151
|
Kapoor-Vazirani P, Vertino PM. A dual role for the histone methyltransferase PR-SET7/SETD8 and histone H4 lysine 20 monomethylation in the local regulation of RNA polymerase II pausing. J Biol Chem 2014; 289:7425-37. [PMID: 24459145 DOI: 10.1074/jbc.m113.520783] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
RNA polymerase II (Pol II) promoter-proximal pausing plays a critical role in postinitiation transcriptional regulation at many metazoan genes. We showed recently that histone H4 lysine 16 acetylation (H4K16Ac), mediated by the MSL complex, facilitates the release of paused Pol II. In contrast, H4 lysine 20 trimethylation (H4K20me3), mediated by SUV420H2, enforces Pol II pausing by inhibiting MSL recruitment. However, how the balance between H4K16Ac and H4K20me3 is locally regulated remains unclear. Here, we demonstrate that PR-SET7/SETD8, which monomethylates histone H4 lysine 20 (H4K20me1), controls both H4K16Ac and H4K20me3 and in doing so, regulates Pol II pausing dynamics. We find that PR-SET7-mediated H4K20me1 is necessary for the recruitment of the MSL complex, subsequent H4K16Ac, and release of Pol II into active elongation. Although dispensable for SUV420H2 recruitment, PR-SET7-mediated H4K20me1 is required for H4K20me3. Although depletion of SUV420H2 is sufficient to deplete H4K20me3 and relieve an H4K20me3-induced pause, pausing is maintained in the absence of PR-SET7 despite H4K20me3 depletion because of an inability to recruit the MSL complex in the absence of H4K20me1. These findings highlight the requirement for PR-SET7 and H4K20me1 in establishing both the H4K16Ac and H4K20me3 marks and point to a dual role in the local regulation of Pol II pausing.
Collapse
Affiliation(s)
- Priya Kapoor-Vazirani
- From the Department of Radiation Oncology and the Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia 30322
| | | |
Collapse
|
152
|
Abstract
Most transcription factors specify the subset of genes that will be actively transcribed in the cell by stimulating transcription initiation at these genes, but MYC has a fundamentally different role. MYC binds E-box sites in the promoters of active genes and stimulates recruitment of the elongation factor P-TEFb and thus transcription elongation. Consequently, rather than specifying the set of genes that will be transcribed in any particular cell, MYC's predominant role is to increase the production of transcripts from active genes. This increase in the transcriptional output of the cell's existing gene expression program, called transcriptional amplification, has a profound effect on proliferation and other behaviors of a broad range of cells. Transcriptional amplification may reduce rate-limiting constraints for tumor cell proliferation and explain MYC's broad oncogenic activity among diverse tissues.
Collapse
Affiliation(s)
- Peter B Rahl
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142
| | | |
Collapse
|
153
|
Transcription factors mediate the enzymatic disassembly of promoter-bound 7SK snRNP to locally recruit P-TEFb for transcription elongation. Cell Rep 2013; 5:1256-68. [PMID: 24316072 DOI: 10.1016/j.celrep.2013.11.003] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 10/02/2013] [Accepted: 11/02/2013] [Indexed: 12/19/2022] Open
Abstract
The transition from transcription initiation into elongation is controlled by transcription factors, which recruit positive transcription elongation factor b (P-TEFb) to promoters to phosphorylate RNA polymerase II. A fraction of P-TEFb is recruited as part of the inhibitory 7SK small nuclear ribonucleoprotein particle (snRNP), which inactivates the kinase and prevents elongation. However, it is unclear how P-TEFb is captured from the promoter-bound 7SK snRNP to activate elongation. Here, we describe a mechanism by which transcription factors mediate the enzymatic release of P-TEFb from the 7SK snRNP at promoters to trigger activation in a gene-specific manner. We demonstrate that Tat recruits PPM1G/PP2Cγ to locally disassemble P-TEFb from the 7SK snRNP at the HIV promoter via dephosphorylation of the kinase T loop. Similar to Tat, nuclear factor (NF)-κB recruits PPM1G in a stimulus-dependent manner to activate elongation at inflammatory-responsive genes. Recruitment of PPM1G to promoter-assembled 7SK snRNP provides a paradigm for rapid gene activation through transcriptional pause release.
Collapse
|
154
|
Ratman D, Vanden Berghe W, Dejager L, Libert C, Tavernier J, Beck IM, De Bosscher K. How glucocorticoid receptors modulate the activity of other transcription factors: a scope beyond tethering. Mol Cell Endocrinol 2013; 380:41-54. [PMID: 23267834 DOI: 10.1016/j.mce.2012.12.014] [Citation(s) in RCA: 291] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 12/13/2012] [Accepted: 12/16/2012] [Indexed: 01/11/2023]
Abstract
The activity of the glucocorticoid receptor (GR), a nuclear receptor transcription factor belonging to subclass 3C of the steroid/thyroid hormone receptor superfamily, is typically triggered by glucocorticoid hormones. Apart from driving gene transcription via binding onto glucocorticoid response elements in regulatory regions of particular target genes, GR can also inhibit gene expression via transrepression, a mechanism largely based on protein:protein interactions. Hereby GR can influence the activity of other transcription factors, without contacting DNA itself. GR is known to inhibit the activity of a growing list of immune-regulating transcription factors. Hence, GCs still rule the clinic for treatments of inflammatory disorders, notwithstanding concomitant deleterious side effects. Although patience is a virtue when it comes to deciphering the many mechanisms GR uses to influence various signaling pathways, the current review is testimony of the fact that groundbreaking mechanistic work has been accumulating over the past years and steadily continues to grow.
Collapse
Affiliation(s)
- Dariusz Ratman
- Cytokine Receptor Lab, VIB Department of Medical Protein Research, VIB, UGent, Albert Baertsoenkaai 3, B-9000 Gent, Belgium.
| | | | | | | | | | | | | |
Collapse
|
155
|
Stable pausing by RNA polymerase II provides an opportunity to target and integrate regulatory signals. Mol Cell 2013; 52:517-28. [PMID: 24184211 DOI: 10.1016/j.molcel.2013.10.001] [Citation(s) in RCA: 179] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 09/03/2013] [Accepted: 09/26/2013] [Indexed: 01/17/2023]
Abstract
Metazoan gene expression is often regulated after the recruitment of RNA polymerase II (Pol II) to promoters, through the controlled release of promoter-proximally paused Pol II into productive RNA synthesis. Despite the prevalence of paused Pol II, very little is known about the dynamics of these early elongation complexes or the fate of the short transcription start site-associated (tss) RNAs they produce. Here, we demonstrate that paused elongation complexes can be remarkably stable, with half-lives exceeding 15 min at genes with inefficient pause release. Promoter-proximal termination by Pol II is infrequent, and released tssRNAs are targeted for rapid degradation. Further, we provide evidence that the predominant tssRNA species observed are nascent RNAs held within early elongation complexes. We propose that stable pausing of polymerase provides a temporal window of opportunity for recruitment of factors to modulate gene expression and that the nascent tssRNA represents an appealing target for these interactions.
Collapse
|
156
|
Abstract
Despite significant advances in our understanding of HIV, a cure has not been realized for the more than 34 million infected with this virus. HIV is incurable because infected individuals harbor cells where the HIV provirus is integrated into the host's DNA but is not actively replicating and thus is not inhibited by antiviral drugs. Similarly, these latent viruses are not detected by the immune system. In this Review, we discuss HIV-1 latency and the mechanisms that allow this pathogenic retrovirus to hide and persist by exploiting the cellular vehicles of immunological memory.
Collapse
Affiliation(s)
- Debbie S Ruelas
- Gladstone Institute of Virology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA; Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA
| | | |
Collapse
|
157
|
Freaney JE, Kim R, Mandhana R, Horvath CM. Extensive cooperation of immune master regulators IRF3 and NFκB in RNA Pol II recruitment and pause release in human innate antiviral transcription. Cell Rep 2013; 4:959-73. [PMID: 23994473 PMCID: PMC3792498 DOI: 10.1016/j.celrep.2013.07.043] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 07/16/2013] [Accepted: 07/29/2013] [Indexed: 11/29/2022] Open
Abstract
Transcription factors interferon regulatory factor 3 (IRF3) and nuclear factor κB (NFκB) are activated by external stimuli, including virus infection, to translocate to the nucleus and bind genomic targets important for immunity and inflammation. To investigate RNA polymerase II (Pol II) recruitment and elongation in the human antiviral gene regulatory network, a comprehensive genome-wide analysis was conducted during the initial phase of virus infection. Results reveal extensive integration of IRF3 and NFκB with Pol II and associated machinery and implicate partners for antiviral transcription. Analysis indicates that both de novo polymerase recruitment and stimulated release of paused polymerase work together to control virus-induced gene activation. In addition to known messenger-RNA-encoding loci, IRF3 and NFκB stimulate transcription at regions not previously associated with antiviral transcription, including abundant unannotated loci that encode novel virus-inducible RNAs (nviRNAs). These nviRNAs are widely induced by virus infections in diverse cell types and represent a previously overlooked cellular response to virus infection.
