151
|
Affiliation(s)
- Philipp J Kahle
- Laboratory of Functional Neurogenetics, Department of Neurodegeneration, Hertie Institute for Clinical Brain Research, Tübingen, Germany German Center for Neurodegenerative Diseases, Tübingen, Germany
| | - Naoto Sugeno
- Laboratory of Functional Neurogenetics, Department of Neurodegeneration, Hertie Institute for Clinical Brain Research, Tübingen, Germany
| | - Angelos Skodras
- German Center for Neurodegenerative Diseases, Tübingen, Germany Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, Tübingen, Germany
| |
Collapse
|
152
|
Takahashi R, Ono K, Takamura Y, Mizuguchi M, Ikeda T, Nishijo H, Yamada M. Phenolic compounds prevent the oligomerization of α-synuclein and reduce synaptic toxicity. J Neurochem 2015; 134:943-55. [PMID: 26016728 DOI: 10.1111/jnc.13180] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 05/15/2015] [Accepted: 05/17/2015] [Indexed: 12/15/2022]
Abstract
Lewy bodies, mainly composed of α-synuclein (αS), are pathological hallmarks of Parkinson's disease and dementia with Lewy bodies. Epidemiological studies showed that green tea consumption or habitual intake of phenolic compounds reduced Parkinson's disease risk. We previously reported that phenolic compounds inhibited αS fibrillation and destabilized preformed αS fibrils. Cumulative evidence suggests that low-order αS oligomers are neurotoxic and critical species in the pathogenesis of α-synucleinopathies. To develop disease modifying therapies for α-synucleinopathies, we examined effects of phenolic compounds (myricetin (Myr), curcumin, rosmarinic acid (RA), nordihydroguaiaretic acid, and ferulic acid) on αS oligomerization. Using methods such as photo-induced cross-linking of unmodified proteins, circular dichroism spectroscopy, the electron microscope, and the atomic force microscope, we showed that Myr and RA inhibited αS oligomerization and secondary structure conversion. The nuclear magnetic resonance analysis revealed that Myr directly bound to the N-terminal region of αS, whereas direct binding of RA to monomeric αS was not detected. Electrophysiological assays for long-term potentiation in mouse hippocampal slices revealed that Myr and RA ameliorated αS synaptic toxicity by inhibition of αS oligomerization. These results suggest that Myr and RA prevent the αS aggregation process, reducing the neurotoxicity of αS oligomers. To develop disease modifying therapies for α-synucleinopathies, we examined effects of phenolic compounds on α-synuclein (αS) oligomerization. Phenolic compounds, especially Myricetin (Myr) and Rosmarinic acid (RA), inhibited αS oligomerization and secondary structure conversion. Myr and RA ameliorated αS synaptic toxicity on the experiment of long-term potentiation. Our results suggest that Myr and RA prevent αS aggregation process and reduce the neurotoxicity of αS oligomers. Phenolic compounds are good candidates of disease modifying drugs for α-synucleinopathies.
Collapse
Affiliation(s)
- Ryoichi Takahashi
- Department of Neurology and Neurobiology of Aging, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Kenjiro Ono
- Department of Neurology and Neurobiology of Aging, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Yusaku Takamura
- System Emotional Science, Graduate School of Medicine and Pharmaceutical Science, University of Toyama, Toyama, Japan
| | | | - Tokuhei Ikeda
- Department of Neurology and Neurobiology of Aging, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
- Department of Neurology, National Hospital Organization Iou Hospital, Kanazawa, Japan
| | - Hisao Nishijo
- System Emotional Science, Graduate School of Medicine and Pharmaceutical Science, University of Toyama, Toyama, Japan
| | - Masahito Yamada
- Department of Neurology and Neurobiology of Aging, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| |
Collapse
|
153
|
Cholesterol facilitates interactions between α-synuclein oligomers and charge-neutral membranes. FEBS Lett 2015; 589:2661-7. [DOI: 10.1016/j.febslet.2015.08.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 07/24/2015] [Accepted: 08/05/2015] [Indexed: 02/02/2023]
|
154
|
Herrera AJ, Espinosa-Oliva AM, Carrillo-Jiménez A, Oliva-Martín MJ, García-Revilla J, García-Quintanilla A, de Pablos RM, Venero JL. Relevance of chronic stress and the two faces of microglia in Parkinson's disease. Front Cell Neurosci 2015; 9:312. [PMID: 26321913 PMCID: PMC4536370 DOI: 10.3389/fncel.2015.00312] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 07/28/2015] [Indexed: 12/26/2022] Open
Abstract
This review is aimed to highlight the importance of stress and glucocorticoids (GCs) in modulating the inflammatory response of brain microglia and hence its potential involvement in Parkinson’s disease (PD). The role of inflammation in PD has been reviewed extensively in the literature and it is supposed to play a key role in the course of the disease. Historically, GCs have been strongly associated as anti-inflammatory hormones. However, accumulating evidence from the peripheral and central nervous system have clearly revealed that, under specific conditions, GCs may promote brain inflammation including pro-inflammatory activation of microglia. We have summarized relevant data linking PD, neuroinflamamation and chronic stress. The timing and duration of stress response may be critical for delineating an immune response in the brain thus probably explain the dual role of GCs and/or chronic stress in different animal models of PD.
Collapse
Affiliation(s)
- Antonio J Herrera
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia and Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla Sevilla, Spain
| | - Ana M Espinosa-Oliva
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia and Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla Sevilla, Spain
| | - Alejandro Carrillo-Jiménez
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia and Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla Sevilla, Spain
| | - María J Oliva-Martín
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia and Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla Sevilla, Spain
| | - Juan García-Revilla
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia and Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla Sevilla, Spain
| | - Alberto García-Quintanilla
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia and Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla Sevilla, Spain
| | - Rocío M de Pablos
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia and Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla Sevilla, Spain
| | - José L Venero
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia and Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla Sevilla, Spain
| |
Collapse
|
155
|
Khalife M, Morshedi D, Aliakbari F, Tayaranian Marvian A, Mohammad Beigi H, Azimzadeh Jamalkandi S, Pan-Montojo F. Alpha-Synuclein Fibrils Interact with Dopamine Reducing its Cytotoxicity on PC12 Cells. Protein J 2015; 34:291-303. [DOI: 10.1007/s10930-015-9625-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
156
|
Hayden EY, Kaur P, Williams TL, Matsui H, Yeh SR, Rousseau DL. Heme Stabilization of α-Synuclein Oligomers during Amyloid Fibril Formation. Biochemistry 2015; 54:4599-610. [PMID: 26161848 DOI: 10.1021/acs.biochem.5b00280] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
α-Synuclein (αSyn), which forms amyloid fibrils, is linked to the neuronal pathology of Parkinson's disease, as it is the major fibrillar component of Lewy bodies, the inclusions that are characteristic of the disease. Oligomeric structures, common to many neurodegenerative disease-related proteins, may in fact be the primary toxic species, while the amyloid fibrils exist either as a less toxic dead-end species or even as a beneficial mechanism for clearing damaged proteins. To alter the progression of the aggregation and gain insights into the prefibrillar structures, we determined the effect of heme on αSyn oligomerization by several different techniques, including native (nondenaturing) polyacrylamide gel electrophoresis, thioflavin T fluorescence, transmission electron microscopy, atomic force microscopy, circular dichroism, and membrane permeation using a calcein release assay. During aggregation, heme is able to bind the αSyn in a specific fashion, stabilizing distinct oligomeric conformations and promoting the formation of αSyn into annular structures, thereby delaying and/or inhibiting the fibrillation process. These results indicate that heme may play a regulatory role in the progression of Parkinson's disease; in addition, they provide insights into how the aggregation process may be altered, which may be applicable to the understanding of many neurodegenerative diseases.
Collapse
Affiliation(s)
- Eric Y Hayden
- †Department of Physiology and Biophysics, Albert Einstein College of Medicine of Yeshiva University, Bronx, New York 10461, United States
| | - Prerna Kaur
- ‡Department of Chemistry, Hunter College and Graduate Center, The City University of New York, New York, New York 10021, United States
| | - Thomas L Williams
- §Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Hiroshi Matsui
- ‡Department of Chemistry, Hunter College and Graduate Center, The City University of New York, New York, New York 10021, United States
| | - Syun-Ru Yeh
- †Department of Physiology and Biophysics, Albert Einstein College of Medicine of Yeshiva University, Bronx, New York 10461, United States
| | - Denis L Rousseau
- †Department of Physiology and Biophysics, Albert Einstein College of Medicine of Yeshiva University, Bronx, New York 10461, United States
| |
Collapse
|
157
|
Toxic Oligomeric Alpha-Synuclein Variants Present in Human Parkinson's Disease Brains Are Differentially Generated in Mammalian Cell Models. Biomolecules 2015; 5:1634-51. [PMID: 26287258 PMCID: PMC4598768 DOI: 10.3390/biom5031634] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 06/17/2015] [Accepted: 06/26/2015] [Indexed: 11/16/2022] Open
Abstract
Misfolding and aggregation of α-synuclein into toxic soluble oligomeric α-synuclein aggregates has been strongly correlated with the pathogenesis of Parkinson’s disease (PD). Here, we show that two different morphologically distinct oligomeric α-synuclein aggregates are present in human post-mortem PD brain tissue and are responsible for the bulk of α-synuclein induced toxicity in brain homogenates from PD samples. Two antibody fragments that selectively bind the different oligomeric α-synuclein variants block this α-synuclein induced toxicity and are useful tools to probe how various cell models replicate the α-synuclein aggregation pattern of human PD brain. Using these reagents, we show that mammalian cell type strongly influences α-synuclein aggregation, where neuronal cells best replicate the PD brain α-synuclein aggregation profile. Overexpression of α-synuclein in the different cell lines increased protein aggregation but did not alter the morphology of the oligomeric aggregates generated. Differentiation of the neuronal cells into a cholinergic-like or dopaminergic-like phenotype increased the levels of oligomeric α-synuclein where the aggregates were localized in cell neurites and cell bodies.
