151
|
Sun Z, Yao J, Wang J, Huang R, Liu X, Li F, Jiang X, Chen W. Room-Temperature Harvesting Oxidase-Mimicking Enzymes with Exogenous ROS Generation in One Step. Inorg Chem 2022; 61:1169-1177. [PMID: 34974705 DOI: 10.1021/acs.inorgchem.1c03514] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Despite the advantages of low cost, high stability, and activities, a majority of nanozymes rely on strict synthesis conditions and precise size/structure control, hindering the stable, bulk, and high-yield production that is necessary for general use. To facilitate the transition of nanozymes from benchtop to real-world applications, we herein present a one-step approach, which only needs mixing of two broad commercialized reagents at room temperature, to harvest gold nanoparticles-bovine serum albumin (BSA) nanocomposite (BSA-Au) with distinct oxidase-like activity and good stability in a broad range of harsh conditions. Density functional theory (DFT) calculations demonstrate the oxidase-like activity of BSA-Au stemming from thermodynamically and kinetically favored facets for O2 activation. The reactive oxygen species (ROS) generation of BSA-Au contributes to the catalytic activities and further enables water sterilization and antibacterial applications against superbugs. This one-step strategy promises great potential in bulk production of nanozyme for broad application beyond laboratory use.
Collapse
Affiliation(s)
- Zhencheng Sun
- School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518055, China
| | - Jiajian Yao
- School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518055, China
| | - Jidong Wang
- Central Laboratory, Huazhong University of Science and Technology Union Shenzhen Hospital, the 6th Affiliated Hospital, Shenzhen University Health Science Center, Shenzhen 518052, China
| | - Ruijia Huang
- School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518055, China
| | - Xiaolei Liu
- School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518055, China
| | - Feng Li
- School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518055, China
| | - Xingyu Jiang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Wenwen Chen
- School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518055, China
| |
Collapse
|
152
|
Liao X, Xu Q, Sun H, Liu W, Chen Y, Xia XH, Wang C. Plasmonic Nanozymes: Localized Surface Plasmonic Resonance Regulates Reaction Kinetics and Antibacterial Performance. J Phys Chem Lett 2022; 13:312-323. [PMID: 34978821 DOI: 10.1021/acs.jpclett.1c03804] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Among the members of the rapidly growing nanozyme family, plasmonic nanozymes stand out because of their unique localized surface plasmon resonance (LSPR) characteristics and tunable catalytic activity. We prepared a plasmonic nanozyme of Au gold nanoparticles (AuNPs) and Cu metal-organic framework nanosheets (Cu-MOFNs). The Cu-MOFNs have peroxidase-like activity, while AuNPs present unique LSPR characteristics. We found that the as-prepared AuNPs/Cu-MOFNs composite presents 1.6-fold faster reaction kinetics under LSPR excitation compared to that in the dark. Investigations of energy levels, radical capture, and dark-field scattering spectroscopy revealed that LSPR of AuNPs as well as matched energy levels can facilitate efficient hot electron transfer, which could readily cleave the chemical bond of the substrate and accelerate the reaction kinetics. On the basis of these results, we achieved enhanced antibacterial therapy and wound healing using plasmonic AuNPs/Cu-MOFNs. This study spotlights the superiority of plasmonic nanozymes in improving the enzyme-like performance of nanozymes.
Collapse
Affiliation(s)
- Xuewei Liao
- College of Chemistry and Materials Science and Analytical & Testing Center, Nanjing Normal University, Nanjing 210023, China
- Key Laboratory of Drug Quality Control and Pharmacovigilance of Ministry of Education, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Qiuyang Xu
- Key Laboratory of Drug Quality Control and Pharmacovigilance of Ministry of Education, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Hanjun Sun
- College of Chemistry and Materials Science and Analytical & Testing Center, Nanjing Normal University, Nanjing 210023, China
| | - Wenyuan Liu
- Key Laboratory of Drug Quality Control and Pharmacovigilance of Ministry of Education, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yuming Chen
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Xing-Hua Xia
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Chen Wang
- College of Chemistry and Materials Science and Analytical & Testing Center, Nanjing Normal University, Nanjing 210023, China
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
153
|
Fan X, Wu X, Yang F, Wang L, Ludwig K, Ma L, Trampuz A, Cheng C, Haag R. A Nanohook‐Equipped Bionanocatalyst for Localized Near‐Infrared‐Enhanced Catalytic Bacterial Disinfection. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202113833] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Xin Fan
- Institute for Chemistry and Biochemistry Freie Universität Berlin Takustraße 3 14195 Berlin Germany
- BIH Center for Regenerative Therapies (BCRT) Charité-Universitätsmedizin Berlin Corporate Member of Freie-Universität Berlin Humboldt-Universität zu Berlin and Berlin Institute of Health (BIH) Berlin Germany
| | - Xizheng Wu
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610064 China
| | - Fan Yang
- Department of Physics Freie Universität Berlin Arnimallee 14 14195 Berlin Germany
| | - Lei Wang
- BIH Center for Regenerative Therapies (BCRT) Charité-Universitätsmedizin Berlin Corporate Member of Freie-Universität Berlin Humboldt-Universität zu Berlin and Berlin Institute of Health (BIH) Berlin Germany
- Center for Musculoskeletal Surgery Charité—Universitätsmedizin Berlin Corporate Member of Freie Universität Berlin Humboldt-Universität zu Berlin and Berlin Institute of Health Berlin Germany
| | - Kai Ludwig
- Research Center for Electron Microscopy and Core Facility BioSupraMol Institute for Chemistry and Biochemistry Freie Universität Berlin Fabeckstrasse 36a 14195 Berlin Germany
| | - Lang Ma
- Department of Ultrasound West China Hospital Sichuan University Chengdu 610065 China
| | - Andrej Trampuz
- BIH Center for Regenerative Therapies (BCRT) Charité-Universitätsmedizin Berlin Corporate Member of Freie-Universität Berlin Humboldt-Universität zu Berlin and Berlin Institute of Health (BIH) Berlin Germany
- Center for Musculoskeletal Surgery Charité—Universitätsmedizin Berlin Corporate Member of Freie Universität Berlin Humboldt-Universität zu Berlin and Berlin Institute of Health Berlin Germany
| | - Chong Cheng
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610064 China
| | - Rainer Haag
- Institute for Chemistry and Biochemistry Freie Universität Berlin Takustraße 3 14195 Berlin Germany
| |
Collapse
|
154
|
Liao Z, Xia Y, Zuo J, Wang T, Hu D, Li M, Shao N, Chen D, Song K, Yu X, Zhang X, Gao W. Metal-Organic Framework Modified MoS 2 Nanozyme for Synergetic Combating Drug-Resistant Bacterial Infections via Photothermal Effect and Photodynamic Modulated Peroxidase-Mimic Activity. Adv Healthc Mater 2022; 11:e2101698. [PMID: 34549554 DOI: 10.1002/adhm.202101698] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/11/2021] [Indexed: 12/13/2022]
Abstract
Bacterial infections have become major threats to public health all over the world. With the emergence of antibiotic resistance, it is urgent to develop novel antimicrobial materials to efficiently overcome drug resistance with high bactericidal activity. In this work, UiO-66-NH-CO-MoS2 nanocomposites (UNMS NCs) are constructed through the amidation reaction. The UNMS NCs are positively charged which is beneficial for capturing and restricting bacteria. Significantly, UNMS NCs possess a synergistic bactericidal efficiency based on near-infrared irradiation (808 nm) regulated combination of photothermal, photodynamic, and peroxidase-like enzymatic activities. Both the photodynamic property and nanozymatic activity of UNMS NCs can lead to the generation of reactive oxygen species. The UNMS NCs show high catalytic activity in a wide pH range and exhibit excellent antibacterial ability against ampicillin-resistant Escherichia coli and methicillin-resistant Staphylococcus aureus with negligible cytotoxicity. Interestingly, due to the 808 nm irradiation-induced hyperthermia in the presence of UNMS NCs, the glutathione oxidation process can be accelerated, resulting in bacterial death more easily. Mice wound models are established to further manifest that UNMS NCs can promote wound healing with good biosafety in living systems.
Collapse
Affiliation(s)
- Zi‐Yang Liao
- Key Laboratory of Multiphase Flow Reaction and Separation Engineering of Shandong Province College of Chemical Engineering Qingdao University of Science and Technology Qingdao 266042 China
| | - Ya‐Mu Xia
- Key Laboratory of Multiphase Flow Reaction and Separation Engineering of Shandong Province College of Chemical Engineering Qingdao University of Science and Technology Qingdao 266042 China
| | - Jia‐Min Zuo
- Key Laboratory of Multiphase Flow Reaction and Separation Engineering of Shandong Province College of Chemical Engineering Qingdao University of Science and Technology Qingdao 266042 China
| | - Tao Wang
- Key Laboratory of Multiphase Flow Reaction and Separation Engineering of Shandong Province College of Chemical Engineering Qingdao University of Science and Technology Qingdao 266042 China
| | - Da‐Tong Hu
- College of Pharmacy Shan Dong University of Traditional Chinese Medicine Jinan 250355 China
| | - Ming‐Zhe Li
- Key Laboratory of Multiphase Flow Reaction and Separation Engineering of Shandong Province College of Chemical Engineering Qingdao University of Science and Technology Qingdao 266042 China
| | - Ning‐Ning Shao
- Key Laboratory of Multiphase Flow Reaction and Separation Engineering of Shandong Province College of Chemical Engineering Qingdao University of Science and Technology Qingdao 266042 China
| | - Dong Chen
- Key Laboratory of Multiphase Flow Reaction and Separation Engineering of Shandong Province College of Chemical Engineering Qingdao University of Science and Technology Qingdao 266042 China
| | - Kai‐Xin Song
- Key Laboratory of Multiphase Flow Reaction and Separation Engineering of Shandong Province College of Chemical Engineering Qingdao University of Science and Technology Qingdao 266042 China
| | - Xuan Yu
- Key Laboratory of Multiphase Flow Reaction and Separation Engineering of Shandong Province College of Chemical Engineering Qingdao University of Science and Technology Qingdao 266042 China
| | - Xin‐Yue Zhang
- Key Laboratory of Multiphase Flow Reaction and Separation Engineering of Shandong Province College of Chemical Engineering Qingdao University of Science and Technology Qingdao 266042 China
| | - Wei‐Wei Gao
- Key Laboratory of Multiphase Flow Reaction and Separation Engineering of Shandong Province College of Chemical Engineering Qingdao University of Science and Technology Qingdao 266042 China
- Chongqing Key Laboratory of Soft‐Matter Material Chemistry and Function Manufacturing Southwest University Chongqing 400715 China
| |
Collapse
|
155
|
Mo F, Zhang M, Duan X, Lin C, Sun D, You T. Recent Advances in Nanozymes for Bacteria-Infected Wound Therapy. Int J Nanomedicine 2022; 17:5947-5990. [PMID: 36510620 PMCID: PMC9739148 DOI: 10.2147/ijn.s382796] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 11/05/2022] [Indexed: 12/12/2022] Open
Abstract
Bacterial-infected wounds are a serious threat to public health. Bacterial invasion can easily delay the wound healing process and even cause more serious damage. Therefore, effective new methods or drugs are needed to treat wounds. Nanozyme is an artificial enzyme that mimics the activity of a natural enzyme, and a substitute for natural enzymes by mimicking the coordination environment of the catalytic site. Due to the numerous excellent properties of nanozymes, the generation of drug-resistant bacteria can be avoided while treating bacterial infection wounds by catalyzing the sterilization mechanism of generating reactive oxygen species (ROS). Notably, there are still some defects in the nanozyme antibacterial agents, and the design direction is to realize the multifunctionalization and intelligence of a single system. In this review, we first discuss the pathophysiology of bacteria infected wound healing, the formation of bacterial infection wounds, and the strategies for treating bacterially infected wounds. In addition, the antibacterial advantages and mechanism of nanozymes for bacteria-infected wounds are also described. Importantly, a series of nanomaterials based on nanozyme synthesis for the treatment of infected wounds are emphasized. Finally, the challenges and prospects of nanozymes for treating bacterial infection wounds are proposed for future research in this field.
