151
|
Jiang S, Zhu L, Yang Z, Wang Y. Morphological-modulated FeNi-based amorphous alloys as efficient alkaline water splitting electrocatalysts. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138756] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
152
|
Mete B, Peighambardoust NS, Aydin S, Sadeghi E, Aydemir U. Metal-substituted zirconium diboride (Zr1-TMB2; TM = Ni, Co, and Fe) as low-cost and high-performance bifunctional electrocatalyst for water splitting. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138789] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
153
|
Wang Y, Luo W, Li H, Cheng C. Ultrafine Ru nanoclusters supported on N/S doped macroporous carbon spheres for efficient hydrogen evolution reaction. NANOSCALE ADVANCES 2021; 3:5068-5074. [PMID: 36132347 PMCID: PMC9419886 DOI: 10.1039/d1na00424g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 07/22/2021] [Indexed: 05/15/2023]
Abstract
The construction of highly-active and stable electrocatalysts for the hydrogen evolution reaction (HER) is significant for efficient water splitting processes. Herein, we develop an efficient HER catalyst of ultrafine Ru nanoclusters supported on a N/S doped macroporous hollow carbon sphere (Ru/H-S,N-C). The N/S co-doping strategy not only facilitates the reduction of the Ru nanocluster sizes, but also regulates the electronic structure of metallic Ru, improving the HER activity of the metallic Ru catalyst. Due to the structural advantages of N/S-doped macroporous carbon spheres that provide a fast mass transfer process and the high intrinsic activity of Ru nanoclusters, the optimized Ru/H-S,N-C catalyst exhibits excellent HER performance in alkaline medium, with a low overpotential of 32 mV to reach 10 mA cm-2, fast HER kinetics (a Tafel slope of 24 mV dec-1) and excellent durability, superior to the performances of the Ru/H-N-C sample and commercial Pt/C catalyst. Our work offers some guidance on the design of efficient Ru-based electrocatalysts.
Collapse
Affiliation(s)
- Yijie Wang
- Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai 200092 P. R. China
| | - Wenjie Luo
- Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai 200092 P. R. China
| | - Haojie Li
- Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai 200092 P. R. China
| | - Chuanwei Cheng
- Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai 200092 P. R. China
| |
Collapse
|
154
|
Matsuda S, Masuda S, Takano S, Ichikuni N, Tsukuda T. Synergistic Effect in Ir- or Pt-Doped Ru Nanoparticles: Catalytic Hydrogenation of Carbonyl Compounds under Ambient Temperature and H 2 Pressure. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02703] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Shotaro Matsuda
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Shinya Masuda
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Shinjiro Takano
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Nobuyuki Ichikuni
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, Yayoicho 1-33, Inage-ku, Chiba 263-8522, Japan
| | - Tatsuya Tsukuda
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Katsura, Kyoto 615-8520, Japan
| |
Collapse
|
155
|
Zhou YN, Li MX, Dou SY, Wang HY, Dong B, Liu HJ, Zhao HY, Wang FL, Yu JF, Chai YM. Promoting Oxygen Evolution by Deep Reconstruction via Dynamic Migration of Fluorine Anions. ACS APPLIED MATERIALS & INTERFACES 2021; 13:34438-34446. [PMID: 34264054 DOI: 10.1021/acsami.1c09308] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Promoting the reconstruction of electrocatalysts during the oxygen evolution reaction (OER) is generally regarded as a promising strategy for enhanced activity. F anions with strong electronegativity are predicted to enhance this transformation. Herein, a fluorine-anion doping route is proposed to convert the well-latticed NiMoO4@MNF to amorphous F-NiMoO4@MNF by a facile and versatile molten salt strategy. The well-defined nanorod arrays guarantee abundant exposed active sites, rapid mass transfer, and fast gas bubble release. Moreover, the emerged loose amorphous structure is conducive to the dynamic migration of F species and effective penetration of the electrolyte; therefore, the resulting exchange between F and hydroxide anions induces the formation of an active oxy(hydroxide) layer, thus finally optimizing the electronic structure and absorption/desorption energy on the surface of F-NiMoO4@MNF. The boosted OER performance of reconstructed F-NiMoO4@MNF is reliably confirmed by a low overpotential of 188 mV at 50 mA cm-2, a small Tafel slope of 33.8 mV dec-1, and favorable long-term stability. In addition, accelerated hydrogen evolution is observed, which is ascribed to the finely tuned electron distribution. This work would provide a new reconstruction route assisted by F-anion doping to the development of high-performance catalysts.
Collapse
Affiliation(s)
- Ya-Nan Zhou
- State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Meng-Xuan Li
- State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Shu-Yue Dou
- State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Hui-Ying Wang
- State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Bin Dong
- State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Hai-Jun Liu
- State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Hui-Ying Zhao
- State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Fu-Li Wang
- State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Jian-Feng Yu
- State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Yong-Ming Chai
- State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum (East China), Qingdao 266580, P. R. China
| |
Collapse
|
156
|
Yang Y, Yu Y, Li J, Chen Q, Du Y, Rao P, Li R, Jia C, Kang Z, Deng P, Shen Y, Tian X. Engineering Ruthenium-Based Electrocatalysts for Effective Hydrogen Evolution Reaction. NANO-MICRO LETTERS 2021; 13:160. [PMID: 34302536 PMCID: PMC8310550 DOI: 10.1007/s40820-021-00679-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/07/2021] [Indexed: 05/14/2023]
Abstract
The investigation of highly effective, durable, and cost-effective electrocatalysts for the hydrogen evolution reaction (HER) is a prerequisite for the upcoming hydrogen energy society. To establish a new hydrogen energy system and gradually replace the traditional fossil-based energy, electrochemical water-splitting is considered the most promising, environmentally friendly, and efficient way to produce pure hydrogen. Compared with the commonly used platinum (Pt)-based catalysts, ruthenium (Ru) is expected to be a good alternative because of its similar hydrogen bonding energy, lower water decomposition barrier, and considerably lower price. Analyzing and revealing the HER mechanisms, as well as identifying a rational design of Ru-based HER catalysts with desirable activity and stability is indispensable. In this review, the research progress on HER electrocatalysts and the relevant describing parameters for HER performance are briefly introduced. Moreover, four major strategies to improve the performance of Ru-based electrocatalysts, including electronic effect modulation, support engineering, structure design, and maximum utilization (single atom) are discussed. Finally, the challenges, solutions and prospects are highlighted to prompt the practical applications of Ru-based electrocatalysts for HER.
Collapse
Affiliation(s)
- Yingjie Yang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Lab of Fine Chemistry, School of Chemical Engineering and Technology, Hainan University, Haikou, 570228, People's Republic of China
| | - Yanhui Yu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Lab of Fine Chemistry, School of Chemical Engineering and Technology, Hainan University, Haikou, 570228, People's Republic of China
| | - Jing Li
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Lab of Fine Chemistry, School of Chemical Engineering and Technology, Hainan University, Haikou, 570228, People's Republic of China.
| | - Qingrong Chen
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Lab of Fine Chemistry, School of Chemical Engineering and Technology, Hainan University, Haikou, 570228, People's Republic of China
| | - Yanlian Du
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Lab of Fine Chemistry, School of Chemical Engineering and Technology, Hainan University, Haikou, 570228, People's Republic of China
| | - Peng Rao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Lab of Fine Chemistry, School of Chemical Engineering and Technology, Hainan University, Haikou, 570228, People's Republic of China
| | - Ruisong Li
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Lab of Fine Chemistry, School of Chemical Engineering and Technology, Hainan University, Haikou, 570228, People's Republic of China
| | - Chunman Jia
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Lab of Fine Chemistry, School of Chemical Engineering and Technology, Hainan University, Haikou, 570228, People's Republic of China
| | - Zhenye Kang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Lab of Fine Chemistry, School of Chemical Engineering and Technology, Hainan University, Haikou, 570228, People's Republic of China
| | - Peilin Deng
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Lab of Fine Chemistry, School of Chemical Engineering and Technology, Hainan University, Haikou, 570228, People's Republic of China
| | - Yijun Shen
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Lab of Fine Chemistry, School of Chemical Engineering and Technology, Hainan University, Haikou, 570228, People's Republic of China.
| | - Xinlong Tian
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Lab of Fine Chemistry, School of Chemical Engineering and Technology, Hainan University, Haikou, 570228, People's Republic of China.
| |
Collapse
|
157
|
Zhang S, Wang C, Zhang X, Xia H, Huang B, Guo S, Li J, Wang E. Supramolecular Anchoring Strategy for Facile Production of Ruthenium Nanoparticles Embedded in N-Doped Mesoporous Carbon Nanospheres for Efficient Hydrogen Generation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:32997-33005. [PMID: 34251788 DOI: 10.1021/acsami.1c07435] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Because of the favorable mass transport and increased available active sites, the rational design and preparation of porous carbon structures are essential but still challenging. Herein, a novel and facile supramolecular anchoring strategy was developed to achieve the embedding of ruthenium (Ru) nanoparticles in N-doped mesoporous carbon nanospheres through pyrolyzing the precursor formed by coordination assembly between metal ions and zinc gluconate (G(Zn)). Featuring rich hydroxyl groups, the G(Zn) can effectively chelate Ru3+ via metal-oxygen bonds to form 3D supramolecular nanospheres, and meanwhile, mesopores in carbon nanospheres were expanded after subsequent pyrolysis thanks to the volatilization of zincic species at high temperature. As a demonstration, the best-performing catalyst displayed extraordinary activity for the hydrogen evolution reaction (HER) with a small overpotential of 43 mV versus reversible hydrogen electrode (vs RHE) at 10 mA/cm2 and a Tafel slope of 39 mV/dec, which was superior to that of commercial Pt/C in alkaline medium. Theoretical calculations revealed that the catalytic activity was significantly promoted by the strong electronic coupling between Ru nanoparticles and N-doped porous carbon, which increased the electron transfer capability and facilitated the adsorption and dissociation of H2O to realize an efficient HER.