Collapse
|
158
|
Ashraf GM, Greig NH, Khan TA, Hassan I, Tabrez S, Shakil S, Sheikh IA, Zaidi SK, Akram M, Jabir NR, Firoz CK, Naeem A, Alhazza IM, Damanhouri GA, Kamal MA. Protein misfolding and aggregation in Alzheimer's disease and type 2 diabetes mellitus. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2015; 13:1280-93. [PMID: 25230234 DOI: 10.2174/1871527313666140917095514] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2014] [Revised: 05/11/2014] [Accepted: 05/12/2014] [Indexed: 12/27/2022]
Abstract
In general, proteins can only execute their various biological functions when they are appropriately folded. Their amino acid sequence encodes the relevant information required for correct three-dimensional folding, with or without the assistance of chaperones. The challenge associated with understanding protein folding is currently one of the most important aspects of the biological sciences. Misfolded protein intermediates form large polymers of unwanted aggregates and are involved in the pathogenesis of many human diseases, including Alzheimer's disease (AD) and Type 2 diabetes mellitus (T2DM). AD is one of the most prevalent neurological disorders and has worldwide impact; whereas T2DM is considered a metabolic disease that detrementally influences numerous organs, afflicts some 8% of the adult population, and shares many risk factors with AD. Research data indicates that there is a widespread conformational change in the proteins involved in AD and T2DM that form β-sheet like motifs. Although conformation of these β-sheets is common to many functional proteins, the transition from α-helix to β-sheet is a typical characteristic of amyloid deposits. Any abnormality in this transition results in protein aggregation and generation of insoluble fibrils. The abnormal and toxic proteins can interact with other native proteins and consequently catalyze their transition into the toxic state. Both AD and T2DM are prevalent in the aged population. AD is characterized by the accumulation of amyloid-β (Aβ) in brain, while T2DM is characterized by the deposition of islet amyloid polypeptide (IAPP, also known as amylin) within beta-cells of the pancreas. T2DM increases pathological angiogenesis and immature vascularisation. This also leads to chronic cerebral hypoperfusion, which results in dysfunction and degeneration of neuroglial cells. With an abundance of common mechanisms underpinning both disorders, a significant question that can be posed is whether T2DM leads to AD in aged individuals and the associations between other protein misfolding diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Mohammad A Kamal
- King Fahd Medical Research Center, King Abdulaziz University, P. O. Box 80216, Jeddah 21589, Kingdom of Saudi Arabia.
| |
Collapse
|
159
|
Zhang H, Rochet JC, Stanciu LA. Cu(II) promotes amyloid pore formation. Biochem Biophys Res Commun 2015; 464:342-7. [PMID: 26129772 DOI: 10.1016/j.bbrc.2015.06.156] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 06/24/2015] [Indexed: 10/23/2022]
Abstract
The aggregation of α-synuclein is associated with dopamine neuron death in Parkinson's disease. There is controversy in the field over the question of which species of the aggregates, fibrils or protofibrils, are toxic. Moreover, compelling evidence suggested the exposure to heavy metals to be a risk of PD. Nevertheless, the mechanism of metal ions in promoting PD remains unclear. In this research, we investigated the structural basis of Cu(II) induced aggregation of α-synuclein. Using transmission electron microscopy experiments, Cu(II) was found to promote in vitro aggregation of α-synuclein by facilitating annular protofibril formation rather than fibril formation. Furthermore, neuroprotective baicalein disaggregated annular protofibrils accompanied by considerable decrease of β-sheet content. These results strongly support the hypothesis that annular protofibrils are the toxic species, rather than fibrils, thereby inspiring us to search novel therapeutic strategies for the suppression of the toxic annular protofibril formation.
Collapse
Affiliation(s)
- Hangyu Zhang
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, United States.
| | - Jean-Christophe Rochet
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, United States
| | - Lia A Stanciu
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, United States; School of Materials Engineering, Purdue University, West Lafayette, IN 47907, United States
| |
Collapse
|
160
|
Effect of pH on the Aggregation of α-syn12 Dimer in Explicit Water by Replica-Exchange Molecular Dynamics Simulation. Int J Mol Sci 2015; 16:14291-304. [PMID: 26114384 PMCID: PMC4519842 DOI: 10.3390/ijms160714291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 06/09/2015] [Accepted: 06/10/2015] [Indexed: 01/22/2023] Open
Abstract
The dimeric structure of the N-terminal 12 residues drives the interaction of α-synuclein protein with membranes. Moreover, experimental studies indicated that the aggregation of α-synuclein is faster at low pH than neutral pH. Nevertheless, the effects of different pH on the structural characteristics of the α-syn12 dimer remain poorly understood. We performed 500 ns temperature replica exchange molecular dynamics (T-REMD) simulations of two α-syn12 peptides in explicit solvent. The free energy surfaces contain ten highly populated regions at physiological pH, while there are only three highly populated regions contained at acidic pH. The anti-parallel β-sheet conformations were found as the lowest free energy state. Additionally, these states are nearly flat with a very small barrier which indicates that these states can easily transit between themselves. The dimer undergoes a disorder to order transition from physiological pH to acidic pH and the α-syn12 dimer at acidic pH involves a faster dimerization process. Further, the Lys6–Asp2 contact may prevent the dimerization.
Collapse
|
161
|
Xu S, Chan P. Interaction between Neuromelanin and Alpha-Synuclein in Parkinson's Disease. Biomolecules 2015; 5:1122-42. [PMID: 26057626 PMCID: PMC4496713 DOI: 10.3390/biom5021122] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Accepted: 04/29/2015] [Indexed: 12/27/2022] Open
Abstract
Parkinson's disease (PD) is a very common neurodegenerative disorder characterized by the accumulation of α-synuclein (α-syn) into Lewy body (LB) inclusions and the loss of neuronmelanin (NM) containing dopamine (DA) neurons in the substantia nigra (SN). Pathological α-syn and NM are two prominent hallmarks in this selective and progressive neurodegenerative disease. Pathological α-syn can induce dopaminergic neuron death by various mechanisms, such as inducing oxidative stress and inhibiting protein degradation systems. Therefore, to explore the factors that trigger α-syn to convert from a non-toxic protein to toxic one is a pivotal question to clarify the mechanisms of PD pathogenesis. Many triggers for pathological α-syn aggregation have been identified, including missense mutations in the α-syn gene, higher concentration, and posttranslational modifications of α-Syn. Recently, the role of NM in inducing α-syn expression and aggregation has been suggested as a mechanism for this pigment to modulate neuronal vulnerability in PD. NM may be responsible for PD and age-associated increase and aggregation in α-syn. Here, we reviewed our previous study and other recent findings in the area of interaction between NM and α-syn.
Collapse
Affiliation(s)
- Shengli Xu
- Beijing Institute of Geriatrics, Xuanwu Hospital of Capital University of Medical Sciences, No.45 changchun St., Xicheng District, Beijing 100053, China.
- Parkinson's disease Center of Beijing Institute for Brain Disorders, Beijing 100053, China.
| | - Piu Chan
- Beijing Institute of Geriatrics, Xuanwu Hospital of Capital University of Medical Sciences, No.45 changchun St., Xicheng District, Beijing 100053, China.
- Parkinson's disease Center of Beijing Institute for Brain Disorders, Beijing 100053, China.
| |
Collapse
|
162
|
Ahsan N, Mishra S, Jain MK, Surolia A, Gupta S. Curcumin Pyrazole and its derivative (N-(3-Nitrophenylpyrazole) Curcumin inhibit aggregation, disrupt fibrils and modulate toxicity of Wild type and Mutant α-Synuclein. Sci Rep 2015; 5:9862. [PMID: 25985292 PMCID: PMC4435243 DOI: 10.1038/srep09862] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 03/17/2015] [Indexed: 02/07/2023] Open
Abstract
Accumulating evidence suggests that deposition of neurotoxic α-synuclein
aggregates in the brain during the development of neurodegenerative diseases like
Parkinson’s disease can be curbed by anti-aggregation strategies that
either disrupt or eliminate toxic aggregates. Curcumin, a dietary polyphenol
exhibits anti-amyloid activity but the use of this polyphenol is limited owing to
its instability. As chemical modifications in curcumin confiscate this limitation,
such efforts are intensively performed to discover molecules with similar but
enhanced stability and superior properties. This study focuses on the inhibitory
effect of two stable analogs of curcumin viz. curcumin pyrazole and curcumin
isoxazole and their derivatives against α-synuclein aggregation,
fibrillization and toxicity. Employing biochemical, biophysical and cell based
assays we discovered that curcumin pyrazole (3) and its derivative
N-(3-Nitrophenylpyrazole) curcumin (15) exhibit remarkable potency in not only
arresting fibrillization and disrupting preformed fibrils but also preventing
formation of A11 conformation in the protein that imparts toxic effects. Compounds 3
and 15 also decreased neurotoxicity associated with fast aggregating A53T mutant
form of α-synuclein. These two analogues of curcumin described here may
therefore be useful therapeutic inhibitors for the treatment of
α-synuclein amyloidosis and toxicity in Parkinson’s disease
and other synucleinopathies.
Collapse
Affiliation(s)
- Nuzhat Ahsan
- Molecular Science Lab, National Institute of Immunology, New Delhi, INDIA 110067
| | - Satyendra Mishra
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, INDIA 560012
| | - Manish Kumar Jain
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, INDIA 110067
| | - Avadhesha Surolia
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, INDIA 560012
| | - Sarika Gupta
- Molecular Science Lab, National Institute of Immunology, New Delhi, INDIA 110067
| |
Collapse
|
163
|
Mechanisms of alpha-synuclein action on neurotransmission: cell-autonomous and non-cell autonomous role. Biomolecules 2015; 5:865-92. [PMID: 25985082 PMCID: PMC4496700 DOI: 10.3390/biom5020865] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 04/24/2015] [Accepted: 04/29/2015] [Indexed: 11/23/2022] Open
Abstract
Mutations and duplication/triplication of the alpha-synuclein (αSyn)-coding gene have been found to cause familial Parkinson’s disease (PD), while genetic polymorphisms in the region controlling the expression level and stability of αSyn have been identified as risk factors for idiopathic PD, pointing to the importance of wild-type (wt) αSyn dosage in the disease. Evidence that αSyn is present in the cerebrospinal fluid and interstitial brain tissue and that healthy neuronal grafts transplanted into PD patients often degenerate suggests that extracellularly-released αSyn plays a role in triggering the neurodegenerative process. αSyn’s role in neurotransmission has been shown in various cell culture models in which the protein was upregulated or deleted and in knock out and transgenic animal, with different results on αSyn’s effect on synaptic vesicle pool size and mobilization, αSyn being proposed as a negative or positive regulator of neurotransmitter release. In this review, we discuss the effect of αSyn on pre- and post-synaptic compartments in terms of synaptic vesicle trafficking, calcium entry and channel activity, and we focus on the process of exocytosis and internalization of αSyn and on the spreading of αSyn-driven effects due to the presence of the protein in the extracellular milieu.
Collapse
|
164
|
Abstract
In the present chapter, we discuss the key findings on αsyn (α-synuclein) oligomers from a biophysical point of view. Current structural methods cannot provide a high-resolution structure of αsyn oligomers due to their size, heterogeneity and tendency to aggregate. However, a low-resolution structure of a stable αsyn oligomer population is emerging based on compelling data from different research groups. αsyn oligomers are normally observed during the formation of amyloid fibrils and we discuss how they are connected to this process. Another important topic is the interaction of αsyn oligomers and membranes, and we will discuss the evidence which suggests that this interaction might be essential in the pathogenesis of Parkinson's disease and other neurodegenerative disorders. Finally, we present a remarkable example of how small molecules are able to stabilize non-amyloid oligomers and how this might be a potential strategy to inhibit the inherent toxicity of αsyn oligomers. A major challenge is to link the very complex oligomerization pathways seen in clever experiments in vitro with what actually happens in the cell. With the tremendous developments in optical microscopy in mind, we believe that it will be possible to make this link very soon.