Collapse
Affiliation(s)
- Jonathan E. Freaney
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60201, USA
| | - Rebecca Kim
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60201, USA
| | - Roli Mandhana
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60201, USA
| | - Curt M. Horvath
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60201, USA
| |
Collapse
|
158
|
Abstract
Elongation is becoming increasingly recognized as a critical step in eukaryotic transcriptional regulation. Although traditional genetic and biochemical studies have identified major players of transcriptional elongation, our understanding of the importance and roles of these factors is evolving rapidly through the recent advances in genome-wide and single-molecule technologies. Here, we focus on how elongation can modulate the transcriptional outcome through the rate-liming step of RNA polymerase II (Pol II) pausing near promoters and how the participating factors were identified. Among the factors we describe are the pausing factors--NELF (negative elongation factor) and DSIF (DRB sensitivity-inducing factor)--and P-TEFb (positive elongation factor b), which is the key player in pause release. We also describe the high-resolution view of Pol II pausing and propose nonexclusive models for how pausing is achieved. We then discuss Pol II elongation through the bodies of genes and the roles of FACT and SPT6, factors that allow Pol II to move through nucleosomes.
Collapse
Affiliation(s)
- Hojoong Kwak
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853-2703; ,
| | | |
Collapse
|
159
|
Affiliation(s)
- Dirk Eick
- Department of Molecular Epigenetics, Helmholtz Center Munich and Center for Integrated Protein Science Munich (CIPSM), Marchioninistrasse 25, 81377 Munich,
Germany
| | - Matthias Geyer
- Center of Advanced European Studies and Research, Group Physical Biochemistry,
Ludwig-Erhard-Allee 2, 53175 Bonn, Germany
| |
Collapse
|
160
|
Glucocorticoid receptor represses proinflammatory genes at distinct steps of the transcription cycle. Proc Natl Acad Sci U S A 2013; 110:14616-21. [PMID: 23950223 DOI: 10.1073/pnas.1309898110] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Widespread anti-inflammatory actions of glucocorticoid hormones are mediated by the glucocorticoid receptor (GR), a ligand-dependent transcription factor of the nuclear receptor superfamily. In conjunction with its corepressor GR-interacting protein-1 (GRIP1), GR tethers to the DNA-bound activator protein-1 and NF-κB and represses transcription of their target proinflammatory cytokine genes. However, these target genes fall into distinct classes depending on the step of the transcription cycle that is rate-limiting for their activation: Some are controlled through RNA polymerase II (PolII) recruitment and initiation, whereas others undergo signal-induced release of paused elongation complexes into productive RNA synthesis. Whether these genes are differentially regulated by GR is unknown. Here we report that, at the initiation-controlled inflammatory genes in primary macrophages, GR inhibited LPS-induced PolII occupancy. In contrast, at the elongation-controlled genes, GR did not affect PolII recruitment or transcription initiation but promoted, in a GRIP1-dependent manner, the accumulation of the pause-inducing negative elongation factor. Consistently, GR-dependent repression of elongation-controlled genes was abolished specifically in negative elongation factor-deficient macrophages. Thus, GR:GRIP1 use distinct mechanisms to repress inflammatory genes at different stages of the transcription cycle.
Collapse
|
161
|
Proserpio V, Fittipaldi R, Ryall JG, Sartorelli V, Caretti G. The methyltransferase SMYD3 mediates the recruitment of transcriptional cofactors at the myostatin and c-Met genes and regulates skeletal muscle atrophy. Genes Dev 2013; 27:1299-312. [PMID: 23752591 DOI: 10.1101/gad.217240.113] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Elucidating the epigenetic mechanisms underlying muscle mass determination and skeletal muscle wasting holds the potential of identifying molecular pathways that constitute possible drug targets. Here, we report that the methyltransferase SMYD3 modulates myostatin and c-Met transcription in primary skeletal muscle cells and C2C12 myogenic cells. SMYD3 targets the myostatin and c-Met genes and participates in the recruitment of the bromodomain protein BRD4 to their regulatory regions through protein-protein interaction. By recruiting BRD4, SMYD3 favors chromatin engagement of the pause-release factor p-TEFb (positive transcription elongation factor) and elongation of Ser2-phosphorylated RNA polymerase II (PolIISer2P). Reducing SMYD3 decreases myostatin and c-Met transcription, thus protecting from glucocorticoid-induced myotube atrophy. Supporting functional relevance of the SMYD3/BRD4 interaction, BRD4 pharmacological blockade by the small molecule JQ1 prevents dexamethasone-induced myostatin and atrogene up-regulation and spares myotube atrophy. Importantly, in a mouse model of dexamethasone-induced skeletal muscle atrophy, SMYD3 depletion prevents muscle loss and fiber size decrease. These findings reveal a mechanistic link between SMYD3/BRD4-dependent transcriptional regulation, muscle mass determination, and skeletal muscle atrophy and further encourage testing of small molecules targeting specific epigenetic regulators in animal models of muscle wasting.
Collapse
|
162
|
Wang W, Yao X, Huang Y, Hu X, Liu R, Hou D, Chen R, Wang G. Mediator MED23 regulates basal transcription in vivo via an interaction with P-TEFb. Transcription 2013; 4:39-51. [PMID: 23340209 DOI: 10.4161/trns.22874] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The Mediator is a multi-subunit complex that transduces regulatory information from transcription regulators to the RNA polymerase II apparatus. Growing evidence suggests that Mediator plays roles in multiple stages of eukaryotic transcription, including elongation. However, the detailed mechanism by which Mediator regulates elongation remains elusive. In this study, we demonstrate that Mediator MED23 subunit controls a basal level of transcription by recruiting elongation factor P-TEFb, via an interaction with its CDK9 subunit. The mRNA level of Egr1, a MED23-controlled model gene, is reduced 4-5 fold in Med23 (-/-) ES cells under an unstimulated condition, but Med23-deficiency does not alter the occupancies of RNAP II, GTFs, Mediator complex, or activator ELK1 at the Egr1 promoter. Instead, Med23 depletion results in a significant decrease in P-TEFb and RNAP II (Ser2P) binding at the coding region, but no changes for several other elongation regulators, such as DSIF and NELF. ChIP-seq revealed that Med23-deficiency partially reduced the P-TEFb occupancy at a set of MED23-regulated gene promoters. Further, we demonstrate that MED23 interacts with CDK9 in vivo and in vitro. Collectively, these results provide the mechanistic insight into how Mediator promotes RNAP II into transcription elongation.
Collapse
Affiliation(s)
- Wei Wang
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | | | | | | | | | | | | | | |
Collapse
|
163
|
Lew QJ, Chu KL, Chia YL, Cheong N, Chao SH. HEXIM1, a New Player in the p53 Pathway. Cancers (Basel) 2013; 5:838-56. [PMID: 24202322 PMCID: PMC3795367 DOI: 10.3390/cancers5030838] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 06/24/2013] [Accepted: 06/24/2013] [Indexed: 01/10/2023] Open
Abstract
Hexamethylene bisacetamide-inducible protein 1 (HEXIM1) is best known as the inhibitor of positive transcription elongation factor b (P-TEFb), which controls transcription elongation of RNA polymerase II and Tat transactivation of human immunodeficiency virus. Besides P-TEFb, several proteins have been identified as HEXIM1 binding proteins. It is noteworthy that more than half of the HEXIM1 binding partners are involved in cancers. P53 and two key regulators of the p53 pathway, nucleophosmin (NPM) and human double minute-2 protein (HDM2), are among the factors identified. This review will focus on the functional importance of the interactions between HEXIM1 and p53/NPM/HDM2. NPM and the cytoplasmic mutant of NPM, NPMc+, were found to regulate P-TEFb activity and RNA polymerase II transcription through the interaction with HEXIM1. Importantly, more than one-third of acute myeloid leukemia (AML) patients carry NPMc+, suggesting the involvement of HEXIM1 in tumorigenesis of AML. HDM2 was found to ubiquitinate HEXIM1. The HDM2-mediated ubiquitination of HEXIM1 did not lead to protein degradation of HEXIM1 but enhanced its inhibitory activity on P-TEFb. Recently, HEXIM1 was identified as a novel positive regulator of p53. HEXIM1 prevented p53 ubiquitination by competing with HDM2 in binding to p53. Taken together, the new evidence suggests a role of HEXIM1 in regulating the p53 pathway and tumorigenesis.
Collapse
Affiliation(s)
- Qiao Jing Lew
- Expression Engineering Group, Bioprocessing Technology Institute, A*STAR (Agency for Science, Technology and Research), 20 Biopolis Way, #06-01, Singapore 138668, Singapore.
| | | | | | | | | |
Collapse
|
164
|
Henriques T, Adelman K. Catching the waves: following the leading edge of elongating RNA polymerase II. Mol Cell 2013; 50:159-60. [PMID: 23622514 DOI: 10.1016/j.molcel.2013.04.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
By precisely tracking the waves of elongating RNA polymerase II (Pol II) during gene activation, Danko et al. (2013), in this issue of Molecular Cell, discovered a surprising diversity of elongation rates among and along human genes.
Collapse
Affiliation(s)
- Telmo Henriques
- Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | | |
Collapse
|
165
|
Abstract
The HIV/AIDS field is gaining momentum in the goal of finding a functional cure for HIV infection by utilizing strategies that specifically reactivate the latent viral reservoir in combination with the HAART regimen to prevent further viral spread. Small-molecule inhibitors such as histone deacetylase (HDAC) and bromodomain and extraterminal (BET) inhibitors can successfully activate HIV transcription and reverse viral latency in clonal cell lines. However, in resting CD4+ T cells, thought to be the principal physiological reservoir of latent HIV, their effect in reactivating the viral reservoir is more variable. It is possible that the discrepant responsiveness of quiescent primary CD4+ T cells to HDAC and BET inhibitors could be attributed to the limiting levels of P-TEFb, a key viral transcription host cofactor, in these cells. In this review, we discuss the role of P-TEFb and the necessity for its mobilization in stimulating viral reactivation from latency upon treatment with HDAC and BET inhibitors.