Collapse
Affiliation(s)
- Shan Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- Institute of Materials Science and Devices, Suzhou University of Science and Technology, Suzhou 215011, China
| | - Chao Wang
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21218-2625, United States
| | - Xiaoyan Zhang
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue W, Waterloo, Ontario N2L 3G, Canada
| | - Hongyin Xia
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Bolong Huang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong SAR, China
| | - Shaojun Guo
- Department of Materials Science & Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Jing Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Erkang Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| |
Collapse
|
158
|
Over H. Fundamental Studies of Planar Single-Crystalline Oxide Model Electrodes (RuO2, IrO2) for Acidic Water Splitting. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01973] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Herbert Over
- Institute of Physical Chemistry, Justus Liebig University Giessen, Heinrich Buff Ring 17, 35392 Giessen, Germany
| |
Collapse
|
159
|
Wang C, Jin L, Shang H, Xu H, Shiraishi Y, Du Y. Advances in engineering RuO2 electrocatalysts towards oxygen evolution reaction. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.11.051] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
160
|
Structure-tunable pompon-like RuCo catalysts: Insight into the roles of atomically dispersed Ru-Co sites and crystallographic structures for guaiacol hydrodeoxygenation. J Catal 2021. [DOI: 10.1016/j.jcat.2021.04.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
161
|
Wang Y, Tang W, Li X, Wei D. Improving the electrocatalytic activity of NiFe bimetal-organic framework toward oxygen evolution reaction by Zr doping. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138292] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
162
|
An L, Wei C, Lu M, Liu H, Chen Y, Scherer GG, Fisher AC, Xi P, Xu ZJ, Yan CH. Recent Development of Oxygen Evolution Electrocatalysts in Acidic Environment. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2006328. [PMID: 33768614 DOI: 10.1002/adma.202006328] [Citation(s) in RCA: 171] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/22/2020] [Indexed: 05/28/2023]
Abstract
The proton exchange membrane (PEM) water electrolysis is one of the most promising hydrogen production techniques. The oxygen evolution reaction (OER) occurring at the anode dominates the overall efficiency. Developing active and robust electrocatalysts for OER in acid is a longstanding challenge for PEM water electrolyzers. Most catalysts show unsatisfied stability under strong acidic and oxidative conditions. Such a stability challenge also leads to difficulties for a better understanding of mechanisms. This review aims to provide the current progress on understanding of OER mechanisms in acid, analyze the promising strategies to enhance both activity and stability, and summarize the state-of-the-art catalysts for OER in acid. First, the prevailing OER mechanisms are reviewed to establish the physicochemical structure-activity relationships for guiding the design of highly efficient OER electrocatalysts in acid with stable performance. The reported approaches to improve the activity, from macroview to microview, are then discussed. To analyze the problem of instability, the key factors affecting catalyst stability are summarized and the surface reconstruction is discussed. Various noble-metal-based OER catalysts and the current progress of non-noble-metal-based catalysts are reviewed. Finally, the challenges and perspectives for the development of active and robust OER catalysts in acid are discussed.
Collapse
Affiliation(s)
- Li An
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Chao Wei
- School of Materials Science and Engineering Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Min Lu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Hanwen Liu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Yubo Chen
- School of Materials Science and Engineering Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
- Energy Research Institute@NTU, ERI@N, Interdisciplinary Graduate School, Nanyang Technological University, Singapore, 639798, Singapore
- The Cambridge Centre for Advanced Research and Education in Singapore, 1 CREATE Way, Singapore, 138602, Singapore
| | - Günther G Scherer
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, 758307, Vietnam
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, 758307, Vietnam
| | - Adrian C Fisher
- The Cambridge Centre for Advanced Research and Education in Singapore, 1 CREATE Way, Singapore, 138602, Singapore
- Department of Chemical Engineering, University of Cambridge, Cambridge, CB2 3RA, UK
| | - Pinxian Xi
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Zhichuan J Xu
- School of Materials Science and Engineering Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
- Energy Research Institute@NTU, ERI@N, Interdisciplinary Graduate School, Nanyang Technological University, Singapore, 639798, Singapore
- The Cambridge Centre for Advanced Research and Education in Singapore, 1 CREATE Way, Singapore, 138602, Singapore
| | - Chun-Hua Yan
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, College of Chemistry and Molecular Engineering Peking University, Beijing, 100871, China
| |
Collapse
|
163
|
Li Y, Dastafkan K, Sun Q, Ma Y, Wang X, Yang X, Wang Z, Zhao C. Ni-based 3D hierarchical heterostructures achieved by selective electrodeposition as a bifunctional electrocatalyst for overall water splitting. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138042] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
164
|
Wang Q, Song Y, Sun D, Zhang L. MOF-Derived Fe-Doped Ni@NC Hierarchical Hollow Microspheres as an Efficient Electrocatalyst for Alkaline Oxygen Evolution Reaction. ACS OMEGA 2021; 6:11077-11082. [PMID: 34056261 PMCID: PMC8153895 DOI: 10.1021/acsomega.1c01132] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/01/2021] [Indexed: 06/12/2023]
Abstract
The development of low-cost and efficient electrocatalysts for oxygen evolution reaction (OER) is of great importance for producing hydrogen via water splitting. Metal-organic frameworks (MOFs) provide an opportunity for the facile preparation of high-efficiency OER electrocatalysts. In this work, we prepared iron-doped nickel nanoparticles encapsulated in nitrogen-doped carbon microspheres (Fe-Ni@NC) with a unique hierarchical porous structure by directly pyrolyzing the MOF precursor for effectively boosting OER. The Fe doping has a significant enhancement effect on the catalytic performance. The optimized Fe (5%)-Ni@NC catalyst represents a remarkable activity with an overpotential of 257 mV at 10 mA cm-2 and superior stability toward OER in 1.0 M KOH.
Collapse
Affiliation(s)
- Qianqian Wang
- College of Chemistry and Chemical Engineering,
State Key Laboratory of Bio-fibers and Eco-textiles, Qingdao University, Qingdao 266071 Shandong, P. R. China
| | - Yanyan Song
- College of Chemistry and Chemical Engineering,
State Key Laboratory of Bio-fibers and Eco-textiles, Qingdao University, Qingdao 266071 Shandong, P. R. China
| | - Deshuai Sun
- College of Chemistry and Chemical Engineering,
State Key Laboratory of Bio-fibers and Eco-textiles, Qingdao University, Qingdao 266071 Shandong, P. R. China
| | - Lixue Zhang
- College of Chemistry and Chemical Engineering,
State Key Laboratory of Bio-fibers and Eco-textiles, Qingdao University, Qingdao 266071 Shandong, P. R. China
| |
Collapse
|
165
|
Fan M, Zhang B, Wang L, Li Z, Liang X, Ai X, Zou X. Germanium-regulated adsorption site preference on ruthenium electrocatalyst for efficient hydrogen evolution. Chem Commun (Camb) 2021; 57:3889-3892. [PMID: 33871491 DOI: 10.1039/d1cc00559f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A magnesiothermic reduction route has been presented to synthesize phase-pure germanides that are not readily available traditionally. The obtained ruthenium germanide (RuGe) serves as an efficient non-Pt electrocatalyst for hydrogen evolution, and its intrinsic activity is very close to that of Pt. Our combined theoretical and experimental study demonstrates that the remarkable performance is derived from the germanium-induced change in hydrogen site preference from hollow to efficient Ru top sites.
