view is that complement provides protection by facilitating the rapid removal of apoptotic debris to circumvent an autoimmune response. In this Opinion article, I discuss an alternative model in which complement - together with other components of the innate immune system - participates in the 'presentation' of SLE-inducing self-antigens to developing B cells. In this way, the complement system and innate immunity protect against responses to SLE (self) antigens by enhancing the elimination of self-reactive lymphocytes.
Collapse
Affiliation(s)
- Michael C Carroll
- CBR Institute of Biomedical Research, Inc., Harvard Medical School, 800 Huntington Avenue, Boston, Massachusetts 02115, USA.
| |
Collapse
|
184
|
Bernet J, Mullick J, Panse Y, Parab PB, Sahu A. Kinetic analysis of the interactions between vaccinia virus complement control protein and human complement proteins C3b and C4b. J Virol 2004; 78:9446-57. [PMID: 15308738 PMCID: PMC506936 DOI: 10.1128/jvi.78.17.9446-9457.2004] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The vaccinia virus complement control protein (VCP) is an immune evasion protein of vaccinia virus. Previously, VCP has been shown to bind and support inactivation of host complement proteins C3b and C4b and to protect the vaccinia virions from antibody-dependent complement-enhanced neutralization. However, the molecular mechanisms involved in the interaction of VCP with its target proteins C3b and C4b have not yet been elucidated. We have utilized surface plasmon resonance technology to study the interaction of VCP with C3b and C4b. We measured the kinetics of binding of the viral protein to its target proteins and compared it with human complement regulators factor H and sCR1, assessed the influence of immobilization of ligand on the binding kinetics, examined the effect of ionic contacts on these interactions, and sublocalized the binding site on C3b and C4b. Our results indicate that (i) the orientation of the ligand is important for accurate determination of the binding constants, as well as the mechanism of binding; (ii) in contrast to factor H and sCR1, the binding of VCP to C3b and C4b follows a simple 1:1 binding model and does not involve multiple-site interactions as predicted earlier; (iii) VCP has a 4.6-fold higher affinity for C4b than that for C3b, which is also reflected in its factor I cofactor activity; (iv) ionic interactions are important for VCP-C3b and VCP-C4b complex formation; (v) VCP does not bind simultaneously to C3b and C4b; and (vi) the binding site of VCP on C3b and C4b is located in the C3dg and C4c regions, respectively.
Collapse
Affiliation(s)
- John Bernet
- National Centre for Cell Science, Pune University Campus, Ganeshkhind, Pune, India
| | | | | | | | | |
Collapse
|
185
|
Moon BG, Takaki S, Miyake K, Takatsu K. The role of IL-5 for mature B-1 cells in homeostatic proliferation, cell survival, and Ig production. THE JOURNAL OF IMMUNOLOGY 2004; 172:6020-9. [PMID: 15128785 DOI: 10.4049/jimmunol.172.10.6020] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
B-1 cells, distinguishable from conventional B-2 cells by their cell surface marker, anatomical location, and self-replenishing activity, play an important role in innate immune responses. B-1 cells constitutively express the IL-5R alpha-chain (IL-5Ralpha) and give rise to Ab-producing cells in response to various stimuli, including IL-5 and LPS. Here we report that the IL-5/IL-5R system plays an important role in maintaining the number and the cell size as well as the functions of mature B-1 cells. The administration of anti-IL-5 mAb into wild-type mice, T cell-depleted mice, or mast cell-depleted mice resulted in reduction in the total number and cell size of B-1 cells to an extent similar to that of IL-5Ralpha-deficient (IL-5Ralpha(-/-)) mice. Cell transfer experiments have demonstrated that B-1 cell survival in wild-type mice and homeostatic proliferation in recombination-activating gene 2-deficient mice are impaired in the absence of IL-5Ralpha. IL-5 stimulation of wild-type B-1 cells, but not IL-5Ralpha(-/-) B-1 cells, enhances CD40 expression and augments IgM and IgG production after stimulation with anti-CD40 mAb. Enhanced IgA production in feces induced by the oral administration of LPS was not observed in IL-5Ralpha(-/-) mice. Our results illuminate the role of IL-5 in the homeostatic proliferation and survival of mature B-1 cells and in IgA production in the mucosal tissues.
