151
|
Brunetto G, Bastos de Melo GW, Terzano R, Del Buono D, Astolfi S, Tomasi N, Pii Y, Mimmo T, Cesco S. Copper accumulation in vineyard soils: Rhizosphere processes and agronomic practices to limit its toxicity. CHEMOSPHERE 2016; 162:293-307. [PMID: 27513550 DOI: 10.1016/j.chemosphere.2016.07.104] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 07/28/2016] [Accepted: 07/31/2016] [Indexed: 05/23/2023]
Abstract
Viticulture represents an important agricultural practice in many countries worldwide. Yet, the continuous use of fungicides has caused copper (Cu) accumulation in soils, which represent a major environmental and toxicological concern. Despite being an important micronutrient, Cu can be a potential toxicant at high concentrations since it may cause morphological, anatomical and physiological changes in plants, decreasing both food productivity and quality. Rhizosphere processes can, however, actively control the uptake and translocation of Cu in plants. In particular, root exudates affecting the chemical, physical and biological characteristics of the rhizosphere, might reduce the availability of Cu in the soil and hence its absorption. In addition, this review will aim at discussing the advantages and disadvantages of agronomic practices, such as liming, the use of pesticides, the application of organic matter, biochar and coal fly ashes, the inoculation with bacteria and/or mycorrhizal fungi and the intercropping, in alleviating Cu toxicity symptoms.
Collapse
Affiliation(s)
- Gustavo Brunetto
- Departament of Soil Science, Federal University of Santa Maria, 97105-900, Santa Maria, Rio Grande do Sul, Brazil
| | - George Wellington Bastos de Melo
- National Research Center of Grape and Wine (Centro Nacional de Pesquisa de Uva e Vinho - CNPUV), Brazilian Agricultural Research Corporation (Empresa Brasileira de Pesquisa Agropecuária - Embrapa), Bento Gonçalves, Rio Grande do Sul, CEP: 95700-000, Brazil
| | - Roberto Terzano
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, University of Bari "Aldo Moro", I-70126, Bari, Italy
| | - Daniele Del Buono
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, Borgo XX Giugno 74, 06121 Perugia, Italy
| | - Stefania Astolfi
- Department of Agricultural and Forestry Sciences (DAFNE), Università della Tuscia, Viterbo, I-01100, Italy
| | - Nicola Tomasi
- Dipartimento di Scienze Agrarie e Ambientali, University of Udine, I-33100, Udine, Italy
| | - Youry Pii
- Faculty of Science and Technology, Free University of Bolzano, Piazza Università 5, 39100, Bolzano, Italy
| | - Tanja Mimmo
- Faculty of Science and Technology, Free University of Bolzano, Piazza Università 5, 39100, Bolzano, Italy.
| | - Stefano Cesco
- Faculty of Science and Technology, Free University of Bolzano, Piazza Università 5, 39100, Bolzano, Italy
| |
Collapse
|
152
|
Matson Dzebo M, Ariöz C, Wittung-Stafshede P. Extended functional repertoire for human copper chaperones. Biomol Concepts 2016; 7:29-39. [PMID: 26745464 DOI: 10.1515/bmc-2015-0030] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 12/08/2015] [Indexed: 12/17/2022] Open
Abstract
Copper (Cu) ions are cofactors in many essential enzymes. As free Cu ions are toxic, most organisms have highly specialized Cu transport systems involving dedicated proteins. The human cytoplasmic Cu chaperone Atox1 delivers Cu to P1B-type ATPases in the Golgi network, for incorporation into Cu-dependent enzymes following the secretory path. Atox1 homologs are found in most organisms; it is a 68-residue ferredoxin-fold protein that binds Cu in a conserved surface-exposed CXXC motif. In addition to Atox1, the human cytoplasm also contains Cu chaperones for loading of superoxide dismutase 1 (i.e. CCS) and cytochrome c oxidase in mitochondria (i.e. Cox17). Many mechanistic aspects have been resolved with respect to how Cu ions are moved between these proteins. In addition to the primary cytoplasmic Cu chaperone function, all three cytoplasmic chaperones have been reported to have other interaction partners that are involved in signaling pathways that modulate cell growth and development. These new discoveries imply that humans have evolved a highly sophisticated network of control mechanisms that connect Cu transport with cell regulatory processes. This knowledge may eventually be exploited for future drug developments towards diseases such as cancer and neurodegenerative disorders.
Collapse
|
153
|
Kumar R, Ariöz C, Li Y, Bosaeus N, Rocha S, Wittung-Stafshede P. Disease-causing point-mutations in metal-binding domains of Wilson disease protein decrease stability and increase structural dynamics. Biometals 2016; 30:27-35. [PMID: 27744583 PMCID: PMC5285417 DOI: 10.1007/s10534-016-9976-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 10/10/2016] [Indexed: 11/25/2022]
Abstract
After cellular uptake, Copper (Cu) ions are transferred from the chaperone Atox1 to the Wilson disease protein (ATP7B) for incorporation into Cu-dependent enzymes in the secretory pathway. Human ATP7B is a large multi-domain membrane-spanning protein which, in contrast to homologues in other organisms, has six similar cytoplasmic metal-binding domains (MBDs). The reason for multiple MBDs is proposed to be indirect modulation of enzymatic activity and it is thus intriguing that point mutations in MBDs can promote Wilson disease. We here investigated, in vitro and in silico, the biophysical consequences of clinically-observed Wilson disease mutations, G85V in MBD1 and G591D in MBD6, incorporated in domain 4. Because G85 and G591 correspond to a conserved Gly found in all MBDs, we introduced the mutations in the well-characterized MBD4. We found the mutations to dramatically reduce the MBD4 thermal stability, shifting the midpoint temperature of unfolding by more than 20 °C. In contrast to wild type MBD4 and MBD4D, MBD4V adopted a misfolded structure with a large β-sheet content at high temperatures. Molecular dynamic simulations demonstrated that the mutations increased backbone fluctuations that extended throughout the domain. Our findings imply that reduced stability and enhanced dynamics of MBD1 or MBD6 is the origin of ATP7B dysfunction in Wilson disease patients with the G85V or G591D mutation.
Collapse
Affiliation(s)
- Ranjeet Kumar
- Department of Biology and Biological Engineering, Chalmers University of Technology, 41296, Gothenburg, Sweden
| | - Candan Ariöz
- Department of Biology and Biological Engineering, Chalmers University of Technology, 41296, Gothenburg, Sweden
| | - Yaozong Li
- Department of Chemistry, Umeå University, 90187, Umeå, Sweden
| | - Niklas Bosaeus
- Department of Biology and Biological Engineering, Chalmers University of Technology, 41296, Gothenburg, Sweden
| | - Sandra Rocha
- Department of Biology and Biological Engineering, Chalmers University of Technology, 41296, Gothenburg, Sweden
| | - Pernilla Wittung-Stafshede
- Department of Biology and Biological Engineering, Chalmers University of Technology, 41296, Gothenburg, Sweden.
| |
Collapse
|
154
|
Kahra D, Kovermann M, Wittung-Stafshede P. The C-Terminus of Human Copper Importer Ctr1 Acts as a Binding Site and Transfers Copper to Atox1. Biophys J 2016; 110:95-102. [PMID: 26745413 PMCID: PMC4805863 DOI: 10.1016/j.bpj.2015.11.016] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 11/10/2015] [Accepted: 11/10/2015] [Indexed: 11/19/2022] Open
Abstract
Uptake of copper (Cu) ions into human cells is mediated by the plasma membrane protein Ctr1 and is followed by Cu transfer to cytoplasmic Cu chaperones for delivery to Cu-dependent enzymes. The C-terminal cytoplasmic tail of Ctr1 is a 13-residue peptide harboring an HCH motif that is thought to interact with Cu. We here employ biophysical experiments under anaerobic conditions in peptide models of the Ctr1 C-terminus to deduce Cu-binding residues, Cu affinity, and the ability to release Cu to the cytoplasmic Cu chaperone Atox1. Based on NMR assignments and bicinchoninic acid competition experiments, we demonstrate that Cu interacts in a 1:1 stoichiometry with the HCH motif with an affinity, KD, of ∼10(-14) M. Removing either the Cys residue or the two His residues lowers the Cu-peptide affinity, but site specificity is retained. The C-terminal peptide and Atox1 do not interact in solution in the absence of Cu. However, as directly demonstrated at the residue level via NMR spectroscopy, Atox1 readily acquires Cu from the Cu-loaded peptide. We propose that Cu binding to the Ctr1 C-terminal tail regulates Cu transport into the cytoplasm such that the metal ion is only released to high-affinity Cu chaperones.