Collapse
Affiliation(s)
- Meihong Fan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China. and State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun, 130012, China
| | - Bo Zhang
- International Center of Future Science, Jilin University, Changchun, 130012, China
| | - Lina Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China.
| | - Zhenyu Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China.
| | - Xiao Liang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China.
| | - Xuan Ai
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China.
| | - Xiaoxin Zou
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China.
| |
Collapse
|
166
|
González D, Heras-Domingo J, Sodupe M, Rodríguez-Santiago L, Solans-Monfort X. Importance of the oxyl character on the IrO2 surface dependent catalytic activity for the oxygen evolution reaction. J Catal 2021. [DOI: 10.1016/j.jcat.2021.02.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
167
|
Zhang Z, Jiang C, Li P, Yao K, Zhao Z, Fan J, Li H, Wang H. Benchmarking Phases of Ruthenium Dichalcogenides for Electrocatalysis of Hydrogen Evolution: Theoretical and Experimental Insights. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2007333. [PMID: 33590693 DOI: 10.1002/smll.202007333] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/07/2021] [Indexed: 06/12/2023]
Abstract
The hydrogen evolution reaction (HER) is a significant cathode step in electrochemical devices, especially in water splitting, but developing efficient HER catalysts remains a great challenge. Herein, comprehensive density functional theory calculations are presented to explore the intrinsic HER behaviors of a series of ruthenium dichalcogenide crystals (RuX2 , X = S, Se, Te). In addition, a simple and easily scaled production strategy is proposed to synthesize RuX2 nanoparticles uniformly deposited on carbon nanotubes. Consistent with theoretical predictions, the RuX2 catalysts exhibit impressive HER catalytic behavior. In particular, marcasite-type RuTe2 (RuTe2 -M) achieves Pt-like activity (35.7 mV at 10 mA cm-2 ) in an acidic electrolyte, and pyrite-type RuSe2 presents outstanding HER performance in an alkaline media (29.5 mV at 10 mA cm-2 ), even superior to that of commercial Pt/C. More importantly, a RuTe2 -M-based proton exchange membrane (PEM) electrolyzer and a RuSe2 -based anion exchange membrane (AEM) electrolyzer are also carefully assembled, and their outstanding single-cell performance points to them being efficient cathode candidates for use in hydrogen production. This work makes a significant contribution to the exploration of a new class of transition metal dichalcogenides with remarkable activity toward water electrolysis.
Collapse
Affiliation(s)
- Zhen Zhang
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China
- Department of Materials Science and Engineering, Shenzhen Key Laboratory of Hydrogen Energy, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Cheng Jiang
- Department of Materials Science and Engineering, Shenzhen Key Laboratory of Hydrogen Energy, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Ping Li
- State Key Laboratory for Mechanical Behavior of Materials, Center for Spintronics and Quantum Systems, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, Shanxi, 710049, China
| | - Keguang Yao
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China
- Department of Materials Science and Engineering, Shenzhen Key Laboratory of Hydrogen Energy, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Zhiliang Zhao
- Department of Materials Science and Engineering, Shenzhen Key Laboratory of Hydrogen Energy, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Jiantao Fan
- Department of Materials Science and Engineering, Shenzhen Key Laboratory of Hydrogen Energy, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Hui Li
- Department of Materials Science and Engineering, Shenzhen Key Laboratory of Hydrogen Energy, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Haijiang Wang
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| |
Collapse
|
168
|
Zhang B, Zheng Y, Ma T, Yang C, Peng Y, Zhou Z, Zhou M, Li S, Wang Y, Cheng C. Designing MOF Nanoarchitectures for Electrochemical Water Splitting. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2006042. [PMID: 33749910 PMCID: PMC11468660 DOI: 10.1002/adma.202006042] [Citation(s) in RCA: 139] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/18/2020] [Indexed: 02/05/2023]
Abstract
Electrochemical water splitting has attracted significant attention as a key pathway for the development of renewable energy systems. Fabricating efficient electrocatalysts for these processes is intensely desired to reduce their overpotentials and facilitate practical applications. Recently, metal-organic framework (MOF) nanoarchitectures featuring ultrahigh surface areas, tunable nanostructures, and excellent porosities have emerged as promising materials for the development of highly active catalysts for electrochemical water splitting. Herein, the most pivotal advances in recent research on engineering MOF nanoarchitectures for efficient electrochemical water splitting are presented. First, the design of catalytic centers for MOF-based/derived electrocatalysts is summarized and compared from the aspects of chemical composition optimization and structural functionalization at the atomic and molecular levels. Subsequently, the fast-growing breakthroughs in catalytic activities, identification of highly active sites, and fundamental mechanisms are thoroughly discussed. Finally, a comprehensive commentary on the current primary challenges and future perspectives in water splitting and its commercialization for hydrogen production is provided. Hereby, new insights into the synthetic principles and electrocatalysis for designing MOF nanoarchitectures for the practical utilization of water splitting are offered, thus further promoting their future prosperity for a wide range of applications.
Collapse
Affiliation(s)
- Ben Zhang
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
| | - Yijuan Zheng
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
| | - Tian Ma
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
- West China School of Medicine/West China HospitalSichuan UniversityChengdu610041China
| | - Chengdong Yang
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
| | - Yifei Peng
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
| | - Zhihao Zhou
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
| | - Mi Zhou
- College of Biomass Science and EngineeringSichuan UniversityChengdu610065China
| | - Shuang Li
- Functional MaterialsDepartment of ChemistryTechnische Universität BerlinHardenbergstraße 4010623BerlinGermany
| | - Yinghan Wang
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
| | - Chong Cheng
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
- Department of Chemistry and BiochemistryFreie Universität BerlinTakustraße 314195BerlinGermany
| |
Collapse
|
169
|
Zhu J, Guo Y, Liu F, Xu H, Gong L, Shi W, Chen D, Wang P, Yang Y, Zhang C, Wu J, Luo J, Mu S. Regulative Electronic States around Ruthenium/Ruthenium Disulphide Heterointerfaces for Efficient Water Splitting in Acidic Media. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101539] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Jiawei Zhu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Wuhan University of Technology Wuhan 430070 P. R. China
- Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory Xianhu Hydrogen Valley Foshan 528200 P. R. China
| | - Yao Guo
- Department of Chemical and Environmental Engineering Anyang Institute of Technology Anyang 455000 P. R. China
| | - Fang Liu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Wuhan University of Technology Wuhan 430070 P. R. China
- NRC (Nanostructure Research Centre) Wuhan University of Technology Wuhan 430070 P. R. China
| | - Hanwen Xu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Wuhan University of Technology Wuhan 430070 P. R. China
| | - Lei Gong
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Wuhan University of Technology Wuhan 430070 P. R. China
| | - Wenjie Shi
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Wuhan University of Technology Wuhan 430070 P. R. China
| | - Ding Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Wuhan University of Technology Wuhan 430070 P. R. China
| | - Pengyan Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Wuhan University of Technology Wuhan 430070 P. R. China
| | - Yue Yang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Wuhan University of Technology Wuhan 430070 P. R. China
| | - Chengtian Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Wuhan University of Technology Wuhan 430070 P. R. China
| | - Jinsong Wu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Wuhan University of Technology Wuhan 430070 P. R. China
- NRC (Nanostructure Research Centre) Wuhan University of Technology Wuhan 430070 P. R. China
| | - Jiahuan Luo
- Department of Chemical and Environmental Engineering Anyang Institute of Technology Anyang 455000 P. R. China
| | - Shichun Mu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Wuhan University of Technology Wuhan 430070 P. R. China
- Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory Xianhu Hydrogen Valley Foshan 528200 P. R. China
| |
Collapse
|
170
|
Zhu J, Guo Y, Liu F, Xu H, Gong L, Shi W, Chen D, Wang P, Yang Y, Zhang C, Wu J, Luo J, Mu S. Regulative Electronic States around Ruthenium/Ruthenium Disulphide Heterointerfaces for Efficient Water Splitting in Acidic Media. Angew Chem Int Ed Engl 2021; 60:12328-12334. [DOI: 10.1002/anie.202101539] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Indexed: 12/14/2022]
Affiliation(s)
- Jiawei Zhu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Wuhan University of Technology Wuhan 430070 P. R. China
- Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory Xianhu Hydrogen Valley Foshan 528200 P. R. China
| | - Yao Guo
- Department of Chemical and Environmental Engineering Anyang Institute of Technology Anyang 455000 P. R. China
| | - Fang Liu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Wuhan University of Technology Wuhan 430070 P. R. China
- NRC (Nanostructure Research Centre) Wuhan University of Technology Wuhan 430070 P. R. China
| | - Hanwen Xu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Wuhan University of Technology Wuhan 430070 P. R. China
| | - Lei Gong
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Wuhan University of Technology Wuhan 430070 P. R. China
| | - Wenjie Shi
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Wuhan University of Technology Wuhan 430070 P. R. China
| | - Ding Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Wuhan University of Technology Wuhan 430070 P. R. China
| | - Pengyan Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Wuhan University of Technology Wuhan 430070 P. R. China
| | - Yue Yang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Wuhan University of Technology Wuhan 430070 P. R. China
| | - Chengtian Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Wuhan University of Technology Wuhan 430070 P. R. China
