151
|
Oh MK, Yang H, Roberts MF. Using O-(n-alkyl)-N-(N,N'-dimethylethyl)phosphoramidates to investigate the role of Ca2+ and interfacial binding in a bacterial phospholipase D. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1649:146-53. [PMID: 12878033 DOI: 10.1016/s1570-9639(03)00166-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
O-(n-alkyl)-N-(N,N'-dimethylethyl)phosphoramidates (n=6, 8, and 10; CnPNC) were synthesized and characterized as inhibitors of phospholipase D (PLD) activity toward phosphatidylcholine presented as monomers, micelles, and bilayers. Detailed studies with recombinant Streptomyces chromofuscus PLD, a Ca(2+)-activated enzyme that does not show large changes in catalytic activity toward the same substrate as a monomer or micelle, showed that the longer the inhibitor chain length, the more potent CnPNC is as a competitive inhibitor toward all the substrates. However, the physical state of the inhibitor did affect the maximum inhibition attainable. For a fixed concentration of diC4PC (monomer substrate), CnPNC inhibition reached a maximum around the CMC of the inhibitor; the inhibition was reduced at higher inhibitor concentrations, in part caused by the lower solubility of the aggregated inhibitor. With diC4PC as the substrate and using concentrations of C10PNC that were below its CMC, the Ki for C10PNC was 0.030+/-0.003 mM, approximately 13-fold less than the Km for substrate. Aggregated substrates showed significant inhibition of PLD by CnPNC, although as the substrate chain length increased, inhibition by a given CnPNC was diminished. With POPC vesicles, the apparent Ki for C10PNC was 0.030 of the apparent Km. The availability of these inhibitors allowed us to show that PC analogues can bind to the active site of S. chromofuscus PLD in the absence of Ca2+. Once bound at the active site, the inhibitor does not significantly affect the divalent ion-dependent partitioning of the enzyme to PC surfaces. Of the two other PLD enzymes examined, cabbage PLD, but not Streptomyces sp. PMF, was able to catalyze the cleavage of the P-N bond. Differential susceptibility of PLDs to these phosphoramidates may eventually be useful in studying PLD isozymes in cells.
Collapse
Affiliation(s)
- Mi-Kyung Oh
- Department of Chemistry, E.F. Merkert Chemistry Center, Boston College, Chestnut Hill, MA 02167, USA
| | | | | |
Collapse
|
152
|
Du G, Altshuller YM, Vitale N, Huang P, Chasserot-Golaz S, Morris AJ, Bader MF, Frohman MA. Regulation of phospholipase D1 subcellular cycling through coordination of multiple membrane association motifs. J Cell Biol 2003; 162:305-15. [PMID: 12876278 PMCID: PMC2172799 DOI: 10.1083/jcb.200302033] [Citation(s) in RCA: 128] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The signaling enzyme phospholipase D1 (PLD1) facilitates membrane vesicle trafficking. Here, we explore how PLD1 subcellular localization is regulated via Phox homology (PX) and pleckstrin homology (PH) domains and a PI4,5P2-binding site critical for its activation. PLD1 localized to perinuclear endosomes and Golgi in COS-7 cells, but on cellular stimulation, translocated to the plasma membrane in an activity-facilitated manner and then returned to the endosomes. The PI4,5P2-interacting site sufficed to mediate outward translocation and association with the plasma membrane. However, in the absence of PX and PH domains, PLD1 was unable to return efficiently to the endosomes. The PX and PH domains appear to facilitate internalization at different steps. The PH domain drives PLD1 entry into lipid rafts, which we show to be a step critical for internalization. In contrast, the PX domain appears to mediate binding to PI5P, a lipid newly recognized to accumulate in endocytosing vesicles. Finally, we show that the PH domain-dependent translocation step, but not the PX domain, is required for PLD1 to function in regulated exocytosis in PC12 cells. We propose that PLD1 localization and function involves regulated and continual cycling through a succession of subcellular sites, mediated by successive combinations of membrane association interactions.
Collapse
Affiliation(s)
- Guangwei Du
- Department of Pharmacology, University Medical Center, State University of New York at Stony Brook, Stony Brook, NY 11794, USA
| | | | | | | | | | | | | | | |
Collapse
|
153
|
Ikeda Y, Fukuoka SI. Phosphatidic acid production, required for cholecystokinin octapeptide-stimulated amylase secretion from pancreatic acinar AR42J cells, is regulated by a wortmannin-sensitive process. Biochem Biophys Res Commun 2003; 306:943-7. [PMID: 12821133 DOI: 10.1016/s0006-291x(03)01078-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
To investigate the role of phospholipids in exocytotic secretory events, we utilized rat pancreatic acinar AR42J cells that secreted amylase in response to cholecystokinin octapeptide (CCK-8). Wortmannin, an inhibitor of phosphoinositide 3-kinase (PI3K), was found to inhibit the secretion in a dose-dependent manner. When changes in cell membrane phospholipids were investigated before and after CCK-8 stimulation using [32P]orthophosphoric acid-labeled AR42J cells, we observed a rapid increase in phosphatidic acid (PtdOH) levels right after stimulation, which was not observed in non-stimulated cells. The increase, however, was suppressed by wortmannin pre-treatment, which also inhibited amylase secretion. Changes in other major phospholipids were not significant. These results indicate that CCK-8 induces amylase secretion through PI3K-regulated production of PtdOH in cell membranes.
Collapse
Affiliation(s)
- Yoshiki Ikeda
- Department of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan
| | | |
Collapse
|
154
|
Oka M, Kageshita T, Ono T, Goto A, Kuroki T, Ichihashi M. Protein kinase C alpha associates with phospholipase D1 and enhances basal phospholipase D activity in a protein phosphorylation-independent manner in human melanoma cells. J Invest Dermatol 2003; 121:69-76. [PMID: 12839565 DOI: 10.1046/j.1523-1747.2003.12300.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
It is well known that phospholipase D plays a crucial part in the signal transduction of many types of cells, and is activated by protein kinase C alpha when cells are stimulated. To elucidate the role of phospholipase D in melanoma, the expression of phospholipase D1 and protein kinase C alpha in primary and metastatic lesions of acral lentiginous melanoma and superficial spreading melanoma was investigated using immunohistologic techniques. In addition, the mechanism of regulation of phospholipase D1 by protein kinase C alpha was examined in a human melanoma cell line HM3KO using an adenovirus-mediated gene transfer technique. Both phospholipase D1 and protein kinase C alpha were strongly expressed in primary and metastatic lesions of superficial spreading melanoma. Conversely, in acral lentiginous melanoma lesions, the expression of these two proteins increased dramatically with tumor progression; the expression of both phospholipase D1 and protein kinase C alpha was almost negative in the radial growth phase of primary acral lentiginous melanoma lesions, and increased synchronously in a progression-related manner in advanced acral lentiginous melanoma lesions, including vertical growth phase and metastatic lesions. Immunoprecipitation study showed that phospholipase D1 and protein kinase C alpha are associated physiologically in resting melanoma cells. Further immunoprecipitation study using HM3KO cells after adenovirus-mediated simultaneous overexpression of phospholipase D1 and protein kinase C alpha, or phospholipase D1 and the kinase-negative mutant of protein kinase C alpha revealed that both protein kinase C alpha and the kinase-negative mutant of protein kinase C alpha are associated with phospholipase D1 in melanoma cells in the absence of an external signal. Overexpression of protein kinase C alpha or the kinase-negative mutant of protein kinase C alpha in melanoma cells by the adenovirus vectors resulted in the enhancement of basal phospholipase D activity in a viral concentration-dependent manner. Furthermore, enhanced basal phospholipase D activity increased the in vitro invasive potential of HM3KO cells. These results suggest that upregulation of phospholipase D1 and protein kinase C alpha plays a part in the progression of acral lentiginous melanoma from the radial growth phase to the vertical growth phase. The present results also suggest that protein kinase C alpha associates with phospholipase D1 and enhances basal phospholipase D activity in a protein phosphorylation-independent manner in melanoma cells, which contributes to the cell's high invasive potential.
Collapse
Affiliation(s)
- Masahiro Oka
- Department of Dermatology, Kobe University Graduate School of Medicine, Kobe, Japan.
| | | | | | | | | | | |
Collapse
|
155
|
Zhang W, Crocker E, McLaughlin S, Smith SO. Binding of peptides with basic and aromatic residues to bilayer membranes: phenylalanine in the myristoylated alanine-rich C kinase substrate effector domain penetrates into the hydrophobic core of the bilayer. J Biol Chem 2003; 278:21459-66. [PMID: 12670959 DOI: 10.1074/jbc.m301652200] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Electrostatic interactions with positively charged regions of membrane-associated proteins such as myristoylated alanine-rich C kinase substrate (MARCKS) may have a role in regulating the level of free phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) in plasma membranes. Both the MARCKS protein and a peptide corresponding to the effector domain (an unstructured region that contains 13 basic residues and 5 phenylalanines), MARCKS-(151-175), laterally sequester the polyvalent lipid PI(4,5)P2 in the plane of a bilayer membrane with high affinity. We used high resolution magic angle spinning NMR to establish the location of MARCKS-(151-175) in membrane bilayers, which is necessary to understand the sequestration mechanism. Measurements of cross-relaxation rates in two-dimensional nuclear Overhauser enhancement spectroscopy NMR experiments show that the five Phe rings of MARCKS-(151-175) penetrate into the acyl chain region of phosphatidylcholine bilayers containing phosphatidylglycerol or PI(4,5)P2. Specifically, we observed strong cross-peaks between the aromatic protons of the Phe rings and the acyl chain protons of the lipids, even for very short (50 ms) mixing times. The position of the Phe rings implies that the adjacent positively charged amino acids in the peptide are close to the level of the negatively charged lipid phosphates. The deep location of the MARCKS peptide in the polar head group region should enhance its electrostatic sequestration of PI(4,5)P2 by an "image charge" mechanism. Moreover, this location has interesting implications for membrane curvature and local surface pressure effects and may be relevant to a wide variety of other proteins with basic-aromatic clusters, such as phospholipase D, GAP43, SCAMP2, and the N-methyl-d-aspartate receptor.