Collapse
Affiliation(s)
- Fayin Mo
- School of Nursing, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
- Center for Drug Research and Development, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
| | - Minjun Zhang
- School of Nursing, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
| | - Xuewei Duan
- School of Nursing, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
| | - Chuyan Lin
- School of Nursing, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
| | - Duanping Sun
- Center for Drug Research and Development, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
- Correspondence: Duanping Sun; Tianhui You, Email ;
| | - Tianhui You
- School of Nursing, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
| |
Collapse
|
156
|
Yang K, Hai L, Wang Z, Li H, Yi W, Luo Y, Li J, Deng L, He D. A biofilm microenvironment-responsive one-for-all bactericidal nanoplatform for photothermal-augmented multimodal synergistic therapy of pathogenic bacterial biofilm infection. J Mater Chem B 2022; 10:7744-7759. [DOI: 10.1039/d2tb01200f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We rationally construct a biofilm microenvironment-responsive bactericidal nanoplatform (ZnPMp) consisting of ZnO core, a Fe3+-doped polydopamine coating and methylene blue (MB) payload for combined CT/CDT/PTT/PDT multi-mode antibacterial therapy.
Collapse
Affiliation(s)
- Ke Yang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, China
| | - Luo Hai
- Central Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academic of Medical Sciences & Peking Union Medical College, Shenzhen 518116, China
| | - Zefeng Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, China
| | - Huan Li
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, China
| | - Wenhua Yi
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, China
| | - Yuze Luo
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, China
| | - Junqin Li
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, China
| | - Le Deng
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, China
| | - Dinggeng He
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, China
| |
Collapse
|
157
|
Zhu T, Hu X, Ye Z, Li J, Jiang M, Guo Z, Wang J, Chen X. A self-activated cascade nanoreactor based on Pd-Ru/GOx for bacterial infection treatment. J Mater Chem B 2022; 10:7827-7835. [DOI: 10.1039/d2tb01416e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Enzyme cascade reaction that integrated nature enzyme and nanozyme has attracted intensive attention in biomedical studies. Nevertheless, it is still an important challenge to design simple, high-performance and safe cascade...
Collapse
|
158
|
Sun Q, Wang Z, Liu B, He F, Gai S, Yang P, Yang D, Li C, Lin J. Recent advances on endogenous/exogenous stimuli-triggered nanoplatforms for enhanced chemodynamic therapy. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214267] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
159
|
Li Y, Wang D, Wen J, Yu P, Liu J, Li J, Chu H. Chemically Grafted Nanozyme Composite Cryogels to Enhance Antibacterial and Biocompatible Performance for Bioliquid Regulation and Adaptive Bacteria Trapping. ACS NANO 2021; 15:19672-19683. [PMID: 34878257 DOI: 10.1021/acsnano.1c06983] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Excessive biofluid and infection around wounds hinder wound healing. However, conventionally antibacterial wound dressings cannot simultaneously achieve effective biofluid control and intelligent infection treatment, tending to overhydrate wounds and develop drug-resistant bacteria due to the limitations of antibacterial components and material structures. The design of a nanozyme composite cryogel with interconnected macroporous structures, excellent designability, and lower chance of drug-resistance is greatly needed. Herein, Fe-MIL-88NH2 nanozyme is grafted to glycidyl methacrylate functionalized dialdehyde chitosan via Schiff base reaction, and acryloyl Pluronic 127 (PF127-DA) is used as a cross-linking agent to fabricate nanozyme composite cryogels (CSG-MX) as a wound dressing to enhance antibacterial and biocompatible performance for biofluid management and wound infection therapy. CSG-MX has great hydrophilicity, acid-enhanced positive charge, pH-responsive release, rebinding of nanozymes, and excellent peroxidase and oxidase mimicry activity (generation of •OH and O2•- radicals). Notably, due to the negative potential of bacteria, the impact of infection on pH value, and the enzyme-like activity as well as the reversible release of nanozymes influenced by pH, CSG-MX can achieve intelligently adaptive trapping and killing of bacteria. CSG-MX has enormous potential to be a next-generation wound dressing for biofluid management and bacterial infection treatment in the clinic.
Collapse
Affiliation(s)
- Yanyan Li
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Dingqian Wang
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Jie Wen
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Peng Yu
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Jinming Liu
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Jianshu Li
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Hetao Chu
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
160
|
Magnetically retained and glucose-fueled hydroxyl radical nanogenerators for H 2O 2-self-supplying chemodynamic therapy of wound infections. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 131:112522. [PMID: 34857301 DOI: 10.1016/j.msec.2021.112522] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/20/2021] [Accepted: 10/23/2021] [Indexed: 01/20/2023]
Abstract
Chemodynamic therapy (CDT) involving the highly toxic hydroxyl radical (OH) has exhibited tremendous potentiality in combating bacterial infection. However, its antibacterial efficacy is still unsatisfactory due to the insufficient H2O2 levels and near neutral pH at infection site. Herein, a glucose-fueled and H2O2-self-supplying OH nanogenerator (pFe3O4@GOx) based on cascade catalytic reactions is developed by immobilizing glucose oxidase (GOx) on the surface of PAA-coated Fe3O4 (pFe3O4). Magnetic pFe3O4 can act as a horseradish peroxidase-like nanozyme, catalyzing the decomposition of H2O2 into OH under acidic conditions for CDT. The immobilized GOx can continuously convert non-toxic glucose into gluconic acid and H2O2, and the former improves the catalytic activity of pFe3O4 nanozymes by decreasing pH value. The self-supplying H2O2 molecules effectively enhance the OH generation, resulting in the high antibacterial efficacy. In vitro studies demonstrate that the pFe3O4@GOx conducts well in reducing pH value and improving H2O2 level for self-enhanced CDT. Moreover, the cascade catalytic reaction of pFe3O4 and GOx effectively avoids strong toxicity caused by directly adding high concentrations of H2O2 for CDT. It is worth mentioning that the pFe3O4@GOx performs highly efficient in vivo CDT of bacteria-infected wound via the localized long-term magnetic retention at infection site and causes minimal toxicity to normal tissues at therapeutic doses. Therefore, the developed glucose-fueled OH nanogenerators are a potential nano-antibacterial agent for the treatment of wound infections.
Collapse
|
161
|
Yuan K, Liu X, Shi J, Liu W, Liu K, Lu H, Wu D, Chen Z, Lu C. Antibacterial Properties and Mechanism of Lysozyme-Modified ZnO Nanoparticles. Front Chem 2021; 9:762255. [PMID: 34900934 PMCID: PMC8660975 DOI: 10.3389/fchem.2021.762255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 10/25/2021] [Indexed: 11/25/2022] Open
Abstract
The lysozyme-modified nanoparticles (LY@ZnO NPs) were synthesized by the reduction-oxidation method, and the morphology and structure of LY@ZnO were analyzed by Fourier transform infrared (FTIR) spectroscopy, powder X-ray diffraction (XRD), scanning electron microsclope (SEM), and particle size analysis. The antibacterial effects of LY@ZnO against Escherichia coli (E. coli, Gram-negative bacteria) and Staphylococcus aureus (S. aureus, Gram-positive bacteria) were discussed by measuring the zone of inhibition (ZOI) and growth inhibition. The antimicrobial experiments showed that the LY@ZnO NPs possessed better antibacterial activity than ZnO. Besides, the antibacterial mechanism of LY@ZnO was also investigated, which was attributed to the generation of reactive oxygen species (ROS). Furthermore, the toxicities of LY@ZnO in vivo and in vitro were discussed by the cell counting kit-8 method and animal experiments, showing that LY@ZnO possessed excellent biocompatibility. Finally, the therapeutic effect of LY@ZnO on a rat skin infection model caused by methicillin-resistant Staphylococcus aureus (MRSA) was also studied, which exhibited good anti-infective activity. Our findings showed that LY@ZnO possessed remarkable antibacterial ability due to its excellent membrane permeability and small particle size. Besides, LY@ZnO also exhibited certain stability and great safety, which showed tremendous prospects for microbial infection in patients. It would also be helpful for a better understanding of the enzyme-modified nanomaterials against bacteria.
Collapse
Affiliation(s)
- Kangrui Yuan
- School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Xiaoliu Liu
- Medical Laboratory of Shenzhen Luohu People’s Hospital, Shenzhen, China
| | - Jianxin Shi
- School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Wei Liu
- School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Kun Liu
- School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Hongmei Lu
- The First Dongguan Affiliated Hospital of Guangdong Medical University, Dongguan, China
| | - Dudu Wu
- School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Zhi Chen
- School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Chengyu Lu
- School of Pharmacy, Guangdong Medical University, Dongguan, China
| |
Collapse
|
162
|
Fan X, Wu X, Yang F, Wang L, Ludwig K, Ma L, Trampuz A, Cheng C, Haag R. A Nanohook-Equipped Bionanocatalyst for Localized Near-Infrared-Enhanced Catalytic Bacterial Disinfection. Angew Chem Int Ed Engl 2021; 61:e202113833. [PMID: 34825759 PMCID: PMC9303663 DOI: 10.1002/anie.202113833] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Indexed: 11/27/2022]
Abstract
Novel bionanocatalysts have opened a new era in fighting multidrug‐resistant (MDR) bacteria. They can kill bacteria by elevating the level of reactive oxygen species (ROS) in the presence of chemicals like H2O2. However, ROSs’ ultrashort diffusion distance limit their bactericidal activity. We present a nanohook‐equipped bionanocatalyst (Ni@Co‐NC) with bacterial binding ability that shows robust ROS‐generating capacity under physiological H2O2 levels. The Ni@Co‐NC's pH‐dependent performance confines its effects to the biofilm microenvironment, leaving healthy tissue unaffected. Furthermore, it can generate heat upon NIR laser irradiation, enhancing its catalytic performance while achieving heat ablation against bacteria. With the Ni@Co‐NC's synergistic effects, bacterial populations fall by >99.99 %. More surprisingly, the mature biofilm shows no recurrence after treatment with the Ni@Co‐NC, demonstrating its tremendous potential for treating MDR bacterial related infections.