| | - Jinsong Wu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Wuhan University of Technology Wuhan 430070 P. R. China
- NRC (Nanostructure Research Centre) Wuhan University of Technology Wuhan 430070 P. R. China
| | - Jiahuan Luo
- Department of Chemical and Environmental Engineering Anyang Institute of Technology Anyang 455000 P. R. China
| | - Shichun Mu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Wuhan University of Technology Wuhan 430070 P. R. China
- Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory Xianhu Hydrogen Valley Foshan 528200 P. R. China
| |
Collapse
|
171
|
Tan L, Zhang A, Liu Z, Wei P, Yang P, Guo H, Fang H, Han J, Zhu Y, Ren Z. Nanostructured RuO 2-Co 3O 4@RuCo-EO with low Ru loading as a high-efficiency electrochemical oxygen evolution catalyst. RSC Adv 2021; 11:11779-11785. [PMID: 35423785 PMCID: PMC8696486 DOI: 10.1039/d1ra00271f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/17/2021] [Indexed: 11/28/2022] Open
Abstract
Electrochemical water splitting technology is considered to be the most reliable method for converting renewable energy such as wind and solar energy into hydrogen. Here, a nanostructured RuO2/Co3O4–RuCo-EO electrode is designed via magnetron sputtering combined with electrochemical oxidation for the oxygen evolution reaction (OER) in an alkaline medium. The optimized RuO2/Co3O4–RuCo-EO electrode with a Ru loading of 0.064 mg cm−2 exhibits excellent electrocatalytic performance with a low overpotential of 220 mV at the current density of 10 mA cm−2 and a low Tafel slope of 59.9 mV dec−1 for the OER. Compared with RuO2 prepared by thermal decomposition, its overpotential is reduced by 82 mV. Meanwhile, compared with RuO2 prepared by magnetron sputtering, the overpotential is also reduced by 74 mV. Furthermore, compared with the RuO2/Ru with core–shell structure (η = 244 mV), the overpotential is still decreased by 24 mV. Therefore, the RuO2/Co3O4–RuCo-EO electrode has excellent OER activity. There are two reasons for the improvement of the OER activity. On the one hand, the core–shell structure is conducive to electron transport, and on the other hand, the addition of Co adjusts the electronic structure of Ru. The optimized RuO2/Co3O4–RuCo-EO electrode with Ru loading of 0.064 mg cm−2 exhibits the excellent oxygen evolution activity with an overpotential of 220 mV at the current density of 10 mA cm−2 and a Tafel slope of 59.9 mV dec−1.![]()
Collapse
Affiliation(s)
- Lingjun Tan
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University Wuhan 430023 P. R. China
| | - Ailian Zhang
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University Wuhan 430023 P. R. China
| | - Ziyi Liu
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University Wuhan 430023 P. R. China
| | - Ping'an Wei
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University Wuhan 430023 P. R. China
| | - Panpan Yang
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University Wuhan 430023 P. R. China
| | - Huan Guo
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University Wuhan 430023 P. R. China
| | - Hua Fang
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University Wuhan 430023 P. R. China
| | - Juanjuan Han
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University Wuhan 430023 P. R. China
| | - Yuchan Zhu
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University Wuhan 430023 P. R. China
| | - Zhandong Ren
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University Wuhan 430023 P. R. China
| |
Collapse
|
172
|
Nishimoto T, Shinagawa T, Naito T, Takanabe K. Delivering the Full Potential of Oxygen Evolving Electrocatalyst by Conditioning Electrolytes at Near-Neutral pH. CHEMSUSCHEM 2021; 14:1554-1564. [PMID: 33481326 PMCID: PMC8048901 DOI: 10.1002/cssc.202002813] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/12/2021] [Indexed: 05/06/2023]
Abstract
This study reports on the impact of identity and compositions of buffer ions on oxygen evolution reaction (OER) performance at a wide range of pH levels using a model IrOx electrocatalyst. Rigorous microkinetic analysis employing kinetic isotope effects, Tafel analysis, and temperature dependence measurement was conducted to establish rate expression isolated from the diffusion contribution of buffer ions and solution resistance. It was found that the OER kinetics was facile with OH- oxidation compared to H2 O, the results of which were highlighted by mitigating over 200 mV overpotential in the presence of buffer to reach 10 mA cm-2 . This improvement was ascribed to the involvement of the kinetics of the local OH- supply by the buffering action. Further digesting the kinetic data at various buffer pKa and the solution bulk pH disclosed a trade-off between the exchange current density and the Tafel slope, indicating that the optimal electrolyte condition can be chosen at a different range of current density. This study provides a quantitative guideline for electrolyte engineering to maximize the intrinsic OER performance that electrocatalyst possesses especially at near-neutral pH.
Collapse
Affiliation(s)
- Takeshi Nishimoto
- Department of Chemical System Engineering, School of EngineeringThe University of Tokyo7-3-1 Hongo, Bunkyo-kuTokyoJapan
| | - Tatsuya Shinagawa
- Department of Chemical System Engineering, School of EngineeringThe University of Tokyo7-3-1 Hongo, Bunkyo-kuTokyoJapan
| | - Takahiro Naito
- Department of Chemical System Engineering, School of EngineeringThe University of Tokyo7-3-1 Hongo, Bunkyo-kuTokyoJapan
| | - Kazuhiro Takanabe
- Department of Chemical System Engineering, School of EngineeringThe University of Tokyo7-3-1 Hongo, Bunkyo-kuTokyoJapan
| |
Collapse
|
173
|
Mondal P, Satra J, Srivastava DN, Bhadu GR, Adhikary B. Pd δ+-Mediated Surface Engineering of AgMnO 4 Nanorods as Advanced Bifunctional Electrocatalysts for Highly Efficient Water Electrolysis. ACS Catal 2021. [DOI: 10.1021/acscatal.0c05638] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Papri Mondal
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103, West Bengal, India
| | - Jit Satra
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103, West Bengal, India
| | - Divesh N. Srivastava
- Department of Analytical Science, Central Salt and Marine Chemicals Research Institute, Gijubhai, Badheka Marg, Bhavnagar 364002, Gujarat, India
| | - Gopala Ram Bhadu
- Department of Analytical Science, Central Salt and Marine Chemicals Research Institute, Gijubhai, Badheka Marg, Bhavnagar 364002, Gujarat, India
| | - Bibhutosh Adhikary
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103, West Bengal, India
| |
Collapse
|
174
|
Wu YL, Li X, Wei YS, Fu Z, Wei W, Wu XT, Zhu QL, Xu Q. Ordered Macroporous Superstructure of Nitrogen-Doped Nanoporous Carbon Implanted with Ultrafine Ru Nanoclusters for Efficient pH-Universal Hydrogen Evolution Reaction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2006965. [PMID: 33598974 DOI: 10.1002/adma.202006965] [Citation(s) in RCA: 125] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/01/2020] [Indexed: 05/23/2023]
Abstract
The electrochemical hydrogen evolution reaction (HER) is an attractive technology for the mass production of hydrogen. Ru-based materials are promising electrocatalysts owing to the similar bonding strength with hydrogen but much lower cost than Pt catalysts. Herein, an ordered macroporous superstructure of N-doped nanoporous carbon anchored with the ultrafine Ru nanoclusters as electrocatalytic micro/nanoreactors is developed via the thermal pyrolysis of ordered macroporous single crystals of ZIF-8 accommodating Ru(III) ions. Benefiting from the highly interconnected reticular macro-nanospaces, this superstrucure affords unparalleled performance for pH-universal HER, with order of magnitude higher mass activity compared to the benchmark Pt/C. Notably, an exceptionally low overpotential of only 13 mV@10 mA cm-2 is required for HER in alkaline solution, with a low Tafel slope of 40.41 mV dec-1 and an ultrahigh turnover frequency value of 1.6 H2 s-1 at 25 mV, greatly outperforming Pt/C. Furthermore, the hydrogen generation rates are almost twice those of Pt/C during practical overall alkaline water splitting. A solar-to-hydrogen system is also demonstrated to further promote the application. This research may open a new avenue for the development of advanced electrocatalytic micro/nanoreactors with controlled morphology and excellent performance for future energy applications.
Collapse
Affiliation(s)
- Yu-Lin Wu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences (CAS), Fuzhou, 350002, China
| | - Xiaofang Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences (CAS), Fuzhou, 350002, China
| | - Yong-Sheng Wei
- AIST-Kyoto University Chemical Energy Materials Open Innovation Laboratory (ChEM-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Sakyo-ku, Kyoto, 6068501, Japan
| | - Zhaoming Fu
- Physics and Electronic Information College, Yunnan Normal University, Kunming, 650500, China
| | - Wenbo Wei
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences (CAS), Fuzhou, 350002, China
| | - Xin-Tao Wu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences (CAS), Fuzhou, 350002, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, 350108, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qi-Long Zhu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences (CAS), Fuzhou, 350002, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, 350108, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiang Xu
- AIST-Kyoto University Chemical Energy Materials Open Innovation Laboratory (ChEM-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Sakyo-ku, Kyoto, 6068501, Japan
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, China
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Xueyuan Ave, Nanshan, Shenzhen, Guangdong, 518055, China
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| |
Collapse
|
175
|
Effect of Spin Coating Parameters on the Electrochemical Properties of Ruthenium Oxide Thin Films. ELECTROCHEM 2021. [DOI: 10.3390/electrochem2010008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Ruthenium oxide (RuOx) thin films were spin coated by thermal decomposition of alcoholic solutions of RuCl3 on titanium foils and subsequently annealed at 400 °C. The effect of spin coating parameters, such as spinning speed, volume, and molar concentration of the precursor as well as the number of deposits, on the morphology and electrochemical performance of the electrodes was investigated. The films were characterized by scanning electron microscopy (SEM) equipped with energy-dispersive X-ray spectroscopy (EDX), cyclic voltammetry (CV) with and without chloride, and linear sweep voltammetry (LSV). The prepared materials were also compared to drop cast films and spin-coated films obtained by adopting low-temperature intermediate treatments. The results indicate that even dispersion of the oxide layer was always achieved. By tuning the spin coating parameters, it was possible to obtain different electrochemical responses. The most influential parameter is the number of deposits, while the concentration of the precursor salt and the rotation speed were less relevant, under the adopted conditions.