Collapse
Affiliation(s)
- Dana Kahra
- Chemistry Department, Umeå University, Umeå, Sweden
| | - Michael Kovermann
- Chemistry Department, Umeå University, Umeå, Sweden; Chemistry Department, University of Konstanz, Konstanz, Germany.
| | - Pernilla Wittung-Stafshede
- Chemistry Department, Umeå University, Umeå, Sweden; Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden.
| |
Collapse
|
155
|
Abstract
Copper (Cu) is an essential transition metal providing activity to key enzymes in the human body. To regulate the levels and avoid toxicity, cells have developed elaborate systems for loading these enzymes with Cu. Most Cu-dependent enzymes obtain the metal from the membrane-bound Cu pumps ATP7A/B in the Golgi network. ATP7A/B receives Cu from the cytoplasmic Cu chaperone Atox1 that acts as the cytoplasmic shuttle between the cell membrane Cu importer, Ctr1 and ATP7A/B. Biological, genetic and structural efforts have provided a tremendous amount of information for how the proteins in this pathway work. Nonetheless, basic mechanistic-biophysical questions (such as how and where ATP7A/B receives Cu, how ATP7A/B conformational changes and domain-domain interactions facilitate Cu movement through the membrane, and, finally, how target polypeptides are loaded with Cu in the Golgi) remain elusive. In this perspective, unresolved inquiries regarding ATP7A/B mechanism will be highlighted. The answers are important from a fundamental view, since mechanistic aspects may be common to other metal transport systems, and for medical purposes, since many diseases appear related to Cu transport dysregulation.
Collapse
|
156
|
Sari SHJ, Iranawati F, Chotimah N, Yunita DE. Bioconcentration of Heavy Metal Cu in Different Tissues of Milkfish [Channos channos (Forsskal, 1775)] in Ujung Pangkah, Gresik, East Java, Indonesia. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.aqpro.2016.07.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
157
|
Affiliation(s)
- Pernilla Wittung-Stafshede
- Department of Biology and Biological Engineering; Chalmers University of Technology; 41296 Gothenburg Sweden
| |
Collapse
|
158
|
Zeeshan M, Murugadas A, Ghaskadbi S, Rajendran RB, Akbarsha MA. ROS dependent copper toxicity in Hydra-biochemical and molecular study. Comp Biochem Physiol C Toxicol Pharmacol 2016; 185-186:1-12. [PMID: 26945520 DOI: 10.1016/j.cbpc.2016.02.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 02/22/2016] [Accepted: 02/28/2016] [Indexed: 12/19/2022]
Abstract
Copper, an essential microelement, is known to be toxic to aquatic life at concentrations higher than that could be tolerated. Copper-induced oxidative stress has been documented in vitro, yet the in vivo effects of metal-induced oxidative stress have not been extensively studied in the lower invertebrates. The objective of the present study has been to find the effect of ROS-mediated toxicity of environmentally relevant concentrations of copper at organismal and cellular levels in Hydra magnipapillata. Exposure to copper at sublethal concentrations (0.06 and 0.1mg/L) for 24 or 48h resulted in generation of significant levels of intracellular reactive oxygen species (ROS). We infer that the free radicals here originate predominantly at the lysosomes but partly at the mitochondria also as visualized by H2-DHCFDA staining. Quantitative real-time PCR of RNA extracted from copper-exposed polyps revealed dose-dependent up-regulation of all antioxidant response genes (CAT, SOD, GPx, GST, GR, G6PD). Concurrent increase of Hsp70 and FoxO genes suggests the ability of polyps to respond to stress, which at 48h was not the same as at 24h. Interestingly, the transcript levels of all genes were down-regulated at 48h as compared to 24h incubation period. Comet assay indicated copper as a powerful genotoxicant, and the DNA damage was dose- as well as duration-dependent. Western blotting of proteins (Bax, Bcl-2 and caspase-3) confirmed ROS-mediated mitochondrial cell death in copper-exposed animals. These changes correlated well with changes in morphology, regeneration and aspects of reproduction. Taken together, the results indicate increased production of intracellular ROS in Hydra on copper exposure.
Collapse
Affiliation(s)
- Mohammed Zeeshan
- Mahatma Gandhi-Doerenkamp Center, Bharathidasan University, Tiruchirappalli 620024, India; Department of Environmental Biotechnology, Bharathidasan University, Tiruchirappalli 620024, India
| | - Anbazhagan Murugadas
- Mahatma Gandhi-Doerenkamp Center, Bharathidasan University, Tiruchirappalli 620024, India; Department of Environmental Biotechnology, Bharathidasan University, Tiruchirappalli 620024, India
| | - Surendra Ghaskadbi
- Developmental Biology Group, MACS-Agharkar Research Institute, Pune 411004, India
| | - Ramasamy Babu Rajendran
- Department of Environmental Biotechnology, Bharathidasan University, Tiruchirappalli 620024, India
| | - Mohammad Abdulkader Akbarsha
- Mahatma Gandhi-Doerenkamp Center, Bharathidasan University, Tiruchirappalli 620024, India; Department of Food Science and Nutrition, College of Food and Agriculture, King Saud University, Riyadh, Saudi Arabia.
| |
Collapse
|
159
|
Zhang P, Zhang D, Zhao X, Wei D, Wang Y, Zhu X. Effects of CTR4 deletion on virulence and stress response in Cryptococcus neoformans. Antonie van Leeuwenhoek 2016; 109:1081-90. [DOI: 10.1007/s10482-016-0709-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 04/29/2016] [Indexed: 01/05/2023]
|
160
|
Johnson DK, Stevenson MJ, Almadidy ZA, Jenkins SE, Wilcox DE, Grossoehme NE. Stabilization of Cu(I) for binding and calorimetric measurements in aqueous solution. Dalton Trans 2016; 44:16494-505. [PMID: 26327397 DOI: 10.1039/c5dt02689j] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Conditions have been developed for the comproportionation reaction of Cu(2+) and copper metal to prepare aqueous solutions of Cu(+) that are stabilized from disproportionation by MeCN and other Cu(+)-stabilizing ligands. These solutions were then used in ITC measurements to quantify the thermodynamics of formation of a set of Cu(+) complexes (Cu(I)(MeCN)3(+), Cu(I)Me6Trien(+), Cu(I)(BCA)2(3-), Cu(I)(BCS)2(3-)), which have stabilities ranging over 15 orders of magnitude, for their use in binding and calorimetric measurements of Cu(+) interaction with proteins and other biological macromolecules. These complexes were then used to determine the stability and thermodynamics of formation of a 1 : 1 complex of Cu(+) with the biologically important tri-peptide glutathione, GSH. These results identify Me6Trien as an attractive Cu(+)-stabilizing ligand for calorimetric experiments, and suggest that caution should be used with MeCN to stabilize Cu(+) due to its potential for participating in unquantifiable ternary interactions.
Collapse
Affiliation(s)
- Destinee K Johnson
- Department of Chemistry, Physics and Geology, Winthrop University, Rock Hill, SC 27933, USA.
| | | | | | | | | | | |
Collapse
|
161
|
The stability and the metal ions binding properties of mutant A85M of CopC. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 161:387-95. [PMID: 27309682 DOI: 10.1016/j.jphotobiol.2016.06.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Revised: 06/04/2016] [Accepted: 06/05/2016] [Indexed: 11/22/2022]
Abstract
In this work, the mutant A85M of CopC was obtained. The stability of mutant A85M of CopC and the binding properties of metal ions were clarified through various spectroscopic techniques. The binding capacity of A85M to metal ions was measured by fluorescence spectroscopy and UV differential absorbance. The results suggested that Cu(2+) can bind with A85M in 1:1 form, and the constant of A85M was nearly the same as that of CopC. Ag(+) can occupy the Cu(+) binding site located at C-terminal, and the binding constant was (2.64±0.48)×10(6)L/mol. Hg(2+) not only can occupy the Cu(+) binding site located at C-terminal, but also can occupy the Cu(2+) binding site located at N-terminal. The stability of A85M was measured by chemical unfolding experiment. The intermediate was observed in the unfolding pathway of A85M-Cu(2+) induced by urea. In addition, the interaction of SDS with A85M also can result in the formation of the intermediate. The effect of metal ions on the stability of intermediate suggested that the C terminal region of intermediate was unfolded and the N terminal region suffered few effects. Compared with CopC, the stability of A85M was decreased. The main reason was the lower stability of N terminal region. The results of molecular dynamic simulation suggested that when the alanine at 85 site was mutated to methionine, the hydrophobic almost unchanged, but the distance between the phenylalanine at 25 site and tryptophan at 83 site increased because of the spatial effect. And it made the stacking interaction of aromatic rings decreased, which was the main reason for the decreasing stability of N terminal region for A85M.
