151
|
Butt FS, Lewis A, Rea R, Mazlan NA, Chen T, Radacsi N, Mangano E, Fan X, Yang Y, Yang S, Huang Y. Highly-Controlled Soft-Templating Synthesis of Hollow ZIF-8 Nanospheres for Selective CO 2 Separation and Storage. ACS APPLIED MATERIALS & INTERFACES 2023; 15:31740-31754. [PMID: 37345663 PMCID: PMC10326808 DOI: 10.1021/acsami.3c06502] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 06/09/2023] [Indexed: 06/23/2023]
Abstract
Global warming is an ever-rising environmental concern, and carbon dioxide (CO2) is among its major causes. Different technologies, including adsorption, cryogenic separation, and sequestration, have been developed for CO2 separation and storage/utilization. Among these, carbon capture using nano-adsorbents has the advantages of excellent CO2 separation and storage performance as well as superior heat- and mass-transfer characteristics due to their large surface area and pore volume. In this work, an environmentally friendly, facile, bottom-up synthesis of ZIF-8 hollow nanospheres (with reduced chemical consumption) was developed for selective CO2 separation and storage. During this soft-templating synthesis, a combined effect of ultra-sonication and low-temperature hydrothermal synthesis showed better control over an oil-in-water microemulsion formation and the subsequent growth of large-surface-area hollow ZIF-8 nanospheres having excellent particle size distribution. Systematic studies on the synthesis parameters were also performed to achieve fine-tuning of the ZIF-8 crystallinity, hollow structures, and sphere size. The optimized hollow ZIF-8 nanosphere sample having uniform size distribution exhibited remarkable CO2 adsorption capability (∼2.24 mmol g-1 at 0 °C and 1.75 bar), a CO2/N2 separation selectivity of 12.15, a good CO2 storage capacity (1.5-1.75 wt %), and an excellent cyclic adsorption/desorption performance (up to four CO2 adsorption/desorption cycles) at 25 °C. In addition, the samples showed exceptional structural stability with only ∼15% of overall weight loss up to 600 °C under a nitrogen environment. Therefore, the hollow ZIF-8 nanospheres as well as their highly controlled soft-templating synthesis method reported in this work are useful in the course of the development of nanomaterials with optimized properties for future CO2 capture technologies.
Collapse
Affiliation(s)
- Fraz Saeed Butt
- School
of Engineering, Institute for Materials and Processes, The University of Edinburgh, Robert Stevenson Road, Edinburgh EH9 3FB, U.K.
| | - Allana Lewis
- School
of Engineering, Institute for Materials and Processes, The University of Edinburgh, Robert Stevenson Road, Edinburgh EH9 3FB, U.K.
| | - Riccardo Rea
- School
of Engineering, Institute for Materials and Processes, The University of Edinburgh, Robert Stevenson Road, Edinburgh EH9 3FB, U.K.
| | - Nurul A. Mazlan
- School
of Engineering, Institute for Materials and Processes, The University of Edinburgh, Robert Stevenson Road, Edinburgh EH9 3FB, U.K.
| | - Ting Chen
- School
of Engineering, Institute for Materials and Processes, The University of Edinburgh, Robert Stevenson Road, Edinburgh EH9 3FB, U.K.
| | - Norbert Radacsi
- School
of Engineering, Institute for Materials and Processes, The University of Edinburgh, Robert Stevenson Road, Edinburgh EH9 3FB, U.K.
| | - Enzo Mangano
- School
of Engineering, Institute for Materials and Processes, The University of Edinburgh, Robert Stevenson Road, Edinburgh EH9 3FB, U.K.
| | - Xianfeng Fan
- School
of Engineering, Institute for Materials and Processes, The University of Edinburgh, Robert Stevenson Road, Edinburgh EH9 3FB, U.K.
| | - Yaohao Yang
- Jiangsu
Dingying New Materials Co., Ltd., Changzhou, Jiangsu 213031, China
| | - Shuiqing Yang
- Jiangsu
Dingying New Materials Co., Ltd., Changzhou, Jiangsu 213031, China
| | - Yi Huang
- School
of Engineering, Institute for Materials and Processes, The University of Edinburgh, Robert Stevenson Road, Edinburgh EH9 3FB, U.K.
| |
Collapse
|
152
|
Zhang Z, Chen Y, Chai K, Kang C, Peh SB, Li H, Ren J, Shi X, Han X, Dejoie C, Day SJ, Yang S, Zhao D. Temperature-dependent rearrangement of gas molecules in ultramicroporous materials for tunable adsorption of CO 2 and C 2H 2. Nat Commun 2023; 14:3789. [PMID: 37355678 DOI: 10.1038/s41467-023-39319-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 06/05/2023] [Indexed: 06/26/2023] Open
Abstract
The interactions between adsorbed gas molecules within porous metal-organic frameworks are crucial to gas selectivity but remain poorly explored. Here, we report the modulation of packing geometries of CO2 and C2H2 clusters within the ultramicroporous CUK-1 material as a function of temperature. In-situ synchrotron X-ray diffraction reveals a unique temperature-dependent reversal of CO2 and C2H2 adsorption affinities on CUK-1, which is validated by gas sorption and dynamic breakthrough experiments, affording high-purity C2H2 (99.95%) from the equimolar mixture of C2H2/CO2 via a one-step purification process. At low temperatures (<253 K), CUK-1 preferentially adsorbs CO2 with both high selectivity (>10) and capacity (170 cm3 g-1) owing to the formation of CO2 tetramers that simultaneously maximize the guest-guest and host-guest interactions. At room temperature, conventionally selective adsorption of C2H2 is observed. The selectivity reversal, structural robustness, and facile regeneration of CUK-1 suggest its potential for producing high-purity C2H2 by temperature-swing sorption.
Collapse
Affiliation(s)
- Zhaoqiang Zhang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 117585, Singapore, Singapore
| | - Yinlin Chen
- Department of Chemistry, The University of Manchester, Manchester, M13 9PL, UK
| | - Kungang Chai
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Chengjun Kang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 117585, Singapore, Singapore
| | - Shing Bo Peh
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 117585, Singapore, Singapore
| | - He Li
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 117585, Singapore, Singapore
| | - Junyu Ren
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 117585, Singapore, Singapore
| | - Xiansong Shi
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 117585, Singapore, Singapore
| | - Xue Han
- College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Catherine Dejoie
- The European Synchrotron Radiation Facility, 71 Avenue des Martyrs, CS40220 Cedex 9, 38043, Grenoble, France
| | - Sarah J Day
- Diamond Light Source, Harwell Science Campus, Oxfordshire, OX11 0DE, UK
| | - Sihai Yang
- Department of Chemistry, The University of Manchester, Manchester, M13 9PL, UK.
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, 100871, China.
| | - Dan Zhao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 117585, Singapore, Singapore.
| |
Collapse
|
153
|
Seehamart K, Busayaporn W, Chanajaree R. Molecular adsorption and self-diffusion of NO 2, SO 2, and their binary mixture in MIL-47(V) material. RSC Adv 2023; 13:19207-19219. [PMID: 37362329 PMCID: PMC10289206 DOI: 10.1039/d3ra02724d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/18/2023] [Indexed: 06/28/2023] Open
Abstract
The loading dependence of self-diffusion coefficients (Ds) of NO2, SO2, and their equimolar binary mixture in MIL-47(V) have been investigated by using classical molecular dynamics (MD) simulations. The Ds of NO2 are found to be two orders of magnitude greater than SO2 at low loadings and temperatures, and its Ds decreases monotonically with loading. The Ds of SO2 exhibit two diffusion patterns, indicating the specific interaction between the gas molecules and the MIL-47(V) lattice. The maximum activation energy (Ea) in the pure component and in the mixture for SO2 are 16.43 and 18.35 kJ mol-1, and for NO2 are 2.69 and 1.89 kJ mol-1, respectively. It is shown that SO2 requires more amount of energy than NO2 to increase the diffusion rate. The radial distribution functions (RDFs) of gas-gas and gas-lattice indicate that the Oh of MIL-47(V) are preferential adsorption site for both NO2 and SO2 molecules. However, the presence of the hydrogen bonding (HB) interaction between the O of SO2 and the H of MIL-47(V) and also their binding angle (θ(OHC)) of 120° with the linkers of lattice indicate a stronger binding interaction between the SO2 and the MIL-47(V), but it does not occur with NO2. The jump-diffusion of SO2 between adsorption sites within the lattice has been confirmed by the 2D density distribution plots. Moreover, the extraordinarily high Sdiff for NO2/SO2 of 623.4 shows that NO2 can diffuse through the MIL-47(V) significantly faster than SO2, especially at low loading and temperature.
Collapse
Affiliation(s)
- Kompichit Seehamart
- Department of Applied Physics, Faculty of Engineering, Rajamangala University of Technology Isan Khon Kaen Campus Khon Kaen 40000 Thailand
| | - Wutthikrai Busayaporn
- Synchrotron Light Research Institute (Public Organization) Nakhon Ratchasima 30000 Thailand
| | - Rungroj Chanajaree
- Metallurgy and Materials Science Research Institfute (MMRI), Chulalongkorn University Bangkok 10330 Thailand
| |
Collapse
|
154
|
Li C, Pang Y, Xu Y, Lu M, Tu L, Li Q, Sharma A, Guo Z, Li X, Sun Y. Near-infrared metal agents assisting precision medicine: from strategic design to bioimaging and therapeutic applications. Chem Soc Rev 2023. [PMID: 37334831 DOI: 10.1039/d3cs00227f] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Metal agents have made incredible strides in preclinical research and clinical applications in recent years, but their short emission/absorption wavelengths continue to be a barrier to their distribution, therapeutic action, visual tracking, and efficacy evaluation. Nowadays, the near-infrared window (NIR, 650-1700 nm) provides a more accurate imaging and treatment option. Thus, there has been ongoing research focusing on developing multifunctional NIR metal agents for imaging and therapy that have deeper tissue penetration. The design, characteristics, bioimaging, and therapy of NIR metal agents are covered in this overview of papers and reports published to date. To start with, we focus on describing the structure, design strategies, and photophysical properties of metal agents from the NIR-I (650-1000 nm) to NIR-II (1000-1700 nm) region, in order of molecular metal complexes (MMCs), metal-organic complexes (MOCs), and metal-organic frameworks (MOFs). Next, the biomedical applications brought by these superior photophysical and chemical properties for more accurate imaging and therapy are discussed. Finally, we explore the challenges and prospects of each type of NIR metal agent for future biomedical research and clinical translation.
Collapse
Affiliation(s)
- Chonglu Li
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, China.
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China.
| | - Yida Pang
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China.
| | - Yuling Xu
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China.
| | - Mengjiao Lu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China.
| | - Le Tu
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China.
| | - Qian Li
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Amit Sharma
- CSIR-Central Scientific Instruments Organisation, Sector-30C, Chandigarh 160030, India
| | - Zhenzhong Guo
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, China.
| | - Xiangyang Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China.
| | - Yao Sun
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China.
| |
Collapse
|
155
|
Gong W, Chen X, Fahy KM, Dong J, Liu Y, Farha OK, Cui Y. Reticular Chemistry in Its Chiral Form: Axially Chiral Zr(IV)-Spiro Metal-Organic Framework as a Case Study. J Am Chem Soc 2023. [PMID: 37311062 DOI: 10.1021/jacs.3c03036] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The interplay of primary organic ligands and inorganic secondary building units (SBUs) has led to a continual boom of reticular chemistry, particularly metal-organic frameworks (MOFs). Subtle variations of organic ligands can have a significant impact on the ultimate structural topology and consequently, the material's function. However, the role of ligand chirality in reticular chemistry has rarely been explored. In this work, we report the organic ligand chirality-controlled synthesis of two zirconium-based MOFs (Spiro-1 and Spiro-3) with distinct topological structures as well as a temperature-controlled formation of a kinetically stable phase (Spiro-4) based on the carboxylate-functionalized inherently axially chiral 1,1'-spirobiindane-7,7'-phosphoric acid ligand. Specifically, Spiro-1 is a homochiral framework comprising only enantiopure S-spiro ligands and has a unique 4,8-connected sjt topology with large 3D interconnected cavities, while Spiro-3 contains equal amounts of S- and R-spiro ligands, resulting in a racemic framework of 6,12-connected edge-transitive alb topology with narrow channels. Interestingly, the kinetic product Spiro-4 obtained with racemic spiro ligands is built of both hexa- and nona-nuclear zirconium clusters acting as 9- and 6-connected nodes, respectively, giving rise to a newly discovered azs net. Notably, the preinstalled highly hydrophilic phosphoric acid groups combined with large cavity, high porosity, and outstanding chemical stability endow Spiro-1 with remarkable water vapor sorption performance, whereas Spiro-3 and Spiro-4 show poor performances due to inappropriate pore systems and structural fragility upon the water adsorption/desorption process. This work highlights the important role of ligand chirality in manipulating the framework topology and function and would further enrich the development of reticular chemistry.