Collapse
Affiliation(s)
- Byoung-gon Moon
- Division of Immunology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | | | | | | |
Collapse
|
186
|
Manderson AP, Botto M, Walport MJ. The role of complement in the development of systemic lupus erythematosus. Annu Rev Immunol 2004; 22:431-56. [PMID: 15032584 DOI: 10.1146/annurev.immunol.22.012703.104549] [Citation(s) in RCA: 380] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Complement has both beneficial and deleterious roles in the pathogenesis of systemic lupus erythematosus (SLE). On the one hand, patients with SLE present with decreased complement levels and with complement deposition in inflamed tissues, suggestive of a harmful role of complement in the effector phase of disease. On the other hand, homozygous deficiency of any of the classical pathway proteins is strongly associated with the development of SLE. There are two main hypotheses to explain these observations. The first invokes an important role for complement in the physiological waste-disposal mechanisms of dying cells and immune complexes. The second hypothesis is based around the role of complement in determining the activation thresholds of B and T lymphocytes, with the proposal that complement deficiency causes incomplete maintenance of peripheral tolerance. These two hypotheses are not mutually exclusive. In addition, there is evidence for a contribution from other genetic factors in determining the phenotype of disease in the absence of complement.
Collapse
Affiliation(s)
- Anthony P Manderson
- Rheumatology Section, Division of Medicine, Faculty of Medicine, Imperial College, Hammersmith Campus, London W12 0NN, United Kingdom.
| | | | | |
Collapse
|
187
|
Perrin-Cocon LA, Villiers CL, Salamero J, Gabert F, Marche PN. B cell receptors and complement receptors target the antigen to distinct intracellular compartments. THE JOURNAL OF IMMUNOLOGY 2004; 172:3564-72. [PMID: 15004157 DOI: 10.4049/jimmunol.172.6.3564] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The processing of exogenous Ags is an essential step for the generation of immunogenic peptides that will be presented to T cells. This processing relies on the efficient intracellular targeting of Ags, because it depends on the content of the compartments in which Ags are delivered in APCs. Opsonization of Ags by the complement component C3 strongly enhances their presentation by B cells and increases their immunogenicity in vivo. To investigate the role of C3 in the targeting of Ags, we compared the intracellular traffic of proteins internalized by complement receptor (CR) and B cell receptor (BCR) in B lymphocytes. Whereas both receptors are able to induce efficient Ag presentation, their intracellular pathways are different. CR ligand is delivered to compartments containing MHC class II molecules (MHC-II) but devoid of transferrin receptor and Lamp-2, whereas BCR rapidly targets its ligand toward Lamp-2-positive, late endosomal MHC-II-enriched compartments through intracellular vesicles containing transferrin receptor. CR and BCR are delivered to distinct endocytic pathways, and the kinetic evolution of the protein content of these pathways is very different. Both types of compartments contain MHC-II, but CR-targeted compartments receive less neosynthesized MHC-II than do BCR-targeted compartments. The targeting induced by CR toward compartments that are distinct from BCR-targeted compartments probably participates in C3 modulation of Ag presentation.