Collapse
|
162
|
Wang Y, Liu H, Ready NE, Su L, Wei Y, Christiani DC, Wei Q. Genetic variants in ABCG1 are associated with survival of nonsmall-cell lung cancer patients. Int J Cancer 2016; 138:2592-601. [PMID: 26757251 PMCID: PMC5294935 DOI: 10.1002/ijc.29991] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 12/14/2015] [Indexed: 01/01/2023]
Abstract
Cell membrane transporters and metabolic enzymes play a crucial role in the transportation of a wide variety of substrates that maintain homeostasis in biological processes. We explored associations between genetic variants in these genes and survival of nonsmall-cell lung cancer (NSCLC) patients by reanalyzing two datasets from published genome-wide association studies (GWASs). In the discovery by using the GWAS dataset of the Prostate, Lung, Colorectal and Ovarian (PLCO) Cancer Screening Trial, we evaluated associations of 1,245 single-nucleotide polymorphisms (SNPs) in genes of four transporter families and two metabolic enzyme families with survival of 1,185 NSCLC patients. We then performed a replication analysis in the Harvard University Lung Cancer study (LCS) with 984 NSCLC patients. Multivariate Cox proportional hazards regression and false discovery rate (FDR) corrections were performed to evaluate the associations. We identified that 21 genotyped SNPs in eight gene regions were significantly associated with survival with FDR ≤ 0.1 in the discovery dataset. Subsequently, we confirmed six SNPs, which were putative functional, in ABCG1 of the ATP-binding cassette transporter family in the replication dataset. In the pooled analysis, two tagging (at r(2) > 0.8 for linkage disequilibrium with other replicated SNPs)/functional SNPs were independently associated with survival: rs225388 G > A [adjusted hazards ratio (HR) = 1.12, 95% confidence interval (CI) = 1.03-1.20, Ptrend = 4.6 × 10(-3)] and rs225390 A > G (adjusted HR = 1.16, 95% CI = 1.07-1.25, Ptrend = 3.8 × 10(-4) ). Our results indicated that genetic variants of ABCG1 may be predictors of survival of NSCLC patients.
Collapse
Affiliation(s)
- Yanru Wang
- Duke Cancer Institute, Duke University Medical Center,
Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine,
Durham, NC 27710, USA
| | - Hongliang Liu
- Duke Cancer Institute, Duke University Medical Center,
Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine,
Durham, NC 27710, USA
| | - Neal E. Ready
- Duke Cancer Institute, Duke University Medical Center,
Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine,
Durham, NC 27710, USA
| | - Li Su
- Departments of Environmental Health and Department of
Epidemiology, Harvard School of Public Health, Boston, MA 02115, USA
| | - Yongyue Wei
- Departments of Environmental Health and Department of
Epidemiology, Harvard School of Public Health, Boston, MA 02115, USA
| | - David C. Christiani
- Departments of Environmental Health and Department of
Epidemiology, Harvard School of Public Health, Boston, MA 02115, USA
- Department of Medicine, Massachusetts General Hospital,
Boston, MA 02114, USA
| | - Qingyi Wei
- Duke Cancer Institute, Duke University Medical Center,
Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine,
Durham, NC 27710, USA
| |
Collapse
|
163
|
Gao Y, Feng J, Han F, Zhu L. Application of biotic ligand and toxicokinetic-toxicodynamic modeling to predict the accumulation and toxicity of metal mixtures to zebrafish larvae. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 213:16-29. [PMID: 26874871 DOI: 10.1016/j.envpol.2016.01.073] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 01/21/2016] [Accepted: 01/25/2016] [Indexed: 06/05/2023]
Abstract
Predicting the accumulation and toxicity of mixtures of metals to aquatic organisms is a key challenge in ecotoxicological studies. In this study, the accumulation and toxicity of mixed essential (Cu) and nonessential (Cd and Pb) metals in zebrafish larvae exposed to a binary mixture of these elements at environmentally relevant concentrations were predicted using a refined toxicokinetic (TK)-toxicodynamic (TD) model aided with biotic ligand model (BLM) and toxic equivalent factor (TEF) approach. Competitive inhibition and non-competitive interaction/inhibition were observed in bio-uptake. Both Pb and Cd behaved as competitive inhibitors of Cu uptake at high Cu concentrations (>0.1 μM). By contrast, Cu uptake was independent of Cd or Pb when the Cu concentrations were below 10(-7) M. Furthermore, low concentrations of Cu had an adiaphorous effect on Cd or Pb uptake. Cd uptake was inhibited by Pb, and the Pb uptake rates consistently decreased in the presence of Cd. The accumulation processes of Cd-Pb, Cu-Cd, and Cu-Pb were accurately predicted by the BLM-aided TK models. The traditional TD model could successfully predict the toxicity of Cd-Pb mixtures, but not those of Cu-Cd or Cu-Pb mixtures. The revised TD model, which considered the possible different killing rates (Kk) above or below the threshold, offered better prediction for the toxicity of Cu-Cd or Cu-Pb mixtures. The overall findings may be of key significance in understanding and predicting metal uptake, accumulation, and toxicity in binary or multiple metal exposure scenarios.
Collapse
Affiliation(s)
- Yongfei Gao
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Jianfeng Feng
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China.
| | - Feng Han
- Bureau of Hydrology and Water Resources of Henan Province, Zhenzhou, China
| | - Lin Zhu
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China.
| |
Collapse
|
164
|
Glutamate ameliorates copper-induced oxidative injury by regulating antioxidant defences in fish intestine. Br J Nutr 2016; 116:70-9. [DOI: 10.1017/s0007114516001732] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
AbstractThe objective of this study was to determine the protective effect of glutamate (Glu) in Cu-induced oxidative injury in fish intestine in vivo and enterocytes in vitro. The results indicated that exposure to 6 mg/l Cu for 72 h induced the production of reactive oxygen species, thereby increasing protein oxidation and lipid peroxidation in enterocytes of grass carp in vitro. Cells exposed to Cu alone resulted in a significant increase in lactate dehydrogenase release, which is accompanied by depletions of antioxidants, including total superoxide dismutase (T-SOD), glutathione S-transferase (GST), glutathione reductase (GR), anti-superoxide anion (ASA), anti-hydroxy radical (AHR) activities and GSH content. Pre-treatment with Glu remarkably prevented the toxic effects of Cu on the T-SOD, GST, GR, AHR, and ASA activities and GSH content in enterocytes. However, Cu induced an adaptive increase in the activities of catalase and glutathione peroxidase (GPx). Glu supplementation further increased GPx activity in enterocytes. Interestingly, the experiment in vivo showed that Glu pre-supplementation significantly elevated SOD, GPx, GST, GR, ASA and AHR activities, as well as GSH content. Further results showed that pre-treatment with Glu could alleviate Cu-induced oxidative injury by elevating antioxidant enzyme activities through regulating the expression of NF-E2-related nuclear factor 2 (Nrf2) mRNA. Together, these results indicated that Glu could attenuate Cu-induced cellular oxidative damage in fish intestine, likely mediated through Nrf2 signalling pathways regulating mRNA expressions of antioxidant enzyme genes and synthesis of GSH.
Collapse
|
165
|
Quan X, Uddin R, Heiskanen A, Parmvi M, Nilson K, Donolato M, Hansen MF, Rena G, Boisen A. The copper binding properties of metformin--QCM-D, XPS and nanobead agglomeration. Chem Commun (Camb) 2016; 51:17313-6. [PMID: 26462973 DOI: 10.1039/c5cc04321b] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Study of the copper binding properties of metformin is important for revealing its mechanism of action as a first-line type-2 diabetes drug. A quantitative investigation of interactions between metformin and L-cysteine-copper complexes was performed. The results suggest that metformin could interact with biological copper, which plays a key role in mitochondrial function.
Collapse
Affiliation(s)
- Xueling Quan
- Department of Micro- and Nanotechnology, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
| | - Rokon Uddin
- Department of Micro- and Nanotechnology, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
| | - Arto Heiskanen
- Department of Micro- and Nanotechnology, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
| | - Mattias Parmvi
- Department of Micro- and Nanotechnology, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
| | - Katharina Nilson
- DTU DANCHIP, Technical University of Denmark, Building 347, Kgs. Lyngby DK-2800, Denmark
| | - Marco Donolato
- Department of Micro- and Nanotechnology, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
| | - Mikkel F Hansen
- Department of Micro- and Nanotechnology, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
| | - Graham Rena
- Cardiovascular and Diabetes Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK
| | - Anja Boisen
- Department of Micro- and Nanotechnology, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
166
|
Abstract
Copper (Cu) is a trace element essential for the growth and development of almost all organisms, including bacteria. However, Cu overload in most systems is toxic. Studies show Cu accumulates in macrophage phagosomes infected with bacteria, suggesting Cu provides an innate immune mechanism to combat invading pathogens. To counteract the host-supplied Cu, increasing evidence suggests that bacteria have evolved Cu resistance mechanisms to facilitate their pathogenesis. In particular, Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis, has evolved multiple pathways to respond to Cu. Here, we summarize what is currently known about Cu homeostasis in Mtb and discuss potential sources of Cu encountered by this and other pathogens in a mammalian host.