Collapse
|
165
|
Structural characterization of toxic oligomers that are kinetically trapped during α-synuclein fibril formation. Proc Natl Acad Sci U S A 2015; 112:E1994-2003. [PMID: 25855634 DOI: 10.1073/pnas.1421204112] [Citation(s) in RCA: 338] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
We describe the isolation and detailed structural characterization of stable toxic oligomers of α-synuclein that have accumulated during the process of amyloid formation. Our approach has allowed us to identify distinct subgroups of oligomers and to probe their molecular architectures by using cryo-electron microscopy (cryoEM) image reconstruction techniques. Although the oligomers exist in a range of sizes, with different extents and nature of β-sheet content and exposed hydrophobicity, they all possess a hollow cylindrical architecture with similarities to certain types of amyloid fibril, suggesting that the accumulation of at least some forms of amyloid oligomers is likely to be a consequence of very slow rates of rearrangement of their β-sheet structures. Our findings reveal the inherent multiplicity of the process of protein misfolding and the key role the β-sheet geometry acquired in the early stages of the self-assembly process plays in dictating the kinetic stability and the pathological nature of individual oligomeric species.
Collapse
|
166
|
Moussaud S, Malany S, Mehta A, Vasile S, Smith LH, McLean PJ. Targeting α-synuclein oligomers by protein-fragment complementation for drug discovery in synucleinopathies. Expert Opin Ther Targets 2015; 19:589-603. [PMID: 25785645 DOI: 10.1517/14728222.2015.1009448] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Reducing the burden of α-synuclein oligomeric species represents a promising approach for disease-modifying therapies against synucleinopathies such as Parkinson's disease and dementia with Lewy bodies. However, the lack of efficient drug discovery strategies that specifically target α-synuclein oligomers has been a limitation to drug discovery programs. RESEARCH DESIGN AND METHODS Here we describe an innovative strategy that harnesses the power of bimolecular protein-fragment complementation to monitor synuclein-synuclein interactions. We have developed two robust models to monitor α-synuclein oligomerization by generating novel stable cell lines expressing α-synuclein fusion proteins for either fluorescent or bioluminescent protein-fragment complementation under the tetracycline-controlled transcriptional activation system. MAIN OUTCOME MEASURES A pilot screen was performed resulting in the identification of two potential hits, a p38 MAPK inhibitor and a casein kinase 2 inhibitor, thereby demonstrating the suitability of our protein-fragment complementation assay for the measurement of α-synuclein oligomerization in living cells at high throughput. CONCLUSIONS The application of the strategy described herein to monitor α-synuclein oligomer formation in living cells with high throughput will facilitate drug discovery efforts for disease-modifying therapies against synucleinopathies and other proteinopathies.
Collapse
Affiliation(s)
- Simon Moussaud
- Mayo Clinic Florida, Neuroscience , 4500 San Pablo road, Jacksonville, 32224, FL , USA
| | | | | | | | | | | |
Collapse
|
167
|
Choi BK, Kim JY, Cha MY, Mook-Jung I, Shin YK, Lee NK. β-Amyloid and α-synuclein cooperate to block SNARE-dependent vesicle fusion. Biochemistry 2015; 54:1831-40. [PMID: 25714795 DOI: 10.1021/acs.biochem.5b00087] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Alzheimer's disease (AD) and Parkinson's disease (PD) are caused by β-amyloid (Aβ) and α-synuclein (αS), respectively. Ample evidence suggests that these two pathogenic proteins are closely linked and have a synergistic effect on eliciting neurodegenerative disorders. However, the pathophysiological consequences of Aβ and αS coexistence are still elusive. Here, we show that large-sized αS oligomers, which are normally difficult to form, are readily generated by Aβ42-seeding and that these oligomers efficiently hamper neuronal SNARE-mediated vesicle fusion. The direct binding of the Aβ-seeded αS oligomers to the N-terminal domain of synaptobrevin-2, a vesicular SNARE protein, is responsible for the inhibition of fusion. In contrast, large-sized Aβ42 oligomers (or aggregates) or the products of αS incubated without Aβ42 have no effect on vesicle fusion. These results are confirmed by examining PC12 cell exocytosis. Our results suggest that Aβ and αS cooperate to escalate the production of toxic oligomers, whose main toxicity is the inhibition of vesicle fusion and consequently prompts synaptic dysfunction.
Collapse
Affiliation(s)
- Bong-Kyu Choi
- School of Interdisciplinary Bioscience and Bioengineering and ‡Department of Physics, Pohang University of Science and Technology , Pohang 790-784, Korea
| | | | | | | | | | | |
Collapse
|
168
|
Roberts RF, Wade-Martins R, Alegre-Abarrategui J. Direct visualization of alpha-synuclein oligomers reveals previously undetected pathology in Parkinson's disease brain. Brain 2015; 138:1642-57. [PMID: 25732184 PMCID: PMC4614141 DOI: 10.1093/brain/awv040] [Citation(s) in RCA: 205] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 12/15/2014] [Indexed: 11/13/2022] Open
Abstract
Oligomeric forms of alpha-synuclein are emerging as key mediators of pathogenesis in Parkinson's disease. Our understanding of the exact contribution of alpha-synuclein oligomers to disease is limited by the lack of a technique for their specific detection. We describe a novel method, the alpha-synuclein proximity ligation assay, which specifically recognizes alpha-synuclein oligomers. In a blinded study with post-mortem brain tissue from patients with Parkinson's disease (n = 8, age range 73-92 years, four males and four females) and age- and sex-matched controls (n = 8), we show that the alpha-synuclein proximity ligation assay reveals previously unrecognized pathology in the form of extensive diffuse deposition of alpha-synuclein oligomers. These oligomers are often localized, in the absence of Lewy bodies, to neuroanatomical regions mildly affected in Parkinson's disease. Diffuse alpha-synuclein proximity ligation assay signal is significantly more abundant in patients compared to controls in regions including the cingulate cortex (1.6-fold increase) and the reticular formation of the medulla (6.5-fold increase). In addition, the alpha-synuclein proximity ligation assay labels very early perikaryal aggregates in morphologically intact neurons that may precede the development of classical Parkinson's disease lesions, such as pale bodies or Lewy bodies. Furthermore, the alpha-synuclein proximity ligation assay preferentially detects early-stage, loosely compacted lesions such as pale bodies in patient tissue, whereas Lewy bodies, considered heavily compacted late lesions are only very exceptionally stained. The alpha-synuclein proximity ligation assay preferentially labels alpha-synuclein oligomers produced in vitro compared to monomers and fibrils, while stained oligomers in human brain display a distinct intermediate proteinase K resistance, suggesting the detection of a conformer that is different from both physiological, presynaptic alpha-synuclein (proteinase K-sensitive) and highly aggregated alpha-synuclein within Lewy bodies (proteinase K-resistant). These disease-associated conformers represent previously undetected Parkinson's disease pathology uncovered by the alpha-synuclein proximity ligation assay.
Collapse
Affiliation(s)
- Rosalind F Roberts
- 1 Department of Physiology, Anatomy and Genetics, University of Oxford, Le Gros Clark Building, South Parks Road, Oxford OX1 3QX, UK 2 Oxford Parkinson's Disease Centre, University of Oxford, Le Gros Clark Building, South Parks Road, Oxford, OX1 3QX, UK
| | - Richard Wade-Martins
- 1 Department of Physiology, Anatomy and Genetics, University of Oxford, Le Gros Clark Building, South Parks Road, Oxford OX1 3QX, UK 2 Oxford Parkinson's Disease Centre, University of Oxford, Le Gros Clark Building, South Parks Road, Oxford, OX1 3QX, UK
| | - Javier Alegre-Abarrategui
- 1 Department of Physiology, Anatomy and Genetics, University of Oxford, Le Gros Clark Building, South Parks Road, Oxford OX1 3QX, UK 2 Oxford Parkinson's Disease Centre, University of Oxford, Le Gros Clark Building, South Parks Road, Oxford, OX1 3QX, UK
| |
Collapse
|
169
|
Narkiewicz J, Giachin G, Legname G. In vitro aggregation assays for the characterization of α-synuclein prion-like properties. Prion 2015; 8:19-32. [PMID: 24552879 PMCID: PMC4116381 DOI: 10.4161/pri.28125] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Aggregation of α-synuclein plays a crucial role in the pathogenesis of synucleinopathies, a group of neurodegenerative diseases including Parkinson disease (PD), dementia with Lewy bodies (DLB), diffuse Lewy body disease (DLBD) and multiple system atrophy (MSA). The common feature of these diseases is a pathological deposition of protein aggregates, known as Lewy bodies (LBs) in the central nervous system. The major component of these aggregates is α-synuclein, a natively unfolded protein, which may undergo dramatic structural changes resulting in the formation of β-sheet rich assemblies. In vitro studies have shown that recombinant α-synuclein protein may polymerize into amyloidogenic fibrils resembling those found in LBs. These aggregates may be uptaken and propagated between cells in a prion-like manner. Here we present the mechanisms and kinetics of α-synuclein aggregation in vitro, as well as crucial factors affecting this process. We also describe how PD-linked α-synuclein mutations and some exogenous factors modulate in vitro aggregation. Furthermore, we present a current knowledge on the mechanisms by which extracellular aggregates may be internalized and propagated between cells, as well as the mechanisms of their toxicity.
Collapse
|
170
|
Andreasen M, Lorenzen N, Otzen D. Interactions between misfolded protein oligomers and membranes: A central topic in neurodegenerative diseases? BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:1897-907. [PMID: 25666871 DOI: 10.1016/j.bbamem.2015.01.018] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 01/26/2015] [Accepted: 01/29/2015] [Indexed: 11/19/2022]
Abstract
The deposition of amyloid material has been associated with many different diseases. Although these diseases are very diverse the amyloid material share many common features such as cross-β-sheet structure of the backbone of the proteins deposited. Another common feature of the aggregation process for a wide variety of proteins is the presence of prefibrillar oligomers. These oligomers are linked to the cytotoxicity occurring during the aggregation of proteins. These prefibrillar oligomers interact extensively with lipid membranes and in some cases leads to destabilization of lipid membranes. This interaction is however highly dependent on the nature of both the oligomer and the lipids. Anionic lipids are often required for interaction with the lipid membrane while increased exposure of hydrophobic patches from highly dynamic protein oligomers are structural determinants of cytotoxicity of the oligomers. To explore the oligomer lipid interaction in detail the interaction between oligomers of α-synuclein and the 4th fasciclin-1 domain of TGFBIp with lipid membranes will be examined here. For both proteins the dynamic species are the ones causing membrane destabilization and the membrane interaction is primarily seen when the lipid membranes contain anionic lipids. Hence the dynamic nature of oligomers with exposed hydrophobic patches alongside the presence of anionic lipids could be essential for the cytotoxicity observed for prefibrillar oligomers in general. This article is part of a Special Issue entitled: Lipid-protein interactions.