Collapse
Affiliation(s)
- Xin Fan
- Freie Universität Berlin Fachbereich Biologie Chemie Pharmazie: Freie Universitat Berlin Fachbereich Biologie Chemie Pharmazie, Biology, Chemistry, Pharmacy, GERMANY
| | - Xizheng Wu
- Sichuan University, College of Polymer Science and Engineering, CHINA
| | - Fan Yang
- Freie Universitat Berlin, Physics, GERMANY
| | - Lei Wang
- Charite Universitatsmedizin Berlin Campus Charite Mitte: Charite Universitatsmedizin Berlin, Center for Musculoskeletal Surgery, GERMANY
| | - Kai Ludwig
- Freie Universität Berlin Fachbereich Biologie Chemie Pharmazie: Freie Universitat Berlin Fachbereich Biologie Chemie Pharmazie, Biology, Chemistry, Pharmacy, GERMANY
| | - Lang Ma
- Sichuan University, Department of Ultrasound, CHINA
| | - Andrej Trampuz
- Charite Universitatsmedizin Berlin, Center for Musculoskeletal Surgery, GERMANY
| | - Chong Cheng
- Sichuan University, College of Polymer Science and Engineering, CHINA
| | - Rainer Haag
- Freie Universität Berlin Fachbereich Biologie Chemie Pharmazie: Freie Universitat Berlin Fachbereich Biologie Chemie Pharmazie, Takustr. 3, Institute of Chemistry and Biochemistry, 14195, Berlin, GERMANY
| |
Collapse
|
163
|
Ming J, Zhu T, Li J, Ye Z, Shi C, Guo Z, Wang J, Chen X, Zheng N. A Novel Cascade Nanoreactor Integrating Two-Dimensional Pd-Ru Nanozyme, Uricase and Red Blood Cell Membrane for Highly Efficient Hyperuricemia Treatment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2103645. [PMID: 34668309 DOI: 10.1002/smll.202103645] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/21/2021] [Indexed: 06/13/2023]
Abstract
Nanozyme-based cascade reaction has emerged as an effective strategy for disease treatment because of its high efficiency and low side effects. Herein, a new and highly active two-dimensional Pd-Ru nanozyme is prepared and then integrated with uricase and red blood cell (RBC) membrane to fabricate a tandem nanoreactor, Pd-Ru/Uricase@RBC, for hyperuricemia treatment. The designed Pd-Ru/Uricase@RBC nanoreactor displayed not only good stability against extreme pH, temperature and proteolytic degradation, but also long circulation half-life and excellent safety. The nanoreactor can effectively degrade UA by uricase to allantoin and H2 O2 and remove H2 O2 by using Pd-Ru nanosheets (NSs) with the catalase (CAT)-like activity. More importantly, the finally produced O2 from H2 O2 decomposition can in turn facilitate the catalytic oxidation of UA, as the degradation of UA is an O2 consumption process. By integrating the high-efficiency enzymatic activity, long circulation capability, and good biocompatibility, the designed Pd-Ru/Uricase@RBC can effectively and safely treat hyperuricemia without side effects. The study affords a new alternative for the exploration of clinical treatment of hyperuricemia.
Collapse
Affiliation(s)
- Jiang Ming
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and Engineering Research Center for Nano-Preparation Technology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Tianbao Zhu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and Engineering Research Center for Nano-Preparation Technology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Jingchao Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361005, China
| | - Zichen Ye
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and Engineering Research Center for Nano-Preparation Technology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Changrong Shi
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361005, China
| | - Zhide Guo
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361005, China
| | - Jingjuan Wang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and Engineering Research Center for Nano-Preparation Technology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Xiaolan Chen
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and Engineering Research Center for Nano-Preparation Technology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Nanfeng Zheng
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and Engineering Research Center for Nano-Preparation Technology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
164
|
Li X, Wu X, Yuan T, Zhu J, Yang Y. Influence of the iodine content of nitrogen- and iodine-doped carbon dots as a peroxidase mimetic nanozyme exhibiting antifungal activity against C. albicans. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108139] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
165
|
Ullah S, Khan SS, Ren Y, Zhang X, Qin M, Xiong X, Krastev R, Jan AU, Liu L, Yuan Q. Near‐infrared laser 808‐nm excitable palladium nano‐dots loaded on graphene oxide hybrid for the antibacterial activity. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6380] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Sadeeq Ullah
- College of Life Science and Technology Beijing University of Chemical Technology Beijing China
| | - Shahin S. Khan
- College of Life Science and Technology Beijing University of Chemical Technology Beijing China
| | - Yanru Ren
- College of Life Science and Technology Beijing University of Chemical Technology Beijing China
| | - Xu Zhang
- College of Life Science and Technology Beijing University of Chemical Technology Beijing China
| | - Meng Qin
- College of Life Science and Technology Beijing University of Chemical Technology Beijing China
| | - Xin Xiong
- NMI Natural and Medical Sciences Institute University of Tübingen Reutlingen Germany
| | - Rumen Krastev
- Faculty of Applied Chemistry Reutlingen University Reutlingen Germany
| | - Amin U. Jan
- Department of Biotechnology Shaheed Benazir Bhutto University Sheringal Upper Dir, KPK 18300 Pakistan
| | - Luo Liu
- College of Life Science and Technology Beijing University of Chemical Technology Beijing China
| | - Qipeng Yuan
- College of Life Science and Technology Beijing University of Chemical Technology Beijing China
| |
Collapse
|
166
|
Mevo SIU, Ashrafudoulla M, Furkanur Rahaman Mizan M, Park SH, Ha SD. Promising strategies to control persistent enemies: Some new technologies to combat biofilm in the food industry-A review. Compr Rev Food Sci Food Saf 2021; 20:5938-5964. [PMID: 34626152 DOI: 10.1111/1541-4337.12852] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 09/01/2021] [Accepted: 09/04/2021] [Indexed: 01/22/2023]
Abstract
Biofilm is an advanced form of protection that allows bacterial cells to withstand adverse environmental conditions. The complex structure of biofilm results from genetic-related mechanisms besides other factors such as bacterial morphology or substratum properties. Inhibition of biofilm formation of harmful bacteria (spoilage and pathogenic bacteria) is a critical task in the food industry because of the enhanced resistance of biofilm bacteria to stress, such as cleaning and disinfection methods traditionally used in food processing plants, and the increased food safety risks threatening consumer health caused by recurrent contamination and rapid deterioration of food by biofilm cells. Therefore, it is urgent to find methods and strategies for effectively combating bacterial biofilm formation and eradicating mature biofilms. Innovative and promising approaches to control bacteria and their biofilms are emerging. These new approaches range from methods based on natural ingredients to the use of nanoparticles. This literature review aims to describe the efficacy of these strategies and provide an overview of recent promising biofilm control technologies in the food processing sector.
Collapse
Affiliation(s)
| | - Md Ashrafudoulla
- Food Science and Technology Department, Chung-Ang University, Anseong, Republic of Korea
| | | | - Si Hong Park
- Department of Food Science and Technology, Oregon State University, Corvallis, Oregon, USA
| | - Sang-Do Ha
- Food Science and Technology Department, Chung-Ang University, Anseong, Republic of Korea
| |
Collapse
|
167
|
Liu C, Feng S, Ma L, Sun M, Wei Z, Wang J, Chen Z, Guo Y, Shi J, Wu Q. An Amphiphilic Carbonaceous/Nanosilver Composite-Incorporated Urinary Catheter for Long-Term Combating Bacteria and Biofilms. ACS APPLIED MATERIALS & INTERFACES 2021; 13:38029-38039. [PMID: 34357763 DOI: 10.1021/acsami.1c07399] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Biofilms formed on urinary catheters remain a major headache in the modern healthcare system. Among the various kinds of biocide-releasing urinary catheters that have been developed to prevent biofilm formation, Ag nanoparticles (AgNPs)-coated catheters are of great promising potential. However, the deposition of AgNPs on the surface of catheters suffers from several inherent shortcomings, such as damage to the urethral mucosa, uncontrollable Ag ion kinetics, and unexpected systematic toxicity. Here, AgNPs-decorated amphiphilic carbonaceous particles (ACPs@AgNPs) with commendable dispersity in solvents of different polarities and broad-spectrum antibacterial activity are first prepared. The resulting ACPs@AgNPs exert good compatibility with silicone rubber, which enables the easy fabrication of urinary catheters using a laboratory-made mold. Therefore, ACPs@AgNPs not only endow the urinary catheter with forceful biocidal activity but also improve its mechanical properties and surface wettability. Hence, the designed urinary catheter possesses excellent capacity to resist bacterial adhesion and biofilm formation both in vitro and in an in vivo rabbit model. Specifically, a long-term antibacterial study highlights its sustainable antibacterial activity. Of note, no obvious toxicity or inflammation in rabbits was triggered by the designed urinary catheter in vivo. Overall, the hybrid urinary catheter may serve as a promising biocide-releasing urinary catheter for antibacterial and antibiofilm applications.
Collapse
Affiliation(s)
- Chaoqun Liu
- College of Pharmacy, Institutes of Environment and Medicine, Henan University, Kaifeng 475004, China
| | - Shan Feng
- College of Pharmacy, Institutes of Environment and Medicine, Henan University, Kaifeng 475004, China
| | - Longyu Ma
- College of Pharmacy, Institutes of Environment and Medicine, Henan University, Kaifeng 475004, China
| | - Mengyao Sun
- College of Pharmacy, Institutes of Environment and Medicine, Henan University, Kaifeng 475004, China
| | - Zhihong Wei
- College of Pharmacy, Institutes of Environment and Medicine, Henan University, Kaifeng 475004, China
| | - Jiaqi Wang
- College of Pharmacy, Institutes of Environment and Medicine, Henan University, Kaifeng 475004, China
| | - Zhaowei Chen
- Institute of Food Safety and Environment Monitoring, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Yuheng Guo
- Institute of Food Safety and Environment Monitoring, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Jiahua Shi
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University, Kaifeng 475004, China
| | - Qiang Wu
- College of Pharmacy, Institutes of Environment and Medicine, Henan University, Kaifeng 475004, China
| |
Collapse
|
168
|
Bondia P, Flors C, Torra J. Boosting the inactivation of bacterial biofilms by photodynamic targeting of matrix structures with Thioflavin T. Chem Commun (Camb) 2021; 57:8648-8651. [PMID: 34369943 DOI: 10.1039/d1cc03155d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report that Thioflavin T (ThT), the reference fluorogenic probe for amyloid detection, displays photodynamic activity against bacterial biofilms. ThT recognizes key structures of the biofilm matrix, disrupting the complex architecture and efficiently inactivating bacterial cells. We also show that ThT phototherapy synergistically boosts the activity of conventional antimicrobials.
Collapse
Affiliation(s)
- Patricia Bondia
- Madrid Institute for Advanced Studies in Nanoscience (IMDEA Nanociencia), Madrid, Spain.
| | | | | |
Collapse
|
169
|
Li Y, Wang L, Liu H, Pan Y, Li C, Xie Z, Jing X. Ionic Covalent-Organic Framework Nanozyme as Effective Cascade Catalyst against Bacterial Wound Infection. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2100756. [PMID: 34212509 DOI: 10.1002/smll.202100756] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/19/2021] [Indexed: 06/13/2023]
Abstract
The increasing resistance risks of conventional antibiotic abuse and the formed biofilm on the surface of wounds have been demonstrated to be the main problems for bacteria-caused infections and unsuccessful wound healing. Treatment by reactive oxygen species, such as the commercial H2 O2 , is a feasible way to solve those problems, but limits in its lower efficiency. Herein, an ionic covalent-organic framework-based nanozyme (GFeF) with self-promoting antibacterial effect and good biocompatibility has been developed as glucose-triggered cascade catalyst against bacterial wound infection. Besides the efficient conversion of glucose to hydrogen peroxide, the produced gluconic acid by loading glucose oxidase can supply a compatible catalytic environment to substantially improve the peroxidase activity for generating more toxic hydroxyl radicals. Meanwhile, the adhesion between the positively charged GFeF and the bacterial membrane can greatly enhance the healing effects. This glucose-triggered cascade strategy can reduce the harmful side effects by indirectly producing H2 O2 , potentially used in the wound healing of diabetic patients.