Collapse
Affiliation(s)
- Xiaoshan Shi
- New York University School of Medicine, Department of Microbiology, 550 First Avenue MSB 236, New York, NY 10016, USA.
| | | |
Collapse
|
167
|
Hložková K, Matěnová M, Žáčková P, Strnad H, Hršelová H, Hroudová M, Kotrba P. Characterization of three distinct metallothionein genes of the Ag-hyperaccumulating ectomycorrhizal fungus Amanita strobiliformis. Fungal Biol 2016; 120:358-69. [DOI: 10.1016/j.funbio.2015.11.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 10/19/2015] [Accepted: 11/12/2015] [Indexed: 01/07/2023]
|
168
|
Synthetic fluorescent probes to map metallostasis and intracellular fate of zinc and copper. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2015.11.012] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
169
|
Accumulation of Ag and Cu in Amanita strobiliformis and characterization of its Cu and Ag uptake transporter genes AsCTR2 and AsCTR3. Biometals 2016; 29:249-64. [DOI: 10.1007/s10534-016-9912-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 01/28/2016] [Indexed: 10/22/2022]
|
170
|
Mondol T, Åden J, Wittung-Stafshede P. Copper binding triggers compaction in N-terminal tail of human copper pump ATP7B. Biochem Biophys Res Commun 2016; 470:663-669. [DOI: 10.1016/j.bbrc.2016.01.085] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Accepted: 01/14/2016] [Indexed: 02/01/2023]
|
171
|
|
172
|
Castañeda-Arriaga R, Alvarez-Idaboy JR, Mora-Diez N. Theoretical study of copper complexes with lipoic and dihydrolipoic acids. RSC Adv 2016. [DOI: 10.1039/c6ra23553k] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A Cu(ii) complex with doubly-deprotonated dihydrolipoic acid has antioxidant capacity, since it is able to slow down by two orders the first step of the Haber–Weiss cycle reducing the potential damage caused by ˙OH radical formation.
Collapse
Affiliation(s)
- Romina Castañeda-Arriaga
- Facultad de Química
- Departamento de Física y Química Teórica
- Universidad Nacional Autónoma de México
- Mexico
- Department of Chemistry
| | - J. Raul Alvarez-Idaboy
- Facultad de Química
- Departamento de Física y Química Teórica
- Universidad Nacional Autónoma de México
- Mexico
| | | |
Collapse
|
173
|
Leng X, Jia H, Sun X, Shangguan L, Mu Q, Wang B, Fang J. Comparative transcriptome analysis of grapevine in response to copper stress. Sci Rep 2015; 5:17749. [PMID: 26673527 PMCID: PMC4682189 DOI: 10.1038/srep17749] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 11/05/2015] [Indexed: 01/03/2023] Open
Abstract
Grapevine is one of the most economically important and widely cultivated fruit crop worldwide. With the industrialization and the popular application of cupric fungicides in grape industry, copper stress and copper pollution are also the factors affecting grape production and berry and wine quality. Here, 3,843 transcripts were significantly differently expressed genes in response to Cu stress by RNA-seq, which included 1,892 up-regulated and 1,951 down-regulated transcripts. During this study we found many known and novel Cu-induced and -repressed genes. Biological analysis of grape samples were indicated that exogenous Cu can influence chlorophylls metabolism and photosynthetic activities of grapevine. Most ROS detoxification systems, including antioxidant enzyme, stress-related proteins and secondary metabolites were strongly induced. Concomitantly, abscisic acid functioned as a negative regulator in Cu stress, in opposite action to ethylene, auxin, jasmonic acid, and brassinolide. This study also identified a set of Cu stress specifically activated genes coding copper transporter, P1B-type ATPase, multidrug transporters. Overall, this work was carried out to gain insights into the copper-regulated and stress-responsive mechanisms in grapevine at transcriptome level. This research can also provide some genetic information that can help us in better vinery management and breeding Cu-resistant grape cultivars.
Collapse
Affiliation(s)
- Xiangpeng Leng
- College of Horticulture, Nanjing Agricultural University, Tongwei Road 6, Nanjing 210095, PR. China
| | - Haifeng Jia
- College of Horticulture, Nanjing Agricultural University, Tongwei Road 6, Nanjing 210095, PR. China
| | - Xin Sun
- College of Horticulture, Nanjing Agricultural University, Tongwei Road 6, Nanjing 210095, PR. China
| | - Lingfei Shangguan
- College of Horticulture, Nanjing Agricultural University, Tongwei Road 6, Nanjing 210095, PR. China
| | - Qian Mu
- College of Horticulture, Nanjing Agricultural University, Tongwei Road 6, Nanjing 210095, PR. China
| | - Baoju Wang
- College of Horticulture, Nanjing Agricultural University, Tongwei Road 6, Nanjing 210095, PR. China
| | - Jinggui Fang
- College of Horticulture, Nanjing Agricultural University, Tongwei Road 6, Nanjing 210095, PR. China
| |
Collapse
|
174
|
Azeez L, Ogundode SM, Ganiyu OT, Oyedeji OA, Tijani KO, Adewuyi SO. Spectra characterization, flavonoid profile, antioxidant activity and antifungal property of Senecio bifrae and its copper complex. ACTA ACUST UNITED AC 2015. [DOI: 10.5897/sre2015.6194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
175
|
Cheung CCH, Soon CY, Chuang CL, Phillips ARJ, Zhang S, Cooper GJS. Low-dose copper infusion into the coronary circulation induces acute heart failure in diabetic rats: New mechanism of heart disease. Biochem Pharmacol 2015. [PMID: 26208785 DOI: 10.1016/j.bcp.2015.06.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Diabetes impairs copper (Cu) regulation, causing elevated serum Cu and urinary Cu excretion in patients with established cardiovascular disease; it also causes cardiomyopathy and chronic cardiac impairment linked to defective Cu homeostasis in rats. However, the mechanisms that link impaired Cu regulation to cardiac dysfunction in diabetes are incompletely understood. Chronic treatment with triethylenetetramine (TETA), a Cu²⁺-selective chelator, improves cardiac function in diabetic patients, and in rats with heart disease; the latter displayed ∼3-fold elevations in free Cu²⁺ in the coronary effluent when TETA was infused into their coronary arteries. To further study the nature of defective cardiac Cu regulation in diabetes, we employed an isolated-perfused, working-heart model in which we infused micromolar doses of Cu²⁺ into the coronary arteries and measured acute effects on cardiac function in diabetic and non-diabetic-control rats. Infusion of CuCl₂ solutions caused acute dose-dependent cardiac dysfunction in normal hearts. Several measures of baseline cardiac function were impaired in diabetic hearts, and these defects were exacerbated by low-micromolar Cu²⁺ infusion. The response to infused Cu²⁺ was augmented in diabetic hearts, which became defective at lower infusion levels and underwent complete pump failure (cardiac output = 0 ml/min) more often (P < 0.0001) at concentrations that only moderately impaired function of control hearts. To our knowledge, this is the first report describing the acute effects on cardiac function of pathophysiological elevations in coronary Cu²⁺. The effects of Cu²⁺ infusion occur within minutes in both control and diabetic hearts, which suggests that they are not due to remodelling. Heightened sensitivity to the acute effects of small elevations in Cu²⁺ could contribute substantively to impaired cardiac function in patients with diabetes and is thus identified as a new mechanism of heart disease.
Collapse
Affiliation(s)
- Carlos Chun Ho Cheung
- The School of Biological Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand
| | - Choong Yee Soon
- The School of Biological Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand
| | - Chia-Lin Chuang
- The School of Biological Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand
| | - Anthony R J Phillips
- The School of Biological Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand
| | - Shaoping Zhang
- The School of Biological Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand; The Maurice Wilkins Centre for Molecular BioDiscovery, Faculty of Science, The University of Auckland, Auckland, New Zealand
| | - Garth J S Cooper
- The School of Biological Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand; The Maurice Wilkins Centre for Molecular BioDiscovery, Faculty of Science, The University of Auckland, Auckland, New Zealand; Department of Pharmacology, Medical Sciences Division, University of Oxford, Oxford, UK; The Centre for Advanced Discovery and Experimental Therapeutics, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, The University of Manchester, Manchester, UK; The Centre for Endocrinology and Diabetes, Institute of Human Development, Faculty of Medical and Human Sciences, The University of Manchester, Manchester, UK.
| |
Collapse
|
176
|
Paths and determinants for Penicillium janthinellum to resist low and high copper. Sci Rep 2015; 5:10590. [PMID: 26265593 PMCID: PMC4642507 DOI: 10.1038/srep10590] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 04/20/2015] [Indexed: 01/21/2023] Open
Abstract
Copper (Cu) tolerance was well understood in fungi yeasts but not in filamentous fungi. Filamentous fungi are eukaryotes but unlike eukaryotic fungi yeasts, which are a collection of various fungi that are maybe classified into different taxa but all characterized by growth as filamentous hyphae cells and with a complex morphology. The current knowledge of Cu resistance of filamentous fungi is still fragmental and therefore needs to be bridged. In this study, we characterized Cu resistance of Penicillium janthinellum strain GXCR and its Cu-resistance-decreasing mutants (EC-6 and UC-8), and conducted sequencing of a total of 6 transcriptomes from wild-type GXCR and mutant EC-6 grown under control and external Cu. Taken all the results together, Cu effects on the basal metabolism were directed to solute transport by two superfamilies of solute carrier and major facilitator, the buffering free CoA and Acyl-CoA pool in the peroxisome, F-type H(+)-transporting ATPases-based ATP production, V-type H(+)-transporting ATPases-based transmembrane transport, protein degradation, and alternative splicing of pre-mRNAs. Roles of enzymatic and non-enzymatic antioxidants in resistance to low and high Cu were defined. The backbone paths, signaling systems, and determinants that involve resistance of filamentous fungi to high Cu were determined, discussed and outlined in a model.