Collapse
Affiliation(s)
- Wenyi Zhang
- Department of Biochemistry and Cell Biology, Center for Structural Biology, State University of New York, Stony Brook, NY 11794-5115, USA
| | | | | | | |
Collapse
|
156
|
Jang IH, Lee S, Park JB, Kim JH, Lee CS, Hur EM, Kim IS, Kim KT, Yagisawa H, Suh PG, Ryu SH. The direct interaction of phospholipase C-gamma 1 with phospholipase D2 is important for epidermal growth factor signaling. J Biol Chem 2003; 278:18184-90. [PMID: 12646582 DOI: 10.1074/jbc.m208438200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The epidermal growth factor (EGF) receptor has an important role in cellular proliferation, and the enzymatic activity of phospholipase C (PLC)-gamma1 is regarded to be critical for EGF-induced mitogenesis. In this study, we report for the first time a phospholipase complex composed of PLC-gamma1 and phospholipase D2 (PLD2). PLC-gamma1 is co-immunoprecipitated with PLD2 in COS-7 cells. The results of in vitro binding analysis and co-immunoprecipitation analysis in COS-7 cells show that the Src homology (SH) 3 domain of PLC-gamma1 binds to the proline-rich motif within the Phox homology (PX) domain of PLD2. The interaction between PLC-gamma1 and PLD2 is EGF stimulation-dependent and potentiates EGF-induced inositol 1,4,5-trisphosphate (IP(3)) formation and Ca(2+) increase. Mutating Pro-145 and Pro-148 within the PX domain of PLD2 to leucines disrupts the interaction between PLC-gamma1 and PLD2 and fails to potentiate EGF-induced IP(3) formation and Ca(2+) increase. However, neither PLD2 wild type nor PLD2 mutant affects the EGF-induced tyrosine phosphorylation of PLC-gamma1. These findings suggest that, upon EGF stimulation, PLC-gamma1 directly interacts with PLD2 and this interaction is important for PLC-gamma1 activity.
Collapse
Affiliation(s)
- Il Ho Jang
- Department of Life Science and Division of Molecular and Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
157
|
Chahdi A, Choi WS, Kim YM, Beaven MA. Mastoparan selectively activates phospholipase D2 in cell membranes. J Biol Chem 2003; 278:12039-45. [PMID: 12556526 DOI: 10.1074/jbc.m212084200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Both known isoforms of phospholipase (PL) D, PLD1 and PLD2, require phosphatidylinositol 4,5-bisphosphate for activity. However, PLD2 is fully active in the presence of this phospholipid, whereas PLD1 activation is dependent on additional factors such as ADP-ribosylation factor-1 (ARF-1) and protein kinase Calpha. We find that mastoparan, an activator of G(i) and mast cells, stimulates an intrinsic PLD activity, most likely PLD2, in fractions enriched in plasma membranes from rat basophilic leukemia 2H3 mast cells. Overexpression of PLD2, but not of PLD1, results in a large increase in the mastoparan-inducible PLD activity in membrane fractions, particularly those enriched in plasma membranes. As in previous studies, expressed PLD2 is localized primarily in the plasma membrane and PLD1 in granule membranes. Studies with pertussis toxin and other agents indicate that mastoparan stimulates PLD2 independently of G(i), ARF-1, protein kinase C, and calcium. Kinetic studies indicate that mastoparan interacts synergistically with phosphatidylinositol 4,5-bisphosphate and that oleate, itself a weak stimulant of PLD2 at low concentrations, is a competitive inhibitor of mastoparan stimulation of PLD2. Therefore, mastoparan may be useful for investigating the regulation of PLD2, particularly in view of the well studied molecular interactions of mastoparan with certain other strategic signaling proteins.
Collapse
Affiliation(s)
- Ahmed Chahdi
- Laboratory of Molecular Immunology, NHLBI, National Institutes of Health, Bethesda, Maryland 20892-1760, USA
| | | | | | | |
Collapse
|
158
|
Grenier S, Flamand N, Pelletier J, Naccache PH, Borgeat P, Bourgoin SG. Arachidonic acid activates phospholipase D in human neutrophils; essential role of endogenous leukotriene B4 and inhibition by adenosine A2A receptor engagement. J Leukoc Biol 2003; 73:530-9. [PMID: 12660228 DOI: 10.1189/jlb.0702371] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
We report in human neutrophils (PMN) that phospholipase D (PLD) was stimulated by micromolar concentrations of arachidonic acid (AA) and nanomolar concentrations of leukotriene B(4) (LTB(4)), and eicosapentaenoic acid was inactive. The stimulatory effect of AA occurred only when adenosine was eliminated from PMN suspensions or when PMN were incubated with adenosine A(2A) receptor antagonists. The mechanism of AA-induced PLD activation was investigated. The results show that AA- and LTB(4)-induced PLD activation were inhibited by the LTB(4) receptor 1 (BLTR1) antagonist CP 105,696, whereas the LTA(4) hydrolase inhibitor SC57461A and the LT biosynthesis inhibitor MK-0591 inhibited AA- but not LTB(4)-mediated PLD activation. The AA-induced ARF1 and RhoA translocation to PMN membranes was inhibited by CP 105,696 and SC57461A. These results provide evidence of a requirement for an autocrine-stimulatory loop involving LTB(4) and BLTR1 in the translocation of small GTPases to membranes and the activation of PMN PLD by AA.
Collapse
Affiliation(s)
- Sonya Grenier
- Canadian Institutes for Health Research Group on the Molecular Mechanisms of Inflammation, Centre de Recherche en Rhumatologie et Immunologie, Québec, Canada
| | | | | | | | | | | |
Collapse
|
159
|
Holland WL, Stauter EC, Stith BJ. Quantification of phosphatidic acid and lysophosphatidic acid by HPLC with evaporative light-scattering detection. J Lipid Res 2003; 44:854-8. [PMID: 12562857 DOI: 10.1194/jlr.d200040-jlr200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phosphatidic acid (PA) and lysophosphatidic acid (LPA) are lipids that regulate cellular processes. PA stimulates kinases and may play a role in exocytosis and membrane fusion. LPA can induce cell proliferation, platelet aggregation, and microfilament formation. Due to the growing interest in these lipids, rapid purification and quantification of these lipids is desirable. We now describe a method that utilizes one HPLC run to separate trace amounts of PA and LPA from large amounts of lipids found in cellular extracts. A two-pump HPLC with a solvent system consisting of chloroform, methanol, water, and ammonium hydroxide was employed to produce a reliable, efficient purification of the two lipids. Lipid mass was quantified by a sensitive evaporative light-scattering detector. Using this new method, insulin addition increased both PA (87%) and LPA (217%) mass in Xenopus laevis oocytes.
Collapse
Affiliation(s)
- William L Holland
- Department of Biology, University of Colorado at Denver, 80217-3364, USA
| | | | | |
Collapse
|
160
|
Parmentier JH, Smelcer P, Pavicevic Z, Basic E, Idrizovic A, Estes A, Malik KU. PKC-zeta mediates norepinephrine-induced phospholipase D activation and cell proliferation in VSMC. Hypertension 2003; 41:794-800. [PMID: 12623998 DOI: 10.1161/01.hyp.0000047873.76255.0b] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Norepinephrine (NE) stimulates phospholipase D (PLD) activity and cell proliferation in vascular smooth muscle cells (VSMCs). The objective of this study was to determine the contribution of PKC-zeta to NE-induced PLD activation and cell proliferation in VSMCs. PLD activity was measured by the formation of [3H]phosphatidylethanol in VSMCs labeled with [3H]oleic acid and exposed to ethanol. A high basal PLD activity was detected, and NE increased PLD activity over basal by 70%. This increase was abolished by the broad-range PKC inhibitor Ro 31-8220 (1 micromol/L, 30 minutes) and myristoylated PKC-zeta pseudosubstrate peptide inhibitor (25 micromol/L, 1 hour). Transfection of VSMCs with PKC-zeta antisense, but not sense, oligonucleotides, which reduced PKC-zeta protein level and basal PLD activity, caused a 92% decrease in NE-induced PLD activation. NE-induced increase in PLD activity was also reduced by 61% in cells transfected with kinase-deficient FLAG-T410A-PKC-zeta plasmid but not in those transfected with wild-type PKC-zeta. NE increased immunoprecipitable PKC-zeta activity and phosphorylation, reaching a maximum at 2 and 5 minutes, respectively. NE-induced increase in PKC-zeta activity was inhibited by Ro 31-8220 and by the pseudosubstrate inhibitor. Treatment of VSMCs for 48 hours with PKC-zeta antisense, but not sense, oligonucleotides also inhibited basal and NE-stimulated cell proliferation by 54% and 57%, respectively, as measured by [3H]thymidine incorporation. The inhibitor of PLD activity n-butanol, but not its inactive analog tert-butanol, also reduced the basal and blocked NE-induced cell proliferation. These data suggest that PKC-zeta mediates PLD activation and cell proliferation elicited by NE in rabbit VSMCs.