Collapse
Affiliation(s)
- Laure A Perrin-Cocon
- Laboratoire d'Immunochimie, Département de Réponse et Dynamique Cellulaires, Commissariat à l'Energie Atomique, Institut National de la Santé et de la Recherche Médicale, Unité 548, Université Joseph Fourier, Grenoble, France
| | | | | | | | | |
Collapse
|
188
|
Cunnion KM, Benjamin DK, Hester CG, Frank MM. Role of complement receptors 1 and 2 (CD35 and CD21), C3, C4, and C5 in survival by mice of staphylococcus aureus bacteremia. ACTA ACUST UNITED AC 2004; 143:358-65. [PMID: 15192652 DOI: 10.1016/j.lab.2004.03.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Complement-mediated opsonization and phagocytosis of encapsulated serotype 5 Staphylococcus aureus are essential to host defense. We describe the effects of complement depletion and deficiencies of C4, C5, and complement receptors 1 and 2 on mouse survival after intravenous exposure to S aureus. Depletion of complement proteins in C57BL/6 mice with the use of cobra-venom factor decreased survival compared with that of controls after the induction of bacteremia with mucoid (90% mortality), encapsulated (73%), and unencapsulated (59%) S aureus strains. In this model complement is even more important in the control of infection with encapsulated S aureus (80% of clinical isolates) than in the control of infection by unencapsulated strains. C4-deficient mice demonstrated similar mortality from bacteremia caused by encapsulated S aureus compared with controls, suggesting that in the unimmunized animal the alternative complement pathway contributes more to control of bacteremia caused by encapsulated S aureus than the classical complement pathway or mannan-binding lectin pathway. C5-deficient mice (B10.D2-H2(d) H2-T18(c) Hc(0)/oSnJ) showed similar mortality when subjected to bacteremia caused by encapsulated S aureus compared with C5-sufficient (B10.D2-Hc(1) H2(d) H2-T18(c)/nSnJ) mice, suggesting that in this model the anaphylatoxin C5a and the late complement cascade are not critical to survival of bacteremia induced with the use of these strains. However, C5-deficient mice depleted of C3 with the use of cobra-venom factor had 60% decreased survival compared with untreated C5-deficient mice with bacteremia induced by encapsulated S aureus, suggesting that in this model C3 is more critical than C5 in controlling S aureus bacteremia. Complement receptor 1 (CD35) is the primary receptor for the opsonin C3b. Mice deficient in CD35/CD21 showed a 67% decrease in survival compared with normal mice, suggesting that CD35/CD21 is of major importance in the control of S aureus-induced bacteremia.
Collapse
Affiliation(s)
- Kenji M Cunnion
- Department of Pediatrics and Duke Clinical Research Institue, Duke University Medical Center, Durham, NC, USA.
| | | | | | | |
Collapse
|
189
|
Haas KM, Toapanta FR, Oliver JA, Poe JC, Weis JH, Karp DR, Bower JF, Ross TM, Tedder TF. Cutting Edge: C3d Functions as a Molecular Adjuvant in the Absence of CD21/35 Expression. THE JOURNAL OF IMMUNOLOGY 2004; 172:5833-7. [PMID: 15128761 DOI: 10.4049/jimmunol.172.10.5833] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Complement component C3 covalently attaches to Ags following activation, where the C3d cleavage fragment can function as a molecular adjuvant to augment humoral immune responses. C3d is proposed to exert its adjuvant-like activities by targeting Ags to the C3d receptor (CD21/35) expressed by B cells and follicular dendritic cells. To directly assess the importance of CD21/35 in mediating the immunostimulatory effects of C3d, CD21/35-deficient (CD21/35(-/-)) mice were immunized with streptavidin (SA), SA-C3dg tetramers, recombinant HIV gp120 (gp120), or gp120 fused with linear multimers of C3d. Remarkably, SA- and gp120-specific Ab responses were significantly augmented in CD21/35(-/-) mice when these Ags were complexed with C3d in comparison to Ag alone. In fact, primary and secondary Ab responses and Ab-forming cell responses of CD21/35(-/-) mice approached those of wild-type mice immunized with SA-C3dg and gp120-C3d. Thus, C3d can function as a molecular adjuvant in the absence of CD21/35 expression.