Collapse
Affiliation(s)
- Maria Andreasen
- Department of Chemistry, Cambridge University, Lensfield Road, Cambridge CB2 1EW, UK; Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, DK 8000 Aarhus C, Denmark
| | - Nikolai Lorenzen
- Department of Protein Biophysics and Formulation, Biopharmaceuticals Research Unit, Novo Nordisk A/S, 2760 Måløv, Denmark
| | - Daniel Otzen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, DK 8000 Aarhus C, Denmark.
| |
Collapse
|
171
|
Gruden MA, Davydova TV, Narkevich VB, Fomina VG, Wang C, Kudrin VS, Morozova-Roche LA, Sewell RD. Noradrenergic and serotonergic neurochemistry arising from intranasal inoculation with α-synuclein aggregates which incite parkinsonian-like symptoms. Behav Brain Res 2015; 279:191-201. [DOI: 10.1016/j.bbr.2014.11.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 10/28/2014] [Accepted: 11/01/2014] [Indexed: 12/13/2022]
|
172
|
Chaudhary H, Stefanovic AND, Subramaniam V, Claessens MMAE. Membrane interactions and fibrillization of α-synuclein play an essential role in membrane disruption. FEBS Lett 2015; 588:4457-63. [PMID: 25448986 DOI: 10.1016/j.febslet.2014.10.016] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 10/13/2014] [Accepted: 10/15/2014] [Indexed: 12/22/2022]
Abstract
We studied α-synuclein (αS) aggregation in giant vesicles, and observed dramatic membrane disintegration, as well as lipid incorporation into micrometer-sized suprafibrillar aggregates. In the presence of dye-filled vesicles, dye leakage and fibrillization happen concurrently. However, growing fibrils do not impair the integrity of phospholipid vesicles that have a low affinity for αS. Seeding αS aggregation accelerates dye leakage, indicating that oligomeric species are not required to explain the observed effect. The evolving picture suggests that fibrils that appear in solution bind membranes and recruit membrane-bound monomers, resulting in lipid extraction, membrane destabilization and the formation of lipid-containing suprafibrillar aggregates.
Collapse
Affiliation(s)
- Himanshu Chaudhary
- Nanobiophysics Group, MESA+ Institute for Nanotechnology, Department of Science and Technology, University Twente, 7500 AE Enschede, The Netherlands
| | | | | | | |
Collapse
|
173
|
Protein Misfolding in Lipid-Mimetic Environments. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 855:33-66. [PMID: 26149925 DOI: 10.1007/978-3-319-17344-3_2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Among various cellular factors contributing to protein misfolding and subsequent aggregation, membranes occupy a special position due to the two-way relations between the aggregating proteins and cell membranes. On one hand, the unstable, toxic pre-fibrillar aggregates may interact with cell membranes, impairing their functions, altering ion distribution across the membranes, and possibly forming non-specific membrane pores. On the other hand, membranes, too, can modify structures of many proteins and affect the misfolding and aggregation of amyloidogenic proteins. The effects of membranes on protein structure and aggregation can be described in terms of the "membrane field" that takes into account both the negative electrostatic potential of the membrane surface and the local decrease in the dielectric constant. Water-alcohol (or other organic solvent) mixtures at moderately low pH are used as model systems to study the joint action of the local decrease of pH and dielectric constant near the membrane surface on the structure and aggregation of proteins. This chapter describes general mechanisms of structural changes of proteins in such model environments and provides examples of various proteins aggregating in the "membrane field" or in lipid-mimetic environments.
Collapse
|
174
|
Andrich K, Bieschke J. The Effect of (-)-Epigallo-catechin-(3)-gallate on Amyloidogenic Proteins Suggests a Common Mechanism. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 863:139-61. [PMID: 26092630 DOI: 10.1007/978-3-319-18365-7_7] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Studies on the interaction of the green tea polyphenol (-)-Epigallocatechin-3-gallate (EGCG) with fourteen disease-related amyloid polypeptides and prions Huntingtin, Amyloid-beta, alpha-Synuclein, islet amyloid polypeptide (IAPP), Sup35, NM25 and NM4, tau, MSP2, semen-derived enhancer of virus infection (SEVI), immunoglobulin light chains, beta-microglobulin, prion protein (PrP) and Insulin, have yielded a variety of experimental observations. Here, we analyze whether these observations could be explained by a common mechanism and give a broad overview of the published experimental data on the actions of EGCG. Firstly, we look at the influence of EGCG on aggregate toxicity, morphology, seeding competence, stability and conformational changes. Secondly, we screened publications elucidating the biochemical mechanism of EGCG intervention, notably the effect of EGCG on aggregation kinetics, oligomeric aggregation intermediates, and its binding mode to polypeptides. We hypothesize that the experimental results may be reconciled in a common mechanism, in which EGCG binds to cross-beta sheet aggregation intermediates. The relative position of these species in the energy profile of the amyloid cascade would determine the net effect of EGCG on aggregation and disaggregation of amyloid fibrils.
Collapse
Affiliation(s)
- Kathrin Andrich
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, USA
| | | |
Collapse
|
175
|
Vermaas JV, Tajkhorshid E. Conformational heterogeneity of α-synuclein in membrane. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1838:3107-17. [PMID: 25135664 PMCID: PMC4194229 DOI: 10.1016/j.bbamem.2014.08.012] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 08/09/2014] [Accepted: 08/11/2014] [Indexed: 12/13/2022]
Abstract
α-Synuclein (αS) is a natively disordered protein in solution, thought to be involved in the fusion of neurotransmitter vesicles to cellular membranes during neurotransmission. Monomeric αS has been previously characterized in two distinct membrane-associated conformations: a broken-helix structure, and an extended helix. By employing atomistic molecular dynamics and a novel membrane representation with significantly enhanced lipid mobility (HMMM), we investigate the process of spontaneous membrane binding of αS and the conformational dynamics of monomeric αS in its membrane-bound form. By repeatedly placing helical αS monomers in solution above a planar lipid bilayer and observing their spontaneous association and its spontaneous insertion into the membrane during twenty independent unbiased simulations, we are able to characterize αS in its membrane-bound state, suggesting that αS has a highly variable membrane insertion depth at equilibrium. Our simulations also capture two distinct states of αS, the starting broken-helix conformation seen in the micelle bound NMR structures, and a semi-extended helix. Analysis of lipid distributions near αS monomers indicates that the transition to a semi-extended helix is facilitated by concentration of phosphatidyl-serine headgroups along the inner edge of the protein. Such a lipid-mediated transition between helix-turn-helix and extended conformations of αS may also occur in vivo, and may be important for the physiological function of αS.
Collapse
Affiliation(s)
- Josh V Vermaas
- Beckman Institute for Advanced Science and Technology, Department of Biochemistry, College of Medicine, and Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Emad Tajkhorshid
- Beckman Institute for Advanced Science and Technology, Department of Biochemistry, College of Medicine, and Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
176
|
Snead D, Eliezer D. Alpha-synuclein function and dysfunction on cellular membranes. Exp Neurobiol 2014; 23:292-313. [PMID: 25548530 PMCID: PMC4276801 DOI: 10.5607/en.2014.23.4.292] [Citation(s) in RCA: 167] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 11/15/2014] [Accepted: 11/16/2014] [Indexed: 11/19/2022] Open
Abstract
Alpha-synuclein is a small neuronal protein that is closely associated with the etiology of Parkinson's disease. Mutations in and alterations in expression levels of alpha-synuclein cause autosomal dominant early onset heredity forms of Parkinson's disease, and sporadic Parkinson's disease is defined in part by the presence of Lewy bodies and Lewy neurites that are composed primarily of alpha-synuclein deposited in an aggregated amyloid fibril state. The normal function of alpha-synuclein is poorly understood, and the precise mechanisms by which it leads to toxicity and cell death are also unclear. Although alpha-synuclein is a highly soluble, cytoplasmic protein, it binds to a variety of cellular membranes of different properties and compositions. These interactions are considered critical for at least some normal functions of alpha-synuclein, and may well play critical roles in both the aggregation of the protein and its mechanisms of toxicity. Here we review the known features of alpha-synuclein membrane interactions in the context of both the putative functions of the protein and of its pathological roles in disease.
Collapse
Affiliation(s)
- David Snead
- Department of Biochemistry, Weill Cornell Medical College, New York, NY 10065, USA
| | - David Eliezer
- Department of Biochemistry, Weill Cornell Medical College, New York, NY 10065, USA
| |
Collapse
|
177
|
Gouarné C, Tracz J, Paoli MG, Deluca V, Seimandi M, Tardif G, Xilouri M, Stefanis L, Bordet T, Pruss RM. Protective role of olesoxime against wild-type α-synuclein-induced toxicity in human neuronally differentiated SHSY-5Y cells. Br J Pharmacol 2014; 172:235-45. [PMID: 25220617 DOI: 10.1111/bph.12939] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 09/04/2014] [Accepted: 09/08/2014] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND AND PURPOSE Parkinson's disease (PD) is usually diagnosed clinically from classical motor symptoms, while definitive diagnosis is made postmortem, based on the presence of Lewy bodies and nigral neuron cell loss. α-Synuclein (ASYN), the main protein component of Lewy bodies, clearly plays a role in the neurodegeneration that characterizes PD. Additionally, mutation in the SNCA gene or copy number variations are associated with some forms of familial PD. Here, the objective of the study was to evaluate whether olesoxime, a promising neuroprotective drug can prevent ASYN-mediated neurotoxicity. EXPERIMENTAL APPROACH We used here a novel, mechanistically approachable and attractive cellular model based on the inducible overexpression of human wild-type ASYN in neuronally differentiated human neuroblastoma (SHSY-5Y) cells. This model demonstrates gradual cellular degeneration, coinciding temporally with the appearance of soluble and membrane-bound ASYN oligomers and cell death combining both apoptotic and non-apoptotic pathways. KEY RESULTS Olesoxime fully protected differentiated SHSY-5Y cells from cell death, neurite retraction and cytoplasmic shrinkage induced by moderate ASYN overexpression. This protection was associated with a reduction in cytochrome c release from mitochondria and caspase-9 activation suggesting that olesoxime prevented ASYN toxicity by preserving mitochondrial integrity and function. In addition, olesoxime displayed neurotrophic effects on neuronally differentiated SHSY-5Y cells, independent of ASYN expression, by promoting their differentiation. CONCLUSIONS AND IMPLICATIONS Because ASYN is a common underlying factor in many cases of PD, olesoxime could be a promising therapy to slow neurodegeneration in PD.