Collapse
Affiliation(s)
- Jean-Hugues Parmentier
- Department of Pharmacology and Vascular Biology Center of Excellence, College of Medicine, The University of Tennessee Health Science Center, Memphis, USA
| | | | | | | | | | | | | |
Collapse
|
161
|
Shimada Y, Li YT, Li SC. Effect of GM2 activator protein on the enzymatic hydrolysis of phospholipids and sphingomyelin. J Lipid Res 2003; 44:342-8. [PMID: 12576516 DOI: 10.1194/jlr.m200234-jlr200] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
GM2 activator protein (GM2AP) is a specific protein cofactor that stimulates the enzymatic hydrolysis of the GalNAc from GM2, a sialic acid containing glycosphingolipid, both in vitro and in lysosomes. While phospholipids together with glycosphingolipids are important membrane constituents, little is known about the possible effect of GM2AP on the hydrolysis of phospholipids. Several recent reports suggest that GM2AP might have functions other than stimulating the conversion of GM2 into GM3 by beta-hexosaminidase A, such as inhibiting the activity of platelet activating factor and enhancing the degradation of phosphatidylcholine by phospholipase D (PLD). We therefore examined the effect of GM2AP on the in vitro hydrolyses of a number of phospholipids and sphingomyelin by microbial (Streptomyces chromofuscus) and plant (cabbage) PLD. GM2AP, at the concentration as low as 1.08 microM (1 microg/50 microl) was found to inhibit about 70% of the hydrolyses of phosphatidylcholine, phosphatidylethanolamine, and phosphatidylinositol by PLD, whereas the same concentration of GM2AP only inhibited about 20-25% of the hydrolysis of sphingomyelin by sphingomyelinase and had no effect on the hydrolysis of sphingosylphosphorylcholine by PLD. Thus, GM2AP exerts strong and broad inhibitory effects on the hydrolysis of phospholipids carried out by plant and microbial PLDs. High ammonium sulfate concentration (1.6 M or 21.1%) masks this inhibitory effect, possibly due to the alteration of the ionic property of GM2AP.
Collapse
Affiliation(s)
- Yoshimi Shimada
- Department of Biochemistry, Tulane University Health Sciences Center School of Medicine, New Orleans, LA 70112, USA
| | | | | |
Collapse
|
162
|
Nanjundan M, Possmayer F. Pulmonary phosphatidic acid phosphatase and lipid phosphate phosphohydrolase. Am J Physiol Lung Cell Mol Physiol 2003; 284:L1-23. [PMID: 12471011 DOI: 10.1152/ajplung.00029.2002] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The lung contains two distinct forms of phosphatidic acid phosphatase (PAP). PAP1 is a cytosolic enzyme that is activated through fatty acid-induced translocation to the endoplasmic reticulum, where it converts phosphatidic acid (PA) to diacylglycerol (DAG) for the biosynthesis of phospholipids and neutral lipids. PAP1 is Mg(2+) dependent and sulfhydryl reagent sensitive. PAP2 is a six-transmembrane-domain integral protein localized to the plasma membrane. Because PAP2 degrades sphingosine-1-phosphate (S1P) and ceramide-1-phosphate in addition to PA and lyso-PA, it has been renamed lipid phosphate phosphohydrolase (LPP). LPP is Mg(2+) independent and sulfhydryl reagent insensitive. This review describes LPP isoforms found in the lung and their location in signaling platforms (rafts/caveolae). Pulmonary LPPs likely function in the phospholipase D pathway, thereby controlling surfactant secretion. Through lowering the levels of lyso-PA and S1P, which serve as agonists for endothelial differentiation gene receptors, LPPs regulate cell division, differentiation, apoptosis, and mobility. LPP activity could also influence transdifferentiation of alveolar type II to type I cells. It is considered likely that these lipid phosphohydrolases have critical roles in lung morphogenesis and in acute lung injury and repair.
Collapse
Affiliation(s)
- Meera Nanjundan
- Department of Obstetrics and Gynaecology, Canadian Institutes of Health Research Group in Fetal and Neonatal Health and Development, The University of Western Ontario, 339 Windermere Road, London, Ontario, Canada N6A 5A5
| | | |
Collapse
|
163
|
Pochet S, Métioui M, Grosfils K, Gómez-Muñoz A, Marino A, Dehaye JP. Regulation of phospholipase D by muscarinic receptors in rat submandibular ductal cells. Cell Signal 2003; 15:103-13. [PMID: 12401525 DOI: 10.1016/s0898-6568(02)00059-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The muscarinic agonist carbachol stimulated phospholipase D (PLD) in rat submandibular gland (RSMG) ductal cells in a time and concentration-dependent manner. This effect was inhibited by chelation of extracellular calcium with ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA). PLD could also be activated by epinephrine and AlF(4)(-), two polyphosphoinositide-specific phospholipase C (PPI-PLC) activators, and by the phorbol ester o-tetradecanoylphorbol 13-acetate (TPA) which activates protein kinase C (PKC). Ionomycin and thapsigargin only slightly increased PLD activity. Ortho-vanadate, a tyrosine phosphatase inhibitor, also stimulated PLD activity. Both carbachol and o-vanadate increased the formation of inositol phosphates and the tyrosine phosphorylation of at least two proteins (55-60 and 120 kDa). Calphostin C (a PKC inhibitor), U73122 (a PPI-PLC inhibitor) and genistein (a tyrosine kinase inhibitor) blocked the activation of PLD, of PLC and the phosphorylation of tyrosyl residues in response to carbachol and vanadate. Taken together, these results suggest that rat submandibular gland ductal cells express a calcium-dependent PLD activity. This enzyme is regulated by carbachol via a PLC-PKC-tyrosine kinase pathway.
Collapse
Affiliation(s)
- Stéphanie Pochet
- Laboratoire de Biochimie et de Biologie Cellulaire, Institut de Pharmacie CP 205/3, Campus Plaine, Université Libre de Bruxelles, Boulevard du Triomphe, B 1050 Brussels, Belgium.
| | | | | | | | | | | |
Collapse
|
164
|
Qin C, Wang C, Wang X. Kinetic analysis of Arabidopsis phospholipase Ddelta. Substrate preference and mechanism of activation by Ca2+ and phosphatidylinositol 4,5-biphosphate. J Biol Chem 2002; 277:49685-90. [PMID: 12397060 DOI: 10.1074/jbc.m209598200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phospholipase D (PLD) is a major plant phospholipase family involved in many cellular processes such as signal transduction, membrane remodeling, and lipid degradation. Five classes of PLDs have been identified in Arabidopsis thaliana, and Ca(2+) and polyphosphoinositides have been suggested as key regulators for these enzymes. To investigate the catalysis and regulation mechanism of individual PLDs, surface-dilution kinetics studies were carried out on the newly identified PLDdelta from Arabidopsis. PLDdelta activity was dependent on both bulk concentration and surface concentration of substrate phospholipids in the Triton X-100/phospholipid mixed micelles. V(max), K(s)(A), and K(m)(B) values for PLDdelta toward phosphatidylcholine or phosphatidylethanolamine were determined; phosphatidylethanolamine was the preferred substrate. PLDdelta activity was stimulated greatly by phosphatidylinositol 4,5-bisphosphate (PIP(2)). Maximal activation was observed at a PIP(2) molar ratio around 0.01. Kinetic analysis indicates that PIP(2) activates PLD by promoting substrate binding to the enzyme, without altering the bulk binding of the enzyme to the micelle surface. Ca(2+) is required for PLDdelta activity, and it significantly decreased the interfacial Michaelis constant K(m)(B). This indicates that Ca(2+) activates PLD by promoting the binding of phospholipid substrate to the catalytic site of the enzyme.
Collapse
Affiliation(s)
- Chunbo Qin
- Department of Biochemistry, Kansas State University, Manhattan, KS 66506, USA
| | | | | |
Collapse
|
165
|
Zhu T, Ling L, Lobie PE. Identification of a JAK2-independent pathway regulating growth hormone (GH)-stimulated p44/42 mitogen-activated protein kinase activity. GH activation of Ral and phospholipase D is Src-dependent. J Biol Chem 2002; 277:45592-603. [PMID: 12218045 DOI: 10.1074/jbc.m201385200] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have demonstrated here that growth hormone (GH) stimulates the formation of the active GTP-bound form of both RalA and RalB in NIH-3T3 cells. Full activation of RalA and RalB by GH required the combined activity of c-Src and JAK2, both kinases activated by GH independent of the other. Activation of RalA and RalB by growth hormone did not require the activity of JAK2 per se. Ras was also activated by GH and was required for the GH-stimulated formation of GTP-bound RalA and RalB. Activation of RalA by GH subsequently resulted in increased phospholipase D activity and the formation of its metabolite, phosphatidic acid. GH-stimulated RalA-phospholipase D-dependent formation of phosphatidic acid was required for activation of p44/42 MAPK and subsequent Elk-1-mediated transcription stimulated by GH. Thus we report the identification of a JAK2-independent pathway regulating GH-stimulated p44/42 MAPK activity.
Collapse
Affiliation(s)
- Tao Zhu
- Institute of Molecular and Cell Biology, Singapore, Republic of Singapore
| | | | | |
Collapse
|
166
|
Diaz O, Berquand A, Dubois M, Di Agostino S, Sette C, Bourgoin S, Lagarde M, Nemoz G, Prigent AF. The mechanism of docosahexaenoic acid-induced phospholipase D activation in human lymphocytes involves exclusion of the enzyme from lipid rafts. J Biol Chem 2002; 277:39368-78. [PMID: 12140281 DOI: 10.1074/jbc.m202376200] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Docosahexaenoic acid (DHA), an n-3 polyunsaturated fatty acid that inhibits T lymphocyte activation, has been shown to stimulate phospholipase D (PLD) activity in stimulated human peripheral blood mononuclear cells (PBMC). To elucidate the mechanisms underlying the DHA-induced PLD activation, we first characterized the PLD expression pattern of PBMC. We show that these cells express PLD1 and PLD2 at the protein and mRNA level and are devoid of oleate-dependent PLD activity. DHA enrichment of PBMC increased the DHA content of cell phospholipids, which was directly correlated with the extent of PLD activation. The DHA-induced PLD activation was independent of conventional protein kinase C but inhibited by brefeldin A, which suggests ADP-ribosylation factor (ARF)-dependent mechanism. Furthermore, DHA enrichment dose-dependently stimulated ARF translocation to cell membranes. Whereas 50% of the guanosine 5'-3-O-(thio)triphosphate plus ARF-dependent PLD activity and a substantial part of PLD1 protein were located to the detergent-insoluble membranes, so-called rafts, of non-enriched PBMC, DHA treatment strongly displaced them toward detergent-soluble membranes where ARF is present. Collectively, these results suggest that the exclusion of PLD1 from lipid rafts, due to their partial disorganization by DHA, and its relocalization in the vicinity of ARF, is responsible for its activation. This PLD activation might be responsible for the immunosuppressive effect of DHA because it is known to transmit antiproliferative signals in lymphoid cells.