Collapse
Affiliation(s)
- Sona Budhiraja
- Department of Molecular Microbiology & Virology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Andrew P Rice
- Department of Molecular Microbiology & Virology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
166
|
Tian B, Zhao Y, Kalita M, Edeh CB, Paessler S, Casola A, Teng MN, Garofalo RP, Brasier AR. CDK9-dependent transcriptional elongation in the innate interferon-stimulated gene response to respiratory syncytial virus infection in airway epithelial cells. J Virol 2013; 87:7075-92. [PMID: 23596302 PMCID: PMC3676079 DOI: 10.1128/jvi.03399-12] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 04/08/2013] [Indexed: 12/20/2022] Open
Abstract
Respiratory syncytial virus (RSV) is a negative-sense single-stranded RNA virus responsible for lower respiratory tract infections. During infection, the presence of double-stranded RNA (dsRNA) activates the interferon (IFN) regulatory factor 3 (IRF3) transcription factor, an event triggering expression of immediate early, IFN-stimulated genes (ISGs). We examine the role of transcriptional elongation in control of IRF3-dependent ISG expression. RSV infection induces ISG54, ISG56, and CIG5 gene expression in an IRF3-dependent manner demonstrated by IRF3 small interfering RNA (siRNA) silencing in both A549 epithelial cells and IRF3(-/-) MEFs. ISG expression was mediated by the recruitment of IRF3, CDK9, polymerase II (Pol II), and phospho-Ser(2) carboxy-terminal domain (CTD) Pol II to the IFN-stimulated response element (ISRE) binding sites of the IRF3-dependent ISG promoters in native chromatin. We find that RSV infection enhances the activated fraction of cyclin-dependent kinase 9 (CDK9) by promoting its association with bromodomain 4 (BRD4) and disrupting its association with the inhibitory 7SK small nuclear RNA. The requirement of CDK9 activity for ISG expression was shown by siRNA-mediated silencing of CDK9 and by a selective CDK9 inhibitor in A549 cells. In contrast, RSV-induced beta interferon (IFN-β) expression is not influenced by CDK9 inhibition. Using transcript-selective quantitative real-time reverse transcription-PCR (Q-RT-PCR) assays for the ISG54 gene, we observed that RSV induces transition from short to fully spliced mRNA transcripts and that this transition is blocked by CDK9 inhibition in both A549 and primary human small airway epithelial cells. These data indicate that transcription elongation plays a major role in RSV-induced ISG expression and is mediated by IRF3-dependent recruitment of activated CDK9. CDK9 activity may be a target for immunomodulation in RSV-induced lung disease.
Collapse
Affiliation(s)
| | - Yingxin Zhao
- Department of Internal Medicine,
- Institute for Translational Sciences,
- Sealy Center for Molecular Medicine,
| | | | | | | | - Antonella Casola
- Institute for Translational Sciences,
- Sealy Center for Molecular Medicine,
- Pediatrics, University of Texas Medical Branch, Galveston, Texas, USA
| | - Michael N. Teng
- Joy McCann Culverhouse Airway Disease Research Center, Department of Internal Medicine, University of South Florida Morsani College of Medicine, Tampa, Florida, USA
| | - Roberto P. Garofalo
- Institute for Translational Sciences,
- Pediatrics, University of Texas Medical Branch, Galveston, Texas, USA
| | - Allan R. Brasier
- Department of Internal Medicine,
- Institute for Translational Sciences,
- Sealy Center for Molecular Medicine,
| |
Collapse
|
167
|
Valin A, Gill G. Enforcing the pause: transcription factor Sp3 limits productive elongation by RNA polymerase II. Cell Cycle 2013; 12:1828-34. [PMID: 23676218 DOI: 10.4161/cc.24992] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The transition of paused RNA polymerase II into productive elongation is a highly dynamic process that serves to fine-tune gene expression in response to changing cellular environments. We have recently reported that the transcription factor Sp3 inhibits the transition of paused RNA Pol II to productive elongation at the promoter of the cyclin-dependent kinase inhibitor p21(CIP1) and other Sp3-repressed genes. Our studies support the view that Sp3 has three modes of action: activation, SUMO-Sp3-mediated heterochromatin silencing and SUMO-independent inhibition of elongation. At the p21(CIP1) promoter, binding of the positive elongation factor P-TEFb kinase was not affected by Sp3. In contrast, Sp3 promoted binding of the protein phosphatase PP1 to the p21(CIP1) promoter, suggesting that Sp3-dependent regulation of the local balance between kinase and phosphatase activities may contribute to gene expression. Our findings show that the transition of paused RNA Pol II to productive elongation is an important step regulated by both promoter-specific activators and repressors to finely modulate mRNA expression levels.
Collapse
Affiliation(s)
- Alvaro Valin
- Department of Anatomy and Cellular Biology, Tufts University School of Medicine, Boston, MA, USA
| | | |
Collapse
|
168
|
Diamant G, Dikstein R. Transcriptional control by NF-κB: elongation in focus. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:937-45. [PMID: 23624258 DOI: 10.1016/j.bbagrm.2013.04.007] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 04/15/2013] [Accepted: 04/17/2013] [Indexed: 01/01/2023]
Abstract
The NF-κB family of transcription factors governs the cellular reaction to a variety of extracellular signals. Following stimulation, NF-κB activates genes involved in inflammation, cell survival, cell cycle, immune cell homeostasis and more. This review focuses on studies of the past decade that uncover the transcription elongation process as a key regulatory stage in the activation pathway of NF-κB. Of interest are studies that point to the elongation phase as central to the selectivity of target gene activation by NF-κB. Particularly, the cascade leading to phosphorylation and acetylation of the NF-κB subunit p65 on serine 276 and lysine 310, respectively, was shown to mediate the recruitment of Brd4 and P-TEFb to many pro-inflammatory target genes, which in turn facilitate elongation and mRNA processing. On the other hand, some anti-inflammatory genes are refractory to this pathway and are dependent on the elongation factor DSIF for efficient elongation and mRNA processing. While these studies have advanced our knowledge of NF-κB transcriptional activity, they have also raised unresolved issues regarding the specific genomic and physiological contexts by which NF-κB utilizes different mechanisms for activation.
Collapse
Affiliation(s)
- Gil Diamant
- Dept. of Biological Chemistry, The Weizmann Institute of Science, Rehovot , Israel
| | | |
Collapse
|
169
|
Okuyama E, Suzuki A, Murata M, Ando Y, Kato I, Takagi Y, Takagi A, Murate T, Saito H, Kojima T. Molecular mechanisms of syndecan-4 upregulation by TNF-α in the endothelium-like EAhy926 cells. J Biochem 2013; 154:41-50. [PMID: 23576453 DOI: 10.1093/jb/mvt024] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Syndecan-4, a cell-surface heparan sulfate proteoglycan, can participate in inflammation and wound healing as a host defense molecule. Tumour necrosis factor (TNF)-α, one of the most potent proinflammatory cytokines, is known to upregulate syndecan-4 expression, but the precise mechanisms are unclear. To elucidate these mechanisms in detail, we examined syndecan-4 upregulation by TNF-α in the endothelium-like EAhy926 cell. Of the two putative nuclear factor kappa-B (NF-κB) binding sites in the syndecan-4 gene (SDC4) promoter, deletion or mutation of one or both sites significantly diminished the effects of TNF-α. Electrophoretic mobility shift assays showed that p65 and c-Rel, but not p50, bound to these NF-κB binding sites, whereas pull-down assays showed binding of all three NF-κB components. Chromatin immunoprecipitation assays clearly showed that p65 and phosphorylated p65, but not p50 or c-Rel, bound to the SDC4 promoter. An NF-κB inhibitor, p65 knockdown and a transcriptional elongation inhibitor completely blocked the effect of TNF-α on SDC4 promoter activity and significantly, but not completely, blocked that on SDC4 mRNA expression. These data suggest that NF-κB p65 could be a key mediator of syndecan-4 upregulation by TNF-α through two binding sites in the SDC4 promoter, but other NF-κB-p65 independent pathways might also be involved through transcriptional elongation.