Collapse
Affiliation(s)
- C Gouarné
- Trophos, Parc Scientifique de Luminy, Luminy Biotech Entreprises, Marseille, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
178
|
Bir A, Sen O, Anand S, Khemka VK, Banerjee P, Cappai R, Sahoo A, Chakrabarti S. α-Synuclein-induced mitochondrial dysfunction in isolated preparation and intact cells: implications in the pathogenesis of Parkinson's disease. J Neurochem 2014; 131:868-77. [PMID: 25319443 DOI: 10.1111/jnc.12966] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 08/24/2014] [Accepted: 09/25/2014] [Indexed: 11/26/2022]
Abstract
This study has shown that purified recombinant human α-synuclein (20 μM) causes membrane depolarization and loss of phosphorylation capacity of isolated purified rat brain mitochondria by activating permeability transition pore complex. In intact SHSY5Y (human neuroblastoma cell line) cells, lactacystin (5 μM), a proteasomal inhibitor, causes an accumulation of α-synuclein with concomitant mitochondrial dysfunction and cell death. The effects of lactacystin on intact SHSY5Y cells are, however, prevented by knocking down α-synuclein expression by specific siRNA. Furthermore, in wild-type (non-transfected) SHSY5Y cells, the effects of lactacystin on mitochondrial function and cell viability are also prevented by cyclosporin A (1 μM) which blocks the activity of the mitochondrial permeability transition pore. Likewise, in wild-type SHSY5Y cells, typical mitochondrial poison like antimycin A (50 nM) produces loss of cell viability comparable to that of lactacystin (5 μM). These data, in combination with those from isolated brain mitochondria, strongly suggest that intracellularly accumulated α-synuclein can interact with mitochondria in intact SHSY5Y cells causing dysfunction of the organelle which drives the cell death under our experimental conditions. The results have clear implications in the pathogenesis of sporadic Parkinson's disease. α-Synuclein is shown to cause mitochondrial impairment through interaction with permeability transition pore complex in isolated preparations. Intracellular accumulation of α-synuclein in SHSY5Y cells following proteasomal inhibition leads to mitochondrial impairment and cell death which could be prevented by knocking down α-synuclein gene. The results link mitochondrial dysfunction and α-synuclein accumulation, two key pathogenic mechanisms of Parkinson's disease, in a common damage pathway.
Collapse
Affiliation(s)
- Aritri Bir
- Department of Biochemistry, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | | | | | | | | | | | | | | |
Collapse
|
179
|
Babu E, Muthu Mareeswaran P, Sathish V, Singaravadivel S, Rajagopal S. Sensing and inhibition of amyloid-β based on the simple luminescent aptamer-ruthenium complex system. Talanta 2014; 134:348-353. [PMID: 25618678 DOI: 10.1016/j.talanta.2014.11.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 11/08/2014] [Accepted: 11/10/2014] [Indexed: 12/21/2022]
Abstract
Aggregation of amyloid-β (Aβ) peptide has been known to be pathologically associated with Alzheimer and dementia diseases. Amyloid-β fibrils serve as an important target for the drugs development and diagnosis of neurodegenerative diseases. Herein, we report a new [Ru(dmbpy)(dcbpy)dppz)] complex (dmbpy; 4,4'-dimethyl-2,2'-bipyridine, dcbpy; 4,4'-dicorboxy-2,2'-bipyridine, dppz; dipyridophenazine) intercalated aptamer based recognition of amyloid-β. Interestingly, aforementioned Ru(II) complex shows weak luminescence intensity in the aqueous medium but it shows strong luminescence intensity in the presence of RNA aptamer. Upon addition of amyloid-β monomers, the luminescence intensity of Ru(II) complex is reduced due to the strong interaction of aptamer with amyloid-β monomer/small oligomers. Furthermore, present study implies that our system has ability to inhibit the formation of amyloid-β fibrils, which is confirmed from the AFM morphological structures in the absence and presence of aptamer. This work may contribute the rapid diagnosis and inhibition of amyloid-β aggregation in the clinical applications.
Collapse
Affiliation(s)
- Eththilu Babu
- Department of Physical Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai, Tamil Nadu, India; Department of Chemistry, VV College of Engineering, Tisaiyanvilai, Tamil Nadu, India
| | - Paulpandian Muthu Mareeswaran
- Department of Physical Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai, Tamil Nadu, India; Graduate School of EEWS, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Veerasamy Sathish
- Department of Physical Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai, Tamil Nadu, India; Department of Physical Science, Bannari Amman Institute of Technology, Sathiyamangalam, Tamil Nadu, India
| | - Subramanian Singaravadivel
- Department of Physical Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai, Tamil Nadu, India
| | - Seenivasan Rajagopal
- Department of Physical Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai, Tamil Nadu, India.
| |
Collapse
|
180
|
Plum S, Steinbach S, Abel L, Marcus K, Helling S, May C. Proteomics in neurodegenerative diseases: Methods for obtaining a closer look at the neuronal proteome. Proteomics Clin Appl 2014; 9:848-71. [DOI: 10.1002/prca.201400030] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 06/25/2014] [Accepted: 09/03/2014] [Indexed: 12/12/2022]
Affiliation(s)
- Sarah Plum
- Medizinisches Proteom-Center; Funktionelle Proteomik; Ruhr-Universität Bochum; Bochum Germany
| | - Simone Steinbach
- Medizinisches Proteom-Center; Medical Proteomics/Bioanalytics; Ruhr-Universität Bochum; Bochum Germany
| | - Laura Abel
- Medizinisches Proteom-Center; Medical Proteomics/Bioanalytics; Ruhr-Universität Bochum; Bochum Germany
| | - Katrin Marcus
- Medizinisches Proteom-Center; Funktionelle Proteomik; Ruhr-Universität Bochum; Bochum Germany
| | - Stefan Helling
- Medizinisches Proteom-Center; Funktionelle Proteomik; Ruhr-Universität Bochum; Bochum Germany
| | - Caroline May
- Medizinisches Proteom-Center; Medical Proteomics/Bioanalytics; Ruhr-Universität Bochum; Bochum Germany
| |
Collapse
|
181
|
van Maarschalkerweerd A, Vetri V, Langkilde AE, Foderà V, Vestergaard B. Protein/lipid coaggregates are formed during α-synuclein-induced disruption of lipid bilayers. Biomacromolecules 2014; 15:3643-54. [PMID: 25210839 DOI: 10.1021/bm500937p] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Amyloid formation is associated with neurodegenerative diseases such as Parkinson's disease (PD). Significant α-synuclein (αSN) deposition in lipid-rich Lewy bodies is a hallmark of PD. Nonetheless, an unraveling of the connection between neurodegeneration and amyloid fibrils, including the molecular mechanisms behind potential amyloid-mediated toxic effects, is still missing. Interaction between amyloid aggregates and the lipid cell membrane is expected to play a key role in the disease progress. Here, we present experimental data based on hybrid analysis of two-photon-microscopy, solution small-angle X-ray scattering and circular dichroism data. Data show in real time changes in liposome morphology and stability upon protein addition and reveal that membrane disruption mediated by amyloidogenic αSN is associated with dehydration of anionic lipid membranes and stimulation of protein secondary structure. As a result of membrane fragmentation, soluble αSN:-lipid coaggregates are formed, hence, suggesting a novel molecular mechanism behind PD amyloid cytotoxicity.
Collapse
Affiliation(s)
- Andreas van Maarschalkerweerd
- Department of Drug Design and Pharmacology, University of Copenhagen , Universitetsparken 2, 2100 Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
182
|
Paslawski W, Andreasen M, Nielsen SB, Lorenzen N, Thomsen K, Kaspersen JD, Pedersen JS, Otzen DE. High stability and cooperative unfolding of α-synuclein oligomers. Biochemistry 2014; 53:6252-63. [PMID: 25216651 DOI: 10.1021/bi5007833] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Many neurodegenerative diseases are linked with formation of amyloid aggregates. It is increasingly accepted that not the fibrils but rather oligomeric species are responsible for degeneration of neuronal cells. Strong evidence suggests that in Parkinson's disease (PD), cytotoxic α-synuclein (αSN) oligomers are key to pathogenicity. Nevertheless, insight into the oligomers' molecular properties remains scarce. Here we show that αSN oligomers, despite a large amount of disordered structure, are remarkably stable against extreme pH, temperature, and even molar amounts of chemical denaturants, though they undergo cooperative unfolding at higher denaturant concentrations. Mutants found in familial PD lead to slightly larger oligomers whose stabilities are very similar to that of wild-type αSN. Isolated oligomers do not revert to monomers but predominantly form larger aggregates consisting of stacked oligomers, suggesting that they are off-pathway relative to the process of fibril formation. We also demonstrate that 4-(dicyanovinyl)julolidine (DCVJ) can be used as a specific probe for detection of αSN oligomers. The high stability of the αSN oligomer indicates that therapeutic strategies should aim to prevent the formation of or passivate rather than dissociate this cytotoxic species.
Collapse
Affiliation(s)
- Wojciech Paslawski
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University , Gustav Wieds Vej 14, DK - 8000 Aarhus C, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
183
|
De Genst E, Messer A, Dobson CM. Antibodies and protein misfolding: From structural research tools to therapeutic strategies. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:1907-1919. [PMID: 25194824 DOI: 10.1016/j.bbapap.2014.08.016] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 08/21/2014] [Accepted: 08/27/2014] [Indexed: 01/24/2023]
Abstract
Protein misfolding disorders, including the neurodegenerative conditions Alzheimer's disease (AD) and Parkinson's disease (PD) represent one of the major medical challenges or our time. The underlying molecular mechanisms that govern protein misfolding and its links with disease are very complex processes, involving the formation of transiently populated but highly toxic molecular species within the crowded environment of the cell and tissue. Nevertheless, much progress has been made in understanding these events in recent years through innovative experiments and therapeutic strategies, and in this review we present an overview of the key roles of antibodies and antibody fragments in these endeavors. We discuss in particular how these species are being used in combination with a variety of powerful biochemical and biophysical methodologies, including a range of spectroscopic and microscopic techniques applied not just in vitro but also in situ and in vivo, both to gain a better understanding of the mechanistic nature of protein misfolding and aggregation and also to design novel therapeutic strategies to combat the family of diseases with which they are associated. This article is part of a Special Issue entitled: Recent advances in molecular engineering of antibody.