Collapse
Affiliation(s)
- Olivier Diaz
- Unité INSERM 352, Laboratoire de Biochimie et Pharmacologie, INSA de Lyon, 69621 Villeurbanne, France
| | | | | | | | | | | | | | | | | |
Collapse
|
167
|
Abstract
Originally discovered as an anti-fungal agent, the bacterial macrolide rapamycin is a potent immunosuppressant and a promising anti-cancer drug. In complex with its cellular receptor, the FK506-binding protein (FKBP12), rapamycin binds and inhibits the function of the mammalian target of rapamycin (mTOR). By mediating amino acid sufficiency, mTOR governs signaling to translational regulation and other cellular functions by converging with the phosphatidylinositol 3-kinase (PI3K) pathway on downstream effectors. Whether mTOR receives mitogenic signals in addition to nutrient-sensing has been an unresolved issue, and the mechanism of action of rapamycin remained unknown. Our recent findings have revealed a novel link between mitogenic signals and mTOR via the lipid second messenger phosphatidic acid (PA), and suggested a role for mTOR in the integration of nutrient and mitogen signals. A molecular mechanism for rapamycin inhibition of mTOR signaling is proposed, in which a putative interaction between PA and mTOR is abolished by rapamycin binding. Collective evidence further implicates the regulation of the rapamycin-sensitive signaling circuitry by phospholipase D, and potentially by other upstream regulators such as the conventional protein kinase C, the Rho and ARF families of small G proteins, and calcium ions. As the mTOR pathway has been demonstrated to be an important anti-cancer target, the identification of new components and novel regulatory modes in mTOR signaling will facilitate the future development of diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Jie Chen
- Department of Cell and Structural Biology, University of Illinois at Urbana-Champaign, 601 South Goodwin Avenue, B107, Urbana, IL 61801, USA.
| | | |
Collapse
|
168
|
Chahdi A, Choi WS, Kim YM, Fraundorfer PF, Beaven MA. Serine/threonine protein kinases synergistically regulate phospholipase D1 and 2 and secretion in RBL-2H3 mast cells. Mol Immunol 2002; 38:1269-76. [PMID: 12217394 DOI: 10.1016/s0161-5890(02)00074-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The role of phospholipase (PL) D in secretion was examined in RBL-2H3 mast cells which contain both PLD1 and 2. The effects of pharmacologic stimulants and inhibitors of Ca(2+)/calmodulin-dependent kinase II, protein kinase C, and protein kinase A suggested that all three kinases synergistically stimulate PLD and, when associated with a calcium signal, secretion as well to indicate a possible linkage between these two events. Overexpression of either PLD1 or 2 markedly enhanced the activation of PLD by pharmacologic stimulants as well as antigen and both isoforms thus appear co-ordinately regulated. As the expressed PLD1 was associated with secretory granules and PLD2 with the plasma membrane, the two isoforms may serve distinct but complementary functions in secretion.
Collapse
Affiliation(s)
- Ahmed Chahdi
- Laboratory of Molecular Immunology, National Heart, Lung, and Blood Institute, National Institute of Health, Bethesda, MD 20892-1760, USA
| | | | | | | | | |
Collapse
|
169
|
Cummings RJ, Parinandi NL, Zaiman A, Wang L, Usatyuk PV, Garcia JGN, Natarajan V. Phospholipase D activation by sphingosine 1-phosphate regulates interleukin-8 secretion in human bronchial epithelial cells. J Biol Chem 2002; 277:30227-35. [PMID: 12039947 DOI: 10.1074/jbc.m111078200] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Sphingosine 1-phosphate (S1P), a potent bioactive sphingolipid, has been implicated in many critical cellular events, including a regulatory role in the pathogenesis of airway inflammation. We investigated the participation of S1P as an inflammatory mediator by assessing interleukin-8 (IL-8) secretion and phospholipase D (PLD) activation in human bronchial epithelial cells (Beas-2B). S1P(1), S1P(3), S1P(4), S1P(5), and weak S1P(2) receptors were detected in Beas-2B and primary human bronchial epithelial cells. S1P stimulated a rapid activation of PLD, which was nearly abolished by pertussis toxin (PTX) treatment, consistent with S1P receptor/G(i) protein coupling. S1P also markedly induced Beas-2B secretion of IL-8, a powerful neutrophil chemoattractant and activator, in a PTX-sensitive manner. This S1P-mediated response was dependent on transcription as indicated by a strong induction of IL-8 promoter-mediated luciferase activity in transfected Beas-2B cells and a complete inhibition by actinomycin D. Beas-2B exposure to 1-butanol, which converts the PLD-generated phosphatidic acid (PA) to phosphatidylbutanol by a transphosphatidylation reaction, significantly attenuated the S1P-induced IL-8 secretion, indicating the involvement of PLD-derived PA in the signaling pathway. Inhibition of 12-O-tetradecanoyl-phorbol-13-acetate-stimulated IL-8 production by 1-butanol further strengthened this observation. Blocking protein kinase C and Rho kinase also attenuated S1P-induced IL-8 secretion. Our data suggest that PLD-derived PA, protein kinase C, and Rho are important signaling components in S1P-mediated IL-8 secretion by human bronchial epithelial cells.
Collapse
Affiliation(s)
- Rhett J Cummings
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, The Johns Hopkins University, Baltimore, Maryland 21224, USA
| | | | | | | | | | | | | |
Collapse
|
170
|
Sugars JM, Cellek S, Manifava M, Coadwell J, Ktistakis NT. Hierarchy of membrane-targeting signals of phospholipase D1 involving lipid modification of a pleckstrin homology domain. J Biol Chem 2002; 277:29152-61. [PMID: 12021265 DOI: 10.1074/jbc.m112169200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The amino terminus of phospholipase D1 (PLD1) contains three potential membrane-interacting determinants: a phox homology (PX) domain, a pleckstrin homology (PH) domain and two adjacent cysteines at positions 240 and 241 within the PH domain that are fatty acylated in vivo. To understand how these determinants contribute to membrane localization, we have mutagenized critical residues of the PLD1 PH domain in the wild type or palmitate-free background in the intact protein, in a fragment that deletes the first 210 amino acids including the PX domain, and in the isolated PH domain. Mutants were expressed in COS-7 cells and examined for membrane residence, intracellular localization, palmitoylation, and catalytic activity. Our results are as follows. 1) Mutagenesis of critical residues of the PH domain results in redistribution of PLD1 from membranes to cytosol, independently of fatty acylation sites. Importantly, PH domain mutants in the wild type background showed greatly reduced fatty acylation, despite the presence of all relevant cysteines. 2) The isolated PH domain did not co-localize with PLD1 and was not palmitoylated. 3) The PX deletion mutant showed similar distribution and palmitoylation to the intact protein. Interestingly, PH domain mutants in this background showed significant palmitoylation and incomplete cytosolic redistribution. 4) PH domain mutants in the wild type or palmitate-free background maintained catalytic activity. We propose that membrane targeting of PLD1 involves a hierarchy of signals with a functional PH domain allowing fatty acylation leading to strong membrane binding. The PX domain may modulate function of the PH domain.
Collapse
Affiliation(s)
- Jane M Sugars
- Department of Signalling, Babraham Institute, Cambridge CB2 4AT, United Kingdom
| | | | | | | | | |
Collapse
|
171
|
Pérez-Andrés E, Fernández-Rodriguez M, González M, Zubiaga A, Vallejo A, García I, Matute C, Pochet S, Dehaye JP, Trueba M, Marino A, Gómez-Muñoz A. Activation of phospholipase D-2 by P2X7 agonists in rat submandibular gland acini. J Lipid Res 2002. [DOI: 10.1194/jlr.m100372-jlr200] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
172
|
Shin T, Min DS, Ahn M, Son W, Matsumoto Y. Increased expression of phospholipase D1 in the sciatic nerve of rats with experimental autoimmune neuritis. Immunol Invest 2002; 31:169-76. [PMID: 12472177 DOI: 10.1081/imm-120016238] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Phospholipase D1 (PLD1) expression in the sciatic nerve was studied in induced experimental autoimmune neuritis (EAN) in Lewis rats. PLD1 immunoreactivity was seen in some Schwann cells in the sciatic nerves of normal rats. In parallel with the progression of EAN, PLD1-positive Schwann cells significantly increased in number and showed intense immunoreactivity. PLD1 was also detected in some ED1+ macrophages in EAN lesions. These results suggest that PLD1 in macrophages and Schwann cells plays an important role in the activation of these cells in the pathogenesis of EAN, an animal model of human peripheral demyelinating disease.
Collapse
Affiliation(s)
- T Shin
- Department of Veterinary Medicine, Brain Korea 21, Cheju National University, Jeju 690-756, Republic of Korea.
| | | | | | | | | |
Collapse
|
173
|
Abstract
Members of the Rho subfamily of GTP-binding proteins regulate phospholipase D1 (PLD1) activity and signaling. In previous work, we demonstrated that binding of the Rho family member Cdc42 to PLD1 and the subsequent stimulation of its enzymatic activity are distinct events. Deletion of the insert helix from Cdc42 does not interfere with its switch I-mediated, GTP-dependent binding to PLD1 but inhibits Cdc42-stimulated PLD1 activity. To understand the mechanism of the insert-mediated activation of PLD1 by Cdc42 and to develop reagents to study Cdc42-activated PLD1 in cellular signaling events, we have undertaken a mutational analysis of the Rho insert region of Cdc42 and examined the specificity of the insert helix requirement in the other Rho family members, RhoA and Rac1. Here, we identify a critical residue, serine 124, in the Cdc42 insert helix central to its activation mechanism. Further, we examine this activation mechanism with respect to other members of the Rho family and demonstrate that each Rho protein activates PLD by distinct mechanisms, potentially allowing for unique signaling outcomes in the cell.