Collapse
Affiliation(s)
- Wei Gong
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xinfa Chen
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Kira M Fahy
- Department of Chemistry and International Institute for Nanotechnology (IIN), Northwestern University, Evanston, Illinois 60208, United States
| | - Jinqiao Dong
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yan Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Omar K Farha
- Department of Chemistry and International Institute for Nanotechnology (IIN), Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemical & Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Yong Cui
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
156
|
Glasby L, Gubsch K, Bence R, Oktavian R, Isoko K, Moosavi SM, Cordiner JL, Cole JC, Moghadam PZ. DigiMOF: A Database of Metal-Organic Framework Synthesis Information Generated via Text Mining. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2023; 35:4510-4524. [PMID: 37332681 PMCID: PMC10269341 DOI: 10.1021/acs.chemmater.3c00788] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/29/2023] [Indexed: 06/20/2023]
Abstract
The vastness of materials space, particularly that which is concerned with metal-organic frameworks (MOFs), creates the critical problem of performing efficient identification of promising materials for specific applications. Although high-throughput computational approaches, including the use of machine learning, have been useful in rapid screening and rational design of MOFs, they tend to neglect descriptors related to their synthesis. One way to improve the efficiency of MOF discovery is to data-mine published MOF papers to extract the materials informatics knowledge contained within journal articles. Here, by adapting the chemistry-aware natural language processing tool, ChemDataExtractor (CDE), we generated an open-source database of MOFs focused on their synthetic properties: the DigiMOF database. Using the CDE web scraping package alongside the Cambridge Structural Database (CSD) MOF subset, we automatically downloaded 43,281 unique MOF journal articles, extracted 15,501 unique MOF materials, and text-mined over 52,680 associated properties including the synthesis method, solvent, organic linker, metal precursor, and topology. Additionally, we developed an alternative data extraction technique to obtain and transform the chemical names assigned to each CSD entry in order to determine linker types for each structure in the CSD MOF subset. This data enabled us to match MOFs to a list of known linkers provided by Tokyo Chemical Industry UK Ltd. (TCI) and analyze the cost of these important chemicals. This centralized, structured database reveals the MOF synthetic data embedded within thousands of MOF publications and contains further topology, metal type, accessible surface area, largest cavity diameter, pore limiting diameter, open metal sites, and density calculations for all 3D MOFs in the CSD MOF subset. The DigiMOF database and associated software are publicly available for other researchers to rapidly search for MOFs with specific properties, conduct further analysis of alternative MOF production pathways, and create additional parsers to search for additional desirable properties.
Collapse
Affiliation(s)
- Lawson
T. Glasby
- Department
of Chemical and Biological Engineering, The University of Sheffield, Sheffield S1 3JD, U.K.
| | - Kristian Gubsch
- Department
of Chemical and Biological Engineering, The University of Sheffield, Sheffield S1 3JD, U.K.
| | - Rosalee Bence
- Department
of Chemical and Biological Engineering, The University of Sheffield, Sheffield S1 3JD, U.K.
| | - Rama Oktavian
- Department
of Chemical and Biological Engineering, The University of Sheffield, Sheffield S1 3JD, U.K.
| | - Kesler Isoko
- Department
of Chemical and Biological Engineering, The University of Sheffield, Sheffield S1 3JD, U.K.
| | - Seyed Mohamad Moosavi
- Chemical
Engineering & Applied Chemistry, University
of Toronto, Toronto, Ontario M5S 3E5, Canada
| | - Joan L. Cordiner
- Department
of Chemical and Biological Engineering, The University of Sheffield, Sheffield S1 3JD, U.K.
| | - Jason C. Cole
- Cambridge
Crystallographic Data Centre, Cambridge CB2 1EZ, U.K.
| | - Peyman Z. Moghadam
- Department
of Chemical and Biological Engineering, The University of Sheffield, Sheffield S1 3JD, U.K.
- Department
of Chemical Engineering, University College
London, London WC1E 7JE, U.K.
| |
Collapse
|
157
|
Iizuka T, Sano H, Le Ouay B, Hosono N, Uemura T. An approach to MOFaxanes by threading ultralong polymers through metal-organic framework microcrystals. Nat Commun 2023; 14:3241. [PMID: 37296133 DOI: 10.1038/s41467-023-38835-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 05/17/2023] [Indexed: 06/12/2023] Open
Abstract
Mechanically interlocked architecture has inspired the fabrication of numerous molecular systems, such as rotaxanes, catenanes, molecular knots, and their polymeric analogues. However, to date, the studies in this field have only focused on the molecular-scale integrity and topology of its unique penetrating structure. Thus, the topological material design of such architectures has not been fully explored from the nano- to the macroscopic scale. Here, we propose a supramolecular interlocked system, MOFaxane, comprised of long chain molecules penetrating a microcrystal of metal-organic framework (MOF). In this study, we describe the synthesis of polypseudoMOFaxane that is one of the MOFaxane family. This has a polythreaded structure in which multiple polymer chains thread a single MOF microcrystal, forming a topological network in the bulk state. The topological crosslinking architecture is obtained by simply mixing polymers and MOFs, and displays characteristics distinct from those of conventional polyrotaxane materials, including suppression of unthreading reactions.
Collapse
Affiliation(s)
- Tomoya Iizuka
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, 277-8561, Chiba, Japan
| | - Hiroyuki Sano
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, 113-8656, Tokyo, Japan
| | - Benjamin Le Ouay
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, 277-8561, Chiba, Japan
- Department of Chemistry, Graduate School of Science, Kyushu University, 744 Motooka, Nishi-ku, 819-0395, Fukuoka, Japan
| | - Nobuhiko Hosono
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, 113-8656, Tokyo, Japan.
| | - Takashi Uemura
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, 113-8656, Tokyo, Japan.
| |
Collapse
|
158
|
Li J, Peng H, Ji W, Lu D, Wang N, Peng C, Zhang W, Li M, Li Y. Advances in surface-modified nanometal-organic frameworks for drug delivery. Int J Pharm 2023:123119. [PMID: 37302666 DOI: 10.1016/j.ijpharm.2023.123119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/13/2023]
Abstract
Nanometal-organic frameworks (NMOFs) are porous network structures composed of metal ions or metal clusters through self-assembly. NMOFs have been considered as a promising nano-drug delivery system due to their unique properties such as pore and flexible structures, large specific surface areas, surface modifiability, non-toxic and degradable properties. However, NMOFs face a series complex environment during in vivo delivery. Therefore, surface functionalization of NMOFs is vital to ensure that the structure of NMOFs remain stable during delivery, and can overcome physiological barriers to deliver drugs more accurately to specific sites, and achieve controllable release. In this review, the first part summarizes the physiological barriers that NMOFs faced during drug delivery after intravenous injection and oral administration. The second part summarizes the current main ways to load drugs into NMOFs, mainly including pore adsorption, surface attachment, formation of covalent/coordination bonds between drug molecules and NMOFs, and in situ encapsulation. The third part is the main review part of this paper, which summarizes the surface modification methods of NMOFs used in recent years to overcome the physiological barriers and achieve effective drug delivery and disease therapy, which are mainly divided into physical modifications and chemical modifications. Finally, the full text is summarized and prospected, with the hope to provide ideas for the future development of NMOFs as drug delivery.
Collapse
Affiliation(s)
- Jiaxin Li
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Huan Peng
- Protein Science Key Laboratory of the Ministry of Education, School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Weihong Ji
- Institute of Biomaterials and Tissue Engineering, Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, 361021, China
| | - Dengyang Lu
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Nan Wang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Chen Peng
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Wen Zhang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Muzi Li
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yan Li
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| |
Collapse
|
159
|
Demir H, Daglar H, Gulbalkan HC, Aksu GO, Keskin S. Recent advances in computational modeling of MOFs: From molecular simulations to machine learning. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
160
|
Zhong J, Yuan X, Xiong J, Wu X, Lou W. Solvent-dependent strategy to construct mesoporous Zr-based metal-organic frameworks for high-efficient adsorption of tetracycline. ENVIRONMENTAL RESEARCH 2023; 226:115633. [PMID: 36931373 DOI: 10.1016/j.envres.2023.115633] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 03/03/2023] [Accepted: 03/04/2023] [Indexed: 06/18/2023]
Abstract
The accumulated antibiotics in the aquatic environment pose great threat to human and ecological health, boosting the development of porous materials for antibiotic removal. Mesoporous metal-organic frameworks (MOFs) have shown great promise in adsorption, which, however, usually need supramolecular design or cooperative template strategy for synthesis. Here we report the successful construction of mesoporous zirconium based metal-organic frameworks (Zr-MOFs) via a simple solvent-dependent strategy. Regulation of the ratio of water to N, N-dimethylacetamide during synthesis determined the porous structure of the synthesized MOFs. Systematic characterizations including SEM, FTIR, XRD and nitrogen sorption isotherm were carried out for structure analysis of the MOFs. With water fraction of 20% (v/v), the obtained Zr-MOF exhibited the highest adsorption capacity (Qmax of 337.0 mg⋅g-1) towards tetracycline (TC). The adsorption kinetics fitted the pseudo-second-order kinetics, and the adsorption isotherms fitted the Freundlich model well. Adsorption mechanism investigation revealed that the abundant Zr-OH groups stemming from coordination defects mainly accounted for TC adsorption. The hydrogen bonding interaction between TC and Zr-MOF and the generated mesopores contributed to the satisfactory adsorption capacity. This work is anticipated to provide insights on facile synthesis of mesoporous MOFs and application in environmental remediation.
Collapse
Affiliation(s)
- Jin Zhong
- Lab of Applied Biocatalysis, School of Food Science and Technology, South China University of Technology, Guangzhou, 510640, Guangdong, China
| | - Xin Yuan
- Lab of Applied Biocatalysis, School of Food Science and Technology, South China University of Technology, Guangzhou, 510640, Guangdong, China
| | - Jun Xiong
- Lab of Applied Biocatalysis, School of Food Science and Technology, South China University of Technology, Guangzhou, 510640, Guangdong, China
| | - Xiaoling Wu
- Lab of Applied Biocatalysis, School of Food Science and Technology, South China University of Technology, Guangzhou, 510640, Guangdong, China.
| | - Wenyong Lou
- Lab of Applied Biocatalysis, School of Food Science and Technology, South China University of Technology, Guangzhou, 510640, Guangdong, China.
| |
Collapse
|
161
|
Gao MY, Bezrukov AA, Song BQ, He M, Nikkhah SJ, Wang SQ, Kumar N, Darwish S, Sensharma D, Deng C, Li J, Liu L, Krishna R, Vandichel M, Yang S, Zaworotko MJ. Highly Productive C 3H 4/C 3H 6 Trace Separation by a Packing Polymorph of a Layered Hybrid Ultramicroporous Material. J Am Chem Soc 2023; 145:11837-11845. [PMID: 37204941 PMCID: PMC10236493 DOI: 10.1021/jacs.3c03505] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Indexed: 05/21/2023]
Abstract
Ultramicroporous materials can be highly effective at trace gas separations when they offer a high density of selective binding sites. Herein, we report that sql-NbOFFIVE-bpe-Cu, a new variant of a previously reported ultramicroporous square lattice, sql, topology material, sql-SIFSIX-bpe-Zn, can exist in two polymorphs. These polymorphs, sql-NbOFFIVE-bpe-Cu-AA (AA) and sql-NbOFFIVE-bpe-Cu-AB (AB), exhibit AAAA and ABAB packing of the sql layers, respectively. Whereas NbOFFIVE-bpe-Cu-AA (AA) is isostructural with sql-SIFSIX-bpe-Zn, each exhibiting intrinsic 1D channels, sql-NbOFFIVE-bpe-Cu-AB (AB) has two types of channels, the intrinsic channels and extrinsic channels between the sql networks. Gas and temperature induced transformations of the two polymorphs of sql-NbOFFIVE-bpe-Cu were investigated by pure gas sorption, single-crystal X-ray diffraction (SCXRD), variable temperature powder X-ray diffraction (VT-PXRD), and synchrotron PXRD. We observed that the extrinsic pore structure of AB resulted in properties with potential for selective C3H4/C3H6 separation. Subsequent dynamic gas breakthrough measurements revealed exceptional experimental C3H4/C3H6 selectivity (270) and a new benchmark for productivity (118 mmol g-1) of polymer grade C3H6 (purity >99.99%) from a 1:99 C3H4/C3H6 mixture. Structural analysis, gas sorption studies, and gas adsorption kinetics enabled us to determine that a binding "sweet spot" for C3H4 in the extrinsic pores is behind the benchmark separation performance. Density-functional theory (DFT) calculations and Canonical Monte Carlo (CMC) simulations provided further insight into the binding sites of C3H4 and C3H6 molecules within these two hybrid ultramicroporous materials, HUMs. These results highlight, to our knowledge for the first time, how pore engineering through the study of packing polymorphism in layered materials can dramatically change the separation performance of a physisorbent.