Collapse
Affiliation(s)
- Erwin De Genst
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
| | - Anne Messer
- Neural Stem Cell Institute, Regenerative Research Foundation, Rensselaer, NY 12144, USA; Department of Biomedical Sciences, University at Albany, Albany, NY 12208, USA
| | - Christopher M Dobson
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| |
Collapse
|
184
|
Sato H, Kato T, Arawaka S. Potential of Cellular and Animal Models Based on a Prion-Like Propagation of α-Synuclein for Assessing Antiparkinson Agents. Mol Neurobiol 2014; 52:226-35. [PMID: 25143237 DOI: 10.1007/s12035-014-8858-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Accepted: 08/07/2014] [Indexed: 11/30/2022]
Abstract
The pathological hallmark of Parkinson's disease (PD) is the loss of dopaminergic neurons in the substantia nigra pars compacta and the presence of Lewy bodies (LBs). LBs are intracellular inclusions typically found in these neurons and in noradrenergic neurons of the locus coeruleus in patients with PD. However, LBs can be found more widely in neurons of the olfactory bulb, cerebral cortex, and spinal cord. Additionally, LBs appear in neurons of the cardiac, cutaneous, and intestinal autonomic nervous systems. LBs are composed of fibrillar aggregates of α-synuclein (α-syn). The widespread distribution of LBs indicates that α-syn aggregation occurs in neurons in various areas, supporting the concept that PD is not only a simple movement disorder but also a complex one with nonmotor impairments. However, it is unclear how α-syn pathology spreads in the nervous system. Postmortem analyses of patients with PD who received transplants of fetal mesencephalic dopaminergic neurons revealed LB formation in surviving grafts, providing a crucial clue regarding the host-to-graft disease propagation. Recent experiments demonstrated that fibrillar α-syn is transferred from neurons to neurons in cellular and animal models, suggesting that fibrillar α-syn is repeatedly generated in cells by triggering the continuous conversion of normal soluble species into fibrillar ones. These findings suggest a "prion-like" mechanism for α-syn propagation in the pathogenesis of PD. This review summarizes the experimental findings on the prion-like propagation of α-syn and discusses the potential of cellular and animal models for testing the protective effects of chemical agents against neurodegeneration in PD.
Collapse
Affiliation(s)
- Hiroyasu Sato
- Department of Neurology, Hematology, Metabolism, Endocrinology and Diabetology, Yamagata University Faculty of Medicine, 2-2-2 Iida-nishi, Yamagata, 990-9585, Japan
| | | | | |
Collapse
|
185
|
Gallea JI, Celej MS. Structural insights into amyloid oligomers of the Parkinson disease-related protein α-synuclein. J Biol Chem 2014; 289:26733-26742. [PMID: 25143382 DOI: 10.1074/jbc.m114.566695] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The presence of intraneuronal deposits mainly formed by amyloid fibrils of the presynaptic protein α-synuclein (AS) is a hallmark of Parkinson disease. Currently, neurotoxicity is attributed to prefibrillar oligomeric species rather than the insoluble aggregates, although their mechanisms of toxicity remain elusive. Structural details of the supramolecular organization of AS oligomers are critically needed to decipher the structure-toxicity relationship underlying their pathogenicity. In this study, we employed site-specific fluorescence to get a deeper insight into the internal architecture of AS oligomeric intermediates. We demonstrate that AS oligomers are ordered assemblies possessing a well defined pattern of intermolecular contacts. Some of these contacts involve regions that form the β-sheet core in the fibrillar state, although their spatial arrangement may differ in the two aggregated forms. However, even though the two termini are excluded from the fibrillar core, they are engaged in a number of intermolecular interactions within the oligomer. Therefore, substantial structural remodeling of early oligomeric interactions is essential for fibril growth. The intermolecular contacts identified in AS oligomers can serve as targets for the rational design of anti-amyloid compounds directed at preventing oligomeric interactions/reorganizations.
Collapse
Affiliation(s)
- J Ignacio Gallea
- Departamento de Química Biológica, Centro de Investigaciones en Química Biológica de Córdoba (Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, X5000HUA Córdoba, Argentina
| | - M Soledad Celej
- Departamento de Química Biológica, Centro de Investigaciones en Química Biológica de Córdoba (Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, X5000HUA Córdoba, Argentina.
| |
Collapse
|
186
|
Vácha R, Linse S, Lund M. Surface Effects on Aggregation Kinetics of Amyloidogenic Peptides. J Am Chem Soc 2014; 136:11776-82. [DOI: 10.1021/ja505502e] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Robert Vácha
- National
Centre for Biomolecular Research, Faculty of Science and CEITEC - Central European Institute of Technology, Masaryk University, Kamenice
5, 625 00 Brno-Bohunice, Czech Republic
| | - Sara Linse
- Division
of Biochemistry and Structural Biology, Lund University, Lund, Sweden
| | - Mikael Lund
- Division
of Theoretical Chemistry, Lund University, Lund, Sweden
| |
Collapse
|
187
|
Jones DR, Moussaud S, McLean P. Targeting heat shock proteins to modulate α-synuclein toxicity. Ther Adv Neurol Disord 2014; 7:33-51. [PMID: 24409201 DOI: 10.1177/1756285613493469] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Parkinson's disease is a slowly progressive neurodegenerative disorder typically characterized by the loss of dopaminergic neurons within the substantia nigra pars compacta, and the intraneuronal deposition of insoluble protein aggregates chiefly comprised of α-synuclein. Patients experience debilitating symptoms including bradykinesia, rigidity and postural instability. No curative treatment currently exists and therapeutic strategies are restricted to symptomatic treatment only. Over the past decade a class of molecular chaperones called the heat shock proteins has emerged as a potentially promising therapeutic target. Heat shock proteins aid in the folding and refolding of proteins, and target denatured proteins to degradation systems. By targeting heat shock proteins through various means including overexpression and pharmacological enhancement, researchers have shown that α-synuclein aggregation and its associated cytotoxicity can be therapeutically modulated in an array of cell and animal models. This review highlights the relevant progress in this field and discusses the relevance of heat shock proteins as therapeutic modulators of α-synuclein toxicity to the rapidly evolving understanding of Parkinson's disease pathogenesis.
Collapse
Affiliation(s)
| | | | - Pamela McLean
- Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| |
Collapse
|
188
|
Luth ES, Stavrovskaya IG, Bartels T, Kristal BS, Selkoe DJ. Soluble, prefibrillar α-synuclein oligomers promote complex I-dependent, Ca2+-induced mitochondrial dysfunction. J Biol Chem 2014; 289:21490-507. [PMID: 24942732 DOI: 10.1074/jbc.m113.545749] [Citation(s) in RCA: 223] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
α-Synuclein (αSyn) aggregation and mitochondrial dysfunction both contribute to the pathogenesis of Parkinson disease (PD). Although recent studies have suggested that mitochondrial association of αSyn may disrupt mitochondrial function, it is unclear what aggregation state of αSyn is most damaging to mitochondria and what conditions promote or inhibit the effect of toxic αSyn species. Because the neuronal populations most vulnerable in PD are characterized by large cytosolic Ca(2+) oscillations that burden mitochondria, we examined mitochondrial Ca(2+) stress in an in vitro system comprising isolated mitochondria and purified recombinant human αSyn in various aggregation states. Using fluorimetry to simultaneously measure four mitochondrial parameters, we observed that soluble, prefibrillar αSyn oligomers, but not monomeric or fibrillar αSyn, decreased the retention time of exogenously added Ca(2+), promoted Ca(2+)-induced mitochondrial swelling and depolarization, and accelerated cytochrome c release. Inhibition of the permeability transition pore rescued these αSyn-induced changes in mitochondrial parameters. Interestingly, the mitotoxic effects of αSyn were specifically dependent upon both electron flow through complex I and mitochondrial uptake of exogenous Ca(2+). Our results suggest that soluble prefibrillar αSyn oligomers recapitulate several mitochondrial phenotypes previously observed in animal and cell models of PD: complex I dysfunction, altered membrane potential, disrupted Ca(2+) homeostasis, and enhanced cytochrome c release. These data reveal how the association of oligomeric αSyn with mitochondria can be detrimental to the function of cells with high Ca(2+)-handling requirements.
Collapse
Affiliation(s)
- Eric S Luth
- From the Center for Neurologic Diseases, Department of Neurology, and
| | - Irina G Stavrovskaya
- Department of Neurosurgery, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115
| | - Tim Bartels
- From the Center for Neurologic Diseases, Department of Neurology, and
| | - Bruce S Kristal
- Department of Neurosurgery, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115
| | - Dennis J Selkoe
- From the Center for Neurologic Diseases, Department of Neurology, and
| |
Collapse
|
189
|
Lorenzen N, Nielsen SB, Yoshimura Y, Vad BS, Andersen CB, Betzer C, Kaspersen JD, Christiansen G, Pedersen JS, Jensen PH, Mulder FAA, Otzen DE. How epigallocatechin gallate can inhibit α-synuclein oligomer toxicity in vitro. J Biol Chem 2014; 289:21299-310. [PMID: 24907278 DOI: 10.1074/jbc.m114.554667] [Citation(s) in RCA: 160] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Oligomeric species of various proteins are linked to the pathogenesis of different neurodegenerative disorders. Consequently, there is intense focus on the discovery of novel inhibitors, e.g. small molecules and antibodies, to inhibit the formation and block the toxicity of oligomers. In Parkinson disease, the protein α-synuclein (αSN) forms cytotoxic oligomers. The flavonoid epigallocatechin gallate (EGCG) has previously been shown to redirect the aggregation of αSN monomers and remodel αSN amyloid fibrils into disordered oligomers. Here, we dissect EGCG's mechanism of action. EGCG inhibits the ability of preformed oligomers to permeabilize vesicles and induce cytotoxicity in a rat brain cell line. However, EGCG does not affect oligomer size distribution or secondary structure. Rather, EGCG immobilizes the C-terminal region and moderately reduces the degree of binding of oligomers to membranes. We interpret our data to mean that the oligomer acts by destabilizing the membrane rather than by direct pore formation. This suggests that reduction (but not complete abolition) of the membrane affinity of the oligomer is sufficient to prevent cytotoxicity.