Collapse
Affiliation(s)
- Eriko Okuyama
- Department of Pathophysiological Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya 461-8673, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
170
|
Gao G, Wu X, Zhou J, He M, He JJ, Guo D. Inhibition of HIV-1 transcription and replication by a newly identified cyclin T1 splice variant. J Biol Chem 2013; 288:14297-14309. [PMID: 23569210 DOI: 10.1074/jbc.m112.438465] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A variety of cellular factors participates in the HIV-1 life cycle. Among them is the well characterized cyclin T1 (CYCT1). CycT1 binds to cyclin-dependent kinase 9 (CDK9) and forms the positive transcription elongation factor-b (P-TEFb). P-TEFb is then recruited by HIV-1 TAT to the HIV-1 long terminal repeat (LTR) promoter and subsequently leads to phosphorylation of the C-terminal domain of RNA polymerase II (pol II), enhanced processivity of pol II, and transcription of a full-length HIV-1 RNA. In this study, we report the identification of a new CYCT1 splice variant, designated as CYCT1b, and accordingly we renamed CYCT1 as CYCT1a. CYCT1b was detected in several cell lines, including primary human CD4 T cells, and its expression was subject to cell cycle regulation. Similar to CYCT1a, CYCT1b was primarily localized in the nucleus. CYCT1b expression was found to be inversely correlated with HIV-1 gene expression and replication. This inverse correlation appeared to involve TAT transactivation, CDK9 binding, and subsequent recruitment of P-TEFb to the HIV-1 LTR promoter and pol II C-terminal domain phosphorylation. In agreement with these findings, CYCT1b expression led to direct inhibition of TAT-transactivated transcription of the HIV-1 LTR promoter. Taken together, these results show that the newly identified CYCT1b splice variant inhibits HIV-1 transcription and may provide new clues for the development of anti-HIV strategies.
Collapse
Affiliation(s)
- Guozhen Gao
- State Key Laboratory of Virology and Modern Virology Research Center, Wuhan University College of Life Sciences, 430072 Wuhan, China; Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Xiaoyun Wu
- State Key Laboratory of Virology and Modern Virology Research Center, Wuhan University College of Life Sciences, 430072 Wuhan, China
| | - Jieqiong Zhou
- State Key Laboratory of Virology and Modern Virology Research Center, Wuhan University College of Life Sciences, 430072 Wuhan, China
| | - Mingfeng He
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Johnny J He
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana 46202; Center for AIDS Research, Indiana University School of Medicine, Indianapolis, Indiana 46202; University of North Texas Health Science Center, Fort Worth, Texas 76107.
| | - Deyin Guo
- State Key Laboratory of Virology and Modern Virology Research Center, Wuhan University College of Life Sciences, 430072 Wuhan, China; Institute of Medical Virology, Wuhan University School of Medicine, 430071 Wuhan, China.
| |
Collapse
|
171
|
Abstract
HIV-1 can establish a state of latent infection at the level of individual T cells. Latently infected cells are rare in vivo and appear to arise when activated CD4(+) T cells, the major targets cells for HIV-1, become infected and survive long enough to revert back to a resting memory state, which is nonpermissive for viral gene expression. Because latent virus resides in memory T cells, it persists indefinitely even in patients on potent antiretroviral therapy. This latent reservoir is recognized as a major barrier to curing HIV-1 infection. The molecular mechanisms of latency are complex and include the absence in resting CD4(+) T cells of nuclear forms of key host transcription factors (e.g., NFκB and NFAT), the absence of Tat and associated host factors that promote efficient transcriptional elongation, epigenetic changes inhibiting HIV-1 gene expression, and transcriptional interference. The presence of a latent reservoir for HIV-1 helps explain the presence of very low levels of viremia in patients on antiretroviral therapy. These viruses are released from latently infected cells that have become activated and perhaps from other stable reservoirs but are blocked from additional rounds of replication by the drugs. Several approaches are under exploration for reactivating latent virus with the hope that this will allow elimination of the latent reservoir.
Collapse
Affiliation(s)
- Robert F Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Howard Hughes Medical Institute, Baltimore, Maryland 21205, USA.
| | | |
Collapse
|
172
|
Danko CG, Hah N, Luo X, Martins AL, Core L, Lis JT, Siepel A, Kraus WL. Signaling pathways differentially affect RNA polymerase II initiation, pausing, and elongation rate in cells. Mol Cell 2013; 50:212-22. [PMID: 23523369 DOI: 10.1016/j.molcel.2013.02.015] [Citation(s) in RCA: 265] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 01/16/2013] [Accepted: 02/12/2013] [Indexed: 01/30/2023]
Abstract
RNA polymerase II (Pol II) transcribes hundreds of kilobases of DNA, limiting the production of mRNAs and lncRNAs. We used global run-on sequencing (GRO-seq) to measure the rates of transcription by Pol II following gene activation. Elongation rates vary as much as 4-fold at different genomic loci and in response to two distinct cellular signaling pathways (i.e., 17β-estradiol [E2] and TNF-α). The rates are slowest near the promoter and increase during the first ~15 kb transcribed. Gene body elongation rates correlate with Pol II density, resulting in systematically higher rates of transcript production at genes with higher Pol II density. Pol II dynamics following short inductions indicate that E2 stimulates gene expression by increasing Pol II initiation, whereas TNF-α reduces Pol II residence time at pause sites. Collectively, our results identify previously uncharacterized variation in the rate of transcription and highlight elongation as an important, variable, and regulated rate-limiting step during transcription.
Collapse
Affiliation(s)
- Charles G Danko
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | | | | | | | |
Collapse
|
173
|
Abstract
The gene expression programs that establish and maintain specific cell states in humans are controlled by thousands of transcription factors, cofactors, and chromatin regulators. Misregulation of these gene expression programs can cause a broad range of diseases. Here, we review recent advances in our understanding of transcriptional regulation and discuss how these have provided new insights into transcriptional misregulation in disease.
Collapse
Affiliation(s)
- Tong Ihn Lee
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Richard A. Young
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
- Department of Biology, Massachusetts
| |
Collapse
|
174
|
Hong P, Chen K, Huang B, Liu M, Cui M, Rozenberg I, Chaqour B, Pan X, Barton ER, Jiang XC, Siddiqui MAQ. HEXIM1 controls satellite cell expansion after injury to regulate skeletal muscle regeneration. J Clin Invest 2013; 122:3873-87. [PMID: 23023707 DOI: 10.1172/jci62818] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 08/02/2012] [Indexed: 01/07/2023] Open
Abstract
The native capacity of adult skeletal muscles to regenerate is vital to the recovery from physical injuries and dystrophic diseases. Currently, the development of therapeutic interventions has been hindered by the complex regulatory network underlying the process of muscle regeneration. Using a mouse model of skeletal muscle regeneration after injury, we identified hexamethylene bisacetamide inducible 1 (HEXIM1, also referred to as CLP-1), the inhibitory component of the positive transcription elongation factor b (P-TEFb) complex, as a pivotal regulator of skeletal muscle regeneration. Hexim1-haplodeficient muscles exhibited greater mass and preserved function compared with those of WT muscles after injury, as a result of enhanced expansion of satellite cells. Transplanted Hexim1-haplodeficient satellite cells expanded and improved muscle regeneration more effectively than WT satellite cells. Conversely, HEXIM1 overexpression restrained satellite cell proliferation and impeded muscle regeneration. Mechanistically, dissociation of HEXIM1 from P-TEFb and subsequent activation of P-TEFb are required for satellite cell proliferation and the prevention of early myogenic differentiation. These findings suggest a crucial role for the HEXIM1/P-TEFb pathway in the regulation of satellite cell–mediated muscle regeneration and identify HEXIM1 as a potential therapeutic target for degenerative muscular diseases.
Collapse
Affiliation(s)
- Peng Hong
- Department of Cell Biology, State University of New York Downstate Medical Center,New York, New York, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
175
|
Van Duyne R, Guendel I, Jaworski E, Sampey G, Klase Z, Chen H, Zeng C, Kovalskyy D, El Kouni MH, Lepene B, Patanarut A, Nekhai S, Price DH, Kashanchi F. Effect of mimetic CDK9 inhibitors on HIV-1-activated transcription. J Mol Biol 2012; 425:812-29. [PMID: 23247501 DOI: 10.1016/j.jmb.2012.12.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 12/04/2012] [Accepted: 12/05/2012] [Indexed: 02/04/2023]
Abstract
Potent anti-retroviral therapy has transformed HIV-1 infection into a chronic manageable disease; however, drug resistance remains a common problem that limits the effectiveness and clinical benefits of this type of treatment. The discovery of viral reservoirs in the body, in which HIV-1 may persist, has helped to explain why therapeutic eradication of HIV-1 has proved so difficult. In the current study, we utilized a combination of structure-based analysis of cyclin/CDK complexes with our previously published Tat peptide derivatives. We modeled the Tat peptide inhibitors with CDKs and found a particular pocket that showed the most stable binding site (Cavity 1) using in silico analysis. Furthermore, we were able to find peptide mimetics that bound to similar regions using in silico searches of a chemical library, followed by cell-based biological assays. Using these methods, we obtained the first-generation mimetic drugs and tested these compounds on HIV-1 long terminal repeat-activated transcription. Using biological assays followed by similar in silico analysis to find second-generation drugs resembling the original mimetic, we found the new targets of Cavity 1 and Cavity 2 regions on CDK9. We examined the second-generation mimetic against various viral isolates and observed a generalized suppression of most HIV-1 isolates. Finally, the drug inhibited viral replication in humanized mouse models of Rag2(-/-)γc(-/-) with no toxicity to the animals at tested concentrations. Our results suggest that it may be possible to model peptide inhibitors into available crystal structures and further find drug mimetics using in silico analysis.