Collapse
Affiliation(s)
- Stephanie J Walker
- Department of Molecular Medicine, Veterinary Medical Center, Field of Biochemistry, Molecular, and Cell Biology, Cornell University, Ithaca, New York 14853
| | | |
Collapse
|
174
|
Oka M, Hitomi T, Okada T, Nakamura Si SI, Nagai H, Ohba M, Kuroki T, Kikkawa U, Ichihashi M. Dual regulation of phospholipase D1 by protein kinase C alpha in vivo. Biochem Biophys Res Commun 2002; 294:1109-13. [PMID: 12074591 DOI: 10.1016/s0006-291x(02)00614-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The regulation of phospholipase D1 (PLD1), which has been shown to be activated by protein kinase C (PKC) alpha, was investigated in the human melanoma cell lines. In G361 cell line, which lacks PKCalpha, 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced PLD activation was potentiated by introducing PKCalpha by the adenovirus vector. The kinase-negative PKCalpha elevated TPA-induced PLD activity less significantly than the wild type. A PKC specific inhibitor GF109203X lowered PLD activation in the cells expressing PKCalpha, but did not prevent PLD potentiation induced by the kinase-negative PKCalpha. Expression of PKCbetaII and the kinase-negative PKCbetaII enhanced TPA-stimulated PLD activity moderately in MeWo cell line, in which PKCbetaII is absent. Furthermore, the TPA treatment increased the association of PKCalpha, PKCbetaII, and their kinase-negative mutants with PLD1 in melanoma cells. These results indicate that PLD1 is dually regulated through phosphorylation as well as through the protein-protein interaction by PKCalpha, and probably by PKCbetaII, in vivo.
Collapse
Affiliation(s)
- Masahiro Oka
- Department of Dermatology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
175
|
Choi WS, Chahdi A, Kim YM, Fraundorfer PF, Beaven MA. Regulation of phospholipase D and secretion in mast cells by protein kinase A and other protein kinases. Ann N Y Acad Sci 2002; 968:198-212. [PMID: 12119277 DOI: 10.1111/j.1749-6632.2002.tb04336.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Functions attributed to phospholipase (PL) D include the regulation of intracellular trafficking of Golgi-derived vesicles and secretion of granules from mast cells. We have reported that activation of PLD and secretion in a rat mast cell (RBL-2H3) line is substantially enhanced by cholera toxin, a known activator of protein kinase (PK) A. Here we review the evidence that (1) the synergistic interactions of cholera toxin and other pharmacological agents on mast cell secretion are attributable to the synergistic activation of PLD via PKA, CaM kinase II, and PKC and (2) both PLD1 and PLD2 participate in this process. For example, treatment with cholera toxin, thapsigargin, and phorbol 12-myristate 13-acetate (which activate PKA, CaM kinase II, and PKC, respectively) exhibit synergy in the stimulation of both PLD and secretion. These kinases and PLD are likely confined to membrane components, as similar synergistic interactions could be demonstrated in permeabilized cells. The regulation of PLD and secretion by these kinases is also apparent from studies of inhibitors of PKA and other kinases. Also, by overexpression of either PLD1 or PLD2 it is apparent that both isoforms respond to the same stimuli as endogenous PLD, although PLD1 is largely associated with secretory granules and PLD2 with plasma membrane. The studies reveal interesting differences in the regulation of the translocation of granules (regulated by PKA) and the fusion of these granules with the plasma membrane (regulated by Ca(2+) and PKC). The pathological/physiological implications of the regulation of PLD by PKA require further evaluation in other cell systems.
Collapse
Affiliation(s)
- Wahn Soo Choi
- Laboratory of Molecular Immunology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892-1760, USA
| | | | | | | | | |
Collapse
|
176
|
Affiliation(s)
- J H Exton
- Howard Hughes Medical Institute, Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| |
Collapse
|
177
|
Tou JS. Differential regulation of neutrophil phospholipase d activity and degranulation. Biochem Biophys Res Commun 2002; 292:951-6. [PMID: 11944907 DOI: 10.1006/bbrc.2002.6765] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
One of the proposed functions of phosphatidic acid (PA) formation from phospholipase D (PLD) activation in neutrophils is to promote degranulation induced by receptor agonists. The present study shows that the time course and dose response of PA formation and degranulation induced by N-formyl-methionyl-leucyl-phenylalanine (fMLP) differed. PLD activation and degranulation also exhibited different dose response to genistein and epigallocatechin gallate (EGCG), inhibitors of protein tyrosine kinases. Genistein inhibited PLD activity with an IC(50) value of 12.2 microM in fMLP- and 107 microM in phorbol myristate acetate (PMA)-stimulated cells. It required higher concentrations of genistein to inhibit degranulation than to inhibit PLD activity induced by fMLP. EGCG in the range of 40-400 microM had no effect on PLD activity but it inhibited the release of beta-glucuronidase and elastase by fMLP-stimulated cells. These results demonstrate differential regulation of PLD activity and degranulation of primary granules by genistein and EGCG in fMLP-stimulated neutrophils.
Collapse
Affiliation(s)
- Jen Sie Tou
- Department of Biochemistry, Tulane University Health Sciences Center, 1430 Tulane Avenue, New Orleans, Louisiana 70112, USA.
| |
Collapse
|
178
|
Du G, Morris AJ, Sciorra VA, Frohman MA. G-protein-coupled receptor regulation of phospholipase D. Methods Enzymol 2002; 345:265-74. [PMID: 11665610 DOI: 10.1016/s0076-6879(02)45022-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Affiliation(s)
- Guangwei Du
- Department of Pharmacology, Center for Developmental Genetics, State University of New York, Stony Brook, New York 11794, USA
| | | | | | | |
Collapse
|
179
|
Jiang X, Gutowski S, Singer WD, Sternweis PC. Assays and characterization of mammalian phosphatidylinositol 4,5-bisphosphate-sensitive phospholipase D. Methods Enzymol 2002; 345:328-34. [PMID: 11665616 DOI: 10.1016/s0076-6879(02)45026-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Affiliation(s)
- Xuejun Jiang
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | | | | | | |
Collapse
|
180
|
Affiliation(s)
- Yuhuan Xie
- Department of Pharmacology, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | |
Collapse
|
181
|
Rizzo M, Romero G. Pharmacological importance of phospholipase D and phosphatidic acid in the regulation of the mitogen-activated protein kinase cascade. Pharmacol Ther 2002; 94:35-50. [PMID: 12191592 DOI: 10.1016/s0163-7258(02)00170-5] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The stimulation of cells with many extracellular agonists leads to the activation of phospholipase (PL)D. PLD metabolizes phosphatidylcholine to generate phosphatidic acid (PA). Neither the mechanism through which cell surface receptors regulate PLD activation nor the functional consequences of PLD activity in mitogenic signaling are completely understood. PLD is activated by protein kinase C, phospholipids, and small GTPases of the ADP-ribosylation factor and Rho families, but the mechanisms linking cell surface receptors to the activation of PLD still require detailed analysis. Furthermore, the latest data on the functional consequences of the generation of cellular PA suggest an important role for this lipid in the regulation of membrane traffic and on the activation of the mitogen-activated protein kinase cascade. This review addresses these issues, examining some novel models for the physiological role of PLD and PA and discussing their potential usefulness as specific targets for the development of new therapies.
Collapse
Affiliation(s)
- Mark Rizzo
- Department of Pharmacology, W 1345 BSTWR, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | | |
Collapse
|
182
|
The Arabidopsis Phospholipase D Family. Characterization of a
Calcium-Independent and Phosphatidylcholine-Selective PLDζ1 with
Distinct Regulatory Domains 1. PLANT PHYSIOLOGY 2002; 128:1200-11. [PMID: 11891260 PMCID: PMC152217 DOI: 10.1104/pp.010928] [Citation(s) in RCA: 240] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Four types of phospholipase D (PLD), PLDα, β, γ, and δ,
have been characterized in Arabidopsis, and they display different
requirements for Ca2+, phosphatidylinositol
4,5-bisphosphate (PIP2), substrate vesicle composition,
and/or free fatty acids. However, all previously cloned plant PLDs
contain a Ca2+-dependent phospholipid-binding C2 domain and
require Ca2+ for activity. This study documents a new type
of PLD, PLDζ1, which is distinctively different from previously
characterized PLDs. It contains at the N terminus a Phox homology
domain and a pleckstrin homology domain, but not the C2 domain. A
full-length cDNA for Arabidopsis PLDζ1 has been identified and used
to express catalytically active PLD in Escherichia coli.
PLDζ1 does not require Ca2+ or any other divalent cation
for activity. In addition, it selectively hydrolyzes
phosphatidylcholine, whereas the other Arabidopsis PLDs use several
phospholipids as substrates. PLDζ1 requires PIP2 for
activity, but unlike the PIP2-requiring PLDβ or γ,
phosphatidylethanolamine is not needed in substrate vesicles. These
differences are described, together with a genomic analysis of 12
putative Arabidopsis PLD genes that are grouped into α, β, δ,
γ, and ζ based on their gene architectures, sequence similarities,
domain structures, and biochemical properties.