Collapse
Affiliation(s)
- Mei-Yan Gao
- Bernal
Institute, Department of Chemical Sciences, University of Limerick, Limerick V94 T9PX, Republic
of Ireland
| | - Andrey A. Bezrukov
- Bernal
Institute, Department of Chemical Sciences, University of Limerick, Limerick V94 T9PX, Republic
of Ireland
| | - Bai-Qiao Song
- Bernal
Institute, Department of Chemical Sciences, University of Limerick, Limerick V94 T9PX, Republic
of Ireland
| | - Meng He
- Department
of Chemistry, University of Manchester, Manchester, M13 9PL, U.K.
| | - Sousa Javan Nikkhah
- Bernal
Institute, Department of Chemical Sciences, University of Limerick, Limerick V94 T9PX, Republic
of Ireland
| | - Shi-Qiang Wang
- Institute
of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way 138634, Singapore
| | - Naveen Kumar
- Bernal
Institute, Department of Chemical Sciences, University of Limerick, Limerick V94 T9PX, Republic
of Ireland
| | - Shaza Darwish
- Bernal
Institute, Department of Chemical Sciences, University of Limerick, Limerick V94 T9PX, Republic
of Ireland
| | - Debobroto Sensharma
- Bernal
Institute, Department of Chemical Sciences, University of Limerick, Limerick V94 T9PX, Republic
of Ireland
| | - Chenghua Deng
- Bernal
Institute, Department of Chemical Sciences, University of Limerick, Limerick V94 T9PX, Republic
of Ireland
| | - Jiangnan Li
- Department
of Chemistry, University of Manchester, Manchester, M13 9PL, U.K.
| | - Lunjie Liu
- Department
of Materials Science and Engineering, Southern
University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Rajamani Krishna
- Van’t
Hoff Institute for Molecular Sciences, University
of Amsterdam, Science
Park 904, 1098 XH Amsterdam, Netherlands
| | - Matthias Vandichel
- Bernal
Institute, Department of Chemical Sciences, University of Limerick, Limerick V94 T9PX, Republic
of Ireland
| | - Sihai Yang
- Department
of Chemistry, University of Manchester, Manchester, M13 9PL, U.K.
| | - Michael J. Zaworotko
- Bernal
Institute, Department of Chemical Sciences, University of Limerick, Limerick V94 T9PX, Republic
of Ireland
| |
Collapse
|
162
|
Asadi V, Marandi A, Kardanpour R, Tangestaninejad S, Moghadam M, Mirkhani V, Mohammadpoor-Baltork I, Mirzaei R. Carbonic Anhydrase-Embedded ZIF-8 Electrospun PVA Fibers as an Excellent Biocatalyst Candidate. ACS OMEGA 2023; 8:17809-17818. [PMID: 37251154 PMCID: PMC10210226 DOI: 10.1021/acsomega.3c00691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/27/2023] [Indexed: 05/31/2023]
Abstract
There is a growing concern that the increasing concentration of CO2 in the atmosphere contributes to a potential negative impact on global climate change. To deal with this problem, developing a set of innovative, practical technologies is essential. In the present study, maximizing the CO2 utilization and precipitation as CaCO3 was evaluated. In this manner, bovine carbonic anhydrase (BCA) was embedded into the microporous zeolite imidazolate framework, ZIF-8, via physical absorption and encapsulation. Running as crystal seeds, these nanocomposites (enzyme-embedded MOFs) were in situ grown on the cross-linked electrospun polyvinyl alcohol (CPVA). The prepared composites displayed much higher stability against denaturants, high temperatures, and acidic media than free BCA, and BCA immobilized into or on ZIF-8. During 37 days of storage period study, BCA@ZIF-8/CPVA and BCA/ZIF-8/CPVA maintained more than 99 and 75% of their initial activity, respectively. The composition of BCA@ZIF-8 and BCA/ZIF-8 with CPVA improved stability for consecutive usage in recovery reactions, recycling easiness, and greater control over the catalytic process. The amounts of calcium carbonate obtained by one mg each of fresh BCA@ZIF-8/CPVA and BCA/ZIF-8/CPVA were 55.45 and 49.15 mg, respectively. The precipitated calcium carbonate by BCA@ZIF-8/CPVA reached 64.8% of the initial run, while this amount was 43.6% for BCA/ZIF-8/CPVA after eight cycles. These results indicated that the BCA@ZIF-8/CPVA and BCA/ZIF-8/CPVA fibers could be efficiently applied to CO2 sequestration.
Collapse
|
163
|
Li F, Wang KY, Liu Z, Han Z, Kuai D, Fan W, Feng L, Wang Y, Wang X, Li Y, Yang Z, Wang R, Sun D, Zhou HC. Ortho Effects of Tricarboxylate Linkers in Regulating Topologies of Rare-Earth Metal-Organic Frameworks. JACS AU 2023; 3:1337-1347. [PMID: 37234108 PMCID: PMC10207104 DOI: 10.1021/jacsau.2c00635] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 03/19/2023] [Accepted: 03/20/2023] [Indexed: 05/27/2023]
Abstract
A linker design strategy is developed to attain novel polynuclear rare-earth (RE) metal-organic frameworks (MOFs) with unprecedented topologies. We uncover the critical role of ortho-functionalized tricarboxylate ligands in directing the construction of highly connected RE MOFs. The acidity and conformation of the tricarboxylate linkers were altered by substituting with diverse functional groups at the ortho position of the carboxyl groups. For instance, the acidity difference between carboxylate moieties resulted in forming three hexanuclear RE MOFs with novel (3,3,3,10,10)-c wxl, (3,12)-c gmx, and (3,3,3,12)-c joe topologies, respectively. In addition, when a bulky methyl group was introduced, the incompatibility between the net topology and ligand conformation guided the co-appearance of hexanuclear and tetranuclear clusters, generating a novel 3-periodic MOF with a (3,3,8,10)-c kyw net. Interestingly, a fluoro-functionalized linker prompted the formation of two unusual trinuclear clusters and produced a MOF with a fascinating (3,8,10)-c lfg topology, which could be gradually replaced by a more stable tetranuclear MOF with a new (3,12)-c lee topology with extended reaction time. This work enriches the polynuclear clusters library of RE MOFs and unveils new opportunities to construct MOFs with unprecedented structural complexity and vast application potential.
Collapse
Affiliation(s)
- Fugang Li
- School
of Materials Science and Engineering, College of Chemistry and Chemical
Engineering, China University of Petroleum
(East China), Qingdao, Shandong 266580, China
| | - Kun-Yu Wang
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843-3255, United
States
| | - Zhengyang Liu
- School
of Materials Science and Engineering, College of Chemistry and Chemical
Engineering, China University of Petroleum
(East China), Qingdao, Shandong 266580, China
| | - Zongsu Han
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843-3255, United
States
| | - Dacheng Kuai
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843-3255, United
States
| | - Weidong Fan
- School
of Materials Science and Engineering, College of Chemistry and Chemical
Engineering, China University of Petroleum
(East China), Qingdao, Shandong 266580, China
| | - Liang Feng
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843-3255, United
States
| | - Yutong Wang
- School
of Materials Science and Engineering, College of Chemistry and Chemical
Engineering, China University of Petroleum
(East China), Qingdao, Shandong 266580, China
| | - Xiaokang Wang
- School
of Materials Science and Engineering, College of Chemistry and Chemical
Engineering, China University of Petroleum
(East China), Qingdao, Shandong 266580, China
| | - Yue Li
- School
of Materials Science and Engineering, College of Chemistry and Chemical
Engineering, China University of Petroleum
(East China), Qingdao, Shandong 266580, China
| | - Zhentao Yang
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843-3255, United
States
| | - Rongming Wang
- School
of Materials Science and Engineering, College of Chemistry and Chemical
Engineering, China University of Petroleum
(East China), Qingdao, Shandong 266580, China
| | - Daofeng Sun
- School
of Materials Science and Engineering, College of Chemistry and Chemical
Engineering, China University of Petroleum
(East China), Qingdao, Shandong 266580, China
| | - Hong-Cai Zhou
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843-3255, United
States
- Department
of Materials Science and Engineering, Texas
A&M University, College Station, Texas 77843-3255, United States
| |
Collapse
|
164
|
Zhang Z, Deng Z, Evans HA, Mullangi D, Kang C, Peh SB, Wang Y, Brown CM, Wang J, Canepa P, Cheetham AK, Zhao D. Exclusive Recognition of CO 2 from Hydrocarbons by Aluminum Formate with Hydrogen-Confined Pore Cavities. J Am Chem Soc 2023; 145:11643-11649. [PMID: 37196352 DOI: 10.1021/jacs.3c01705] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Exclusive capture of carbon dioxide (CO2) from hydrocarbons via adsorptive separation is an important technology in the petrochemical industry, especially for acetylene (C2H2) production. However, the physicochemical similarities between CO2 and C2H2 hamper the development of CO2-preferential sorbents, and CO2 is mainly discerned via C recognition with low efficiency. Here, we report that the ultramicroporous material Al(HCOO)3, ALF, can exclusively capture CO2 from hydrocarbon mixtures, including those containing C2H2 and CH4. ALF shows a remarkable CO2 capacity of 86.2 cm3 g-1 and record-high CO2/C2H2 and CO2/CH4 uptake ratios. The inverse CO2/C2H2 separation and exclusive CO2 capture performance from hydrocarbons are validated via adsorption isotherms and dynamic breakthrough experiments. Notably, the hydrogen-confined pore cavities with appropriate dimensional size provide an ideal pore chemistry to specifically match CO2 via a hydrogen bonding mechanism, with all hydrocarbons rejected. This molecular recognition mechanism is unveiled by in situ Fourier-transform infrared spectroscopy, X-ray diffraction studies, and molecular simulations.
Collapse
Affiliation(s)
- Zhaoqiang Zhang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| | - Zeyu Deng
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
| | - Hayden A Evans
- Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20878, United States
| | - Dinesh Mullangi
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
| | - Chengjun Kang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| | - Shing Bo Peh
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| | - Yuxiang Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| | - Craig M Brown
- Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20878, United States
| | - John Wang
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
| | - Pieremanuele Canepa
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
| | - Anthony K Cheetham
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States
| | - Dan Zhao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| |
Collapse
|
165
|
Liang Z, Ou Y, El-Sayed ESM, Su K, Wang W, Yuan D. Effect of Functional Groups on Low-Concentration Carbon Dioxide Capture in UiO-66-Type Metal-Organic Frameworks. Inorg Chem 2023; 62:8309-8314. [PMID: 37187458 DOI: 10.1021/acs.inorgchem.3c00821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The selective capture of low-concentration CO2 from air or confined spaces remains a great challenge. In this study, various functional groups were introduced into UiO-66 to generate functionalized derivatives (UiO-66-R, R = NO2, NH2, OH, and CH3), aiming at significantly enhancing CO2 adsorption and separation efficiency. More significantly, UiO-66-NO2 and UiO-66-NH2 with high polarity exhibit exceptional CO2 affinity and optimal separation characteristics in mixed CO2/O2/N2 (1:21:78). In addition, the impressive stability of UiO-66-NO2 and UiO-66-NH2 endows them with excellent recycling stability. The effective adsorption and separation performances demonstrated by these two functional materials suggest their potential as promising physical adsorbents for capturing low-concentration CO2.