Collapse
|
177
|
Pushie MJ, Shaw K, Franz KJ, Shearer J, Haas KL. Model Peptide Studies Reveal a Mixed Histidine-Methionine Cu(I) Binding Site at the N-Terminus of Human Copper Transporter 1. Inorg Chem 2015; 54:8544-51. [PMID: 26258435 DOI: 10.1021/acs.inorgchem.5b01162] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Copper is a vital metal cofactor in enzymes that are essential to myriad biological processes. Cellular acquisition of copper is primarily accomplished through the Ctr family of plasma membrane copper transport proteins. Model peptide studies indicate that the human Ctr1 N-terminus binds to Cu(II) with high affinity through an amino terminal Cu(II), Ni(II) (ATCUN) binding site. Unlike typical ATCUN-type peptides, the Ctr1 peptide facilitates the ascorbate-dependent reduction of Cu(II) bound in its ATCUN site by virtue of an adjacent HH (bis-His) sequence in the peptide. It is likely that the Cu(I) coordination environment influences the redox behavior of Cu bound to this peptide; however, the identity and coordination geometry of the Cu(I) site has not been elucidated from previous work. Here, we show data from NMR, XAS, and structural modeling that sheds light on the identity of the Cu(I) binding site of a Ctr1 model peptide. The Cu(I) site includes the same bis-His site identified in previous work to facilitate ascorbate-dependent Cu(II) reduction. The data presented here are consistent with a rational mechanism by which Ctr1 provides coordination environments that facilitate Cu(II) reduction prior to Cu(I) transport.
Collapse
Affiliation(s)
- M Jake Pushie
- Department of Anatomy and Cell Biology, University of Saskatchewan , Saskatoon, Saskatchewan, Canada.,Canadian Light Source Incorporated, Saskatoon, Saskatchewan, Canada
| | - Katharine Shaw
- Department of Chemistry and Physics, Saint Mary's College , Notre Dame, Indiana 46556, United States
| | - Katherine J Franz
- Department of Chemistry, Duke University , Durham, North Carolina 27708, United States
| | - Jason Shearer
- Department of Chemistry, University of Nevada , Reno, Nevada 895030, United States
| | - Kathryn L Haas
- Department of Chemistry and Physics, Saint Mary's College , Notre Dame, Indiana 46556, United States
| |
Collapse
|
178
|
Identification of New Potential Interaction Partners for Human Cytoplasmic Copper Chaperone Atox1: Roles in Gene Regulation? Int J Mol Sci 2015. [PMID: 26213915 PMCID: PMC4581165 DOI: 10.3390/ijms160816728] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The human copper (Cu) chaperone Atox1 delivers Cu to P1B type ATPases in the Golgi network, for incorporation into essential Cu-dependent enzymes. Atox1 homologs are found in most organisms; it is a 68-residue ferredoxin-fold protein that binds Cu in a conserved surface-exposed Cys-X-X-Cys (CXXC) motif. In addition to its well-documented cytoplasmic chaperone function, in 2008 Atox1 was suggested to have functionality in the nucleus. To identify new interactions partners of Atox1, we performed a yeast two-hybrid screen with a large human placenta library of cDNA fragments using Atox1 as bait. Among 98 million fragments investigated, 25 proteins were found to be confident interaction partners. Nine of these were uncharacterized proteins, and the remaining 16 proteins were analyzed by bioinformatics with respect to cell localization, tissue distribution, function, sequence motifs, three-dimensional structures and interaction networks. Several of the hits were eukaryotic-specific proteins interacting with DNA or RNA implying that Atox1 may act as a modulator of gene regulation. Notably, because many of the identified proteins contain CXXC motifs, similarly to the Cu transport reactions, interactions between these and Atox1 may be mediated by Cu.
Collapse
|
179
|
Abstract
Copper has many roles in biology that involve the change of coordination sphere and/or oxidation state of the copper ion. Consequently, the study of copper in heterogeneous environments is an important area in biophysics. EPR is a primary technique for the investigation of paramagnetic copper, which is usually the isolated Cu(II) ion, but sometimes as Cu(II) in different oxidation states of multitransition ion clusters. The gross geometry of the coordination environment of Cu(II) can often be determined from a simple inspection of the EPR spectrum, recorded in the traditional X-band frequency range (9-10 GHz). Identification and quantitation of the coordinating ligand atoms, however, is not so straightforward. In particular, analysis of the superhyperfine structure on the EPR spectrum, to determine the number of coordinated nitrogen atoms, is fraught with difficulty at X-band, despite the observation that the overwhelming number of EPR studies of Cu(II) in the literature have been carried out at X-band. Greater reliability has been demonstrated at S-band (3-4 GHz), using the low-field parallel (gz) features. However, analysis relies on clear identification of the outermost superhyperfine line, which has the lowest intensity of all the spectral features. Computer simulations have subsequently indicated that the much more intense perpendicular region of the spectrum can be reliably interpreted at L-band (2 GHz). The present work describes the development of L-band EPR of Cu(II) into a routine method that is applicable to biological samples.
Collapse
Affiliation(s)
- Brian Bennett
- Physics Department, 540 N. 15th Street, Marquette University, Milwaukee WI 53233
| | - Jason Kowalski
- Department of Chemistry, University of Wisconsin-Parkside, Kenosha WI 53144
| |
Collapse
|
180
|
Kandanapitiye MS, Gunathilake C, Jaroniec M, Huang SD. Biocompatible D-Penicillamine Conjugated Au Nanoparticles: Targeting Intracellular Free Copper Ions for Detoxification. J Mater Chem B 2015; 3:5553-5559. [PMID: 26213624 PMCID: PMC4510992 DOI: 10.1039/c5tb00189g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
High thiophillicicity of the Au-nanoparticle (Au NP) surface leads to covalent attachment of D-penicillamine molecules to Au NPs to form biocompatible D-penicillamine conjugated Au NPs. The latter are highly water-dispersible, exhibit no cytotoxicity, and can readily penetrate the cell membrane to target intracellular free copper ions for selective copper detoxification in the presence of the other divalent essential metal ions including Zn(II), Fe(II), Mn(II), Ca(II), and Mg(II), thus opening up a new avenue for improving the efficacy and pharmacokinetics of D-penicillamine, an important clinical drug currently used to treat the copper overload-related diseases and disorders.
Collapse
Affiliation(s)
| | - Chamila Gunathilake
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44240, USA
| | - Mietek Jaroniec
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44240, USA
| | - Songping D. Huang
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44240, USA
| |
Collapse
|
181
|
Kwan CK, Sanford E, Long J. Copper Pollution Increases the Relative Importance of Predation Risk in an Aquatic Food Web. PLoS One 2015; 10:e0133329. [PMID: 26172044 PMCID: PMC4501717 DOI: 10.1371/journal.pone.0133329] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Accepted: 06/24/2015] [Indexed: 11/18/2022] Open
Abstract
Although the cascading impact of predators depends critically on the relative role of lethal predation and predation risk, we lack an understanding of how human-caused stressors may shift this balance. Emergent evidence suggests that pollution may increase the importance of predator consumptive effects by weakening the effects of fear perceived by prey. However, this oversimplification ignores the possibility that pollution may also alter predator consumptive effects. In particular, contaminants may impair the consumptive effects of predators by altering density-dependent interactions among prey conspecifics. No study has directly compared predator consumptive and non-consumptive effects in polluted versus non-polluted settings. We addressed this issue by using laboratory mesocosms to examine the impact of sublethal doses of copper on tri-trophic interactions among estuarine predator crabs Cancer productus, carnivorous whelk prey Urosalpinx cinerea, and the basal resource barnacles Balanus glandula. We investigated crab consumptive effects (whelks culled without crab chemical cues), non-consumptive effects (whelks not culled with crab chemical cues), and total effects (whelks culled with crab chemical cues) on whelks in copper polluted and non-polluted waters. Realistic copper concentrations suppressed the effects of simulated crab lethal predation (whelk culling) by removing density-dependent feeding by whelks. Specifically, reductions in conspecific density occurring in elevated copper levels did not trigger the normal increase in whelk consumption rates of barnacles. Weakened effects of fear were only observed at extremely high copper levels, suggesting consumptive effects were more sensitive to pollution. Thus, pollution may shape communities by altering the roles of predators and interactions among prey.
Collapse
Affiliation(s)
- Christopher Kent Kwan
- Biology Department and Coastal & Marine Institute Laboratory, San Diego State University, San Diego, California, United States of America
- Bodega Marine Laboratory and Department of Evolution and Ecology, University of California Davis, Bodega Bay, California, United States of America
| | - Eric Sanford
- Bodega Marine Laboratory and Department of Evolution and Ecology, University of California Davis, Bodega Bay, California, United States of America
| | - Jeremy Long
- Biology Department and Coastal & Marine Institute Laboratory, San Diego State University, San Diego, California, United States of America
| |
Collapse
|
182
|
Wu T, Kamiya T, Yumoto H, Sotta N, Katsushi Y, Shigenobu S, Matsubayashi Y, Fujiwara T. An Arabidopsis thaliana copper-sensitive mutant suggests a role of phytosulfokine in ethylene production. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:3657-67. [PMID: 25908239 PMCID: PMC4473973 DOI: 10.1093/jxb/erv105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
To increase our understanding of the adaptation for copper (Cu) deficiency, Arabidopsis mutants with apparent alterations under Cu deficiency were identified. In this report, a novel mutant, tpst-2, was found to be more sensitive than wild-type (Col-0) plants to Cu deficiency during root elongation. The positional cloning of tpst-2 revealed that this gene encodes a tyrosylprotein sulfotransferase (TPST). Moreover, the ethylene production of tpst-2 mutant was higher than that of Col-0 under Cu deficiency, and adding the ethylene response inhibitor AgNO3 partially rescued defects in root elongation. Interestingly, peptide hormone phytosulfokine (PSK) treatment also repressed the ethylene production of tpst-2 mutant plants. Our results revealed that TPST suppressed ethylene production through the action of PSK.