Collapse
MESH Headings
- Adjuvants, Immunologic/administration & dosage
- Adjuvants, Immunologic/physiology
- Animals
- Antibodies, Bacterial/biosynthesis
- Bacterial Vaccines/administration & dosage
- Bacterial Vaccines/immunology
- Complement C3d/administration & dosage
- Complement C3d/physiology
- HIV Antibodies/biosynthesis
- HIV Envelope Protein gp120/administration & dosage
- HIV Envelope Protein gp120/immunology
- HIV-1/immunology
- Immunization, Secondary
- Injections, Intravenous
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Receptors, Complement 3b/deficiency
- Receptors, Complement 3b/genetics
- Receptors, Complement 3b/physiology
- Receptors, Complement 3d/deficiency
- Receptors, Complement 3d/genetics
- Receptors, Complement 3d/physiology
- Streptavidin/administration & dosage
- Streptavidin/immunology
- Vaccines, Combined/administration & dosage
- Vaccines, Combined/immunology
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/immunology
Collapse
Affiliation(s)
- Karen M Haas
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
190
|
Verschoor A, Brockman MA, Gadjeva M, Knipe DM, Carroll MC. Myeloid C3 determines induction of humoral responses to peripheral herpes simplex virus infection. THE JOURNAL OF IMMUNOLOGY 2004; 171:5363-71. [PMID: 14607939 DOI: 10.4049/jimmunol.171.10.5363] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The complement system, in addition to its role in innate immunity, is an important regulator of the B cell response. Complement exists predominantly in the circulation and although the primary source is hepatic, multiple additional cellular sources have been described that can contribute substantially to the complement pool. To date, however, complement produced by these secondary sources has been deemed redundant to that secreted by the liver. In contrast, using a bone marrow chimeric model, we observed that C3 synthesis by myeloid cells, a relatively minor source of complement, provided a critical function during the induction of humoral responses to peripheral HSV infection. Anti-viral Ab, as generated in an efficient humoral response, has been associated with protection from severe consequences of HSV dissemination. This report offers insight into the generation of the adaptive immune response in the periphery and describes a unique role for a nonhepatic complement source.
Collapse
Affiliation(s)
- Admar Verschoor
- Center for Blood Research, Boston, MA 02115. Pathology, Pediatrics, and Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
191
|
Hemler ME. Tetraspanin proteins mediate cellular penetration, invasion, and fusion events and define a novel type of membrane microdomain. Annu Rev Cell Dev Biol 2004; 19:397-422. [PMID: 14570575 DOI: 10.1146/annurev.cellbio.19.111301.153609] [Citation(s) in RCA: 661] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This review summarizes key aspects of tetraspanin proteins, with a focus on the functional relevance and structural features of these proteins and how they are organized into a novel type of membrane microdomain. Despite the size of the tetraspanin family and their abundance and wide distribution over many cell types, most have not been studied. However, from studies of prototype tetraspanins, information regarding functions, cell biology, and structural organization has begun to emerge. Genetic evidence points to critical roles for tetraspanins on oocytes during fertilization, in fungi during leaf invasion, in Drosophila embryos during neuromuscular synapse formation, during T and B lymphocyte activation, in brain function, and in retinal degeneration. From structure and mutagenesis studies, we are beginning to understand functional subregions within tetraspanins, as well as the levels of connections among tetraspanins and their many associated proteins. Tetraspanin-enriched microdomains (TEMs) are emerging as entities physically and functionally distinct from lipid rafts. These microdomains now provide a context in which to evaluate tetraspanins in the regulation of growth factor signaling and in the modulation of integrin-mediated post-cell adhesion events. Finally, the enrichment of tetraspanins within secreted vesicles called exosomes, coupled with hints that tetraspanins may regulate vesicle fusion and/or fission, suggests exciting new directions for future research.
Collapse
Affiliation(s)
- Martin E Hemler
- Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA.
| |
Collapse
|
192
|
Abstract
The complement system is comprised of a number of serum and membrane-bound proteins that play an important role in the elimination of foreign microorganisms while protecting the host organism from complement-related damage. Complement has also been shown to participate in the generation of normal humoral immune responses to foreign antigens. Recent studies suggest that the functions of complement may be extended to include the maintenance of B cell tolerance. Complement receptor 2 (CR2/CD21) has been implicated in lupus susceptibility in both humans and animal models of disease. Located primarily on B cells and follicular dendritic cells, CR2 binds C3 degradation products that have become covalently bound to antigen or immune complexes in the process of complement activation. The mechanism by which CR2 might regulate B cell reactivity to autoantigens has not been elucidated, but may involve direct effects on B cell tolerance or indirect effects on T cell tolerance.