Collapse
|
183
|
Ogino C, Yasuda Y, Kondo A, Shimizu N, Fukuda H. Improvement of transphosphatidylation reaction model of phospholipase D from Streptoverticillium cinnamoneum. Biochem Eng J 2002. [DOI: 10.1016/s1369-703x(01)00172-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
184
|
del Carmen Boyano-Adánez M, Gustavsson L. Effect of calmodulin antagonists on phospholipase D activity in SH-SY5Y cells. Neurochem Int 2002; 40:261-8. [PMID: 11741010 DOI: 10.1016/s0197-0186(01)00067-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The aim of this study was to investigate the involvement of calmodulin in phospholipase D activation in SH-SY5Y cells. Cells prelabelled with [3H]-palmitic acid were incubated with calmodulin antagonists and/or other compounds. Phosphatidylethanol, a specific marker for phospholipase D activity, and phosphatidic acid were analysed. The calmodulin antagonists, calmidazolium and trifluoperazine, induced an extensive increase in phosphatidylethanol formation, and thus increased basal phospholipase D activity, in a dose- and time-dependent manner. The effect of calmidazolium on carbachol-induced activation of muscarinic receptors was also studied. Calmidazolium did not significantly affect the amount of phosphatidylethanol formed following carbachol addition. However, taking into account the increase in basal activity observed after calmidazolium addition, calmidazolium probably inhibits the muscarinic receptor-induced phospholipase D activation. In addition to phosphatidylethanol, basal phosphatidic acid levels were also increased after calmidazolium and trifluoperazine addition. Incubation with calmidazolium (10 microM) for 10 min induced a two-fold increase in phosphatidic acid. The calmidazolium-induced increase in basal phospholipase D activity was not affected by the protein kinase inhibitors H7 and staurosporine. On the other hand tyrosine kinase inhibitors abolished the calmidazolium-induced activation of phospholipase D. Calmidazolium also induced tyrosine phosphorylation in parallel to the phospholipase D activation. In conclusion, our data indicate that calmodulin antagonists induce phospholipase D activity in SH-SY5Y cells via a tyrosine kinase dependent pathway. This may point to a negative control of phospholipase D by calmodulin although a calmodulin-independent mechanism cannot be excluded. Calmodulin antagonists may be useful tools to further elucidate the mechanisms of phospholipase D regulation.
Collapse
Affiliation(s)
- María del Carmen Boyano-Adánez
- Department of Medical Neurochemistry, Institute of Laboratory Medicine, Lund University Hospital, S-221 85, Lund, Sweden
| | | |
Collapse
|
185
|
Lee S, Kim JH, Lee CS, Kim JH, Kim Y, Heo K, Ihara Y, Goshima Y, Suh PG, Ryu SH. Collapsin response mediator protein-2 inhibits neuronal phospholipase D(2) activity by direct interaction. J Biol Chem 2002; 277:6542-9. [PMID: 11741937 DOI: 10.1074/jbc.m108047200] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although the functional significance of neuronal phospholipase D (PLD) is being recognized, little is known about its regulatory role in neuronal cells. To elucidate the regulatory mechanism of neuronal PLD, we investigated PLD(2)-binding neuronal protein from rat brain cytosol. During the fractionation of rat brain cytosol by four-column chromatography, a 62-kDa PLD(2)-interacting protein was detected by PLD(2) overlay assay and identified as collapsin response mediator protein-2 (CRMP-2), which controls neuronal axon guidance and outgrowth. Using bacterially expressed glutathione S-transferase fusion proteins, we found that two regions (amino acids 65-192 (the phagocytic oxidase domain) and 724-825) of PLD(2) and a single region (amino acids 243-300) of CRMP-2 are required for the direct binding of both proteins. A co-immunoprecipitation study in COS-7 cells also showed an in vivo interaction between CRMP-2 and PLD(2). Interestingly, CRMP-2 was found to potently inhibit PLD(2) activity in a concentration-dependent manner (IC(50) = 30 nm). Overexpression studies also showed that CRMP-2 is an in vivo inhibitor of PLD(2) in PC12 cells. Moreover, increasing the concentration of semaphorin 3A, one of the repulsive axon guidance cues, showed that PLD(2) activity can be inhibited in PC12 cells. Immunocytochemistry further revealed that PLD(2) is co-localized with CRMP-2 in the distal tips of neurites, its possible action site, in differentiated PC12 cells. Taken together, our results indicate that CRMP-2 may interact directly with and inhibit neuronal PLD(2), suggesting that this inhibitory mode of regulation may play a role in neuronal pathfinding during the developmental stage.
Collapse
Affiliation(s)
- Sukmook Lee
- Division of Molecular and Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 790-784, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
186
|
Jones DR, D'Santos CS, Mérida I, Divecha N. T lymphocyte nuclear diacylglycerol is derived from both de novo synthesis and phosphoinositide hydrolysis. Int J Biochem Cell Biol 2002; 34:158-68. [PMID: 11809418 DOI: 10.1016/s1357-2725(01)00108-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Novel phospholipid metabolism in T lymphocytes and the generation of biologically active lipid second messengers (LSMs) has attracted much attention in recent years. Despite this interest, no reports have attempted to characterise such events in the nuclei of these cells. In order to gain insight into the structural relationships between the lipids diglyceride (DG) and phosphatidic acid (PtdOH) and their structural precursors phosphatidylcholine (PtdCho) and phosphatidylinositides (PtdIns) in the nuclei of CTLL-2 T lymphocytes, an analysis of their molecular species was performed. The results clearly indicated that there were two pools of DG. The major pool consisted primarily of saturated and monunsaturated structures whereas the minor pool consisted of more unsaturated species, most likely derived from PtdIns. Only the latter pool was found to be accessible to endogenous nuclear diacylglycerol kinase (DGK) activity which showed partial inhibition with the recognised DGK inhibitor R59949. Molecular species analysis of the endogenous nuclear PtdOH revealed it to be distinct from that generated by the endogenous DGK, but instead resembled that of PtdCho species. We were unable to detect enzymatic activities which targeted PtdCho (PtdCho-phospholipase C (PtdCho-PLC), PtdCho-phospholipase D (PtdCho-PLD) and sphingomyelin synthase (SMS)) but instead a detectable PtdOH phosphatase (PAP) activity. We propose that, in exponentially growing CTLL-2 cells, synthesis de novo represents one of the routes for the biosynthesis of structural phospholipids which may be the source of biologically active LSMs in the nucleus.
Collapse
Affiliation(s)
- David R Jones
- Department of Immunology and Oncology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Cantoblanco, 28049 Madrid, Spain.
| | | | | | | |
Collapse
|
187
|
Abousalham A, Hobman TC, Dewald J, Garbutt M, Brindley DN. Cell-permeable ceramides preferentially inhibit coated vesicle formation and exocytosis in Chinese hamster ovary compared with Madin-Darby canine kidney cells by preventing the membrane association of ADP-ribosylation factor. Biochem J 2002; 361:653-61. [PMID: 11802796 PMCID: PMC1222349 DOI: 10.1042/0264-6021:3610653] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Differential effects of acetyl(C2-) ceramide (N-acetylsphingosine) were studied on coated vesicle formation from Golgi-enriched membranes of Chinese hamster ovary (CHO) and Madin-Darby canine kidney (MDCK) cells. C2-ceramide blocked the translocation of ADP-ribosylation factor-1 (ARF-1) and protein kinase C-alpha (PKC-alpha) to the membranes from CHO cells, but not those of MDCK cells. Consequently, C2-ceramide blocked the stimulation of phospholipase D1 (PLD1) by the cytosol and guanosine 5'-[gamma-thio]triphosphate (GTP[S]) in membranes from CHO cells. Basal specific activity of PLD1 and the concentration of ARF-1 were 3-4 times higher in Golgi-enriched membranes from MDCK cells compared with CHO cells. Moreover, PLD1 activity in MDCK cells was stimulated less by cytosol and GTP[S]. PLD2 was not detectable in the Golgi-enriched membranes. Incubation of intact CHO cells or their Golgi-enriched membranes with C2-ceramide also inhibited COP1 vesicle formation by membranes from CHO, but not MDCK, cells. Specificity was demonstrated, since dihydro-C2-ceramide had no significant effect on ARF-1 translocation, PLD1 activation or vesicle formation in membranes from both cell types. C2-ceramide also decreased the secretion of virus-like particles to a greater extent in CHO compared with MDCK cells, whereas dihydro-C2-ceramide had no significant effect. The results demonstrate a biological effect of C2-ceramide in CHO cells by decreasing ARF-1 and PKC-alpha binding to Golgi-enriched membranes, thereby preventing COP1 vesicle formation.
Collapse
Affiliation(s)
- Abdelkarim Abousalham
- Department of Biochemistry, Signal Transduction Research Group, University of Alberta, Edmonton, Alberta, T6G 2S2, Canada
| | | | | | | | | |
Collapse
|
188
|
Abstract
Two mammalian phospholipase D (PLD) isozymes (PLD1 and PLD2) have been reported. In this study, we differentially tagged these isozymes with enhanced green fluorescent protein (EGFP-rPLD1 and EGFP-rPLD2) or Xpress peptide epitope (Xpress-rPLD1 and Xpress-rPLD2) to examine the association between these isozymes. Overexpressed EGFP-rPLD1 coimmunoprecipitated with Xpress-rPLD1 using anti-Xpress antibody. However, the coimmunoprecipitation was independent of the activity of rPLD1. Xpress-rPLD2 also bound to EGFP-rPLD1 although the binding was less efficient than observed with Xpress-rPLD1. The association between rPLD2 and rPLD1 was confirmed by coimmunoprecipitation of EGFP-rPLD2 with Xpress-rPLD1. EGFP-rPLD2 also bound to Xpress-rPLD2 as shown by coimmunoprecipitation. Immunofluorescence staining of COS-7 cells coexpressing EGFP-rPLDs and Xpress-rPLDs showed that the PLD isozymes colocalized in the perinuclear and plasma membrane regions, suggesting that they could associate in a cellular setting. These results suggest that rPLD1 and rPLD2 can exist as homodimers and can form heterodimers.