Collapse
|
176
|
Cui Z, Duan S, Yao S, Pan T, Dai D, Gao H. Investigation of the Electrocatalytic Activity of CuRu Alloy and Its Mechanism for Hydrogen Evolution Reaction. ChemElectroChem 2021. [DOI: 10.1002/celc.202100044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Zhao Cui
- College of Chemistry and Molecular Engineering State Key Laboratory Base of Eco-Chemical Engineering Qingdao University of Science & Technology Qingdao 266042 P. R. China
| | - Shengquan Duan
- College of Chemistry and Molecular Engineering State Key Laboratory Base of Eco-Chemical Engineering Qingdao University of Science & Technology Qingdao 266042 P. R. China
| | - Shuangshuang Yao
- College of Chemistry and Molecular Engineering State Key Laboratory Base of Eco-Chemical Engineering Qingdao University of Science & Technology Qingdao 266042 P. R. China
| | - Ting Pan
- College of Chemistry and Molecular Engineering State Key Laboratory Base of Eco-Chemical Engineering Qingdao University of Science & Technology Qingdao 266042 P. R. China
| | - Dongmei Dai
- College of Chemistry and Molecular Engineering State Key Laboratory Base of Eco-Chemical Engineering Qingdao University of Science & Technology Qingdao 266042 P. R. China
| | - Hongtao Gao
- College of Chemistry and Molecular Engineering State Key Laboratory Base of Eco-Chemical Engineering Qingdao University of Science & Technology Qingdao 266042 P. R. China
| |
Collapse
|
177
|
Sadeghi E, Peighambardoust NS, Khatamian M, Unal U, Aydemir U. Metal doped layered MgB 2 nanoparticles as novel electrocatalysts for water splitting. Sci Rep 2021; 11:3337. [PMID: 33558628 PMCID: PMC7870881 DOI: 10.1038/s41598-021-83066-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 01/28/2021] [Indexed: 11/17/2022] Open
Abstract
Growing environmental problems along with the galloping rate of population growth have raised an unprecedented challenge to look for an ever-lasting alternative source of energy for fossil fuels. The eternal quest for sustainable energy production strategies has culminated in the electrocatalytic water splitting process integrated with renewable energy resources. The successful accomplishment of this process is thoroughly subject to competent, earth-abundant, and low-cost electrocatalysts to drive the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER), preferably, in the same electrolyte. The present contribution has been dedicated to studying the synthesis, characterization, and electrochemical properties of newfangled electrocatalysts with the formal composition of Mg1-xTMxB2 (x = 0.025, 0.05, and 0.1; TM (transition metal) = Fe and Co) primarily in HER as well as OER under 1 M KOH medium. The electrochemical tests revealed that among all the metal-doped MgB2 catalysts, Mg0.95Co0.05B2 has the best HER performance showing an overpotential of 470 mV at - 10 mA cm-2 and a Tafel slope of 80 mV dec-1 on account of its high purity and fast electron transport. Further investigation shed some light on the fact that Fe concentration and overpotential for HER have adverse relation meaning that the highest amount of Fe doping (x = 0.1) displayed the lowest overpotential. This contribution introduces not only highly competent electrocatalysts composed of low-cost precursors for the water-splitting process but also a facile scalable method for the assembly of highly porous electrodes paving the way for further stunning developments in the field.
Collapse
Affiliation(s)
- Ebrahim Sadeghi
- Koç University Boron and Advanced Materials Application and Research Center (KUBAM), 34450, Sariyer, Istanbul, Turkey
- Graduate School of Sciences and Engineering, Koç University, 34450, Sariyer, Istanbul, Turkey
| | - Naeimeh Sadat Peighambardoust
- Koç University Boron and Advanced Materials Application and Research Center (KUBAM), 34450, Sariyer, Istanbul, Turkey
| | - Masoumeh Khatamian
- Inorganic Chemistry Department, Faculty of Chemistry, University of Tabriz, 5166616471, Tabriz, Iran
| | - Ugur Unal
- Koç University Surface Science and Technology Center (KUYTAM), 34450, Sariyer, Istanbul, Turkey
- Department of Chemistry, Koç University, 34450, Sariyer, Istanbul, Turkey
| | - Umut Aydemir
- Koç University Boron and Advanced Materials Application and Research Center (KUBAM), 34450, Sariyer, Istanbul, Turkey.
- Department of Chemistry, Koç University, 34450, Sariyer, Istanbul, Turkey.
| |
Collapse
|
178
|
Elucidating intrinsic contribution of d-orbital states to oxygen evolution electrocatalysis in oxides. Nat Commun 2021; 12:824. [PMID: 33547273 PMCID: PMC7865077 DOI: 10.1038/s41467-021-21055-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 01/08/2021] [Indexed: 01/30/2023] Open
Abstract
Although numerous studies on oxide catalysts for an efficient oxygen evolution reaction have been carried out to compare their catalytic performance and suggest new compositions, two significant constraints have been overlooked. One is the difference in electronic conduction behavior between catalysts (metallic versus insulating) and the other is the strong crystallographic surface orientation dependence of the catalysis in a crystal. Consequently, unless a comprehensive comparison of the oxygen-evolution catalytic activity between samples is made on a crystallographically identical surface with sufficient electron conduction, misleading interpretations on the catalytic performance and mechanism may be unavoidable. To overcome these limitations, we utilize both metallic (001) LaNiO3 epitaxial thin films together with metal dopants and semiconducting (001) LaCoO3 epitaxial thin films supported with a conductive interlayer. We identify that Fe, Cr, and Al are beneficial to enhance the catalysis in LaNiO3 although their perovskite counterparts, LaFeO3, LaCrO3, and LaAlO3, with a large bandgap are inactive. Furthermore, semiconducting LaCoO3 is found to have more than one order higher activity than metallic LaNiO3, in contrast to previous reports. Showing the importance of facilitating electron conduction, our work highlights the impact of the near-Fermi-level d-orbital states on the oxygen-evolution catalysis performance in perovskite oxides.
Collapse
|
179
|
Li Y, Guo Y, Yang S, Li Q, Chen S, Lu B, Zou H, Liu X, Tong X, Yang H. Mesoporous RhRu Nanosponges with Enhanced Water Dissociation toward Efficient Alkaline Hydrogen Evolution. ACS APPLIED MATERIALS & INTERFACES 2021; 13:5052-5060. [PMID: 33480250 DOI: 10.1021/acsami.0c19571] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Lowering the energy barrier of water dissociation is critical to achieving highly efficient hydrogen evolution in alkaline conditions. Herein, we reported mesoporous RhRu nanosponges with enhanced water dissociation behavior as a new class of high-performance electrocatalysts for alkaline hydrogen evolution reaction (HER). The obtained nanosponges have a binary alloy structure (fcc) and a highly porous structure with high surface area. Our RhRu catalyst displayed an outstanding HER activity with an overpotential of 25 mV at 10 mA cm-2 and a Tafel slope of 47.5 mV dec-1 in 1.0 M KOH, which significantly outperformed that of commercial Pt/C catalyst and was even comparable to the classic Pt/metal (hydro)oxide catalysts. Density functional theory (DFT) calculations disclosed that charge redistribution on the RhRu alloy surface enabled tuning of the Ru d-band center and then promoted the adsorption and dissociation of water molecules. Based on the experimental results and theoretical modeling, a bifunctional mechanism contributed to the remarkable alkaline HER activity on the RhRu catalyst surface.
Collapse
Affiliation(s)
- Yuan Li
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Yan Guo
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Sufang Yang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qibiao Li
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Shuai Chen
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
| | - Baoying Lu
- Guangxi University of Science and Technology, Liuzhou 545000, China
| | - Houbing Zou
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Xingchen Liu
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
| | - Xili Tong
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
| | - Hengquan Yang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
180
|
Jiang D, Xu S, Quan B, Liu C, Lu Y, Zhu J, Tian D, Li D. Synergistically coupling of Fe-doped CoP nanocubes with CoP nanosheet arrays towards enhanced and robust oxygen evolution electrocatalysis. J Colloid Interface Sci 2021; 591:67-75. [PMID: 33601106 DOI: 10.1016/j.jcis.2021.01.084] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/24/2021] [Accepted: 01/25/2021] [Indexed: 12/30/2022]
Abstract
The rational design of high-performance and low-cost oxygen evolution reaction (OER) electrocatalysts for water splitting is of vital importance for development of renewable hydrogen energy. Herein, we demonstrate an interfacial engineering strategy to prepare Fe-doped CoP nanocubes/CoP nanosheet arrays heterostructure supported on carbon cloth (denoted as CoFeP/CoP/CC). The resultant CoFeP/CoP/CC heterostructure catalyst possesses abundant heterogeneous interfaces, which enables the exposure of reaction active sites and possibly modulation of electronic structure of the catalyst. Furthermore, this strong interfacial coupling of CoFeP and CoP as well as the integration structure on the carbon cloth guarantee high electronic conductivity and enhanced mechanical stability. Benefiting from these advantages, the CoFeP/CoP/CC-heterostructure exhibits high electrocatalytic OER performance with a low overpotential of 240 mV for reaching a current density of 10 mA cm-2, which outperforms the commercial noble metal RuO2 (255 mV) and many reported TMPs-based electrocatalysts. Moreover, this CoFeP/CoP/CC catalyst shows a remarkable OER catalytic stability over 100 h. This work provides an effective avenue for the design of the high-performance OER catalyst by interfacial engineering strategy.