Collapse
Affiliation(s)
- Nikolai Lorenzen
- From the Interdisciplinary Nanoscience Center, Center for Insoluble Protein Structures
| | - Søren B Nielsen
- From the Interdisciplinary Nanoscience Center, Center for Insoluble Protein Structures
| | - Yuichi Yoshimura
- From the Interdisciplinary Nanoscience Center, Center for Insoluble Protein Structures, Departments of Chemistry
| | - Brian S Vad
- From the Interdisciplinary Nanoscience Center, Center for Insoluble Protein Structures
| | | | | | - Jørn D Kaspersen
- From the Interdisciplinary Nanoscience Center, Departments of Chemistry
| | - Gunna Christiansen
- Biomedicine-Medical Immunology, Aarhus University, 8000 Aarhus C, Denmark
| | - Jan S Pedersen
- From the Interdisciplinary Nanoscience Center, Departments of Chemistry
| | | | - Frans A A Mulder
- From the Interdisciplinary Nanoscience Center, Center for Insoluble Protein Structures, Departments of Chemistry
| | - Daniel E Otzen
- From the Interdisciplinary Nanoscience Center, Center for Insoluble Protein Structures,
| |
Collapse
|
190
|
Fiandaca MS, Federoff HJ. Using viral-mediated gene delivery to model Parkinson's disease: Do nonhuman primate investigations expand our understanding? Exp Neurol 2014; 256:117-25. [DOI: 10.1016/j.expneurol.2013.03.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 02/08/2013] [Accepted: 03/14/2013] [Indexed: 12/21/2022]
|
191
|
Ouzounoglou E, Kalamatianos D, Emmanouilidou E, Xilouri M, Stefanis L, Vekrellis K, Manolakos ES. In silico modeling of the effects of alpha-synuclein oligomerization on dopaminergic neuronal homeostasis. BMC SYSTEMS BIOLOGY 2014; 8:54. [PMID: 24885905 PMCID: PMC4062111 DOI: 10.1186/1752-0509-8-54] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 04/22/2014] [Indexed: 01/01/2023]
Abstract
Background Alpha-synuclein (ASYN) is central in Parkinson’s disease (PD) pathogenesis. Converging pieces of evidence suggest that the levels of ASYN expression play a critical role in both familial and sporadic Parkinson’s disease. ASYN fibrils are the main component of inclusions called Lewy Bodies (LBs) which are found mainly in the surviving neurons of the substantia nigra. Despite the accumulated knowledge regarding the involvement of ASYN in molecular mechanisms underlying the development of PD, there is much information missing which prevents understanding the causes of the disease and how to stop its progression. Results Using a Systems Biology approach, we develop a biomolecular reactions model that describes the intracellular ASYN dynamics in relation to overexpression, post-translational modification, oligomerization and degradation of the protein. Especially for the proteolysis of ASYN, the model takes into account the biological knowledge regarding the contribution of Chaperone Mediated Autophagy (CMA), macro-autophagic and proteasome pathways in the protein’s degradation. Importantly, inhibitory phenomena, caused by ASYN, concerning CMA (more specifically the lysosomal-associated membrane protein 2a, abbreviated as Lamp2a receptor, which is the rate limiting step of CMA) and the proteasome are carefully modeled. The model is validated by simulation studies of known experimental overexpression data from SH-SY5Y cells and the unknown model parameters are estimated either computationally or by experimental fitting. The calibrated model is then tested under three hypothetical intervention scenarios and in all cases predicts increased cell viability that agrees with experimental evidence. The biomodel has been annotated and is made available in SBML format. Conclusions The mathematical model presented here successfully simulates the dynamic phenomena of ASYN overexpression and oligomerization and predicts the biological system’s behavior in a number of scenarios not used for model calibration. It allows, for the first time, to qualitatively estimate the protein levels that are capable of deregulating proteolytic homeostasis. In addition, it can help form new hypotheses for intervention that could be tested experimentally.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Elias S Manolakos
- Department of Informatics and Telecommunications, Graduate Program "Information Technologies in Medicine and Biology", National and Kapodistrian University of Athens, Athens 15784, Greece.
| |
Collapse
|
192
|
Stefanovic AND, Stöckl MT, Claessens MMAE, Subramaniam V. α-Synuclein oligomers distinctively permeabilize complex model membranes. FEBS J 2014; 281:2838-50. [PMID: 24767583 DOI: 10.1111/febs.12824] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 03/16/2014] [Accepted: 04/23/2014] [Indexed: 11/30/2022]
Abstract
α-Synuclein oligomers are increasingly considered to be responsible for the death of dopaminergic neurons in Parkinson's disease. The toxicity mechanism of α-synuclein oligomers likely involves membrane permeabilization. Even though it is well established that α-synuclein oligomers bind and permeabilize vesicles composed of negatively-charged lipids, little attention has been given to the interaction of oligomers with bilayers of physiologically relevant lipid compositions. We investigated the interaction of α-synuclein with bilayers composed of lipid mixtures that mimic the composition of plasma and mitochondrial membranes. In the present study, we show that monomeric and oligomeric α-synuclein bind to these membranes. The resulting membrane leakage differs from that observed for simple artificial model bilayers. Although the addition of oligomers to negatively-charged lipid vesicles displays fast content release in a bulk permeabilization assay, adding oligomers to vesicles with compositions mimicking mitochondrial membranes shows a much slower loss of content. Oligomers are unable to induce leakage in the artificial plasma membranes, even after long-term incubation. CD experiments indicate that binding to lipid bilayers initially induces conformational changes in both oligomeric and monomeric α-synuclein, which show little change upon long-term incubation of oligomers with membranes. The results of the present study demonstrate that the mitochondrial model membranes are more vulnerable to permeabilization by oligomers than model plasma membranes reconstituted from brain-derived lipids; this preference may imply that increasingly complex membrane components, such as those in the plasma membrane mimic used in the present study, are less vulnerable to damage by oligomers.
Collapse
Affiliation(s)
- Anja N D Stefanovic
- Nanobiophysics Group, MIRA Institute for Biomedical Technology and Technical Medicine and MESA+ Institute for Nanotechnology, University of Twente, Enschede, The Netherlands
| | | | | | | |
Collapse
|
193
|
Holmes WM, Klaips CL, Serio TR. Defining the limits: Protein aggregation and toxicity in vivo. Crit Rev Biochem Mol Biol 2014; 49:294-303. [PMID: 24766537 DOI: 10.3109/10409238.2014.914151] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Abstract others complementary, to resolve mis-folded proteins when they arise, ranging from refolding through the action of molecular chaperones to elimination through regulated proteolytic mechanisms. These protein quality control pathways are sufficient, under normal conditions, to maintain a functioning proteome, but in response to diverse environmental, genetic and/or stochastic events, protein mis-folding exceeds the corrective capacity of these pathways, leading to the accumulation of aggregates and ultimately toxicity. Particularly devastating examples of these effects include certain neurodegenerative diseases, such as Huntington's Disease, which are associated with the expansion of polyglutamine tracks in proteins. In these cases, protein mis-folding and aggregation are clear contributors to pathogenesis, but uncovering the precise mechanistic links between the two events remains an area of active research. Studies in the yeast Saccharomyces cerevisiae and other model systems have uncovered previously unanticipated complexity in aggregation pathways, the contributions of protein quality control processes to them and the cellular perturbations that result from them. Together these studies suggest that aggregate interactions and localization, rather than their size, are the crucial considerations in understanding the molecular basis of toxicity.
Collapse
Affiliation(s)
- William M Holmes
- Biology Department, College of the Holy Cross , Worcester, MA , USA and
| | | | | |
Collapse
|
194
|
Paslawski W, Mysling S, Thomsen K, Jørgensen TJD, Otzen DE. Co-existence of Two Different α-Synuclein Oligomers with Different Core Structures Determined by Hydrogen/Deuterium Exchange Mass Spectrometry. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201400491] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
195
|
Paslawski W, Mysling S, Thomsen K, Jørgensen TJD, Otzen DE. Co-existence of Two Different α-Synuclein Oligomers with Different Core Structures Determined by Hydrogen/Deuterium Exchange Mass Spectrometry. Angew Chem Int Ed Engl 2014; 53:7560-3. [DOI: 10.1002/anie.201400491] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 03/06/2014] [Indexed: 12/24/2022]
|
196
|
Nuber S, Tadros D, Fields J, Overk CR, Ettle B, Kosberg K, Mante M, Rockenstein E, Trejo M, Masliah E. Environmental neurotoxic challenge of conditional alpha-synuclein transgenic mice predicts a dopaminergic olfactory-striatal interplay in early PD. Acta Neuropathol 2014; 127:477-94. [PMID: 24509835 DOI: 10.1007/s00401-014-1255-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 01/31/2014] [Accepted: 02/01/2014] [Indexed: 12/17/2022]
Abstract
The olfactory bulb (OB) is one of the first brain regions in Parkinson's disease (PD) to contain alpha-synuclein (α-syn) inclusions, possibly associated with nonmotor symptoms. Mechanisms underlying olfactory synucleinopathy, its contribution to progressive aggregation pathology and nigrostriatal dopaminergic loss observed at later stages, remain unclear. A second hit, such as environmental toxins, is suggestive for α-syn aggregation in olfactory neurons, potentially triggering disease progression. To address the possible pathogenic role of olfactory α-syn accumulation in early PD, we exposed mice with site-specific and inducible overexpression of familial PD-linked mutant α-syn in OB neurons to a low dose of the herbicide paraquat. Here, we found that olfactory α-syn per se elicited structural and behavioral abnormalities, characteristic of an early time point in models with widespread α-syn expression, including hyperactivity and increased striatal dopaminergic marker. Suppression of α-syn reversed the dopaminergic phenotype. In contrast, paraquat treatment synergistically induced degeneration of olfactory dopaminergic cells and opposed the higher reactive phenotype. Neither neurodegeneration nor behavioral abnormalities were detected in paraquat-treated mice with suppressed α-syn expression. By increasing calpain activity, paraquat induced a pathological cascade leading to inhibition of autophagy clearance and accumulation of calpain-cleaved truncated and insoluble α-syn, recapitulating biochemical and structural changes in human PD. Thus our results underscore the primary role of proteolytic failure in aggregation pathology. In addition, we provide novel evidence that olfactory dopaminergic neurons display an increased vulnerability toward neurotoxins in dependence to presence of human α-syn, possibly mediating an olfactory-striatal dopaminergic network dysfunction in mouse models and early PD.
Collapse
Affiliation(s)
- Silke Nuber
- Department of Neurosciences, University of California San Diego, 9500 Gilman Dr., MTF 344, La Jolla, CA, 92093-0624, USA,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
197
|
Smith BR, Santos MB, Marshall MS, Cantuti-Castelvetri L, Lopez-Rosas A, Li G, van Breemen R, Claycomb KI, Gallea JI, Celej SM, Crocker S, Givogri MI, Bongarzone ER. Neuronal inclusions of α-synuclein contribute to the pathogenesis of Krabbe disease. J Pathol 2014; 232:509-21. [PMID: 24415155 PMCID: PMC3977150 DOI: 10.1002/path.4328] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 11/26/2013] [Accepted: 12/29/2013] [Indexed: 11/11/2022]
Abstract
Demyelination is a major contributor to the general decay of neural functions in children with Krabbe disease. However, recent reports have indicated a significant involvement of neurons and axons in the neuropathology of the disease. In this study, we have investigated the nature of cellular inclusions in the Krabbe brain. Brain samples from the twitcher mouse model for Krabbe disease and from patients affected with the infantile and late-onset forms of the disease were examined for the presence of neuronal inclusions. Our experiments demonstrated the presence of cytoplasmic aggregates of thioflavin-S-reactive material in both human and murine mutant brains. Most of these inclusions were associated with neurons. A few inclusions were detected to be associated with microglia and none were associated with astrocytes or oligodendrocytes. Thioflavin-S-reactive inclusions increased in abundance, paralleling the development of neurological symptoms, and distributed throughout the twitcher brain in areas of major involvement in cognition and motor functions. Electron microscopy confirmed the presence of aggregates of stereotypic β-sheet folded proteinaceous material. Immunochemical analyses identified the presence of aggregated forms of α-synuclein and ubiquitin, proteins involved in the formation of Lewy bodies in Parkinson's disease and other neurodegenerative conditions. In vitro assays demonstrated that psychosine, the neurotoxic sphingolipid accumulated in Krabbe disease, accelerated the fibrillization of α-synuclein. This study demonstrates the occurrence of neuronal deposits of fibrillized proteins including α-synuclein, identifying Krabbe disease as a new α-synucleinopathy.