Collapse
Affiliation(s)
- Yoonseok Kam
- Howard Hughes Medical Institute, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | |
Collapse
|
189
|
Chapter 11 Phospholipases. ACTA ACUST UNITED AC 2002. [DOI: 10.1016/s0167-7306(02)36013-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
190
|
Denmat-Ouisse LA, Phebidias C, Honkavaara P, Robin P, Geny B, Min DS, Bourgoin S, Frohman MA, Raymond MN. Regulation of constitutive protein transit by phospholipase D in HT29-cl19A cells. J Biol Chem 2001; 276:48840-6. [PMID: 11687572 DOI: 10.1074/jbc.m104276200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phospholipase D (PLD) plays a central role in the control of vesicle budding and protein transit. We previously showed that in resting epithelial HT29-cl19A cells, PLD is implicated in the control of constitutive protein transit, from the trans-Golgi network to the plasma membrane, and that phorbol ester stimulation of protein transit is correlated with PLD activation (Auger, R., Robin, P., Camier, B., Vial, G., Rossignol, B., Tenu, J.-P., and Raymond, M.-N. (1999) J. Biol. Chem. 274, 28652-28659). In this paper we demonstrate that: 1) PLD is not implicated in the earliest phases of protein transit; 2) PLD controls apical but not basolateral protein transit; 3) HT29-cl19A cells express PLD1b and PLD2a mRNAs and proteins; 4) the expression of a catalytically inactive mutant of PLD2 (mPLD2-K758R) significantly inhibited apical constitutive protein transit whereas expression of a catalytically inactive mutant of PLD1 (hPLD1b-K898R) prevented increases in the rate of apical transit as triggered by phorbol esters; 5) PLD2 appears to be located in a perinuclear region containing the Golgi whereas PLD1, which is scattered in the cytoplasm in resting cells, is translocated to the plasma membrane after phorbol ester stimulation. Taken together, these data lead to the conclusion that in HT29-cl19A cells, both PLDs regulate protein transit between the trans-Golgi network and the apical plasma membrane, but that they do so at different steps in the pathway.
Collapse
Affiliation(s)
- L A Denmat-Ouisse
- Laboratoire de Biochimie des Transports Cellulaires, CNRS, U.M.R. 8619, bâtiment 430, Université Paris XI, 91405 Orsay Cedex, France
| | | | | | | | | | | | | | | | | |
Collapse
|
191
|
Parinandi NL, Roy S, Shi S, Cummings RJ, Morris AJ, Garcia JG, Natarajan V. Role of Src kinase in diperoxovanadate-mediated activation of phospholipase D in endothelial cells. Arch Biochem Biophys 2001; 396:231-43. [PMID: 11747302 DOI: 10.1006/abbi.2001.2609] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have shown earlier that oxidant-induced activation of phospholipase D (PLD) in vascular endothelial cells (ECs) is regulated by protein tyrosine kinases. To further understand the regulation of oxidant-induced PLD activation, we investigated the role of Src kinase. Treatment of bovine pulmonary artery ECs (BPAECs) with a model oxidant, diperoxovanadate (DPV), at 5 microM concentration, for 30 min, stimulated PLD activity (four- to eightfold), which was attenuated by tyrosine kinase inhibitors and by Src kinase-specific inhibitors PP-1 and PP-2, in a dose- and time-dependent fashion. Furthermore, BPAECs exposed to DPV (5 microM) for 2 min showed activation of Src kinase as observed by increased tyrosine phosphorylation and autophosphorylation in Src immunoprecipitates, which was attenuated by PP-2. Src immunoprecipitates of cell lysates from control BPAECs exhibited PLD activity in cell-free preparations, which was Arf- and Rho-sensitive and was enhanced at 2 min of DPV (5 microM) treatment. Also, Western blots of Src immunoprecipitates of control cells revealed the presence of PLD(1) and PLD(2), suggesting the association of PLD with Src kinase under basal conditions. However, exposure of cells to DPV (5 microM) for 2 min enhanced the association of PLD(2) but not PLD(1) with Src. Western blotting of immunoprecipitates of PLD(1) and PLD(2) isoforms of control BPAECs revealed the presence of Src under basal conditions and exposure of cells to DPV (5 microM) for 2 min enhanced the association of PLD(2) with Src in PLD(2) immunoprecipitates. Transient expression of a dominant negative mutant of Src in BPAECs attenuated DPV- but not TPA-induced PLD activation. In cell-free preparations, Src did not phosphorylate either PLD(1) or PLD(2) compared to protein kinase Calpha or p38 mitogen-activated protein kinase. These data show for the first time a direct association of Src with PLD in ECs and regulation of PLD in intact cells.
Collapse
Affiliation(s)
- N L Parinandi
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Asthma and Allergy Center, Johns Hopkins University, 5501 Bayview Circle, Baltimore, MD 21224, USA.
| | | | | | | | | | | | | |
Collapse
|
192
|
Mamoon AM, Baker RC, Farley JM. Activation of phospholipase D in porcine tracheal smooth muscle: role of phosphatidylinositol 3-kinase and RhoA activation. Eur J Pharmacol 2001; 433:7-16. [PMID: 11755129 DOI: 10.1016/s0014-2999(01)01439-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Muscarinic receptor agonists transiently activate phospholipase D in tracheal smooth muscle. Muscarinic activation of phospholipase D in this tissue is dependent on activation of protein kinase C and an unidentified pathway that is not protein kinase C dependent. Cholinergic agents have also been shown to activate phospholipase D by pathways linked to the small G protein, RhoA. This study explores the relationship between muscarinic activation of phophatidylinositol 3-kinase and activation of RhoA, and examines whether phospholipase D activation is dependent on either pathway in tracheal smooth muscle. Wortmannin or 2-(4-morphonyl)-8-phenyl-4H-1-benzopyran-4-one (LY-294002), putative specific inhibitors of phophatidylinositol 3-kinase, significantly inhibit acetylcholine-induced formation of phosphatidylethanol and also block acetylcholine-induced translocation of RhoA to the membrane. In previous experiments calphostin C, a protein kinase C inhibitor, partially inhibited both acetylcholine-induced and phorbol-12-myristate-13-acetate (PMA)-induced phosphatidylethanol formation. In the present study calphostin C did not block acetylcholine-induced RhoA translocation to the membrane. However, the Rho kinase inhibitor, N-(4-pyridyl)-4-(1-aminoethyl)-cyclohexanecarboxamide (Y-27632), significantly inhibited acetylcholine-induced phosphatidylethanol formation, but had no effect on activation of phospholipase D by PMA. Acetylcholine treatment also stimulated the phosphorylation of the 110-kDa subunit of phosphatidylinositol 3-kinase. Phosphorylation of phosphatidylinositol 3-kinase 110-kDa subunit could be blocked by wortmannin in a concentration-dependent manner, and acetylcholine-induced phosphatidylinositol 3-kinase activity was significantly inhibited by wortmannin. LY-294002 also inhibited acetylcholine-induced phosphorylation of 110-kDa subunit and activation of phosphatidylinositol 3-kinase. These results suggest that acetylcholine stimulation translocates RhoA to the membrane by a phosphatidylinositol 3-kinase-dependent mechanism and acetylcholine-induced phospholipase D stimulation is at least partly mediated via phosphatidylinositol 3-kinase, however, protein kinase C appears to activate phospholipase D independent of phosphatidylinositol 3-kinase or RhoA activation in porcine tracheal smooth muscle.
Collapse
Affiliation(s)
- A M Mamoon
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216-4505, USA
| | | | | |
Collapse
|
193
|
Cox D, Greenberg S. Phagocytic signaling strategies: Fc(gamma)receptor-mediated phagocytosis as a model system. Semin Immunol 2001; 13:339-45. [PMID: 11708889 DOI: 10.1006/smim.2001.0330] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Phagocytosis is a phylogenetically ancient process by which eukaryotic cells engulf insoluble substances whose size exceeds approximately 0.5 microm. The engulfment process requires the concerted action of several fundamental cellular pathways and is governed by multiple transmembrane signaling events. Here we focus on phagocytosis mediated by a well-studied class of phagocytic receptors that recognize the Fc portion of IgG (Fc(gamma)Rs ).
Collapse
Affiliation(s)
- D Cox
- Department of Medicine, Columbia University, 630 West 168th Street, New York, NY 10032, USA.
| | | |
Collapse
|
194
|
Hairfield ML, Ayers AB, Dolan JW. Phospholipase D1 is required for efficient mating projection formation in Saccharomyces cerevisiae. FEMS Yeast Res 2001; 1:225-32. [PMID: 12702348 DOI: 10.1111/j.1567-1364.2001.tb00038.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Phospholipase D1 (PLD1) is an important enzyme involved in lipid signal transduction in eukaryotes. A role for PLD1 in signaling in Saccharomyces cerevisiae was examined. Pheromone response in yeast is controlled by a well-characterized protein kinase cascade. Loss of PLD1 activity was found to impair pheromone-induced changes in cellular morphology that result in formation of mating projections. The rate at which projections appeared following pheromone treatment was delayed, suggesting that PLD1 facilitates the execution of a rate-limiting step in morphogenesis. Mutants were found to be less sensitive to pheromone, again arguing that PLD1 is acting at a rate-limiting step. The fact that morphogenesis is most dramatically affected indicates that PLD1 functions primarily in the morphogenic branch of the pheromone response pathway.
Collapse
Affiliation(s)
- M L Hairfield
- Molecular, Cellular Biology and Pathobiology Program, Medical University of South Carolina, Charleston 29425, USA
| | | | | |
Collapse
|
195
|
Mwanjewe J, Spitaler M, Ebner M, Windegger M, Geiger M, Kampfer S, Hofmann J, Uberall F, Grunicke HH. Regulation of phospholipase D isoenzymes by transforming Ras and atypical protein kinase C-iota. Biochem J 2001; 359:211-7. [PMID: 11563985 PMCID: PMC1222137 DOI: 10.1042/0264-6021:3590211] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The activation of phospholipase D (PLD) by transforming Ras is well documented. Although two distinct PLD isoforms, PLD1 and PLD2, have been cloned from mammalian cells, it has remained unclear whether both isoenzymes are activated by Ras and, if this is the case, whether they are stimulated by a common mechanism. In the present study we show that expression of transforming Ras in HC11 mouse mammary epithelial cells enhanced the activity of endogenous PLD. Co-expression of Ras with either PLD1b or PLD2 resulted in elevated activities of both PLD isoenzymes in HC11 cells, indicating that transforming Ras was capable of activating both PLD isoforms in vivo. Ras-induced activation of PLD was resistant to the protein kinase C (PKC) inhibitor GF109203X, which preferentially affects conventional- and novel-type PKCs, but sensitive to Ro-31-8220, which inhibits atypical PKCs more effectively. Co-transfection of atypical PKC-iota with either PLD1b or PLD2 led to a selective activation of PLD2 by PKC-iota, whereas PLD1b was not affected. PLD1b, however, was found to be a potent activator of PKC-iota, whereas PLD2 was less effective in this respect. The data suggest that PKC-iota acts upstream of PLD2 and that PLD1b is implicated in the activation of PKC-iota. The data are discussed as indicating a putative signalling cascade comprising Ras-->PLD1b-->PKC-iota-->PLD2. Evidence for the implication of this pathway in the transcriptional regulation of cyclin D1 is also presented.