Collapse
Affiliation(s)
- Rachel Van Duyne
- National Center for Biodefense and Infectious Diseases, George Mason University, Manassas, VA 20110, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
176
|
Transcription elongation factors DSIF and NELF: promoter-proximal pausing and beyond. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012. [PMID: 23202475 DOI: 10.1016/j.bbagrm.2012.11.007] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
DRB sensitivity-inducing factor (DSIF) and negative elongation factor (NELF) were originally identified as factors responsible for transcriptional inhibition by 5,6-dichloro-1-beta-d-ribofuranosyl-benzimidazole (DRB) and were later found to control transcription elongation, together with P-TEFb, at the promoter-proximal region. Although there is ample evidence that these factors play roles throughout the genome, other data also suggest gene- or tissue-specific roles for these factors. In this review, we discuss how these apparently conflicting data can be reconciled. In light of recent findings, we also discuss the detailed mechanism by which these factors control the elongation process at the molecular level. This article is part of a Special Issue entitled: RNA polymerase II Transcript Elongation.
Collapse
|
177
|
Promoter-proximal pausing of RNA polymerase II: emerging roles in metazoans. Nat Rev Genet 2012; 13:720-31. [PMID: 22986266 DOI: 10.1038/nrg3293] [Citation(s) in RCA: 906] [Impact Index Per Article: 69.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recent years have witnessed a sea change in our understanding of transcription regulation: whereas traditional models focused solely on the events that brought RNA polymerase II (Pol II) to a gene promoter to initiate RNA synthesis, emerging evidence points to the pausing of Pol II during early elongation as a widespread regulatory mechanism in higher eukaryotes. Current data indicate that pausing is particularly enriched at genes in signal-responsive pathways. Here the evidence for pausing of Pol II from recent high-throughput studies will be discussed, as well as the potential interconnected functions of promoter-proximally paused Pol II.
Collapse
|
178
|
Ramakrishnan R, Liu H, Donahue H, Malovannaya A, Qin J, Rice AP. Identification of novel CDK9 and Cyclin T1-associated protein complexes (CCAPs) whose siRNA depletion enhances HIV-1 Tat function. Retrovirology 2012; 9:90. [PMID: 23110726 PMCID: PMC3494656 DOI: 10.1186/1742-4690-9-90] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Accepted: 10/05/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND HIV-1 Tat activates RNA Polymerase II (RNAP II) elongation of the integrated provirus by recruiting a protein kinase known as P-TEFb to TAR RNA at the 5' end of nascent viral transcripts. The catalytic core of P-TEFb contains CDK9 and Cyclin T1 (CCNT1). A human endogenous complexome has recently been described - the set of multi-protein complexes in HeLa cell nuclei. We mined this complexome data set and identified 12 distinct multi-protein complexes that contain both CDK9 and CCNT1. We have termed these complexes CCAPs for CDK9/CCNT1-associated protein complexes. Nine CCAPs are novel, while three were previously identified as Core P-TEFb, the 7SK snRNP, and the Super-Elongation Complex. We have investigated the role of five newly identified CCAPs in Tat function and viral gene expression. RESULTS We examined five CCAPs that contain: 1) PPP1R10/TOX3/WDR82; 2) TTF2; 3) TPR; 4) WRNIP1; 5) FBXO11/CUL1/SKP1. SiRNA depletions of protein subunits of the five CCAPs enhanced Tat activation of an integrated HIV-1 LTR-Luciferase reporter in TZM-bl cells. Using plasmid transfection assays in HeLa cells, we also found that siRNA depletions of TTF2, FBXO11, PPP1R10, WDR82, and TOX3 enhanced Tat activation of an HIV-1 LTR-luciferase reporter, but the depletions did not enhance expression of an NF-κB reporter plasmid with the exception of PPP1R10. We found no evidence that depletion of CCAPs perturbed the level of CDK9/CCNT1 in the 7SK snRNP. We also found that the combination of siRNA depletions of both TTF2 and FBXO11 sensitized a latent provirus in Jurkat cells to reactivation by sub-optimal amounts of αCD3/CD28 antibodies. CONCLUSIONS Our results identified five novel CDK9/CCNT1 complexes that are capable of negative regulation of HIV-1 Tat function and viral gene expression. Because siRNA depletions of CCAPs enhance Tat function, it is possible that these complexes reduce the level of CDK9 and CCNT1 available for Tat, similar to the negative regulation of Tat by the 7SK snRNP. Our results highlight the complexity in the biological functions of CDK9 and CCNT1.
Collapse
Affiliation(s)
- Rajesh Ramakrishnan
- Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | | | | | | | | | | |
Collapse
|
179
|
Zhang W, Prakash C, Sum C, Gong Y, Li Y, Kwok JJT, Thiessen N, Pettersson S, Jones SJM, Knapp S, Yang H, Chin KC. Bromodomain-containing protein 4 (BRD4) regulates RNA polymerase II serine 2 phosphorylation in human CD4+ T cells. J Biol Chem 2012; 287:43137-55. [PMID: 23086925 DOI: 10.1074/jbc.m112.413047] [Citation(s) in RCA: 148] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Transcriptional elongation by RNA polymerase II (Pol II) is regulated by positive transcription elongation factor b (P-TEFb) in association with bromodomain-containing protein 4 (BRD4). We used genome-wide chromatin immunoprecipitation sequencing in primary human CD4+ T cells to reveal that BRD4 co-localizes with Ser-2-phosphorylated Pol II (Pol II Ser-2) at both enhancers and promoters of active genes. Disruption of bromodomain-histone acetylation interactions by JQ1, a small-molecule bromodomain inhibitor, resulted in decreased BRD4 binding, reduced Pol II Ser-2, and reduced expression of lineage-specific genes in primary human CD4+ T cells. A large number of JQ1-disrupted BRD4 binding regions exhibited diacetylated H4 (lysine 5 and -8) and H3K27 acetylation (H3K27ac), which correlated with the presence of histone acetyltransferases and deacetylases. Genes associated with BRD4/H3K27ac co-occupancy exhibited significantly higher activity than those associated with H3K27ac or BRD4 binding alone. Comparison of BRD4 binding in T cells and in human embryonic stem cells revealed that enhancer BRD4 binding sites were predominantly lineage-specific. Our findings suggest that BRD4-driven Pol II phosphorylation at serine 2 plays an important role in regulating lineage-specific gene transcription in human CD4+ T cells.
Collapse
Affiliation(s)
- Weishi Zhang
- Laboratory of Gene Regulation and Inflammation, SIgN (Singapore Immunology Network), A*STAR (Agency for Science, Technology and Research), Biopolis, Immunos 04-00, 8A Biomedical Grove, Singapore
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
180
|
Transcriptional burst frequency and burst size are equally modulated across the human genome. Proc Natl Acad Sci U S A 2012; 109:17454-9. [PMID: 23064634 DOI: 10.1073/pnas.1213530109] [Citation(s) in RCA: 332] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Gene expression occurs either as an episodic process, characterized by pulsatile bursts, or as a constitutive process, characterized by a Poisson-like accumulation of gene products. It is not clear which mode of gene expression (constitutive versus bursty) predominates across a genome or how transcriptional dynamics are influenced by genomic position and promoter sequence. Here, we use time-lapse fluorescence microscopy to analyze 8,000 individual human genomic loci and find that at virtually all loci, episodic bursting--as opposed to constitutive expression--is the predominant mode of expression. Quantitative analysis of the expression dynamics at these 8,000 loci indicates that both the frequency and size of the transcriptional bursts varies equally across the human genome, independent of promoter sequence. Strikingly, weaker expression loci modulate burst frequency to increase activity, whereas stronger expression loci modulate burst size to increase activity. Transcriptional activators such as trichostatin A (TSA) and tumor necrosis factor α (TNF) only modulate burst size and frequency along a constrained trend line governed by the promoter. In summary, transcriptional bursting dominates across the human genome, both burst frequency and burst size vary by chromosomal location, and transcriptional activators alter burst frequency and burst size, depending on the expression level of the locus.
Collapse
|
181
|
Diamant G, Amir-Zilberstein L, Yamaguchi Y, Handa H, Dikstein R. DSIF restricts NF-κB signaling by coordinating elongation with mRNA processing of negative feedback genes. Cell Rep 2012; 2:722-31. [PMID: 23041311 DOI: 10.1016/j.celrep.2012.08.041] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 07/30/2012] [Accepted: 08/31/2012] [Indexed: 12/15/2022] Open
Abstract
NF-κB is central for immune response and cell survival, and its deregulation is linked to chronic inflammation and cancer through poorly defined mechanisms. IκBα and A20 are NF-κB target genes and negative feedback regulators. Upon their activation by NF-κB, DSIF is recruited, P-TEFb is released, and their elongating polymerase II (Pol II) C-terminal domain (CTD) remains hypophosphorylated. We show that upon DSIF knockdown, mRNA levels of a subset of NF-κB targets are not diminished; yet much less IκBα and A20 protein are synthesized, and NF-κB activation is abnormally prolonged. Further analysis of IκBα and A20 mRNA revealed that a significant portion is uncapped, unspliced, and retained in the nucleus. Interestingly, the Spt5 C-terminal repeat (CTR) domain involved in elongation stimulation through P-TEFb is dispensable for IκBα and A20 regulation. These findings assign a function for DSIF in cotranscriptional mRNA processing when elongating Pol II is hypophosphorylated and define DSIF as part of the negative feedback regulation of NF-κB.