Collapse
Affiliation(s)
- Zihao Liang
- College of Chemistry, Fuzhou University, Fuzhou 350116, China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Yangyang Ou
- College of Chemistry, Fuzhou University, Fuzhou 350116, China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - El-Sayed M El-Sayed
- Chemical Refining Laboratory, Refining Department, Egyptian Petroleum Research Institute, Nasr City 11727, Egypt
| | - Kongzhao Su
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Wenjing Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Daqiang Yuan
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
166
|
Yang Z, Belmabkhout Y, McHugh LN, Ao D, Sun Y, Li S, Qiao Z, Bennett TD, Guiver MD, Zhong C. ZIF-62 glass foam self-supported membranes to address CH 4/N 2 separations. NATURE MATERIALS 2023:10.1038/s41563-023-01545-w. [PMID: 37169976 DOI: 10.1038/s41563-023-01545-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 03/28/2023] [Indexed: 05/13/2023]
Abstract
Membranes with ultrahigh permeance and practical selectivity could greatly decrease the cost of difficult industrial gas separations, such as CH4/N2 separation. Advanced membranes made from porous materials, such as metal-organic frameworks, can achieve a good gas separation performance, although they are typically formed on support layers or mixed with polymeric matrices, placing limitations on gas permeance. Here an amorphous glass foam, agfZIF-62, wherein a, g and f denote amorphous, glass and foam, respectively, was synthesized by a polymer-thermal-decomposition-assisted melting strategy, starting from a crystalline zeolitic imidazolate framework, ZIF-62. The thermal decomposition of incorporated low-molecular-weight polyethyleneimine evolves CO2, NH3 and H2O gases, creating a large number and variety of pores. This greatly increases pore interconnectivity but maintains the crystalline ZIF-62 ultramicropores, allowing ultrahigh gas permeance and good selectivity. A self-supported circular agfZIF-62 with a thickness of 200-330 µm and area of 8.55 cm2 was used for membrane separation. The membranes perform well, showing a CH4 permeance of 30,000-50,000 gas permeance units, approximately two orders of magnitude higher than that of other reported membranes, with good CH4/N2 selectivity (4-6).
Collapse
Affiliation(s)
- Zibo Yang
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin, China
| | - Youssef Belmabkhout
- Applied Chemistry and Engineering Research Centre of Excellence (ACER CoE) and Technology Development Cell (TechCell), Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Lauren N McHugh
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, UK
| | - De Ao
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin, China
| | - Yuxiu Sun
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin, China
| | - Shichun Li
- Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang, China
| | - Zhihua Qiao
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin, China.
| | - Thomas D Bennett
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, UK
| | - Michael D Guiver
- State Key Laboratory of Engines, School of Mechanical Engineering, Tianjin University, Tianjin, China.
- National Industry-Education Platform of Energy Storage, Tianjin University, Tianjin, China.
| | - Chongli Zhong
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin, China.
| |
Collapse
|
167
|
Huang T, Wu T, Huang Y, Lin W, Ma J, Sun LP, Guan BO. Nanoscale Adsorption, Assembly, and Deionization Dynamics Recorded by Optical Fiber Sensors. ACS NANO 2023. [PMID: 37145868 DOI: 10.1021/acsnano.3c01507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Capacitive deionization in environmental decontamination has been widely studied and now requires intensive development to support large-scale deployment. Porous nanomaterials have been demonstrated to play pivotal roles in determining decontamination efficiency and manipulating nanomaterials to form functional architecture has been one of the most exciting challenges. Such nanostructure engineering and environmental applications highlight the importance of observing, recording, and studying basically electrical-assisted charge/ion/particle adsorption and assembly behaviors localized at charged interfaces. In addition, it is generally desirable to increase the sorption capacity and reduce the energy cost, which increase the requirement for recording collective dynamic and performance properties that stem from nanoscale deionization dynamics. Herein, we show how a single optical fiber can serve as an in situ and multifunctional opto-electrochemical platform for addressing these issues. The surface plasmon resonance signals allow the in situ spectral observation of nanoscale dynamic behaviors at the electrode-electrolyte interface. The parallel and complementary optical-electrical sensing signals enable the single probe but multifunctional recording of electrokinetic phenomena and electrosorption processes. As a proof of concept, we experimentally decipher the interfacial adsorption and assembly behaviors of anisotropic metal-organic framework nanoparticles at a charged surface and decouple the interfacial capacitive deionization within an assembled metal-organic framework nanocoating by visualizing its dynamic and energy consumption properties, including the adsorptive capacity, removal efficiency, kinetic properties, charge, specific energy consumption, and charge efficiency. This simple "all-in-fiber" opto-electrochemical platform offers intriguing opportunities to provide in situ and multidimensional insights into interfacial adsorption, assembly, and deionization dynamics information, which may contribute to understanding the underlying assembly rules and the exploring structure-deionization performance correlations for the development of tailor-made nanohybrid electrode coatings for deionization applications.
Collapse
Affiliation(s)
- Tiansheng Huang
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communication, Institute of Photonics Technology, Jinan University, Guangzhou 510632, China
| | - Tongyu Wu
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communication, Institute of Photonics Technology, Jinan University, Guangzhou 510632, China
| | - Yan Huang
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communication, Institute of Photonics Technology, Jinan University, Guangzhou 510632, China
| | - Wenfu Lin
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communication, Institute of Photonics Technology, Jinan University, Guangzhou 510632, China
| | - Jun Ma
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communication, Institute of Photonics Technology, Jinan University, Guangzhou 510632, China
| | - Li-Peng Sun
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communication, Institute of Photonics Technology, Jinan University, Guangzhou 510632, China
| | - Bai-Ou Guan
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communication, Institute of Photonics Technology, Jinan University, Guangzhou 510632, China
| |
Collapse
|
168
|
Zeng WY, Huang M, Fu M. Solid-phase extraction and separation of indium with P 2O 4-UiO-66-MOFs (di-2-ethylhexyl phosphoric acid-UiO-66-metal-organic frameworks). J Environ Sci (China) 2023; 127:833-843. [PMID: 36522111 DOI: 10.1016/j.jes.2022.08.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/16/2022] [Accepted: 08/01/2022] [Indexed: 06/17/2023]
Abstract
Compared with the traditional liquid-liquid extraction method, solid-phase extraction agents are of great significance for the recovery of indium metal due to their convenience, free of organic solvents, and fully exposed activity. In this study, P2O4 (di-2-ethylhexyl phosphoric acid) was chemically modified by using UiO-66 to form the solid-phase extraction agent P2O4-UiO-66-MOFs (di-2-ethylhexyl phosphoric acid-UiO-66-metal-organic frameworks) to adsorb In(III). The results show that the Zr of UiO-66 bonds with the P-OH of P2O4 to form a composite P2O4-UiO-66-MOF, which was confirmed by X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FT-IR). The adsorption process of indium on P2O4-UiO-66-MOFs followed pseudo first-order kinetics, and the adsorption isotherms fit the Langmuir adsorption isotherm model. The adsorption capabilities can reach 192.8 mg/g. After five consecutive cycles of adsorption-desorption-regeneration, the indium adsorption capacity by P2O4-UiO-66-MOFs remained above 99%. The adsorption mechanism analysis showed that the P=O and P-OH of P2O4 molecules coated on the surface of P2O4-UiO-66-MOFs participated in the adsorption reaction of indium. In this paper, the extractant P2O4 was modified into solid P2O4-UiO-66-MOFs for the first time. This work provides a new idea for the development of solid-phase extractants for the recovery of indium.
Collapse
Affiliation(s)
- Wan-Yi Zeng
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Minzhong Huang
- School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Minglai Fu
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen 361021, China.
| |
Collapse
|
169
|
Liu C, Quan K, Chen J, Shi X, Qiu H. Chiral metal-organic frameworks and their composites as stationary phases for liquid chromatography chiral separation: A minireview. J Chromatogr A 2023; 1700:464032. [PMID: 37148566 DOI: 10.1016/j.chroma.2023.464032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/16/2023] [Accepted: 04/26/2023] [Indexed: 05/08/2023]
Abstract
Chiral metal organic frameworks (CMOFs) are a kind of crystal porous framework material that has attracted increasing attention due to the customizable combination of metal nodes and organic ligands. In particular, the highly ordered crystal structure and rich adjustable chiral structure make it a promising material for developing new chiral separation material systems. In this review, the progress of CMOFs and their different types of composites used as chiral stationary phases (CSPs) in liquid chromatography for enantioseparation are discussed. The characteristics of CMOFs and their composites are summarized, aiming to provide new ideas for the development of CMOFs with better performance and further promote the application of CMOFs materials in enantioselective high-performance liquid chromatography (HPLC).
Collapse
Affiliation(s)
- Chunqiang Liu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kaijun Quan
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
| | - Jia Chen
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaofeng Shi
- Institute of Materia Medica, Gansu Provincial Cancer Hospital, Lanzhou 730050, China
| | - Hongdeng Qiu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
170
|
Gupta S, Tanaka H, Fuku K, Uchida K, Iguchi H, Sakamoto R, Kobayashi H, Gambe Y, Honma I, Hirai Y, Hayami S, Takaishi S. Quinoid-Based Three-Dimensional Metal-Organic Framework Fe 2(dhbq) 3: Porosity, Electrical Conductivity, and Solid-State Redox Properties. Inorg Chem 2023; 62:6306-6313. [PMID: 37053521 DOI: 10.1021/acs.inorgchem.2c04313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2023]
Abstract
We report the synthesis, characterization, and electronic properties of the quinoid-based three-dimensional metal-organic framework [Fe2(dhbq)3]. The MOF was synthesized without using cations as a template, unlike other reported X2dhbq3-based coordination polymers, and the crystal structure was determined by using single-crystal X-ray diffraction. The crystal structure was entirely different from the other reported [Fe2(X2dhbq3)]2-; three independent 3D polymers were interpenetrated to give the overall structure. The absence of cations led to a microporous structure, investigated by N2 adsorption isotherms. Temperature dependence of electrical conductivity data revealed that it exhibited a relatively high electrical conductivity of 1.2 × 10-2 S cm-1 (Ea = 212 meV) due to extended d-π conjugation in a three-dimensional network. Thermoelectromotive force measurement revealed that it is an n-type semiconductor with electrons as the majority of charge carriers. Structural characterization and spectroscopic analyses, including SXRD, Mössbauer, UV-vis-NIR, IR, and XANES measurements, evidenced the occurrence of no mixed valency based on the metal and the ligand. [Fe2(dhbq)3] upon incorporating as a cathode material for lithium-ion batteries engendered an initial discharge capacity of 322 mAh/g.
Collapse
Affiliation(s)
- Shraddha Gupta
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aza-aoba, Aramaki, Sendai 980-8578, Japan
| | - Haruki Tanaka
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aza-aoba, Aramaki, Sendai 980-8578, Japan
| | - Kentaro Fuku
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aza-aoba, Aramaki, Sendai 980-8578, Japan
| | - Kaiji Uchida
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aza-aoba, Aramaki, Sendai 980-8578, Japan
| | - Hiroaki Iguchi
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aza-aoba, Aramaki, Sendai 980-8578, Japan
| | - Ryota Sakamoto
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aza-aoba, Aramaki, Sendai 980-8578, Japan
| | - Hiroaki Kobayashi
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Miyagi 980-8577, Japan
| | - Yoshiyuki Gambe
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Miyagi 980-8577, Japan
| | - Itaru Honma
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Miyagi 980-8577, Japan
| | - Yutaka Hirai
- Department of Chemistry, Faculty of Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Shinya Hayami
- Department of Chemistry, Faculty of Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Shinya Takaishi
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aza-aoba, Aramaki, Sendai 980-8578, Japan
| |
Collapse
|
171
|
Kung CW, Otake KI, Drout RJ, Goswami S, Farha OK, Hupp JT. Post-Synthetic Cyano-ferrate(II) Functionalization of a Metal-Organic Framework, NU-1000. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:4936-4942. [PMID: 36994868 DOI: 10.1021/acs.langmuir.2c03354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Starting with ferrocyanide ions in acidic aqueous solution, cyano-ferrate(II) species are post-synthetically grafted to the nodes of a mesoporous zirconium-based MOF, NU-1000. As indicated by single-crystal X-ray crystallography, grafting occurs by substitution of cyanide ligands by node-based hydroxo and oxo ligands rather than by substitution of node aqua ligands by cyanide ligands as bridges between Fe(II) and Zr(IV). The installed moieties yield a broad absorption band that is tentatively ascribed to iron-to-zirconium charge transfer. Consistent with Fe(III/II) redox activity, a modest fraction of the installed iron complexes are directly electrochemically addressable.