Collapse
Affiliation(s)
- Deli Jiang
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China.
| | - Shengjie Xu
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Biao Quan
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Chenchen Liu
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Yikai Lu
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Jianjun Zhu
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Dan Tian
- College of Materials Science and Engineering, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China
| | - Di Li
- Institute for Energy Research, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China.
| |
Collapse
|
181
|
Direct growth of holey Fe3O4-coupled Ni(OH)2 sheets on nickel foam for the oxygen evolution reaction. CHINESE JOURNAL OF CATALYSIS 2021. [DOI: 10.1016/s1872-2067(20)63639-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
182
|
Zhang Y, Qiu Y, Wang Y, Li B, Zhang Y, Ma Z, Liu S. Coaxial Ni-S@N-Doped Carbon Nanofibers Derived Hierarchical Electrodes for Efficient H 2 Production via Urea Electrolysis. ACS APPLIED MATERIALS & INTERFACES 2021; 13:3937-3948. [PMID: 33439615 DOI: 10.1021/acsami.0c19117] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Electrochemical water splitting into hydrogen is a promising strategy for hydrogen production powered by solar energy. However, the cell voltage of an electrolyzer is still too high for practical application, which is mainly limited by the sluggish oxygen evolution reaction process. To this end, hybrid water electrolyzers have drawn tremendous attention. Herein, coaxial Ni/Ni3S2@N-doped nanofibers are directly grown on nickel foam (NF), which is highly active for hydrogen evolution reaction. Meanwhile, the Ni3S2@N-doped nanofibers on NF prepared in an Ar atmosphere display superior urea oxidation reaction performance to previously reported catalysts. The cell voltage is about 1.50 V in urea electrolysis to deliver a current density of 20 mA cm-2, lower than that of a traditional water electrolyzer (1.82 V). The current density is around 77% relative to its initial value of 20 mA cm-2 after 20 h, superior to Pt/C|Ir/C-based urea electrolysis (14%). It is found that the synergistic effect between metallic Ni and Ni3S2, as well as the interfacial effect between metal centers and N-doped carbon, favors the initial dissociation of H2O and the adsorption/desorption of H* with thermal neutral Gibbs free energy. Meanwhile, the in-situ generated NiOOH on the outer surface of Ni3S2 possessed lower electrochemical activation energy for urea decomposition. Meanwhile, the abundant oxygen vacancies in electrodes could expose more active sites for the adsorption of intermediates, including H* and OOH*. It is also found that the hierarchical nanostructure of densely packed nanowires provides ideal electronic and ionic transport paths for fast electrocatalytic kinetics. The present work indicated that the modulation of compositions and hierarchical nanostructure is effective to prepare efficient catalysts for H2 production via urea electrolysis.
Collapse
Affiliation(s)
- Yongxia Zhang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150080, P. R. China
| | - Yunfeng Qiu
- Key Laboratory of Micro-Systems and Micro-Structures Manufacturing, Ministry of Education, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150080, P. R. China
| | - Yanping Wang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150080, P. R. China
| | - Bing Li
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150080, P. R. China
| | - Yuanyuan Zhang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150080, P. R. China
| | - Zhuo Ma
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, P. R. China
| | - Shaoqin Liu
- Key Laboratory of Micro-Systems and Microstructures Manufacturing, Ministry of Education, Harbin Institute of Technology, Harbin 150080, P. R. China
| |
Collapse
|
183
|
Nash AG, Breyer CJ, Vincenzini BD, Elliott GI, Niklas J, Poluektov OG, Rheingold AL, Smith DK, Musaev DG, Grotjahn DB. An Active‐Site Sulfonate Group Creates a Fast Water Oxidation Electrocatalyst That Exhibits High Activity in Acid. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202008896] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Aaron G. Nash
- Department of Chemistry and Biochemistry San Diego State University 5500 Campanile Drive San Diego CA 92182-1030 USA
| | - Colton J. Breyer
- Department of Chemistry and Biochemistry San Diego State University 5500 Campanile Drive San Diego CA 92182-1030 USA
| | - Brett D. Vincenzini
- Department of Chemistry and Biochemistry San Diego State University 5500 Campanile Drive San Diego CA 92182-1030 USA
| | - Gregory I. Elliott
- Department of Chemistry and Biochemistry San Diego State University 5500 Campanile Drive San Diego CA 92182-1030 USA
| | - Jens Niklas
- Solar Energy Conversion Group Argonne National Laboratory 9700 S. Cass Ave. Lemont IL 60439 USA
| | - Oleg G. Poluektov
- Solar Energy Conversion Group Argonne National Laboratory 9700 S. Cass Ave. Lemont IL 60439 USA
| | - Arnold L. Rheingold
- Department of Chemistry and Biochemistry University of California, San Diego 9500 Gilman Drive La Jolla CA 92093 USA
| | - Diane K. Smith
- Department of Chemistry and Biochemistry San Diego State University 5500 Campanile Drive San Diego CA 92182-1030 USA
| | | | - Douglas B. Grotjahn
- Department of Chemistry and Biochemistry San Diego State University 5500 Campanile Drive San Diego CA 92182-1030 USA
| |
Collapse
|
184
|
Li D, Liu C, Ma W, Xu S, Lu Y, Wei W, Zhu J, Jiang D. Fe-doped NiCoP/Prussian blue analog hollow nanocubes as an efficient electrocatalyst for oxygen evolution reaction. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2020.137492] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
185
|
Nanomaterials as electrocatalyst for hydrogen and oxygen evolution reaction: Exploitation of challenges and current progressions. Polyhedron 2021. [DOI: 10.1016/j.poly.2020.114871] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
186
|
Ahmed Z, Bagchi V. Current trends and perspectives on emerging Fe-derived noble-metal-free oxygen electrocatalysts. NEW J CHEM 2021. [DOI: 10.1039/d1nj05062a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This article discusses recent progress in the development of Fe-derived noble metal-free electrocatalysts, including the strategies used for design, synthesis, and assessment of their performance in alkaline conditions.
Collapse
Affiliation(s)
- Zubair Ahmed
- Institute of Nano Science and Technology (INST) Sector-81, Knowledge City, Sahibzada Ajit Singh Nagar, Punjab, 140306, India
| | - Vivek Bagchi
- Institute of Nano Science and Technology (INST) Sector-81, Knowledge City, Sahibzada Ajit Singh Nagar, Punjab, 140306, India
| |
Collapse
|
187
|
Cong N, Han Y, Tan L, Zhai C, Chen H, Han J, Fang H, Zhou X, Zhu Y, Ren Z. Nanoporous RuO2 characterized by RuO(OH)2 surface phase as an efficient bifunctional catalyst for overall water splitting in alkaline solution. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2020.114955] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
188
|
Naito T, Shinagawa T, Nishimoto T, Takanabe K. Recent advances in understanding oxygen evolution reaction mechanisms over iridium oxide. Inorg Chem Front 2021. [DOI: 10.1039/d0qi01465f] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Recent spectroscopic and computational studies concerning the oxygen evolution reaction over iridium oxides are reviewed to provide the state-of-the-art understanding of its reaction mechanism.
Collapse
Affiliation(s)
- Takahiro Naito
- Department of Chemical System Engineering
- School of Engineering
- The University of Tokyo
- Tokyo
- Japan
| | - Tatsuya Shinagawa
- Department of Chemical System Engineering
- School of Engineering
- The University of Tokyo
- Tokyo
- Japan
| | - Takeshi Nishimoto
- Department of Chemical System Engineering
- School of Engineering
- The University of Tokyo
- Tokyo
- Japan
| | - Kazuhiro Takanabe
- Department of Chemical System Engineering
- School of Engineering
- The University of Tokyo
- Tokyo
- Japan
| |
Collapse
|
189
|
Zhang Z, Li S, Bu X, Dai Y, Wang J, Bao X, Wang T. Hollow ZIF-67 derived porous cobalt sulfide as an efficient bifunctional electrocatalyst for overall water splitting. NEW J CHEM 2021. [DOI: 10.1039/d1nj01874d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A hollow ZIF-67 templating approach was used to fabricate a hollow cobalt sulfide superstructure with enhanced activity for overall water splitting.