Collapse
Affiliation(s)
- Benjamin R. Smith
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois, University of Illinois Chicago, Chicago Il 60612
| | - Marta B. Santos
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois, University of Illinois Chicago, Chicago Il 60612
| | - Michael S. Marshall
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois, University of Illinois Chicago, Chicago Il 60612
| | - Ludovico Cantuti-Castelvetri
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois, University of Illinois Chicago, Chicago Il 60612
| | - Aurora Lopez-Rosas
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois, University of Illinois Chicago, Chicago Il 60612
| | - Guanan Li
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois, University of Illinois Chicago, Chicago Il 60612
| | - Richard van Breemen
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois, University of Illinois Chicago, Chicago Il 60612
| | - Kumiko I. Claycomb
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT
| | - Jose I. Gallea
- Departamento de Quimica Biologica, CIQUIBIC, CONICET, Universidad Nacional de Cordoba, Cordoba, Argentina
| | - Soledad M. Celej
- Departamento de Quimica Biologica, CIQUIBIC, CONICET, Universidad Nacional de Cordoba, Cordoba, Argentina
| | - Stephen Crocker
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT
| | - Maria I. Givogri
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois, University of Illinois Chicago, Chicago Il 60612
| | - Ernesto R. Bongarzone
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois, University of Illinois Chicago, Chicago Il 60612
| |
Collapse
|
198
|
Ávila CL, Torres-Bugeau CM, Barbosa LRS, Sales EM, Ouidja MO, Socías SB, Celej MS, Raisman-Vozari R, Papy-Garcia D, Itri R, Chehín RN. Structural characterization of heparin-induced glyceraldehyde-3-phosphate dehydrogenase protofibrils preventing α-synuclein oligomeric species toxicity. J Biol Chem 2014; 289:13838-50. [PMID: 24671416 DOI: 10.1074/jbc.m113.544288] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a multifunctional enzyme that has been associated with neurodegenerative diseases. GAPDH colocalizes with α-synuclein in amyloid aggregates in post-mortem tissue of patients with sporadic Parkinson disease and promotes the formation of Lewy body-like inclusions in cell culture. In a previous work, we showed that glycosaminoglycan-induced GAPDH prefibrillar species accelerate the conversion of α-synuclein to fibrils. However, it remains to be determined whether the interplay among glycosaminoglycans, GAPDH, and α-synuclein has a role in pathological states. Here, we demonstrate that the toxic effect exerted by α-synuclein oligomers in dopaminergic cell culture is abolished in the presence of GAPDH prefibrillar species. Structural analysis of prefibrillar GAPDH performed by small angle x-ray scattering showed a particle compatible with a protofibril. This protofibril is shaped as a cylinder 22 nm long and a cross-section diameter of 12 nm. Using biocomputational techniques, we obtained the first all-atom model of the GAPDH protofibril, which was validated by cross-linking coupled to mass spectrometry experiments. Because GAPDH can be secreted outside the cell where glycosaminoglycans are present, it seems plausible that GAPDH protofibrils could be assembled in the extracellular space kidnapping α-synuclein toxic oligomers. Thus, the role of GAPDH protofibrils in neuronal proteostasis must be considered. The data reported here could open alternative ways in the development of therapeutic strategies against synucleinopathies like Parkinson disease.
Collapse
Affiliation(s)
- César L Ávila
- From the Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, and Instituto de Química Biológica "Dr. Bernabé Bloj," FBQF-UNT, Chacabuco 461, T4000ILI Tucumán, Argentina
| | - Clarisa M Torres-Bugeau
- From the Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, and Instituto de Química Biológica "Dr. Bernabé Bloj," FBQF-UNT, Chacabuco 461, T4000ILI Tucumán, Argentina
| | - Leandro R S Barbosa
- the Instituto de Física da Universidade de São Paulo, Rua do Matão, Travessa R, 187, São Paulo, Brazil
| | - Elisa Morandé Sales
- the Instituto de Física da Universidade de São Paulo, Rua do Matão, Travessa R, 187, São Paulo, Brazil
| | - Mohand O Ouidja
- INSERM U1127, CNRS UMR 7225, Institut de Cerveau et de la Moelle Epinière, Paris, France, the Laboratoire Croissance, Réparation et Régénération Tissulaires, CNRS EAC 7149, Université Paris Est Créteil, Université Paris Est, F-94000, Créteil, France, and
| | - Sergio B Socías
- INSERM U1127, CNRS UMR 7225, Institut de Cerveau et de la Moelle Epinière, Paris, France
| | - M Soledad Celej
- the Departamento de Química Biológica, Centro de Investigaciones en Química Biológica de Córdoba, CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, X5000HUA Córdoba, Argentina
| | - Rita Raisman-Vozari
- INSERM U1127, CNRS UMR 7225, Institut de Cerveau et de la Moelle Epinière, Paris, France
| | - Dulce Papy-Garcia
- the Laboratoire Croissance, Réparation et Régénération Tissulaires, CNRS EAC 7149, Université Paris Est Créteil, Université Paris Est, F-94000, Créteil, France, and
| | - Rosangela Itri
- the Instituto de Física da Universidade de São Paulo, Rua do Matão, Travessa R, 187, São Paulo, Brazil
| | - Rosana N Chehín
- From the Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, and Instituto de Química Biológica "Dr. Bernabé Bloj," FBQF-UNT, Chacabuco 461, T4000ILI Tucumán, Argentina,
| |
Collapse
|
199
|
Lorenzen N, Nielsen SB, Buell AK, Kaspersen JD, Arosio P, Vad BS, Paslawski W, Christiansen G, Valnickova-Hansen Z, Andreasen M, Enghild JJ, Pedersen JS, Dobson CM, Knowles TPJ, Otzen DE. The role of stable α-synuclein oligomers in the molecular events underlying amyloid formation. J Am Chem Soc 2014; 136:3859-68. [PMID: 24527756 DOI: 10.1021/ja411577t] [Citation(s) in RCA: 201] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Studies of proteins' formation of amyloid fibrils have revealed that potentially cytotoxic oligomers frequently accumulate during fibril formation. An important question in the context of mechanistic studies of this process is whether or not oligomers are intermediates in the process of amyloid fibril formation, either as precursors of fibrils or as species involved in the fibril elongation process or instead if they are associated with an aggregation process that is distinct from that generating mature fibrils. Here we describe and characterize in detail two well-defined oligomeric species formed by the protein α-synuclein (αSN), whose aggregation is strongly implicated in the development of Parkinson's disease (PD). The two types of oligomers are both formed under conditions where amyloid fibril formation is observed but differ in molecular weight by an order of magnitude. Both possess a degree of β-sheet structure that is intermediate between that of the disordered monomer and the fully structured amyloid fibrils, and both have the capacity to permeabilize vesicles in vitro. The smaller oligomers, estimated to contain ∼30 monomers, are more numerous under the conditions used here than the larger ones, and small-angle X-ray scattering data suggest that they are ellipsoidal with a high degree of flexibility at the interface with solvent. This oligomer population is unable to elongate fibrils and indeed results in an inhibition of the kinetics of amyloid formation in a concentration-dependent manner.
Collapse
Affiliation(s)
- Nikolai Lorenzen
- Department of Molecular Biology, Center for Insoluble Protein Structures (inSPIN) and §Department of Chemistry, Interdisciplinary Nanoscience Center (iNANO), Aarhus University , Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
200
|
Arawaka S, Fukushima S, Sato H, Sasaki A, Koga K, Koyama S, Kato T. Zonisamide attenuates α-synuclein neurotoxicity by an aggregation-independent mechanism in a rat model of familial Parkinson's disease. PLoS One 2014; 9:e89076. [PMID: 24586512 PMCID: PMC3930669 DOI: 10.1371/journal.pone.0089076] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 01/15/2014] [Indexed: 01/18/2023] Open
Abstract
The anti-epileptic agent zonisamide (ZNS) has been shown to exert protective effects in neurotoxin-based mouse models of Parkinson disease. However, it is unknown whether ZNS can attenuate toxicity of familial Parkinson's disease-causing gene products. In this study, we investigated the effects of ZNS on neurodegeneration induced by expression of A53T α-synuclein in the rat substantia nigra using a recombinant adeno-associated virus vector. Expression of A53T α-synuclein yielded severe loss of nigral dopamine neurons and striatal dopamine nerve terminals from 2 weeks to 4 weeks after viral injection. Oral administration of ZNS (40 mg/kg/day) significantly delayed the pace of degeneration at 4 weeks after viral injection as compared with the vehicle group. This effect lasted until 8 weeks after viral injection, the final point of observation. ZNS treatment had no impact on the survival of nigrostriatal dopamine neurons in rats expressing green fluorescent protein. Quantification of striatal Ser129-phosphorylated α-synuclein-positive aggregates showed that these aggregates rapidly formed from 2 weeks to 4 weeks after viral injection. This increase was closely correlated with loss of nigrostriatal dopamine neurons. However, ZNS treatment failed to alter the number of all striatal Ser129-phosphorylated α-synuclein-positive aggregates, including small dot-like and large round structures. The number of these aggregates was almost constant at 4 weeks and 8 weeks after viral injection, although ZNS persistently prevented loss of nigrostriatal dopamine neurons during this period. Also, ZNS treatment did not affect the number of striatal aggregates larger than 10 µm in diameter. These data show that ZNS attenuates α-synuclein-induced toxicity in a manner that is independent of the formation and maturation of α-synuclein aggregates in an in vivo model of familial Parkinson's disease, suggesting that ZNS may protect nigrostriatal dopamine neurons by modulating cellular damage or a cell death pathway commonly caused by neurotoxins and α-synuclein.
Collapse
Affiliation(s)
- Shigeki Arawaka
- Department of Neurology, Hematology, Metabolism, Endocrinology and Diabetology, Yamagata University Faculty of Medicine, Yamagata, Japan
- * E-mail:
| | - Shingo Fukushima
- Department of Neurology, Hematology, Metabolism, Endocrinology and Diabetology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Hiroyasu Sato
- Department of Neurology, Hematology, Metabolism, Endocrinology and Diabetology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Asuka Sasaki
- Department of Neurology, Hematology, Metabolism, Endocrinology and Diabetology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Kaori Koga
- Department of Neurology, Hematology, Metabolism, Endocrinology and Diabetology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Shingo Koyama
- Department of Neurology, Hematology, Metabolism, Endocrinology and Diabetology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Takeo Kato
- Department of Neurology, Hematology, Metabolism, Endocrinology and Diabetology, Yamagata University Faculty of Medicine, Yamagata, Japan
| |
Collapse
|