Collapse
Affiliation(s)
- Chung-Wei Kung
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Department of Chemical Engineering, National Cheng Kung University, 1 University Road, Tainan City 70101, Taiwan
| | - Ken-Ichi Otake
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University Institute for Advanced Study (KUIAS), Kyoto University, Yoshidahonmachi, Sakyo Ward, Kyoto 606-8317, Japan
| | - Riki J Drout
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Subhadip Goswami
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Omar K Farha
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Joseph T Hupp
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
172
|
Khalil IE, Fonseca J, Reithofer MR, Eder T, Chin JM. Tackling orientation of metal-organic frameworks (MOFs): The quest to enhance MOF performance. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
|
173
|
Mariella Babu A, Varghese A. Electrochemical Deposition for Metal Organic Frameworks: Advanced Energy, Catalysis, Sensing and Separation Applications. J Electroanal Chem (Lausanne) 2023. [DOI: 10.1016/j.jelechem.2023.117417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
|
174
|
Zhang T, Lin S, Yan T, Li B, Liang Y, Liu D, He Y. Integrating Self-Partitioned Pore Space and Amine Functionality into an Aromatic-Rich Coordination Framework with Ph Stability for Effective Purification of C 2 Hydrocarbons. Inorg Chem 2023; 62:5593-5601. [PMID: 36989440 DOI: 10.1021/acs.inorgchem.3c00154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
A great demand for high-purity C2 hydrocarbons calls for the development of chemically stable porous materials for the effective isolation of C2 hydrocarbons from CH4 and CO2. However, such separations are challenged by their similar physiochemical parameters and have not been systematically studied to date. In this work, we reported a cadmium-based rod-packing coordination framework compound ZJNU-140 of a new 5,6,7-c topology built up from a custom-designed tricarboxylate ligand. The metal-organic framework (MOF) features an aromatic-abundant pore surface, uncoordinated amine functionality, and self-partitioned pore space of suitable size. These structural characteristics act synergistically to provide the MOF with both selective recognition ability and the confinement effect toward C2 hydrocarbons. As a result, the MOF displays promising potential for adsorptive separation of C2-CH4 and C2-CO2 mixtures. The IAST-predicted C2/CH4 and C2/CO2 adsorption selectivities, respectively, fall in the ranges of 7.3-10.2 and 2.1-2.9 at 298 K and 109 kPa. The real separation performance was also confirmed by dynamic breakthrough experiments. In addition, the MOF can maintain skeleton intactness in aqueous solutions with a wide pH range of 3-11, as confirmed by powder X-ray diffraction (PXRD) and isotherm measurements, showing no loss of framework integrity and porosity. The excellent hydrostability, considerable uptake capacity, impressive adsorption selectivity, and mild regeneration make ZJNU-140 a promising adsorbent material applied for the separation and purification of C2 hydrocarbons.
Collapse
Affiliation(s)
- Ting Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, China
| | - Shengjie Lin
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, China
| | - Tongan Yan
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Bing Li
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, China
| | - Ye Liang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, China
| | - Dahuan Liu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yabing He
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, China
| |
Collapse
|
175
|
Smoljan CS, Li Z, Xie H, Setter CJ, Idrees KB, Son FA, Formalik F, Shafaie S, Islamoglu T, Macreadie LK, Snurr RQ, Farha OK. Engineering Metal-Organic Frameworks for Selective Separation of Hexane Isomers Using 3-Dimensional Linkers. J Am Chem Soc 2023; 145:6434-6441. [PMID: 36897997 DOI: 10.1021/jacs.2c13715] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Metal-organic frameworks (MOFs) are highly tunable materials with potential for use as porous media in non-thermal adsorption or membrane-based separations. However, many separations target molecules with sub-angstrom differences in size, requiring precise control over the pore size. Herein, we demonstrate that this precise control can be achieved by installing a three-dimensional linker in an MOF with one-dimensional channels. Specifically, we synthesized single crystals and bulk powder of NU-2002, an isostructural framework to MIL-53 with bicyclo[1.1.1]pentane-1,3-dicarboxylic acid as the organic linker component. Using variable-temperature X-ray diffraction studies, we show that increasing linker dimensionality limits structural breathing relative to MIL-53. Furthermore, single-component adsorption isotherms demonstrate the efficacy of this material for separating hexane isomers based on the different sizes and shapes of these isomers.
Collapse
Affiliation(s)
- Courtney S Smoljan
- Department of Chemical & Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Zhao Li
- Department of Chemical & Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Haomiao Xie
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Caitlin J Setter
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052 Australia
| | - Karam B Idrees
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Florencia A Son
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Filip Formalik
- Department of Chemical & Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Department of Micro, Nano, and Bioprocess Engineering, Faculty of Chemistry, Wroclaw University of Science and Technology, Wroclaw 50-370, Poland
| | - Saman Shafaie
- Integrated Molecular Structure Engineering and Research Center, Department of Chemistry, Northwestern UniversityRINGGOLD, Evanston, Illinois 60208, United States
| | - Timur Islamoglu
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Lauren K Macreadie
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052 Australia
| | - Randall Q Snurr
- Department of Chemical & Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Omar K Farha
- Department of Chemical & Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
176
|
Somnath, Ahmad M, Siddiqui KA. Ratiometric luminescent sensing of a biomarker for sugar consumption in an aqueous medium using a Cu(II) coordination polymer. Dalton Trans 2023; 52:3643-3660. [PMID: 36867431 DOI: 10.1039/d3dt00022b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
An innovative [Cu(Hadp)2(Bimb)]n (KA@CP-S3) coordination polymer expands its dimensionality from a 1D chain to a 2D network. The topological analysis reveals that KA@CP-S3 has 2-connected uninodal 2D 2C1 topology. KA@CP-S3 has capable luminescent sensing for volatile organic compounds (VOCs), nitroaromatics, heavy metal ions, anions, disposed antibiotics (nitrofurantoin and tetracycline) and biomarkers. Intriguingly, KA@CP-S3 exhibits outstanding selective quenching of about 90.7% and 90.5% for the 125 mg dl-1 and 150 mg dl-1 strengths of sucrose, respectively, in aqueous solution along with other ranges in between. The photocatalytic degradation efficiency of KA@CP-S3 for the potentially harmful organic dye Bromophenol Blue displays 95.4%, which is the highest among the 13 dyes that were evaluated.
Collapse
Affiliation(s)
- Somnath
- Department of Chemistry, National Institute of Technology Raipur, G E Road, Raipur-492010, Chhattisgarh, India.
| | - Musheer Ahmad
- Department of Applied Chemistry, Faculty of Engineering and Technology, ZHCET, Aligarh Muslim University, Aligarh, UP, 202002, India
| | - Kafeel Ahmad Siddiqui
- Department of Chemistry, National Institute of Technology Raipur, G E Road, Raipur-492010, Chhattisgarh, India.
| |
Collapse
|
177
|
Miyazaki I, Masuoka Y, Ohshima A, Takahashi N, Suzumura A, Moribe S, Takao H, Umehara M. Sintering Metal-Organic Framework Gels for Application as Structural Adhesives. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2300298. [PMID: 36929697 DOI: 10.1002/smll.202300298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Metal-organic frameworks (MOFs)/coordination polymers are promising materials for gas separation, fuel storage, catalysis, and biopharmaceuticals. However, most applied research on MOFs is limited to these functional materials thus far. This study focuses on the potential of MOFs as structural adhesives. A sintering technique is applied to a zeolitic imidazolate framework-67 (ZIF-67) gel that enables the joining of Cu substrates, resulting in a shear strength of over 30 MPa, which is comparable to that of conventional structural adhesives. Additionally, systematic experiments are performed to evaluate the effects of temperature and pressure on adhesion, indicating that the removal of excess 2-methylimidazole and the by-product (acetic acid) from the sintered material by vaporization results in a microstructure composed of large spherical ZIF-67 crystals that are densely aggregated, which is essential for achieving a high shear strength.
Collapse
Affiliation(s)
- Izuru Miyazaki
- Toyota Central R&D Labs., Inc., Nagakute, Aichi, 480-1192, Japan
| | - Yumi Masuoka
- Toyota Central R&D Labs., Inc., Nagakute, Aichi, 480-1192, Japan
| | - Ayako Ohshima
- Toyota Central R&D Labs., Inc., Nagakute, Aichi, 480-1192, Japan
| | - Naoko Takahashi
- Toyota Central R&D Labs., Inc., Nagakute, Aichi, 480-1192, Japan
| | | | - Shinya Moribe
- Toyota Central R&D Labs., Inc., Nagakute, Aichi, 480-1192, Japan
| | - Hisaaki Takao
- Toyota Central R&D Labs., Inc., Nagakute, Aichi, 480-1192, Japan
| | | |
Collapse
|
178
|
Hassan ZM, Guo W, Welle A, Oestreich R, Janiak C, Redel E. Formation of Gold Nanoclusters from Goldcarbonyl Chloride inside the Metal-Organic Framework HKUST-1. Molecules 2023; 28:molecules28062716. [PMID: 36985688 PMCID: PMC10051452 DOI: 10.3390/molecules28062716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/09/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023] Open
Abstract
Gas-phase infiltration of the carbonylchloridogold(I), Au(CO)Cl precursor into the pores of HKUST-1 ([Cu3(BTC)2(H2O)2], Cu-BTC) SURMOFs (surface-mounted metal-organic frameworks; BTC = benzene-1,3,5-tricarboxylate) leads to Au(CO)Cl decomposition within the MOF through hydrolysis with the aqua ligands on Cu. Small Aux clusters with an average atom number of x ≈ 5 are formed in the medium-sized pores of the HKUST-1 matrix. These gold nanoclusters are homogeneously distributed and crystallographically ordered, which was supported by simulations of the powder X-ray diffractometric characterization. Aux@HKUST-1 was further characterized by scanning electron microscopy (SEM) and infrared reflection absorption (IRRA) as well as Raman spectroscopy, time-of-flight secondary ion mass spectrometry (ToF-SIMS), X-ray photoelectron spectroscopy (XPS) and inductively coupled plasma optical emission spectroscopy (ICP-OES).
Collapse
Affiliation(s)
- Zeinab Mohamed Hassan
- Karlsruhe Institute of Technology, Institute of Functional Interfaces (IFG), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Wei Guo
- Karlsruhe Institute of Technology, Institute of Functional Interfaces (IFG), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Alexander Welle
- Karlsruhe Institute of Technology, Institute of Functional Interfaces (IFG), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
- Karlsruhe Institute of Technology, Karlsruhe Nano Micro Facility (KNMF), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Robert Oestreich
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, 40204 Düsseldorf, Germany
| | - Christoph Janiak
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, 40204 Düsseldorf, Germany
- Correspondence: (C.J.); (E.R.)
| | - Engelbert Redel
- Karlsruhe Institute of Technology, Institute of Functional Interfaces (IFG), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
- Correspondence: (C.J.); (E.R.)
| |
Collapse
|
179
|
Claveria-Cádiz F, Kuznetsov AE. Computational design of the novel building blocks for the metal-organic frameworks based on the organic ligand protected Cu 4 cluster. PHYSICAL SCIENCES REVIEWS 2023. [DOI: 10.1515/psr-2022-0304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
Abstract
Metal-organic frameworks (MOFs) are tunable porous network compounds composed of inorganic nodes bound by various organic linkers. Here we report the density functional theory (DFT) study of the MOF novel building blocks made of the Cu4 clusters protected by four organic ligands having two phenyl rings and terminated either with Cl or Br atom (precursors 1 and 2, respectively). The research was performed both in the gas phase and with the implicit effects of acetonitrile included, with two functionals, B3LYP and PBE, both with and without the second-order dispersion correction. We analyzed the structural features of the precursors 1 and 2, their electronic structures, molecular electrostatic potential (MEP) distribution, and global reactivity parameters (GRPs). Both functionals resulted in the singlets of the precursors 1 and 2 as the most stable species. The precursor structures optimized with the hybrid functional were found to be quite similar for both halogens, both containing somewhat distorted from planarity Cu4 cluster, with the outer phenyls of the ligands rotated relative to the inner phenyls. With both halogens and both DFT approaches, the frontier molecular orbitals (FMOs) of the precursors 1 and 2 were shown to have quite similar compositions. The change of the substituent from Br to Cl was found to cause slight stabilizations or destabilizations of the HOMOs and LUMOs. The central parts and especially the inner phenyl ring parts of the precursors 1 and 2 were suggested to play a role of nucleophile in various chemical reactions due to the significant accumulation of negative electrostatic potential. Also, weak intermolecular interactions might exist between the ligands of neighboring precursor molecules. Finally, with both substituents the precursors 1 and 2 should be relatively unreactive and demonstrate thermodynamic stability. Further, the precursors 1 and 2 should be quite stable in oxidation reactions and more active in reduction processes. Generally, the substituent nature was shown not to affect significantly the reactivity of the precursors 1 and 2, as well as their other properties.