Collapse
Affiliation(s)
- Zewu Zhang
- School of Materials Science and Engineering, Nanjing Institute of Technology, Nanjing 21167, P. R. China
- Jiangsu Key Laboratory of Advanced Structural Materials and Application Technology, Nanjing 21167, P. R. China
- School of Materials Science and Engineering, Southeast University, Nanjing 21189, P. R. China
| | - Shijia Li
- School of Materials Science and Engineering, Nanjing Institute of Technology, Nanjing 21167, P. R. China
- Jiangsu Key Laboratory of Advanced Structural Materials and Application Technology, Nanjing 21167, P. R. China
| | - Xiaohai Bu
- School of Materials Science and Engineering, Nanjing Institute of Technology, Nanjing 21167, P. R. China
- Jiangsu Key Laboratory of Advanced Structural Materials and Application Technology, Nanjing 21167, P. R. China
- School of Materials Science and Engineering, Southeast University, Nanjing 21189, P. R. China
| | - Yifan Dai
- School of Materials Science and Engineering, Nanjing Institute of Technology, Nanjing 21167, P. R. China
- Jiangsu Key Laboratory of Advanced Structural Materials and Application Technology, Nanjing 21167, P. R. China
| | - Jingxi Wang
- School of Materials Science and Engineering, Nanjing Institute of Technology, Nanjing 21167, P. R. China
- Jiangsu Key Laboratory of Advanced Structural Materials and Application Technology, Nanjing 21167, P. R. China
| | - Xuwen Bao
- School of Materials Science and Engineering, Nanjing Institute of Technology, Nanjing 21167, P. R. China
- Jiangsu Key Laboratory of Advanced Structural Materials and Application Technology, Nanjing 21167, P. R. China
| | - Tong Wang
- School of Materials Science and Engineering, Nanjing Institute of Technology, Nanjing 21167, P. R. China
- Jiangsu Key Laboratory of Advanced Structural Materials and Application Technology, Nanjing 21167, P. R. China
| |
Collapse
|
190
|
Chen X, Zhang J, Huang C, Wu Q, Wu J, Xia L, Xu Q, Yao W. Modification of Black Phosphorus Nanosheets with a Ni-Containing Carbon Layer as Efficient and Stable Hydrogen Production Electrocatalysts. ACS APPLIED MATERIALS & INTERFACES 2020; 12:54619-54626. [PMID: 33226204 DOI: 10.1021/acsami.0c15236] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Few-layered black phosphorus (FP) has recently attracted extensive research in the energy and materials fields. However, because of its chemically unstable nature under ambient conditions, very positive hydrogen adsorption energy and less active sites, FP has not been an efficient catalyst for the hydrogen evolution reaction (HER). In this research, we have developed a new strategy to overcome FP's drawbacks and to make it an active and stable HER catalyst. Our approach is to deposit a Ni2+-anchored thin carbon layer onto the surface of FP via controlled decarboxylation of Ni ethylenediaminetetraacetate (Ni-EDTA). The carbon layer on the surface of FP prevents it from making direct contact with its external environment, thereby greatly improving its stability. At the same time, transition-metal Ni that is dispersed in its carbon layer changes its hydrogen adsorption energy so as to improve its electrocatalytic activity. The prepared FP@Ni-C shows an outstanding HER performance with an overpotential of only 284 mV to obtain 10 mA cm-2 current density with excellent electrocatalytic stability. The FP@Ni-C catalyst showed almost no activity loss during a 12 h catalyst life test. This study provides a new approach to the synthesis of highly efficient and stable electrocatalysts based on two-dimensional materials, using a facile catalyst preparation method.
Collapse
Affiliation(s)
- Xiaoxian Chen
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, College of Environmental & Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, P. R. China
| | - Jun Zhang
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, College of Environmental & Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, P. R. China
| | - Cunping Huang
- Aviation Fuels Research Laboratory, FAA William J. Hughes Technical Center, Atlantic City International Airport, Egg Harbor Township, New Jersey 08405, United States
| | - Qiang Wu
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, College of Environmental & Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, P. R. China
| | - Jiang Wu
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, College of Environmental & Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, P. R. China
| | - Ligang Xia
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, College of Environmental & Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, P. R. China
| | - Qunjie Xu
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, College of Environmental & Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, P. R. China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200090, PR China
- Shanghai Engineering Research Center of Heat-exchange System and Energy Saving, Shanghai University of Electric Power, Shanghai 200090, PR China
| | - Weifeng Yao
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, College of Environmental & Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, P. R. China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200090, PR China
- Shanghai Engineering Research Center of Heat-exchange System and Energy Saving, Shanghai University of Electric Power, Shanghai 200090, PR China
| |
Collapse
|
191
|
Myekhlai M, Benedetti TM, Gloag L, Poerwoprajitno AR, Cheong S, Schuhmann W, Gooding JJ, Tilley RD. Controlling the Number of Branches and Surface Facets of Pd-Core Ru-Branched Nanoparticles to Make Highly Active Oxygen Evolution Reaction Electrocatalysts. Chemistry 2020; 26:15501-15504. [PMID: 32844508 DOI: 10.1002/chem.202003561] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/24/2020] [Indexed: 11/07/2022]
Abstract
Producing stable but active materials is one of the enduring challenges in electrocatalysis and other types of catalysis. Producing branched nanoparticles is one potential solution. Controlling the number of branches and branch size of faceted branched nanoparticles is one of the major synthetic challenges to achieve highly active and stable nanocatalysts. Herein, we use a cubic-core hexagonal-branch mechanism to synthesize branched Ru nanoparticles with control over the size and number of branches. This structural control is the key to achieving high exposure of active {10-11} facets and optimum number of Ru branches that enables improved catalytic activity for oxygen evolution reaction while maintaining high stability.
Collapse
Affiliation(s)
- Munkhshur Myekhlai
- School of Chemistry, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Tania M Benedetti
- School of Chemistry, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Lucy Gloag
- School of Chemistry, The University of New South Wales, Sydney, NSW 2052, Australia
| | | | - Soshan Cheong
- Mark Wainwright Analytical Centre, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Wolfgang Schuhmann
- Analytical Chemistry-Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, d-44780, Bochum, Germany
| | - J Justin Gooding
- School of Chemistry, The University of New South Wales, Sydney, NSW 2052, Australia.,Australian Research Council Centre of Excellence in, Convergent Bio-Nano Science and Technology, School of Chemistry, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Richard D Tilley
- School of Chemistry, The University of New South Wales, Sydney, NSW 2052, Australia.,Mark Wainwright Analytical Centre, The University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
192
|
Cobalt-stabilized oxygen vacancy of V2O5 nanosheet arrays with delocalized valence electron for alkaline water splitting. Chem Eng Sci 2020. [DOI: 10.1016/j.ces.2020.115915] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
193
|
Zhang J, Xu Q, Hu Y, Jiang H, Li C. Selenium vacancy triggered atomic disordering of Co 0.85Se nanoparticles towards a highly-active electrocatalyst for water oxidation. Chem Commun (Camb) 2020; 56:14451-14454. [PMID: 33146637 DOI: 10.1039/d0cc06336c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Selenium vacancy engineering has been realized in Co0.85Se nanoparticles via an anoxic melting strategy, where the vacancy content can be continuously controlled to modulate atomic disordering. The resulting Co0.85Se-30 catalyst requires a super low overpotential of 243 mV to achieve 10 mA cm-2 for the OER with a Tafel slope of 45.5 mV dec-1 and 70 h stability. In-depth electrochemical analysis finds that the outstanding properties are chiefly attributed to the dynamic Co-centers, giving the highest intrinsic activity (jCo = 6.49 A g-1 at η = 270 mV) and lowest apparent activation energy (42.43 kJ mol-1).
Collapse
Affiliation(s)
- Jiahao Zhang
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | | | | | | | | |
Collapse
|
194
|
Nash AG, Breyer CJ, Vincenzini BD, Elliott GI, Niklas J, Poluektov OG, Rheingold AL, Smith DK, Musaev DG, Grotjahn DB. An Active-Site Sulfonate Group Creates a Fast Water Oxidation Electrocatalyst That Exhibits High Activity in Acid. Angew Chem Int Ed Engl 2020; 60:1540-1545. [PMID: 32966708 DOI: 10.1002/anie.202008896] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 09/14/2020] [Indexed: 11/08/2022]
Abstract
The storage of solar energy in chemical bonds will depend on pH-universal catalysts that are not only impervious to acid, but actually thrive in it. Whereas other homogeneous water oxidation catalysts are less active in acid, we report a catalyst that maintained high electrocatalytic turnover frequency at pH values as low as 1.1 and 0.43 (kcat =1501±608 s-1 and 831±254 s-1 , respectively). Moreover, current densities, related to catalytic reaction rates, ranged from 15 to 50 mA cm-2 mM-1 comparable to those reported for state-of-the-art heterogeneous catalysts and 30 to 100 times greater than those measured for two prominent literature homogeneous catalysts at pH 1.1 and 0.43. The catalyst also exhibited excellent durability when a chemical oxidant was used (CeIV , 7400 turnovers, TOF 0.88 s-1 ). Preliminary computational studies suggest that the unusual active-site sulfonate group acts a proton relay even in strong acid, as intended.