Collapse
Affiliation(s)
- Susan A Boackle
- University of Colorado, Health Sciences Center, 4200 East Ninth Avenue, Box B115, Denver, CO 80262, USA.
| |
Collapse
|
193
|
Abstract
Our body is in constant interaction with the environment. Some of the interactions involve the recognition and disposal of foreign substances that may harm the delicate balance between health and disease. The foreign elements, or antigens, include infectious organisms and lifeless macromolecules. The ability of the body to recognize what is dangerous and what is inconsequential, and to refrain from damaging what is perceived as self, are the main functions of the immune system. One important component of the innate immune response is the complement system. This article describes the different mechanisms of how complement is activated and the consequence of this activation, followed by a characterization of the complement's role in inflammation and autoimmunity, and the therapeutic considerations emanating from these studies.
Collapse
Affiliation(s)
- Hector Molina
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, Box 8045, CSRB 6604, 4940 Parkview Place, St. Louis, MO 63110, USA.
| |
Collapse
|
194
|
Kaye J, Bagley J, Malkowski D, Iacomini J. The role of complement receptors in production of antibodies specific for Gal??1,3Gal. Transplantation 2004; 77:314-6. [PMID: 14743001 DOI: 10.1097/01.tp.0000101008.13282.fd] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
By using alpha-galactosyl transferase knockout (GT-/-) mice, which make natural alphaGal-reactive antibodies, we examined the role of complement receptors in the production of alphaGal-specific antibodies. GT-/- mice were crossed with complement receptor 2 loci knockout mice to generate double knockout (DKO) mice. alphaGal-specific natural antibodies were detectable by enzyme-linked immunosorbent assay in the serum of GT-/- mice by 9 weeks of age. In contrast, only low titers of alphaGal-specific natural antibodies were detectable only in the serum of older DKO mice. Serum titers of alphaGal-reactive antibodies in GT-/- mice increased significantly after immunization with pig cells. In contrast, immunization had little effect on alphaGal-reactive antibody levels in DKO mice. Similarly, pretreatment of GT-/- mice with a blocking antibody to CD21 and CD35 inhibited production of alphaGal-reactive antibodies after immunization. However, DKO mice were able to make alphaGal-specific antibodies after secondary immunization. Thus, Cr2 loci-encoded receptors seem to be directly involved in the production of primary alphaGal-reactive antibodies.
Collapse
Affiliation(s)
- Joel Kaye
- Transplantation Biology Research Center, Massachusetts General Hospital, MGH-East, Building 149, 13th Street, Boston, MA 02129, USA
| | | | | | | |
Collapse
|
195
|
Elliott MK, Jarmi T, Ruiz P, Xu Y, Holers VM, Gilkeson GS. Effects of complement factor D deficiency on the renal disease of MRL/lpr mice. Kidney Int 2004; 65:129-38. [PMID: 14675043 DOI: 10.1111/j.1523-1755.2004.00371.x] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND The alternative complement pathway (AP) is activated in individuals with lupus nephritis and in murine models of systemic lupus erythematosus, including MRL/lpr mice. A previous study from our laboratory evaluated the development of renal disease in MRL/lpr mice genetically deficient in factor B (Bf-/-), a protein necessary for AP activation. MRL/lpr Bf-/- mice developed less renal disease and had improved survival; however, these mice were also a different major histocompatibility complex (MHC) haplotype (H-2b) than their wild-type littermates (H-2k) due to the gene for Bf being located in the MHC gene complex. We undertook the current study to determine if the decreased renal disease in MRL/lpr Bf-/- mice was due to the lack of AP activation or the H-2b haplotype by studying the effects of factor D (Df) deficiency, a critical protein for AP activation, on disease development in MRL/lpr mice. METHODS Df-deficient mice were backcrossed with MRL/lpr mice for four to nine generations. MRL/lpr H-2k Df-/-, Df+/-, and Df+/+ littermates were evaluated for disease development. Lack of AP activation in MRL/lpr Df-/- mice was determined by the zymosan assay. Serum creatinine levels were measured using a creatinine kit. Proteinuria and autoantibody levels were determined by enzyme-linked immunosorbent assay (ELISA). Sections from one kidney were stained with fluorescein isothiocyanate (FITC) alpha-murine C3 or alpha-murine IgG to detect C3 and IgG deposition. The remaining kidney was cut in half with one half fixed, sectioned, and stained with hematoxylin and eosin and periodic acid-Schiff (PAS) to evaluate pathology and another half fixed in glutaraldehyde and examined via electron microscopy. RESULTS MRL/lpr Df-/- mice had similar glomerular IgG deposition, proteinuria and autoantibody levels, as Df+/+ and Df+/- littermates. However, glomerular C3 deposition, serum creatinine levels, and pathologic renal disease were significantly reduced in Df-/- mice. Despite the lack of renal disease in Df-/- mice, life span was not impacted by factor D deficiency. CONCLUSION The absence of Df and AP activation is protective against the development of proliferative renal disease in MRL/lpr mice suggesting the similar effect of Bf deficiency in MRL/lpr mice was also due to the lack of AP activation.