Collapse
Affiliation(s)
- J Mwanjewe
- Institute of Medical Chemistry and Biochemistry, University of Innsbruck, Fritz-Pregl-Strasse 3/VI, A-6020 Innsbruck, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
196
|
Banno Y, Takuwa Y, Akao Y, Okamoto H, Osawa Y, Naganawa T, Nakashima S, Suh PG, Nozawa Y. Involvement of phospholipase D in sphingosine 1-phosphate-induced activation of phosphatidylinositol 3-kinase and Akt in Chinese hamster ovary cells overexpressing EDG3. J Biol Chem 2001; 276:35622-8. [PMID: 11468290 DOI: 10.1074/jbc.m105673200] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phospholipase D (PLD), phosphatidylinositol 3-kinase (PI3K), and Akt are known to be involved in cellular signaling related to proliferation and cell survival. In this report, we provide evidence that PLD links sphingosine 1-phosphate (S1P)-induced activation of the G protein-coupled EDG3 receptor to stimulation of PI3K and its downstream effector Akt in Chinese hamster ovary (CHO) cells. S1P stimulation of EDG3-overexpressing CHO cells but not vector-transfected cells induced activation of PLD, PI3K, and Akt in a time- and dose-dependent manner. Akt phosphorylation was prevented by the PI3K inhibitors wortmannin and LY294002 (2-(4-monrpholinyl)-8-phenyl-4H-1-benzopyran-4-one), indicating that Akt activation was dependent on PI3K. S1P-induced activation of PI3K and Akt was abrogated by 1-butanol, which inhibited S1P-induced accumulation of phosphatidic acid by serving as a phosphatidyl group acceptor in the transphosphatidylation reaction catalyzed by PLD, whereas both PI3K and Akt activation were not inhibited by 2-butanol without such reaction. Co-expression of wild-type PLD2 with myc-Akt resulted in increased Akt activation in response to S1P. In contrast, co-expression of a catalytically inactive mutant of PLD2 eliminated the S1P-induced Akt activation. The treatment of EDG3-expressing CHO cells with exogenous Streptomyces chromofuscus PLD, which caused an accumulation of phosphatidic acid, resulted in increases in PI3K activity and the phosphorylation of Akt, the latter of which was completely abolished by LY294002. Furthermore, S1P-induced membrane ruffling, which was dependent on PI3K and Rac, was inhibited by 1-butanol, but not by 2-butanol. These results demonstrate that PLD participates in the activation of PI3K and Akt stimulation of EDG3 receptor.
Collapse
Affiliation(s)
- Y Banno
- Departments of Biochemistry and Internal Medicine, Gifu University School of Medicine, Gifu 500-8705, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
197
|
Min DS, Choi JS, Chun MH, Chung JW, Lee MY. Transient expression of phospholipase D1 in developing rat hippocampus. Neurosci Lett 2001; 310:125-8. [PMID: 11585583 DOI: 10.1016/s0304-3940(01)02091-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We investigated the distribution of phospholipase D1 (PLD1) protein in the developing rat hippocampus using an affinity-purified peptide antibody against PLD1. Immunoreactivity for PLD1 was first seen in some scattered cells in the hippocampus at embryonic day 18. At postnatal day 1 (P1), many PLD1 immunoreactive cells were observed in the CA1 and CA3 sectors, subiculum and the hilus of the dentate gyrus. During the first postnatal week, there was an abrupt increase of immunoreactive neurons in the hippocampus, and their number and intensity peaked at P7. During the second postnatal week, there was an abrupt decrease in the number of immunoreactive hippocampal neurons. By P14, no significant labeling was found in the hippocampus. These results corresponded well with those from Western blot analysis, suggesting that PLD1 may regulate the developmental processes of hippocampal neurons.
Collapse
Affiliation(s)
- D S Min
- Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | | | | | | | | |
Collapse
|
198
|
Shukla SD, Sun GY, Gibson Wood W, Savolainen MJ, Alling C, Hoek JB. Ethanol and lipid metabolic signaling. Alcohol Clin Exp Res 2001. [PMID: 11391046 DOI: 10.1111/j.1530-0277.2001.tb02370.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
This article represents the proceedings of a symposium at the 2000 ISBRA Meeting in Yokohama, Japan. The chairs were Shivendra D. Shukla and Grace Y. Sun. The presentations were (1) Metabolic turnover of ethanol into cellular lipids and platelet activating factor, by Shivendra D. Shukla; (2) Ethanol action on the phospholipase A2 signaling pathways in astrocytes, by Grace Y. Sun; (3) Mechanisms of ethanol-induced perturbation of lipoprotein cholesterol transport, by W. Gibson Wood; (4) Transfer of an abnormal ethanol-induced phospholipid, phosphatidylethanol, between lipoproteins, by Markku J. Savolainen; (5) Phospholipase-d-mediated formation of phosphatidylethanol, by Christer Alling; and (6) Changes in phosphoinositide signaling after chronic ethanol treatment, by Jan B. Hoek.
Collapse
Affiliation(s)
- S D Shukla
- Department of Pharmacology, University of Missouri Columbia, School of Medicine, Columbia, Missouri 65212, USA.
| | | | | | | | | | | |
Collapse
|
199
|
Locati M, Riboldi E, Bonecchi R, Transidico P, Bernasconi S, Haribabu B, Morris AJ, Mantovani A, Sozzani S. Selective induction of phospholipase D1 in pathogen-activated human monocytes. Biochem J 2001; 358:119-25. [PMID: 11485559 PMCID: PMC1222039 DOI: 10.1042/0264-6021:3580119] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Phospholipase D (PLD) activation is part of the complex signalling cascade induced during phagocyte activation. Two PLD isoforms have been cloned, but their role in phagocyte functions is still poorly defined. We report that resting fresh circulating human monocytes expressed PLD1. PLD1 protein expression was rapidly down-regulated during cell culture. Lipopolysaccharide and pathogen-derived agonists (Candida albicans, arabinoside-terminated lipoarabinomannan and Gram-positive bacteria, but not mannose-capped lipoarabinomannan or double-stranded RNA) strongly induced PLD1 expression at both the mRNA and protein levels. Pro-inflammatory cytokines [interleukin (IL)-1beta and tumour necrosis factor alpha] had only a weak effect, whereas immune cytokines (IL-6 and interferon gamma), anti-inflammatory cytokines (IL-13 and IL-10) and chemoattractants (fMet-Leu-Phe and macrophage chemoattractant protein 1) were inactive. None of the agonists tested induced significant changes in the basal expression of PLD2 mRNA. Consistent with PLD1 up-regulation was the observation that PLD enzymic activity was higher in monocytes treated with active-pathogen-derived agonists than in control cells, when stimulated with PMA or with chemotactic agonists (fMet-Leu-Phe and C5a). Thus PLD2 seems to be a constitutive enzyme in circulating monocytes. Conversely, PLD1 is an inducible protein, rapidly regulated during culture conditions and selectively induced during cell activation. Therefore PLD1 might have a relevant role in immune responses against pathogens and in chronic inflammation.
Collapse
Affiliation(s)
- M Locati
- Istituto di Ricerche Farmacologiche Mario Negri, via Eritrea 62, 20157 Milano, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
200
|
Ge M, Cohen JS, Brown HA, Freed JH. ADP ribosylation factor 6 binding to phosphatidylinositol 4,5-bisphosphate-containing vesicles creates defects in the bilayer structure: an electron spin resonance study. Biophys J 2001; 81:994-1005. [PMID: 11463641 PMCID: PMC1301569 DOI: 10.1016/s0006-3495(01)75757-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The effects of binding of myristoylated ADP ribosylation factor 6 (myr-ARF6), an activator of phospholipase D (PLD), to a model membrane were investigated using an electron spin resonance (ESR) labeling technique. Initial studies were conducted in vesicles composed of 1-palmitoyl-2-oleoyl phosphatidylethanolamine, dipalmitoylphosphatidylcholine, phosphatidylinositol 4,5-biphosphate (PIP(2)), and cholesterol. Recombinant ARF6 binding significantly enhances defects in both the headgroup and acyl-chain regions of the membrane, which are revealed by the emergence of sharp components in the spectra from a headgroup label, 1,2-dipalmitoylphosphatidyl-2,2,6,6-tetramethyl-1-piperidinyloxy-choline (DPPTC), and a chain label, 10PC, after myr-ARF6 binding. Binding of non-myristoylated ARF6 (non-ARF6) shows markedly reduced effects. Interestingly, no change in spectra from DPPTC was observed upon myr-ARF6 binding when PIP(2) in the vesicles was replaced by other negatively charged lipids, including phosphatidylinositol, phosphatidylserine, and phosphatidylglycerol, even when normalized for charge. The production of the sharp peak appears to be a specific event, because another GTP binding protein, CDC42, which binds PIP(2) and activates PLD, fails to induce changes in vesicle structure. These results suggest a previously unappreciated role for ARF in mediating a protein/lipid interaction that produces defects in lipid bilayers. This function may serve as an initial event in destabilizing membrane structure for subsequent membrane fusion or biogenesis of vesicles.
Collapse
Affiliation(s)
- M Ge
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, USA
| | | | | | | |
Collapse
|