Collapse
Affiliation(s)
- Yite Li
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- University of Science and Technology of China, Hefei, 230026, China
| | - Lei Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| | - Hao Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- University of Science and Technology of China, Hefei, 230026, China
| | - Yong Pan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- University of Science and Technology of China, Hefei, 230026, China
| | - Chaonan Li
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- University of Science and Technology of China, Hefei, 230026, China
| | - Zhigang Xie
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- University of Science and Technology of China, Hefei, 230026, China
| | - Xiabin Jing
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| |
Collapse
|
170
|
Fan X, Yang F, Nie C, Ma L, Cheng C, Haag R. Biocatalytic Nanomaterials: A New Pathway for Bacterial Disinfection. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2100637. [PMID: 34216401 PMCID: PMC11468881 DOI: 10.1002/adma.202100637] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/09/2021] [Indexed: 02/05/2023]
Abstract
Clinical treatment of pathogenic infection has emerged as a growing challenge in global public health. Such treatment is currently limited to antibiotics, but abuse of antibiotics have induced multidrug resistance and high fatality rates in anti-infection therapies. Thus, it is vital to develop alternative bactericidal agents to open novel disinfection pathways. Drawing inspiration from elements of the human immune system that show great potential for controlling pathogens or regulating cell apoptosis, the design of biocatalytic nanomaterials (BCNs) have provided unrivaled opportunities for future antibacterial therapies. More significantly, BCNs exhibit various superior properties to immune cells and natural enzymes, such as higher biocatalytic performance, extraordinary stability against harsh conditions, and scalable production. In this review, the most recent efforts toward developing BCN-based biomedical applications in combating bacterial infections are focused upon. BCNs' antibacterial mechanisms, the classification of BCNs, antibacterial activities that can be triggered or augmented by energy conversion, and the eradication of biofilms with BCNs are systematically introduced and discussed. The current challenges and prospects of BCNs for biocatalytic disinfection are also summarized. It is anticipated this review will provide new therapeutic insights into combating bacteria and biofilms and offer significant new inspiration for designing future biocatalytic nanomaterials.
Collapse
Affiliation(s)
- Xin Fan
- Department of Chemistry and BiochemistryFreie Universität BerlinTakustraße 314195BerlinGermany
| | - Fan Yang
- College of Polymer Science and EngineeringDepartment of Ultrasound, West China HospitalSichuan UniversityYihuan Road No. 24Chengdu610065China
- Department of PhysicsFreie Universität BerlinArnimallee 1414195BerlinGermany
| | - Chuanxiong Nie
- Department of Chemistry and BiochemistryFreie Universität BerlinTakustraße 314195BerlinGermany
| | - Lang Ma
- College of Polymer Science and EngineeringDepartment of Ultrasound, West China HospitalSichuan UniversityYihuan Road No. 24Chengdu610065China
| | - Chong Cheng
- College of Polymer Science and EngineeringDepartment of Ultrasound, West China HospitalSichuan UniversityYihuan Road No. 24Chengdu610065China
- State Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610064China
| | - Rainer Haag
- Department of Chemistry and BiochemistryFreie Universität BerlinTakustraße 314195BerlinGermany
| |
Collapse
|
171
|
Ouyang Y, Biniuri Y, Fadeev M, Zhang P, Carmieli R, Vázquez-González M, Willner I. Aptamer-Modified Cu 2+-Functionalized C-Dots: Versatile Means to Improve Nanozyme Activities-"Aptananozymes". J Am Chem Soc 2021; 143:11510-11519. [PMID: 34286967 PMCID: PMC8856595 DOI: 10.1021/jacs.1c03939] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
![]()
The covalent linkage of aptamer binding
sites to nanoparticle nanozymes
is introduced as a versatile method to improve the catalytic activity
of nanozymes by concentrating the reaction substrates at the catalytic
nanozyme core, thereby emulating the binding and catalytic active-site
functions of native enzymes. The concept is exemplified with the synthesis
of Cu2+ ion-functionalized carbon dots (C-dots), modified
with the dopamine binding aptamer (DBA) or the tyrosinamide binding
aptamer (TBA), for the catalyzed oxidation of dopamine to aminochrome
by H2O2 or the oxygenation of l-tyrosinamide
to the catechol product, which is subsequently oxidized to amidodopachrome,
in the presence of H2O2/ascorbate mixture. Sets
of structurally functionalized DBA-modified Cu2+ ion-functionalized
C-dots or sets of structurally functionalized TBA-modified Cu2+ ion-functionalized C-dots are introduced as nanozymes of
superior catalytic activities (aptananozymes) toward the oxidation
of dopamine or the oxygenation of l-tyrosinamide, respectively.
The aptananozymes reveal enhanced catalytic activities as compared
to the separated catalyst and respective aptamer constituents. The
catalytic functions of the aptananozymes are controlled by the structure
of the aptamer units linked to the Cu2+ ion-functionalized
C-dots. In addition, the aptananozyme shows chiroselective catalytic
functions demonstrated by the chiroselective-catalyzed oxidation of l/d-DOPA to l/d-dopachrome. Binding
studies of the substrates to the different aptananozymes and mechanistic
studies associated with the catalytic transformations are discussed.
Collapse
Affiliation(s)
- Yu Ouyang
- The Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Yonatan Biniuri
- The Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Michael Fadeev
- The Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Pu Zhang
- The Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Raanan Carmieli
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | - Itamar Willner
- The Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
172
|
Wei Z, Zhang Y, Wang L, Wang Z, Chen S, Bao J, Xie Y, Su B, Zhao C. Photoenhanced Dual-Functional Nanomedicine for Promoting Wound Healing: Shifting Focus from Bacteria Eradication to Host Microenvironment Modulation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:32316-32331. [PMID: 34210131 DOI: 10.1021/acsami.1c08875] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Pathogenic bacterial infection has become a serious medical threat to global public health. Once the skin has serious defects, bacterial invasion and the following chain reactions will be a thorny clinical conundrum, which takes a long time to heal. Although various strategies have been used to eradicate bacteria, the treatment which can simultaneously disinfect and regulate the infection-related host responses is rarely reported. Herein, inspired by the host microenvironment, a photoenhanced dual-functional nanomedicine is constructed (Hemin@Phmg-TA-MSN) for localized bacterial ablation and host microenvironment modulation. The "NIR-triggered local microthermal therapy" and positively charged surface endow the nanomedicine with excellent bacterial capture and killing activities. Meanwhile, the nanomedicine exhibits broad-spectrum reactive oxygen species (ROS) scavenging activity via the synergistic effect of hemin and tannic acid with photoenhanced electron and hydrogen transfers. Furthermore, the in vivo experiments demonstrate that the dual-functional nanomedicine not only presents robust bacterial eradication capability, but also triggers the oxidative stress and inflammatory microenvironment regulation. The work not only shows a facile and effective way for infected wound management but also provides a new horizon for designing novel and efficient anti-infection therapy shifting focus from bacteria treatment to host microenvironment modulation.
Collapse
Affiliation(s)
- Zhiwei Wei
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Yu Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Liya Wang
- Department of Nephrology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhoujun Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Shengqiu Chen
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.,Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| | - Jianxu Bao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Yi Xie
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.,Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| | - Baihai Su
- Department of Nephrology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Changsheng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.,College of Biomedical Engineering, Sichuan University, Chengdu 610065, China.,College of Chemical Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
173
|
Xu H, Guo J, Yang L, Gao Z, Song YY. Construction of Peroxidase-like Metal-Organic Frameworks in TiO 2 Nanochannels: Robust Free-Standing Membranes for Diverse Target Sensing. Anal Chem 2021; 93:9486-9494. [PMID: 34170111 DOI: 10.1021/acs.analchem.1c01287] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The high cost and easy denaturation of natural enzymes under environmental conditions hinder their practical usefulness in sensing devices. In this study, peroxidase (POD)-like metal-organic frameworks (MOFs) were in situ grown in the nanochannels of an anodized TiO2 membrane (TiO2NM) as an electrochemical platform for multitarget sensing. By directly using a nanochannel wall as the precursor of metal nodes, Ti-MOFs were in situ derived on the nanochannel wall. Benefitting from the presence of bipyridine groups on the ligands, the MOFs in the nanochannels provide plenty of sites for Fe3+ anchoring, thus endowing the resulting membrane (named as Fe3+:MOFs/TiO2NM) with remarkable POD-like activity. Such Fe3+-induced POD-like activity is very sensitive to thiol-containing molecules owing to the strong coordination effect of thiols on Fe3+. Most importantly, the POD-like activity of nanochannels can be in situ characterized by the current-potential (I-V) properties via catalyzing the oxidation of 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonate) (ABTS) substrate to the corresponding positively charged product ABTS•+. As a proof-of-concept application, the free-standing POD-like membranes were applied as a label-free assay in sensing cysteine, as well as monitoring acetylcholinesterase (AChE) activity through the generated thiol-containing product. Furthermore, based on the toxicity effect of organophosphorus (OP) compounds on AChE, the robust membranes were successfully utilized to evaluate the toxicity of diverse OP compounds. The POD-like nanochannels open up an innovative way to expand the application of nanochannel-based electrochemical sensing platforms in drug inspection, food safety, and environmental pollution.
Collapse
Affiliation(s)
- Huijie Xu
- College of Sciences, Northeastern University, Shenyang 110004, China
| | - Junli Guo
- College of Sciences, Northeastern University, Shenyang 110004, China
| | - Lingling Yang
- College of Sciences, Northeastern University, Shenyang 110004, China
| | - Zhida Gao
- College of Sciences, Northeastern University, Shenyang 110004, China
| | - Yan-Yan Song
- College of Sciences, Northeastern University, Shenyang 110004, China
| |
Collapse
|
174
|
Liu Y, Zhou L, Dong Y, Wang R, Pan Y, Zhuang S, Liu D, Liu J. Recent developments on MOF-based platforms for antibacterial therapy. RSC Med Chem 2021; 12:915-928. [PMID: 34223159 PMCID: PMC8221260 DOI: 10.1039/d0md00416b] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 03/18/2021] [Indexed: 12/12/2022] Open
Abstract
With increasing pathogenic bacterial infection that is occurring worldwide, antibacterial therapy has become an important research field. There is great antimicrobial potential in the nanomaterial-based metal-organic framework (MOF) platform because it is highly biocompatible, biodegradable, and nontoxic, and it is now widely used in the anticancer agent industry and in the production of medical products. This review summarizes the possible mechanisms of representative MOF-based nanomaterials, and recounts recent progress in the design and development of MOF-based antibacterial materials for the remedy of postoperative infection. The existing shortcomings and future perspectives of the rapidly growing field of antimicrobial therapy addressing patient quality of life issues are also briefly discussed. Because of their wide applicability, further studies on the use of different MOF antimicrobial therapies will be of great interest.