Collapse
Affiliation(s)
- Margaret K Elliott
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | | | | | | | | | | |
Collapse
|
196
|
Kouki P, Marsh JE, Sacks SH, Sheerin NS. Autoimmune Renal Injury in C3- and C4-Deficient Mice: A Histological and Functional Study. ACTA ACUST UNITED AC 2004; 96:e14-22. [PMID: 14752244 DOI: 10.1159/000075572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2003] [Accepted: 09/12/2003] [Indexed: 11/19/2022]
Abstract
BACKGROUND Complement deficiency predisposes to autoimmune renal disease. Since complement deficient mice are increasingly used to study the immunopathogenesis of renal disease we have determined whether mice deficient in C3 or C4 are susceptible to spontaneous immune-mediated renal injury. METHODS C3-deficient, C4-deficient and complement-sufficient, wild-type mice were maintained in standard conditions for 1 year at which stage renal function, renal histology, circulating antibody and autoantibody levels were assessed. RESULTS No significant decline in renal function was demonstrated in the complement-deficient mice. However, there was histological evidence of glomerular injury in both the C3- and C4-deficient mice, but of insufficient severity to alter function. Serum IgG2a concentration was significantly lower in C3- and C4-deficient mice. In contrast C3-deficient mice had higher concentrations of serum IgG2b. There was a tendency for mice from all groups, including the complement-sufficient mice, to develop autoantibodies. C4-deficient mice had higher titres of anti-dsDNA IgG but otherwise deficient mice had similar autoantibody titres to controls. CONCLUSION We conclude that C4-deficient mice demonstrate a small increase in autoantibody production at 1 year of age compared to C3-deficient and wild-type mice. Furthermore, although complement-deficient mice exhibit glomerular changes, they are of minor functional significance, and are unlikely to affect the study of experimentally induced renal disease in these mice.
Collapse
Affiliation(s)
- P Kouki
- Department of Nephrology and Transplantation, Guy's Hospital, King's College London, London, UK
| | | | | | | |
Collapse
|
197
|
Jelezarova E, Luginbuehl A, Lutz HU. C3b2-IgG Complexes Retain Dimeric C3 Fragments at All Levels of Inactivation. J Biol Chem 2003; 278:51806-12. [PMID: 14527961 DOI: 10.1074/jbc.m304613200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
C3b2-IgG complexes are formed during complement activation in serum by attachment of two C3b molecules (the proteolytically activated form of C3) to one IgG heavy chain (IgG HC) via ester bonds. Because of the presence of two C3b molecules, these complexes are very efficient activators of the alternative complement pathway. Likewise, dimeric C3b is known to enhance complement receptor 1-dependent phagocytosis, and dimeric C3d (the smallest thioester-containing fragment of C3) linked to a protein antigen facilitates CR2-dependent B-cell proliferation. Because the efficiency of all these interactions depends on the number of C3 fragments, we investigated whether C3b2-IgG complexes retained dimeric structure upon physiological inactivation. We used two-dimensional SDS-PAGE and Western blot to study the arrangement of the C3b molecules by analyzing the fragmentation pattern after cleavage of the ester bonds. Upon inactivation with factors H and I, a 185-kDa band was generated under reducing conditions. It released IgG HC and the 65-kDa fragment of C3b alpha' chain after hydrolysis of the ester bonds with hydroxylamine. The two C3b molecules were not 65-kDa-to-40-kDa linked, because neither ester-bonded 65 kDa HC nor 65 kDa-40 kDa fragments were observed, nor was a 40-kDa peptide released after hydroxylamine cleavage. Factor I and CR1 cleaved the C3b2-IgG molecule to its final physiological product, C3dg2-IgG, which migrated as a 133-kDa fragment in reduced form. This fragment released exclusively C3dg (the final physiological product of C3b inactivation by factor I) and IgG HC. C3dg2-HC appeared as a double band on SDS-PAGE only at low gel porosity, suggesting the presence of two conformers of the same composition. Our results suggest that, upon physiological inactivation, C3b2-IgG complexes retain dimeric inactivated C3b and C3dg, which allows bivalent binding to the corresponding complement receptors.