Collapse
Affiliation(s)
- Francisca Claveria-Cádiz
- Programa de Doctorado Conjunto en Ciencias Mención Química , Universidad Técnica Federico Santa María , Avenida España N 1680, 2390123 , Valparaíso , Chile
- Universidad de Valparaíso , Avenida. Gran Bretaña N 1111, 2360102 , Valparaíso , Chile
| | - Aleksey E. Kuznetsov
- Departamento de Química , Universidad Técnica Federico Santa María , Av. Santa María 6400, 7660251, Santiago , Chile
| |
Collapse
|
180
|
Liu D, Pei J, Zhang X, Gu XW, Wen HM, Chen B, Qian G, Li B. Scalable Green Synthesis of Robust Ultra-Microporous Hofmann Clathrate Material with Record C 3 H 6 Storage Density for Efficient C 3 H 6 /C 3 H 8 Separation. Angew Chem Int Ed Engl 2023; 62:e202218590. [PMID: 36691771 DOI: 10.1002/anie.202218590] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 01/25/2023]
Abstract
Developing porous materials for C3 H6 /C3 H8 separation faces the challenge of merging excellent separation performance with high stability and easy scalability of synthesis. Herein, we report a robust Hofmann clathrate material (ZJU-75a), featuring high-density strong binding sites to achieve all the above requirements. ZJU-75a adsorbs large amount of C3 H6 with a record high storage density of 0.818 g mL-1 , and concurrently shows high C3 H6 /C3 H8 selectivity (54.2) at 296 K and 1 bar. Single-crystal structure analysis unveil that the high-density binding sites in ZJU-75a not only provide much stronger interactions with C3 H6 but also enable the dense packing of C3 H6 . Breakthrough experiments on gas mixtures afford both high separation factor of 14.7 and large C3 H6 uptake (2.79 mmol g-1 ). This material is highly stable and can be easily produced at kilogram-scale using a green synthesis method, making it as a benchmark material to address major challenges for industrial C3 H6 /C3 H8 separation.
Collapse
Affiliation(s)
- Di Liu
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jiyan Pei
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xu Zhang
- School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian, 223300, China
| | - Xiao-Wen Gu
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Hui-Min Wen
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Banglin Chen
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
| | - Guodong Qian
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Bin Li
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
181
|
Bai C, Gao Y, Zhang Z, Tu L, Cai D, Lv Z, Gao C, Xue L. Ligand Substitution: An Effective Way for Tuning Structures of ZIF-7 Nanoparticles (NPs) and Improving Energy Recovery Performance of ZIF/PA TFN Membranes. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 36913424 DOI: 10.1021/acsami.2c22701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
It is an important initiative to reduce the building energy consumption using energy recovering ventilation (ERV) systems. The application of ERV systems is hindered by the low CO2 barrier performance of commercial total heat exchange membranes (THEMs) that lead to unsatisfactory indoor air refreshing rate, and there is an urgent need for THEMs that have improved CO2 barrier properties and effective energy recovery efficiencies. Here, we report the formation of novel ZIF/PA TFN THEMs based on ZIF-7-X nanoparticles (NPs) with "core-shell" structures and tunable particle sizes, formed from benzimidazole (BIM) ligands and BIM substituted by -NH2, -CH3, -C2H5, and -C3H7 functional groups. The NPs were mixed with pyr omellitic triformyl chloride (TMC) in the organic phase during the interface polymerization process to form ZIF/PA TFN membranes. The total heat exchange performance of ZIF/PA TFN membranes could be effectively modified by the type and quantity of ZIF-7-X NPs added. The CO2 barrier properties and water vapor permeability of ZIF/PA TFN membranes could be improved by the addition of optimal levels of ZIF-7-X NPs, showing low CO2 permeance of 7.76 GPU, high H2O permeance of 663.8 GPU, and excellent enthalpy exchange efficiency of 72.1%. This work provided an effective strategy for tuning not only the nanostructures of ZIF-7 fillers but also the CO2 barrier properties of the formed ZIF/PA TFN membranes.
Collapse
Affiliation(s)
- Chaojie Bai
- Center for Membrane Separation and Water Science & Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Yang Gao
- Center for Membrane Separation and Water Science & Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Zuoqun Zhang
- Center for Membrane Separation and Water Science & Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Longdou Tu
- Center for Membrane Separation and Water Science & Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Dajian Cai
- Center for Membrane Separation and Water Science & Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Zixuan Lv
- Center for Membrane Separation and Water Science & Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Congjie Gao
- Center for Membrane Separation and Water Science & Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Lixin Xue
- Center for Membrane Separation and Water Science & Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, China
| |
Collapse
|
182
|
Zhang C, Zhao J, Lu B, Seeman NC, Sha R, Noinaj N, Mao C. Engineering DNA Crystals toward Studying DNA-Guest Molecule Interactions. J Am Chem Soc 2023; 145:4853-4859. [PMID: 36791277 DOI: 10.1021/jacs.3c00081] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Sequence-selective recognition of DNA duplexes is important for a wide range of applications including regulating gene expression, drug development, and genome editing. Many small molecules can bind DNA duplexes with sequence selectivity. It remains as a challenge how to reliably and conveniently obtain the detailed structural information on DNA-molecule interactions because such information is critically needed for understanding the underlying rules of DNA-molecule interactions. If those rules were understood, we could design molecules to recognize DNA duplexes with a sequence preference and intervene in related biological processes, such as disease treatment. Here, we have demonstrated that DNA crystal engineering is a potential solution. A molecule-binding DNA sequence is engineered to self-assemble into highly ordered DNA crystals. An X-ray crystallographic study of molecule-DNA cocrystals reveals the structural details on how the molecule interacts with the DNA duplex. In this approach, the DNA will serve two functions: (1) being part of the molecule to be studied and (2) forming the crystal lattice. It is conceivable that this method will be a general method for studying drug/peptide-DNA interactions. The resulting DNA crystals may also find use as separation matrices, as hosts for catalysts, and as media for material storage.
Collapse
Affiliation(s)
- Cuizheng Zhang
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jiemin Zhao
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States.,Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Anhui Medical University, Hefei 230032, China
| | - Brandon Lu
- Department of Chemistry, New York University, New York, New York 10003, United States
| | - Nadrian C Seeman
- Department of Chemistry, New York University, New York, New York 10003, United States
| | - Ruojie Sha
- Department of Chemistry, New York University, New York, New York 10003, United States
| | - Nicholas Noinaj
- Department of Biological Sciences, Markey Center for Structural Biology, and the Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, Indiana 47907, United States
| | - Chengde Mao
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
183
|
Highly Selective Separation of C2H2/CO2 and C2H2/C2H4 in an N-Rich Cage-Based Microporous Metal-Organic Framework. ADSORPT SCI TECHNOL 2023. [DOI: 10.1155/2023/4740672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023] Open
Abstract
The separation of acetylene (C2H2) from carbon dioxide (CO2) and the purification of ethylene (C2H4) from C2H2 are quite essential processes for the chemical industry. However, these processes are challenging due to their similar physical properties, including molecule sizes and boiling points. Herein, we report an N-rich cage-based microporous metal-organic framework (MOF), [Cd5(Tz)9](NO3) (termed as Cd-TZ, TZ stands for tetrazole), and its highly efficient separation of C2H2/CO2 and C2H2/C2H4. Single-component gas adsorption isotherms reveal that Cd-TZ exhibits high C2H2 adsorption capacity (3.10 mmol g-1 at 298 K and 1 bar). The N-rich cages in Cd-TZ can trap C2H2 with a higher isosteric heat of adsorption (40.8 kJ mol-1) than CO2 and C2H4 owing to the robust host-guest interactions between the noncoordinated N atoms and C2H2, which has been verified by molecular modeling studies. Cd-TZ shows a high IAST selectivity for C2H2/CO2 (8.3) and C2H2/C2H4 (13.3). The breakthrough simulations confirm the potential for separating C2H2/CO2 and the purification of C2H4 from C2H2.
Collapse
|
184
|
Building interfacial compatible PIM-1-based mixed-matrix membranes with β-ketoenamine-linked COF fillers for effective CO2/N2 separation. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
185
|
Gao MY, Sensharma D, Bezrukov AA, Andaloussi YH, Darwish S, Deng C, Vandichel M, Zhang J, Zaworotko MJ. A Robust Molecular Porous Material for C 2 H 2 /CO 2 Separation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206945. [PMID: 36541750 DOI: 10.1002/smll.202206945] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Indexed: 06/17/2023]
Abstract
A molecular porous material, MPM-2, comprised of cationic [Ni2 (AlF6 )(pzH)8 (H2 O)2 ] and anionic [Ni2 Al2 F11 (pzH)8 (H2 O)2 ] complexes that generate a charge-assisted hydrogen-bonded network with pcu topology is reported. The packing in MPM-2 is sustained by multiple interionic hydrogen bonding interactions that afford ultramicroporous channels between dense layers of anionic units. MPM-2 is found to exhibit excellent stability in water (>1 year). Unlike most hydrogen-bonded organic frameworks which typically show poor stability in organic solvents, MPM-2 exhibited excellent stability with respect to various organic solvents for at least two days. MPM-2 is found to be permanently porous with gas sorption isotherms at 298 K revealing a strong affinity for C2 H2 over CO2 thanks to a high (ΔQst )AC [Qst (C2 H2 ) - Qst (CO2 )] of 13.7 kJ mol-1 at low coverage. Dynamic column breakthrough experiments on MPM-2 demonstrated the separation of C2 H2 from a 1:1 C2 H2 /CO2 mixture at 298 K with effluent CO2 purity of 99.995% and C2 H2 purity of >95% after temperature-programmed desorption. C-H···F interactions between C2 H2 molecules and F atoms of AlF6 3- are found to enable high selectivity toward C2 H2 , as determined by density functional theory simulations.
Collapse
Affiliation(s)
- Mei-Yan Gao
- Bernal Institute, Department of Chemical Sciences, University of Limerick, Limerick, V94 T9PX, Republic of Ireland
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Debobroto Sensharma
- Bernal Institute, Department of Chemical Sciences, University of Limerick, Limerick, V94 T9PX, Republic of Ireland
| | - Andrey A Bezrukov
- Bernal Institute, Department of Chemical Sciences, University of Limerick, Limerick, V94 T9PX, Republic of Ireland
| | - Yassin H Andaloussi
- Bernal Institute, Department of Chemical Sciences, University of Limerick, Limerick, V94 T9PX, Republic of Ireland
| | - Shaza Darwish
- Bernal Institute, Department of Chemical Sciences, University of Limerick, Limerick, V94 T9PX, Republic of Ireland
| | - Chenghua Deng
- Bernal Institute, Department of Chemical Sciences, University of Limerick, Limerick, V94 T9PX, Republic of Ireland
| | - Matthias Vandichel
- Bernal Institute, Department of Chemical Sciences, University of Limerick, Limerick, V94 T9PX, Republic of Ireland
| | - Jian Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Michael J Zaworotko
- Bernal Institute, Department of Chemical Sciences, University of Limerick, Limerick, V94 T9PX, Republic of Ireland
| |
Collapse
|
186
|
Zheng F, Chen R, Liu Y, Yang Q, Zhang Z, Yang Y, Ren Q, Bao Z. Strengthening Intraframework Interaction within Flexible MOFs Demonstrates Simultaneous Sieving Acetylene from Ethylene and Carbon Dioxide. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207127. [PMID: 36703621 PMCID: PMC10037686 DOI: 10.1002/advs.202207127] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/04/2023] [Indexed: 06/18/2023]
Abstract
Efficient separation of acetylene (C2 H2 )/ethylene (C2 H4 ) and acetylene/carbon dioxide (CO2 ) by adsorption is an industrially promising process, but adsorbents capable of simultaneously capturing trace acetylene from ethylene and carbon dioxide are scarce. Herein, a gate-opening effect on three isomorphous flexible metal-organic frameworks (MOFs) named Co(4-DPDS)2 MO4 (M = Cr, Mo, W; 4-DPDS = 4,4-dipyridyldisulfide) is modulated by anion pillars substitution. The shortest CrO4 2- strengthens intraframework hydrogen bonding and thus blocks structural transformation after activation, striking a good balance among working capacity, separation selectivity, and trace impurity removal of flexible MOFs out of nearly C2 H2 /C2 H4 and C2 H2 /CO2 molecular sieving. The exceptional separation performance of Co(4-DPDS)2 CrO4 is confirmed by dynamic breakthrough experiments. It reveals the specific threshold pressures control in anion-pillared flexible materials enabled elimination of the impurity leakage to realize high purity products through precise control of the intraframework interaction. The adsorption mechanism and multimode structural transformation property are revealed by both calculations and crystallography studies. This work demonstrates the feasibility of modulating flexibility for controlling gate-opening effect, especially for some cases of significant aperture shrinkage after activation.