Collapse
Affiliation(s)
- Yiwei Liu
- Key Laboratory of Research and Development of New Medical Materials of Guangdong Medical University, School of Pharmacy, Guangdong Medical University Dongguan 523808 China +86 769 22896560 +86 769 22896560
| | - Luyi Zhou
- Key Laboratory of Research and Development of New Medical Materials of Guangdong Medical University, School of Pharmacy, Guangdong Medical University Dongguan 523808 China +86 769 22896560 +86 769 22896560
| | - Ying Dong
- Key Laboratory of Research and Development of New Medical Materials of Guangdong Medical University, School of Pharmacy, Guangdong Medical University Dongguan 523808 China +86 769 22896560 +86 769 22896560
| | - Rui Wang
- Key Laboratory of Research and Development of New Medical Materials of Guangdong Medical University, School of Pharmacy, Guangdong Medical University Dongguan 523808 China +86 769 22896560 +86 769 22896560
| | - Ying Pan
- Key Laboratory of Research and Development of New Medical Materials of Guangdong Medical University, School of Pharmacy, Guangdong Medical University Dongguan 523808 China +86 769 22896560 +86 769 22896560
| | - Shuze Zhuang
- Dongguan Sixth People's Hospital No. 216 Dongcheng West Road, Guancheng District Dongguan 523808 China
| | - Dong Liu
- Shenzhen Huachuang Biopharmaceutical Technology Co. Ltd. Shenzhen 518112 Guangdong China
| | - Jianqiang Liu
- Key Laboratory of Research and Development of New Medical Materials of Guangdong Medical University, School of Pharmacy, Guangdong Medical University Dongguan 523808 China +86 769 22896560 +86 769 22896560
| |
Collapse
|
175
|
Zhu W, Wang L, Li Q, Jiao L, Yu X, Gao X, Qiu H, Zhang Z, Bing W. Will the Bacteria Survive in the CeO 2 Nanozyme-H 2O 2 System? Molecules 2021; 26:3747. [PMID: 34205408 PMCID: PMC8234868 DOI: 10.3390/molecules26123747] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 12/15/2022] Open
Abstract
As one of the nanostructures with enzyme-like activity, nanozymes have recently attracted extensive attention for their biomedical applications, especially for bacterial disinfection treatment. Nanozymes with high peroxidase activity are considered to be excellent candidates for building bacterial disinfection systems (nanozyme-H2O2), in which the nanozyme will promote the generation of ROS to kill bacteria based on the decomposition of H2O2. According to this criterion, a cerium oxide nanoparticle (Nanoceria, CeO2, a classical nanozyme with high peroxidase activity)-based nanozyme-H2O2 system would be very efficient for bacterial disinfection. However, CeO2 is a nanozyme with multiple enzyme-like activities. In addition to high peroxidase activity, CeO2 nanozymes also possess high superoxide dismutase activity and antioxidant activity, which can act as a ROS scavenger. Considering the fact that CeO2 nanozymes have both the activity to promote ROS production and the opposite activity for ROS scavenging, it is worth exploring which activity will play the dominating role in the CeO2-H2O2 system, as well as whether it will protect bacteria or produce an antibacterial effect. In this work, we focused on this discussion to unveil the role of CeO2 in the CeO2-H2O2 system, so that it can provide valuable knowledge for the design of a nanozyme-H2O2-based antibacterial system.
Collapse
Affiliation(s)
- Weisheng Zhu
- Key Laboratory of Surface & Interface of Polymer Materials of Zhejiang Province, Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China; (W.Z.); (Q.L.); (L.J.); (X.Y.); (X.G.); (H.Q.)
| | - Luyao Wang
- School of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, China;
| | - Qisi Li
- Key Laboratory of Surface & Interface of Polymer Materials of Zhejiang Province, Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China; (W.Z.); (Q.L.); (L.J.); (X.Y.); (X.G.); (H.Q.)
| | - Lizhi Jiao
- Key Laboratory of Surface & Interface of Polymer Materials of Zhejiang Province, Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China; (W.Z.); (Q.L.); (L.J.); (X.Y.); (X.G.); (H.Q.)
| | - Xiaokan Yu
- Key Laboratory of Surface & Interface of Polymer Materials of Zhejiang Province, Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China; (W.Z.); (Q.L.); (L.J.); (X.Y.); (X.G.); (H.Q.)
| | - Xiangfan Gao
- Key Laboratory of Surface & Interface of Polymer Materials of Zhejiang Province, Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China; (W.Z.); (Q.L.); (L.J.); (X.Y.); (X.G.); (H.Q.)
| | - Hao Qiu
- Key Laboratory of Surface & Interface of Polymer Materials of Zhejiang Province, Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China; (W.Z.); (Q.L.); (L.J.); (X.Y.); (X.G.); (H.Q.)
| | - Zhijun Zhang
- Key Laboratory of Surface & Interface of Polymer Materials of Zhejiang Province, Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China; (W.Z.); (Q.L.); (L.J.); (X.Y.); (X.G.); (H.Q.)
| | - Wei Bing
- School of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, China;
- Advanced Institute of Materials Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, China
| |
Collapse
|
176
|
Blackman LD, Qu Y, Cass P, Locock KES. Approaches for the inhibition and elimination of microbial biofilms using macromolecular agents. Chem Soc Rev 2021; 50:1587-1616. [PMID: 33403373 DOI: 10.1039/d0cs00986e] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Biofilms are complex three-dimensional structures formed at interfaces by the vast majority of bacteria and fungi. These robust communities have an important detrimental impact on a wide range of industries and other facets of our daily lives, yet their removal is challenging owing to the high tolerance of biofilms towards conventional antimicrobial agents. This key issue has driven an urgent search for new innovative antibiofilm materials. Amongst these emerging approaches are highly promising materials that employ aqueous-soluble macromolecules, including peptides, proteins, synthetic polymers, and nanomaterials thereof, which exhibit a range of functionalities that can inhibit biofilm formation or detach and destroy organisms residing within established biofilms. In this Review, we outline the progress made in inhibiting and removing biofilms using macromolecular approaches, including a spotlight on cutting-edge materials that respond to environmental stimuli for "on-demand" antibiofilm activity, as well as synergistic multi-action antibiofilm materials. We also highlight materials that imitate and harness naturally derived species to achieve new and improved biomimetic and biohybrid antibiofilm materials. Finally, we share some speculative insights into possible future directions for this exciting and highly significant field of research.
Collapse
Affiliation(s)
- Lewis D Blackman
- CSIRO Manufacturing, Research Way, Clayton, VIC 3168, Australia.
| | - Yue Qu
- Infection and Immunity Program, Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia and Department of Infectious Diseases, The Alfred Hospital and Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Peter Cass
- CSIRO Manufacturing, Research Way, Clayton, VIC 3168, Australia.
| | | |
Collapse
|
177
|
Zhu X, Chen X, Jia Z, Huo D, Liu Y, Liu J. Cationic chitosan@Ruthenium dioxide hybrid nanozymes for photothermal therapy enhancing ROS-mediated eradicating multidrug resistant bacterial infection. J Colloid Interface Sci 2021; 603:615-632. [PMID: 34225068 DOI: 10.1016/j.jcis.2021.06.073] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 10/21/2022]
Abstract
Antibiotic resistanceand biofilm formation are the main challenges of bacterial infectious diseases, and enhancing the permeability of drugs to biofilms may be a promising strategy. Herein, we constructed a cationic chitosan coated ruthenium dioxide nanozyme (QCS-RuO2@RBT, SRT NSs)。RuO2 nanosheets (RuO2 NSs) are modified with positively charged Quaternary ammonium-chitosan (QCS) to improve biocompatibility, and enhance the interaction between RuO2 nanozymes and bacterial membranes. An antibacterial drug, [Ru(bpy)2(tip)]2+ (RBT) can be loaded onto QCS-RuO2 by π-π stacking and hydrophobic interaction. SRT NSs exhibit NIR light enhanced peroxidase-like catalytic activity, thereby effectively fighting against planktonic bacteria and damaging biofilms. In the biofilm, extracellular DNA (eDNA) was cleaved by high levels of hydroxyl radicals (•OH) catalyzed by SRT NSs, thereby disrupting the rigid biofilm. In addition, in vivo studies demonstrate that SRT NSs can significantly rescue skin wound infections and the chronic lung infection in mice caused by P. aeruginosa, and hold the same therapeutic efficacy as first-line clinically anchored anti P. aeruginosa drug ciprofloxacin. Accordingly, the research work has realized the efficient production of ·OH, and the permeability of drugs to biofilms.it provides a promising response strategy for the management of biofilm-associated infections, including chronic lung infection.
Collapse
Affiliation(s)
- Xufeng Zhu
- Department of Chemistry, College of Chemistry and Materials, Jinan University, Guangzhou 511436, People's Republic of China
| | - Xu Chen
- Department of Chemistry, College of Chemistry and Materials, Jinan University, Guangzhou 511436, People's Republic of China
| | - Zhi Jia
- Department of Chemistry, College of Chemistry and Materials, Jinan University, Guangzhou 511436, People's Republic of China
| | - Dongliang Huo
- Department of Chemistry, College of Chemistry and Materials, Jinan University, Guangzhou 511436, People's Republic of China
| | - Yanan Liu
- Department of Chemistry, College of Chemistry and Materials, Jinan University, Guangzhou 511436, People's Republic of China
| | - Jie Liu
- Department of Chemistry, College of Chemistry and Materials, Jinan University, Guangzhou 511436, People's Republic of China.
| |
Collapse
|
178
|
Tailoring metal-organic frameworks-based nanozymes for bacterial theranostics. Biomaterials 2021; 275:120951. [PMID: 34119883 DOI: 10.1016/j.biomaterials.2021.120951] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 05/24/2021] [Accepted: 05/29/2021] [Indexed: 02/07/2023]
Abstract
Nanozymes are next-generation artificial enzymes having distinguished features such as cost-effective, enhanced surface area, and high stability. However, limited selectivity and moderate activity of nanozymes in the biochemical environment hindered their usage and encouraged researchers to seek alternative catalytic materials. Recently, metal-organic frameworks (MOFs) characterized by distinct crystalline porous structures with large surface area, tunable pores, and uniformly dispersed active sites emerged, that filled the gap between natural enzymes and nanozymes. Moreover, by selecting suitable metal ions and organic linkers, MOFs can be designed for effective bacterial theranostics. In this review, we briefly presented the design and fabrication of MOFs. Then, we demonstrated the applications of MOFs in bacterial theranostics and their safety considerations. Finally, we proposed the major obstacles and opportunities for further development in research on the interface of nanozymes and MOFs. We expect that MOFs based nanozymes with unique physicochemical and intrinsic enzyme-mimicking properties will gain broad interest in both fundamental research and biomedical applications.
Collapse
|
179
|
Zhou Y, Li Y, Fei Y, Zhang M, Wang S, Li F, Bao X. Protein-Inorganic Hybrid Nanoflowers as Efficient Biomimetic Antibiotics in the Treatment of Bacterial Infection. Front Chem 2021; 9:681566. [PMID: 33996771 PMCID: PMC8119892 DOI: 10.3389/fchem.2021.681566] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 03/30/2021] [Indexed: 12/01/2022] Open
Abstract
Nanozymes have been developed as new generation of biomimetic antibiotics against wound infection. However, most of new-developed nanozymes based on inorganic particles or hybrid ones usually originate from incompatible raw materials or unwanted metal salts, highly limiting their further biomedical usages. To overcome above drawbacks, it is highly required to develop novel nanozymes with great antibacterial activity by using biocompatible reagents and endogenous metal species as raw materials. Here, we demonstrated that bovine serum albumin enwrapped copper phosphate-based protein-inorganic hybrid nanoflowers possessed intrinsic peroxidase-like activity, which could be used as efficient biomimetic antibiotics against bacterial infection via the nanozyme-mediated generation of high toxic reactive oxygen species (ROS). With the admirable peroxidase-like activity, our nanoflowers could efficiently kill drug-resistance bacteria under physiological conditions, improve the wound healing after pathogen-induced infection, as well as avoid the potential tissue injury in time. Comprehensive toxicity exploration of these nanoflowers indicated their high biocompatibility and excellent biosafety. Our current strategy toward the design of protein-inorganic hybrid nanozymes with high biosafety and few side effects could provide a new paradigm for the development of nanozyme-based antibacterial platform in future.