Collapse
Affiliation(s)
- Gil Diamant
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | |
Collapse
|
182
|
Zhu J, Gaiha GD, John SP, Pertel T, Chin CR, Gao G, Qu H, Walker BD, Elledge SJ, Brass AL. Reactivation of latent HIV-1 by inhibition of BRD4. Cell Rep 2012; 2:807-16. [PMID: 23041316 DOI: 10.1016/j.celrep.2012.09.008] [Citation(s) in RCA: 198] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 09/10/2012] [Accepted: 09/14/2012] [Indexed: 10/27/2022] Open
Abstract
HIV-1 depends on many host factors for propagation. Other host factors, however, antagonize HIV-1 and may have profound effects on viral activation. Curing HIV-1 requires the reduction of latent viral reservoirs that remain in the face of antiretroviral therapy. Using orthologous genetic screens, we identified bromodomain containing 4 (BRD4) as a negative regulator of HIV-1 replication. Antagonism of BRD4, via RNA interference or with a small molecule inhibitor, JQ1, both increased proviral transcriptional elongation and alleviated HIV-1 latency in cell-line models. In multiple instances, JQ1, when used in combination with the NF-κB activators Prostratin or PHA, enhanced the in vitro reactivation of latent HIV-1 in primary T cells. These data are consistent with a model wherein BRD4 competes with the virus for HIV-1 dependency factors (HDFs) and suggests that combinatorial therapies that activate HDFs and antagonize HIV-1 competitive factors may be useful for curing HIV-1 infection.
Collapse
Affiliation(s)
- Jian Zhu
- Department of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02127, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
183
|
Guo L, Wu WJ, Liu LD, Wang LC, Zhang Y, Wu LQ, Guan Y, Li QH. Herpes simplex virus 1 ICP22 inhibits the transcription of viral gene promoters by binding to and blocking the recruitment of P-TEFb. PLoS One 2012; 7:e45749. [PMID: 23029222 PMCID: PMC3454370 DOI: 10.1371/journal.pone.0045749] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 08/24/2012] [Indexed: 11/18/2022] Open
Abstract
ICP22 is a multifunctional herpes simplex virus 1 (HSV-1) immediate early protein that functions as a general repressor of a subset of cellular and viral promoters in transient expression systems. Although the exact mechanism of repression remains unclear, this protein induces a decrease in RNA polymerase II Serine 2 (RNAPII Ser-2) phosphorylation, which is critical for transcription elongation. To characterize the mechanism of transcriptional repression by ICP22, we established an in vivo transient expression reporter system. We found that ICP22 inhibits transcription of the HSV-1 α, β and γ gene promoters. The viral tegument protein VP16, which plays vital roles in initiation of viral gene expression and viral proliferation, can overcome the inhibitory effect of ICP22 on α-gene transcription. Further immunoprecipitation studies indicated that both ICP22 and VP16 bind to positive transcription elongation factor b (P-TEFb) and form a complex with it in vivo. We extended this to show that P-TEFb regulates transcription of the viral α-gene promoters and affects transcriptional regulation of ICP22 and VP16 on the α-genes. Additionally, ChIP assays demonstrated that ICP22 blocks the recruitment of P-TEFb to the viral promoters, while VP16 reverses this blocking effect by recruiting P-TEFb to the viral α-gene promoters through recognition of the TAATGARAT motif. Taken together, our results suggest that ICP22 interacts with and blocks the recruitment of P-TEFb to viral promoter regions, which inhibits transcription of the viral gene promoters. The transactivator VP16 binds to and induces the recruitment of P-TEFb to viral α-gene promoters, which counteracts the transcriptional repression of ICP22 on α-genes by recruiting p-TEFb to the promoter region.
Collapse
Affiliation(s)
- Lei Guo
- Institute of Medical Biology, Chinese Academy of Medicine Science, Peking Union Medical College, Kunming, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
184
|
Fujinaga K, Barboric M, Li Q, Luo Z, Price DH, Peterlin BM. PKC phosphorylates HEXIM1 and regulates P-TEFb activity. Nucleic Acids Res 2012; 40:9160-70. [PMID: 22821562 PMCID: PMC3467075 DOI: 10.1093/nar/gks682] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The positive transcription elongation factor b (P-TEFb) regulates RNA polymerase II elongation. In cells, P-TEFb partitions between small active and larger inactive states. In the latter, HEXIM1 binds to 7SK snRNA and recruits as well as inactivates P-TEFb in the 7SK snRNP. Several stimuli can affect this P-TEFb equilibrium. In this study, we demonstrate that protein kinase C (PKC) phosphorylates the serine at position158 (S158) in HEXIM1. This phosphorylated HEXIM1 protein neither binds to 7SK snRNA nor inhibits P-TEFb. Phorbol esters or the engagement of the T cell antigen receptor, which activate PKC and the expression of the constitutively active (CA) PKCθ protein, which is found in T cells, inhibit the formation of the 7SK snRNP. All these stimuli increase P-TEFb-dependent transcription. In contrast, the kinase-negative PKCθ and the mutant HEXIM1 (S158A) proteins block effects of these PKC-activating stimuli. These results indicate that the phosphorylation of HEXIM1 by PKC represents a major regulatory step of P-TEFb activity in cells.
Collapse
Affiliation(s)
- Koh Fujinaga
- Departments of Medicine, Microbiology and Immunology, Rosalind Russell Research Center, University of California, San Francisco, San Francisco, CA 94143-0703, USA
| | | | | | | | | | | |
Collapse
|
185
|
Leitch AE, Lucas CD, Marwick JA, Duffin R, Haslett C, Rossi AG. Cyclin-dependent kinases 7 and 9 specifically regulate neutrophil transcription and their inhibition drives apoptosis to promote resolution of inflammation. Cell Death Differ 2012; 19:1950-61. [PMID: 22743999 PMCID: PMC3504709 DOI: 10.1038/cdd.2012.80] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Terminally differentiated neutrophils are short-lived but the key effector cells of the innate immune response, and have a prominent role in the pathogenesis and propagation of many inflammatory diseases. Delayed apoptosis, which is responsible for their extended longevity, is critically dependent on a balance of intracellular survival versus pro-apoptotic proteins. Here, we elucidate the mechanism by which the cyclin-dependent kinase (CDK) inhibitor drugs such as R-roscovitine and DRB (5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole) mediate neutrophil apoptosis. We demonstrate (by a combination of microarray, confocal microscopy, apoptosis assays and western blotting) that the phosphorylation of RNA polymerase II by CDKs 7 and 9 is inhibited by R-roscovitine and that specific effects on neutrophil transcriptional capacity are responsible for neutrophil apoptosis. Finally, we show that specific CDK7 and 9 inhibition with DRB drives resolution of neutrophil-dominant inflammation. Thus, we highlight a novel mechanism that controls both primary human neutrophil transcription and apoptosis that could be targeted by selective CDK inhibitor drugs to resolve established inflammation.
Collapse
Affiliation(s)
- A E Leitch
- MRC Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh Medical School, Edinburgh, Scotland, UK
| | | | | | | | | | | |
Collapse
|
186
|
Negative elongation factor-mediated suppression of RNA polymerase II elongation of Kaposi's sarcoma-associated herpesvirus lytic gene expression. J Virol 2012; 86:9696-707. [PMID: 22740393 DOI: 10.1128/jvi.01012-12] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Genome-wide chromatin immunoprecipitation assays indicate that the promoter-proximal pausing of RNA polymerase II (RNAPII) is an important postinitiation step for gene regulation. During latent infection, the majority of Kaposi's sarcoma-associated herpesvirus (KSHV) genes is silenced via repressive histone marks on their promoters. Despite the absence of their expression during latency, however, several lytic promoters are enriched with activating histone marks, suggesting that mechanisms other than heterochromatin-mediated suppression contribute to preventing lytic gene expression. Here, we show that the RNAPII-mediated transcription of the KSHV OriLytL, K5, K6, and K7 (OriLytL-K7) lytic genes is paused at the elongation step during latency. Specifically, the RNAPII-mediated transcription is stalled by the host's negative elongation factor (NELF) at the promoter regions of OriLytL-K7 lytic genes during latency, leading to the hyperphosphorylation of the serine 5 residue and the hypophosphorylation of the serine 2 of the C-terminal domain of the RNAPII large subunit, a hallmark of stalled RNAPII. Consequently, depletion of NELF expression induced transition of stalled RNAPII into a productive transcription elongation at the promoter-proximal regions of OriLytL-K7 lytic genes, leading to their RTA-independent expression. Using an RTA-deficient recombinant KSHV, we also showed that expression of the K5, K6, and K7 lytic genes was highly inducible upon external stimuli compared to other lytic genes that lack RNAPII on their promoters during latency. These results indicate that the transcription elongation of KSHV OriLytL-K7 lytic genes is inhibited by NELF during latency, but can also be promptly reactivated in an RTA-independent manner upon external stimuli.
Collapse
|
187
|
Abstract
The core promoter of eukaryotic coding and non-coding genes that are transcribed by RNA polymerase II (RNAP II) is composed of DNA elements surrounding the transcription start site. These elements serve as the docking site of the basal transcription machinery and have an important role in determining the position and directing the rate of transcription initiation. This review summarizes the current knowledge about core promoter elements and focuses on several unexpected links between core promoter structure and certain gene features. These include the association between the presence or absence of a TATA-box and gene length, gene structure, gene function, evolution rate and transcription elongation.