Collapse
Affiliation(s)
- Fang Zheng
- Key Laboratory of Biomass Chemical Engineering of the Ministry of EducationCollege of Chemical and Biological EngineeringZhejiang University38 Zheda RoadHangzhou310027P. R. China
- Institute of Zhejiang University‐Quzhou99 Zheda RoadQuzhouZhejiang Province324000China
| | - Rundao Chen
- Key Laboratory of Biomass Chemical Engineering of the Ministry of EducationCollege of Chemical and Biological EngineeringZhejiang University38 Zheda RoadHangzhou310027P. R. China
| | - Ying Liu
- Key Laboratory of Biomass Chemical Engineering of the Ministry of EducationCollege of Chemical and Biological EngineeringZhejiang University38 Zheda RoadHangzhou310027P. R. China
| | - Qiwei Yang
- Key Laboratory of Biomass Chemical Engineering of the Ministry of EducationCollege of Chemical and Biological EngineeringZhejiang University38 Zheda RoadHangzhou310027P. R. China
- Institute of Zhejiang University‐Quzhou99 Zheda RoadQuzhouZhejiang Province324000China
| | - Zhiguo Zhang
- Key Laboratory of Biomass Chemical Engineering of the Ministry of EducationCollege of Chemical and Biological EngineeringZhejiang University38 Zheda RoadHangzhou310027P. R. China
- Institute of Zhejiang University‐Quzhou99 Zheda RoadQuzhouZhejiang Province324000China
| | - Yiwen Yang
- Key Laboratory of Biomass Chemical Engineering of the Ministry of EducationCollege of Chemical and Biological EngineeringZhejiang University38 Zheda RoadHangzhou310027P. R. China
- Institute of Zhejiang University‐Quzhou99 Zheda RoadQuzhouZhejiang Province324000China
| | - Qilong Ren
- Key Laboratory of Biomass Chemical Engineering of the Ministry of EducationCollege of Chemical and Biological EngineeringZhejiang University38 Zheda RoadHangzhou310027P. R. China
- Institute of Zhejiang University‐Quzhou99 Zheda RoadQuzhouZhejiang Province324000China
| | - Zongbi Bao
- Key Laboratory of Biomass Chemical Engineering of the Ministry of EducationCollege of Chemical and Biological EngineeringZhejiang University38 Zheda RoadHangzhou310027P. R. China
- Institute of Zhejiang University‐Quzhou99 Zheda RoadQuzhouZhejiang Province324000China
| |
Collapse
|
187
|
Afaq S, Akram MU, Malik WMA, Ismail M, Ghafoor A, Ibrahim M, Nisa MU, Ashiq MN, Verpoort F, Chughtai AH. Amide Functionalized Mesoporous MOF LOCOM-1 as a Stable Highly Active Basic Catalyst for Knoevenagel Condensation Reaction. ACS OMEGA 2023; 8:6638-6649. [PMID: 36844569 PMCID: PMC9948166 DOI: 10.1021/acsomega.2c07137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
Acyl-amide is extensively used as functional group and is a superior contender for the design of MOFs with the guest accessible functional organic sites. A novel acyl-amide-containing tetracarboxylate ligand, bis(3,5-dicarboxy-pheny1)terephthalamide, has been successfully synthesized. The H4L linker has some fascinating attributes as follows: (i) four carboxylate moieties as the coordination sites confirm affluent coordination approaches to figure a diversity of structure; (ii) two acyl-amide groups as the guest interaction sites can engender guest molecules integrated into the MOF networks through H-bonding interfaces and have a possibility to act as functional organic sites for the condensation reaction. A mesoporous MOF ([Cu2(L)(H2O)3]·4DMF·6H2O) has been prepared in order to produce the amide FOS within the MOF, which will work as guest accessible sites. The prepared MOF was characterized by CHN analysis, PXRD, FTIR spectroscopy, and SEM analysis. The MOF showed superior catalytic activity for Knoevenagel condensation. The catalytic system endures a broad variety of the functional groups and presents high to modest yields of aldehydes containing electron withdrawing groups (4-chloro, 4-fluoro, 4-nitro), offering a yield > 98 in less reaction time as compared to aldehydes with electron donationg groups (4-methyl). The amide decorated MOF (LOCOM-1-) as a heterogeneous catalyst can be simply recovered by centrifugation and recycled again without a flagrant loss of its catalytic efficiency.
Collapse
Affiliation(s)
- Sheereen Afaq
- Institute
of Chemical Sciences, Bahauddin Zakariya
University, Multan 60800, Pakistan
| | - Muhammad Usman Akram
- Institute
of Chemical Sciences, Bahauddin Zakariya
University, Multan 60800, Pakistan
| | - Wasif Mahmood Ahmed Malik
- Institute
of Chemical Sciences, Bahauddin Zakariya
University, Multan 60800, Pakistan
- Department
of Chemistry, Emerson University Multan, Multan 60000, Pakistan
| | - Muhammad Ismail
- Institute
of Chemical Sciences, Bahauddin Zakariya
University, Multan 60800, Pakistan
| | - Abdul Ghafoor
- Institute
of Chemical Sciences, Bahauddin Zakariya
University, Multan 60800, Pakistan
| | - Muhammad Ibrahim
- Department
of Biochemistry, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Mehr un Nisa
- Department
of Chemistry, University of Lahore, Lahore 54590, Pakistan
| | - Muhammad Naeem Ashiq
- Institute
of Chemical Sciences, Bahauddin Zakariya
University, Multan 60800, Pakistan
| | - Francis Verpoort
- Laboratory
of Organometallics, Catalysis and Ordered Materials, State Key Laboratory
of Advanced Technology for the Materials Synthesis and Processing,
Center for the Chemical and Material Engineering, Wuhan University of Technology, Wuhan 430070, China
| | | |
Collapse
|
188
|
Mai T, Li DD, Chen L, Ma MG. Collaboration of two-star nanomaterials: The applications of nanocellulose-based metal organic frameworks composites. Carbohydr Polym 2023; 302:120359. [PMID: 36604046 DOI: 10.1016/j.carbpol.2022.120359] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 11/11/2022] [Accepted: 11/13/2022] [Indexed: 11/18/2022]
Abstract
Nanocellulose, as the star nanomaterial in carbohydrate polymers, has excellent mechanical properties, biodegradability, and easy chemical modification. However, further practical applications of nanocellulose are limited by their inadequate functionalization. Metal-organic frameworks (MOFs), as the star nanomaterial in functional polymers, have a large surface area, high porosity, and adjustable structure. The collaboration of nanocellulose and MOFs is a desirable strategy to make composites especially interesting for multifunctional and multi-field applications. What sparks will be produced by the collaboration of two-star nanomaterials? In this review article, we highlight an up-to-date overview of nanocellulose-based MOFs composites. The sewage treatment, gas separation, energy storage, and biomedical applications are mainly summarized. Finally, the challenges and research trends of nanocellulose-based MOFs composites are prospected. We hope this review may provide a valuable reference for the development and applications of carbohydrate polymer composites soon.
Collapse
Affiliation(s)
- Tian Mai
- Research Center of Biomass Clean Utilization, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Key Laboratory of Lignocellulosic Chemistry, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Dan-Dan Li
- Research Center of Biomass Clean Utilization, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Key Laboratory of Lignocellulosic Chemistry, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Lei Chen
- Research Center of Biomass Clean Utilization, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Key Laboratory of Lignocellulosic Chemistry, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Ming-Guo Ma
- Research Center of Biomass Clean Utilization, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Key Laboratory of Lignocellulosic Chemistry, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, PR China.
| |
Collapse
|
189
|
Rodriguez R, Palma MS, Bhandari D, Tian F. Electrodeposition of Ag/ZIF-8-Modified Membrane for Water Remediation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:2291-2300. [PMID: 36716236 PMCID: PMC9933538 DOI: 10.1021/acs.langmuir.2c02947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Metal-organic framework (MOF)-based membranes have been widely used in gas and liquid separation due to their porous structures and tunable compositions. Depending on the guest components, heterostructured MOFs can exhibit multiple functions. In the present work, we report a facile and rapid preparation of zeolitic imidazolate framework-8 (ZIF-8) and silver nanoparticle incorporated ZIF-8 (Ag/ZIF-8)-based membranes on stainless-steel mesh (SSM) through a "green" electrodeposition method. The SSM was first coated with a Zn-plated layer which contains mainly zinc hydroxide nitrate (Zn5(OH)8(NO3)2·2H2O) with a "leaf-like" morphology, providing anchoring points for the deposition of ZIF-8 and Ag/ZIF-8. It takes only 10 min to prepare a uniform coating of Zn5(OH)8(NO3)2·2H2O in aqueous conditions without the use of a strong base; this is by far the most efficient way of making zinc hydroxide nitrate nanocrystals. Following a similar electrodeposition approach, ZIF-8 and Ag/ZIF-8-coated SSM can be prepared within 20 min by applying a small current. The encapsulation of Ag does not alter the chemical composition nor the crystal structure of ZIF-8. The resulting ZIF-8 and Ag/ZIF-8-coated SSM have been tested for their effectiveness for rhodamine B dye removal in a fast vacuum filtration setting. Additionally, growth of E. coli was significantly inhibited after overnight incubation with Ag/ZIF-8-coated SSM. Overall, we demonstrate a fast synthesis procedure to make ZIF-8 and Ag/ZIF-8-coated SSM membranes for organic dye removal with excellent antimicrobial activity.
Collapse
|
190
|
Fan Y, Zheng H, Labalme S, Lin W. Molecular Engineering of Metal-Organic Layers for Sustainable Tandem and Synergistic Photocatalysis. J Am Chem Soc 2023; 145:4158-4165. [PMID: 36753526 DOI: 10.1021/jacs.2c12599] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Metal-organic layers (MOLs), a monolayered version of metal-organic frameworks (MOFs), have recently emerged as a novel two-dimensional molecular material platform to design multifunctional catalysts. MOLs inherit the intrinsic molecular tunability of MOFs and yet have more accessible and modifiable building blocks. Here we report molecular engineering of six MOLs via modulated solvothermal synthesis between HfCl4 and three photosensitizing ligands followed by postsynthetic modification with two carboxylate-containing cobaloximes for tandem and synergistic photocatalysis. Morphological and structural characterization by transmission electron microscopy and atomic force microscopy and compositional analysis by inductively coupled plasma-mass spectrometry and nuclear magnetic resonance spectroscopy establish the MOLs as flat nanoplates with a periodic lattice structure of hexagonal symmetry. The MOLs efficiently catalyze tandem dehydrogenative coupling reactions and synergistic Heck-type coupling reactions. The most active MOL catalyst was used for the gram-scale synthesis of vesnarinone, a cardiotonic agent, in 80% yield with a turnover number of 400 and in eight consecutive reaction cycles without significant loss of activities.