Collapse
Affiliation(s)
- Tao Wu
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region, Ministry of Agriculture), Horticultural College, Northeast Agricultural University, 59 Mucai Street, Harbin 150030, China
| | - Takehiro Kamiya
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Hiroko Yumoto
- National Agriculture and Food Research Organization, Institute of Floricultural Science, 3-1-1 Kannondai, Tsukuba, Ibaraki 305-8666, Japan
| | - Naoyuki Sotta
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | - Shuji Shigenobu
- National Institute for Basic Biology, Okazaki 444-8585, Japan
| | - Yoshikatsu Matsubayashi
- Division of Biological Science, Graduate School of Science, Nagoya Universisy, Chikusa-ku, Nagoya 464-8602, Japan
| | - Toru Fujiwara
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
183
|
Leng X, Mu Q, Wang X, Li X, Zhu X, Shangguan L, Fang J. Transporters, chaperones, and P-type ATPases controlling grapevine copper homeostasis. Funct Integr Genomics 2015; 15:673-84. [PMID: 26054906 DOI: 10.1007/s10142-015-0444-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 04/22/2015] [Accepted: 04/28/2015] [Indexed: 12/20/2022]
Abstract
With more copper and copper-containing compounds used as bactericides and fungicides in viticulture, copper homeostasis in grapevine (Vitis) has become one of the serious environmental crises with great risk. To better understand the regulation of Cu homeostasis in grapevine, grapevine seedlings cultured in vitro with different levels of Cu were utilized to investigate the tolerance mechanisms of grapevine responding to copper availability at physiological and molecular levels. The results indicated that Cu contents in roots and leaves arose with increasing levels of Cu application. With copper concentration increasing, malondialdehyde (MDA) content increased in roots and leaves and the activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) increased to protect the plant itself from damage. The expression patterns of 19 genes, encoding transporters, chaperones, and P-type ATPases involved in copper homeostasis in root and leaf of grapevine seedling under various levels of Cu(2+) were further analyzed. The expression patterns indicated that CTr1, CTr2, and CTr8 transporters were significantly upregulated in response both to Cu excess and deficiency. ZIP2 was downregulated in response to Cu excess and upregulated under Cu-deficient conditions, while ZIP4 had an opposite expression pattern under similar conditions. The expression of chaperones and P-type ATPases in response to Cu availability in grapevine were also briefly studied.
Collapse
Affiliation(s)
- Xiangpeng Leng
- College of Horticulture, Nanjing Agricultural University, Tongwei Road 6, Nanjing, 210095, China
| | - Qian Mu
- College of Horticulture, Nanjing Agricultural University, Tongwei Road 6, Nanjing, 210095, China
| | - Xiaomin Wang
- College of Horticulture, Nanjing Agricultural University, Tongwei Road 6, Nanjing, 210095, China
| | - Xiaopeng Li
- College of Horticulture, Nanjing Agricultural University, Tongwei Road 6, Nanjing, 210095, China
| | - Xudong Zhu
- College of Horticulture, Nanjing Agricultural University, Tongwei Road 6, Nanjing, 210095, China
| | - Lingfei Shangguan
- College of Horticulture, Nanjing Agricultural University, Tongwei Road 6, Nanjing, 210095, China.
| | - Jinggui Fang
- College of Horticulture, Nanjing Agricultural University, Tongwei Road 6, Nanjing, 210095, China.
| |
Collapse
|
184
|
Niemiec MS, Dingeldein APG, Wittung-Stafshede P. Enthalpy-entropy compensation at play in human copper ion transfer. Sci Rep 2015; 5:10518. [PMID: 26013029 PMCID: PMC4444973 DOI: 10.1038/srep10518] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 04/16/2015] [Indexed: 11/09/2022] Open
Abstract
Copper (Cu) is an essential trace element but toxic in free form. After cell uptake, Cu is transferred, via direct protein-protein interactions, from the chaperone Atox1 to the Wilson disease protein (WD) for incorporation into Cu-dependent enzymes. Cu binds to a conserved C(1)XXC(2) motif in the chaperone as well as in each of the cytoplasmic metal-binding domains of WD. Here, we dissect mechanism and thermodynamics of Cu transfer from Atox1 to the fourth metal binding domain of WD. Using chromatography and calorimetry together with single Cys-to-Ala variants, we demonstrate that Cu-dependent protein heterocomplexes require the presence of C(1) but not C(2). Comparison of thermodynamic parameters for mutant versus wild type reactions reveals that the wild type reaction involves strong entropy-enthalpy compensation. This property is explained by a dynamic inter-conversion of Cu-Cys coordinations in the wild type ensemble and may provide functional advantage by protecting against Cu mis-ligation and bypassing enthalpic traps.
Collapse
|
185
|
Transcriptional response to copper excess and identification of genes involved in heavy metal tolerance in the extremophilic microalga Chlamydomonas acidophila. Extremophiles 2015; 19:657-72. [DOI: 10.1007/s00792-015-0746-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 03/23/2015] [Indexed: 01/05/2023]
|
186
|
Shenberger Y, Shimshi A, Ruthstein S. EPR spectroscopy shows that the blood carrier protein, human serum albumin, closely interacts with the N-terminal domain of the copper transporter, Ctr1. J Phys Chem B 2015; 119:4824-30. [PMID: 25794362 DOI: 10.1021/acs.jpcb.5b00091] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Copper is an essential metal whose localization within the cells must be carefully controlled to avoid copper dependent redox cycling. Although most of the key proteins involved in cellular copper transfer have been identified, fundamental questions regarding the copper transfer mechanism have yet to be resolved. One of the blood carrier proteins believed to be involved in copper transfer to the cell is human serum albumin (HSA). However, direct evidence for close interaction between HSA and the extracellular domain of the copper transporter Ctr1 has not yet been found. By utilizing EPR spectroscopy, we show here that HSA closely interacts with the first 14 amino acids of the Ctr1, even without the presence of copper ions.
Collapse
Affiliation(s)
- Yulia Shenberger
- Department of Chemistry, Faculty of Exact Sciences, Bar Ilan University, Ramat-Gan, Israel 5290002
| | - Amit Shimshi
- Department of Chemistry, Faculty of Exact Sciences, Bar Ilan University, Ramat-Gan, Israel 5290002
| | - Sharon Ruthstein
- Department of Chemistry, Faculty of Exact Sciences, Bar Ilan University, Ramat-Gan, Israel 5290002
| |
Collapse
|
187
|
Anjum NA, Singh HP, Khan MIR, Masood A, Per TS, Negi A, Batish DR, Khan NA, Duarte AC, Pereira E, Ahmad I. Too much is bad--an appraisal of phytotoxicity of elevated plant-beneficial heavy metal ions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:3361-82. [PMID: 25408077 DOI: 10.1007/s11356-014-3849-9] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 11/10/2014] [Indexed: 05/20/2023]
Abstract
Heavy metal ions such as cobalt (Co), copper (Cu), iron (Fe), manganese (Mn), molybdenum (Mo), nickel (Ni), and zinc (Zn) are considered essential/beneficial for optimal plant growth, development, and productivity. However, these ions readily impact functions of many enzymes and proteins, halt metabolism, and exhibit phytotoxicity at supra-optimum supply. Nevertheless, the concentrations of these heavy metal ions are increasing in agricultural soils worldwide via both natural and anthropogenic sources that need immediate attention. Considering recent breakthroughs on Co, Cu, Fe, Mn, Mo, Ni, and Zn in soil-plant system, the present paper: (a) overviews the status in soils and their uptake, transport, and significance in plants; (b) critically discusses their elevated level-mediated toxicity to both plant growth/development and cell/genome; (c) briefly cross talks on the significance of potential interactions between previous plant-beneficial heavy metal ions in plants; and (d) highlights so far unexplored aspects in the current context.