Collapse
Affiliation(s)
- Rivka Dikstein
- Department of Biological Chemistry, The Weizmann Institute of Science; Rehovot, Israel.
| |
Collapse
|
188
|
Thorne JL, Ouboussad L, Lefevre PF. Heterochromatin protein 1 gamma and IκB kinase alpha interdependence during tumour necrosis factor gene transcription elongation in activated macrophages. Nucleic Acids Res 2012; 40:7676-89. [PMID: 22649058 PMCID: PMC3439902 DOI: 10.1093/nar/gks509] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
IκB kinase α (IKKα) is part of the cytoplasmic IKK complex regulating nuclear factor-κB (NF-κB) release and translocation into the nucleus in response to pro-inflammatory signals. IKKα can also be recruited directly to the promoter of NF-κB-dependent genes by NF-κB where it phosphorylates histone H3 at serine 10, triggering recruitment of the bromodomain-containing protein 4 and the positive transcription elongation factor b. Herein, we report that IKKα travels with the elongating form of ribonucleic acid polymerase II together with heterochromatin protein 1 gamma (HP1γ) at NF-κB-dependent genes in activated macrophages. IKKα binds to and phosphorylates HP1γ, which in turn controls IKKα binding to chromatin and phosphorylation of the histone variant H3.3 at serine 31 within transcribing regions. Downstream of transcription end sites, IKKα accumulates with its inhibitor the CUE-domain containing protein 2, suggesting a link between IKKα inactivation and transcription termination.
Collapse
Affiliation(s)
- James L Thorne
- Section of Experimental Haematology, Leeds Institute of Molecular Medicine, University of Leeds, Wellcome Trust Brenner Building, St. James's University Hospital, Leeds LS9 7TF, UK
| | | | | |
Collapse
|
189
|
HEXIM1-binding elements on mRNAs identified through transcriptomic SELEX and computational screening. Biochimie 2012; 94:1900-9. [PMID: 22609015 DOI: 10.1016/j.biochi.2012.05.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2012] [Accepted: 05/04/2012] [Indexed: 11/20/2022]
Abstract
The positive transcription elongation factor b (P-TEFb) is one of the main regulatory factors of the transcription mediated by RNA polymerase II (RNAPII). P-TEFb promotes transcriptional elongation by phosphorylating its targets, which include the C-terminal domain of RNAPII. The activity of P-TEFb is negatively regulated by an RNA-binding protein HEXIM1 in association with 7SK snRNA. To search for other cellular RNAs that bind to HEXIM1, we used systematic evolution of ligands by exponential enrichment (SELEX) with the HeLa cDNA library as the initial pool source. We identified cad mRNA as a HEXIM1-binding RNA and confirmed their association in HeLa cells. In vitro mutational analysis showed that cad mRNA binds to HEXIM1 through its bulged stem structure located in exon 11. In addition, a computational search revealed other RNAs with similar stem structures, including brd4 and tcf3 mRNAs, both of which were shown to be coimmunoprecipitable with anti-HEXIM1 antibody in HeLa cells. Our findings suggest a possible role for HEXIM1 in the regulation of specific gene expressions.
Collapse
|
190
|
Miller-Jensen K, Dey SS, Pham N, Foley JE, Arkin AP, Schaffer DV. Chromatin accessibility at the HIV LTR promoter sets a threshold for NF-κB mediated viral gene expression. Integr Biol (Camb) 2012; 4:661-71. [PMID: 22555315 DOI: 10.1039/c2ib20009k] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Higher order chromatin structure in eukaryotes can lead to differential gene expression in response to the same transcription factor; however, how transcription factor inputs integrate with quantitative features of the chromatin environment to regulate gene expression is not clear. In vitro models of HIV gene regulation, in which repressive mechanisms acting locally at an integration site keep proviruses transcriptionally silent until appropriately stimulated, provide a powerful system to study gene expression regulation in different chromatin environments. Here we quantified HIV expression as a function of activating transcription factor nuclear factor-κB RelA/p65 (RelA) levels and chromatin features at a panel of viral integration sites. Variable RelA overexpression demonstrated that the viral genomic location sets a threshold RelA level necessary to induce gene expression. However, once the induction threshold is reached, gene expression increases similarly for all integration sites. Furthermore, we found that higher induction thresholds are associated with repressive histone marks and a decreased sensitivity to nuclease digestion at the LTR promoter. Increasing chromatin accessibility via inhibition of histone deacetylation or DNA methylation lowered the induction threshold, demonstrating that chromatin accessibility sets the level of RelA required to activate gene expression. Finally, a functional relationship between gene expression, RelA level, and chromatin accessibility accurately predicted synergistic HIV activation in response to combinatorial pharmacological perturbations. Different genomic environments thus set a threshold for transcription factor activation of a key viral promoter, which may point toward biological principles that underlie selective gene expression and inform strategies for combinatorial therapies to combat latent HIV.
Collapse
Affiliation(s)
- Kathryn Miller-Jensen
- Institute for Quantitative Biosciences, University of California, Berkeley, California 94720, USA
| | | | | | | | | | | |
Collapse
|
191
|
Tripathy MK, Abbas W, Herbein G. Epigenetic regulation of HIV-1 transcription. Epigenomics 2012; 3:487-502. [PMID: 22126207 DOI: 10.2217/epi.11.61] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
After entry into the target cell and reverse transcription, HIV-1 genes are integrated into the host genome. It is now well established that the viral promoter activity is directly governed by its chromatin environment. Nuc-1, a nucleosome located immediately downstream of the HIV-1 transcriptional initiation site directly impedes long-terminal repeat (LTR) activity. Epigenetic modifications and disruption of Nuc-1 are a prerequisite to the activation of LTR-driven transcription and viral expression. The compaction of chromatin and its permissiveness for transcription are directly dependent on the post-translational modifications of histones such as acetylation, methylation, phosphorylation and ubiquitination. Understanding the molecular mechanisms underlying HIV-1 transcriptional silencing and activation is thus a major challenge in the fight against AIDS and will certainly lead to new therapeutic tools.
Collapse
Affiliation(s)
- Manoj Kumar Tripathy
- Department of Virology, University of Franche-Comté, EA4266, IFR133 INSERM, CHU Besançon, Besançon, France
| | | | | |
Collapse
|
192
|
Lim PS, Shannon MF, Hardy K. Epigenetic control of inducible gene expression in the immune system. Epigenomics 2012; 2:775-95. [PMID: 22122082 DOI: 10.2217/epi.10.55] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
It has been well documented that active genes, and their promoters and enhancers have a different chromatin or epigenomic environment compared with unexpressed genes. In addition, the epigenome may influence not only which genes are expressed, but also which genes can be induced in response to activation or differentiation signals. Immune cells respond to activation signals by rapidly inducing the expression of specific gene sets, and therefore this is a good system in which to examine the role of the epigenome in gene activation and cell differentiation. Several studies have now found that many immediate-early inducible genes exist in a similar epigenomic environment to active genes even in the unstimulated state. Some studies suggest that subsets of these genes may even have RNA polymerase II at their promoters and induction may be controlled downstream of its recruitment. Other inducible genes, however, undergo changes to histone modifications, levels or variant composition upon activation. In this article, we discuss how the epigenome of immune cells regulates inducible gene expression and discuss the differences between the immediate responses to activation signals and the longer term changes observed during differentiation.
Collapse
Affiliation(s)
- Pek Siew Lim
- Department of Genome Biology, John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia
| | | | | |
Collapse
|
193
|
Chan JK, Greene WC. Dynamic roles for NF-κB in HTLV-I and HIV-1 retroviral pathogenesis. Immunol Rev 2012; 246:286-310. [DOI: 10.1111/j.1600-065x.2012.01094.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
194
|
Kuzmina A, Hadad U, Fujinaga K, Taube R. Functional characterization of a human cyclin T1 mutant reveals a different binding surface for Tat and HEXIM1. Virology 2012; 426:152-61. [PMID: 22342181 DOI: 10.1016/j.virol.2012.01.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Revised: 01/17/2012] [Accepted: 01/27/2012] [Indexed: 11/25/2022]
Abstract
HIV transcription is regulated at the step of elongation by the viral Tat protein and the cellular positive transcription elongation factor b (P-TEFb; Cdk9/cyclin T1). Herein, a human cyclin T1 mutant, cyclin T1-U7, which contains four substitutions and one deletion in the N-terminal cyclin box, was stably expressed in HeLa cells. HIV transcription was efficiently inhibited in HeLa-HA-CycT1-U7 stable cells. Cyclin T1-U7 bound Tat but did not modulate its expression levels, which remained high. Importantly cyclin T1-U7 failed to interact with Cdk9 or HEXIM1 and did not interfere with endogenous P-TEFb activity to stimulate MEF2C or NFkB mediated transcription. In a T cell line and primary CD4+ cells, cyclin T1-U7 also inhibited HIV transcription. We conclude that cyclin T1-U7 sequesters Tat from P-TEFb and inhibits HIV transcription. Importantly, N-terminal residues in cyclin T1 are specifically involved in the binding of cyclin T1 to HEXIM1 but not to Tat.