Collapse
Affiliation(s)
- Yingjie Fan
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Haifeng Zheng
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Steven Labalme
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Wenbin Lin
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
191
|
Zhang Z, Valente DS, Shi Y, Limbu DK, Momeni MR, Shakib FA. In Silico High-Throughput Design and Prediction of Structural and Electronic Properties of Low-Dimensional Metal-Organic Frameworks. ACS APPLIED MATERIALS & INTERFACES 2023; 15:9494-9507. [PMID: 36749899 DOI: 10.1021/acsami.2c22665] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The advent of π-stacked layered metal-organic frameworks (MOFs), which offer electrical conductivity on top of permanent porosity and high surface area, opened up new horizons for designing compact MOF-based devices such as battery electrodes, supercapacitors, and spintronics. Permutation of structural building blocks, including metal nodes and organic linkers, in these electrically conductive (EC) materials, results in new systems with unprecedented and unexplored physical and chemical properties. With the ultimate goal of providing a platform for accelerated material design and discovery, here we lay the foundations for the creation of the first comprehensive database of EC-MOFs with an experimentally guided approach. The first phase of this database, coined EC-MOF/Phase-I, is composed of 1,057 bulk and monolayer structures built by all possible combinations of experimentally reported organic linkers, functional groups, and metal nodes. A high-throughput screening (HTS) workflow is constructed to implement density functional theory calculations with periodic boundary conditions to optimize the structures and calculate some of their most relevant properties. Because research and development in the area of EC-MOFs has long been suffering from the lack of appropriate initial crystal structures, all of the geometries and property data have been made available for the use of the community through an online platform that was developed during the course of this work. This database provides comprehensive physical and chemical data of EC-MOFs as well as the convenience of selecting appropriate materials for specific applications, thus accelerating the design and discovery of EC-MOF-based compact devices.
Collapse
Affiliation(s)
- Zeyu Zhang
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Dylan S Valente
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Yuliang Shi
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Dil K Limbu
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Mohammad R Momeni
- Division of Energy, Matter and Systems, School of Science and Engineering, University of Missouri─Kansas City, Kansas City, Missouri 64110, United States
| | - Farnaz A Shakib
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| |
Collapse
|
192
|
Dutta B, Paul S, Halder S. Explosive and pollutant nitroaromatic sensing through a Cd(II) based ladder shaped 1D coordination polymer. Heliyon 2023; 9:e13504. [PMID: 36816242 PMCID: PMC9929476 DOI: 10.1016/j.heliyon.2023.e13504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/28/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023] Open
Abstract
In the existing leanings of environmental and national security issues, establishment of appropriate sensors for explosive as well as pollutant nitroaromatic compounds may be considered as one of the most prodigious job for material researchers. In the current study a new Cd(II) based 1D ladder coordination polymer (CP), [Cd(4-bpd)(3-cbn)2]n, has been synthesized and well characterized through single crystal X-ray diffraction analysis. Interestingly, the supramolecular assembly of this compound has efficiently identified 2,4,6-trinitrophenol through fluorescence quenching method. The Stern-Volmer coefficient (Ksv) has been calculated as 6.047 × 103 M-1, which can be attributed to the quenching of the emission intensity. The limit of detection (LOD) has been determined as 0.260 μM following the 3σ method along with almost 95% fluorescence intensity reduction. FESEM study revealed that the crystalline nature of the compound has been altered upon interaction with the above mentioned nitroaromatic analyte. Theoretical studies were performed to get the insight idea of fluorescence quenching mechanism which also substantiated the experimental observation. The present study can pave the way for the fabrication of future generation technology in sensor field.
Collapse
Affiliation(s)
- Basudeb Dutta
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Sukanya Paul
- Department of Chemistry, Jadavpur University, Jadavpur, Kolkata 700032, India
| | - Shibashis Halder
- Department of Chemistry, T.N.B. College, Bhagalpur, Bihar 812007, India,Corresponding author.
| |
Collapse
|
193
|
Hou Y, Wang J, Liu S, Sun Y, Dai Y, Luo C, Wang X. A novel flower-shaped Ag@ZIF-67 chemiluminescence sensor for sensitive detection of CEA. Talanta 2023; 253:123938. [PMID: 36150338 DOI: 10.1016/j.talanta.2022.123938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/07/2022] [Accepted: 09/11/2022] [Indexed: 12/13/2022]
Abstract
In this work, a chemiluminescence (CL) aptasensor for sensitive carcinoembryonic antigen (CEA) detection was constructed based on the CL system of luminol-H2O2-NaOH. Magnetic carbon nanotubes (MCNTs), as the base material, was modified with CEA-aptamer and DNA1, and was combined with the novel flower-shaped Ag@ZIF-67 of modified with DNA2 through the principle of base complementary pairing. CEA combined with aptamer when it existed in the solution. At the same time, MCNTs was adsorbed at the bottom of the container under the influence of external magnetic field, and Ag@ZIF-67 enhanced the CL signal. The CL aptasensor demonstrated high selectivity and sensitivity for CEA in human serum sample with (1-4): a detection limit of 4.53 × 10-3 ng/mL in case the detection range was 0.05-500 ng/mL. Furthermore, the proposed method had been shown great potential in cancer diagnosis.
Collapse
Affiliation(s)
- Yanan Hou
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Jingdao Wang
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Shantian Liu
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Yuanling Sun
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Yuxue Dai
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Chuannan Luo
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China.
| | - Xueying Wang
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China.
| |
Collapse
|
194
|
Solvent-free mechanochemical multicomponent preparation of 4H-pyrans catalyzed by Cu 2(NH 2-BDC) 2(DABCO) metal-organic framework. Heliyon 2023; 9:e13522. [PMID: 36852068 PMCID: PMC9958292 DOI: 10.1016/j.heliyon.2023.e13522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/27/2023] [Accepted: 02/01/2023] [Indexed: 02/11/2023] Open
Abstract
4H-pyrans have been prepared through a mechanochemical multicomponent reaction (MCR) of different aldehydes, malononitrile, and various 1,3-dicarbonyl compounds, catalyzed by an amine-functionalized metal-organic framework (MOF) Cu2(NH2-BDC)2(DABCO) as a heterogeneous catalyst with good to excellent yields.
Collapse
|
195
|
Creating hierarchical pores in metal-organic frameworks via postsynthetic reactions. Nat Protoc 2023; 18:604-625. [PMID: 36307543 DOI: 10.1038/s41596-022-00759-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 07/07/2022] [Indexed: 11/09/2022]
Abstract
Metal-organic frameworks (MOFs) demonstrate promise for a multitude of applications owing to their high porosity and surface area. However, the majority of conventional MOFs possess only micropores with very limited accessibility to substances larger than 2 nm-especially functional biomacromolecules like some proteins. It is challenging to create an appropriately large pore size while avoiding framework collapse in MOFs. Herein, we present the generation of mesopores in microporous MOFs through three facile and effective techniques, namely Soxhlet washing, linker hydrolysis and linker thermolysis. These postsynthetic elimination approaches have been applied in selected MOFs, including PCN-250, PCN-160 and UiO-66, and controllably generate MOFs with hierarchical pores and high stability. Our work demonstrates reproducible and straightforward methods resulting in hierarchically porous materials that possess the benefits of mesoporosity while borrowing the robustness of a micropore framework. All the procedures can be conducted reliably at a multigram scale and operation time less than 6 h, representing a significant effort in the field of MOF synthesis. These hierarchically porous MOFs show great promise in a wide range of applications as efficient adsorbents, catalysts and drug carriers.
Collapse
|
196
|
Jia C, He T, Wang GM. Zirconium-based metal-organic frameworks for fluorescent sensing. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
197
|
Somnath, Ahmad M, Siddiqui KA. Cu(II)-Based Coordination Polymer Encapsulated Formate: Unveiling Efficient PhotocatalyticDegradation ofRose Bengal Dye and Remarkable Sensing of DMF, Acetone and Acetonitrile. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
198
|
Gong W, Xie Y, Wang X, Kirlikovali KO, Idrees KB, Sha F, Xie H, Liu Y, Chen B, Cui Y, Farha OK. Programmed Polarizability Engineering in a Cyclen-Based Cubic Zr(IV) Metal-Organic Framework to Boost Xe/Kr Separation. J Am Chem Soc 2023; 145:2679-2689. [PMID: 36652593 DOI: 10.1021/jacs.2c13171] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Efficient separation of xenon (Xe) and krypton (Kr) mixtures through vacuum swing adsorption (VSA) is considered the most attractive route to reduce energy consumption, but discriminating between these two gases is difficult due to their similar properties. In this work, we report a cubic zirconium-based MOF (Zr-MOF) platform, denoted as NU-1107, capable of achieving selective separation of Xe/Kr by post-synthetically engineering framework polarizability in a programmable manner. Specifically, the tetratopic linkers in NU-1107 feature tetradentate cyclen cores that are capable of chelating a variety of transition-metal ions, affording a sequence of metal-docked cationic isostructural Zr-MOFs. NU-1107-Ag(I), which features the strongest framework polarizability among this series, achieves the best performance for a 20:80 v/v Xe/Kr mixture at 298 K and 1.0 bar with an ideal adsorbed solution theory (IAST) predicted selectivity of 13.4, placing it among the highest performing MOF materials reported to date. Notably, the Xe/Kr separation performance for NU-1107-Ag(I) is significantly better than that of the isoreticular, porphyrin-based MOF-525-Ag(II), highlighting how the cyclen core can generate relatively stronger framework polarizability through the formation of low-valent Ag(I) species and polarizable counteranions. Density functional theory (DFT) calculations corroborate these experimental results and suggest strong interactions between Xe and exposed Ag(I) sites in NU-1107-Ag(I). Finally, we validated this framework polarizability regulation approach by demonstrating the effectiveness of NU-1107-Ag(I) toward C3H6/C3H8 separation, indicating that this generalizable strategy can facilitate the bespoke synthesis of polarized porous materials for targeted separations.
Collapse
Affiliation(s)
- Wei Gong
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China.,Department of Chemistry and International Institute for Nanotechnology (IIN), Northwestern University, Evanston, Illinois 60208, United States
| | - Yi Xie
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249-0698, United States
| | - Xingjie Wang
- Department of Chemistry and International Institute for Nanotechnology (IIN), Northwestern University, Evanston, Illinois 60208, United States
| | - Kent O Kirlikovali
- Department of Chemistry and International Institute for Nanotechnology (IIN), Northwestern University, Evanston, Illinois 60208, United States
| | - Karam B Idrees
- Department of Chemistry and International Institute for Nanotechnology (IIN), Northwestern University, Evanston, Illinois 60208, United States
| | - Fanrui Sha
- Department of Chemistry and International Institute for Nanotechnology (IIN), Northwestern University, Evanston, Illinois 60208, United States
| | - Haomiao Xie
- Department of Chemistry and International Institute for Nanotechnology (IIN), Northwestern University, Evanston, Illinois 60208, United States
| | - Yan Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Banglin Chen
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249-0698, United States
| | - Yong Cui
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Omar K Farha
- Department of Chemistry and International Institute for Nanotechnology (IIN), Northwestern University, Evanston, Illinois 60208, United States.,Department of Chemical & Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
199
|
Coordination polymers of perylenetetracarboxylate with Cs(I) ions: 3D structures with 2D inorganic layers or triple coordination nets. Polyhedron 2023. [DOI: 10.1016/j.poly.2023.116338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
200
|
Łuczak J, Kroczewska M, Baluk M, Sowik J, Mazierski P, Zaleska-Medynska A. Morphology control through the synthesis of metal-organic frameworks. Adv Colloid Interface Sci 2023; 314:102864. [PMID: 37001207 DOI: 10.1016/j.cis.2023.102864] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 02/20/2023] [Accepted: 02/23/2023] [Indexed: 02/27/2023]
Abstract
Designable morphology and predictable properties are the most challenging goals in material engineering. Features such as shape, size, porosity, agglomeration ratio significantly affect the final properties of metal-organic frameworks (MOFs) and can be regulated throughout synthesis parameters but require a deep understanding of the mechanisms of MOFs formation. Herein, we systematically summarize the effects of the individual synthesis factors, such as pH of reaction mixture, including acidic or basic character of modulators, temperature, solvents types, surfactants type and content and ionic liquids on the morphology of growing MOFs. We identified main mechanisms of MOFs' growth leading to different morphology of final particles and next systematically discuss the effect of miscellaneous parameters on MOFs morphology based on the main mechanisms related to the nucleation, growth and formation of final MOFs structure, including coordination modulation, protonation/deprotonation acting and modulation by surfactants or capping agents. The effect of microwaves and ultrasound employment during synthesis is also considered due to their affecting especially nucleation and particles growing steps during MOFs formation.
Collapse
Affiliation(s)
- Justyna Łuczak
- Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdańsk University of Technology, 80-233 Gdańsk, Poland
| | - Malwina Kroczewska
- Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdańsk University of Technology, 80-233 Gdańsk, Poland
| | - Mateusz Baluk
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Jakub Sowik
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Paweł Mazierski
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdansk, Poland
| | | |
Collapse
|