Collapse
Affiliation(s)
- Ying Zhou
- Department of Dermatology, Second Hospital of Jilin University, Jilin University, Changchun, China
| | - Ying Li
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Yunwei Fei
- Department of Cardiology, Second Hospital of Jilin University, Jilin University, Changchun, China
| | - Mingrui Zhang
- Department of Dermatology, Second Hospital of Jilin University, Jilin University, Changchun, China
| | - Shuang Wang
- Department of Dermatology, Second Hospital of Jilin University, Jilin University, Changchun, China
| | - Fuqiu Li
- Department of Dermatology, Second Hospital of Jilin University, Jilin University, Changchun, China
| | - Xingfu Bao
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| |
Collapse
|
180
|
Ding L, Jiang J, Cheng L, Wang Y, Zhang W, Li D, Xu Z, Jiang J, Gao L, Li Z. Oral Administration of Nanoiron Sulfide Supernatant for the Treatment of Gallbladder Stones with Chronic Cholecystitis. ACS APPLIED BIO MATERIALS 2021; 4:3773-3785. [PMID: 35006807 DOI: 10.1021/acsabm.0c01258] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cholelithiasis with chronic cholecystitis is prevalent and threatens human health. Most cholecystitis caused by bacterial infection or biofilms is accompanied by gallstones in the clinic, making gallbladder removal the only effective solution. Here, we provide a strategy to eliminate gallstone biofilms and dissolve gallstones by oral administration of a supernatant derived from nanoscale iron sulfide (nFeS supernatant). First, by using gallstones obtained from the clinic, we simulated biofilm formation on gallstones and tested the antibacterial activity of a nFeS supernatant in vitro. We found that the supernatant kills bacteria with a 5-log reduction in viability and destroys the biofilm structure. Smashed gallstones coincubated with E. coli biofilms promote gallstone formation, while nFeS supernatant can inhibit this process. Second, by using a murine (C57BL/6) model of cholelithiasis and cholecystitis, we tested the antibacterial efficacy and therapeutic effects of nFeS supernatant on cholelithiasis in vivo. Animal experimental data show that oral administration of nFeS supernatant can reduce 60% of bacteria in the gallbladder and, remarkably, remove gallstones with 2 days of treatment compared with clinical drug combinations (chenodeoxycholid acid and ciprofloxacin). Third, by performing protein abundance analysis of L02 cells and mouse livers, we observed the changes in CYP7a1, HMGCR, and SCP2 expression, indicating that the nFeS supernatant can also regulate cholesterol metabolism to prevent gallstone formation. Finally, hematologic biochemistry analysis and high-throughput sequencing technology show that the nFeS supernatant possesses high biocompatibility. Therefore, our work demonstrates that the nFeS supernatant may be a potential regimen for the treatment of cholelithiasis and cholecystitis by oral administration.
Collapse
Affiliation(s)
- Liming Ding
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China
| | - Jian Jiang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China
| | - Lu Cheng
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China
| | - Yanqiu Wang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China
| | - Wei Zhang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China
| | - Dandan Li
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China
| | - Zhuobin Xu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China
| | - Jing Jiang
- CAS Engineering Laboratory for Nanozyme, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Lizeng Gao
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China.,CAS Engineering Laboratory for Nanozyme, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhennan Li
- Subei People's Hospital of Jiangsu Province, Yangzhou 225001, China
| |
Collapse
|
181
|
Zhong Y, Wang T, Lao Z, Lu M, Liang S, Cui X, Li QL, Zhao S. Au-Au/IrO 2@Cu(PABA) Reactor with Tandem Enzyme-Mimicking Catalytic Activity for Organic Dye Degradation and Antibacterial Application. ACS APPLIED MATERIALS & INTERFACES 2021; 13:21680-21692. [PMID: 33934598 DOI: 10.1021/acsami.1c00126] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Herein, a Au-Au/IrO2 nanocomposite with tandem enzyme-mimicking activity was innovatively synthesized, which can show outstanding glucose oxidase (GOx)-like activity and peroxidase-like activity simultaneously under neutral conditions. Moreover, a Au-Au/IrO2@Cu(PABA) reactor was prepared via encapsulation of the Au-Au/IrO2 nanocomposite in a Cu(PABA) metal organic framework. The reactor not only exhibits excellent organic solvent stability, acid resistance, and reusability but also displays better cascade reaction catalytic efficiency (kcat/Km = 148.86 min-1 mM-1) than the natural free enzyme system (GOx/HRP) (kcat/Km = 98.20 min-1 mM-1) and Au-Au/IrO2 nanocomposite (kcat/Km = 135.24 min-1 mM-1). In addition, it is found that the reactor can catalyze glucose or dissolved oxygen to produce active oxygen species (ROS) including HO, 1O2, and O2-· through its enzyme-mimicking activity. Finally, the novel reactor was successfully used in organic dye degradation and antibacterial application. The results show that it can effectively degrade methyl orange, methylene blue, and rhodamine B, which all can reach a degradation rate of nearly 100% after interacting with Au-Au/IrO2@Cu (PABA) for 3.5 h. Furthermore, the reactor also exhibits excellent antibacterial activity, so as to achieve a complete bactericidal effect to Staphylococcus aureus and Escherichia coli at a concentration of 12.5 μg mL-1.
Collapse
Affiliation(s)
- Yingying Zhong
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, People's Republic of China
| | - Tiantian Wang
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, People's Republic of China
| | - Zhiting Lao
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, People's Republic of China
| | - Minglei Lu
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, People's Republic of China
| | - Shan Liang
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, People's Republic of China
| | - Xiping Cui
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, People's Republic of China
| | - Qing-Lan Li
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, People's Republic of China
| | - Suqing Zhao
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, People's Republic of China
| |
Collapse
|
182
|
|
183
|
Yang HY, Li Y, Lee DS. Functionalization of Magnetic Nanoparticles with Organic Ligands toward Biomedical Applications. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202000043] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Hong Yu Yang
- College of Materials Science and Engineering Jilin Institute of Chemical Technology Jilin Jilin Province 132022 P.R. China
| | - Yi Li
- College of Materials and Textile Engineering Jiaxing University Jiaxing Zhejiang Province 314001 P.R. China
| | - Doo Sung Lee
- Theranostic Macromolecules Research Center and School of Chemical Engineering Sungkyunkwan University Suwon Gyeonggi-do 16419 Republic of Korea
| |
Collapse
|
184
|
Cai Y, Bing W, Chen C, Chen Z. Gaseous Plastron on Natural and Biomimetic Surfaces for Resisting Marine Biofouling. Molecules 2021; 26:molecules26092592. [PMID: 33946767 PMCID: PMC8125344 DOI: 10.3390/molecules26092592] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/23/2021] [Accepted: 04/26/2021] [Indexed: 11/24/2022] Open
Abstract
In recent years, various biomimetic materials capable of forming gaseous plastron on their surfaces have been fabricated and widely used in various disciplines and fields. In particular, on submerged surfaces, gaseous plastron has been widely studied for antifouling applications due to its ecological and economic advantages. Gaseous plastron can be formed on the surfaces of various natural living things, including plants, insects, and animals. Gaseous plastron has shown inherent anti-biofouling properties, which has inspired the development of novel theories and strategies toward resisting biofouling formation on different surfaces. In this review, we focused on the research progress of gaseous plastron and its antifouling applications.
Collapse
Affiliation(s)
- Yujie Cai
- School of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, China;
- Advanced Institute of Materials Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, China
| | - Wei Bing
- School of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, China;
- Advanced Institute of Materials Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, China
- Correspondence: (W.B.); (Z.C.)
| | - Chen Chen
- Institute of Food Safety and Environment Monitoring, College of Chemistry, Fuzhou University, Fuzhou 350108, China;
| | - Zhaowei Chen
- Institute of Food Safety and Environment Monitoring, College of Chemistry, Fuzhou University, Fuzhou 350108, China;
- Correspondence: (W.B.); (Z.C.)
| |
Collapse
|
185
|
Liu Z, Zhao X, Yu B, Zhao N, Zhang C, Xu FJ. Rough Carbon-Iron Oxide Nanohybrids for Near-Infrared-II Light-Responsive Synergistic Antibacterial Therapy. ACS NANO 2021; 15:7482-7490. [PMID: 33856198 DOI: 10.1021/acsnano.1c00894] [Citation(s) in RCA: 158] [Impact Index Per Article: 52.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Infections caused by multidrug resistant bacteria are still a serious threat to human health. It is of great significance to explore effective alternative antibacterial strategies. Herein, carbon-iron oxide nanohybrids with rough surfaces (RCF) are developed for NIR-II light-responsive synergistic antibacterial therapy. RCF with excellent photothermal property and peroxidase-like activity could realize synergistic photothermal therapy (PTT)/chemodynamic therapy (CDT) in the NIR-II biowindow with improved penetration depth and low power density. More importantly, RCF with rough surfaces shows increased bacterial adhesion, thereby benefiting both CDT and PTT through effective interaction between RCF and bacteria. In vitro antibacterial experiments demonstrate a broad-spectrum synergistic antibacterial effect of RCF against Gram-negative Escherichia coli (E. coli), Gram-positive Staphylococcus aureus (S. aureus), and methicillin-resistant Staphylococcus aureus (MRSA). In addition, satisfactory biocompatibility makes RCF a promising antibacterial agent. Notably, the synergistic antibacterial performances in vivo could be achieved employing the rat wound model with MRSA infection. The current study proposes a facile strategy to construct antibacterial agents for practical antibacterial applications by the rational design of both composition and morphology. RCF with low power density NIR-II light responsive synergistic activity holds great potential in the effective treatment of drug-resistant bacterial infections.
Collapse
Affiliation(s)
- Zhiwen Liu
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
- College of Materials Sciences and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaoyi Zhao
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
- College of Materials Sciences and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Bingran Yu
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
- College of Materials Sciences and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Nana Zhao
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
- College of Materials Sciences and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Chen Zhang
- College of Materials Sciences and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Fu-Jian Xu
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
- College of Materials Sciences and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
186
|
Majeed A, Javed F, Akhtar S, Saleem U, Anwar F, Ahmad B, Nadhman A, Shahnaz G, Hussain I, Hussain SZ, Sohail MF. Green synthesized selenium doped zinc oxide nano-antibiotic: synthesis, characterization and evaluation of antimicrobial, nanotoxicity and teratogenicity potential. J Mater Chem B 2021; 8:8444-8458. [PMID: 32812631 DOI: 10.1039/d0tb01553a] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A facile, green synthesis of selenium doped zinc oxide nano-antibiotic (Se-ZnO-NAB) using the Curcuma longa extract is reported to combat the increased emergence of methicillin-resistant Staphylococcus aureus (MRSA). The developed Se-ZnO-NAB were characterized for their physicochemical parameters and extensively evaluated for their toxicological potential in an animal model. The prepared Se-ZnO-NABs were characterized via Fourier transformed infrared spectroscopy to get functional insight into their surface chemistry, scanning electron microscopy revealing the polyhedral morphology with a size range of 36 ± 16 nm, having -28.9 ± 6.42 mV zeta potential, and inductively coupled plasma optical emission spectrometry confirming the amount of Se and Zn to be 14.43 and 71.70 mg L-1 respectively. Moreover, the antibacterial activity against MRSA showed significantly low minimum inhibitory concentration at 6.2 μg mL-1 when compared against antibiotics. Also, total protein content and reactive oxygen species production in MRSA, under the stressed environment of Se-ZnO-NAB, significantly (p < 0.05) decreased compared to the negative control. Moreover, the results of acute oral toxicity in rats showed moderate variations in blood biochemistry and histopathology of vital organs. The teratogenicity and fetal evaluations also revealed some signs of toxicity along with changes in biochemical parameters. The overall outcomes suggest that Se-ZnO-NAB can be of significant importance for combating multi-drug resistance but must be used with extreme caution, particularly in pregnancy, as moderate toxicity was observed at a toxic dose of 2000 mg kg-1.