Collapse
Affiliation(s)
- Aaron G Nash
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182-1030, USA
| | - Colton J Breyer
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182-1030, USA
| | - Brett D Vincenzini
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182-1030, USA
| | - Gregory I Elliott
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182-1030, USA
| | - Jens Niklas
- Solar Energy Conversion Group, Argonne National Laboratory, 9700 S. Cass Ave., Lemont, IL, 60439, USA
| | - Oleg G Poluektov
- Solar Energy Conversion Group, Argonne National Laboratory, 9700 S. Cass Ave., Lemont, IL, 60439, USA
| | - Arnold L Rheingold
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Diane K Smith
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182-1030, USA
| | - Djamaladdin G Musaev
- Emerson Center for Scientific Computation, Emory University, Atlanta, GA, 30322, USA
| | - Douglas B Grotjahn
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182-1030, USA
| |
Collapse
|
195
|
Sun X, Gao X, Chen J, Wang X, Chang H, Li B, Song D, Li J, Li H, Wang N. Ultrasmall Ru Nanoparticles Highly Dispersed on Sulfur-Doped Graphene for HER with High Electrocatalytic Performance. ACS APPLIED MATERIALS & INTERFACES 2020; 12:48591-48597. [PMID: 33073562 DOI: 10.1021/acsami.0c14170] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Nanostructuring and metal-support interactions have been explored as effective methods to improve the electrocatalytic activity in heterogeneous catalysis. In this study, we have fabricated ultrasmall Ru nanoparticles (NPs) dispersed on S-doped graphene (denoted as Ru/S-rGO) by a facile "one-pot" procedure. The experimental results indicated that both the S doping and moderate degree of oxidization of GO can induce the formation and high dispersion of the ultrasmall Ru NPs with larger electrochemically active surface areas for exposing more active sites. Metal-support interaction between S-doped graphene and Ru NPs was observed from the X-ray photoelectron spectroscopy and electronic charge-difference studies. It resulted in the decrease in the electron density of Ru, which facilitated electron release from H2O and H-OH bond breakage. The results of density functional theory calculation confirmed that the S-dopants could reduce the energy barrier for breaking the H-OH bond to accelerate water dissociation during the alkaline hydrogen evolution reaction (HER). At a current density 20 mA cm-2, the lowest overpotential of 14 mV, superior to that of Pt/C in alkaline solution, was observed for Ru/S-rGO-24. The observed lowest value of overpotential was because of the ultrasmall size, high dispersion, and metal-support interaction. This work provides a simple and effective method in designing advanced electrocatalysts for the HER in an alkaline electrolyte.
Collapse
Affiliation(s)
- Xuzhuo Sun
- College of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Xuyun Gao
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, China
| | - Jing Chen
- College of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Xin Wang
- College of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Haixia Chang
- College of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Bo Li
- College of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Dengmeng Song
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, China
| | - Jun Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, China
| | - Haisheng Li
- School of Physics and Engineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Ning Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, China
| |
Collapse
|
196
|
Rambhujun N, Salman MS, Wang T, Pratthana C, Sapkota P, Costalin M, Lai Q, Aguey-Zinsou KF. Renewable hydrogen for the chemical industry. MRS ENERGY & SUSTAINABILITY : A REVIEW JOURNAL 2020; 7:33. [PMID: 38624624 PMCID: PMC7851507 DOI: 10.1557/mre.2020.33] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 08/18/2020] [Indexed: 12/13/2022]
Abstract
Hydrogen is often touted as the fuel of the future, but hydrogen is already an important feedstock for the chemical industry. This review highlights current means for hydrogen production and use, and the importance of progressing R&D along key technologies and policies to drive a cost reduction in renewable hydrogen production and enable the transition of chemical manufacturing toward green hydrogen as a feedstock and fuel. The chemical industry is at the core of what is considered a modern economy. It provides commodities and important materials, e.g., fertilizers, synthetic textiles, and drug precursors, supporting economies and more broadly our needs. The chemical sector is to become the major driver for oil production by 2030 as it entirely relies on sufficient oil supply. In this respect, renewable hydrogen has an important role to play beyond its use in the transport sector. Hydrogen not only has three times the energy density of natural gas and using hydrogen as a fuel could help decarbonize the entire chemical manufacturing, but also the use of green hydrogen as an essential reactant at the basis of many chemical products could facilitate the convergence toward virtuous circles. Enabling the production of green hydrogen at cost could not only enable new opportunities but also strengthen economies through a localized production and use of hydrogen. Herein, existing technologies for the production of renewable hydrogen including biomass and water electrolysis, and methods for the effective storage of hydrogen are reviewed with an emphasis on the need for mitigation strategies to enable such a transition.
Collapse
Affiliation(s)
- Nigel Rambhujun
- MERLin, School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052 Australia
| | - Muhammad Saad Salman
- MERLin, School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052 Australia
| | - Ting Wang
- MERLin, School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052 Australia
| | - Chulaluck Pratthana
- MERLin, School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052 Australia
| | - Prabal Sapkota
- MERLin, School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052 Australia
| | - Mehdi Costalin
- MERLin, School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052 Australia
| | - Qiwen Lai
- MERLin, School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052 Australia
| | | |
Collapse
|
197
|
Yu M, Moon G, Castillo RG, DeBeer S, Weidenthaler C, Tüysüz H. Dual Role of Silver Moieties Coupled with Ordered Mesoporous Cobalt Oxide towards Electrocatalytic Oxygen Evolution Reaction. Angew Chem Int Ed Engl 2020; 59:16544-16552. [PMID: 32537829 PMCID: PMC7540465 DOI: 10.1002/anie.202003801] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Indexed: 11/11/2022]
Abstract
Herein, we show that the performance of mesostructured cobalt oxide electrocatalyst for oxygen evolution reaction (OER) can be significantly enhanced by coupling of silver species. Various analysis techniques including pair distribution function and Rietveld refinement, X-ray absorption spectroscopy at synchrotron as well as advanced electron microscopy revealed that silver exists as metallic Ag particles and well-dispersed Ag2 O nanoclusters within the mesostructure. The benefits of this synergy are twofold for OER: highly conductive metallic Ag improves the charge transfer ability of the electrocatalysts while ultra-small Ag2 O clusters provide the centers that can uptake Fe impurities from KOH electrolyte and boost the catalytic efficiency of Co-Ag oxides. The current density of mesostructured Co3 O4 at 1.7 VRHE is increased from 102 to 211 mA cm-2 with incorporation of silver spices. This work presents the dual role of silver moieties and demonstrates a simple method to increase the OER activity of Co3 O4 .
Collapse
Affiliation(s)
- Mingquan Yu
- Max-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 145470Mülheim an der RuhrGermany
| | - Gun‐hee Moon
- Max-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 145470Mülheim an der RuhrGermany
| | - Rebeca G. Castillo
- Max Planck Institute for Chemical Energy ConversionStiftstrasse 34–3645470Mülheim an der RuhrGermany
| | - Serena DeBeer
- Max Planck Institute for Chemical Energy ConversionStiftstrasse 34–3645470Mülheim an der RuhrGermany
| | - Claudia Weidenthaler
- Max-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 145470Mülheim an der RuhrGermany
| | - Harun Tüysüz
- Max-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 145470Mülheim an der RuhrGermany
| |
Collapse
|
198
|
Burnett DL, Petrucco E, Russell AE, Kashtiban RJ, Sharman JDB, Walton RI. In situ XAFS of acid-resilient iridate pyrochlore oxygen evolution electrocatalysts under operating conditions. Phys Chem Chem Phys 2020; 22:18770-18773. [PMID: 32421133 DOI: 10.1039/d0cp01378a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pyrochlore iridates (Na,Ca)2-xIr2O6·H2O are acid-stable electrocatalysts that are candidates for use in electrolysers and fuel cells. Ir LIII-edge X-ray absorption fine structure spectroscopy in 1 M H2SO4 at oxygen evolution conditions suggests the involvement of the electrons from the conduction band of the metallic particles, rather than just surface iridium reacting.
Collapse
Affiliation(s)
- David L Burnett
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK.
| | | | | | | | | | | |
Collapse
|
199
|
Cao D, Wang J, Xu H, Cheng D. Growth of Highly Active Amorphous RuCu Nanosheets on Cu Nanotubes for the Hydrogen Evolution Reaction in Wide pH Values. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2000924. [PMID: 32803830 DOI: 10.1002/smll.202000924] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 06/23/2020] [Indexed: 05/27/2023]
Abstract
Rational design of low-cost, highly efficient, and stable electrocatalysts for the hydrogen evolution reaction (HER) has attracted wide attention. Herein, 3D RuCu nanocrystals (NCs) are successfully synthesized by a facile wet chemistry method, in which amorphous RuCu nanosheets are directly grown on crystalline Cu nanotubes (NTs). Importantly, the obtained 3D RuCu NCs only need 18 and 73 mV to deliver the current density of 10 mA cm-2 for HER in alkaline and neutral media, respectively. Density functional theory calculations and experiments reveal that the Ru sites on the surface of amorphous nanosheets are the highly active centers for HER. Moreover, this catalyst can expose more surface area for water splitting compared to pure nanosheets because the unique 3D structure can effectively prevent the aggregation of nanosheets. Meanwhile, the interface between amorphous nanosheets and crystalline NTs is essential to boost the HER performance because the amorphous phase with many unsaturated bonds can facilitate adsorption of reactants and crystalline Cu with superior conductivity can promote the transfer of electrons. This work provides a facile method to prepare an original 3D Ru-based electrocatalyst with highly active HER performance in wide pH values.
Collapse
Affiliation(s)
- Dong Cao
- State Key Laboratory of Organic-Inorganic Composites and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Jiayi Wang
- State Key Laboratory of Organic-Inorganic Composites and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Haoxiang Xu
- State Key Laboratory of Organic-Inorganic Composites and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Daojian Cheng
- State Key Laboratory of Organic-Inorganic Composites and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
200
|
Zhang P, Xu X, Song E, Hou X, Yang X, Mi J, Huang J, Stampfl C. Transition metal-doped α-borophene as potential oxygen and hydrogen evolution electrocatalyst: A density functional theory study. CATAL COMMUN 2020. [DOI: 10.1016/j.catcom.2020.106090] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|