Collapse
Affiliation(s)
- Emiliana Jelezarova
- Institute of Biochemistry, Swiss Federal Institute of Technology, CH-8093 Zurich, Switzerland.
| | | | | |
Collapse
|
198
|
Vongwiwatana A, Tasanarong A, Hidalgo LG, Halloran PF. The role of B cells and alloantibody in the host response to human organ allografts. Immunol Rev 2003; 196:197-218. [PMID: 14617206 DOI: 10.1046/j.1600-065x.2003.00093.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Some human organ transplants deteriorate slowly over a period of years, often developing characteristic syndromes: transplant glomerulopathy (TG) in kidneys, bronchiolitis obliterans in lungs, and coronary artery disease in hearts. In the past, we attributed late graft deterioration to "chronic rejection", a distinct but mysterious immunologic process different from conventional rejection. However, it is likely that much of chronic rejection is explained by conventional T-cell-mediated rejection (TMR), antibody-mediated rejection (AMR), and other insults. Recently, criteria have emerged to now permit us to diagnose AMR in kidney transplants, particularly C4d deposition in peritubular capillaries and circulating antibody against donor human leukocyte antigens (HLA). Some cases with AMR develop TG, although the relationship of TG to AMR is complex. Thus, a specific diagnosis of AMR in kidney can now be made, based on graft damage, C4d deposition, and donor-specific alloantibodies. Criteria for AMR in other organs must be defined. Not all late rejections are AMR; some deteriorating organs probably have smoldering TMR. The diagnosis of late ongoing AMR raises the possibility of treatment to suppress the alloantibody, but efficacy of the available treatments requires further study.
Collapse
Affiliation(s)
- Attapong Vongwiwatana
- Department of Medicine, Division of Nephrology & Transplantation Immunology, University of Alberta, 250 Heritage Medical Research Center, Edmonton, Alberta, Canada T6G 2S2
| | | | | | | |
Collapse
|
199
|
Haberman AM, Shlomchik MJ. Reassessing the function of immune-complex retention by follicular dendritic cells. Nat Rev Immunol 2003; 3:757-64. [PMID: 12949499 DOI: 10.1038/nri1178] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The close association of follicular dendritic cells (FDCs) and germinal-centre B cells has fostered the idea that B-cell recognition of retained antigen that is presented on the surface of FDCs is important for affinity maturation and memory B-cell development. We argue that the retention of immune complexes is not required for germinal-centre development, affinity maturation and memory B-cell maintenance. Instead, it is probable that FDCs support B-cell proliferation and differentiation in a non-specific manner. Other potential roles of immune complexes retained by FDCs are discussed.
Collapse
Affiliation(s)
- Ann M Haberman
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, Connecticut 06510, USA.
| | | |
Collapse
|
200
|
Abstract
Follicular dendritic cells (FDCs), which reside in the primary B-cell follicles and germinal centres of lymphoid tissues, can sequester antigen in the form of immune complexes and are thought to be pivotal to the germinal-centre reaction and the maintenance of immunological memory. But, many recent studies question the importance of FDCs and their bound immune complexes in B-cell responses. This article asks whether we can truly rule out a requirement for these cells in host defence.
Collapse
|