Collapse
Affiliation(s)
- Abdul Majeed
- Riphah Institute of Pharmaceutical Sciences (RIPS), Riphah International University, Lahore Campus, Lahore, Pakistan.
| | - Faryal Javed
- Riphah Institute of Pharmaceutical Sciences (RIPS), Riphah International University, Lahore Campus, Lahore, Pakistan.
| | - Sundus Akhtar
- Department of Biotechnology, Minhaj University, Lahore, Pakistan
| | - Uzma Saleem
- Department of Pharmacy, Government College University (GCU), Faisalabad, Pakistan
| | - Fareeha Anwar
- Riphah Institute of Pharmaceutical Sciences (RIPS), Riphah International University, Lahore Campus, Lahore, Pakistan.
| | - Bashir Ahmad
- Riphah Institute of Pharmaceutical Sciences (RIPS), Riphah International University, Lahore Campus, Lahore, Pakistan.
| | - Akhtar Nadhman
- Institute of Integrative Biosciences, CECOS University, Phase VI, Hayatabad, Peshawar, Pakistan
| | - Gul Shahnaz
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Irshad Hussain
- Department of Chemistry and Chemical Engineering, SBA School of Science and Engineering (SBA-SSE), Lahore University of Management Sciences (LUMS), Lahore - 54792, Pakistan.
| | - Syed Zajif Hussain
- Department of Chemistry and Chemical Engineering, SBA School of Science and Engineering (SBA-SSE), Lahore University of Management Sciences (LUMS), Lahore - 54792, Pakistan.
| | - Muhammad Farhan Sohail
- Riphah Institute of Pharmaceutical Sciences (RIPS), Riphah International University, Lahore Campus, Lahore, Pakistan. and Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan and Department of Chemistry and Chemical Engineering, SBA School of Science and Engineering (SBA-SSE), Lahore University of Management Sciences (LUMS), Lahore - 54792, Pakistan.
| |
Collapse
|
187
|
Antibiofilm properties of copper (II) and iron (III) complexes with an EDTA-based phenylene macrocycle and its acyclic analogue against food and clinical related pathogens. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115076] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
188
|
Li Y, Xiu W, Yang K, Wen Q, Yuwen L, Luo Z, Liu X, Yang D, Xie X, Wang L. A multifunctional Fenton nanoagent for microenvironment-selective anti-biofilm and anti-inflammatory therapy. MATERIALS HORIZONS 2021; 8:1264-1271. [PMID: 34821919 DOI: 10.1039/d0mh01921f] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Bacterial biofilm infections are intractable to traditional antibiotic treatment and usually cause persistent inflammation. Chemodynamic therapy (CDT) based on the Fenton reaction has recently emerged as a promising anti-biofilm strategy. However, the therapeutic efficacy of current Fenton agents often suffers from inefficient Fenton activity and lacks anti-inflammatory capability. Herein, FePS3 nanosheets (NSs) are explored for the first time as novel microenvironment-selective therapeutic nanoagents for bacterial biofilm infections with both self-enhanced Fenton activity for an anti-biofilm effect and reactive oxygen species (ROS) scavenging properties for an anti-inflammatory effect. In biofilms with acidic microenvironments, FePS3 NSs release Fe2+ to generate toxic ROS by Fenton reaction and reductive [P2S6]4- to enhance the Fenton activity by reducing Fe3+ to Fe2+. In the surrounding normal tissues with neutral pH, FePS3 NSs scavenge ROS by reductive [P2S6]4- with an anti-inflammatory effect. This work demonstrates multifunctional Fenton nanoagents with microenvironment-selective ROS generation and elimination properties for effective treatment of bacterial biofilm infections with both anti-biofilm and anti-inflammatory effects.
Collapse
Affiliation(s)
- Yuqing Li
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) & Jiangsu National Synergetic Innovation Centre for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
189
|
Yuan Z, Lin C, Dai L, He Y, Hu J, Xu K, Tao B, Liu P, Cai K. Near-Infrared Light-Activatable Dual-Action Nanoparticle Combats the Established Biofilms of Methicillin-Resistant Staphylococcus aureus and Its Accompanying Inflammation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2007522. [PMID: 33690998 DOI: 10.1002/smll.202007522] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/23/2021] [Indexed: 05/22/2023]
Abstract
Clinically, inhibition of both bacterial infection and excessive inflammation is a crucial step for improved wound treatments. Herein, the fabrication of near-infrared-light (NIR)-activatable deoxyribonuclease (DNase)-carbon monoxide (CO)@mesoporous polydopamine nanoparticles (MPDA NPs) is demonstrated for efficient elimination of methicillin-resistant Staphylococcus aureus (MRSA) biofilms and the following anti-inflammatory activity. Specifically, thermosensitive CO-gas-releasing donors (CO releasing molecules, FeCO) are first encapsulated into MPDA NPs, followed by covalently immobilizing deoxyribonuclease I (DNase I) on the surfaces of MPDA NPs. DNase I can degrade the extracellular DNA in biofilms, which site specifically destroys the compactness of the biofilms. With NIR irradiation, DNase-CO@MPDA NPs display great photothermal ability, and further trigger on-demand delivery of bactericidal CO gas that can adequately permeate the impaired biofilms. Eventually, they achieve effective MRSA biofilm elimination in virtue of the synergistic effects of both DNase I participation and CO-gas-potentiated photothermal therapy. Importantly, the inflammatory responses of DNase-CO@MPDA NPs and NIR-treated wounds are simultaneously alleviated owing to the anti-inflammatory features of released CO. Finally, NIR-activatable DNase-CO@MPDA NPs accelerate the healing process of MRSA-biofilm-infected cutaneous wounds. Taken together, this phototherapeutic strategy displays great therapeutic potential in treating the formidable clinical problems caused by MRSA biofilms and the accompanying inflammation.
Collapse
Affiliation(s)
- Zhang Yuan
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing, 400044, P. R. China
| | - Chuanchuan Lin
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing, 400044, P. R. China
| | - Liangliang Dai
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
| | - Ye He
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing, 400044, P. R. China
| | - Jingwei Hu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing, 400044, P. R. China
| | - Kun Xu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing, 400044, P. R. China
| | - Bailong Tao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing, 400044, P. R. China
| | - Peng Liu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing, 400044, P. R. China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing, 400044, P. R. China
| |
Collapse
|
190
|
Guo Y, Qian S, Wang L, Zeng J, Miao R, Meng Y, Jin Y, Chen H, Wang B. Reversible antibiotic loading and pH-responsive release from polymer brushes on contact lenses for therapy and prevention of corneal infections. J Mater Chem B 2021; 8:10087-10092. [PMID: 32844863 DOI: 10.1039/d0tb01508c] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Corneal infection is an important cause of corneal damage and vision loss. In this work, polyhydroxy antibiotics were grafted onto polymer brush-modified contact lenses through dynamic chemical bonds between polyphenolic hydroxyls and phenylboronic acid. Both in vitro and in vivo antibacterial tests demonstrated great promise in the prevention of bacterial keratitis, which could be attributed to the enhanced retention time and drug bioavailability.
Collapse
Affiliation(s)
- Yishun Guo
- Research Group of Advanced Ophthalmic Bionic Interface Materials & Drug Delivery, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
191
|
Li R, Chen T, Pan X. Metal-Organic-Framework-Based Materials for Antimicrobial Applications. ACS NANO 2021; 15:3808-3848. [PMID: 33629585 DOI: 10.1021/acsnano.0c09617] [Citation(s) in RCA: 170] [Impact Index Per Article: 56.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
To address the serious threat of bacterial infection to public health, great efforts have been devoted to the development of antimicrobial agents for inhibiting bacterial growth, preventing biofilm formation, and sterilization. Very recently, metal-organic frameworks (MOFs) have emerged as promising materials for various antimicrobial applications owing to their different functions including the controlled/stimulated decomposition of components with bactericidal activity, strong interactions with bacterial membranes, and formation of photogenerated reactive oxygen species (ROS) as well as high loading and sustained releasing capacities for other antimicrobial materials. This review focuses on recent advances in the design, synthesis, and antimicrobial applications of MOF-based materials, which are classified by their roles as component-releasing (metal ions, ligands, or both), photocatalytic, and chelation antimicrobial agents as well as carriers or/and synergistic antimicrobial agents of other functional materials (antibiotics, enzymes, metals/metal oxides, carbon materials, etc.). The constituents, fundamental antimicrobial mechanisms, and evaluation of antimicrobial activities of these materials are highlighted to present the design principles of efficient MOF-based antimicrobial materials. The prospects and challenges in this research field are proposed.
Collapse
Affiliation(s)
- Rui Li
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province College of Environment, Zhejiang University of Technology Hangzhou 310014, China
| | - Tongtong Chen
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province College of Environment, Zhejiang University of Technology Hangzhou 310014, China
| | - Xiangliang Pan
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province College of Environment, Zhejiang University of Technology Hangzhou 310014, China
| |
Collapse
|
192
|
Dong Y, Wang L, Yuan K, Ji F, Gao J, Zhang Z, Du X, Tian Y, Wang Q, Zhang L. Magnetic Microswarm Composed of Porous Nanocatalysts for Targeted Elimination of Biofilm Occlusion. ACS NANO 2021; 15:5056-5067. [PMID: 33634695 DOI: 10.1021/acsnano.0c10010] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Biofilm is difficult to thoroughly cure with conventional antibiotics due to the high mechanical stability and antimicrobial barrier resulting from extracellular polymeric substances. Encouraged by the great potential of magnetic micro-/nanorobots in various fields and their enhanced action in swarm form, we designed a magnetic microswarm consisting of porous Fe3O4 mesoparticles (p-Fe3O4 MPs) and explored its application in biofilm disruption. Here, the p-Fe3O4 MPs microswarm (p-Fe3O4 swarm) was generated and actuated by a simple rotating magnetic field, which exhibited the capability of remote actuation, high cargo capacity, and strong localized convections. Notably, the p-Fe3O4 swarm could eliminate biofilms with high efficiency due to synergistic effects of chemical and physical processes: (i) generating bactericidal free radicals (•OH) for killing bacteria cells and degrading the biofilm by p-Fe3O4 MPs; (ii) physically disrupting the biofilm and promoting •OH penetration deep into biofilms by the swarm motion. As a demonstration of targeted treatment, the p-Fe3O4 swarm could be actuated to clear the biofilm along the geometrical route on a 2D surface and sweep away biofilm clogs in a 3D U-shaped tube. This designed microswarm platform holds great potential in treating biofilm occlusions particularly inside the tiny and tortuous cavities of medical and industrial settings.