Collapse
Affiliation(s)
- Naser A Anjum
- Centre for Environmental and Marine Studies (CESAM) and Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal,
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
188
|
Human cytoplasmic copper chaperones Atox1 and CCS exchange copper ions in vitro. Biometals 2015; 28:577-85. [DOI: 10.1007/s10534-015-9832-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 02/03/2015] [Indexed: 01/22/2023]
|
189
|
Jullien AS, Gateau C, Lebrun C, Delangle P. Pseudo-peptides Based on Methyl Cysteine or Methionine Inspired from Mets Motifs Found in the Copper Transporter Ctr1. Inorg Chem 2015; 54:2339-44. [DOI: 10.1021/ic502962d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Anne-Solène Jullien
- Univ. Grenoble Alpes, INAC-SCIB, F-38000 Grenoble, France
- CEA, INAC-SCIB,
Reconnaissance Ionique et Chimie de Coordination, F-38000 Grenoble, France
| | - Christelle Gateau
- Univ. Grenoble Alpes, INAC-SCIB, F-38000 Grenoble, France
- CEA, INAC-SCIB,
Reconnaissance Ionique et Chimie de Coordination, F-38000 Grenoble, France
| | - Colette Lebrun
- Univ. Grenoble Alpes, INAC-SCIB, F-38000 Grenoble, France
- CEA, INAC-SCIB,
Reconnaissance Ionique et Chimie de Coordination, F-38000 Grenoble, France
| | - Pascale Delangle
- Univ. Grenoble Alpes, INAC-SCIB, F-38000 Grenoble, France
- CEA, INAC-SCIB,
Reconnaissance Ionique et Chimie de Coordination, F-38000 Grenoble, France
| |
Collapse
|
190
|
Kandanapitiye MS, Wang FJ, Valley B, Gunathilake C, Jaroniec M, Huang SD. Selective ion exchange governed by the Irving-Williams series in K2Zn3[Fe(CN)6]2 nanoparticles: toward a designer prodrug for Wilson's disease. Inorg Chem 2015; 54:1212-4. [PMID: 25654167 DOI: 10.1021/ic502957d] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The principle of the Irving-Williams series is applied to the design of a novel prodrug based on K2Zn3[Fe(CN)6]2 nanoparticles (ZnPB NPs) for Wilson's disease (WD), a rare but fatal genetic disorder characterized by the accumulation of excess copper in the liver and other vital organs. The predetermined ion-exchange reaction rather than chelation between ZnPB NPs and copper ions leads to high selectivity of such NPs for copper in the presence of the other endogenous metal ions. Furthermore, ZnPB NPs are highly water-dispersible and noncytotoxic and can be readily internalized by cells to target intracellular copper ions for selective copper detoxification, suggesting their potential application as a new-generation treatment for WD.
Collapse
Affiliation(s)
- Murthi S Kandanapitiye
- Department of Chemistry and Biochemistry, Kent State University , Kent, Ohio 44240, United States
| | | | | | | | | | | |
Collapse
|
191
|
Liotenberg S, Steunou AS, Durand A, Bourbon ML, Bollivar D, Hansson M, Astier C, Ouchane S. Oxygen-dependent copper toxicity: targets in the chlorophyll biosynthesis pathway identified in the copper efflux ATPase CopA deficient mutant. Environ Microbiol 2015; 17:1963-76. [DOI: 10.1111/1462-2920.12733] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 11/27/2014] [Indexed: 11/30/2022]
Affiliation(s)
- Sylviane Liotenberg
- Institute for Integrative Biology of the Cell (I2BC); CEA; CNRS UMR9198; Université Paris Sud; 1 avenue de la Terrasse 91198 Gif-sur-Yvette France
| | - Anne-Soisig Steunou
- Institute for Integrative Biology of the Cell (I2BC); CEA; CNRS UMR9198; Université Paris Sud; 1 avenue de la Terrasse 91198 Gif-sur-Yvette France
| | - Anne Durand
- Institute for Integrative Biology of the Cell (I2BC); CEA; CNRS UMR9198; Université Paris Sud; 1 avenue de la Terrasse 91198 Gif-sur-Yvette France
| | - Marie-Line Bourbon
- Institute for Integrative Biology of the Cell (I2BC); CEA; CNRS UMR9198; Université Paris Sud; 1 avenue de la Terrasse 91198 Gif-sur-Yvette France
| | - David Bollivar
- Department of Biology; Illinois Wesleyan University; Bloomington IL 61702 USA
| | - Mats Hansson
- Copenhagen Plant Science Center; Copenhagen University; Thorvaldsensvej 40 Frederiksberg C DK-1871 Denmark
| | - Chantal Astier
- Institute for Integrative Biology of the Cell (I2BC); CEA; CNRS UMR9198; Université Paris Sud; 1 avenue de la Terrasse 91198 Gif-sur-Yvette France
| | - Soufian Ouchane
- Institute for Integrative Biology of the Cell (I2BC); CEA; CNRS UMR9198; Université Paris Sud; 1 avenue de la Terrasse 91198 Gif-sur-Yvette France
| |
Collapse
|
192
|
Guo J, Green BR, Maldonado MT. Sequence Analysis and Gene Expression of Potential Components of Copper Transport and Homeostasis in Thalassiosira pseudonana. Protist 2015; 166:58-77. [DOI: 10.1016/j.protis.2014.11.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 11/03/2014] [Accepted: 11/29/2014] [Indexed: 10/24/2022]
|
193
|
Pal S, Sen B, Lohar S, Mukherjee M, Banerjee S, Chattopadhyay P. Effect of metal oxidation state on FRET: a Cu(i) silent but selectively Cu(ii) responsive fluorescent reporter and its bioimaging applications. Dalton Trans 2015; 44:1761-8. [DOI: 10.1039/c4dt03381g] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new structurally characterized cell permeable rhodamine-cinnamaldehyde hybrid (HL) behaves as a Cu(ii) ions selective chemosensor through FRET process which depends on +2 state of copper ion exclusively.
Collapse
Affiliation(s)
- Siddhartha Pal
- Department of Chemistry
- Burdwan University
- Burdwan 713104
- India
| | - Buddhadeb Sen
- Department of Chemistry
- Burdwan University
- Burdwan 713104
- India
| | - Somenath Lohar
- Department of Chemistry
- Burdwan University
- Burdwan 713104
- India
| | | | - Samya Banerjee
- Department of Inorganic and Physical Chemistry
- Indian Institute of Science
- Bangalore
- India
| | | |
Collapse
|
194
|
Königsberger LC, Königsberger E, Hefter G, May PM. Formation constants of copper(i) complexes with cysteine, penicillamine and glutathione: implications for copper speciation in the human eye. Dalton Trans 2015; 44:20413-25. [DOI: 10.1039/c5dt02129d] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Speciation modelling incorporating redox equilibria provides a plausible explanation for copper deposition in the human eye associated with Wilson's disease.
Collapse
Affiliation(s)
- Lan-Chi Königsberger
- Chemical and Metallurgical Engineering and Chemistry
- School of Engineering and Information Technology
- Murdoch University
- Murdoch WA 6150
- Australia
| | - Erich Königsberger
- Chemical and Metallurgical Engineering and Chemistry
- School of Engineering and Information Technology
- Murdoch University
- Murdoch WA 6150
- Australia
| | - Glenn Hefter
- Chemical and Metallurgical Engineering and Chemistry
- School of Engineering and Information Technology
- Murdoch University
- Murdoch WA 6150
- Australia
| | - Peter M. May
- Chemical and Metallurgical Engineering and Chemistry
- School of Engineering and Information Technology
- Murdoch University
- Murdoch WA 6150
- Australia
| |
Collapse
|
195
|
Zhang H, Zeng X, Chen D, Guo Y, Jiang W, Xu L, Fu F. Coupling a novel spiro-rhodamine B lactam derivative to Fe3O4 nanoparticles for visual detection of free copper ions with high sensitivity and specificity. RSC Adv 2015. [DOI: 10.1039/c5ra04272k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A novel spiro-rhodamine B lactam derivative, which can be coupled to Fe3O4 NPs and act as a Cu2+-selective visual sensor is reported. It can be used to directly detect as little as 50 nM of Cu2+ in river or tap water by only naked-eye observation.