Collapse
Affiliation(s)
- Alona Kuzmina
- Department of Virology and Developmental Genetics Faculty of Health Sciences, Ben-Gurion University of the Negev, Israel
| | | | | | | |
Collapse
|
195
|
Victoriano AFB, Okamoto T. Transcriptional control of HIV replication by multiple modulators and their implication for a novel antiviral therapy. AIDS Res Hum Retroviruses 2012; 28:125-38. [PMID: 22077140 DOI: 10.1089/aid.2011.0263] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Transcriptional regulation is critical for the human immunodeficiency virus 1 (HIV-1) life cycle and is the only step at which the virus amplifies the content of its genetic information. Numerous known and still unknown transcriptional factors, both host and viral, regulate HIV-1 gene expression and latency. This article is a comprehensive review of transcription factors involved in HIV-1 gene expression and presents the significant implications of nuclear factor kappa B (NF-κB) and the HIV-1 transactivator of transcription (Tat) protein. We include recent findings on chromatin remodeling toward HIV transcription and its therapeutic implication is also discussed. The current status of small-molecular-weight compounds that affect HIV transcription is also described.
Collapse
Affiliation(s)
- Ann Florence B. Victoriano
- Department of Molecular and Cellular Biology, Nagoya City University Graduate School for Medical Sciences, Nagoya, Japan
- Japanese Foundation for AIDS Prevention, Tokyo, Japan
| | - Takashi Okamoto
- Department of Molecular and Cellular Biology, Nagoya City University Graduate School for Medical Sciences, Nagoya, Japan
| |
Collapse
|
196
|
Control of Transcriptional Elongation by RNA Polymerase II: A Retrospective. GENETICS RESEARCH INTERNATIONAL 2012; 2012:170173. [PMID: 22567377 PMCID: PMC3335475 DOI: 10.1155/2012/170173] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Accepted: 10/11/2011] [Indexed: 11/17/2022]
Abstract
The origins of our current understanding of control of transcription elongation lie in pioneering experiments that mapped RNA polymerase II on viral and cellular genes. These studies first uncovered the surprising excess of polymerase molecules that we now know to be situated at the at the 5' ends of most genes in multicellular organisms. The pileup of pol II near transcription start sites reflects a ubiquitous bottle-neck that limits elongation right at the start of the transcription elongation. Subsequent seminal work identified conserved protein factors that positively and negatively control the flux of polymerase through this bottle-neck, and make a major contribution to control of gene expression.
Collapse
|
197
|
Berberich N, Uhl B, Joore J, Schmerwitz UK, Mayer BA, Reichel CA, Krombach F, Zahler S, Vollmar AM, Fürst R. Roscovitine blocks leukocyte extravasation by inhibition of cyclin-dependent kinases 5 and 9. Br J Pharmacol 2011; 163:1086-98. [PMID: 21391976 DOI: 10.1111/j.1476-5381.2011.01309.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND AND PURPOSE Roscovitine, a cyclin-dependent kinase (CDK) inhibitor that induces tumour cell death, is under evaluation as an anti-cancer drug. By triggering leukocyte apoptosis, roscovitine can also enhance the resolution of inflammation. Beyond death-inducing properties, we tested whether roscovitine affects leukocyte-endothelial cell interaction, a vital step in the onset of inflammation. EXPERIMENTAL APPROACH Leukocyte-endothelial cell interactions were evaluated in venules of mouse cremaster muscle, using intravital microscopy. In primary human endothelial cells, we studied the influence of roscovitine on adhesion molecules and on the nuclear factor-κB (NF-κB) pathway. A cellular kinome array, in vitro CDK profiling and RNAi methods were used to identify targets of roscovitine. KEY RESULTS In vivo, roscovitine attenuated the tumour necrosis factor-α (TNF-α)-induced leukocyte adherence to and transmigration through, the endothelium. In vitro, roscovitine strongly inhibited TNF-α-evoked expression of endothelial adhesion molecules (E-selectin, intercellular cell adhesion molecule, vascular cell adhesion molecule). Roscovitine blocked NF-κB-dependent gene transcription, but not the NF-κB activation cascade [inhibitor of κB (IκB) kinase activity, IκB-α degradation, p65 translocation]. Using a cellular kinome array and an in vitro CDK panel, we found that roscovitine inhibited protein kinase A, ribosomal S6 kinase and CDKs 2, 5, 7 and 9. Experiments using kinase inhibitors and siRNA showed that the decreased endothelial activation was due solely to blockade of CDK5 and CDK9 by roscovitine. CONCLUSIONS AND IMPLICATIONS Our study highlights a novel mode of action for roscovitine, preventing endothelial activation and leukocyte-endothelial cell interaction by inhibition of CDK5 and 9. This might expand its usage as a promising anti-inflammatory compound.
Collapse
Affiliation(s)
- Nina Berberich
- Department of Pharmacy, Pharmaceutical Biology, University of Munich, Munich, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
198
|
Nilson KA, Price DH. The Role of RNA Polymerase II Elongation Control in HIV-1 Gene Expression, Replication, and Latency. GENETICS RESEARCH INTERNATIONAL 2011; 2011:726901. [PMID: 22567366 PMCID: PMC3335632 DOI: 10.4061/2011/726901] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 07/22/2011] [Indexed: 11/20/2022]
Abstract
HIV-1 usurps the RNA polymerase II elongation control machinery to regulate the expression of its genome during lytic and latent viral stages. After integration into the host genome, the HIV promoter within the long terminal repeat (LTR) is subject to potent downregulation in a postinitiation step of transcription. Once produced, the viral protein Tat commandeers the positive transcription elongation factor, P-TEFb, and brings it to the engaged RNA polymerase II (Pol II), leading to the production of viral proteins and genomic RNA. HIV can also enter a latent phase during which factors that regulate Pol II elongation may play a role in keeping the virus silent. HIV, the causative agent of AIDS, is a worldwide health concern. It is hoped that knowledge of the mechanisms regulating the expression of the HIV genome will lead to treatments and ultimately a cure.
Collapse
Affiliation(s)
- Kyle A Nilson
- Molecular and Cellular Biology Program, The University of Iowa, Iowa City, IA 52242, USA
| | | |
Collapse
|
199
|
Latency profiles of full length HIV-1 molecular clone variants with a subtype specific promoter. Retrovirology 2011; 8:73. [PMID: 21923919 PMCID: PMC3182984 DOI: 10.1186/1742-4690-8-73] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Accepted: 09/16/2011] [Indexed: 12/31/2022] Open
Abstract
Background HIV-1 transcription initiation depends on cellular transcription factors that bind to promoter sequences in the Long Terminal Repeat (LTR). Each HIV-1 subtype has a specific LTR promoter configuration and even minor sequence changes in the transcription factor binding sites (TFBS) or their arrangement can impact transcriptional activity. Most latency studies have focused on HIV-1 subtype B strains, and the degree to which LTR promoter variation contributes to differences in proviral latency is therefore largely unknown. Latency differences may influence establishment and size of viral reservoirs as well as the possibility to clear the virus by therapeutic intervention. Results We investigated the proviral transcriptional latency properties of different HIV-1 subtypes as their LTRs have unique assemblies of transcription factor binding sites. We constructed recombinant viral genomes with the subtype-specific promoters inserted in the common backbone of the subtype B LAI isolate. The recombinant viruses are isogenic, except for the core promoter region that encodes all major TFBS, including NFκB and Sp1 sites. We developed and optimized an assay to investigate HIV-1 proviral latency in T cell lines. Our data show that the majority of HIV-1 infected T cells only start viral gene expression after TNFα activation. Conclusions There were no gross differences among the subtypes, both in the initial latency level and the activation response, except for subtype AE that combines an increased level of basal transcription with a reduced TNFα response. This subtype AE property is related to the presence of a GABP instead of NFκB binding site in the LTR.
Collapse
|
200
|
Peterlin BM, Brogie JE, Price DH. 7SK snRNA: a noncoding RNA that plays a major role in regulating eukaryotic transcription. WILEY INTERDISCIPLINARY REVIEWS-RNA 2011; 3:92-103. [PMID: 21853533 DOI: 10.1002/wrna.106] [Citation(s) in RCA: 143] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The human 7SK small nuclear RNA (snRNA) is an abundant noncoding RNA whose function has been conserved in evolution from invertebrates to humans. It is transcribed by RNA polymerase III (RNAPIII) and is located in the nucleus. Together with associated cellular proteins, 7SK snRNA regulates the activity of the positive transcription elongation factor b (P-TEFb). In humans, this regulation is accomplished by the recruitment of P-TEFb by the 7SK snRNA-binding proteins, hexamethylene bisacetamide (HMBA)-induced mRNA 1/2 (HEXIM1 or HEXIM2), which inhibit the kinase activity of P-TEFb. P-TEFb regulates the transition of promoter proximally paused RNA polymerase II (RNAPII) into productive elongation, thereby, allowing efficient mRNA production. The protein composition of the 7SK small nuclear ribonucleoprotein (snRNP) is regulated dynamically. While the Lupus antigen (La)-related protein 7 (LARP7) is a constitutive component, the methylphosphate capping enzyme (MePCE) associates secondarily to phosphorylate the 5' end of 7SK snRNA. The release of active P-TEFb is closely followed by release of HEXIM proteins and both are replaced by heterogeneous nuclear ribonucleoproteins (hnRNPs). The released P-TEFb activates the expression of most cellular and viral genes. Regulated release of P-TEFb determines the expression pattern of many of the genes that respond to environmental stimuli and regulate growth, proliferation, and differentiation of cells.
Collapse
Affiliation(s)
- B Matija Peterlin
- Department of Medicine, Rosalind Russel Medical Research Center, University of California, San Francisco, CA, USA.
| | | | | |
Collapse
|