Collapse
Affiliation(s)
- Yue Dong
- Department of Mechanical and Automation Engineering, Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR 999077, China
| | - Lu Wang
- Department of Mechanical and Automation Engineering, Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR 999077, China
| | - Ke Yuan
- Department of Mechanical and Automation Engineering, Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR 999077, China
| | - Fengtong Ji
- Department of Mechanical and Automation Engineering, Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR 999077, China
| | - Jinhong Gao
- Department of Mechanical and Automation Engineering, Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR 999077, China
| | - Zifeng Zhang
- Department of Mechanical and Automation Engineering, Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR 999077, China
| | - Xingzhou Du
- Department of Mechanical and Automation Engineering, Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR 999077, China
| | - Yuan Tian
- Department of Mechanical and Automation Engineering, Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR 999077, China
| | - Qianqian Wang
- Department of Mechanical and Automation Engineering, Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR 999077, China
| | - Li Zhang
- Department of Mechanical and Automation Engineering, Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR 999077, China
| |
Collapse
|
193
|
Liu X, Deng Q, Zhang L, Sang Y, Dong K, Ren J, Qu X. Elimination of macrophage-entrapped antibiotic-resistant bacteria by a targeted metal-organic framework-based nanoplatform. Chem Commun (Camb) 2021; 57:2903-2906. [PMID: 33616152 DOI: 10.1039/d0cc08340b] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A novel metal-organic framework-based platform was designed and constructed for photosensitizer delivery for the elimination of intracellular antibiotic-resistant bacteria. With the merit of targeting and internalizing ability, the system could kill the stealthy bacteria efficiently under light irradiation.
Collapse
Affiliation(s)
- Xuemeng Liu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China. and University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Qingqing Deng
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China. and University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Lu Zhang
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China. and University of Chinese Academy of Sciences, Beijing 100039, P. R. China
| | - Yanjuan Sang
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China. and University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Kai Dong
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China. and University of Chinese Academy of Sciences, Beijing 100039, P. R. China
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China. and University of Science and Technology of China, Hefei, Anhui 230026, China and University of Chinese Academy of Sciences, Beijing 100039, P. R. China
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China. and University of Science and Technology of China, Hefei, Anhui 230026, China and University of Chinese Academy of Sciences, Beijing 100039, P. R. China
| |
Collapse
|
194
|
Liu Y, Nie N, Tang H, Zhang C, Chen K, Wang W, Liu J. Effective Antibacterial Activity of Degradable Copper-Doped Phosphate-Based Glass Nanozymes. ACS APPLIED MATERIALS & INTERFACES 2021; 13:11631-11645. [PMID: 33685118 DOI: 10.1021/acsami.0c22746] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Copper-containing antimicrobials are highly valuable in the field of medical disinfectants owing to their well-known high antimicrobial efficacy. Artificially synthesized nanozymes which can increase the level of reactive oxygen species (ROS) in the bacterial system have become research hotspots. Herein, we describe the design and fabrication of degradable Cu-doped phosphate-based glass (Cu-PBG) nanozyme, which can achieve excellent antibacterial effects against Gram-positive and Gram-negative bacteria. The antibacterial mechanism is based on the generation of ROS storm and the release of copper. It behaves like a peroxidase in wounds which are acidic and exerts lethal oxidative stress on bacteria via catalyzing the decomposition of H2O2 into hydroxyl radicals (•OH). Quite different from any other reported nanozymes, the Cu-PBG is intrinsically degradable due to its phosphate glass nature. It gradually degrades and releases copper ions in a physiological environment, which further enhances the inhibition efficiency. Satisfactory antibacterial effects are verified both in vitro and in vivo. Being biodegradable, the prepared Cu-PBG exhibits excellent in vivo biocompatibility and does not cause any adverse effects caused by its long-time residence time in living organisms. Collectively, these results indicate that the Cu-PBG nanozyme could be used as an efficient copper-containing antimicrobial with great potential for clinical translation.
Collapse
Affiliation(s)
- Yifan Liu
- Laboratory of Functional and Biomedical Nanomaterials, College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Ning Nie
- Laboratory of Functional and Biomedical Nanomaterials, College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Huanfeng Tang
- Laboratory of Functional and Biomedical Nanomaterials, College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Congrou Zhang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Kezheng Chen
- Laboratory of Functional and Biomedical Nanomaterials, College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Wei Wang
- Laboratory of Functional and Biomedical Nanomaterials, College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jianfeng Liu
- Laboratory of Functional and Biomedical Nanomaterials, College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| |
Collapse
|
195
|
Gong H, Hajizadeh S, Liu W, Ye L. Imprinted Polymer Beads Loaded with Silver Nanoparticles for Antibacterial Applications. ACS APPLIED BIO MATERIALS 2021; 4:2829-2838. [PMID: 35014322 DOI: 10.1021/acsabm.1c00045] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
After the emergence of multidrug-resistant strains, antibiotic resistance in bacteria has become an important problem. Thus, materials for combating multidrug-resistant bacteria are of vital importance. In this work, we developed an antibacterial material that can selectively capture and destruct bacteria on the basis of their physical characteristics. To achieve bacterial capture and deactivation with a single material, we used bacterial cells as templates to synthesize surface-imprinted polymer beads in bacteria-stabilized Pickering emulsions. Acrylate-functionalized polyethylenimine was used to coat the bacterial surface so that the coated bacteria can act as a particle stabilizer to establish an oil-in-water Pickering emulsion. Hydrophobic Ag nanoparticles were introduced into the oil phase composed of cross-linking monomers. Bacteria-imprinted beads (BIB) were obtained after the oil phase was polymerized. Bacterial binding experiments confirmed the importance of the imprinted sites for specific recognition with the target bacteria. The Ag nanoparticles embedded inside the polymer beads enhanced bacterial inactivation and reduced the leakage of heavy metal in aquatic environment. The combination of bacteria-imprinting with delivery of general-purpose antibacterial reagents offers a useful approach toward selective capture and destruction of bacteria.
Collapse
Affiliation(s)
- Haiyue Gong
- Division of Pure and Applied Biochemistry, Department of Chemistry, Lund University, Box 124, Lund 221 00, Sweden
| | - Solmaz Hajizadeh
- Division of Pure and Applied Biochemistry, Department of Chemistry, Lund University, Box 124, Lund 221 00, Sweden
| | - Weifeng Liu
- Key Laboratory of Interface Science and Engineering in Advanced materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
| | - Lei Ye
- Division of Pure and Applied Biochemistry, Department of Chemistry, Lund University, Box 124, Lund 221 00, Sweden
| |
Collapse
|
196
|
|
197
|
Zhang H, Qiu J, Yan B, Liu L, Chen D, Liu X. Regulation of Ce (Ⅲ) / Ce (Ⅳ) ratio of cerium oxide for antibacterial application. iScience 2021; 24:102226. [PMID: 33733075 PMCID: PMC7944032 DOI: 10.1016/j.isci.2021.102226] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/21/2020] [Accepted: 02/19/2021] [Indexed: 11/15/2022] Open
Abstract
Antibiotics have been considered as effective weapons against bacterial infections since they were discovered. However, antibiotic resistance caused by overuse and abuse of antibiotics is an emerging public health threat nowadays. Fully defeating bacterial infections has become a tough challenge. In this work, cerium oxide was fabricated on medical titanium by thermolysis of cerium-containing metal-organic framework (Ce-BTC). Regulation of Ce (Ⅲ)/Ce (Ⅳ) ratios was realized by pyrolysis of Ce-BTC in different gas environment, and the antibacterial properties were studied. The results indicated that, in acidic conditions, ceria with a high Ce (Ⅲ)/Ce (Ⅳ) ratio owned high oxidase-like activity which could produce reactive oxygen species. Moreover, ceria with high Ce (Ⅲ) content possessed strong ATP deprivation capacity which could cut off the energy supply of bacteria. Based on this, ceria with a high Ce (Ⅲ)/Ce (Ⅳ) ratio exhibited superior antibacterial activity Cerium oxide films were fabricated on the titanium surface by pyrolysis of Ce-BTC The valence states of cerium element on cerium oxide can be modulated flexibly CeO2-X with high Ce (Ⅲ)/Ce (Ⅳ) ratio possessed high antibacterial rate Antibacterial rate is related to the oxidase-like and ATP deprivation capacity
Collapse
Affiliation(s)
- Haifeng Zhang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiajun Qiu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
| | - Bangcheng Yan
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lidan Liu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dafu Chen
- Laboratory of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials, Beijing Research Institute of Orthopaedics and Traumatology, Beijing JiShuiTan Hospital, Beijing 100035, China
| | - Xuanyong Liu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.,School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
198
|
Cai Y, Bing W, Xu X, Zhang Y, Chen Z, Gu Z. Topographical nanostructures for physical sterilization. Drug Deliv Transl Res 2021; 11:1376-1389. [PMID: 33543396 DOI: 10.1007/s13346-021-00906-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2021] [Indexed: 01/24/2023]
Abstract
The development in nanobiotechnology provides an in-depth understanding of cell-surface interactions at the nanoscale level. Particularly, several surface features have shown the ability to interrogate the bacterial behavior and fate. In the past decade, the mechanical and physical sterilization has attracted considerable attention, as paradigms of such do not rely on chemical substances to damage or kill bacteria, whereas it is associated with natural living organisms or synthetic materials. Of note, such antibacterial scenario does not cause bacterial resistance, as the morphology of nanometer can directly cause bacterial death through physical and mechanical interactions. In this review, we provide an overview of recently developed technologies of leveraging topographical nanofeatures for physical sterilization. We mainly discuss the development of various morphologic nanostructures, and colloidal nanostructures show casing the capacity of "mechanical sterilization." Mechanically sterilized nanostructures can penetrate or cut through bacterial membranes. In addition, surface morphology, such as mechanical bactericidal nanoparticles and nanoneedles, can cause damage to the membrane of microorganisms, leading to cell lysis and death. Although the research in the field of mechanical sterilization is still in infancy, the effect of these nanostructure morphologies on sterilization has shown remarkable antibacterial potential, which could provide a new toolkit for anti-infection and antifouling applications. The mechanical and physical sterilization has attracted considerable attention, as paradigms of such do not rely on chemical substances to damage or kill bacteria. Moreover, such antibacterial scenario does not cause bacterial resistance, as the morphology of nanometer can directly cause bacterial death through physical and mechanical interactions. In this review, we focus on the advanced development of various morphologic nanostructures and colloidal nanostructures that show the capacity of "mechanical sterilization."
Collapse
Affiliation(s)
- Yujie Cai
- School of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, 130012, Changchun, People's Republic of China.,Advanced Institute of Materials Science, Changchun University of Technology, 2055 Yanan Street, 130012, Changchun, People's Republic of China
| | - Wei Bing
- School of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, 130012, Changchun, People's Republic of China. .,Advanced Institute of Materials Science, Changchun University of Technology, 2055 Yanan Street, 130012, Changchun, People's Republic of China.
| | - Xiao Xu
- Institute of Food Safety and Environment Monitoring, College of Chemistry, Fuzhou University, 350108, Fuzhou, People's Republic of China
| | - Yuqi Zhang
- College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, People's Republic of China
| | - Zhaowei Chen
- Institute of Food Safety and Environment Monitoring, College of Chemistry, Fuzhou University, 350108, Fuzhou, People's Republic of China
| | - Zhen Gu
- College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, People's Republic of China.
| |
Collapse
|
199
|
Zhang X, Lin S, Liu S, Tan X, Dai Y, Xia F. Advances in organometallic/organic nanozymes and their applications. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213652] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
200
|
Research progress in nanozyme-based composite materials for fighting against bacteria and biofilms. Colloids Surf B Biointerfaces 2021; 198:111465. [DOI: 10.1016/j.colsurfb.2020.111465] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 11/02/2020] [Accepted: 11/09/2020] [Indexed: 12/23/2022]
|