Collapse
Affiliation(s)
- Hongyan Zhang
- Key Lab of Analysis and Detection for Food Safety of Ministry of Education
- Fujian Provincial Key Lab of Analysis and Detection for Food Safety
- College of Chemistry
- Fuzhou University
- Fuzhou
| | - Xiaoxue Zeng
- Key Lab of Analysis and Detection for Food Safety of Ministry of Education
- Fujian Provincial Key Lab of Analysis and Detection for Food Safety
- College of Chemistry
- Fuzhou University
- Fuzhou
| | - Danlong Chen
- Key Lab of Analysis and Detection for Food Safety of Ministry of Education
- Fujian Provincial Key Lab of Analysis and Detection for Food Safety
- College of Chemistry
- Fuzhou University
- Fuzhou
| | - Ying Guo
- Key Lab of Analysis and Detection for Food Safety of Ministry of Education
- Fujian Provincial Key Lab of Analysis and Detection for Food Safety
- College of Chemistry
- Fuzhou University
- Fuzhou
| | - Wenjing Jiang
- Key Lab of Analysis and Detection for Food Safety of Ministry of Education
- Fujian Provincial Key Lab of Analysis and Detection for Food Safety
- College of Chemistry
- Fuzhou University
- Fuzhou
| | - Liangjun Xu
- Key Lab of Analysis and Detection for Food Safety of Ministry of Education
- Fujian Provincial Key Lab of Analysis and Detection for Food Safety
- College of Chemistry
- Fuzhou University
- Fuzhou
| | - FengFu Fu
- Key Lab of Analysis and Detection for Food Safety of Ministry of Education
- Fujian Provincial Key Lab of Analysis and Detection for Food Safety
- College of Chemistry
- Fuzhou University
- Fuzhou
| |
Collapse
|
196
|
Peñarrubia L, Romero P, Carrió-Seguí A, Andrés-Bordería A, Moreno J, Sanz A. Temporal aspects of copper homeostasis and its crosstalk with hormones. FRONTIERS IN PLANT SCIENCE 2015; 6:255. [PMID: 25941529 PMCID: PMC4400860 DOI: 10.3389/fpls.2015.00255] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 03/31/2015] [Indexed: 05/20/2023]
Abstract
To cope with the dual nature of copper as being essential and toxic for cells, plants temporarily adapt the expression of copper homeostasis components to assure its delivery to cuproproteins while avoiding the interference of potential oxidative damage derived from both copper uptake and photosynthetic reactions during light hours. The circadian clock participates in the temporal organization of coordination of plant nutrition adapting metabolic responses to the daily oscillations. This timely control improves plant fitness and reproduction and holds biotechnological potential to drive increased crop yields. Hormonal pathways, including those of abscisic acid, gibberellins, ethylene, auxins, and jasmonates are also under direct clock and light control, both in mono and dicotyledons. In this review, we focus on copper transport in Arabidopsis thaliana and Oryza sativa and the presumable role of hormones in metal homeostasis matching nutrient availability to growth requirements and preventing metal toxicity. The presence of putative hormone-dependent regulatory elements in the promoters of copper transporters genes suggests hormonal regulation to match special copper requirements during plant development. Spatial and temporal processes that can be affected by hormones include the regulation of copper uptake into roots, intracellular trafficking and compartmentalization, and long-distance transport to developing vegetative and reproductive tissues. In turn, hormone biosynthesis and signaling are also influenced by copper availability, which suggests reciprocal regulation subjected to temporal control by the central oscillator of the circadian clock. This transcriptional regulatory network, coordinates environmental and hormonal signaling with developmental pathways to allow enhanced micronutrient acquisition efficiency.
Collapse
Affiliation(s)
- Lola Peñarrubia
- Laboratory of Plant Molecular Biology, Department of Biochemistry and Molecular Biology, University of Valencia, ValenciaSpain
- *Correspondence: Lola Peñarrubia, Laboratory of Plant Molecular Biology, Department of Biochemistry and Molecular Biology, University of Valencia, Avenida Doctor Moliner 50, 46100 Burjassot, Valencia, Spain
| | - Paco Romero
- Laboratory of Plant Molecular Biology, Department of Biochemistry and Molecular Biology, University of Valencia, ValenciaSpain
| | - Angela Carrió-Seguí
- Laboratory of Plant Molecular Biology, Department of Biochemistry and Molecular Biology, University of Valencia, ValenciaSpain
| | - Amparo Andrés-Bordería
- Laboratory of Plant Molecular Biology, Department of Biochemistry and Molecular Biology, University of Valencia, ValenciaSpain
| | - Joaquín Moreno
- Laboratory of Plant Molecular Biology, Department of Biochemistry and Molecular Biology, University of Valencia, ValenciaSpain
| | - Amparo Sanz
- Department of Plant Biology, University of Valencia, ValenciaSpain
| |
Collapse
|
197
|
Xiao Y, Yang Y, Zhao G, Fang X, Zhao Y, Guo P, Yang W, Xu J. A terbium-based time-resolved luminescent probe for sulfide ions mediated by copper in aqueous solution. INORG CHEM COMMUN 2014. [DOI: 10.1016/j.inoche.2014.10.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
198
|
Dash BP, Alles M, Bundschuh FA, Richter OMH, Ludwig B. Protein chaperones mediating copper insertion into the CuA site of the aa3-type cytochrome c oxidase of Paracoccus denitrificans. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1847:202-211. [PMID: 25445316 DOI: 10.1016/j.bbabio.2014.11.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 10/31/2014] [Accepted: 11/05/2014] [Indexed: 11/27/2022]
Abstract
The biogenesis of the mitochondrial cytochrome c oxidase is a complex process involving the stepwise assembly of its multiple subunits encoded by two genetic systems. Moreover, several chaperones are required to recruit and insert the redox-active metal centers into subunits I and II, two a-type hemes and a total of three copper ions, two of which form the CuA center located in a hydrophilic domain of subunit II. The copper-binding Sco protein(s) have been implicated with the metallation of this site in various model organisms. Here we analyze the role of the two Sco homologues termed ScoA and ScoB, along with two other copper chaperones, on the biogenesis of the cytochrome c oxidase in the bacterium Paracoccus denitrificans by deleting each of the four genes individually or pairwise, followed by assessing the functionality of the assembled oxidase both in intact membranes and in the purified enzyme complex. Copper starvation leads to a drastic decrease of oxidase activity in membranes from strains involving the scoB deletion. This loss is shown to be of dual origin, (i) a severe drop in steady-state oxidase levels in membranes, and (ii) a diminished enzymatic activity of the remaining oxidase complex, traced back to a lower copper content, specifically in the CuA site of the enzyme. Neither of the other proteins addressed here, ScoA or the two PCu proteins, exhibit a direct effect on the metallation of the CuA site in P. denitrificans, but are discussed as potential interaction partners of ScoB.
Collapse
Affiliation(s)
| | - Melanie Alles
- Institute of Biochemistry, Molecular Genetics, Goethe University, D-60438 Frankfurt, Germany
| | - Freya Alena Bundschuh
- Institute of Biochemistry, Molecular Genetics, Goethe University, D-60438 Frankfurt, Germany
| | - Oliver-M H Richter
- Institute of Biochemistry, Molecular Genetics, Goethe University, D-60438 Frankfurt, Germany
| | - Bernd Ludwig
- Institute of Biochemistry, Molecular Genetics, Goethe University, D-60438 Frankfurt, Germany.
| |
Collapse
|
199
|
Abstract
The fission yeast Schizosaccharomyces pombe has been successfully used as a model to gain fundamental knowledge in understanding how eukaryotic cells acquire copper during vegetative growth. These studies have revealed the existence of a heteromeric Ctr4-Ctr5 plasma membrane complex that mediates uptake of copper within the cells. Furthermore, additional studies have led to the identification of one of the first vacuolar copper transporters, Ctr6, as well as the copper-responsive Cuf1 transcription factor. Recent investigations have extended the use of S. pombe to elucidate new roles for copper metabolism in meiotic differentiation. For example, these studies have led to the discovery of Mfc1, which turned out to be the first example of a meiosis-specific copper transporter. Whereas copper-dependent transcriptional regulation of the Ctr family members is under the control of Cuf1 during mitosis or meiosis, meiosis-specific copper transporter Mfc1 is regulated by the recently discovered transactivator Mca1. It is foreseeable that identification of novel meiotic copper-related proteins will serve as stepping stones to unravel fundamental aspects of copper homoeostasis.
Collapse
|
200
|
Gupta DK, Chatterjee S, Datta S, Veer V, Walther C. Role of phosphate fertilizers in heavy metal uptake and detoxification of toxic metals. CHEMOSPHERE 2014; 108:134-144. [PMID: 24560283 DOI: 10.1016/j.chemosphere.2014.01.030] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 01/20/2014] [Accepted: 01/21/2014] [Indexed: 06/03/2023]
Abstract
As a nonrenewable resource, phosphorus (P) is the second most important macronutrient for plant growth and nutrition. Demand of phosphorus application in the agricultural production is increasing fast throughout the globe. The bioavailability of phosphorus is distinctively low due to its slow diffusion and high fixation in soils which make phosphorus a key limiting factor for crop production. Applications of phosphorus-based fertilizers improve the soil fertility and agriculture yield but at the same time concerns over a number of factors that lead to environmental damage need to be addressed properly. Phosphate rock mining leads to reallocation and exposure of several heavy metals and radionuclides in crop fields and water bodies throughout the world. Proper management of phosphorus along with its fertilizers is required that may help the maximum utilization by plants and minimum run-off and wastage. Phosphorus solubilizing bacteria along with the root rhizosphere of plant integrated with root morphological and physiological adaptive strategies need to be explored further for utilization of this extremely valuable nonrenewable resource judiciously. The main objective of this review is to assess the role of phosphorus in fertilizers, their uptake along with other elements and signaling during P starvation.
Collapse
Affiliation(s)
- D K Gupta
- Gottfried Wilhelm Leibniz Universität Hannover, Institut für Radioökologie und Strahlenschutz (IRS), Herrenhäuser Str. 2, Gebäude 4113, D-30419 Hannover, Germany.
| | - S Chatterjee
- Defence Research Laboratory, DRDO, Post Bag 2, Tezpur 784001, Assam, India
| | - S Datta
- Defence Research Laboratory, DRDO, Post Bag 2, Tezpur 784001, Assam, India
| | - V Veer
- Defence Research Laboratory, DRDO, Post Bag 2, Tezpur 784001, Assam, India
| | - C Walther
- Gottfried Wilhelm Leibniz Universität Hannover, Institut für Radioökologie und Strahlenschutz (IRS), Herrenhäuser Str. 2, Gebäude 4113, D-30419 Hannover, Germany
| |
Collapse
|